2 * Definitions for the 'struct sk_buff' memory handlers.
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
44 /* The interface for checksum offload between the stack and networking drivers
47 * A. IP checksum related features
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
54 * The checksum related features are:
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
92 * Device did not checksum this packet e.g. due to lack of capabilities.
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
96 * CHECKSUM_UNNECESSARY:
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
112 * FCOE: indicates the CRC in FC frame has been validated.
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
152 * The driver is required to checksum the packet as seen by hard_start_xmit()
153 * from skb->csum_start up to the end, and to record/write the checksum at
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
176 * The skb was already checksummed by the protocol, or a checksum is not
179 * CHECKSUM_UNNECESSARY:
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
188 * D. Non-IP checksum (CRC) offloads
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
208 * E. Checksumming on output with GSO.
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE 0
221 #define CHECKSUM_UNNECESSARY 1
222 #define CHECKSUM_COMPLETE 2
223 #define CHECKSUM_PARTIAL 3
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL 3
228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X) \
230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
243 struct pipe_inode_info;
249 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
250 struct nf_conntrack {
255 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
256 struct nf_bridge_info {
259 BRNF_PROTO_UNCHANGED,
267 struct net_device *physindev;
269 /* always valid & non-NULL from FORWARD on, for physdev match */
270 struct net_device *physoutdev;
272 /* prerouting: detect dnat in orig/reply direction */
274 struct in6_addr ipv6_daddr;
276 /* after prerouting + nat detected: store original source
277 * mac since neigh resolution overwrites it, only used while
278 * skb is out in neigh layer.
280 char neigh_header[8];
285 struct sk_buff_head {
286 /* These two members must be first. */
287 struct sk_buff *next;
288 struct sk_buff *prev;
296 /* To allow 64K frame to be packed as single skb without frag_list we
297 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
298 * buffers which do not start on a page boundary.
300 * Since GRO uses frags we allocate at least 16 regardless of page
303 #if (65536/PAGE_SIZE + 1) < 16
304 #define MAX_SKB_FRAGS 16UL
306 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
308 extern int sysctl_max_skb_frags;
310 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
311 * segment using its current segmentation instead.
313 #define GSO_BY_FRAGS 0xFFFF
315 typedef struct skb_frag_struct skb_frag_t;
317 struct skb_frag_struct {
321 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
330 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
335 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
340 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
345 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
350 static inline bool skb_frag_must_loop(struct page *p)
352 #if defined(CONFIG_HIGHMEM)
360 * skb_frag_foreach_page - loop over pages in a fragment
362 * @f: skb frag to operate on
363 * @f_off: offset from start of f->page.p
364 * @f_len: length from f_off to loop over
365 * @p: (temp var) current page
366 * @p_off: (temp var) offset from start of current page,
367 * non-zero only on first page.
368 * @p_len: (temp var) length in current page,
369 * < PAGE_SIZE only on first and last page.
370 * @copied: (temp var) length so far, excluding current p_len.
372 * A fragment can hold a compound page, in which case per-page
373 * operations, notably kmap_atomic, must be called for each
376 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
377 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
378 p_off = (f_off) & (PAGE_SIZE - 1), \
379 p_len = skb_frag_must_loop(p) ? \
380 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
383 copied += p_len, p++, p_off = 0, \
384 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
386 #define HAVE_HW_TIME_STAMP
389 * struct skb_shared_hwtstamps - hardware time stamps
390 * @hwtstamp: hardware time stamp transformed into duration
391 * since arbitrary point in time
393 * Software time stamps generated by ktime_get_real() are stored in
396 * hwtstamps can only be compared against other hwtstamps from
399 * This structure is attached to packets as part of the
400 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
402 struct skb_shared_hwtstamps {
406 /* Definitions for tx_flags in struct skb_shared_info */
408 /* generate hardware time stamp */
409 SKBTX_HW_TSTAMP = 1 << 0,
411 /* generate software time stamp when queueing packet to NIC */
412 SKBTX_SW_TSTAMP = 1 << 1,
414 /* device driver is going to provide hardware time stamp */
415 SKBTX_IN_PROGRESS = 1 << 2,
417 /* device driver supports TX zero-copy buffers */
418 SKBTX_DEV_ZEROCOPY = 1 << 3,
420 /* generate wifi status information (where possible) */
421 SKBTX_WIFI_STATUS = 1 << 4,
423 /* This indicates at least one fragment might be overwritten
424 * (as in vmsplice(), sendfile() ...)
425 * If we need to compute a TX checksum, we'll need to copy
426 * all frags to avoid possible bad checksum
428 SKBTX_SHARED_FRAG = 1 << 5,
430 /* generate software time stamp when entering packet scheduling */
431 SKBTX_SCHED_TSTAMP = 1 << 6,
434 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
435 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
437 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
440 * The callback notifies userspace to release buffers when skb DMA is done in
441 * lower device, the skb last reference should be 0 when calling this.
442 * The zerocopy_success argument is true if zero copy transmit occurred,
443 * false on data copy or out of memory error caused by data copy attempt.
444 * The ctx field is used to track device context.
445 * The desc field is used to track userspace buffer index.
448 void (*callback)(struct ubuf_info *, bool zerocopy_success);
464 struct user_struct *user;
469 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
471 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
472 void mm_unaccount_pinned_pages(struct mmpin *mmp);
474 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
475 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
476 struct ubuf_info *uarg);
478 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
480 refcount_inc(&uarg->refcnt);
483 void sock_zerocopy_put(struct ubuf_info *uarg);
484 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
486 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
488 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
489 struct msghdr *msg, int len,
490 struct ubuf_info *uarg);
492 /* This data is invariant across clones and lives at
493 * the end of the header data, ie. at skb->end.
495 struct skb_shared_info {
500 unsigned short gso_size;
501 /* Warning: this field is not always filled in (UFO)! */
502 unsigned short gso_segs;
503 struct sk_buff *frag_list;
504 struct skb_shared_hwtstamps hwtstamps;
505 unsigned int gso_type;
509 * Warning : all fields before dataref are cleared in __alloc_skb()
513 /* Intermediate layers must ensure that destructor_arg
514 * remains valid until skb destructor */
515 void * destructor_arg;
517 /* must be last field, see pskb_expand_head() */
518 skb_frag_t frags[MAX_SKB_FRAGS];
521 /* We divide dataref into two halves. The higher 16 bits hold references
522 * to the payload part of skb->data. The lower 16 bits hold references to
523 * the entire skb->data. A clone of a headerless skb holds the length of
524 * the header in skb->hdr_len.
526 * All users must obey the rule that the skb->data reference count must be
527 * greater than or equal to the payload reference count.
529 * Holding a reference to the payload part means that the user does not
530 * care about modifications to the header part of skb->data.
532 #define SKB_DATAREF_SHIFT 16
533 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
537 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
538 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
539 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
543 SKB_GSO_TCPV4 = 1 << 0,
545 /* This indicates the skb is from an untrusted source. */
546 SKB_GSO_DODGY = 1 << 1,
548 /* This indicates the tcp segment has CWR set. */
549 SKB_GSO_TCP_ECN = 1 << 2,
551 SKB_GSO_TCP_FIXEDID = 1 << 3,
553 SKB_GSO_TCPV6 = 1 << 4,
555 SKB_GSO_FCOE = 1 << 5,
557 SKB_GSO_GRE = 1 << 6,
559 SKB_GSO_GRE_CSUM = 1 << 7,
561 SKB_GSO_IPXIP4 = 1 << 8,
563 SKB_GSO_IPXIP6 = 1 << 9,
565 SKB_GSO_UDP_TUNNEL = 1 << 10,
567 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
569 SKB_GSO_PARTIAL = 1 << 12,
571 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
573 SKB_GSO_SCTP = 1 << 14,
575 SKB_GSO_ESP = 1 << 15,
577 SKB_GSO_UDP = 1 << 16,
579 SKB_GSO_UDP_L4 = 1 << 17,
582 #if BITS_PER_LONG > 32
583 #define NET_SKBUFF_DATA_USES_OFFSET 1
586 #ifdef NET_SKBUFF_DATA_USES_OFFSET
587 typedef unsigned int sk_buff_data_t;
589 typedef unsigned char *sk_buff_data_t;
593 * struct sk_buff - socket buffer
594 * @next: Next buffer in list
595 * @prev: Previous buffer in list
596 * @tstamp: Time we arrived/left
597 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
598 * @sk: Socket we are owned by
599 * @dev: Device we arrived on/are leaving by
600 * @cb: Control buffer. Free for use by every layer. Put private vars here
601 * @_skb_refdst: destination entry (with norefcount bit)
602 * @sp: the security path, used for xfrm
603 * @len: Length of actual data
604 * @data_len: Data length
605 * @mac_len: Length of link layer header
606 * @hdr_len: writable header length of cloned skb
607 * @csum: Checksum (must include start/offset pair)
608 * @csum_start: Offset from skb->head where checksumming should start
609 * @csum_offset: Offset from csum_start where checksum should be stored
610 * @priority: Packet queueing priority
611 * @ignore_df: allow local fragmentation
612 * @cloned: Head may be cloned (check refcnt to be sure)
613 * @ip_summed: Driver fed us an IP checksum
614 * @nohdr: Payload reference only, must not modify header
615 * @pkt_type: Packet class
616 * @fclone: skbuff clone status
617 * @ipvs_property: skbuff is owned by ipvs
618 * @tc_skip_classify: do not classify packet. set by IFB device
619 * @tc_at_ingress: used within tc_classify to distinguish in/egress
620 * @tc_redirected: packet was redirected by a tc action
621 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
622 * @peeked: this packet has been seen already, so stats have been
623 * done for it, don't do them again
624 * @nf_trace: netfilter packet trace flag
625 * @protocol: Packet protocol from driver
626 * @destructor: Destruct function
627 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
628 * @_nfct: Associated connection, if any (with nfctinfo bits)
629 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
630 * @skb_iif: ifindex of device we arrived on
631 * @tc_index: Traffic control index
632 * @hash: the packet hash
633 * @queue_mapping: Queue mapping for multiqueue devices
634 * @xmit_more: More SKBs are pending for this queue
635 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
636 * @ndisc_nodetype: router type (from link layer)
637 * @ooo_okay: allow the mapping of a socket to a queue to be changed
638 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
640 * @sw_hash: indicates hash was computed in software stack
641 * @wifi_acked_valid: wifi_acked was set
642 * @wifi_acked: whether frame was acked on wifi or not
643 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
644 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
645 * @dst_pending_confirm: need to confirm neighbour
646 * @decrypted: Decrypted SKB
647 * @napi_id: id of the NAPI struct this skb came from
648 * @secmark: security marking
649 * @mark: Generic packet mark
650 * @vlan_proto: vlan encapsulation protocol
651 * @vlan_tci: vlan tag control information
652 * @inner_protocol: Protocol (encapsulation)
653 * @inner_transport_header: Inner transport layer header (encapsulation)
654 * @inner_network_header: Network layer header (encapsulation)
655 * @inner_mac_header: Link layer header (encapsulation)
656 * @transport_header: Transport layer header
657 * @network_header: Network layer header
658 * @mac_header: Link layer header
659 * @tail: Tail pointer
661 * @head: Head of buffer
662 * @data: Data head pointer
663 * @truesize: Buffer size
664 * @users: User count - see {datagram,tcp}.c
670 /* These two members must be first. */
671 struct sk_buff *next;
672 struct sk_buff *prev;
675 struct net_device *dev;
676 /* Some protocols might use this space to store information,
677 * while device pointer would be NULL.
