4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 #include <linux/freezer.h>
67 #include <linux/uaccess.h>
68 #include <asm/mmu_context.h>
71 #include <trace/events/task.h>
74 #include <trace/events/sched.h>
76 int suid_dumpable = 0;
78 static LIST_HEAD(formats);
79 static DEFINE_RWLOCK(binfmt_lock);
81 void __register_binfmt(struct linux_binfmt * fmt, int insert)
84 if (WARN_ON(!fmt->load_binary))
86 write_lock(&binfmt_lock);
87 insert ? list_add(&fmt->lh, &formats) :
88 list_add_tail(&fmt->lh, &formats);
89 write_unlock(&binfmt_lock);
92 EXPORT_SYMBOL(__register_binfmt);
94 void unregister_binfmt(struct linux_binfmt * fmt)
96 write_lock(&binfmt_lock);
98 write_unlock(&binfmt_lock);
101 EXPORT_SYMBOL(unregister_binfmt);
103 static inline void put_binfmt(struct linux_binfmt * fmt)
105 module_put(fmt->module);
108 bool path_noexec(const struct path *path)
110 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
111 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116 * Note that a shared library must be both readable and executable due to
119 * Also note that we take the address to load from from the file itself.
121 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 struct linux_binfmt *fmt;
125 struct filename *tmp = getname(library);
126 int error = PTR_ERR(tmp);
127 static const struct open_flags uselib_flags = {
128 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
129 .acc_mode = MAY_READ | MAY_EXEC,
130 .intent = LOOKUP_OPEN,
131 .lookup_flags = LOOKUP_FOLLOW,
137 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 error = PTR_ERR(file);
144 if (!S_ISREG(file_inode(file)->i_mode))
148 if (path_noexec(&file->f_path))
155 read_lock(&binfmt_lock);
156 list_for_each_entry(fmt, &formats, lh) {
157 if (!fmt->load_shlib)
159 if (!try_module_get(fmt->module))
161 read_unlock(&binfmt_lock);
162 error = fmt->load_shlib(file);
163 read_lock(&binfmt_lock);
165 if (error != -ENOEXEC)
168 read_unlock(&binfmt_lock);
174 #endif /* #ifdef CONFIG_USELIB */
178 * The nascent bprm->mm is not visible until exec_mmap() but it can
179 * use a lot of memory, account these pages in current->mm temporary
180 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
181 * change the counter back via acct_arg_size(0).
183 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
185 struct mm_struct *mm = current->mm;
186 long diff = (long)(pages - bprm->vma_pages);
191 bprm->vma_pages = pages;
192 add_mm_counter(mm, MM_ANONPAGES, diff);
195 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 unsigned int gup_flags = FOLL_FORCE;
202 #ifdef CONFIG_STACK_GROWSUP
204 ret = expand_downwards(bprm->vma, pos);
211 gup_flags |= FOLL_WRITE;
214 * We are doing an exec(). 'current' is the process
215 * doing the exec and bprm->mm is the new process's mm.
217 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
223 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
224 unsigned long ptr_size, limit;
227 * Since the stack will hold pointers to the strings, we
228 * must account for them as well.
230 * The size calculation is the entire vma while each arg page is
231 * built, so each time we get here it's calculating how far it
232 * is currently (rather than each call being just the newly
233 * added size from the arg page). As a result, we need to
234 * always add the entire size of the pointers, so that on the
235 * last call to get_arg_page() we'll actually have the entire
238 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
239 if (ptr_size > ULONG_MAX - size)
243 acct_arg_size(bprm, size / PAGE_SIZE);
246 * We've historically supported up to 32 pages (ARG_MAX)
247 * of argument strings even with small stacks
253 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
254 * (whichever is smaller) for the argv+env strings.
256 * - the remaining binfmt code will not run out of stack space,
257 * - the program will have a reasonable amount of stack left
260 limit = _STK_LIM / 4 * 3;
261 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
273 static void put_arg_page(struct page *page)
278 static void free_arg_pages(struct linux_binprm *bprm)
282 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
285 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
288 static int __bprm_mm_init(struct linux_binprm *bprm)
291 struct vm_area_struct *vma = NULL;
292 struct mm_struct *mm = bprm->mm;
294 bprm->vma = vma = vm_area_alloc(mm);
297 vma_set_anonymous(vma);
299 if (down_write_killable(&mm->mmap_sem)) {
305 * Place the stack at the largest stack address the architecture
306 * supports. Later, we'll move this to an appropriate place. We don't
307 * use STACK_TOP because that can depend on attributes which aren't
310 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
311 vma->vm_end = STACK_TOP_MAX;
312 vma->vm_start = vma->vm_end - PAGE_SIZE;
313 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
314 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
316 err = insert_vm_struct(mm, vma);
320 mm->stack_vm = mm->total_vm = 1;
321 arch_bprm_mm_init(mm, vma);
322 up_write(&mm->mmap_sem);
323 bprm->p = vma->vm_end - sizeof(void *);
326 up_write(&mm->mmap_sem);
333 static bool valid_arg_len(struct linux_binprm *bprm, long len)
335 return len <= MAX_ARG_STRLEN;
340 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
344 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
349 page = bprm->page[pos / PAGE_SIZE];
350 if (!page && write) {
351 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
354 bprm->page[pos / PAGE_SIZE] = page;
360 static void put_arg_page(struct page *page)
364 static void free_arg_page(struct linux_binprm *bprm, int i)
367 __free_page(bprm->page[i]);
368 bprm->page[i] = NULL;
372 static void free_arg_pages(struct linux_binprm *bprm)
376 for (i = 0; i < MAX_ARG_PAGES; i++)
377 free_arg_page(bprm, i);
380 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
385 static int __bprm_mm_init(struct linux_binprm *bprm)
387 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
391 static bool valid_arg_len(struct linux_binprm *bprm, long len)
393 return len <= bprm->p;
396 #endif /* CONFIG_MMU */
399 * Create a new mm_struct and populate it with a temporary stack
400 * vm_area_struct. We don't have enough context at this point to set the stack
401 * flags, permissions, and offset, so we use temporary values. We'll update
402 * them later in setup_arg_pages().
