2 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 #ifndef _UAPI_I915_DRM_H_
28 #define _UAPI_I915_DRM_H_
32 #if defined(__cplusplus)
36 /* Please note that modifications to all structs defined here are
37 * subject to backwards-compatibility constraints.
41 * DOC: uevents generated by i915 on it's device node
43 * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
44 * event from the gpu l3 cache. Additional information supplied is ROW,
45 * BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
46 * track of these events and if a specific cache-line seems to have a
47 * persistent error remap it with the l3 remapping tool supplied in
48 * intel-gpu-tools. The value supplied with the event is always 1.
50 * I915_ERROR_UEVENT - Generated upon error detection, currently only via
51 * hangcheck. The error detection event is a good indicator of when things
52 * began to go badly. The value supplied with the event is a 1 upon error
53 * detection, and a 0 upon reset completion, signifying no more error
54 * exists. NOTE: Disabling hangcheck or reset via module parameter will
55 * cause the related events to not be seen.
57 * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
58 * the GPU. The value supplied with the event is always 1. NOTE: Disable
59 * reset via module parameter will cause this event to not be seen.
61 #define I915_L3_PARITY_UEVENT "L3_PARITY_ERROR"
62 #define I915_ERROR_UEVENT "ERROR"
63 #define I915_RESET_UEVENT "RESET"
66 * MOCS indexes used for GPU surfaces, defining the cacheability of the
67 * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
69 enum i915_mocs_table_index {
71 * Not cached anywhere, coherency between CPU and GPU accesses is
76 * Cacheability and coherency controlled by the kernel automatically
77 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
78 * usage of the surface (used for display scanout or not).
82 * Cached in all GPU caches available on the platform.
83 * Coherency between CPU and GPU accesses to the surface is not
84 * guaranteed without extra synchronization.
90 * Different engines serve different roles, and there may be more than one
91 * engine serving each role. enum drm_i915_gem_engine_class provides a
92 * classification of the role of the engine, which may be used when requesting
93 * operations to be performed on a certain subset of engines, or for providing
94 * information about that group.
96 enum drm_i915_gem_engine_class {
97 I915_ENGINE_CLASS_RENDER = 0,
98 I915_ENGINE_CLASS_COPY = 1,
99 I915_ENGINE_CLASS_VIDEO = 2,
100 I915_ENGINE_CLASS_VIDEO_ENHANCE = 3,
102 I915_ENGINE_CLASS_INVALID = -1
106 * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
110 enum drm_i915_pmu_engine_sample {
111 I915_SAMPLE_BUSY = 0,
112 I915_SAMPLE_WAIT = 1,
116 #define I915_PMU_SAMPLE_BITS (4)
117 #define I915_PMU_SAMPLE_MASK (0xf)
118 #define I915_PMU_SAMPLE_INSTANCE_BITS (8)
119 #define I915_PMU_CLASS_SHIFT \
120 (I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
122 #define __I915_PMU_ENGINE(class, instance, sample) \
123 ((class) << I915_PMU_CLASS_SHIFT | \
124 (instance) << I915_PMU_SAMPLE_BITS | \
127 #define I915_PMU_ENGINE_BUSY(class, instance) \
128 __I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
130 #define I915_PMU_ENGINE_WAIT(class, instance) \
131 __I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
133 #define I915_PMU_ENGINE_SEMA(class, instance) \
134 __I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
136 #define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
138 #define I915_PMU_ACTUAL_FREQUENCY __I915_PMU_OTHER(0)
139 #define I915_PMU_REQUESTED_FREQUENCY __I915_PMU_OTHER(1)
140 #define I915_PMU_INTERRUPTS __I915_PMU_OTHER(2)
141 #define I915_PMU_RC6_RESIDENCY __I915_PMU_OTHER(3)
143 #define I915_PMU_LAST I915_PMU_RC6_RESIDENCY
145 /* Each region is a minimum of 16k, and there are at most 255 of them.
147 #define I915_NR_TEX_REGIONS 255 /* table size 2k - maximum due to use
148 * of chars for next/prev indices */
149 #define I915_LOG_MIN_TEX_REGION_SIZE 14
151 typedef struct _drm_i915_init {
153 I915_INIT_DMA = 0x01,
154 I915_CLEANUP_DMA = 0x02,
155 I915_RESUME_DMA = 0x03
157 unsigned int mmio_offset;
158 int sarea_priv_offset;
159 unsigned int ring_start;
160 unsigned int ring_end;
161 unsigned int ring_size;
162 unsigned int front_offset;
163 unsigned int back_offset;
164 unsigned int depth_offset;
168 unsigned int pitch_bits;
169 unsigned int back_pitch;
170 unsigned int depth_pitch;
172 unsigned int chipset;
175 typedef struct _drm_i915_sarea {
176 struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
177 int last_upload; /* last time texture was uploaded */
178 int last_enqueue; /* last time a buffer was enqueued */
179 int last_dispatch; /* age of the most recently dispatched buffer */
180 int ctxOwner; /* last context to upload state */
182 int pf_enabled; /* is pageflipping allowed? */
184 int pf_current_page; /* which buffer is being displayed? */
185 int perf_boxes; /* performance boxes to be displayed */
186 int width, height; /* screen size in pixels */
188 drm_handle_t front_handle;
192 drm_handle_t back_handle;
196 drm_handle_t depth_handle;
200 drm_handle_t tex_handle;
203 int log_tex_granularity;
205 int rotation; /* 0, 90, 180 or 270 */
209 int virtualX, virtualY;
211 unsigned int front_tiled;
212 unsigned int back_tiled;
213 unsigned int depth_tiled;
214 unsigned int rotated_tiled;
215 unsigned int rotated2_tiled;
226 /* fill out some space for old userspace triple buffer */
227 drm_handle_t unused_handle;
228 __u32 unused1, unused2, unused3;
230 /* buffer object handles for static buffers. May change
231 * over the lifetime of the client.
233 __u32 front_bo_handle;
234 __u32 back_bo_handle;
235 __u32 unused_bo_handle;
236 __u32 depth_bo_handle;
240 /* due to userspace building against these headers we need some compat here */
241 #define planeA_x pipeA_x
242 #define planeA_y pipeA_y
243 #define planeA_w pipeA_w
244 #define planeA_h pipeA_h
245 #define planeB_x pipeB_x
246 #define planeB_y pipeB_y
247 #define planeB_w pipeB_w
248 #define planeB_h pipeB_h
250 /* Flags for perf_boxes
252 #define I915_BOX_RING_EMPTY 0x1
253 #define I915_BOX_FLIP 0x2
254 #define I915_BOX_WAIT 0x4
255 #define I915_BOX_TEXTURE_LOAD 0x8
256 #define I915_BOX_LOST_CONTEXT 0x10
259 * i915 specific ioctls.