678 * UDP receive path is one user.
680 unsigned long dev_scratch;
683 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
684 struct list_head list;
689 int ip_defrag_offset;
694 u64 skb_mstamp_ns; /* earliest departure time */
697 * This is the control buffer. It is free to use for every
698 * layer. Please put your private variables there. If you
699 * want to keep them across layers you have to do a skb_clone()
700 * first. This is owned by whoever has the skb queued ATM.
702 char cb[48] __aligned(8);
706 unsigned long _skb_refdst;
707 void (*destructor)(struct sk_buff *skb);
709 struct list_head tcp_tsorted_anchor;
715 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
718 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
719 struct nf_bridge_info *nf_bridge;
726 /* Following fields are _not_ copied in __copy_skb_header()
727 * Note that queue_mapping is here mostly to fill a hole.
731 /* if you move cloned around you also must adapt those constants */
732 #ifdef __BIG_ENDIAN_BITFIELD
733 #define CLONED_MASK (1 << 7)
735 #define CLONED_MASK 1
737 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
739 __u8 __cloned_offset[0];
748 /* fields enclosed in headers_start/headers_end are copied
749 * using a single memcpy() in __copy_skb_header()
752 __u32 headers_start[0];
755 /* if you move pkt_type around you also must adapt those constants */
756 #ifdef __BIG_ENDIAN_BITFIELD
757 #define PKT_TYPE_MAX (7 << 5)
759 #define PKT_TYPE_MAX 7
761 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
763 __u8 __pkt_type_offset[0];
772 __u8 wifi_acked_valid:1;
775 /* Indicates the inner headers are valid in the skbuff. */
776 __u8 encapsulation:1;
777 __u8 encap_hdr_csum:1;
780 __u8 csum_complete_sw:1;
782 __u8 csum_not_inet:1;
783 __u8 dst_pending_confirm:1;
784 #ifdef CONFIG_IPV6_NDISC_NODETYPE
785 __u8 ndisc_nodetype:2;
787 __u8 ipvs_property:1;
789 __u8 inner_protocol_type:1;
790 __u8 remcsum_offload:1;
791 #ifdef CONFIG_NET_SWITCHDEV
792 __u8 offload_fwd_mark:1;
793 __u8 offload_mr_fwd_mark:1;
795 #ifdef CONFIG_NET_CLS_ACT
796 __u8 tc_skip_classify:1;
797 __u8 tc_at_ingress:1;
798 __u8 tc_redirected:1;
799 __u8 tc_from_ingress:1;
801 #ifdef CONFIG_TLS_DEVICE
805 #ifdef CONFIG_NET_SCHED
806 __u16 tc_index; /* traffic control index */
821 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
823 unsigned int napi_id;
824 unsigned int sender_cpu;
827 #ifdef CONFIG_NETWORK_SECMARK
833 __u32 reserved_tailroom;
837 __be16 inner_protocol;
841 __u16 inner_transport_header;
842 __u16 inner_network_header;
843 __u16 inner_mac_header;
846 __u16 transport_header;
847 __u16 network_header;
851 __u32 headers_end[0];
854 /* These elements must be at the end, see alloc_skb() for details. */
859 unsigned int truesize;
865 * Handling routines are only of interest to the kernel
868 #define SKB_ALLOC_FCLONE 0x01
869 #define SKB_ALLOC_RX 0x02
870 #define SKB_ALLOC_NAPI 0x04
872 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
873 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
875 return unlikely(skb->pfmemalloc);
879 * skb might have a dst pointer attached, refcounted or not.
880 * _skb_refdst low order bit is set if refcount was _not_ taken
882 #define SKB_DST_NOREF 1UL
883 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
885 #define SKB_NFCT_PTRMASK ~(7UL)
887 * skb_dst - returns skb dst_entry
890 * Returns skb dst_entry, regardless of reference taken or not.
892 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
894 /* If refdst was not refcounted, check we still are in a
895 * rcu_read_lock section
897 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
898 !rcu_read_lock_held() &&
899 !rcu_read_lock_bh_held());
900 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
904 * skb_dst_set - sets skb dst
908 * Sets skb dst, assuming a reference was taken on dst and should
909 * be released by skb_dst_drop()
911 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
913 skb->_skb_refdst = (unsigned long)dst;
917 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
921 * Sets skb dst, assuming a reference was not taken on dst.
922 * If dst entry is cached, we do not take reference and dst_release
923 * will be avoided by refdst_drop. If dst entry is not cached, we take
924 * reference, so that last dst_release can destroy the dst immediately.
926 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
928 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
929 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
933 * skb_dst_is_noref - Test if skb dst isn't refcounted
936 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
938 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
941 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
943 return (struct rtable *)skb_dst(skb);
946 /* For mangling skb->pkt_type from user space side from applications
947 * such as nft, tc, etc, we only allow a conservative subset of
948 * possible pkt_types to be set.
950 static inline bool skb_pkt_type_ok(u32 ptype)
952 return ptype <= PACKET_OTHERHOST;
955 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
957 #ifdef CONFIG_NET_RX_BUSY_POLL
964 /* decrement the reference count and return true if we can free the skb */
965 static inline bool skb_unref(struct sk_buff *skb)
969 if (likely(refcount_read(&skb->users) == 1))
971 else if (likely(!refcount_dec_and_test(&skb->users)))
977 void skb_release_head_state(struct sk_buff *skb);
978 void kfree_skb(struct sk_buff *skb);
979 void kfree_skb_list(struct sk_buff *segs);
980 void skb_tx_error(struct sk_buff *skb);
981 void consume_skb(struct sk_buff *skb);
982 void __consume_stateless_skb(struct sk_buff *skb);
983 void __kfree_skb(struct sk_buff *skb);
984 extern struct kmem_cache *skbuff_head_cache;
986 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
987 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
988 bool *fragstolen, int *delta_truesize);
990 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
992 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
993 struct sk_buff *build_skb(void *data, unsigned int frag_size);
994 static inline struct sk_buff *alloc_skb(unsigned int size,
997 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1000 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1001 unsigned long data_len,
1006 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1007 struct sk_buff_fclones {
1008 struct sk_buff skb1;
1010 struct sk_buff skb2;
1012 refcount_t fclone_ref;
1016 * skb_fclone_busy - check if fclone is busy
1020 * Returns true if skb is a fast clone, and its clone is not freed.
1021 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1022 * so we also check that this didnt happen.
1024 static inline bool skb_fclone_busy(const struct sock *sk,
1025 const struct sk_buff *skb)
1027 const struct sk_buff_fclones *fclones;
1029 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1031 return skb->fclone == SKB_FCLONE_ORIG &&
1032 refcount_read(&fclones->fclone_ref) > 1 &&
1033 fclones->skb2.sk == sk;
1036 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1039 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1042 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1043 void skb_headers_offset_update(struct sk_buff *skb, int off);
1044 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1045 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1046 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1047 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1048 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1049 gfp_t gfp_mask, bool fclone);
1050 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1053 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1056 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1057 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1058 unsigned int headroom);
1059 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1060 int newtailroom, gfp_t priority);
1061 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1062 int offset, int len);
1063 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1064 int offset, int len);
1065 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1066 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1069 * skb_pad - zero pad the tail of an skb
1070 * @skb: buffer to pad
1071 * @pad: space to pad
1073 * Ensure that a buffer is followed by a padding area that is zero
1074 * filled. Used by network drivers which may DMA or transfer data
1075 * beyond the buffer end onto the wire.
1077 * May return error in out of memory cases. The skb is freed on error.
1079 static inline int skb_pad(struct sk_buff *skb, int pad)
1081 return __skb_pad(skb, pad, true);
1083 #define dev_kfree_skb(a) consume_skb(a)
1085 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1086 int offset, size_t size);
1088 struct skb_seq_state {
1092 __u32 stepped_offset;
1093 struct sk_buff *root_skb;
1094 struct sk_buff *cur_skb;
1098 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1099 unsigned int to, struct skb_seq_state *st);
1100 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1101 struct skb_seq_state *st);
1102 void skb_abort_seq_read(struct skb_seq_state *st);
1104 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1105 unsigned int to, struct ts_config *config);
1108 * Packet hash types specify the type of hash in skb_set_hash.
1110 * Hash types refer to the protocol layer addresses which are used to
1111 * construct a packet's hash. The hashes are used to differentiate or identify
1112 * flows of the protocol layer for the hash type. Hash types are either
1113 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1115 * Properties of hashes:
1117 * 1) Two packets in different flows have different hash values
1118 * 2) Two packets in the same flow should have the same hash value
1120 * A hash at a higher layer is considered to be more specific. A driver should
1121 * set the most specific hash possible.