404 static int bprm_mm_init(struct linux_binprm *bprm)
407 struct mm_struct *mm = NULL;
409 bprm->mm = mm = mm_alloc();
414 /* Save current stack limit for all calculations made during exec. */
415 task_lock(current->group_leader);
416 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
417 task_unlock(current->group_leader);
419 err = __bprm_mm_init(bprm);
434 struct user_arg_ptr {
439 const char __user *const __user *native;
441 const compat_uptr_t __user *compat;
446 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
448 const char __user *native;
451 if (unlikely(argv.is_compat)) {
452 compat_uptr_t compat;
454 if (get_user(compat, argv.ptr.compat + nr))
455 return ERR_PTR(-EFAULT);
457 return compat_ptr(compat);
461 if (get_user(native, argv.ptr.native + nr))
462 return ERR_PTR(-EFAULT);
468 * count() counts the number of strings in array ARGV.
470 static int count(struct user_arg_ptr argv, int max)
474 if (argv.ptr.native != NULL) {
476 const char __user *p = get_user_arg_ptr(argv, i);
488 if (fatal_signal_pending(current))
489 return -ERESTARTNOHAND;
497 * 'copy_strings()' copies argument/environment strings from the old
498 * processes's memory to the new process's stack. The call to get_user_pages()
499 * ensures the destination page is created and not swapped out.
501 static int copy_strings(int argc, struct user_arg_ptr argv,
502 struct linux_binprm *bprm)
504 struct page *kmapped_page = NULL;
506 unsigned long kpos = 0;
510 const char __user *str;
515 str = get_user_arg_ptr(argv, argc);
519 len = strnlen_user(str, MAX_ARG_STRLEN);
524 if (!valid_arg_len(bprm, len))
527 /* We're going to work our way backwords. */
533 int offset, bytes_to_copy;
535 if (fatal_signal_pending(current)) {
536 ret = -ERESTARTNOHAND;
541 offset = pos % PAGE_SIZE;
545 bytes_to_copy = offset;
546 if (bytes_to_copy > len)
549 offset -= bytes_to_copy;
550 pos -= bytes_to_copy;
551 str -= bytes_to_copy;
552 len -= bytes_to_copy;
554 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
557 page = get_arg_page(bprm, pos, 1);
564 flush_kernel_dcache_page(kmapped_page);
565 kunmap(kmapped_page);
566 put_arg_page(kmapped_page);
569 kaddr = kmap(kmapped_page);
570 kpos = pos & PAGE_MASK;
571 flush_arg_page(bprm, kpos, kmapped_page);
573 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
582 flush_kernel_dcache_page(kmapped_page);
583 kunmap(kmapped_page);
584 put_arg_page(kmapped_page);
590 * Like copy_strings, but get argv and its values from kernel memory.
592 int copy_strings_kernel(int argc, const char *const *__argv,
593 struct linux_binprm *bprm)
596 mm_segment_t oldfs = get_fs();
597 struct user_arg_ptr argv = {
598 .ptr.native = (const char __user *const __user *)__argv,
602 r = copy_strings(argc, argv, bprm);
607 EXPORT_SYMBOL(copy_strings_kernel);
612 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
613 * the binfmt code determines where the new stack should reside, we shift it to
614 * its final location. The process proceeds as follows:
616 * 1) Use shift to calculate the new vma endpoints.
617 * 2) Extend vma to cover both the old and new ranges. This ensures the
618 * arguments passed to subsequent functions are consistent.
619 * 3) Move vma's page tables to the new range.
620 * 4) Free up any cleared pgd range.
621 * 5) Shrink the vma to cover only the new range.
623 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
625 struct mm_struct *mm = vma->vm_mm;
626 unsigned long old_start = vma->vm_start;
627 unsigned long old_end = vma->vm_end;
628 unsigned long length = old_end - old_start;
629 unsigned long new_start = old_start - shift;
630 unsigned long new_end = old_end - shift;
631 struct mmu_gather tlb;
633 BUG_ON(new_start > new_end);
636 * ensure there are no vmas between where we want to go
639 if (vma != find_vma(mm, new_start))
643 * cover the whole range: [new_start, old_end)
645 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
649 * move the page tables downwards, on failure we rely on
650 * process cleanup to remove whatever mess we made.
