1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_da_format.h"
14 #include "xfs_da_btree.h"
15 #include "xfs_inode.h"
16 #include "xfs_trans.h"
17 #include "xfs_inode_item.h"
19 #include "xfs_bmap_util.h"
20 #include "xfs_error.h"
22 #include "xfs_dir2_priv.h"
23 #include "xfs_ioctl.h"
24 #include "xfs_trace.h"
26 #include "xfs_icache.h"
28 #include "xfs_iomap.h"
29 #include "xfs_reflink.h"
31 #include <linux/dcache.h>
32 #include <linux/falloc.h>
33 #include <linux/pagevec.h>
34 #include <linux/backing-dev.h>
35 #include <linux/mman.h>
37 static const struct vm_operations_struct xfs_file_vm_ops;
40 xfs_update_prealloc_flags(
42 enum xfs_prealloc_flags flags)
47 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
52 xfs_ilock(ip, XFS_ILOCK_EXCL);
53 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
55 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
56 VFS_I(ip)->i_mode &= ~S_ISUID;
57 if (VFS_I(ip)->i_mode & S_IXGRP)
58 VFS_I(ip)->i_mode &= ~S_ISGID;
59 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
62 if (flags & XFS_PREALLOC_SET)
63 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
64 if (flags & XFS_PREALLOC_CLEAR)
65 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
67 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
68 if (flags & XFS_PREALLOC_SYNC)
69 xfs_trans_set_sync(tp);
70 return xfs_trans_commit(tp);
74 * Fsync operations on directories are much simpler than on regular files,
75 * as there is no file data to flush, and thus also no need for explicit
76 * cache flush operations, and there are no non-transaction metadata updates
77 * on directories either.
86 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
87 struct xfs_mount *mp = ip->i_mount;
90 trace_xfs_dir_fsync(ip);
92 xfs_ilock(ip, XFS_ILOCK_SHARED);
93 if (xfs_ipincount(ip))
94 lsn = ip->i_itemp->ili_last_lsn;
95 xfs_iunlock(ip, XFS_ILOCK_SHARED);
99 return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
109 struct inode *inode = file->f_mapping->host;
110 struct xfs_inode *ip = XFS_I(inode);
111 struct xfs_mount *mp = ip->i_mount;
116 trace_xfs_file_fsync(ip);
118 error = file_write_and_wait_range(file, start, end);
122 if (XFS_FORCED_SHUTDOWN(mp))
125 xfs_iflags_clear(ip, XFS_ITRUNCATED);
128 * If we have an RT and/or log subvolume we need to make sure to flush
129 * the write cache the device used for file data first. This is to
130 * ensure newly written file data make it to disk before logging the new
131 * inode size in case of an extending write.
133 if (XFS_IS_REALTIME_INODE(ip))
134 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
135 else if (mp->m_logdev_targp != mp->m_ddev_targp)
136 xfs_blkdev_issue_flush(mp->m_ddev_targp);
139 * All metadata updates are logged, which means that we just have to
140 * flush the log up to the latest LSN that touched the inode. If we have
141 * concurrent fsync/fdatasync() calls, we need them to all block on the
142 * log force before we clear the ili_fsync_fields field. This ensures
143 * that we don't get a racing sync operation that does not wait for the
144 * metadata to hit the journal before returning. If we race with
145 * clearing the ili_fsync_fields, then all that will happen is the log
146 * force will do nothing as the lsn will already be on disk. We can't
147 * race with setting ili_fsync_fields because that is done under
148 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
149 * until after the ili_fsync_fields is cleared.
151 xfs_ilock(ip, XFS_ILOCK_SHARED);
152 if (xfs_ipincount(ip)) {
154 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
155 lsn = ip->i_itemp->ili_last_lsn;
159 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
160 ip->i_itemp->ili_fsync_fields = 0;
162 xfs_iunlock(ip, XFS_ILOCK_SHARED);
165 * If we only have a single device, and the log force about was
166 * a no-op we might have to flush the data device cache here.
