]> Git Repo - linux.git/blob - net/sched/sch_fq.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / net / sched / sch_fq.c
1 /*
2  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3  *
4  *  Copyright (C) 2013-2015 Eric Dumazet <[email protected]>
5  *
6  *      This program is free software; you can redistribute it and/or
7  *      modify it under the terms of the GNU General Public License
8  *      as published by the Free Software Foundation; either version
9  *      2 of the License, or (at your option) any later version.
10  *
11  *  Meant to be mostly used for locally generated traffic :
12  *  Fast classification depends on skb->sk being set before reaching us.
13  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14  *  All packets belonging to a socket are considered as a 'flow'.
15  *
16  *  Flows are dynamically allocated and stored in a hash table of RB trees
17  *  They are also part of one Round Robin 'queues' (new or old flows)
18  *
19  *  Burst avoidance (aka pacing) capability :
20  *
21  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22  *  bunch of packets, and this packet scheduler adds delay between
23  *  packets to respect rate limitation.
24  *
25  *  enqueue() :
26  *   - lookup one RB tree (out of 1024 or more) to find the flow.
27  *     If non existent flow, create it, add it to the tree.
28  *     Add skb to the per flow list of skb (fifo).
29  *   - Use a special fifo for high prio packets
30  *
31  *  dequeue() : serves flows in Round Robin
32  *  Note : When a flow becomes empty, we do not immediately remove it from
33  *  rb trees, for performance reasons (its expected to send additional packets,
34  *  or SLAB cache will reuse socket for another flow)
35  */
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlink.h>
52 #include <net/pkt_sched.h>
53 #include <net/sock.h>
54 #include <net/tcp_states.h>
55 #include <net/tcp.h>
56
57 /*
58  * Per flow structure, dynamically allocated
59  */
60 struct fq_flow {
61         struct sk_buff  *head;          /* list of skbs for this flow : first skb */
62         union {
63                 struct sk_buff *tail;   /* last skb in the list */
64                 unsigned long  age;     /* jiffies when flow was emptied, for gc */
65         };
66         struct rb_node  fq_node;        /* anchor in fq_root[] trees */
67         struct sock     *sk;
68         int             qlen;           /* number of packets in flow queue */
69         int             credit;
70         u32             socket_hash;    /* sk_hash */
71         struct fq_flow *next;           /* next pointer in RR lists, or &detached */
72
73         struct rb_node  rate_node;      /* anchor in q->delayed tree */
74         u64             time_next_packet;
75 };
76
77 struct fq_flow_head {
78         struct fq_flow *first;
79         struct fq_flow *last;
80 };
81
82 struct fq_sched_data {
83         struct fq_flow_head new_flows;
84
85         struct fq_flow_head old_flows;
86
87         struct rb_root  delayed;        /* for rate limited flows */
88         u64             time_next_delayed_flow;
89         unsigned long   unthrottle_latency_ns;
90
91         struct fq_flow  internal;       /* for non classified or high prio packets */
92         u32             quantum;
93         u32             initial_quantum;
94         u32             flow_refill_delay;
95         u32             flow_plimit;    /* max packets per flow */
96         unsigned long   flow_max_rate;  /* optional max rate per flow */
97         u32             orphan_mask;    /* mask for orphaned skb */
98         u32             low_rate_threshold;
99         struct rb_root  *fq_root;
100         u8              rate_enable;
101         u8              fq_trees_log;
102
103         u32             flows;
104         u32             inactive_flows;
105         u32             throttled_flows;
106
107         u64             stat_gc_flows;
108         u64             stat_internal_packets;
109         u64             stat_throttled;
110         u64             stat_flows_plimit;
111         u64             stat_pkts_too_long;
112         u64             stat_allocation_errors;
113         struct qdisc_watchdog watchdog;
114 };
115
116 /* special value to mark a detached flow (not on old/new list) */
117 static struct fq_flow detached, throttled;
118
119 static void fq_flow_set_detached(struct fq_flow *f)
120 {
121         f->next = &detached;
122         f->age = jiffies;
123 }
124
125 static bool fq_flow_is_detached(const struct fq_flow *f)
126 {
127         return f->next == &detached;
128 }
129
130 static bool fq_flow_is_throttled(const struct fq_flow *f)
131 {
132         return f->next == &throttled;
133 }
134
135 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