261 * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
262 * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
263 * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
265 #define DRM_I915_INIT 0x00
266 #define DRM_I915_FLUSH 0x01
267 #define DRM_I915_FLIP 0x02
268 #define DRM_I915_BATCHBUFFER 0x03
269 #define DRM_I915_IRQ_EMIT 0x04
270 #define DRM_I915_IRQ_WAIT 0x05
271 #define DRM_I915_GETPARAM 0x06
272 #define DRM_I915_SETPARAM 0x07
273 #define DRM_I915_ALLOC 0x08
274 #define DRM_I915_FREE 0x09
275 #define DRM_I915_INIT_HEAP 0x0a
276 #define DRM_I915_CMDBUFFER 0x0b
277 #define DRM_I915_DESTROY_HEAP 0x0c
278 #define DRM_I915_SET_VBLANK_PIPE 0x0d
279 #define DRM_I915_GET_VBLANK_PIPE 0x0e
280 #define DRM_I915_VBLANK_SWAP 0x0f
281 #define DRM_I915_HWS_ADDR 0x11
282 #define DRM_I915_GEM_INIT 0x13
283 #define DRM_I915_GEM_EXECBUFFER 0x14
284 #define DRM_I915_GEM_PIN 0x15
285 #define DRM_I915_GEM_UNPIN 0x16
286 #define DRM_I915_GEM_BUSY 0x17
287 #define DRM_I915_GEM_THROTTLE 0x18
288 #define DRM_I915_GEM_ENTERVT 0x19
289 #define DRM_I915_GEM_LEAVEVT 0x1a
290 #define DRM_I915_GEM_CREATE 0x1b
291 #define DRM_I915_GEM_PREAD 0x1c
292 #define DRM_I915_GEM_PWRITE 0x1d
293 #define DRM_I915_GEM_MMAP 0x1e
294 #define DRM_I915_GEM_SET_DOMAIN 0x1f
295 #define DRM_I915_GEM_SW_FINISH 0x20
296 #define DRM_I915_GEM_SET_TILING 0x21
297 #define DRM_I915_GEM_GET_TILING 0x22
298 #define DRM_I915_GEM_GET_APERTURE 0x23
299 #define DRM_I915_GEM_MMAP_GTT 0x24
300 #define DRM_I915_GET_PIPE_FROM_CRTC_ID 0x25
301 #define DRM_I915_GEM_MADVISE 0x26
302 #define DRM_I915_OVERLAY_PUT_IMAGE 0x27
303 #define DRM_I915_OVERLAY_ATTRS 0x28
304 #define DRM_I915_GEM_EXECBUFFER2 0x29
305 #define DRM_I915_GEM_EXECBUFFER2_WR DRM_I915_GEM_EXECBUFFER2
306 #define DRM_I915_GET_SPRITE_COLORKEY 0x2a
307 #define DRM_I915_SET_SPRITE_COLORKEY 0x2b
308 #define DRM_I915_GEM_WAIT 0x2c
309 #define DRM_I915_GEM_CONTEXT_CREATE 0x2d
310 #define DRM_I915_GEM_CONTEXT_DESTROY 0x2e
311 #define DRM_I915_GEM_SET_CACHING 0x2f
312 #define DRM_I915_GEM_GET_CACHING 0x30
313 #define DRM_I915_REG_READ 0x31
314 #define DRM_I915_GET_RESET_STATS 0x32
315 #define DRM_I915_GEM_USERPTR 0x33
316 #define DRM_I915_GEM_CONTEXT_GETPARAM 0x34
317 #define DRM_I915_GEM_CONTEXT_SETPARAM 0x35
318 #define DRM_I915_PERF_OPEN 0x36
319 #define DRM_I915_PERF_ADD_CONFIG 0x37
320 #define DRM_I915_PERF_REMOVE_CONFIG 0x38
321 #define DRM_I915_QUERY 0x39
323 #define DRM_IOCTL_I915_INIT DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
324 #define DRM_IOCTL_I915_FLUSH DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
325 #define DRM_IOCTL_I915_FLIP DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
326 #define DRM_IOCTL_I915_BATCHBUFFER DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
327 #define DRM_IOCTL_I915_IRQ_EMIT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
328 #define DRM_IOCTL_I915_IRQ_WAIT DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
329 #define DRM_IOCTL_I915_GETPARAM DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
330 #define DRM_IOCTL_I915_SETPARAM DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
331 #define DRM_IOCTL_I915_ALLOC DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
332 #define DRM_IOCTL_I915_FREE DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
333 #define DRM_IOCTL_I915_INIT_HEAP DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
334 #define DRM_IOCTL_I915_CMDBUFFER DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
335 #define DRM_IOCTL_I915_DESTROY_HEAP DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
336 #define DRM_IOCTL_I915_SET_VBLANK_PIPE DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
337 #define DRM_IOCTL_I915_GET_VBLANK_PIPE DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
338 #define DRM_IOCTL_I915_VBLANK_SWAP DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
339 #define DRM_IOCTL_I915_HWS_ADDR DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
340 #define DRM_IOCTL_I915_GEM_INIT DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
341 #define DRM_IOCTL_I915_GEM_EXECBUFFER DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
342 #define DRM_IOCTL_I915_GEM_EXECBUFFER2 DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
343 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
344 #define DRM_IOCTL_I915_GEM_PIN DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
345 #define DRM_IOCTL_I915_GEM_UNPIN DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
346 #define DRM_IOCTL_I915_GEM_BUSY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
347 #define DRM_IOCTL_I915_GEM_SET_CACHING DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
348 #define DRM_IOCTL_I915_GEM_GET_CACHING DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
349 #define DRM_IOCTL_I915_GEM_THROTTLE DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
350 #define DRM_IOCTL_I915_GEM_ENTERVT DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
351 #define DRM_IOCTL_I915_GEM_LEAVEVT DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
352 #define DRM_IOCTL_I915_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
353 #define DRM_IOCTL_I915_GEM_PREAD DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
354 #define DRM_IOCTL_I915_GEM_PWRITE DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
355 #define DRM_IOCTL_I915_GEM_MMAP DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
356 #define DRM_IOCTL_I915_GEM_MMAP_GTT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
357 #define DRM_IOCTL_I915_GEM_SET_DOMAIN DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
358 #define DRM_IOCTL_I915_GEM_SW_FINISH DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
359 #define DRM_IOCTL_I915_GEM_SET_TILING DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
360 #define DRM_IOCTL_I915_GEM_GET_TILING DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
361 #define DRM_IOCTL_I915_GEM_GET_APERTURE DRM_IOR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
362 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
363 #define DRM_IOCTL_I915_GEM_MADVISE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
364 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
365 #define DRM_IOCTL_I915_OVERLAY_ATTRS DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
366 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
367 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
368 #define DRM_IOCTL_I915_GEM_WAIT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
369 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
370 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
371 #define DRM_IOCTL_I915_REG_READ DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
372 #define DRM_IOCTL_I915_GET_RESET_STATS DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
373 #define DRM_IOCTL_I915_GEM_USERPTR DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
374 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
375 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
376 #define DRM_IOCTL_I915_PERF_OPEN DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
377 #define DRM_IOCTL_I915_PERF_ADD_CONFIG DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
378 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
379 #define DRM_IOCTL_I915_QUERY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
381 /* Allow drivers to submit batchbuffers directly to hardware, relying
382 * on the security mechanisms provided by hardware.