167 * This can only happen for fdatasync/O_DSYNC if we were overwriting
168 * an already allocated file and thus do not have any metadata to
171 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
172 mp->m_logdev_targp == mp->m_ddev_targp)
173 xfs_blkdev_issue_flush(mp->m_ddev_targp);
179 xfs_file_dio_aio_read(
183 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
184 size_t count = iov_iter_count(to);
187 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
190 return 0; /* skip atime */
192 file_accessed(iocb->ki_filp);
194 xfs_ilock(ip, XFS_IOLOCK_SHARED);
195 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
196 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
201 static noinline ssize_t
206 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
207 size_t count = iov_iter_count(to);
210 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
213 return 0; /* skip atime */
215 if (iocb->ki_flags & IOCB_NOWAIT) {
216 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
219 xfs_ilock(ip, XFS_IOLOCK_SHARED);
222 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
223 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
225 file_accessed(iocb->ki_filp);
230 xfs_file_buffered_aio_read(
234 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
237 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
239 if (iocb->ki_flags & IOCB_NOWAIT) {
240 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
243 xfs_ilock(ip, XFS_IOLOCK_SHARED);
245 ret = generic_file_read_iter(iocb, to);
246 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
256 struct inode *inode = file_inode(iocb->ki_filp);
257 struct xfs_mount *mp = XFS_I(inode)->i_mount;
260 XFS_STATS_INC(mp, xs_read_calls);
262 if (XFS_FORCED_SHUTDOWN(mp))
266 ret = xfs_file_dax_read(iocb, to);
267 else if (iocb->ki_flags & IOCB_DIRECT)
268 ret = xfs_file_dio_aio_read(iocb, to);
270 ret = xfs_file_buffered_aio_read(iocb, to);
273 XFS_STATS_ADD(mp, xs_read_bytes, ret);
278 * Common pre-write limit and setup checks.
280 * Called with the iolocked held either shared and exclusive according to
281 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
282 * if called for a direct write beyond i_size.
285 xfs_file_aio_write_checks(
287 struct iov_iter *from,
290 struct file *file = iocb->ki_filp;
291 struct inode *inode = file->f_mapping->host;
292 struct xfs_inode *ip = XFS_I(inode);
294 size_t count = iov_iter_count(from);
295 bool drained_dio = false;
299 error = generic_write_checks(iocb, from);
303 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
308 * For changing security info in file_remove_privs() we need i_rwsem
311 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
312 xfs_iunlock(ip, *iolock);
313 *iolock = XFS_IOLOCK_EXCL;
314 xfs_ilock(ip, *iolock);
318 * If the offset is beyond the size of the file, we need to zero any
319 * blocks that fall between the existing EOF and the start of this
320 * write. If zeroing is needed and we are currently holding the
321 * iolock shared, we need to update it to exclusive which implies
322 * having to redo all checks before.
324 * We need to serialise against EOF updates that occur in IO
325 * completions here. We want to make sure that nobody is changing the
326 * size while we do this check until we have placed an IO barrier (i.e.
327 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
328 * The spinlock effectively forms a memory barrier once we have the
329 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
330 * and hence be able to correctly determine if we need to run zeroing.
332 spin_lock(&ip->i_flags_lock);
333 isize = i_size_read(inode);
334 if (iocb->ki_pos > isize) {
335 spin_unlock(&ip->i_flags_lock);
337 if (*iolock == XFS_IOLOCK_SHARED) {
338 xfs_iunlock(ip, *iolock);
339 *iolock = XFS_IOLOCK_EXCL;
340 xfs_ilock(ip, *iolock);
341 iov_iter_reexpand(from, count);
344 * We now have an IO submission barrier in place, but
345 * AIO can do EOF updates during IO completion and hence
346 * we now need to wait for all of them to drain. Non-AIO
347 * DIO will have drained before we are given the
348 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
351 inode_dio_wait(inode);
356 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
357 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
358 NULL, &xfs_iomap_ops);
362 spin_unlock(&ip->i_flags_lock);
365 * Updating the timestamps will grab the ilock again from
366 * xfs_fs_dirty_inode, so we have to call it after dropping the
367 * lock above. Eventually we should look into a way to avoid
368 * the pointless lock roundtrip.
370 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
371 error = file_update_time(file);
377 * If we're writing the file then make sure to clear the setuid and
378 * setgid bits if the process is not being run by root. This keeps
379 * people from modifying setuid and setgid binaries.
381 if (!IS_NOSEC(inode))
382 return file_remove_privs(file);
387 xfs_dio_write_end_io(
392 struct inode *inode = file_inode(iocb->ki_filp);
393 struct xfs_inode *ip = XFS_I(inode);
394 loff_t offset = iocb->ki_pos;
397 trace_xfs_end_io_direct_write(ip, offset, size);
399 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
406 * Capture amount written on completion as we can't reliably account
407 * for it on submission.