136 {
137         if (head->first)
138                 head->last->next = flow;
139         else
140                 head->first = flow;
141         head->last = flow;
142         flow->next = NULL;
143 }
144
145 static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
146 {
147         rb_erase(&f->rate_node, &q->delayed);
148         q->throttled_flows--;
149         fq_flow_add_tail(&q->old_flows, f);
150 }
151
152 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
153 {
154         struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
155
156         while (*p) {
157                 struct fq_flow *aux;
158
159                 parent = *p;
160                 aux = rb_entry(parent, struct fq_flow, rate_node);
161                 if (f->time_next_packet >= aux->time_next_packet)
162                         p = &parent->rb_right;
163                 else
164                         p = &parent->rb_left;
165         }
166         rb_link_node(&f->rate_node, parent, p);
167         rb_insert_color(&f->rate_node, &q->delayed);
168         q->throttled_flows++;
169         q->stat_throttled++;
170
171         f->next = &throttled;
172         if (q->time_next_delayed_flow > f->time_next_packet)
173                 q->time_next_delayed_flow = f->time_next_packet;
174 }
175
176
177 static struct kmem_cache *fq_flow_cachep __read_mostly;
178
179
180 /* limit number of collected flows per round */
181 #define FQ_GC_MAX 8
182 #define FQ_GC_AGE (3*HZ)
183
184 static bool fq_gc_candidate(const struct fq_flow *f)
185 {
186         return fq_flow_is_detached(f) &&
187                time_after(jiffies, f->age + FQ_GC_AGE);
188 }
189
190 static void fq_gc(struct fq_sched_data *q,
191                   struct rb_root *root,
192                   struct sock *sk)
193 {
194         struct fq_flow *f, *tofree[FQ_GC_MAX];
195         struct rb_node **p, *parent;
196         int fcnt = 0;
197
198         p = &root->rb_node;
199         parent = NULL;
200         while (*p) {
201                 parent = *p;
202
203                 f = rb_entry(parent, struct fq_flow, fq_node);
204                 if (f->sk == sk)
205                         break;
206
207                 if (fq_gc_candidate(f)) {
208                         tofree[fcnt++] = f;
209                         if (fcnt == FQ_GC_MAX)
210                                 break;
211                 }
212
213                 if (f->sk > sk)
214                         p = &parent->rb_right;
215                 else
216                         p = &parent->rb_left;
217         }
218
219         q->flows -= fcnt;
220         q->inactive_flows -= fcnt;
221         q->stat_gc_flows += fcnt;
222         while (fcnt) {
223                 struct fq_flow *f = tofree[--fcnt];
224
225                 rb_erase(&f->fq_node, root);
226                 kmem_cache_free(fq_flow_cachep, f);
227         }
228 }
229
230 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
231 {
232         struct rb_node **p, *parent;
233         struct sock *sk = skb->sk;
234         struct rb_root *root;
235         struct fq_flow *f;
236
237         /* warning: no starvation prevention... */
238         if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
239                 return &q->internal;
240
241         /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
242          * or a listener (SYNCOOKIE mode)
243          * 1) request sockets are not full blown,
244          *    they do not contain sk_pacing_rate
245          * 2) They are not part of a 'flow' yet
246          * 3) We do not want to rate limit them (eg SYNFLOOD attack),
247          *    especially if the listener set SO_MAX_PACING_RATE
248          * 4) We pretend they are orphaned
249          */
250         if (!sk || sk_listener(sk)) {
251                 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
252
253                 /* By forcing low order bit to 1, we make sure to not
254                  * collide with a local flow (socket pointers are word aligned)
255                  */
256                 sk = (struct sock *)((hash << 1) | 1UL);
257                 skb_orphan(skb);
258         }
259
260         root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
261
262         if (q->flows >= (2U << q->fq_trees_log) &&
263             q->inactive_flows > q->flows/2)
264                 fq_gc(q, root, sk);
265
266         p = &root->rb_node;
267         parent = NULL;
268         while (*p) {
269                 parent = *p;
270
271                 f = rb_entry(parent, struct fq_flow, fq_node);
272                 if (f->sk == sk) {
273                         /* socket might have been reallocated, so check
274                          * if its sk_hash is the same.