384 typedef struct drm_i915_batchbuffer {
385 int start; /* agp offset */
386 int used; /* nr bytes in use */
387 int DR1; /* hw flags for GFX_OP_DRAWRECT_INFO */
388 int DR4; /* window origin for GFX_OP_DRAWRECT_INFO */
389 int num_cliprects; /* mulitpass with multiple cliprects? */
390 struct drm_clip_rect __user *cliprects; /* pointer to userspace cliprects */
391 } drm_i915_batchbuffer_t;
393 /* As above, but pass a pointer to userspace buffer which can be
394 * validated by the kernel prior to sending to hardware.
396 typedef struct _drm_i915_cmdbuffer {
397 char __user *buf; /* pointer to userspace command buffer */
398 int sz; /* nr bytes in buf */
399 int DR1; /* hw flags for GFX_OP_DRAWRECT_INFO */
400 int DR4; /* window origin for GFX_OP_DRAWRECT_INFO */
401 int num_cliprects; /* mulitpass with multiple cliprects? */
402 struct drm_clip_rect __user *cliprects; /* pointer to userspace cliprects */
403 } drm_i915_cmdbuffer_t;
405 /* Userspace can request & wait on irq's:
407 typedef struct drm_i915_irq_emit {
409 } drm_i915_irq_emit_t;
411 typedef struct drm_i915_irq_wait {
413 } drm_i915_irq_wait_t;
415 /* Ioctl to query kernel params:
417 #define I915_PARAM_IRQ_ACTIVE 1
418 #define I915_PARAM_ALLOW_BATCHBUFFER 2
419 #define I915_PARAM_LAST_DISPATCH 3
420 #define I915_PARAM_CHIPSET_ID 4
421 #define I915_PARAM_HAS_GEM 5
422 #define I915_PARAM_NUM_FENCES_AVAIL 6
423 #define I915_PARAM_HAS_OVERLAY 7
424 #define I915_PARAM_HAS_PAGEFLIPPING 8
425 #define I915_PARAM_HAS_EXECBUF2 9
426 #define I915_PARAM_HAS_BSD 10
427 #define I915_PARAM_HAS_BLT 11
428 #define I915_PARAM_HAS_RELAXED_FENCING 12
429 #define I915_PARAM_HAS_COHERENT_RINGS 13
430 #define I915_PARAM_HAS_EXEC_CONSTANTS 14
431 #define I915_PARAM_HAS_RELAXED_DELTA 15
432 #define I915_PARAM_HAS_GEN7_SOL_RESET 16
433 #define I915_PARAM_HAS_LLC 17
434 #define I915_PARAM_HAS_ALIASING_PPGTT 18
435 #define I915_PARAM_HAS_WAIT_TIMEOUT 19
436 #define I915_PARAM_HAS_SEMAPHORES 20
437 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH 21
438 #define I915_PARAM_HAS_VEBOX 22
439 #define I915_PARAM_HAS_SECURE_BATCHES 23
440 #define I915_PARAM_HAS_PINNED_BATCHES 24
441 #define I915_PARAM_HAS_EXEC_NO_RELOC 25
442 #define I915_PARAM_HAS_EXEC_HANDLE_LUT 26
443 #define I915_PARAM_HAS_WT 27
444 #define I915_PARAM_CMD_PARSER_VERSION 28
445 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
446 #define I915_PARAM_MMAP_VERSION 30
447 #define I915_PARAM_HAS_BSD2 31
448 #define I915_PARAM_REVISION 32
449 #define I915_PARAM_SUBSLICE_TOTAL 33
450 #define I915_PARAM_EU_TOTAL 34
451 #define I915_PARAM_HAS_GPU_RESET 35
452 #define I915_PARAM_HAS_RESOURCE_STREAMER 36
453 #define I915_PARAM_HAS_EXEC_SOFTPIN 37
454 #define I915_PARAM_HAS_POOLED_EU 38
455 #define I915_PARAM_MIN_EU_IN_POOL 39
456 #define I915_PARAM_MMAP_GTT_VERSION 40
459 * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
460 * priorities and the driver will attempt to execute batches in priority order.
461 * The param returns a capability bitmask, nonzero implies that the scheduler
462 * is enabled, with different features present according to the mask.
464 * The initial priority for each batch is supplied by the context and is
465 * controlled via I915_CONTEXT_PARAM_PRIORITY.
467 #define I915_PARAM_HAS_SCHEDULER 41
468 #define I915_SCHEDULER_CAP_ENABLED (1ul << 0)
469 #define I915_SCHEDULER_CAP_PRIORITY (1ul << 1)
470 #define I915_SCHEDULER_CAP_PREEMPTION (1ul << 2)
472 #define I915_PARAM_HUC_STATUS 42
474 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
475 * synchronisation with implicit fencing on individual objects.
476 * See EXEC_OBJECT_ASYNC.
478 #define I915_PARAM_HAS_EXEC_ASYNC 43
480 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
481 * both being able to pass in a sync_file fd to wait upon before executing,
482 * and being able to return a new sync_file fd that is signaled when the
483 * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
485 #define I915_PARAM_HAS_EXEC_FENCE 44
487 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
488 * user specified bufffers for post-mortem debugging of GPU hangs. See
489 * EXEC_OBJECT_CAPTURE.
491 #define I915_PARAM_HAS_EXEC_CAPTURE 45
493 #define I915_PARAM_SLICE_MASK 46
495 /* Assuming it's uniform for each slice, this queries the mask of subslices
496 * per-slice for this system.
498 #define I915_PARAM_SUBSLICE_MASK 47
501 * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
502 * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
504 #define I915_PARAM_HAS_EXEC_BATCH_FIRST 48
506 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
507 * drm_i915_gem_exec_fence structures. See I915_EXEC_FENCE_ARRAY.