1123 * A driver cannot indicate a more specific hash than the layer at which a hash
1124 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1126 * A driver may indicate a hash level which is less specific than the
1127 * actual layer the hash was computed on. For instance, a hash computed
1128 * at L4 may be considered an L3 hash. This should only be done if the
1129 * driver can't unambiguously determine that the HW computed the hash at
1130 * the higher layer. Note that the "should" in the second property above
1133 enum pkt_hash_types {
1134 PKT_HASH_TYPE_NONE, /* Undefined type */
1135 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1136 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1137 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1140 static inline void skb_clear_hash(struct sk_buff *skb)
1147 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1150 skb_clear_hash(skb);
1154 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1156 skb->l4_hash = is_l4;
1157 skb->sw_hash = is_sw;
1162 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1164 /* Used by drivers to set hash from HW */
1165 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1169 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1171 __skb_set_hash(skb, hash, true, is_l4);
1174 void __skb_get_hash(struct sk_buff *skb);
1175 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1176 u32 skb_get_poff(const struct sk_buff *skb);
1177 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1178 const struct flow_keys_basic *keys, int hlen);
1179 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1180 void *data, int hlen_proto);
1182 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1183 int thoff, u8 ip_proto)
1185 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1188 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1189 const struct flow_dissector_key *key,
1190 unsigned int key_count);
1193 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1194 struct bpf_prog *prog);
1196 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1198 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1199 struct bpf_prog *prog)
1204 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1210 bool __skb_flow_dissect(const struct sk_buff *skb,
1211 struct flow_dissector *flow_dissector,
1212 void *target_container,
1213 void *data, __be16 proto, int nhoff, int hlen,
1214 unsigned int flags);
1216 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1217 struct flow_dissector *flow_dissector,
1218 void *target_container, unsigned int flags)
1220 return __skb_flow_dissect(skb, flow_dissector, target_container,
1221 NULL, 0, 0, 0, flags);
1224 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1225 struct flow_keys *flow,
1228 memset(flow, 0, sizeof(*flow));
1229 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1230 NULL, 0, 0, 0, flags);
1234 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1235 struct flow_keys_basic *flow, void *data,
1236 __be16 proto, int nhoff, int hlen,
1239 memset(flow, 0, sizeof(*flow));
1240 return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
1241 data, proto, nhoff, hlen, flags);
1245 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1246 struct flow_dissector *flow_dissector,
1247 void *target_container);
1249 static inline __u32 skb_get_hash(struct sk_buff *skb)
1251 if (!skb->l4_hash && !skb->sw_hash)
1252 __skb_get_hash(skb);
1257 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1259 if (!skb->l4_hash && !skb->sw_hash) {
1260 struct flow_keys keys;
1261 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1263 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1269 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1271 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1276 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1278 to->hash = from->hash;
1279 to->sw_hash = from->sw_hash;
1280 to->l4_hash = from->l4_hash;
1283 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1284 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1286 return skb->head + skb->end;
1289 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1294 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1299 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1301 return skb->end - skb->head;
1306 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1308 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1310 return &skb_shinfo(skb)->hwtstamps;
1313 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1315 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1317 return is_zcopy ? skb_uarg(skb) : NULL;
1320 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1322 if (skb && uarg && !skb_zcopy(skb)) {
1323 sock_zerocopy_get(uarg);
1324 skb_shinfo(skb)->destructor_arg = uarg;
1325 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1329 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1331 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1332 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1335 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1337 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1340 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1342 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1345 /* Release a reference on a zerocopy structure */
1346 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1348 struct ubuf_info *uarg = skb_zcopy(skb);
1351 if (uarg->callback == sock_zerocopy_callback) {
1352 uarg->zerocopy = uarg->zerocopy && zerocopy;
1353 sock_zerocopy_put(uarg);
1354 } else if (!skb_zcopy_is_nouarg(skb)) {
1355 uarg->callback(uarg, zerocopy);
1358 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1362 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1363 static inline void skb_zcopy_abort(struct sk_buff *skb)
1365 struct ubuf_info *uarg = skb_zcopy(skb);
1368 sock_zerocopy_put_abort(uarg);
1369 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1373 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1378 static inline void skb_list_del_init(struct sk_buff *skb)
1380 __list_del_entry(&skb->list);
1381 skb_mark_not_on_list(skb);
1385 * skb_queue_empty - check if a queue is empty
1388 * Returns true if the queue is empty, false otherwise.
1390 static inline int skb_queue_empty(const struct sk_buff_head *list)
1392 return list->next == (const struct sk_buff *) list;
1396 * skb_queue_is_last - check if skb is the last entry in the queue
1400 * Returns true if @skb is the last buffer on the list.
1402 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1403 const struct sk_buff *skb)
1405 return skb->next == (const struct sk_buff *) list;
1409 * skb_queue_is_first - check if skb is the first entry in the queue
1413 * Returns true if @skb is the first buffer on the list.
1415 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1416 const struct sk_buff *skb)
1418 return skb->prev == (const struct sk_buff *) list;
1422 * skb_queue_next - return the next packet in the queue
1424 * @skb: current buffer
1426 * Return the next packet in @list after @skb. It is only valid to
1427 * call this if skb_queue_is_last() evaluates to false.
1429 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1430 const struct sk_buff *skb)
1432 /* This BUG_ON may seem severe, but if we just return then we
1433 * are going to dereference garbage.
1435 BUG_ON(skb_queue_is_last(list, skb));
1440 * skb_queue_prev - return the prev packet in the queue
1442 * @skb: current buffer
1444 * Return the prev packet in @list before @skb. It is only valid to
1445 * call this if skb_queue_is_first() evaluates to false.
1447 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1448 const struct sk_buff *skb)
1450 /* This BUG_ON may seem severe, but if we just return then we
1451 * are going to dereference garbage.
1453 BUG_ON(skb_queue_is_first(list, skb));
1458 * skb_get - reference buffer
1459 * @skb: buffer to reference
1461 * Makes another reference to a socket buffer and returns a pointer
1464 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1466 refcount_inc(&skb->users);
1471 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1475 * skb_cloned - is the buffer a clone
1476 * @skb: buffer to check
1478 * Returns true if the buffer was generated with skb_clone() and is
1479 * one of multiple shared copies of the buffer. Cloned buffers are
1480 * shared data so must not be written to under normal circumstances.
1482 static inline int skb_cloned(const struct sk_buff *skb)
1484 return skb->cloned &&
1485 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1488 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1490 might_sleep_if(gfpflags_allow_blocking(pri));
1492 if (skb_cloned(skb))
1493 return pskb_expand_head(skb, 0, 0, pri);
1499 * skb_header_cloned - is the header a clone
1500 * @skb: buffer to check
1502 * Returns true if modifying the header part of the buffer requires
1503 * the data to be copied.
1505 static inline int skb_header_cloned(const struct sk_buff *skb)
1512 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1513 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1514 return dataref != 1;
1517 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1519 might_sleep_if(gfpflags_allow_blocking(pri));
1521 if (skb_header_cloned(skb))
1522 return pskb_expand_head(skb, 0, 0, pri);
1528 * __skb_header_release - release reference to header
1529 * @skb: buffer to operate on
1531 static inline void __skb_header_release(struct sk_buff *skb)
1534 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1539 * skb_shared - is the buffer shared
1540 * @skb: buffer to check
1542 * Returns true if more than one person has a reference to this
1545 static inline int skb_shared(const struct sk_buff *skb)
1547 return refcount_read(&skb->users) != 1;
1551 * skb_share_check - check if buffer is shared and if so clone it
1552 * @skb: buffer to check
1553 * @pri: priority for memory allocation
1555 * If the buffer is shared the buffer is cloned and the old copy
1556 * drops a reference. A new clone with a single reference is returned.
1557 * If the buffer is not shared the original buffer is returned. When
1558 * being called from interrupt status or with spinlocks held pri must
1561 * NULL is returned on a memory allocation failure.
1563 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1565 might_sleep_if(gfpflags_allow_blocking(pri));
1566 if (skb_shared(skb)) {
1567 struct sk_buff *nskb = skb_clone(skb, pri);
1579 * Copy shared buffers into a new sk_buff. We effectively do COW on
1580 * packets to handle cases where we have a local reader and forward
1581 * and a couple of other messy ones. The normal one is tcpdumping
1582 * a packet thats being forwarded.
1586 * skb_unshare - make a copy of a shared buffer
1587 * @skb: buffer to check
1588 * @pri: priority for memory allocation
1590 * If the socket buffer is a clone then this function creates a new
1591 * copy of the data, drops a reference count on the old copy and returns
1592 * the new copy with the reference count at 1. If the buffer is not a clone
1593 * the original buffer is returned. When called with a spinlock held or
1594 * from interrupt state @pri must be %GFP_ATOMIC
1596 * %NULL is returned on a memory allocation failure.
1598 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1601 might_sleep_if(gfpflags_allow_blocking(pri));
1602 if (skb_cloned(skb)) {
1603 struct sk_buff *nskb = skb_copy(skb, pri);
1605 /* Free our shared copy */
1616 * skb_peek - peek at the head of an &sk_buff_head
1617 * @list_: list to peek at
1619 * Peek an &sk_buff. Unlike most other operations you _MUST_
1620 * be careful with this one. A peek leaves the buffer on the
1621 * list and someone else may run off with it. You must hold
1622 * the appropriate locks or have a private queue to do this.
1624 * Returns %NULL for an empty list or a pointer to the head element.
1625 * The reference count is not incremented and the reference is therefore
1626 * volatile. Use with caution.
1628 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1630 struct sk_buff *skb = list_->next;
1632 if (skb == (struct sk_buff *)list_)
1638 * __skb_peek - peek at the head of a non-empty &sk_buff_head
1639 * @list_: list to peek at
1641 * Like skb_peek(), but the caller knows that the list is not empty.
1643 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1649 * skb_peek_next - peek skb following the given one from a queue
1650 * @skb: skb to start from
1651 * @list_: list to peek at
1653 * Returns %NULL when the end of the list is met or a pointer to the
1654 * next element. The reference count is not incremented and the
1655 * reference is therefore volatile. Use with caution.
1657 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1658 const struct sk_buff_head *list_)
1660 struct sk_buff *next = skb->next;
1662 if (next == (struct sk_buff *)list_)
1668 * skb_peek_tail - peek at the tail of an &sk_buff_head
1669 * @list_: list to peek at
1671 * Peek an &sk_buff. Unlike most other operations you _MUST_
1672 * be careful with this one. A peek leaves the buffer on the
1673 * list and someone else may run off with it. You must hold
1674 * the appropriate locks or have a private queue to do this.
1676 * Returns %NULL for an empty list or a pointer to the tail element.
1677 * The reference count is not incremented and the reference is therefore
1678 * volatile. Use with caution.