275                          * It not, we need to refill credit with
276                          * initial quantum
277                          */
278                         if (unlikely(skb->sk &&
279                                      f->socket_hash != sk->sk_hash)) {
280                                 f->credit = q->initial_quantum;
281                                 f->socket_hash = sk->sk_hash;
282                                 if (fq_flow_is_throttled(f))
283                                         fq_flow_unset_throttled(q, f);
284                                 f->time_next_packet = 0ULL;
285                         }
286                         return f;
287                 }
288                 if (f->sk > sk)
289                         p = &parent->rb_right;
290                 else
291                         p = &parent->rb_left;
292         }
293
294         f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
295         if (unlikely(!f)) {
296                 q->stat_allocation_errors++;
297                 return &q->internal;
298         }
299         fq_flow_set_detached(f);
300         f->sk = sk;
301         if (skb->sk)
302                 f->socket_hash = sk->sk_hash;
303         f->credit = q->initial_quantum;
304
305         rb_link_node(&f->fq_node, parent, p);
306         rb_insert_color(&f->fq_node, root);
307
308         q->flows++;
309         q->inactive_flows++;
310         return f;
311 }
312
313
314 /* remove one skb from head of flow queue */
315 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
316 {
317         struct sk_buff *skb = flow->head;
318
319         if (skb) {
320                 flow->head = skb->next;
321                 skb_mark_not_on_list(skb);
322                 flow->qlen--;
323                 qdisc_qstats_backlog_dec(sch, skb);
324                 sch->q.qlen--;
325         }
326         return skb;
327 }
328
329 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
330 {
331         struct sk_buff *head = flow->head;
332
333         skb->next = NULL;
334         if (!head)
335                 flow->head = skb;
336         else
337                 flow->tail->next = skb;
338
339         flow->tail = skb;
340 }
341
342 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
343                       struct sk_buff **to_free)
344 {
345         struct fq_sched_data *q = qdisc_priv(sch);
346         struct fq_flow *f;
347
348         if (unlikely(sch->q.qlen >= sch->limit))
349                 return qdisc_drop(skb, sch, to_free);
350
351         f = fq_classify(skb, q);
352         if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
353                 q->stat_flows_plimit++;
354                 return qdisc_drop(skb, sch, to_free);
355         }
356
357         f->qlen++;
358         qdisc_qstats_backlog_inc(sch, skb);
359         if (fq_flow_is_detached(f)) {
360                 struct sock *sk = skb->sk;
361
362                 fq_flow_add_tail(&q->new_flows, f);
363                 if (time_after(jiffies, f->age + q->flow_refill_delay))
364                         f->credit = max_t(u32, f->credit, q->quantum);
365                 if (sk && q->rate_enable) {
366                         if (unlikely(smp_load_acquire(&sk->sk_pacing_status) !=
367                                      SK_PACING_FQ))
368                                 smp_store_release(&sk->sk_pacing_status,
369                                                   SK_PACING_FQ);
370                 }
371                 q->inactive_flows--;
372         }
373
374         /* Note: this overwrites f->age */
375         flow_queue_add(f, skb);
376
377         if (unlikely(f == &q->internal)) {
378                 q->stat_internal_packets++;
379         }
380         sch->q.qlen++;
381
382         return NET_XMIT_SUCCESS;
383 }
384
385 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
386 {
387         unsigned long sample;
388         struct rb_node *p;
389
390         if (q->time_next_delayed_flow > now)
391                 return;
392
393         /* Update unthrottle latency EWMA.
394          * This is cheap and can help diagnosing timer/latency problems.