509 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY 49
512 * Query whether every context (both per-file default and user created) is
513 * isolated (insofar as HW supports). If this parameter is not true, then
514 * freshly created contexts may inherit values from an existing context,
515 * rather than default HW values. If true, it also ensures (insofar as HW
516 * supports) that all state set by this context will not leak to any other
519 * As not every engine across every gen support contexts, the returned
520 * value reports the support of context isolation for individual engines by
521 * returning a bitmask of each engine class set to true if that class supports
524 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50
526 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP
527 * registers. This used to be fixed per platform but from CNL onwards, this
528 * might vary depending on the parts.
530 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
533 * Once upon a time we supposed that writes through the GGTT would be
534 * immediately in physical memory (once flushed out of the CPU path). However,
535 * on a few different processors and chipsets, this is not necessarily the case
536 * as the writes appear to be buffered internally. Thus a read of the backing
537 * storage (physical memory) via a different path (with different physical tags
538 * to the indirect write via the GGTT) will see stale values from before
539 * the GGTT write. Inside the kernel, we can for the most part keep track of
540 * the different read/write domains in use (e.g. set-domain), but the assumption
541 * of coherency is baked into the ABI, hence reporting its true state in this
544 * Reports true when writes via mmap_gtt are immediately visible following an
545 * lfence to flush the WCB.
547 * Reports false when writes via mmap_gtt are indeterminately delayed in an in
548 * internal buffer and are _not_ immediately visible to third parties accessing
549 * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
550 * communications channel when reporting false is strongly disadvised.
552 #define I915_PARAM_MMAP_GTT_COHERENT 52
554 typedef struct drm_i915_getparam {
557 * WARNING: Using pointers instead of fixed-size u64 means we need to write
558 * compat32 code. Don't repeat this mistake.
561 } drm_i915_getparam_t;
563 /* Ioctl to set kernel params:
565 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START 1
566 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY 2
567 #define I915_SETPARAM_ALLOW_BATCHBUFFER 3
568 #define I915_SETPARAM_NUM_USED_FENCES 4
570 typedef struct drm_i915_setparam {
573 } drm_i915_setparam_t;
575 /* A memory manager for regions of shared memory:
577 #define I915_MEM_REGION_AGP 1
579 typedef struct drm_i915_mem_alloc {
583 int __user *region_offset; /* offset from start of fb or agp */
584 } drm_i915_mem_alloc_t;
586 typedef struct drm_i915_mem_free {
589 } drm_i915_mem_free_t;
591 typedef struct drm_i915_mem_init_heap {
595 } drm_i915_mem_init_heap_t;
597 /* Allow memory manager to be torn down and re-initialized (eg on
600 typedef struct drm_i915_mem_destroy_heap {
602 } drm_i915_mem_destroy_heap_t;
604 /* Allow X server to configure which pipes to monitor for vblank signals
606 #define DRM_I915_VBLANK_PIPE_A 1
607 #define DRM_I915_VBLANK_PIPE_B 2
609 typedef struct drm_i915_vblank_pipe {
611 } drm_i915_vblank_pipe_t;
613 /* Schedule buffer swap at given vertical blank:
615 typedef struct drm_i915_vblank_swap {
616 drm_drawable_t drawable;
617 enum drm_vblank_seq_type seqtype;
618 unsigned int sequence;
619 } drm_i915_vblank_swap_t;
621 typedef struct drm_i915_hws_addr {
623 } drm_i915_hws_addr_t;
625 struct drm_i915_gem_init {
627 * Beginning offset in the GTT to be managed by the DRM memory
632 * Ending offset in the GTT to be managed by the DRM memory
638 struct drm_i915_gem_create {
640 * Requested size for the object.
642 * The (page-aligned) allocated size for the object will be returned.
646 * Returned handle for the object.
648 * Object handles are nonzero.
654 struct drm_i915_gem_pread {
655 /** Handle for the object being read. */
658 /** Offset into the object to read from */
660 /** Length of data to read */
663 * Pointer to write the data into.
665 * This is a fixed-size type for 32/64 compatibility.
670 struct drm_i915_gem_pwrite {
671 /** Handle for the object being written to. */
674 /** Offset into the object to write to */
676 /** Length of data to write */
679 * Pointer to read the data from.
681 * This is a fixed-size type for 32/64 compatibility.
686 struct drm_i915_gem_mmap {
687 /** Handle for the object being mapped. */
690 /** Offset in the object to map. */
693 * Length of data to map.
695 * The value will be page-aligned.
699 * Returned pointer the data was mapped at.
701 * This is a fixed-size type for 32/64 compatibility.
706 * Flags for extended behaviour.
708 * Added in version 2.
711 #define I915_MMAP_WC 0x1
714 struct drm_i915_gem_mmap_gtt {
715 /** Handle for the object being mapped. */
719 * Fake offset to use for subsequent mmap call
721 * This is a fixed-size type for 32/64 compatibility.
726 struct drm_i915_gem_set_domain {
727 /** Handle for the object */
730 /** New read domains */
733 /** New write domain */
737 struct drm_i915_gem_sw_finish {
738 /** Handle for the object */
742 struct drm_i915_gem_relocation_entry {
744 * Handle of the buffer being pointed to by this relocation entry.
746 * It's appealing to make this be an index into the mm_validate_entry
747 * list to refer to the buffer, but this allows the driver to create
748 * a relocation list for state buffers and not re-write it per
749 * exec using the buffer.
754 * Value to be added to the offset of the target buffer to make up
755 * the relocation entry.
759 /** Offset in the buffer the relocation entry will be written into */
763 * Offset value of the target buffer that the relocation entry was last
766 * If the buffer has the same offset as last time, we can skip syncing
767 * and writing the relocation. This value is written back out by
768 * the execbuffer ioctl when the relocation is written.
770 __u64 presumed_offset;
773 * Target memory domains read by this operation.
778 * Target memory domains written by this operation.
780 * Note that only one domain may be written by the whole
781 * execbuffer operation, so that where there are conflicts,
782 * the application will get -EINVAL back.
788 * Intel memory domains
790 * Most of these just align with the various caches in
791 * the system and are used to flush and invalidate as
792 * objects end up cached in different domains.