652 if (length != move_page_tables(vma, old_start,
653 vma, new_start, length, false))
657 tlb_gather_mmu(&tlb, mm, old_start, old_end);
658 if (new_end > old_start) {
660 * when the old and new regions overlap clear from new_end.
662 free_pgd_range(&tlb, new_end, old_end, new_end,
663 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
666 * otherwise, clean from old_start; this is done to not touch
667 * the address space in [new_end, old_start) some architectures
668 * have constraints on va-space that make this illegal (IA64) -
669 * for the others its just a little faster.
671 free_pgd_range(&tlb, old_start, old_end, new_end,
672 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
674 tlb_finish_mmu(&tlb, old_start, old_end);
677 * Shrink the vma to just the new range. Always succeeds.
679 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
685 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
686 * the stack is optionally relocated, and some extra space is added.
688 int setup_arg_pages(struct linux_binprm *bprm,
689 unsigned long stack_top,
690 int executable_stack)
693 unsigned long stack_shift;
694 struct mm_struct *mm = current->mm;
695 struct vm_area_struct *vma = bprm->vma;
696 struct vm_area_struct *prev = NULL;
697 unsigned long vm_flags;
698 unsigned long stack_base;
699 unsigned long stack_size;
700 unsigned long stack_expand;
701 unsigned long rlim_stack;
703 #ifdef CONFIG_STACK_GROWSUP
704 /* Limit stack size */
705 stack_base = bprm->rlim_stack.rlim_max;
706 if (stack_base > STACK_SIZE_MAX)
707 stack_base = STACK_SIZE_MAX;
709 /* Add space for stack randomization. */
710 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
712 /* Make sure we didn't let the argument array grow too large. */
713 if (vma->vm_end - vma->vm_start > stack_base)
716 stack_base = PAGE_ALIGN(stack_top - stack_base);
718 stack_shift = vma->vm_start - stack_base;
719 mm->arg_start = bprm->p - stack_shift;
720 bprm->p = vma->vm_end - stack_shift;
722 stack_top = arch_align_stack(stack_top);
723 stack_top = PAGE_ALIGN(stack_top);
725 if (unlikely(stack_top < mmap_min_addr) ||
726 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
729 stack_shift = vma->vm_end - stack_top;
731 bprm->p -= stack_shift;
732 mm->arg_start = bprm->p;
736 bprm->loader -= stack_shift;
737 bprm->exec -= stack_shift;
739 if (down_write_killable(&mm->mmap_sem))
742 vm_flags = VM_STACK_FLAGS;
745 * Adjust stack execute permissions; explicitly enable for
746 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
747 * (arch default) otherwise.
749 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
751 else if (executable_stack == EXSTACK_DISABLE_X)
752 vm_flags &= ~VM_EXEC;
753 vm_flags |= mm->def_flags;
754 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
756 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
762 /* Move stack pages down in memory. */
764 ret = shift_arg_pages(vma, stack_shift);
769 /* mprotect_fixup is overkill to remove the temporary stack flags */
770 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
772 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
773 stack_size = vma->vm_end - vma->vm_start;
775 * Align this down to a page boundary as expand_stack
778 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
779 #ifdef CONFIG_STACK_GROWSUP
780 if (stack_size + stack_expand > rlim_stack)
781 stack_base = vma->vm_start + rlim_stack;
783 stack_base = vma->vm_end + stack_expand;
785 if (stack_size + stack_expand > rlim_stack)
786 stack_base = vma->vm_end - rlim_stack;
788 stack_base = vma->vm_start - stack_expand;
790 current->mm->start_stack = bprm->p;
791 ret = expand_stack(vma, stack_base);
796 up_write(&mm->mmap_sem);
799 EXPORT_SYMBOL(setup_arg_pages);
804 * Transfer the program arguments and environment from the holding pages
805 * onto the stack. The provided stack pointer is adjusted accordingly.