395          */
396         sample = (unsigned long)(now - q->time_next_delayed_flow);
397         q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
398         q->unthrottle_latency_ns += sample >> 3;
399
400         q->time_next_delayed_flow = ~0ULL;
401         while ((p = rb_first(&q->delayed)) != NULL) {
402                 struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
403
404                 if (f->time_next_packet > now) {
405                         q->time_next_delayed_flow = f->time_next_packet;
406                         break;
407                 }
408                 fq_flow_unset_throttled(q, f);
409         }
410 }
411
412 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
413 {
414         struct fq_sched_data *q = qdisc_priv(sch);
415         u64 now = ktime_get_ns();
416         struct fq_flow_head *head;
417         struct sk_buff *skb;
418         struct fq_flow *f;
419         unsigned long rate;
420         u32 plen;
421
422         skb = fq_dequeue_head(sch, &q->internal);
423         if (skb)
424                 goto out;
425         fq_check_throttled(q, now);
426 begin:
427         head = &q->new_flows;
428         if (!head->first) {
429                 head = &q->old_flows;
430                 if (!head->first) {
431                         if (q->time_next_delayed_flow != ~0ULL)
432                                 qdisc_watchdog_schedule_ns(&q->watchdog,
433                                                            q->time_next_delayed_flow);
434                         return NULL;
435                 }
436         }
437         f = head->first;
438
439         if (f->credit <= 0) {
440                 f->credit += q->quantum;
441                 head->first = f->next;
442                 fq_flow_add_tail(&q->old_flows, f);
443                 goto begin;
444         }
445
446         skb = f->head;
447         if (skb) {
448                 u64 time_next_packet = max_t(u64, ktime_to_ns(skb->tstamp),
449                                              f->time_next_packet);
450
451                 if (now < time_next_packet) {
452                         head->first = f->next;
453                         f->time_next_packet = time_next_packet;
454                         fq_flow_set_throttled(q, f);
455                         goto begin;
456                 }
457         }
458
459         skb = fq_dequeue_head(sch, f);
460         if (!skb) {
461                 head->first = f->next;
462                 /* force a pass through old_flows to prevent starvation */
463                 if ((head == &q->new_flows) && q->old_flows.first) {
464                         fq_flow_add_tail(&q->old_flows, f);
465                 } else {
466                         fq_flow_set_detached(f);
467                         q->inactive_flows++;
468                 }
469                 goto begin;
470         }
471         prefetch(&skb->end);
472         plen = qdisc_pkt_len(skb);
473         f->credit -= plen;
474
475         if (!q->rate_enable)
476                 goto out;
477
478         rate = q->flow_max_rate;
479
480         /* If EDT time was provided for this skb, we need to
481          * update f->time_next_packet only if this qdisc enforces
482          * a flow max rate.
483          */
484         if (!skb->tstamp) {
485                 if (skb->sk)
486                         rate = min(skb->sk->sk_pacing_rate, rate);
487
488                 if (rate <= q->low_rate_threshold) {
489                         f->credit = 0;
490                 } else {
491                         plen = max(plen, q->quantum);
492                         if (f->credit > 0)
493                                 goto out;
494                 }
495         }
496         if (rate != ~0UL) {
497                 u64 len = (u64)plen * NSEC_PER_SEC;
498
499                 if (likely(rate))
500                         len = div64_ul(len, rate);
501                 /* Since socket rate can change later,
502                  * clamp the delay to 1 second.
503                  * Really, providers of too big packets should be fixed !
504                  */
505                 if (unlikely(len > NSEC_PER_SEC)) {
506                         len = NSEC_PER_SEC;
507                         q->stat_pkts_too_long++;
508                 }
509                 /* Account for schedule/timers drifts.
510                  * f->time_next_packet was set when prior packet was sent,
511                  * and current time (@now) can be too late by tens of us.