409 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
411 if (flags & IOMAP_DIO_COW) {
412 error = xfs_reflink_end_cow(ip, offset, size);
418 * Unwritten conversion updates the in-core isize after extent
419 * conversion but before updating the on-disk size. Updating isize any
420 * earlier allows a racing dio read to find unwritten extents before
421 * they are converted.
423 if (flags & IOMAP_DIO_UNWRITTEN)
424 return xfs_iomap_write_unwritten(ip, offset, size, true);
427 * We need to update the in-core inode size here so that we don't end up
428 * with the on-disk inode size being outside the in-core inode size. We
429 * have no other method of updating EOF for AIO, so always do it here
432 * We need to lock the test/set EOF update as we can be racing with
433 * other IO completions here to update the EOF. Failing to serialise
434 * here can result in EOF moving backwards and Bad Things Happen when
437 spin_lock(&ip->i_flags_lock);
438 if (offset + size > i_size_read(inode)) {
439 i_size_write(inode, offset + size);
440 spin_unlock(&ip->i_flags_lock);
441 error = xfs_setfilesize(ip, offset, size);
443 spin_unlock(&ip->i_flags_lock);
450 * xfs_file_dio_aio_write - handle direct IO writes
452 * Lock the inode appropriately to prepare for and issue a direct IO write.
453 * By separating it from the buffered write path we remove all the tricky to
454 * follow locking changes and looping.
456 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
457 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
458 * pages are flushed out.
460 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
461 * allowing them to be done in parallel with reads and other direct IO writes.
462 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
463 * needs to do sub-block zeroing and that requires serialisation against other
464 * direct IOs to the same block. In this case we need to serialise the
465 * submission of the unaligned IOs so that we don't get racing block zeroing in
466 * the dio layer. To avoid the problem with aio, we also need to wait for
467 * outstanding IOs to complete so that unwritten extent conversion is completed
468 * before we try to map the overlapping block. This is currently implemented by
469 * hitting it with a big hammer (i.e. inode_dio_wait()).
471 * Returns with locks held indicated by @iolock and errors indicated by
472 * negative return values.
475 xfs_file_dio_aio_write(
477 struct iov_iter *from)
479 struct file *file = iocb->ki_filp;
480 struct address_space *mapping = file->f_mapping;
481 struct inode *inode = mapping->host;
482 struct xfs_inode *ip = XFS_I(inode);
483 struct xfs_mount *mp = ip->i_mount;
485 int unaligned_io = 0;
487 size_t count = iov_iter_count(from);
488 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
489 mp->m_rtdev_targp : mp->m_ddev_targp;
491 /* DIO must be aligned to device logical sector size */
492 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
496 * Don't take the exclusive iolock here unless the I/O is unaligned to
497 * the file system block size. We don't need to consider the EOF
498 * extension case here because xfs_file_aio_write_checks() will relock
499 * the inode as necessary for EOF zeroing cases and fill out the new
500 * inode size as appropriate.
502 if ((iocb->ki_pos & mp->m_blockmask) ||
503 ((iocb->ki_pos + count) & mp->m_blockmask)) {
507 * We can't properly handle unaligned direct I/O to reflink
508 * files yet, as we can't unshare a partial block.
510 if (xfs_is_reflink_inode(ip)) {
511 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
514 iolock = XFS_IOLOCK_EXCL;
516 iolock = XFS_IOLOCK_SHARED;
519 if (iocb->ki_flags & IOCB_NOWAIT) {
520 if (!xfs_ilock_nowait(ip, iolock))
523 xfs_ilock(ip, iolock);
526 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
529 count = iov_iter_count(from);
532 * If we are doing unaligned IO, wait for all other IO to drain,
533 * otherwise demote the lock if we had to take the exclusive lock
534 * for other reasons in xfs_file_aio_write_checks.
537 /* If we are going to wait for other DIO to finish, bail */
538 if (iocb->ki_flags & IOCB_NOWAIT) {
539 if (atomic_read(&inode->i_dio_count))
542 inode_dio_wait(inode);
544 } else if (iolock == XFS_IOLOCK_EXCL) {
545 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
546 iolock = XFS_IOLOCK_SHARED;
549 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
550 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
552 xfs_iunlock(ip, iolock);
555 * No fallback to buffered IO on errors for XFS, direct IO will either
556 * complete fully or fail.
