2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <linux/uaccess.h>
66 #include <linux/crash_dump.h>
67 #include <net/udp_tunnel.h>
70 #include "cxgb4_filter.h"
72 #include "t4_values.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
78 #include "cxgb4_debugfs.h"
83 #include "cxgb4_tc_u32.h"
84 #include "cxgb4_tc_flower.h"
85 #include "cxgb4_ptp.h"
86 #include "cxgb4_cudbg.h"
88 char cxgb4_driver_name[] = KBUILD_MODNAME;
93 #define DRV_VERSION "2.0.0-ko"
94 const char cxgb4_driver_version[] = DRV_VERSION;
95 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
97 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
98 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
99 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
101 /* Macros needed to support the PCI Device ID Table ...
103 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
104 static const struct pci_device_id cxgb4_pci_tbl[] = {
105 #define CXGB4_UNIFIED_PF 0x4
107 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
109 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
112 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
114 #define CH_PCI_ID_TABLE_ENTRY(devid) \
115 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
117 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
121 #include "t4_pci_id_tbl.h"
123 #define FW4_FNAME "cxgb4/t4fw.bin"
124 #define FW5_FNAME "cxgb4/t5fw.bin"
125 #define FW6_FNAME "cxgb4/t6fw.bin"
126 #define FW4_CFNAME "cxgb4/t4-config.txt"
127 #define FW5_CFNAME "cxgb4/t5-config.txt"
128 #define FW6_CFNAME "cxgb4/t6-config.txt"
129 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
130 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
131 #define PHY_AQ1202_DEVICEID 0x4409
132 #define PHY_BCM84834_DEVICEID 0x4486
134 MODULE_DESCRIPTION(DRV_DESC);
135 MODULE_AUTHOR("Chelsio Communications");
136 MODULE_LICENSE("Dual BSD/GPL");
137 MODULE_VERSION(DRV_VERSION);
138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
139 MODULE_FIRMWARE(FW4_FNAME);
140 MODULE_FIRMWARE(FW5_FNAME);
141 MODULE_FIRMWARE(FW6_FNAME);
144 * The driver uses the best interrupt scheme available on a platform in the
145 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
146 * of these schemes the driver may consider as follows:
148 * msi = 2: choose from among all three options
149 * msi = 1: only consider MSI and INTx interrupts
150 * msi = 0: force INTx interrupts
154 module_param(msi, int, 0644);
155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
158 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
159 * offset by 2 bytes in order to have the IP headers line up on 4-byte
160 * boundaries. This is a requirement for many architectures which will throw
161 * a machine check fault if an attempt is made to access one of the 4-byte IP
162 * header fields on a non-4-byte boundary. And it's a major performance issue
163 * even on some architectures which allow it like some implementations of the
164 * x86 ISA. However, some architectures don't mind this and for some very
165 * edge-case performance sensitive applications (like forwarding large volumes
166 * of small packets), setting this DMA offset to 0 will decrease the number of
167 * PCI-E Bus transfers enough to measurably affect performance.
169 static int rx_dma_offset = 2;
171 /* TX Queue select used to determine what algorithm to use for selecting TX
172 * queue. Select between the kernel provided function (select_queue=0) or user
173 * cxgb_select_queue function (select_queue=1)
175 * Default: select_queue=0
177 static int select_queue;
178 module_param(select_queue, int, 0644);
179 MODULE_PARM_DESC(select_queue,
180 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
182 static struct dentry *cxgb4_debugfs_root;
184 LIST_HEAD(adapter_list);
185 DEFINE_MUTEX(uld_mutex);
187 static void link_report(struct net_device *dev)
189 if (!netif_carrier_ok(dev))
190 netdev_info(dev, "link down\n");
192 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
195 const struct port_info *p = netdev_priv(dev);
197 switch (p->link_cfg.speed) {
220 pr_info("%s: unsupported speed: %d\n",
221 dev->name, p->link_cfg.speed);
225 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
230 #ifdef CONFIG_CHELSIO_T4_DCB
231 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
232 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
234 struct port_info *pi = netdev_priv(dev);
235 struct adapter *adap = pi->adapter;
236 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
239 /* We use a simple mapping of Port TX Queue Index to DCB
240 * Priority when we're enabling DCB.
242 for (i = 0; i < pi->nqsets; i++, txq++) {
246 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
248 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
249 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
250 value = enable ? i : 0xffffffff;
252 /* Since we can be called while atomic (from "interrupt
253 * level") we need to issue the Set Parameters Commannd
254 * without sleeping (timeout < 0).
256 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
258 -FW_CMD_MAX_TIMEOUT);
261 dev_err(adap->pdev_dev,
262 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
263 enable ? "set" : "unset", pi->port_id, i, -err);
265 txq->dcb_prio = enable ? value : 0;
269 int cxgb4_dcb_enabled(const struct net_device *dev)
271 struct port_info *pi = netdev_priv(dev);
273 if (!pi->dcb.enabled)
276 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
277 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
279 #endif /* CONFIG_CHELSIO_T4_DCB */
281 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
283 struct net_device *dev = adapter->port[port_id];
285 /* Skip changes from disabled ports. */
286 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
288 netif_carrier_on(dev);
290 #ifdef CONFIG_CHELSIO_T4_DCB
291 if (cxgb4_dcb_enabled(dev)) {
292 cxgb4_dcb_reset(dev);
293 dcb_tx_queue_prio_enable(dev, false);
295 #endif /* CONFIG_CHELSIO_T4_DCB */
296 netif_carrier_off(dev);
303 void t4_os_portmod_changed(struct adapter *adap, int port_id)
305 static const char *mod_str[] = {
306 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
309 struct net_device *dev = adap->port[port_id];
310 struct port_info *pi = netdev_priv(dev);
312 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
313 netdev_info(dev, "port module unplugged\n");
314 else if (pi->mod_type < ARRAY_SIZE(mod_str))
315 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
316 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
317 netdev_info(dev, "%s: unsupported port module inserted\n",
319 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
320 netdev_info(dev, "%s: unknown port module inserted\n",
322 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
323 netdev_info(dev, "%s: transceiver module error\n", dev->name);
325 netdev_info(dev, "%s: unknown module type %d inserted\n",
326 dev->name, pi->mod_type);
328 /* If the interface is running, then we'll need any "sticky" Link
329 * Parameters redone with a new Transceiver Module.