512                  */
513                 if (f->time_next_packet)
514                         len -= min(len/2, now - f->time_next_packet);
515                 f->time_next_packet = now + len;
516         }
517 out:
518         qdisc_bstats_update(sch, skb);
519         return skb;
520 }
521
522 static void fq_flow_purge(struct fq_flow *flow)
523 {
524         rtnl_kfree_skbs(flow->head, flow->tail);
525         flow->head = NULL;
526         flow->qlen = 0;
527 }
528
529 static void fq_reset(struct Qdisc *sch)
530 {
531         struct fq_sched_data *q = qdisc_priv(sch);
532         struct rb_root *root;
533         struct rb_node *p;
534         struct fq_flow *f;
535         unsigned int idx;
536
537         sch->q.qlen = 0;
538         sch->qstats.backlog = 0;
539
540         fq_flow_purge(&q->internal);
541
542         if (!q->fq_root)
543                 return;
544
545         for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
546                 root = &q->fq_root[idx];
547                 while ((p = rb_first(root)) != NULL) {
548                         f = rb_entry(p, struct fq_flow, fq_node);
549                         rb_erase(p, root);
550
551                         fq_flow_purge(f);
552
553                         kmem_cache_free(fq_flow_cachep, f);
554                 }
555         }
556         q->new_flows.first      = NULL;
557         q->old_flows.first      = NULL;
558         q->delayed              = RB_ROOT;
559         q->flows                = 0;
560         q->inactive_flows       = 0;
561         q->throttled_flows      = 0;
562 }
563
564 static void fq_rehash(struct fq_sched_data *q,
565                       struct rb_root *old_array, u32 old_log,
566                       struct rb_root *new_array, u32 new_log)
567 {
568         struct rb_node *op, **np, *parent;
569         struct rb_root *oroot, *nroot;
570         struct fq_flow *of, *nf;
571         int fcnt = 0;
572         u32 idx;
573
574         for (idx = 0; idx < (1U << old_log); idx++) {
575                 oroot = &old_array[idx];
576                 while ((op = rb_first(oroot)) != NULL) {
577                         rb_erase(op, oroot);
578                         of = rb_entry(op, struct fq_flow, fq_node);
579                         if (fq_gc_candidate(of)) {
580                                 fcnt++;
581                                 kmem_cache_free(fq_flow_cachep, of);
582                                 continue;
583                         }
584                         nroot = &new_array[hash_ptr(of->sk, new_log)];
585
586                         np = &nroot->rb_node;
587                         parent = NULL;
588                         while (*np) {
589                                 parent = *np;
590
591                                 nf = rb_entry(parent, struct fq_flow, fq_node);
592                                 BUG_ON(nf->sk == of->sk);
593
594                                 if (nf->sk > of->sk)
595                                         np = &parent->rb_right;
596                                 else
597                                         np = &parent->rb_left;
598                         }
599
600                         rb_link_node(&of->fq_node, parent, np);
601                         rb_insert_color(&of->fq_node, nroot);
602                 }
603         }
604         q->flows -= fcnt;
605         q->inactive_flows -= fcnt;
606         q->stat_gc_flows += fcnt;
607 }
608
609 static void fq_free(void *addr)
610 {
611         kvfree(addr);
612 }
613
614 static int fq_resize(struct Qdisc *sch, u32 log)
615 {
616         struct fq_sched_data *q = qdisc_priv(sch);
617         struct rb_root *array;
618         void *old_fq_root;
619         u32 idx;
620
621         if (q->fq_root && log == q->fq_trees_log)
622                 return 0;
623
624         /* If XPS was setup, we can allocate memory on right NUMA node */
625         array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
626                               netdev_queue_numa_node_read(sch->dev_queue));
627         if (!array)
628                 return -ENOMEM;
629
630         for (idx = 0; idx < (1U << log); idx++)
631                 array[idx] = RB_ROOT;
632
633         sch_tree_lock(sch);
634
635         old_fq_root = q->fq_root;
636         if (old_fq_root)
637                 fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
638
639         q->fq_root = array;
640         q->fq_trees_log = log;
641
642         sch_tree_unlock(sch);
643
644         fq_free(old_fq_root);
645
646         return 0;
647 }
648
649 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
650         [TCA_FQ_PLIMIT]                 = { .type = NLA_U32 },
651         [TCA_FQ_FLOW_PLIMIT]            = { .type = NLA_U32 },