1680 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1682 struct sk_buff *skb = list_->prev;
1684 if (skb == (struct sk_buff *)list_)
1691 * skb_queue_len - get queue length
1692 * @list_: list to measure
1694 * Return the length of an &sk_buff queue.
1696 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1702 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1703 * @list: queue to initialize
1705 * This initializes only the list and queue length aspects of
1706 * an sk_buff_head object. This allows to initialize the list
1707 * aspects of an sk_buff_head without reinitializing things like
1708 * the spinlock. It can also be used for on-stack sk_buff_head
1709 * objects where the spinlock is known to not be used.
1711 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1713 list->prev = list->next = (struct sk_buff *)list;
1718 * This function creates a split out lock class for each invocation;
1719 * this is needed for now since a whole lot of users of the skb-queue
1720 * infrastructure in drivers have different locking usage (in hardirq)
1721 * than the networking core (in softirq only). In the long run either the
1722 * network layer or drivers should need annotation to consolidate the
1723 * main types of usage into 3 classes.
1725 static inline void skb_queue_head_init(struct sk_buff_head *list)
1727 spin_lock_init(&list->lock);
1728 __skb_queue_head_init(list);
1731 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1732 struct lock_class_key *class)
1734 skb_queue_head_init(list);
1735 lockdep_set_class(&list->lock, class);
1739 * Insert an sk_buff on a list.
1741 * The "__skb_xxxx()" functions are the non-atomic ones that
1742 * can only be called with interrupts disabled.
1744 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1745 struct sk_buff_head *list);
1746 static inline void __skb_insert(struct sk_buff *newsk,
1747 struct sk_buff *prev, struct sk_buff *next,
1748 struct sk_buff_head *list)
1752 next->prev = prev->next = newsk;
1756 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1757 struct sk_buff *prev,
1758 struct sk_buff *next)
1760 struct sk_buff *first = list->next;
1761 struct sk_buff *last = list->prev;
1771 * skb_queue_splice - join two skb lists, this is designed for stacks
1772 * @list: the new list to add
1773 * @head: the place to add it in the first list
1775 static inline void skb_queue_splice(const struct sk_buff_head *list,
1776 struct sk_buff_head *head)
1778 if (!skb_queue_empty(list)) {
1779 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1780 head->qlen += list->qlen;
1785 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1786 * @list: the new list to add
1787 * @head: the place to add it in the first list
1789 * The list at @list is reinitialised
1791 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1792 struct sk_buff_head *head)
1794 if (!skb_queue_empty(list)) {
1795 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1796 head->qlen += list->qlen;
1797 __skb_queue_head_init(list);
1802 * skb_queue_splice_tail - join two skb lists, each list being a queue
1803 * @list: the new list to add
1804 * @head: the place to add it in the first list
1806 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1807 struct sk_buff_head *head)
1809 if (!skb_queue_empty(list)) {
1810 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1811 head->qlen += list->qlen;
1816 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1817 * @list: the new list to add
1818 * @head: the place to add it in the first list
1820 * Each of the lists is a queue.
1821 * The list at @list is reinitialised
1823 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1824 struct sk_buff_head *head)
1826 if (!skb_queue_empty(list)) {
1827 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1828 head->qlen += list->qlen;
1829 __skb_queue_head_init(list);
1834 * __skb_queue_after - queue a buffer at the list head
1835 * @list: list to use
1836 * @prev: place after this buffer
1837 * @newsk: buffer to queue
1839 * Queue a buffer int the middle of a list. This function takes no locks
1840 * and you must therefore hold required locks before calling it.
1842 * A buffer cannot be placed on two lists at the same time.
1844 static inline void __skb_queue_after(struct sk_buff_head *list,
1845 struct sk_buff *prev,
1846 struct sk_buff *newsk)
1848 __skb_insert(newsk, prev, prev->next, list);
1851 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1852 struct sk_buff_head *list);
1854 static inline void __skb_queue_before(struct sk_buff_head *list,
1855 struct sk_buff *next,
1856 struct sk_buff *newsk)
1858 __skb_insert(newsk, next->prev, next, list);
1862 * __skb_queue_head - queue a buffer at the list head
1863 * @list: list to use
1864 * @newsk: buffer to queue
1866 * Queue a buffer at the start of a list. This function takes no locks
1867 * and you must therefore hold required locks before calling it.
1869 * A buffer cannot be placed on two lists at the same time.
1871 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1872 static inline void __skb_queue_head(struct sk_buff_head *list,
1873 struct sk_buff *newsk)
1875 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1879 * __skb_queue_tail - queue a buffer at the list tail
1880 * @list: list to use
1881 * @newsk: buffer to queue
1883 * Queue a buffer at the end of a list. This function takes no locks
1884 * and you must therefore hold required locks before calling it.
1886 * A buffer cannot be placed on two lists at the same time.
1888 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1889 static inline void __skb_queue_tail(struct sk_buff_head *list,
1890 struct sk_buff *newsk)
1892 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1896 * remove sk_buff from list. _Must_ be called atomically, and with
1899 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1900 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1902 struct sk_buff *next, *prev;
1907 skb->next = skb->prev = NULL;
1913 * __skb_dequeue - remove from the head of the queue
1914 * @list: list to dequeue from
1916 * Remove the head of the list. This function does not take any locks
1917 * so must be used with appropriate locks held only. The head item is
1918 * returned or %NULL if the list is empty.
1920 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1921 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1923 struct sk_buff *skb = skb_peek(list);
1925 __skb_unlink(skb, list);
1930 * __skb_dequeue_tail - remove from the tail of the queue
1931 * @list: list to dequeue from
1933 * Remove the tail of the list. This function does not take any locks
1934 * so must be used with appropriate locks held only. The tail item is
1935 * returned or %NULL if the list is empty.
1937 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1938 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1940 struct sk_buff *skb = skb_peek_tail(list);
1942 __skb_unlink(skb, list);
1947 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1949 return skb->data_len;
1952 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1954 return skb->len - skb->data_len;
1957 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1959 unsigned int i, len = 0;
1961 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1962 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1966 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1968 return skb_headlen(skb) + __skb_pagelen(skb);
1972 * __skb_fill_page_desc - initialise a paged fragment in an skb
1973 * @skb: buffer containing fragment to be initialised
1974 * @i: paged fragment index to initialise
1975 * @page: the page to use for this fragment
1976 * @off: the offset to the data with @page
1977 * @size: the length of the data
1979 * Initialises the @i'th fragment of @skb to point to &size bytes at
1980 * offset @off within @page.
1982 * Does not take any additional reference on the fragment.
1984 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1985 struct page *page, int off, int size)
1987 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1990 * Propagate page pfmemalloc to the skb if we can. The problem is
1991 * that not all callers have unique ownership of the page but rely
1992 * on page_is_pfmemalloc doing the right thing(tm).
1994 frag->page.p = page;
1995 frag->page_offset = off;
1996 skb_frag_size_set(frag, size);
1998 page = compound_head(page);
1999 if (page_is_pfmemalloc(page))
2000 skb->pfmemalloc = true;
2004 * skb_fill_page_desc - initialise a paged fragment in an skb
2005 * @skb: buffer containing fragment to be initialised
2006 * @i: paged fragment index to initialise
2007 * @page: the page to use for this fragment
2008 * @off: the offset to the data with @page
2009 * @size: the length of the data
2011 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2012 * @skb to point to @size bytes at offset @off within @page. In
2013 * addition updates @skb such that @i is the last fragment.
2015 * Does not take any additional reference on the fragment.
2017 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2018 struct page *page, int off, int size)
2020 __skb_fill_page_desc(skb, i, page, off, size);
2021 skb_shinfo(skb)->nr_frags = i + 1;
2024 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2025 int size, unsigned int truesize);
2027 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2028 unsigned int truesize);
2030 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
2031 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
2032 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2034 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2035 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2037 return skb->head + skb->tail;
2040 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2042 skb->tail = skb->data - skb->head;
2045 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2047 skb_reset_tail_pointer(skb);
2048 skb->tail += offset;
2051 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2052 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2057 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2059 skb->tail = skb->data;
2062 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2064 skb->tail = skb->data + offset;
2067 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2070 * Add data to an sk_buff
2072 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2073 void *skb_put(struct sk_buff *skb, unsigned int len);
2074 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2076 void *tmp = skb_tail_pointer(skb);
2077 SKB_LINEAR_ASSERT(skb);
2083 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2085 void *tmp = __skb_put(skb, len);
2087 memset(tmp, 0, len);
2091 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2094 void *tmp = __skb_put(skb, len);
2096 memcpy(tmp, data, len);
2100 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2102 *(u8 *)__skb_put(skb, 1) = val;
2105 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2107 void *tmp = skb_put(skb, len);
2109 memset(tmp, 0, len);
2114 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2117 void *tmp = skb_put(skb, len);
2119 memcpy(tmp, data, len);
2124 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2126 *(u8 *)skb_put(skb, 1) = val;
2129 void *skb_push(struct sk_buff *skb, unsigned int len);
2130 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2137 void *skb_pull(struct sk_buff *skb, unsigned int len);
2138 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2141 BUG_ON(skb->len < skb->data_len);
2142 return skb->data += len;
2145 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2147 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2150 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2152 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2154 if (len > skb_headlen(skb) &&
2155 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2158 return skb->data += len;
2161 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2163 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2166 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2168 if (likely(len <= skb_headlen(skb)))
2170 if (unlikely(len > skb->len))
2172 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2175 void skb_condense(struct sk_buff *skb);
2178 * skb_headroom - bytes at buffer head
2179 * @skb: buffer to check
2181 * Return the number of bytes of free space at the head of an &sk_buff.
2183 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2185 return skb->data - skb->head;
2189 * skb_tailroom - bytes at buffer end
2190 * @skb: buffer to check
2192 * Return the number of bytes of free space at the tail of an sk_buff
2194 static inline int skb_tailroom(const struct sk_buff *skb)
2196 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2200 * skb_availroom - bytes at buffer end
2201 * @skb: buffer to check
2203 * Return the number of bytes of free space at the tail of an sk_buff
2204 * allocated by sk_stream_alloc()
2206 static inline int skb_availroom(const struct sk_buff *skb)
2208 if (skb_is_nonlinear(skb))
2211 return skb->end - skb->tail - skb->reserved_tailroom;
2215 * skb_reserve - adjust headroom
2216 * @skb: buffer to alter
2217 * @len: bytes to move
2219 * Increase the headroom of an empty &sk_buff by reducing the tail
2220 * room. This is only allowed for an empty buffer.