558 ASSERT(ret < 0 || ret == count);
562 static noinline ssize_t
565 struct iov_iter *from)
567 struct inode *inode = iocb->ki_filp->f_mapping->host;
568 struct xfs_inode *ip = XFS_I(inode);
569 int iolock = XFS_IOLOCK_EXCL;
570 ssize_t ret, error = 0;
574 if (iocb->ki_flags & IOCB_NOWAIT) {
575 if (!xfs_ilock_nowait(ip, iolock))
578 xfs_ilock(ip, iolock);
581 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
586 count = iov_iter_count(from);
588 trace_xfs_file_dax_write(ip, count, pos);
589 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
590 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
591 i_size_write(inode, iocb->ki_pos);
592 error = xfs_setfilesize(ip, pos, ret);
595 xfs_iunlock(ip, iolock);
600 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
602 /* Handle various SYNC-type writes */
603 ret = generic_write_sync(iocb, ret);
609 xfs_file_buffered_aio_write(
611 struct iov_iter *from)
613 struct file *file = iocb->ki_filp;
614 struct address_space *mapping = file->f_mapping;
615 struct inode *inode = mapping->host;
616 struct xfs_inode *ip = XFS_I(inode);
621 if (iocb->ki_flags & IOCB_NOWAIT)
625 iolock = XFS_IOLOCK_EXCL;
626 xfs_ilock(ip, iolock);
628 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
632 /* We can write back this queue in page reclaim */
633 current->backing_dev_info = inode_to_bdi(inode);
635 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
636 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
637 if (likely(ret >= 0))
641 * If we hit a space limit, try to free up some lingering preallocated
642 * space before returning an error. In the case of ENOSPC, first try to
643 * write back all dirty inodes to free up some of the excess reserved
644 * metadata space. This reduces the chances that the eofblocks scan
645 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
646 * also behaves as a filter to prevent too many eofblocks scans from
647 * running at the same time.
649 if (ret == -EDQUOT && !enospc) {
650 xfs_iunlock(ip, iolock);
651 enospc = xfs_inode_free_quota_eofblocks(ip);
654 enospc = xfs_inode_free_quota_cowblocks(ip);
658 } else if (ret == -ENOSPC && !enospc) {
659 struct xfs_eofblocks eofb = {0};
662 xfs_flush_inodes(ip->i_mount);
664 xfs_iunlock(ip, iolock);
665 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
666 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
667 xfs_icache_free_cowblocks(ip->i_mount, &eofb);
671 current->backing_dev_info = NULL;
674 xfs_iunlock(ip, iolock);
677 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
678 /* Handle various SYNC-type writes */
679 ret = generic_write_sync(iocb, ret);
687 struct iov_iter *from)
689 struct file *file = iocb->ki_filp;
690 struct address_space *mapping = file->f_mapping;
691 struct inode *inode = mapping->host;
692 struct xfs_inode *ip = XFS_I(inode);
694 size_t ocount = iov_iter_count(from);
696 XFS_STATS_INC(ip->i_mount, xs_write_calls);
701 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
705 return xfs_file_dax_write(iocb, from);
707 if (iocb->ki_flags & IOCB_DIRECT) {
709 * Allow a directio write to fall back to a buffered
710 * write *only* in the case that we're doing a reflink
711 * CoW. In all other directio scenarios we do not
712 * allow an operation to fall back to buffered mode.
714 ret = xfs_file_dio_aio_write(iocb, from);
719 return xfs_file_buffered_aio_write(iocb, from);
726 struct xfs_inode *ip = XFS_I(inode);
728 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
730 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
734 xfs_break_dax_layouts(
740 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
742 page = dax_layout_busy_page(inode->i_mapping);
747 return ___wait_var_event(&page->_refcount,
748 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
749 0, 0, xfs_wait_dax_page(inode));
756 enum layout_break_reason reason)
761 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
767 error = xfs_break_dax_layouts(inode, &retry);
772 error = xfs_break_leased_layouts(inode, iolock, &retry);
778 } while (error == 0 && retry);
783 #define XFS_FALLOC_FL_SUPPORTED \
784 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
785 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
786 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
795 struct inode *inode = file_inode(file);
796 struct xfs_inode *ip = XFS_I(inode);
798 enum xfs_prealloc_flags flags = 0;
799 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
801 bool do_file_insert = false;
803 if (!S_ISREG(inode->i_mode))
805 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
808 xfs_ilock(ip, iolock);
809 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
813 if (mode & FALLOC_FL_PUNCH_HOLE) {
814 error = xfs_free_file_space(ip, offset, len);
817 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
818 unsigned int blksize_mask = i_blocksize(inode) - 1;
820 if (offset & blksize_mask || len & blksize_mask) {
826 * There is no need to overlap collapse range with EOF,
827 * in which case it is effectively a truncate operation
829 if (offset + len >= i_size_read(inode)) {
834 new_size = i_size_read(inode) - len;
836 error = xfs_collapse_file_space(ip, offset, len);
839 } else if (mode & FALLOC_FL_INSERT_RANGE) {
840 unsigned int blksize_mask = i_blocksize(inode) - 1;
841 loff_t isize = i_size_read(inode);
843 if (offset & blksize_mask || len & blksize_mask) {
849 * New inode size must not exceed ->s_maxbytes, accounting for
850 * possible signed overflow.