807 int transfer_args_to_stack(struct linux_binprm *bprm,
808 unsigned long *sp_location)
810 unsigned long index, stop, sp;
813 stop = bprm->p >> PAGE_SHIFT;
816 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
817 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
818 char *src = kmap(bprm->page[index]) + offset;
819 sp -= PAGE_SIZE - offset;
820 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
822 kunmap(bprm->page[index]);
832 EXPORT_SYMBOL(transfer_args_to_stack);
834 #endif /* CONFIG_MMU */
836 static struct file *do_open_execat(int fd, struct filename *name, int flags)
840 struct open_flags open_exec_flags = {
841 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
842 .acc_mode = MAY_EXEC,
843 .intent = LOOKUP_OPEN,
844 .lookup_flags = LOOKUP_FOLLOW,
847 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
848 return ERR_PTR(-EINVAL);
849 if (flags & AT_SYMLINK_NOFOLLOW)
850 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
851 if (flags & AT_EMPTY_PATH)
852 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
854 file = do_filp_open(fd, name, &open_exec_flags);
859 if (!S_ISREG(file_inode(file)->i_mode))
862 if (path_noexec(&file->f_path))
865 err = deny_write_access(file);
869 if (name->name[0] != '\0')
880 struct file *open_exec(const char *name)
882 struct filename *filename = getname_kernel(name);
883 struct file *f = ERR_CAST(filename);
885 if (!IS_ERR(filename)) {
886 f = do_open_execat(AT_FDCWD, filename, 0);
891 EXPORT_SYMBOL(open_exec);
893 int kernel_read_file(struct file *file, void **buf, loff_t *size,
894 loff_t max_size, enum kernel_read_file_id id)
900 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
903 ret = deny_write_access(file);
907 ret = security_kernel_read_file(file, id);
911 i_size = i_size_read(file_inode(file));
916 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
921 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
922 *buf = vmalloc(i_size);
929 while (pos < i_size) {
930 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
945 ret = security_kernel_post_read_file(file, *buf, i_size, id);
951 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
958 allow_write_access(file);
961 EXPORT_SYMBOL_GPL(kernel_read_file);
963 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
964 loff_t max_size, enum kernel_read_file_id id)
972 file = filp_open(path, O_RDONLY, 0);
974 return PTR_ERR(file);
976 ret = kernel_read_file(file, buf, size, max_size, id);
980 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
982 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
983 enum kernel_read_file_id id)
985 struct fd f = fdget(fd);
991 ret = kernel_read_file(f.file, buf, size, max_size, id);
996 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
998 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1000 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1002 flush_icache_range(addr, addr + len);
1005 EXPORT_SYMBOL(read_code);
1007 static int exec_mmap(struct mm_struct *mm)
1009 struct task_struct *tsk;
1010 struct mm_struct *old_mm, *active_mm;
1012 /* Notify parent that we're no longer interested in the old VM */
1014 old_mm = current->mm;
1015 mm_release(tsk, old_mm);
1018 sync_mm_rss(old_mm);
1020 * Make sure that if there is a core dump in progress
1021 * for the old mm, we get out and die instead of going
1022 * through with the exec. We must hold mmap_sem around
1023 * checking core_state and changing tsk->mm.
1025 down_read(&old_mm->mmap_sem);
1026 if (unlikely(old_mm->core_state)) {
1027 up_read(&old_mm->mmap_sem);
1032 active_mm = tsk->active_mm;
1034 tsk->active_mm = mm;
1035 activate_mm(active_mm, mm);
1036 tsk->mm->vmacache_seqnum = 0;
1037 vmacache_flush(tsk);
1040 up_read(&old_mm->mmap_sem);
1041 BUG_ON(active_mm != old_mm);
1042 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1043 mm_update_next_owner(old_mm);
1052 * This function makes sure the current process has its own signal table,
1053 * so that flush_signal_handlers can later reset the handlers without
1054 * disturbing other processes. (Other processes might share the signal
1055 * table via the CLONE_SIGHAND option to clone().)
1057 static int de_thread(struct task_struct *tsk)
1059 struct signal_struct *sig = tsk->signal;
1060 struct sighand_struct *oldsighand = tsk->sighand;
1061 spinlock_t *lock = &oldsighand->siglock;
1063 if (thread_group_empty(tsk))
1064 goto no_thread_group;
1067 * Kill all other threads in the thread group.
1069 spin_lock_irq(lock);
1070 if (signal_group_exit(sig)) {
1072 * Another group action in progress, just
1073 * return so that the signal is processed.
1075 spin_unlock_irq(lock);
1079 sig->group_exit_task = tsk;
1080 sig->notify_count = zap_other_threads(tsk);
1081 if (!thread_group_leader(tsk))
1082 sig->notify_count--;
1084 while (sig->notify_count) {
1085 __set_current_state(TASK_KILLABLE);
1086 spin_unlock_irq(lock);
1087 freezable_schedule();
1088 if (unlikely(__fatal_signal_pending(tsk)))
1090 spin_lock_irq(lock);
1092 spin_unlock_irq(lock);
1095 * At this point all other threads have exited, all we have to
1096 * do is to wait for the thread group leader to become inactive,
1097 * and to assume its PID:
1099 if (!thread_group_leader(tsk)) {
1100 struct task_struct *leader = tsk->group_leader;
1103 cgroup_threadgroup_change_begin(tsk);
1104 write_lock_irq(&tasklist_lock);
1106 * Do this under tasklist_lock to ensure that
1107 * exit_notify() can't miss ->group_exit_task
1109 sig->notify_count = -1;
1110 if (likely(leader->exit_state))
1112 __set_current_state(TASK_KILLABLE);
1113 write_unlock_irq(&tasklist_lock);
1114 cgroup_threadgroup_change_end(tsk);
1115 freezable_schedule();
1116 if (unlikely(__fatal_signal_pending(tsk)))
1121 * The only record we have of the real-time age of a
1122 * process, regardless of execs it's done, is start_time.
1123 * All the past CPU time is accumulated in signal_struct
1124 * from sister threads now dead. But in this non-leader
1125 * exec, nothing survives from the original leader thread,
1126 * whose birth marks the true age of this process now.
1127 * When we take on its identity by switching to its PID, we
1128 * also take its birthdate (always earlier than our own).