2222 static inline void skb_reserve(struct sk_buff *skb, int len)
2229 * skb_tailroom_reserve - adjust reserved_tailroom
2230 * @skb: buffer to alter
2231 * @mtu: maximum amount of headlen permitted
2232 * @needed_tailroom: minimum amount of reserved_tailroom
2234 * Set reserved_tailroom so that headlen can be as large as possible but
2235 * not larger than mtu and tailroom cannot be smaller than
2237 * The required headroom should already have been reserved before using
2240 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2241 unsigned int needed_tailroom)
2243 SKB_LINEAR_ASSERT(skb);
2244 if (mtu < skb_tailroom(skb) - needed_tailroom)
2245 /* use at most mtu */
2246 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2248 /* use up to all available space */
2249 skb->reserved_tailroom = needed_tailroom;
2252 #define ENCAP_TYPE_ETHER 0
2253 #define ENCAP_TYPE_IPPROTO 1
2255 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2258 skb->inner_protocol = protocol;
2259 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2262 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2265 skb->inner_ipproto = ipproto;
2266 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2269 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2271 skb->inner_mac_header = skb->mac_header;
2272 skb->inner_network_header = skb->network_header;
2273 skb->inner_transport_header = skb->transport_header;
2276 static inline void skb_reset_mac_len(struct sk_buff *skb)
2278 skb->mac_len = skb->network_header - skb->mac_header;
2281 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2284 return skb->head + skb->inner_transport_header;
2287 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2289 return skb_inner_transport_header(skb) - skb->data;
2292 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2294 skb->inner_transport_header = skb->data - skb->head;
2297 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2300 skb_reset_inner_transport_header(skb);
2301 skb->inner_transport_header += offset;
2304 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2306 return skb->head + skb->inner_network_header;
2309 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2311 skb->inner_network_header = skb->data - skb->head;
2314 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2317 skb_reset_inner_network_header(skb);
2318 skb->inner_network_header += offset;
2321 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2323 return skb->head + skb->inner_mac_header;
2326 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2328 skb->inner_mac_header = skb->data - skb->head;
2331 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2334 skb_reset_inner_mac_header(skb);
2335 skb->inner_mac_header += offset;
2337 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2339 return skb->transport_header != (typeof(skb->transport_header))~0U;
2342 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2344 return skb->head + skb->transport_header;
2347 static inline void skb_reset_transport_header(struct sk_buff *skb)
2349 skb->transport_header = skb->data - skb->head;
2352 static inline void skb_set_transport_header(struct sk_buff *skb,
2355 skb_reset_transport_header(skb);
2356 skb->transport_header += offset;
2359 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2361 return skb->head + skb->network_header;
2364 static inline void skb_reset_network_header(struct sk_buff *skb)
2366 skb->network_header = skb->data - skb->head;
2369 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2371 skb_reset_network_header(skb);
2372 skb->network_header += offset;
2375 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2377 return skb->head + skb->mac_header;
2380 static inline int skb_mac_offset(const struct sk_buff *skb)
2382 return skb_mac_header(skb) - skb->data;
2385 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2387 return skb->network_header - skb->mac_header;
2390 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2392 return skb->mac_header != (typeof(skb->mac_header))~0U;
2395 static inline void skb_reset_mac_header(struct sk_buff *skb)
2397 skb->mac_header = skb->data - skb->head;
2400 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2402 skb_reset_mac_header(skb);
2403 skb->mac_header += offset;
2406 static inline void skb_pop_mac_header(struct sk_buff *skb)
2408 skb->mac_header = skb->network_header;
2411 static inline void skb_probe_transport_header(struct sk_buff *skb,
2412 const int offset_hint)
2414 struct flow_keys_basic keys;
2416 if (skb_transport_header_was_set(skb))
2419 if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
2420 skb_set_transport_header(skb, keys.control.thoff);
2422 skb_set_transport_header(skb, offset_hint);
2425 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2427 if (skb_mac_header_was_set(skb)) {
2428 const unsigned char *old_mac = skb_mac_header(skb);
2430 skb_set_mac_header(skb, -skb->mac_len);
2431 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2435 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2437 return skb->csum_start - skb_headroom(skb);
2440 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2442 return skb->head + skb->csum_start;
2445 static inline int skb_transport_offset(const struct sk_buff *skb)
2447 return skb_transport_header(skb) - skb->data;
2450 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2452 return skb->transport_header - skb->network_header;
2455 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2457 return skb->inner_transport_header - skb->inner_network_header;
2460 static inline int skb_network_offset(const struct sk_buff *skb)
2462 return skb_network_header(skb) - skb->data;
2465 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2467 return skb_inner_network_header(skb) - skb->data;
2470 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2472 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2476 * CPUs often take a performance hit when accessing unaligned memory
2477 * locations. The actual performance hit varies, it can be small if the
2478 * hardware handles it or large if we have to take an exception and fix it
2481 * Since an ethernet header is 14 bytes network drivers often end up with
2482 * the IP header at an unaligned offset. The IP header can be aligned by
2483 * shifting the start of the packet by 2 bytes. Drivers should do this
2486 * skb_reserve(skb, NET_IP_ALIGN);
2488 * The downside to this alignment of the IP header is that the DMA is now
2489 * unaligned. On some architectures the cost of an unaligned DMA is high
2490 * and this cost outweighs the gains made by aligning the IP header.
2492 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2495 #ifndef NET_IP_ALIGN
2496 #define NET_IP_ALIGN 2
2500 * The networking layer reserves some headroom in skb data (via
2501 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2502 * the header has to grow. In the default case, if the header has to grow
2503 * 32 bytes or less we avoid the reallocation.
2505 * Unfortunately this headroom changes the DMA alignment of the resulting
2506 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2507 * on some architectures. An architecture can override this value,
2508 * perhaps setting it to a cacheline in size (since that will maintain
2509 * cacheline alignment of the DMA). It must be a power of 2.
2511 * Various parts of the networking layer expect at least 32 bytes of
2512 * headroom, you should not reduce this.
2514 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2515 * to reduce average number of cache lines per packet.
2516 * get_rps_cpus() for example only access one 64 bytes aligned block :
2517 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2520 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2523 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2525 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2527 if (unlikely(skb_is_nonlinear(skb))) {
2532 skb_set_tail_pointer(skb, len);
2535 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2537 __skb_set_length(skb, len);
2540 void skb_trim(struct sk_buff *skb, unsigned int len);
2542 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2545 return ___pskb_trim(skb, len);
2546 __skb_trim(skb, len);
2550 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2552 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2556 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2557 * @skb: buffer to alter
2560 * This is identical to pskb_trim except that the caller knows that
2561 * the skb is not cloned so we should never get an error due to out-
2564 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2566 int err = pskb_trim(skb, len);
2570 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2572 unsigned int diff = len - skb->len;
2574 if (skb_tailroom(skb) < diff) {
2575 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2580 __skb_set_length(skb, len);
2585 * skb_orphan - orphan a buffer
2586 * @skb: buffer to orphan
2588 * If a buffer currently has an owner then we call the owner's
2589 * destructor function and make the @skb unowned. The buffer continues
2590 * to exist but is no longer charged to its former owner.
2592 static inline void skb_orphan(struct sk_buff *skb)
2594 if (skb->destructor) {
2595 skb->destructor(skb);
2596 skb->destructor = NULL;
2604 * skb_orphan_frags - orphan the frags contained in a buffer
2605 * @skb: buffer to orphan frags from
2606 * @gfp_mask: allocation mask for replacement pages
2608 * For each frag in the SKB which needs a destructor (i.e. has an
2609 * owner) create a copy of that frag and release the original
2610 * page by calling the destructor.
2612 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2614 if (likely(!skb_zcopy(skb)))
2616 if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2618 return skb_copy_ubufs(skb, gfp_mask);
2621 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2622 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2624 if (likely(!skb_zcopy(skb)))
2626 return skb_copy_ubufs(skb, gfp_mask);
2630 * __skb_queue_purge - empty a list
2631 * @list: list to empty
2633 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2634 * the list and one reference dropped. This function does not take the
2635 * list lock and the caller must hold the relevant locks to use it.
2637 void skb_queue_purge(struct sk_buff_head *list);
2638 static inline void __skb_queue_purge(struct sk_buff_head *list)
2640 struct sk_buff *skb;
2641 while ((skb = __skb_dequeue(list)) != NULL)
2645 unsigned int skb_rbtree_purge(struct rb_root *root);
2647 void *netdev_alloc_frag(unsigned int fragsz);
2649 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2653 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2654 * @dev: network device to receive on
2655 * @length: length to allocate
2657 * Allocate a new &sk_buff and assign it a usage count of one. The
2658 * buffer has unspecified headroom built in. Users should allocate
2659 * the headroom they think they need without accounting for the
2660 * built in space. The built in space is used for optimisations.
2662 * %NULL is returned if there is no free memory. Although this function
2663 * allocates memory it can be called from an interrupt.
2665 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2666 unsigned int length)
2668 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2671 /* legacy helper around __netdev_alloc_skb() */
2672 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2675 return __netdev_alloc_skb(NULL, length, gfp_mask);
2678 /* legacy helper around netdev_alloc_skb() */
2679 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2681 return netdev_alloc_skb(NULL, length);
2685 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2686 unsigned int length, gfp_t gfp)
2688 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2690 if (NET_IP_ALIGN && skb)
2691 skb_reserve(skb, NET_IP_ALIGN);
2695 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2696 unsigned int length)
2698 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2701 static inline void skb_free_frag(void *addr)
2703 page_frag_free(addr);
2706 void *napi_alloc_frag(unsigned int fragsz);
2707 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2708 unsigned int length, gfp_t gfp_mask);
2709 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2710 unsigned int length)
2712 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2714 void napi_consume_skb(struct sk_buff *skb, int budget);
2716 void __kfree_skb_flush(void);
2717 void __kfree_skb_defer(struct sk_buff *skb);
2720 * __dev_alloc_pages - allocate page for network Rx
2721 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2722 * @order: size of the allocation
2724 * Allocate a new page.
2726 * %NULL is returned if there is no free memory.
2728 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2731 /* This piece of code contains several assumptions.
2732 * 1. This is for device Rx, therefor a cold page is preferred.