795 #define I915_GEM_DOMAIN_CPU 0x00000001
796 /** Render cache, used by 2D and 3D drawing */
797 #define I915_GEM_DOMAIN_RENDER 0x00000002
798 /** Sampler cache, used by texture engine */
799 #define I915_GEM_DOMAIN_SAMPLER 0x00000004
800 /** Command queue, used to load batch buffers */
801 #define I915_GEM_DOMAIN_COMMAND 0x00000008
802 /** Instruction cache, used by shader programs */
803 #define I915_GEM_DOMAIN_INSTRUCTION 0x00000010
804 /** Vertex address cache */
805 #define I915_GEM_DOMAIN_VERTEX 0x00000020
806 /** GTT domain - aperture and scanout */
807 #define I915_GEM_DOMAIN_GTT 0x00000040
808 /** WC domain - uncached access */
809 #define I915_GEM_DOMAIN_WC 0x00000080
812 struct drm_i915_gem_exec_object {
814 * User's handle for a buffer to be bound into the GTT for this
819 /** Number of relocations to be performed on this buffer */
820 __u32 relocation_count;
822 * Pointer to array of struct drm_i915_gem_relocation_entry containing
823 * the relocations to be performed in this buffer.
827 /** Required alignment in graphics aperture */
831 * Returned value of the updated offset of the object, for future
832 * presumed_offset writes.
837 struct drm_i915_gem_execbuffer {
839 * List of buffers to be validated with their relocations to be
840 * performend on them.
842 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
844 * These buffers must be listed in an order such that all relocations
845 * a buffer is performing refer to buffers that have already appeared
846 * in the validate list.
851 /** Offset in the batchbuffer to start execution from. */
852 __u32 batch_start_offset;
853 /** Bytes used in batchbuffer from batch_start_offset */
858 /** This is a struct drm_clip_rect *cliprects */
862 struct drm_i915_gem_exec_object2 {
864 * User's handle for a buffer to be bound into the GTT for this
869 /** Number of relocations to be performed on this buffer */
870 __u32 relocation_count;
872 * Pointer to array of struct drm_i915_gem_relocation_entry containing
873 * the relocations to be performed in this buffer.
877 /** Required alignment in graphics aperture */
881 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
882 * the user with the GTT offset at which this object will be pinned.
883 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
884 * presumed_offset of the object.
885 * During execbuffer2 the kernel populates it with the value of the
886 * current GTT offset of the object, for future presumed_offset writes.
890 #define EXEC_OBJECT_NEEDS_FENCE (1<<0)
891 #define EXEC_OBJECT_NEEDS_GTT (1<<1)
892 #define EXEC_OBJECT_WRITE (1<<2)
893 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
894 #define EXEC_OBJECT_PINNED (1<<4)
895 #define EXEC_OBJECT_PAD_TO_SIZE (1<<5)
896 /* The kernel implicitly tracks GPU activity on all GEM objects, and
897 * synchronises operations with outstanding rendering. This includes
898 * rendering on other devices if exported via dma-buf. However, sometimes
899 * this tracking is too coarse and the user knows better. For example,
900 * if the object is split into non-overlapping ranges shared between different
901 * clients or engines (i.e. suballocating objects), the implicit tracking
902 * by kernel assumes that each operation affects the whole object rather
903 * than an individual range, causing needless synchronisation between clients.
904 * The kernel will also forgo any CPU cache flushes prior to rendering from
905 * the object as the client is expected to be also handling such domain
908 * The kernel maintains the implicit tracking in order to manage resources
909 * used by the GPU - this flag only disables the synchronisation prior to
910 * rendering with this object in this execbuf.
912 * Opting out of implicit synhronisation requires the user to do its own
913 * explicit tracking to avoid rendering corruption. See, for example,
914 * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
916 #define EXEC_OBJECT_ASYNC (1<<6)
917 /* Request that the contents of this execobject be copied into the error
918 * state upon a GPU hang involving this batch for post-mortem debugging.
919 * These buffers are recorded in no particular order as "user" in
920 * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
921 * if the kernel supports this flag.
923 #define EXEC_OBJECT_CAPTURE (1<<7)
924 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
925 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
935 struct drm_i915_gem_exec_fence {
937 * User's handle for a drm_syncobj to wait on or signal.
941 #define I915_EXEC_FENCE_WAIT (1<<0)
942 #define I915_EXEC_FENCE_SIGNAL (1<<1)
943 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
947 struct drm_i915_gem_execbuffer2 {
949 * List of gem_exec_object2 structs
954 /** Offset in the batchbuffer to start execution from. */
955 __u32 batch_start_offset;
956 /** Bytes used in batchbuffer from batch_start_offset */
962 * This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY
963 * is not set. If I915_EXEC_FENCE_ARRAY is set, then this is a
964 * struct drm_i915_gem_exec_fence *fences.
967 #define I915_EXEC_RING_MASK (7<<0)
968 #define I915_EXEC_DEFAULT (0<<0)
969 #define I915_EXEC_RENDER (1<<0)
970 #define I915_EXEC_BSD (2<<0)
971 #define I915_EXEC_BLT (3<<0)
972 #define I915_EXEC_VEBOX (4<<0)
974 /* Used for switching the constants addressing mode on gen4+ RENDER ring.
975 * Gen6+ only supports relative addressing to dynamic state (default) and
976 * absolute addressing.
978 * These flags are ignored for the BSD and BLT rings.
980 #define I915_EXEC_CONSTANTS_MASK (3<<6)
981 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
982 #define I915_EXEC_CONSTANTS_ABSOLUTE (1<<6)
983 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
985 __u64 rsvd1; /* now used for context info */
989 /** Resets the SO write offset registers for transform feedback on gen7. */
990 #define I915_EXEC_GEN7_SOL_RESET (1<<8)
992 /** Request a privileged ("secure") batch buffer. Note only available for
993 * DRM_ROOT_ONLY | DRM_MASTER processes.
995 #define I915_EXEC_SECURE (1<<9)
997 /** Inform the kernel that the batch is and will always be pinned. This
998 * negates the requirement for a workaround to be performed to avoid
999 * an incoherent CS (such as can be found on 830/845). If this flag is
1000 * not passed, the kernel will endeavour to make sure the batch is
1001 * coherent with the CS before execution. If this flag is passed,
1002 * userspace assumes the responsibility for ensuring the same.
1004 #define I915_EXEC_IS_PINNED (1<<10)
1006 /** Provide a hint to the kernel that the command stream and auxiliary
1007 * state buffers already holds the correct presumed addresses and so the
1008 * relocation process may be skipped if no buffers need to be moved in
1009 * preparation for the execbuffer.
1011 #define I915_EXEC_NO_RELOC (1<<11)
1013 /** Use the reloc.handle as an index into the exec object array rather
1014 * than as the per-file handle.
1016 #define I915_EXEC_HANDLE_LUT (1<<12)
1018 /** Used for switching BSD rings on the platforms with two BSD rings */
1019 #define I915_EXEC_BSD_SHIFT (13)
1020 #define I915_EXEC_BSD_MASK (3 << I915_EXEC_BSD_SHIFT)
1021 /* default ping-pong mode */
1022 #define I915_EXEC_BSD_DEFAULT (0 << I915_EXEC_BSD_SHIFT)
1023 #define I915_EXEC_BSD_RING1 (1 << I915_EXEC_BSD_SHIFT)
1024 #define I915_EXEC_BSD_RING2 (2 << I915_EXEC_BSD_SHIFT)
1026 /** Tell the kernel that the batchbuffer is processed by
1027 * the resource streamer.