1130 tsk->start_time = leader->start_time;
1131 tsk->real_start_time = leader->real_start_time;
1133 BUG_ON(!same_thread_group(leader, tsk));
1134 BUG_ON(has_group_leader_pid(tsk));
1136 * An exec() starts a new thread group with the
1137 * TGID of the previous thread group. Rehash the
1138 * two threads with a switched PID, and release
1139 * the former thread group leader:
1142 /* Become a process group leader with the old leader's pid.
1143 * The old leader becomes a thread of the this thread group.
1144 * Note: The old leader also uses this pid until release_task
1145 * is called. Odd but simple and correct.
1147 tsk->pid = leader->pid;
1148 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1149 transfer_pid(leader, tsk, PIDTYPE_TGID);
1150 transfer_pid(leader, tsk, PIDTYPE_PGID);
1151 transfer_pid(leader, tsk, PIDTYPE_SID);
1153 list_replace_rcu(&leader->tasks, &tsk->tasks);
1154 list_replace_init(&leader->sibling, &tsk->sibling);
1156 tsk->group_leader = tsk;
1157 leader->group_leader = tsk;
1159 tsk->exit_signal = SIGCHLD;
1160 leader->exit_signal = -1;
1162 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1163 leader->exit_state = EXIT_DEAD;
1166 * We are going to release_task()->ptrace_unlink() silently,
1167 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1168 * the tracer wont't block again waiting for this thread.
1170 if (unlikely(leader->ptrace))
1171 __wake_up_parent(leader, leader->parent);
1172 write_unlock_irq(&tasklist_lock);
1173 cgroup_threadgroup_change_end(tsk);
1175 release_task(leader);
1178 sig->group_exit_task = NULL;
1179 sig->notify_count = 0;
1182 /* we have changed execution domain */
1183 tsk->exit_signal = SIGCHLD;
1185 #ifdef CONFIG_POSIX_TIMERS
1187 flush_itimer_signals();
1190 if (atomic_read(&oldsighand->count) != 1) {
1191 struct sighand_struct *newsighand;
1193 * This ->sighand is shared with the CLONE_SIGHAND
1194 * but not CLONE_THREAD task, switch to the new one.
1196 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1200 atomic_set(&newsighand->count, 1);
1201 memcpy(newsighand->action, oldsighand->action,
1202 sizeof(newsighand->action));
1204 write_lock_irq(&tasklist_lock);
1205 spin_lock(&oldsighand->siglock);
1206 rcu_assign_pointer(tsk->sighand, newsighand);
1207 spin_unlock(&oldsighand->siglock);
1208 write_unlock_irq(&tasklist_lock);
1210 __cleanup_sighand(oldsighand);
1213 BUG_ON(!thread_group_leader(tsk));
1217 /* protects against exit_notify() and __exit_signal() */
1218 read_lock(&tasklist_lock);
1219 sig->group_exit_task = NULL;
1220 sig->notify_count = 0;
1221 read_unlock(&tasklist_lock);
1225 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1228 strncpy(buf, tsk->comm, buf_size);
1232 EXPORT_SYMBOL_GPL(__get_task_comm);
1235 * These functions flushes out all traces of the currently running executable
1236 * so that a new one can be started
1239 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1242 trace_task_rename(tsk, buf);
1243 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1245 perf_event_comm(tsk, exec);
1249 * Calling this is the point of no return. None of the failures will be
1250 * seen by userspace since either the process is already taking a fatal
1251 * signal (via de_thread() or coredump), or will have SEGV raised
1252 * (after exec_mmap()) by search_binary_handlers (see below).
1254 int flush_old_exec(struct linux_binprm * bprm)
1259 * Make sure we have a private signal table and that
1260 * we are unassociated from the previous thread group.
1262 retval = de_thread(current);
1267 * Must be called _before_ exec_mmap() as bprm->mm is
1268 * not visibile until then. This also enables the update
1271 set_mm_exe_file(bprm->mm, bprm->file);
1274 * Release all of the old mmap stuff
1276 acct_arg_size(bprm, 0);
1277 retval = exec_mmap(bprm->mm);
1282 * After clearing bprm->mm (to mark that current is using the
1283 * prepared mm now), we have nothing left of the original
1284 * process. If anything from here on returns an error, the check
1285 * in search_binary_handler() will SEGV current.
1290 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1291 PF_NOFREEZE | PF_NO_SETAFFINITY);
1293 current->personality &= ~bprm->per_clear;
1296 * We have to apply CLOEXEC before we change whether the process is
1297 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1298 * trying to access the should-be-closed file descriptors of a process
1299 * undergoing exec(2).