852 if (inode->i_sb->s_maxbytes - isize < len) {
856 new_size = isize + len;
858 /* Offset should be less than i_size */
859 if (offset >= isize) {
863 do_file_insert = true;
865 flags |= XFS_PREALLOC_SET;
867 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
868 offset + len > i_size_read(inode)) {
869 new_size = offset + len;
870 error = inode_newsize_ok(inode, new_size);
875 if (mode & FALLOC_FL_ZERO_RANGE)
876 error = xfs_zero_file_space(ip, offset, len);
878 if (mode & FALLOC_FL_UNSHARE_RANGE) {
879 error = xfs_reflink_unshare(ip, offset, len);
883 error = xfs_alloc_file_space(ip, offset, len,
890 if (file->f_flags & O_DSYNC)
891 flags |= XFS_PREALLOC_SYNC;
893 error = xfs_update_prealloc_flags(ip, flags);
897 /* Change file size if needed */
901 iattr.ia_valid = ATTR_SIZE;
902 iattr.ia_size = new_size;
903 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
909 * Perform hole insertion now that the file size has been
910 * updated so that if we crash during the operation we don't
911 * leave shifted extents past EOF and hence losing access to
912 * the data that is contained within them.
915 error = xfs_insert_file_space(ip, offset, len);
918 xfs_iunlock(ip, iolock);
924 xfs_file_remap_range(
925 struct file *file_in,
927 struct file *file_out,
930 unsigned int remap_flags)
932 struct inode *inode_in = file_inode(file_in);
933 struct xfs_inode *src = XFS_I(inode_in);
934 struct inode *inode_out = file_inode(file_out);
935 struct xfs_inode *dest = XFS_I(inode_out);
936 struct xfs_mount *mp = src->i_mount;
938 xfs_extlen_t cowextsize;
941 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
944 if (!xfs_sb_version_hasreflink(&mp->m_sb))
947 if (XFS_FORCED_SHUTDOWN(mp))
950 /* Prepare and then clone file data. */
951 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
953 if (ret < 0 || len == 0)
956 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
958 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
964 * Carry the cowextsize hint from src to dest if we're sharing the
965 * entire source file to the entire destination file, the source file
966 * has a cowextsize hint, and the destination file does not.
969 if (pos_in == 0 && len == i_size_read(inode_in) &&
970 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
971 pos_out == 0 && len >= i_size_read(inode_out) &&
972 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
973 cowextsize = src->i_d.di_cowextsize;
975 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
979 xfs_reflink_remap_unlock(file_in, file_out);
981 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
982 return remapped > 0 ? remapped : ret;
990 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
992 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
994 file->f_mode |= FMODE_NOWAIT;
1000 struct inode *inode,
1003 struct xfs_inode *ip = XFS_I(inode);
1007 error = xfs_file_open(inode, file);
1012 * If there are any blocks, read-ahead block 0 as we're almost
1013 * certain to have the next operation be a read there.
1015 mode = xfs_ilock_data_map_shared(ip);
1016 if (ip->i_d.di_nextents > 0)
1017 error = xfs_dir3_data_readahead(ip, 0, -1);
1018 xfs_iunlock(ip, mode);
1024 struct inode *inode,
1027 return xfs_release(XFS_I(inode));
1033 struct dir_context *ctx)
1035 struct inode *inode = file_inode(file);
1036 xfs_inode_t *ip = XFS_I(inode);
1040 * The Linux API doesn't pass down the total size of the buffer
1041 * we read into down to the filesystem. With the filldir concept
1042 * it's not needed for correct information, but the XFS dir2 leaf
1043 * code wants an estimate of the buffer size to calculate it's
1044 * readahead window and size the buffers used for mapping to
1047 * Try to give it an estimate that's good enough, maybe at some
1048 * point we can change the ->readdir prototype to include the
1049 * buffer size. For now we use the current glibc buffer size.