1029 #define I915_EXEC_RESOURCE_STREAMER (1<<15)
1031 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1032 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1035 * Returns -EINVAL if the sync_file fd cannot be found.
1037 #define I915_EXEC_FENCE_IN (1<<16)
1039 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1040 * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1041 * to the caller, and it should be close() after use. (The fd is a regular
1042 * file descriptor and will be cleaned up on process termination. It holds
1043 * a reference to the request, but nothing else.)
1045 * The sync_file fd can be combined with other sync_file and passed either
1046 * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1047 * will only occur after this request completes), or to other devices.
1049 * Using I915_EXEC_FENCE_OUT requires use of
1050 * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1051 * back to userspace. Failure to do so will cause the out-fence to always
1052 * be reported as zero, and the real fence fd to be leaked.
1054 #define I915_EXEC_FENCE_OUT (1<<17)
1057 * Traditionally the execbuf ioctl has only considered the final element in
1058 * the execobject[] to be the executable batch. Often though, the client
1059 * will known the batch object prior to construction and being able to place
1060 * it into the execobject[] array first can simplify the relocation tracking.
1061 * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1062 * execobject[] as the * batch instead (the default is to use the last
1065 #define I915_EXEC_BATCH_FIRST (1<<18)
1067 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1068 * define an array of i915_gem_exec_fence structures which specify a set of
1069 * dma fences to wait upon or signal.
1071 #define I915_EXEC_FENCE_ARRAY (1<<19)
1073 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_ARRAY<<1))
1075 #define I915_EXEC_CONTEXT_ID_MASK (0xffffffff)
1076 #define i915_execbuffer2_set_context_id(eb2, context) \
1077 (eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1078 #define i915_execbuffer2_get_context_id(eb2) \
1079 ((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1081 struct drm_i915_gem_pin {
1082 /** Handle of the buffer to be pinned. */
1086 /** alignment required within the aperture */
1089 /** Returned GTT offset of the buffer. */
1093 struct drm_i915_gem_unpin {
1094 /** Handle of the buffer to be unpinned. */
1099 struct drm_i915_gem_busy {
1100 /** Handle of the buffer to check for busy */
1103 /** Return busy status
1105 * A return of 0 implies that the object is idle (after
1106 * having flushed any pending activity), and a non-zero return that
1107 * the object is still in-flight on the GPU. (The GPU has not yet
1108 * signaled completion for all pending requests that reference the
1109 * object.) An object is guaranteed to become idle eventually (so
1110 * long as no new GPU commands are executed upon it). Due to the
1111 * asynchronous nature of the hardware, an object reported
1112 * as busy may become idle before the ioctl is completed.
1114 * Furthermore, if the object is busy, which engine is busy is only
1115 * provided as a guide. There are race conditions which prevent the
1116 * report of which engines are busy from being always accurate.
1117 * However, the converse is not true. If the object is idle, the
1118 * result of the ioctl, that all engines are idle, is accurate.
1120 * The returned dword is split into two fields to indicate both
1121 * the engines on which the object is being read, and the
1122 * engine on which it is currently being written (if any).
1124 * The low word (bits 0:15) indicate if the object is being written
1125 * to by any engine (there can only be one, as the GEM implicit
1126 * synchronisation rules force writes to be serialised). Only the
1127 * engine for the last write is reported.
1129 * The high word (bits 16:31) are a bitmask of which engines are
1130 * currently reading from the object. Multiple engines may be
1131 * reading from the object simultaneously.
1133 * The value of each engine is the same as specified in the
1134 * EXECBUFFER2 ioctl, i.e. I915_EXEC_RENDER, I915_EXEC_BSD etc.
1135 * Note I915_EXEC_DEFAULT is a symbolic value and is mapped to
1136 * the I915_EXEC_RENDER engine for execution, and so it is never
1137 * reported as active itself. Some hardware may have parallel
1138 * execution engines, e.g. multiple media engines, which are
1139 * mapped to the same identifier in the EXECBUFFER2 ioctl and
1140 * so are not separately reported for busyness.
1143 * Only the boolean result of this query is reliable; that is whether
1144 * the object is idle or busy. The report of which engines are busy
1145 * should be only used as a heuristic.
1153 * GPU access is not coherent with cpu caches. Default for machines without an
1156 #define I915_CACHING_NONE 0
1158 * I915_CACHING_CACHED
1160 * GPU access is coherent with cpu caches and furthermore the data is cached in
1161 * last-level caches shared between cpu cores and the gpu GT. Default on
1162 * machines with HAS_LLC.
1164 #define I915_CACHING_CACHED 1
1166 * I915_CACHING_DISPLAY
1168 * Special GPU caching mode which is coherent with the scanout engines.
1169 * Transparently falls back to I915_CACHING_NONE on platforms where no special
1170 * cache mode (like write-through or gfdt flushing) is available. The kernel
1171 * automatically sets this mode when using a buffer as a scanout target.
1172 * Userspace can manually set this mode to avoid a costly stall and clflush in
1173 * the hotpath of drawing the first frame.
1175 #define I915_CACHING_DISPLAY 2
1177 struct drm_i915_gem_caching {
1179 * Handle of the buffer to set/get the caching level of. */
1183 * Cacheing level to apply or return value
1185 * bits0-15 are for generic caching control (i.e. the above defined
1186 * values). bits16-31 are reserved for platform-specific variations
1187 * (e.g. l3$ caching on gen7). */
1191 #define I915_TILING_NONE 0
1192 #define I915_TILING_X 1
1193 #define I915_TILING_Y 2
1194 #define I915_TILING_LAST I915_TILING_Y
1196 #define I915_BIT_6_SWIZZLE_NONE 0
1197 #define I915_BIT_6_SWIZZLE_9 1
1198 #define I915_BIT_6_SWIZZLE_9_10 2
1199 #define I915_BIT_6_SWIZZLE_9_11 3
1200 #define I915_BIT_6_SWIZZLE_9_10_11 4
1201 /* Not seen by userland */
1202 #define I915_BIT_6_SWIZZLE_UNKNOWN 5
1203 /* Seen by userland. */
1204 #define I915_BIT_6_SWIZZLE_9_17 6
1205 #define I915_BIT_6_SWIZZLE_9_10_17 7
1207 struct drm_i915_gem_set_tiling {
1208 /** Handle of the buffer to have its tiling state updated */
1212 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1215 * This value is to be set on request, and will be updated by the
1216 * kernel on successful return with the actual chosen tiling layout.