1301 do_close_on_exec(current->files);
1307 EXPORT_SYMBOL(flush_old_exec);
1309 void would_dump(struct linux_binprm *bprm, struct file *file)
1311 struct inode *inode = file_inode(file);
1312 if (inode_permission(inode, MAY_READ) < 0) {
1313 struct user_namespace *old, *user_ns;
1314 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1316 /* Ensure mm->user_ns contains the executable */
1317 user_ns = old = bprm->mm->user_ns;
1318 while ((user_ns != &init_user_ns) &&
1319 !privileged_wrt_inode_uidgid(user_ns, inode))
1320 user_ns = user_ns->parent;
1322 if (old != user_ns) {
1323 bprm->mm->user_ns = get_user_ns(user_ns);
1328 EXPORT_SYMBOL(would_dump);
1330 void setup_new_exec(struct linux_binprm * bprm)
1333 * Once here, prepare_binrpm() will not be called any more, so
1334 * the final state of setuid/setgid/fscaps can be merged into the
1337 bprm->secureexec |= bprm->cap_elevated;
1339 if (bprm->secureexec) {
1340 /* Make sure parent cannot signal privileged process. */
1341 current->pdeath_signal = 0;
1344 * For secureexec, reset the stack limit to sane default to
1345 * avoid bad behavior from the prior rlimits. This has to
1346 * happen before arch_pick_mmap_layout(), which examines
1347 * RLIMIT_STACK, but after the point of no return to avoid
1348 * needing to clean up the change on failure.
1350 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1351 bprm->rlim_stack.rlim_cur = _STK_LIM;
1354 arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1356 current->sas_ss_sp = current->sas_ss_size = 0;
1359 * Figure out dumpability. Note that this checking only of current
1360 * is wrong, but userspace depends on it. This should be testing
1361 * bprm->secureexec instead.
1363 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1364 !(uid_eq(current_euid(), current_uid()) &&
1365 gid_eq(current_egid(), current_gid())))
1366 set_dumpable(current->mm, suid_dumpable);
1368 set_dumpable(current->mm, SUID_DUMP_USER);
1370 arch_setup_new_exec();
1372 __set_task_comm(current, kbasename(bprm->filename), true);
1374 /* Set the new mm task size. We have to do that late because it may
1375 * depend on TIF_32BIT which is only updated in flush_thread() on
1376 * some architectures like powerpc
1378 current->mm->task_size = TASK_SIZE;
1380 /* An exec changes our domain. We are no longer part of the thread
1382 current->self_exec_id++;
1383 flush_signal_handlers(current, 0);
1385 EXPORT_SYMBOL(setup_new_exec);
1387 /* Runs immediately before start_thread() takes over. */
1388 void finalize_exec(struct linux_binprm *bprm)
1390 /* Store any stack rlimit changes before starting thread. */
1391 task_lock(current->group_leader);
1392 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1393 task_unlock(current->group_leader);
1395 EXPORT_SYMBOL(finalize_exec);
1398 * Prepare credentials and lock ->cred_guard_mutex.
1399 * install_exec_creds() commits the new creds and drops the lock.
1400 * Or, if exec fails before, free_bprm() should release ->cred and
1403 int prepare_bprm_creds(struct linux_binprm *bprm)
1405 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1406 return -ERESTARTNOINTR;
1408 bprm->cred = prepare_exec_creds();
1409 if (likely(bprm->cred))
1412 mutex_unlock(¤t->signal->cred_guard_mutex);
1416 static void free_bprm(struct linux_binprm *bprm)
1418 free_arg_pages(bprm);
1420 mutex_unlock(¤t->signal->cred_guard_mutex);
1421 abort_creds(bprm->cred);
1424 allow_write_access(bprm->file);
1427 /* If a binfmt changed the interp, free it. */
1428 if (bprm->interp != bprm->filename)
1429 kfree(bprm->interp);
1433 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1435 /* If a binfmt changed the interp, free it first. */
1436 if (bprm->interp != bprm->filename)
1437 kfree(bprm->interp);
1438 bprm->interp = kstrdup(interp, GFP_KERNEL);
1443 EXPORT_SYMBOL(bprm_change_interp);
1446 * install the new credentials for this executable
1448 void install_exec_creds(struct linux_binprm *bprm)
1450 security_bprm_committing_creds(bprm);
1452 commit_creds(bprm->cred);
1456 * Disable monitoring for regular users
1457 * when executing setuid binaries. Must
1458 * wait until new credentials are committed
1459 * by commit_creds() above
1461 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1462 perf_event_exit_task(current);
1464 * cred_guard_mutex must be held at least to this point to prevent
1465 * ptrace_attach() from altering our determination of the task's
1466 * credentials; any time after this it may be unlocked.
1468 security_bprm_committed_creds(bprm);
1469 mutex_unlock(¤t->signal->cred_guard_mutex);
1471 EXPORT_SYMBOL(install_exec_creds);
1474 * determine how safe it is to execute the proposed program
1475 * - the caller must hold ->cred_guard_mutex to protect against
1476 * PTRACE_ATTACH or seccomp thread-sync
1478 static void check_unsafe_exec(struct linux_binprm *bprm)
1480 struct task_struct *p = current, *t;
1484 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1487 * This isn't strictly necessary, but it makes it harder for LSMs to
1490 if (task_no_new_privs(current))
1491 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1495 spin_lock(&p->fs->lock);
1497 while_each_thread(p, t) {
1503 if (p->fs->users > n_fs)
1504 bprm->unsafe |= LSM_UNSAFE_SHARE;
1507 spin_unlock(&p->fs->lock);
1510 static void bprm_fill_uid(struct linux_binprm *bprm)
1512 struct inode *inode;
1518 * Since this can be called multiple times (via prepare_binprm),
1519 * we must clear any previous work done when setting set[ug]id
1520 * bits from any earlier bprm->file uses (for example when run
1521 * first for a setuid script then again for its interpreter).