652         [TCA_FQ_QUANTUM]                = { .type = NLA_U32 },
653         [TCA_FQ_INITIAL_QUANTUM]        = { .type = NLA_U32 },
654         [TCA_FQ_RATE_ENABLE]            = { .type = NLA_U32 },
655         [TCA_FQ_FLOW_DEFAULT_RATE]      = { .type = NLA_U32 },
656         [TCA_FQ_FLOW_MAX_RATE]          = { .type = NLA_U32 },
657         [TCA_FQ_BUCKETS_LOG]            = { .type = NLA_U32 },
658         [TCA_FQ_FLOW_REFILL_DELAY]      = { .type = NLA_U32 },
659         [TCA_FQ_LOW_RATE_THRESHOLD]     = { .type = NLA_U32 },
660 };
661
662 static int fq_change(struct Qdisc *sch, struct nlattr *opt,
663                      struct netlink_ext_ack *extack)
664 {
665         struct fq_sched_data *q = qdisc_priv(sch);
666         struct nlattr *tb[TCA_FQ_MAX + 1];
667         int err, drop_count = 0;
668         unsigned drop_len = 0;
669         u32 fq_log;
670
671         if (!opt)
672                 return -EINVAL;
673
674         err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy, NULL);
675         if (err < 0)
676                 return err;
677
678         sch_tree_lock(sch);
679
680         fq_log = q->fq_trees_log;
681
682         if (tb[TCA_FQ_BUCKETS_LOG]) {
683                 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
684
685                 if (nval >= 1 && nval <= ilog2(256*1024))
686                         fq_log = nval;
687                 else
688                         err = -EINVAL;
689         }
690         if (tb[TCA_FQ_PLIMIT])
691                 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
692
693         if (tb[TCA_FQ_FLOW_PLIMIT])
694                 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
695
696         if (tb[TCA_FQ_QUANTUM]) {
697                 u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
698
699                 if (quantum > 0)
700                         q->quantum = quantum;
701                 else
702                         err = -EINVAL;
703         }
704
705         if (tb[TCA_FQ_INITIAL_QUANTUM])
706                 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
707
708         if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
709                 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
710                                     nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
711
712         if (tb[TCA_FQ_FLOW_MAX_RATE]) {
713                 u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
714
715                 q->flow_max_rate = (rate == ~0U) ? ~0UL : rate;
716         }
717         if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
718                 q->low_rate_threshold =
719                         nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
720
721         if (tb[TCA_FQ_RATE_ENABLE]) {
722                 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
723
724                 if (enable <= 1)
725                         q->rate_enable = enable;
726                 else
727                         err = -EINVAL;
728         }
729
730         if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
731                 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
732
733                 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
734         }
735
736         if (tb[TCA_FQ_ORPHAN_MASK])
737                 q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
738
739         if (!err) {
740                 sch_tree_unlock(sch);
741                 err = fq_resize(sch, fq_log);
742                 sch_tree_lock(sch);
743         }
744         while (sch->q.qlen > sch->limit) {
745                 struct sk_buff *skb = fq_dequeue(sch);
746
747                 if (!skb)
748                         break;
749                 drop_len += qdisc_pkt_len(skb);
750                 rtnl_kfree_skbs(skb, skb);
751                 drop_count++;
752         }
753         qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
754
755         sch_tree_unlock(sch);
756         return err;
757 }
758
759 static void fq_destroy(struct Qdisc *sch)
760 {
761         struct fq_sched_data *q = qdisc_priv(sch);
762
763         fq_reset(sch);
764         fq_free(q->fq_root);
765         qdisc_watchdog_cancel(&q->watchdog);
766 }
767
768 static int fq_init(struct Qdisc *sch, struct nlattr *opt,
769                    struct netlink_ext_ack *extack)
770 {
771         struct fq_sched_data *q = qdisc_priv(sch);
772         int err;
773
774         sch->limit              = 10000;
775         q->flow_plimit          = 100;
776         q->quantum              = 2 * psched_mtu(qdisc_dev(sch));
777         q->initial_quantum      = 10 * psched_mtu(qdisc_dev(sch));
778         q->flow_refill_delay    = msecs_to_jiffies(40);