1218 * The tiling mode may be demoted to I915_TILING_NONE when the system
1219 * has bit 6 swizzling that can't be managed correctly by GEM.
1221 * Buffer contents become undefined when changing tiling_mode.
1226 * Stride in bytes for the object when in I915_TILING_X or
1232 * Returned address bit 6 swizzling required for CPU access through
1238 struct drm_i915_gem_get_tiling {
1239 /** Handle of the buffer to get tiling state for. */
1243 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1249 * Returned address bit 6 swizzling required for CPU access through
1255 * Returned address bit 6 swizzling required for CPU access through
1256 * mmap mapping whilst bound.
1258 __u32 phys_swizzle_mode;
1261 struct drm_i915_gem_get_aperture {
1262 /** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1266 * Available space in the aperture used by i915_gem_execbuffer, in
1269 __u64 aper_available_size;
1272 struct drm_i915_get_pipe_from_crtc_id {
1273 /** ID of CRTC being requested **/
1276 /** pipe of requested CRTC **/
1280 #define I915_MADV_WILLNEED 0
1281 #define I915_MADV_DONTNEED 1
1282 #define __I915_MADV_PURGED 2 /* internal state */
1284 struct drm_i915_gem_madvise {
1285 /** Handle of the buffer to change the backing store advice */
1288 /* Advice: either the buffer will be needed again in the near future,
1289 * or wont be and could be discarded under memory pressure.
1293 /** Whether the backing store still exists. */
1298 #define I915_OVERLAY_TYPE_MASK 0xff
1299 #define I915_OVERLAY_YUV_PLANAR 0x01
1300 #define I915_OVERLAY_YUV_PACKED 0x02
1301 #define I915_OVERLAY_RGB 0x03
1303 #define I915_OVERLAY_DEPTH_MASK 0xff00
1304 #define I915_OVERLAY_RGB24 0x1000
1305 #define I915_OVERLAY_RGB16 0x2000
1306 #define I915_OVERLAY_RGB15 0x3000
1307 #define I915_OVERLAY_YUV422 0x0100
1308 #define I915_OVERLAY_YUV411 0x0200
1309 #define I915_OVERLAY_YUV420 0x0300
1310 #define I915_OVERLAY_YUV410 0x0400
1312 #define I915_OVERLAY_SWAP_MASK 0xff0000
1313 #define I915_OVERLAY_NO_SWAP 0x000000
1314 #define I915_OVERLAY_UV_SWAP 0x010000
1315 #define I915_OVERLAY_Y_SWAP 0x020000
1316 #define I915_OVERLAY_Y_AND_UV_SWAP 0x030000
1318 #define I915_OVERLAY_FLAGS_MASK 0xff000000
1319 #define I915_OVERLAY_ENABLE 0x01000000
1321 struct drm_intel_overlay_put_image {
1322 /* various flags and src format description */
1324 /* source picture description */
1326 /* stride values and offsets are in bytes, buffer relative */
1327 __u16 stride_Y; /* stride for packed formats */
1329 __u32 offset_Y; /* offset for packet formats */
1335 /* to compensate the scaling factors for partially covered surfaces */
1336 __u16 src_scan_width;
1337 __u16 src_scan_height;
1338 /* output crtc description */
1347 #define I915_OVERLAY_UPDATE_ATTRS (1<<0)
1348 #define I915_OVERLAY_UPDATE_GAMMA (1<<1)
1349 #define I915_OVERLAY_DISABLE_DEST_COLORKEY (1<<2)
1350 struct drm_intel_overlay_attrs {
1365 * Intel sprite handling
1367 * Color keying works with a min/mask/max tuple. Both source and destination
1368 * color keying is allowed.
1371 * Sprite pixels within the min & max values, masked against the color channels
1372 * specified in the mask field, will be transparent. All other pixels will
1373 * be displayed on top of the primary plane. For RGB surfaces, only the min
1374 * and mask fields will be used; ranged compares are not allowed.
1376 * Destination keying:
1377 * Primary plane pixels that match the min value, masked against the color
1378 * channels specified in the mask field, will be replaced by corresponding
1379 * pixels from the sprite plane.
1381 * Note that source & destination keying are exclusive; only one can be
1382 * active on a given plane.
1385 #define I915_SET_COLORKEY_NONE (1<<0) /* Deprecated. Instead set
1386 * flags==0 to disable colorkeying.
1388 #define I915_SET_COLORKEY_DESTINATION (1<<1)
1389 #define I915_SET_COLORKEY_SOURCE (1<<2)
1390 struct drm_intel_sprite_colorkey {
1398 struct drm_i915_gem_wait {
1399 /** Handle of BO we shall wait on */
1402 /** Number of nanoseconds to wait, Returns time remaining. */
1406 struct drm_i915_gem_context_create {
1407 /* output: id of new context*/
1412 struct drm_i915_gem_context_destroy {
1417 struct drm_i915_reg_read {
1420 * For 64bit wide registers where the upper 32bits don't immediately
1421 * follow the lower 32bits, the offset of the lower 32bits must
1425 #define I915_REG_READ_8B_WA (1ul << 0)
1427 __u64 val; /* Return value */
1431 * Render engine timestamp - 0x2358 + 64bit - gen7+
1432 * - Note this register returns an invalid value if using the default
1433 * single instruction 8byte read, in order to workaround that pass
1434 * flag I915_REG_READ_8B_WA in offset field.
1438 struct drm_i915_reset_stats {
1442 /* All resets since boot/module reload, for all contexts */
1445 /* Number of batches lost when active in GPU, for this context */
1448 /* Number of batches lost pending for execution, for this context */
1449 __u32 batch_pending;
1454 struct drm_i915_gem_userptr {
1458 #define I915_USERPTR_READ_ONLY 0x1
1459 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000
1461 * Returned handle for the object.
1463 * Object handles are nonzero.