1523 bprm->cred->euid = current_euid();
1524 bprm->cred->egid = current_egid();
1526 if (!mnt_may_suid(bprm->file->f_path.mnt))
1529 if (task_no_new_privs(current))
1532 inode = bprm->file->f_path.dentry->d_inode;
1533 mode = READ_ONCE(inode->i_mode);
1534 if (!(mode & (S_ISUID|S_ISGID)))
1537 /* Be careful if suid/sgid is set */
1540 /* reload atomically mode/uid/gid now that lock held */
1541 mode = inode->i_mode;
1544 inode_unlock(inode);
1546 /* We ignore suid/sgid if there are no mappings for them in the ns */
1547 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1548 !kgid_has_mapping(bprm->cred->user_ns, gid))
1551 if (mode & S_ISUID) {
1552 bprm->per_clear |= PER_CLEAR_ON_SETID;
1553 bprm->cred->euid = uid;
1556 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1557 bprm->per_clear |= PER_CLEAR_ON_SETID;
1558 bprm->cred->egid = gid;
1563 * Fill the binprm structure from the inode.
1564 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1566 * This may be called multiple times for binary chains (scripts for example).
1568 int prepare_binprm(struct linux_binprm *bprm)
1573 bprm_fill_uid(bprm);
1575 /* fill in binprm security blob */
1576 retval = security_bprm_set_creds(bprm);
1579 bprm->called_set_creds = 1;
1581 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1582 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1585 EXPORT_SYMBOL(prepare_binprm);
1588 * Arguments are '\0' separated strings found at the location bprm->p
1589 * points to; chop off the first by relocating brpm->p to right after
1590 * the first '\0' encountered.
1592 int remove_arg_zero(struct linux_binprm *bprm)
1595 unsigned long offset;
1603 offset = bprm->p & ~PAGE_MASK;
1604 page = get_arg_page(bprm, bprm->p, 0);
1609 kaddr = kmap_atomic(page);
1611 for (; offset < PAGE_SIZE && kaddr[offset];
1612 offset++, bprm->p++)
1615 kunmap_atomic(kaddr);
1617 } while (offset == PAGE_SIZE);
1626 EXPORT_SYMBOL(remove_arg_zero);
1628 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1630 * cycle the list of binary formats handler, until one recognizes the image
1632 int search_binary_handler(struct linux_binprm *bprm)
1634 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1635 struct linux_binfmt *fmt;
1638 /* This allows 4 levels of binfmt rewrites before failing hard. */
1639 if (bprm->recursion_depth > 5)
1642 retval = security_bprm_check(bprm);
1648 read_lock(&binfmt_lock);
1649 list_for_each_entry(fmt, &formats, lh) {
1650 if (!try_module_get(fmt->module))
1652 read_unlock(&binfmt_lock);
1653 bprm->recursion_depth++;
1654 retval = fmt->load_binary(bprm);
1655 read_lock(&binfmt_lock);
1657 bprm->recursion_depth--;
1658 if (retval < 0 && !bprm->mm) {
1659 /* we got to flush_old_exec() and failed after it */
1660 read_unlock(&binfmt_lock);
1661 force_sigsegv(SIGSEGV, current);
1664 if (retval != -ENOEXEC || !bprm->file) {
1665 read_unlock(&binfmt_lock);
1669 read_unlock(&binfmt_lock);
1672 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1673 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1675 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1683 EXPORT_SYMBOL(search_binary_handler);
1685 static int exec_binprm(struct linux_binprm *bprm)
1687 pid_t old_pid, old_vpid;
1690 /* Need to fetch pid before load_binary changes it */
1691 old_pid = current->pid;
1693 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1696 ret = search_binary_handler(bprm);
1699 trace_sched_process_exec(current, old_pid, bprm);
1700 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1701 proc_exec_connector(current);
1708 * sys_execve() executes a new program.
1710 static int __do_execve_file(int fd, struct filename *filename,
1711 struct user_arg_ptr argv,
1712 struct user_arg_ptr envp,
1713 int flags, struct file *file)
1715 char *pathbuf = NULL;
1716 struct linux_binprm *bprm;
1717 struct files_struct *displaced;
1720 if (IS_ERR(filename))
1721 return PTR_ERR(filename);
1724 * We move the actual failure in case of RLIMIT_NPROC excess from
1725 * set*uid() to execve() because too many poorly written programs
1726 * don't check setuid() return code. Here we additionally recheck
1727 * whether NPROC limit is still exceeded.