779         q->flow_max_rate        = ~0UL;
780         q->time_next_delayed_flow = ~0ULL;
781         q->rate_enable          = 1;
782         q->new_flows.first      = NULL;
783         q->old_flows.first      = NULL;
784         q->delayed              = RB_ROOT;
785         q->fq_root              = NULL;
786         q->fq_trees_log         = ilog2(1024);
787         q->orphan_mask          = 1024 - 1;
788         q->low_rate_threshold   = 550000 / 8;
789         qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
790
791         if (opt)
792                 err = fq_change(sch, opt, extack);
793         else
794                 err = fq_resize(sch, q->fq_trees_log);
795
796         return err;
797 }
798
799 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
800 {
801         struct fq_sched_data *q = qdisc_priv(sch);
802         struct nlattr *opts;
803
804         opts = nla_nest_start(skb, TCA_OPTIONS);
805         if (opts == NULL)
806                 goto nla_put_failure;
807
808         /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
809
810         if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
811             nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
812             nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
813             nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
814             nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
815             nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
816                         min_t(unsigned long, q->flow_max_rate, ~0U)) ||
817             nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
818                         jiffies_to_usecs(q->flow_refill_delay)) ||
819             nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
820             nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
821                         q->low_rate_threshold) ||
822             nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
823                 goto nla_put_failure;
824
825         return nla_nest_end(skb, opts);
826
827 nla_put_failure:
828         return -1;
829 }
830
831 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
832 {
833         struct fq_sched_data *q = qdisc_priv(sch);
834         struct tc_fq_qd_stats st;
835
836         sch_tree_lock(sch);
837
838         st.gc_flows               = q->stat_gc_flows;
839         st.highprio_packets       = q->stat_internal_packets;
840         st.tcp_retrans            = 0;
841         st.throttled              = q->stat_throttled;
842         st.flows_plimit           = q->stat_flows_plimit;
843         st.pkts_too_long          = q->stat_pkts_too_long;
844         st.allocation_errors      = q->stat_allocation_errors;
845         st.time_next_delayed_flow = q->time_next_delayed_flow - ktime_get_ns();
846         st.flows                  = q->flows;
847         st.inactive_flows         = q->inactive_flows;
848         st.throttled_flows        = q->throttled_flows;
849         st.unthrottle_latency_ns  = min_t(unsigned long,
850                                           q->unthrottle_latency_ns, ~0U);
851         sch_tree_unlock(sch);
852
853         return gnet_stats_copy_app(d, &st, sizeof(st));
854 }
855
856 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
857         .id             =       "fq",
858         .priv_size      =       sizeof(struct fq_sched_data),
859
860         .enqueue        =       fq_enqueue,
861         .dequeue        =       fq_dequeue,
862         .peek           =       qdisc_peek_dequeued,
863         .init           =       fq_init,
864         .reset          =       fq_reset,
865         .destroy        =       fq_destroy,
866         .change         =       fq_change,
867         .dump           =       fq_dump,
868         .dump_stats     =       fq_dump_stats,
869         .owner          =       THIS_MODULE,
870 };
871
872 static int __init fq_module_init(void)
873 {
874         int ret;
875
876         fq_flow_cachep = kmem_cache_create("fq_flow_cache",
877                                            sizeof(struct fq_flow),
878                                            0, 0, NULL);
879         if (!fq_flow_cachep)
880                 return -ENOMEM;
881
882         ret = register_qdisc(&fq_qdisc_ops);
883         if (ret)
884                 kmem_cache_destroy(fq_flow_cachep);
885         return ret;
886 }
887
888 static void __exit fq_module_exit(void)
889 {
890         unregister_qdisc(&fq_qdisc_ops);
891         kmem_cache_destroy(fq_flow_cachep);
892 }
893
894 module_init(fq_module_init)
895 module_exit(fq_module_exit)
896 MODULE_AUTHOR("Eric Dumazet");
897 MODULE_LICENSE("GPL");
This page took 0.080551 seconds and 4 git commands to generate.