2733 * 2. The expectation is the user wants a compound page.
2734 * 3. If requesting a order 0 page it will not be compound
2735 * due to the check to see if order has a value in prep_new_page
2736 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2737 * code in gfp_to_alloc_flags that should be enforcing this.
2739 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2741 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2744 static inline struct page *dev_alloc_pages(unsigned int order)
2746 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2750 * __dev_alloc_page - allocate a page for network Rx
2751 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2753 * Allocate a new page.
2755 * %NULL is returned if there is no free memory.
2757 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2759 return __dev_alloc_pages(gfp_mask, 0);
2762 static inline struct page *dev_alloc_page(void)
2764 return dev_alloc_pages(0);
2768 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2769 * @page: The page that was allocated from skb_alloc_page
2770 * @skb: The skb that may need pfmemalloc set
2772 static inline void skb_propagate_pfmemalloc(struct page *page,
2773 struct sk_buff *skb)
2775 if (page_is_pfmemalloc(page))
2776 skb->pfmemalloc = true;
2780 * skb_frag_page - retrieve the page referred to by a paged fragment
2781 * @frag: the paged fragment
2783 * Returns the &struct page associated with @frag.
2785 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2787 return frag->page.p;
2791 * __skb_frag_ref - take an addition reference on a paged fragment.
2792 * @frag: the paged fragment
2794 * Takes an additional reference on the paged fragment @frag.
2796 static inline void __skb_frag_ref(skb_frag_t *frag)
2798 get_page(skb_frag_page(frag));
2802 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2804 * @f: the fragment offset.
2806 * Takes an additional reference on the @f'th paged fragment of @skb.
2808 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2810 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2814 * __skb_frag_unref - release a reference on a paged fragment.
2815 * @frag: the paged fragment
2817 * Releases a reference on the paged fragment @frag.
2819 static inline void __skb_frag_unref(skb_frag_t *frag)
2821 put_page(skb_frag_page(frag));
2825 * skb_frag_unref - release a reference on a paged fragment of an skb.
2827 * @f: the fragment offset
2829 * Releases a reference on the @f'th paged fragment of @skb.
2831 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2833 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2837 * skb_frag_address - gets the address of the data contained in a paged fragment
2838 * @frag: the paged fragment buffer
2840 * Returns the address of the data within @frag. The page must already
2843 static inline void *skb_frag_address(const skb_frag_t *frag)
2845 return page_address(skb_frag_page(frag)) + frag->page_offset;
2849 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2850 * @frag: the paged fragment buffer
2852 * Returns the address of the data within @frag. Checks that the page
2853 * is mapped and returns %NULL otherwise.
2855 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2857 void *ptr = page_address(skb_frag_page(frag));
2861 return ptr + frag->page_offset;
2865 * __skb_frag_set_page - sets the page contained in a paged fragment
2866 * @frag: the paged fragment
2867 * @page: the page to set
2869 * Sets the fragment @frag to contain @page.
2871 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2873 frag->page.p = page;
2877 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2879 * @f: the fragment offset
2880 * @page: the page to set
2882 * Sets the @f'th fragment of @skb to contain @page.
2884 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2887 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2890 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2893 * skb_frag_dma_map - maps a paged fragment via the DMA API
2894 * @dev: the device to map the fragment to
2895 * @frag: the paged fragment to map
2896 * @offset: the offset within the fragment (starting at the
2897 * fragment's own offset)
2898 * @size: the number of bytes to map
2899 * @dir: the direction of the mapping (``PCI_DMA_*``)
2901 * Maps the page associated with @frag to @device.
2903 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2904 const skb_frag_t *frag,
2905 size_t offset, size_t size,
2906 enum dma_data_direction dir)
2908 return dma_map_page(dev, skb_frag_page(frag),
2909 frag->page_offset + offset, size, dir);
2912 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2915 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2919 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2922 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2927 * skb_clone_writable - is the header of a clone writable
2928 * @skb: buffer to check
2929 * @len: length up to which to write
2931 * Returns true if modifying the header part of the cloned buffer
2932 * does not requires the data to be copied.
2934 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2936 return !skb_header_cloned(skb) &&
2937 skb_headroom(skb) + len <= skb->hdr_len;
2940 static inline int skb_try_make_writable(struct sk_buff *skb,
2941 unsigned int write_len)
2943 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2944 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2947 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2952 if (headroom > skb_headroom(skb))
2953 delta = headroom - skb_headroom(skb);
2955 if (delta || cloned)
2956 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2962 * skb_cow - copy header of skb when it is required
2963 * @skb: buffer to cow
2964 * @headroom: needed headroom
2966 * If the skb passed lacks sufficient headroom or its data part
2967 * is shared, data is reallocated. If reallocation fails, an error
2968 * is returned and original skb is not changed.
2970 * The result is skb with writable area skb->head...skb->tail
2971 * and at least @headroom of space at head.
2973 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2975 return __skb_cow(skb, headroom, skb_cloned(skb));
2979 * skb_cow_head - skb_cow but only making the head writable
2980 * @skb: buffer to cow
2981 * @headroom: needed headroom
2983 * This function is identical to skb_cow except that we replace the
2984 * skb_cloned check by skb_header_cloned. It should be used when
2985 * you only need to push on some header and do not need to modify
2988 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2990 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2994 * skb_padto - pad an skbuff up to a minimal size
2995 * @skb: buffer to pad
2996 * @len: minimal length
2998 * Pads up a buffer to ensure the trailing bytes exist and are
2999 * blanked. If the buffer already contains sufficient data it
3000 * is untouched. Otherwise it is extended. Returns zero on
3001 * success. The skb is freed on error.
3003 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3005 unsigned int size = skb->len;
3006 if (likely(size >= len))
3008 return skb_pad(skb, len - size);
3012 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3013 * @skb: buffer to pad
3014 * @len: minimal length
3015 * @free_on_error: free buffer on error
3017 * Pads up a buffer to ensure the trailing bytes exist and are
3018 * blanked. If the buffer already contains sufficient data it
3019 * is untouched. Otherwise it is extended. Returns zero on
3020 * success. The skb is freed on error if @free_on_error is true.
3022 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3025 unsigned int size = skb->len;
3027 if (unlikely(size < len)) {
3029 if (__skb_pad(skb, len, free_on_error))
3031 __skb_put(skb, len);
3037 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3038 * @skb: buffer to pad
3039 * @len: minimal length
3041 * Pads up a buffer to ensure the trailing bytes exist and are
3042 * blanked. If the buffer already contains sufficient data it
3043 * is untouched. Otherwise it is extended. Returns zero on
3044 * success. The skb is freed on error.
3046 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3048 return __skb_put_padto(skb, len, true);
3051 static inline int skb_add_data(struct sk_buff *skb,
3052 struct iov_iter *from, int copy)
3054 const int off = skb->len;
3056 if (skb->ip_summed == CHECKSUM_NONE) {
3058 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3060 skb->csum = csum_block_add(skb->csum, csum, off);
3063 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3066 __skb_trim(skb, off);
3070 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3071 const struct page *page, int off)
3076 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3078 return page == skb_frag_page(frag) &&
3079 off == frag->page_offset + skb_frag_size(frag);
3084 static inline int __skb_linearize(struct sk_buff *skb)
3086 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3090 * skb_linearize - convert paged skb to linear one
3091 * @skb: buffer to linarize
3093 * If there is no free memory -ENOMEM is returned, otherwise zero
3094 * is returned and the old skb data released.
3096 static inline int skb_linearize(struct sk_buff *skb)
3098 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3102 * skb_has_shared_frag - can any frag be overwritten
3103 * @skb: buffer to test
3105 * Return true if the skb has at least one frag that might be modified
3106 * by an external entity (as in vmsplice()/sendfile())
3108 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3110 return skb_is_nonlinear(skb) &&
3111 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3115 * skb_linearize_cow - make sure skb is linear and writable
3116 * @skb: buffer to process
3118 * If there is no free memory -ENOMEM is returned, otherwise zero
3119 * is returned and the old skb data released.
3121 static inline int skb_linearize_cow(struct sk_buff *skb)
3123 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3124 __skb_linearize(skb) : 0;
3127 static __always_inline void
3128 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3131 if (skb->ip_summed == CHECKSUM_COMPLETE)
3132 skb->csum = csum_block_sub(skb->csum,
3133 csum_partial(start, len, 0), off);
3134 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3135 skb_checksum_start_offset(skb) < 0)
3136 skb->ip_summed = CHECKSUM_NONE;
3140 * skb_postpull_rcsum - update checksum for received skb after pull
3141 * @skb: buffer to update
3142 * @start: start of data before pull
3143 * @len: length of data pulled
3145 * After doing a pull on a received packet, you need to call this to
3146 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3147 * CHECKSUM_NONE so that it can be recomputed from scratch.
3149 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3150 const void *start, unsigned int len)
3152 __skb_postpull_rcsum(skb, start, len, 0);
3155 static __always_inline void
3156 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3159 if (skb->ip_summed == CHECKSUM_COMPLETE)
3160 skb->csum = csum_block_add(skb->csum,
3161 csum_partial(start, len, 0), off);
3165 * skb_postpush_rcsum - update checksum for received skb after push
3166 * @skb: buffer to update
3167 * @start: start of data after push
3168 * @len: length of data pushed
3170 * After doing a push on a received packet, you need to call this to
3171 * update the CHECKSUM_COMPLETE checksum.
3173 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3174 const void *start, unsigned int len)
3176 __skb_postpush_rcsum(skb, start, len, 0);
3179 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3182 * skb_push_rcsum - push skb and update receive checksum
3183 * @skb: buffer to update
3184 * @len: length of data pulled
3186 * This function performs an skb_push on the packet and updates
3187 * the CHECKSUM_COMPLETE checksum. It should be used on
3188 * receive path processing instead of skb_push unless you know
3189 * that the checksum difference is zero (e.g., a valid IP header)
3190 * or you are setting ip_summed to CHECKSUM_NONE.
3192 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3195 skb_postpush_rcsum(skb, skb->data, len);
3199 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3201 * pskb_trim_rcsum - trim received skb and update checksum
3202 * @skb: buffer to trim
3205 * This is exactly the same as pskb_trim except that it ensures the
3206 * checksum of received packets are still valid after the operation.