1729 if ((current->flags & PF_NPROC_EXCEEDED) &&
1730 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
1735 /* We're below the limit (still or again), so we don't want to make
1736 * further execve() calls fail. */
1737 current->flags &= ~PF_NPROC_EXCEEDED;
1739 retval = unshare_files(&displaced);
1744 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1748 retval = prepare_bprm_creds(bprm);
1752 check_unsafe_exec(bprm);
1753 current->in_execve = 1;
1756 file = do_open_execat(fd, filename, flags);
1757 retval = PTR_ERR(file);
1765 bprm->filename = "none";
1766 } else if (fd == AT_FDCWD || filename->name[0] == '/') {
1767 bprm->filename = filename->name;
1769 if (filename->name[0] == '\0')
1770 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1772 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1773 fd, filename->name);
1779 * Record that a name derived from an O_CLOEXEC fd will be
1780 * inaccessible after exec. Relies on having exclusive access to
1781 * current->files (due to unshare_files above).
1783 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1784 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1785 bprm->filename = pathbuf;
1787 bprm->interp = bprm->filename;
1789 retval = bprm_mm_init(bprm);
1793 bprm->argc = count(argv, MAX_ARG_STRINGS);
1794 if ((retval = bprm->argc) < 0)
1797 bprm->envc = count(envp, MAX_ARG_STRINGS);
1798 if ((retval = bprm->envc) < 0)
1801 retval = prepare_binprm(bprm);
1805 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1809 bprm->exec = bprm->p;
1810 retval = copy_strings(bprm->envc, envp, bprm);
1814 retval = copy_strings(bprm->argc, argv, bprm);
1818 would_dump(bprm, bprm->file);
1820 retval = exec_binprm(bprm);
1824 /* execve succeeded */
1825 current->fs->in_exec = 0;
1826 current->in_execve = 0;
1827 membarrier_execve(current);
1828 rseq_execve(current);
1829 acct_update_integrals(current);
1830 task_numa_free(current);
1836 put_files_struct(displaced);
1841 acct_arg_size(bprm, 0);
1846 current->fs->in_exec = 0;
1847 current->in_execve = 0;
1855 reset_files_struct(displaced);
1862 static int do_execveat_common(int fd, struct filename *filename,
1863 struct user_arg_ptr argv,
1864 struct user_arg_ptr envp,
1867 return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1870 int do_execve_file(struct file *file, void *__argv, void *__envp)
1872 struct user_arg_ptr argv = { .ptr.native = __argv };
1873 struct user_arg_ptr envp = { .ptr.native = __envp };
1875 return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1878 int do_execve(struct filename *filename,
1879 const char __user *const __user *__argv,
1880 const char __user *const __user *__envp)
1882 struct user_arg_ptr argv = { .ptr.native = __argv };
1883 struct user_arg_ptr envp = { .ptr.native = __envp };
1884 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1887 int do_execveat(int fd, struct filename *filename,
1888 const char __user *const __user *__argv,
1889 const char __user *const __user *__envp,
1892 struct user_arg_ptr argv = { .ptr.native = __argv };
1893 struct user_arg_ptr envp = { .ptr.native = __envp };
1895 return do_execveat_common(fd, filename, argv, envp, flags);
1898 #ifdef CONFIG_COMPAT
1899 static int compat_do_execve(struct filename *filename,
1900 const compat_uptr_t __user *__argv,
1901 const compat_uptr_t __user *__envp)
1903 struct user_arg_ptr argv = {
1905 .ptr.compat = __argv,
1907 struct user_arg_ptr envp = {
1909 .ptr.compat = __envp,
1911 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1914 static int compat_do_execveat(int fd, struct filename *filename,
1915 const compat_uptr_t __user *__argv,
1916 const compat_uptr_t __user *__envp,
1919 struct user_arg_ptr argv = {
1921 .ptr.compat = __argv,
1923 struct user_arg_ptr envp = {
1925 .ptr.compat = __envp,
1927 return do_execveat_common(fd, filename, argv, envp, flags);
1931 void set_binfmt(struct linux_binfmt *new)
1933 struct mm_struct *mm = current->mm;
1936 module_put(mm->binfmt->module);
1940 __module_get(new->module);
1942 EXPORT_SYMBOL(set_binfmt);
1945 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1947 void set_dumpable(struct mm_struct *mm, int value)
1949 unsigned long old, new;
1951 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1955 old = READ_ONCE(mm->flags);
1956 new = (old & ~MMF_DUMPABLE_MASK) | value;
1957 } while (cmpxchg(&mm->flags, old, new) != old);
1960 SYSCALL_DEFINE3(execve,
1961 const char __user *, filename,
1962 const char __user *const __user *, argv,
1963 const char __user *const __user *, envp)
1965 return do_execve(getname(filename), argv, envp);
1968 SYSCALL_DEFINE5(execveat,
1969 int, fd, const char __user *, filename,
1970 const char __user *const __user *, argv,
1971 const char __user *const __user *, envp,
1974 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1976 return do_execveat(fd,
1977 getname_flags(filename, lookup_flags, NULL),
1981 #ifdef CONFIG_COMPAT
1982 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1983 const compat_uptr_t __user *, argv,
1984 const compat_uptr_t __user *, envp)
1986 return compat_do_execve(getname(filename), argv, envp);
1989 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1990 const char __user *, filename,
1991 const compat_uptr_t __user *, argv,
1992 const compat_uptr_t __user *, envp,
1995 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1997 return compat_do_execveat(fd,
1998 getname_flags(filename, lookup_flags, NULL),