1051 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1053 return xfs_readdir(NULL, ip, ctx, bufsize);
1062 struct inode *inode = file->f_mapping->host;
1064 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1069 return generic_file_llseek(file, offset, whence);
1071 offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
1074 offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
1080 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1084 * Locking for serialisation of IO during page faults. This results in a lock
1088 * sb_start_pagefault(vfs, freeze)
1089 * i_mmaplock (XFS - truncate serialisation)
1091 * i_lock (XFS - extent map serialisation)
1094 __xfs_filemap_fault(
1095 struct vm_fault *vmf,
1096 enum page_entry_size pe_size,
1099 struct inode *inode = file_inode(vmf->vma->vm_file);
1100 struct xfs_inode *ip = XFS_I(inode);
1103 trace_xfs_filemap_fault(ip, pe_size, write_fault);
1106 sb_start_pagefault(inode->i_sb);
1107 file_update_time(vmf->vma->vm_file);
1110 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1111 if (IS_DAX(inode)) {
1114 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
1115 if (ret & VM_FAULT_NEEDDSYNC)
1116 ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1119 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1121 ret = filemap_fault(vmf);
1123 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1126 sb_end_pagefault(inode->i_sb);
1132 struct vm_fault *vmf)
1134 /* DAX can shortcut the normal fault path on write faults! */
1135 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1136 IS_DAX(file_inode(vmf->vma->vm_file)) &&
1137 (vmf->flags & FAULT_FLAG_WRITE));
1141 xfs_filemap_huge_fault(
1142 struct vm_fault *vmf,
1143 enum page_entry_size pe_size)
1145 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1146 return VM_FAULT_FALLBACK;
1148 /* DAX can shortcut the normal fault path on write faults! */
1149 return __xfs_filemap_fault(vmf, pe_size,
1150 (vmf->flags & FAULT_FLAG_WRITE));
1154 xfs_filemap_page_mkwrite(
1155 struct vm_fault *vmf)
1157 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1161 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1162 * on write faults. In reality, it needs to serialise against truncate and
1163 * prepare memory for writing so handle is as standard write fault.
1166 xfs_filemap_pfn_mkwrite(
1167 struct vm_fault *vmf)
1170 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1173 static const struct vm_operations_struct xfs_file_vm_ops = {
1174 .fault = xfs_filemap_fault,
1175 .huge_fault = xfs_filemap_huge_fault,
1176 .map_pages = filemap_map_pages,
1177 .page_mkwrite = xfs_filemap_page_mkwrite,
1178 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1184 struct vm_area_struct *vma)
1187 * We don't support synchronous mappings for non-DAX files. At least
1188 * until someone comes with a sensible use case.
1190 if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC))
1193 file_accessed(filp);
1194 vma->vm_ops = &xfs_file_vm_ops;
1195 if (IS_DAX(file_inode(filp)))
1196 vma->vm_flags |= VM_HUGEPAGE;
1200 const struct file_operations xfs_file_operations = {
1201 .llseek = xfs_file_llseek,
1202 .read_iter = xfs_file_read_iter,
1203 .write_iter = xfs_file_write_iter,
1204 .splice_read = generic_file_splice_read,
1205 .splice_write = iter_file_splice_write,
1206 .unlocked_ioctl = xfs_file_ioctl,
1207 #ifdef CONFIG_COMPAT
1208 .compat_ioctl = xfs_file_compat_ioctl,
1210 .mmap = xfs_file_mmap,
1211 .mmap_supported_flags = MAP_SYNC,
1212 .open = xfs_file_open,
1213 .release = xfs_file_release,
1214 .fsync = xfs_file_fsync,
1215 .get_unmapped_area = thp_get_unmapped_area,
1216 .fallocate = xfs_file_fallocate,
1217 .remap_file_range = xfs_file_remap_range,
1220 const struct file_operations xfs_dir_file_operations = {
1221 .open = xfs_dir_open,
1222 .read = generic_read_dir,
1223 .iterate_shared = xfs_file_readdir,
1224 .llseek = generic_file_llseek,
1225 .unlocked_ioctl = xfs_file_ioctl,
1226 #ifdef CONFIG_COMPAT
1227 .compat_ioctl = xfs_file_compat_ioctl,
1229 .fsync = xfs_dir_fsync,