3209 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3211 if (likely(len >= skb->len))
3213 return pskb_trim_rcsum_slow(skb, len);
3216 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3218 if (skb->ip_summed == CHECKSUM_COMPLETE)
3219 skb->ip_summed = CHECKSUM_NONE;
3220 __skb_trim(skb, len);
3224 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3226 if (skb->ip_summed == CHECKSUM_COMPLETE)
3227 skb->ip_summed = CHECKSUM_NONE;
3228 return __skb_grow(skb, len);
3231 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3232 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3233 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3234 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3235 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3237 #define skb_queue_walk(queue, skb) \
3238 for (skb = (queue)->next; \
3239 skb != (struct sk_buff *)(queue); \
3242 #define skb_queue_walk_safe(queue, skb, tmp) \
3243 for (skb = (queue)->next, tmp = skb->next; \
3244 skb != (struct sk_buff *)(queue); \
3245 skb = tmp, tmp = skb->next)
3247 #define skb_queue_walk_from(queue, skb) \
3248 for (; skb != (struct sk_buff *)(queue); \
3251 #define skb_rbtree_walk(skb, root) \
3252 for (skb = skb_rb_first(root); skb != NULL; \
3253 skb = skb_rb_next(skb))
3255 #define skb_rbtree_walk_from(skb) \
3256 for (; skb != NULL; \
3257 skb = skb_rb_next(skb))
3259 #define skb_rbtree_walk_from_safe(skb, tmp) \
3260 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3263 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3264 for (tmp = skb->next; \
3265 skb != (struct sk_buff *)(queue); \
3266 skb = tmp, tmp = skb->next)
3268 #define skb_queue_reverse_walk(queue, skb) \
3269 for (skb = (queue)->prev; \
3270 skb != (struct sk_buff *)(queue); \
3273 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3274 for (skb = (queue)->prev, tmp = skb->prev; \
3275 skb != (struct sk_buff *)(queue); \
3276 skb = tmp, tmp = skb->prev)
3278 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3279 for (tmp = skb->prev; \
3280 skb != (struct sk_buff *)(queue); \
3281 skb = tmp, tmp = skb->prev)
3283 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3285 return skb_shinfo(skb)->frag_list != NULL;
3288 static inline void skb_frag_list_init(struct sk_buff *skb)
3290 skb_shinfo(skb)->frag_list = NULL;
3293 #define skb_walk_frags(skb, iter) \
3294 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3297 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3298 const struct sk_buff *skb);
3299 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3300 struct sk_buff_head *queue,
3302 void (*destructor)(struct sock *sk,
3303 struct sk_buff *skb),
3304 int *peeked, int *off, int *err,
3305 struct sk_buff **last);
3306 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3307 void (*destructor)(struct sock *sk,
3308 struct sk_buff *skb),
3309 int *peeked, int *off, int *err,
3310 struct sk_buff **last);
3311 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3312 void (*destructor)(struct sock *sk,
3313 struct sk_buff *skb),
3314 int *peeked, int *off, int *err);
3315 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3317 __poll_t datagram_poll(struct file *file, struct socket *sock,
3318 struct poll_table_struct *wait);
3319 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3320 struct iov_iter *to, int size);
3321 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3322 struct msghdr *msg, int size)
3324 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3326 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3327 struct msghdr *msg);
3328 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3329 struct iov_iter *from, int len);
3330 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3331 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3332 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3333 static inline void skb_free_datagram_locked(struct sock *sk,
3334 struct sk_buff *skb)
3336 __skb_free_datagram_locked(sk, skb, 0);
3338 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3339 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3340 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3341 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3342 int len, __wsum csum);
3343 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3344 struct pipe_inode_info *pipe, unsigned int len,
3345 unsigned int flags);
3346 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3348 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3349 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3350 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3351 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3353 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3354 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3355 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3356 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3357 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3358 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3359 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3360 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3361 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3362 int skb_vlan_pop(struct sk_buff *skb);
3363 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3364 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3367 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3369 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3372 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3374 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3377 struct skb_checksum_ops {
3378 __wsum (*update)(const void *mem, int len, __wsum wsum);
3379 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3382 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3384 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3385 __wsum csum, const struct skb_checksum_ops *ops);
3386 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3389 static inline void * __must_check
3390 __skb_header_pointer(const struct sk_buff *skb, int offset,
3391 int len, void *data, int hlen, void *buffer)
3393 if (hlen - offset >= len)
3394 return data + offset;
3397 skb_copy_bits(skb, offset, buffer, len) < 0)
3403 static inline void * __must_check
3404 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3406 return __skb_header_pointer(skb, offset, len, skb->data,
3407 skb_headlen(skb), buffer);
3411 * skb_needs_linearize - check if we need to linearize a given skb
3412 * depending on the given device features.
3413 * @skb: socket buffer to check
3414 * @features: net device features
3416 * Returns true if either:
3417 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3418 * 2. skb is fragmented and the device does not support SG.
3420 static inline bool skb_needs_linearize(struct sk_buff *skb,
3421 netdev_features_t features)
3423 return skb_is_nonlinear(skb) &&
3424 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3425 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3428 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3430 const unsigned int len)
3432 memcpy(to, skb->data, len);
3435 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3436 const int offset, void *to,
3437 const unsigned int len)
3439 memcpy(to, skb->data + offset, len);
3442 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3444 const unsigned int len)
3446 memcpy(skb->data, from, len);
3449 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3452 const unsigned int len)
3454 memcpy(skb->data + offset, from, len);
3457 void skb_init(void);
3459 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3465 * skb_get_timestamp - get timestamp from a skb
3466 * @skb: skb to get stamp from
3467 * @stamp: pointer to struct timeval to store stamp in
3469 * Timestamps are stored in the skb as offsets to a base timestamp.
3470 * This function converts the offset back to a struct timeval and stores
3473 static inline void skb_get_timestamp(const struct sk_buff *skb,
3474 struct timeval *stamp)
3476 *stamp = ktime_to_timeval(skb->tstamp);
3479 static inline void skb_get_timestampns(const struct sk_buff *skb,
3480 struct timespec *stamp)
3482 *stamp = ktime_to_timespec(skb->tstamp);
3485 static inline void __net_timestamp(struct sk_buff *skb)
3487 skb->tstamp = ktime_get_real();
3490 static inline ktime_t net_timedelta(ktime_t t)
3492 return ktime_sub(ktime_get_real(), t);
3495 static inline ktime_t net_invalid_timestamp(void)
3500 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3502 return skb_shinfo(skb)->meta_len;
3505 static inline void *skb_metadata_end(const struct sk_buff *skb)
3507 return skb_mac_header(skb);
3510 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3511 const struct sk_buff *skb_b,
3514 const void *a = skb_metadata_end(skb_a);
3515 const void *b = skb_metadata_end(skb_b);
3516 /* Using more efficient varaiant than plain call to memcmp(). */
3517 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3521 #define __it(x, op) (x -= sizeof(u##op))
3522 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3523 case 32: diffs |= __it_diff(a, b, 64);
3525 case 24: diffs |= __it_diff(a, b, 64);
3527 case 16: diffs |= __it_diff(a, b, 64);
3529 case 8: diffs |= __it_diff(a, b, 64);
3531 case 28: diffs |= __it_diff(a, b, 64);
3533 case 20: diffs |= __it_diff(a, b, 64);
3535 case 12: diffs |= __it_diff(a, b, 64);
3537 case 4: diffs |= __it_diff(a, b, 32);
3542 return memcmp(a - meta_len, b - meta_len, meta_len);
3546 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3547 const struct sk_buff *skb_b)
3549 u8 len_a = skb_metadata_len(skb_a);
3550 u8 len_b = skb_metadata_len(skb_b);
3552 if (!(len_a | len_b))
3555 return len_a != len_b ?
3556 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3559 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3561 skb_shinfo(skb)->meta_len = meta_len;
3564 static inline void skb_metadata_clear(struct sk_buff *skb)
3566 skb_metadata_set(skb, 0);
3569 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3571 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3573 void skb_clone_tx_timestamp(struct sk_buff *skb);
3574 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3576 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3578 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3582 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3587 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3590 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3592 * PHY drivers may accept clones of transmitted packets for
3593 * timestamping via their phy_driver.txtstamp method. These drivers
3594 * must call this function to return the skb back to the stack with a
3597 * @skb: clone of the the original outgoing packet
3598 * @hwtstamps: hardware time stamps
3601 void skb_complete_tx_timestamp(struct sk_buff *skb,
3602 struct skb_shared_hwtstamps *hwtstamps);
3604 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3605 struct skb_shared_hwtstamps *hwtstamps,
3606 struct sock *sk, int tstype);
3609 * skb_tstamp_tx - queue clone of skb with send time stamps
3610 * @orig_skb: the original outgoing packet
3611 * @hwtstamps: hardware time stamps, may be NULL if not available
3613 * If the skb has a socket associated, then this function clones the
3614 * skb (thus sharing the actual data and optional structures), stores
3615 * the optional hardware time stamping information (if non NULL) or
3616 * generates a software time stamp (otherwise), then queues the clone
3617 * to the error queue of the socket. Errors are silently ignored.
3619 void skb_tstamp_tx(struct sk_buff *orig_skb,
3620 struct skb_shared_hwtstamps *hwtstamps);
3623 * skb_tx_timestamp() - Driver hook for transmit timestamping
3625 * Ethernet MAC Drivers should call this function in their hard_xmit()
3626 * function immediately before giving the sk_buff to the MAC hardware.
3628 * Specifically, one should make absolutely sure that this function is
3629 * called before TX completion of this packet can trigger. Otherwise
3630 * the packet could potentially already be freed.
3632 * @skb: A socket buffer.
3634 static inline void skb_tx_timestamp(struct sk_buff *skb)
3636 skb_clone_tx_timestamp(skb);
3637 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3638 skb_tstamp_tx(skb, NULL);
3642 * skb_complete_wifi_ack - deliver skb with wifi status
3644 * @skb: the original outgoing packet
3645 * @acked: ack status
3648 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3650 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3651 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3653 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3655 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3657 (skb->ip_summed == CHECKSUM_PARTIAL &&
3658 skb_checksum_start_offset(skb) >= 0));
3662 * skb_checksum_complete - Calculate checksum of an entire packet
3663 * @skb: packet to process
3665 * This function calculates the checksum over the entire packet plus
3666 * the value of skb->csum. The latter can be used to supply the
3667 * checksum of a pseudo header as used by TCP/UDP. It returns the
3670 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3671 * this function can be used to verify that checksum on received
3672 * packets. In that case the function should return zero if the
3673 * checksum is correct. In particular, this function will return zero
3674 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3675 * hardware has already verified the correctness of the checksum.