1468 struct drm_i915_gem_context_param {
1472 #define I915_CONTEXT_PARAM_BAN_PERIOD 0x1
1473 #define I915_CONTEXT_PARAM_NO_ZEROMAP 0x2
1474 #define I915_CONTEXT_PARAM_GTT_SIZE 0x3
1475 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE 0x4
1476 #define I915_CONTEXT_PARAM_BANNABLE 0x5
1477 #define I915_CONTEXT_PARAM_PRIORITY 0x6
1478 #define I915_CONTEXT_MAX_USER_PRIORITY 1023 /* inclusive */
1479 #define I915_CONTEXT_DEFAULT_PRIORITY 0
1480 #define I915_CONTEXT_MIN_USER_PRIORITY -1023 /* inclusive */
1484 enum drm_i915_oa_format {
1485 I915_OA_FORMAT_A13 = 1, /* HSW only */
1486 I915_OA_FORMAT_A29, /* HSW only */
1487 I915_OA_FORMAT_A13_B8_C8, /* HSW only */
1488 I915_OA_FORMAT_B4_C8, /* HSW only */
1489 I915_OA_FORMAT_A45_B8_C8, /* HSW only */
1490 I915_OA_FORMAT_B4_C8_A16, /* HSW only */
1491 I915_OA_FORMAT_C4_B8, /* HSW+ */
1495 I915_OA_FORMAT_A12_B8_C8,
1496 I915_OA_FORMAT_A32u40_A4u32_B8_C8,
1498 I915_OA_FORMAT_MAX /* non-ABI */
1501 enum drm_i915_perf_property_id {
1503 * Open the stream for a specific context handle (as used with
1504 * execbuffer2). A stream opened for a specific context this way
1505 * won't typically require root privileges.
1507 DRM_I915_PERF_PROP_CTX_HANDLE = 1,
1510 * A value of 1 requests the inclusion of raw OA unit reports as
1511 * part of stream samples.
1513 DRM_I915_PERF_PROP_SAMPLE_OA,
1516 * The value specifies which set of OA unit metrics should be
1517 * be configured, defining the contents of any OA unit reports.
1519 DRM_I915_PERF_PROP_OA_METRICS_SET,
1522 * The value specifies the size and layout of OA unit reports.
1524 DRM_I915_PERF_PROP_OA_FORMAT,
1527 * Specifying this property implicitly requests periodic OA unit
1528 * sampling and (at least on Haswell) the sampling frequency is derived
1529 * from this exponent as follows:
1531 * 80ns * 2^(period_exponent + 1)
1533 DRM_I915_PERF_PROP_OA_EXPONENT,
1535 DRM_I915_PERF_PROP_MAX /* non-ABI */
1538 struct drm_i915_perf_open_param {
1540 #define I915_PERF_FLAG_FD_CLOEXEC (1<<0)
1541 #define I915_PERF_FLAG_FD_NONBLOCK (1<<1)
1542 #define I915_PERF_FLAG_DISABLED (1<<2)
1544 /** The number of u64 (id, value) pairs */
1545 __u32 num_properties;
1548 * Pointer to array of u64 (id, value) pairs configuring the stream
1551 __u64 properties_ptr;
1555 * Enable data capture for a stream that was either opened in a disabled state
1556 * via I915_PERF_FLAG_DISABLED or was later disabled via
1557 * I915_PERF_IOCTL_DISABLE.
1559 * It is intended to be cheaper to disable and enable a stream than it may be
1560 * to close and re-open a stream with the same configuration.
1562 * It's undefined whether any pending data for the stream will be lost.
1564 #define I915_PERF_IOCTL_ENABLE _IO('i', 0x0)
1567 * Disable data capture for a stream.
1569 * It is an error to try and read a stream that is disabled.
1571 #define I915_PERF_IOCTL_DISABLE _IO('i', 0x1)
1574 * Common to all i915 perf records
1576 struct drm_i915_perf_record_header {
1582 enum drm_i915_perf_record_type {
1585 * Samples are the work horse record type whose contents are extensible
1586 * and defined when opening an i915 perf stream based on the given
1589 * Boolean properties following the naming convention
1590 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
1593 * The order of these sample properties given by userspace has no
1594 * affect on the ordering of data within a sample. The order is
1598 * struct drm_i915_perf_record_header header;
1600 * { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
1603 DRM_I915_PERF_RECORD_SAMPLE = 1,
1606 * Indicates that one or more OA reports were not written by the
1607 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
1608 * command collides with periodic sampling - which would be more likely
1609 * at higher sampling frequencies.
1611 DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
1614 * An error occurred that resulted in all pending OA reports being lost.
1616 DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
1618 DRM_I915_PERF_RECORD_MAX /* non-ABI */
1622 * Structure to upload perf dynamic configuration into the kernel.
1624 struct drm_i915_perf_oa_config {
1625 /** String formatted like "%08x-%04x-%04x-%04x-%012x" */
1629 __u32 n_boolean_regs;
1633 * These fields are pointers to tuples of u32 values (register address,
1634 * value). For example the expected length of the buffer pointed by
1635 * mux_regs_ptr is (2 * sizeof(u32) * n_mux_regs).
1638 __u64 boolean_regs_ptr;
1639 __u64 flex_regs_ptr;
1642 struct drm_i915_query_item {
1644 #define DRM_I915_QUERY_TOPOLOGY_INFO 1
1647 * When set to zero by userspace, this is filled with the size of the
1648 * data to be written at the data_ptr pointer. The kernel sets this
1649 * value to a negative value to signal an error on a particular query
1655 * Unused for now. Must be cleared to zero.
1660 * Data will be written at the location pointed by data_ptr when the
1661 * value of length matches the length of the data to be written by the
1667 struct drm_i915_query {
1671 * Unused for now. Must be cleared to zero.
1676 * This points to an array of num_items drm_i915_query_item structures.
1682 * Data written by the kernel with query DRM_I915_QUERY_TOPOLOGY_INFO :
1684 * data: contains the 3 pieces of information :
1686 * - the slice mask with one bit per slice telling whether a slice is
1687 * available. The availability of slice X can be queried with the following
1690 * (data[X / 8] >> (X % 8)) & 1
1692 * - the subslice mask for each slice with one bit per subslice telling
1693 * whether a subslice is available. The availability of subslice Y in slice
1694 * X can be queried with the following formula :
1696 * (data[subslice_offset +
1697 * X * subslice_stride +
1698 * Y / 8] >> (Y % 8)) & 1
1700 * - the EU mask for each subslice in each slice with one bit per EU telling
1701 * whether an EU is available. The availability of EU Z in subslice Y in
1702 * slice X can be queried with the following formula :
1705 * (X * max_subslices + Y) * eu_stride +
1706 * Z / 8] >> (Z % 8)) & 1
1708 struct drm_i915_query_topology_info {
1710 * Unused for now. Must be cleared to zero.
1715 __u16 max_subslices;
1716 __u16 max_eus_per_subslice;
1719 * Offset in data[] at which the subslice masks are stored.
1721 __u16 subslice_offset;
1724 * Stride at which each of the subslice masks for each slice are
1727 __u16 subslice_stride;
1730 * Offset in data[] at which the EU masks are stored.
1735 * Stride at which each of the EU masks for each subslice are stored.
1742 #if defined(__cplusplus)
1746 #endif /* _UAPI_I915_DRM_H_ */