3677 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3679 return skb_csum_unnecessary(skb) ?
3680 0 : __skb_checksum_complete(skb);
3683 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3685 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3686 if (skb->csum_level == 0)
3687 skb->ip_summed = CHECKSUM_NONE;
3693 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3695 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3696 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3698 } else if (skb->ip_summed == CHECKSUM_NONE) {
3699 skb->ip_summed = CHECKSUM_UNNECESSARY;
3700 skb->csum_level = 0;
3704 /* Check if we need to perform checksum complete validation.
3706 * Returns true if checksum complete is needed, false otherwise
3707 * (either checksum is unnecessary or zero checksum is allowed).
3709 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3713 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3714 skb->csum_valid = 1;
3715 __skb_decr_checksum_unnecessary(skb);
3722 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3725 #define CHECKSUM_BREAK 76
3727 /* Unset checksum-complete
3729 * Unset checksum complete can be done when packet is being modified
3730 * (uncompressed for instance) and checksum-complete value is
3733 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3735 if (skb->ip_summed == CHECKSUM_COMPLETE)
3736 skb->ip_summed = CHECKSUM_NONE;
3739 /* Validate (init) checksum based on checksum complete.
3742 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3743 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3744 * checksum is stored in skb->csum for use in __skb_checksum_complete
3745 * non-zero: value of invalid checksum
3748 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3752 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3753 if (!csum_fold(csum_add(psum, skb->csum))) {
3754 skb->csum_valid = 1;
3761 if (complete || skb->len <= CHECKSUM_BREAK) {
3764 csum = __skb_checksum_complete(skb);
3765 skb->csum_valid = !csum;
3772 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3777 /* Perform checksum validate (init). Note that this is a macro since we only
3778 * want to calculate the pseudo header which is an input function if necessary.
3779 * First we try to validate without any computation (checksum unnecessary) and
3780 * then calculate based on checksum complete calling the function to compute
3784 * 0: checksum is validated or try to in skb_checksum_complete
3785 * non-zero: value of invalid checksum
3787 #define __skb_checksum_validate(skb, proto, complete, \
3788 zero_okay, check, compute_pseudo) \
3790 __sum16 __ret = 0; \
3791 skb->csum_valid = 0; \
3792 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3793 __ret = __skb_checksum_validate_complete(skb, \
3794 complete, compute_pseudo(skb, proto)); \
3798 #define skb_checksum_init(skb, proto, compute_pseudo) \
3799 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3801 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3802 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3804 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3805 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3807 #define skb_checksum_validate_zero_check(skb, proto, check, \
3809 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3811 #define skb_checksum_simple_validate(skb) \
3812 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3814 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3816 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3819 static inline void __skb_checksum_convert(struct sk_buff *skb,
3820 __sum16 check, __wsum pseudo)
3822 skb->csum = ~pseudo;
3823 skb->ip_summed = CHECKSUM_COMPLETE;
3826 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3828 if (__skb_checksum_convert_check(skb)) \
3829 __skb_checksum_convert(skb, check, \
3830 compute_pseudo(skb, proto)); \
3833 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3834 u16 start, u16 offset)
3836 skb->ip_summed = CHECKSUM_PARTIAL;
3837 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3838 skb->csum_offset = offset - start;
3841 /* Update skbuf and packet to reflect the remote checksum offload operation.
3842 * When called, ptr indicates the starting point for skb->csum when
3843 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3844 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3846 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3847 int start, int offset, bool nopartial)
3852 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3856 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3857 __skb_checksum_complete(skb);
3858 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3861 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3863 /* Adjust skb->csum since we changed the packet */
3864 skb->csum = csum_add(skb->csum, delta);
3867 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3869 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3870 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3876 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3877 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3878 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3880 if (nfct && atomic_dec_and_test(&nfct->use))
3881 nf_conntrack_destroy(nfct);
3883 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3886 atomic_inc(&nfct->use);
3889 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3890 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3892 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3895 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3898 refcount_inc(&nf_bridge->use);
3900 #endif /* CONFIG_BRIDGE_NETFILTER */
3901 static inline void nf_reset(struct sk_buff *skb)
3903 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3904 nf_conntrack_put(skb_nfct(skb));
3907 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3908 nf_bridge_put(skb->nf_bridge);
3909 skb->nf_bridge = NULL;
3913 static inline void nf_reset_trace(struct sk_buff *skb)
3915 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3920 static inline void ipvs_reset(struct sk_buff *skb)
3922 #if IS_ENABLED(CONFIG_IP_VS)
3923 skb->ipvs_property = 0;
3927 /* Note: This doesn't put any conntrack and bridge info in dst. */
3928 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3931 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3932 dst->_nfct = src->_nfct;
3933 nf_conntrack_get(skb_nfct(src));
3935 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3936 dst->nf_bridge = src->nf_bridge;
3937 nf_bridge_get(src->nf_bridge);
3939 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3941 dst->nf_trace = src->nf_trace;
3945 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3947 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3948 nf_conntrack_put(skb_nfct(dst));
3950 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3951 nf_bridge_put(dst->nf_bridge);
3953 __nf_copy(dst, src, true);
3956 #ifdef CONFIG_NETWORK_SECMARK
3957 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3959 to->secmark = from->secmark;
3962 static inline void skb_init_secmark(struct sk_buff *skb)
3967 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3970 static inline void skb_init_secmark(struct sk_buff *skb)
3974 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3976 return !skb->destructor &&
3977 #if IS_ENABLED(CONFIG_XFRM)
3981 !skb->_skb_refdst &&
3982 !skb_has_frag_list(skb);
3985 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3987 skb->queue_mapping = queue_mapping;
3990 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3992 return skb->queue_mapping;
3995 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3997 to->queue_mapping = from->queue_mapping;
4000 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4002 skb->queue_mapping = rx_queue + 1;
4005 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4007 return skb->queue_mapping - 1;
4010 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4012 return skb->queue_mapping != 0;
4015 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4017 skb->dst_pending_confirm = val;
4020 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4022 return skb->dst_pending_confirm != 0;
4025 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
4034 /* Keeps track of mac header offset relative to skb->head.
4035 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4036 * For non-tunnel skb it points to skb_mac_header() and for
4037 * tunnel skb it points to outer mac header.
4038 * Keeps track of level of encapsulation of network headers.
4049 #define SKB_SGO_CB_OFFSET 32
4050 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4052 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4054 return (skb_mac_header(inner_skb) - inner_skb->head) -
4055 SKB_GSO_CB(inner_skb)->mac_offset;
4058 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4060 int new_headroom, headroom;
4063 headroom = skb_headroom(skb);
4064 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4068 new_headroom = skb_headroom(skb);
4069 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4073 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4075 /* Do not update partial checksums if remote checksum is enabled. */
4076 if (skb->remcsum_offload)
4079 SKB_GSO_CB(skb)->csum = res;
4080 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4083 /* Compute the checksum for a gso segment. First compute the checksum value
4084 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4085 * then add in skb->csum (checksum from csum_start to end of packet).
4086 * skb->csum and csum_start are then updated to reflect the checksum of the
4087 * resultant packet starting from the transport header-- the resultant checksum
4088 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4091 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4093 unsigned char *csum_start = skb_transport_header(skb);
4094 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4095 __wsum partial = SKB_GSO_CB(skb)->csum;
4097 SKB_GSO_CB(skb)->csum = res;
4098 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4100 return csum_fold(csum_partial(csum_start, plen, partial));
4103 static inline bool skb_is_gso(const struct sk_buff *skb)
4105 return skb_shinfo(skb)->gso_size;
4108 /* Note: Should be called only if skb_is_gso(skb) is true */
4109 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4111 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4114 /* Note: Should be called only if skb_is_gso(skb) is true */
4115 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4117 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4120 static inline void skb_gso_reset(struct sk_buff *skb)
4122 skb_shinfo(skb)->gso_size = 0;
4123 skb_shinfo(skb)->gso_segs = 0;
4124 skb_shinfo(skb)->gso_type = 0;
4127 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4130 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4132 shinfo->gso_size += increment;
4135 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4138 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4140 shinfo->gso_size -= decrement;
4143 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4145 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4147 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4148 * wanted then gso_type will be set. */
4149 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4151 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4152 unlikely(shinfo->gso_type == 0)) {
4153 __skb_warn_lro_forwarding(skb);
4159 static inline void skb_forward_csum(struct sk_buff *skb)
4161 /* Unfortunately we don't support this one. Any brave souls? */
4162 if (skb->ip_summed == CHECKSUM_COMPLETE)
4163 skb->ip_summed = CHECKSUM_NONE;
4167 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4168 * @skb: skb to check
4170 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4171 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4172 * use this helper, to document places where we make this assertion.
4174 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4177 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4181 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4183 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4184 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4185 unsigned int transport_len,
4186 __sum16(*skb_chkf)(struct sk_buff *skb));
4189 * skb_head_is_locked - Determine if the skb->head is locked down
4190 * @skb: skb to check
4192 * The head on skbs build around a head frag can be removed if they are
4193 * not cloned. This function returns true if the skb head is locked down
4194 * due to either being allocated via kmalloc, or by being a clone with
4195 * multiple references to the head.
4197 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4199 return !skb->head_frag || skb_cloned(skb);
4202 /* Local Checksum Offload.
4203 * Compute outer checksum based on the assumption that the
4204 * inner checksum will be offloaded later.
4205 * See Documentation/networking/checksum-offloads.txt for
4206 * explanation of how this works.
4207 * Fill in outer checksum adjustment (e.g. with sum of outer
4208 * pseudo-header) before calling.
4209 * Also ensure that inner checksum is in linear data area.
4211 static inline __wsum lco_csum(struct sk_buff *skb)
4213 unsigned char *csum_start = skb_checksum_start(skb);
4214 unsigned char *l4_hdr = skb_transport_header(skb);
4217 /* Start with complement of inner checksum adjustment */
4218 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4221 /* Add in checksum of our headers (incl. outer checksum
4222 * adjustment filled in by caller) and return result.
4224 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4227 #endif /* __KERNEL__ */
4228 #endif /* _LINUX_SKBUFF_H */