331 pi->link_cfg.redo_l1cfg = netif_running(dev);
334 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
335 module_param(dbfifo_int_thresh, int, 0644);
336 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
339 * usecs to sleep while draining the dbfifo
341 static int dbfifo_drain_delay = 1000;
342 module_param(dbfifo_drain_delay, int, 0644);
343 MODULE_PARM_DESC(dbfifo_drain_delay,
344 "usecs to sleep while draining the dbfifo");
346 static inline int cxgb4_set_addr_hash(struct port_info *pi)
348 struct adapter *adap = pi->adapter;
351 struct hash_mac_addr *entry;
353 /* Calculate the hash vector for the updated list and program it */
354 list_for_each_entry(entry, &adap->mac_hlist, list) {
355 ucast |= is_unicast_ether_addr(entry->addr);
356 vec |= (1ULL << hash_mac_addr(entry->addr));
358 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
362 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
364 struct port_info *pi = netdev_priv(netdev);
365 struct adapter *adap = pi->adapter;
370 bool ucast = is_unicast_ether_addr(mac_addr);
371 const u8 *maclist[1] = {mac_addr};
372 struct hash_mac_addr *new_entry;
374 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
375 NULL, ucast ? &uhash : &mhash, false);
378 /* if hash != 0, then add the addr to hash addr list
379 * so on the end we will calculate the hash for the
380 * list and program it
382 if (uhash || mhash) {
383 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
386 ether_addr_copy(new_entry->addr, mac_addr);
387 list_add_tail(&new_entry->list, &adap->mac_hlist);
388 ret = cxgb4_set_addr_hash(pi);
391 return ret < 0 ? ret : 0;
394 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
396 struct port_info *pi = netdev_priv(netdev);
397 struct adapter *adap = pi->adapter;
399 const u8 *maclist[1] = {mac_addr};
400 struct hash_mac_addr *entry, *tmp;
402 /* If the MAC address to be removed is in the hash addr
403 * list, delete it from the list and update hash vector
405 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
406 if (ether_addr_equal(entry->addr, mac_addr)) {
407 list_del(&entry->list);
409 return cxgb4_set_addr_hash(pi);
413 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
414 return ret < 0 ? -EINVAL : 0;
418 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
419 * If @mtu is -1 it is left unchanged.
421 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
423 struct port_info *pi = netdev_priv(dev);
424 struct adapter *adapter = pi->adapter;
426 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
427 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
429 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
430 (dev->flags & IFF_PROMISC) ? 1 : 0,
431 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
436 * link_start - enable a port
437 * @dev: the port to enable
439 * Performs the MAC and PHY actions needed to enable a port.
441 static int link_start(struct net_device *dev)
444 struct port_info *pi = netdev_priv(dev);
445 unsigned int mb = pi->adapter->pf;
448 * We do not set address filters and promiscuity here, the stack does
449 * that step explicitly.
451 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
452 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
454 ret = t4_change_mac(pi->adapter, mb, pi->viid,
455 pi->xact_addr_filt, dev->dev_addr, true,
458 pi->xact_addr_filt = ret;
463 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
467 ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
468 true, CXGB4_DCB_ENABLED);
475 #ifdef CONFIG_CHELSIO_T4_DCB
476 /* Handle a Data Center Bridging update message from the firmware. */
477 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
479 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
480 struct net_device *dev = adap->port[adap->chan_map[port]];
481 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
484 cxgb4_dcb_handle_fw_update(adap, pcmd);
485 new_dcb_enabled = cxgb4_dcb_enabled(dev);
487 /* If the DCB has become enabled or disabled on the port then we're
488 * going to need to set up/tear down DCB Priority parameters for the
489 * TX Queues associated with the port.
491 if (new_dcb_enabled != old_dcb_enabled)
492 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
494 #endif /* CONFIG_CHELSIO_T4_DCB */
496 /* Response queue handler for the FW event queue.
498 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
499 const struct pkt_gl *gl)
501 u8 opcode = ((const struct rss_header *)rsp)->opcode;
503 rsp++; /* skip RSS header */
505 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
507 if (unlikely(opcode == CPL_FW4_MSG &&
508 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
510 opcode = ((const struct rss_header *)rsp)->opcode;
512 if (opcode != CPL_SGE_EGR_UPDATE) {
513 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
519 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
520 const struct cpl_sge_egr_update *p = (void *)rsp;
521 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
524 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
526 if (txq->q_type == CXGB4_TXQ_ETH) {
527 struct sge_eth_txq *eq;
529 eq = container_of(txq, struct sge_eth_txq, q);
530 netif_tx_wake_queue(eq->txq);
532 struct sge_uld_txq *oq;
534 oq = container_of(txq, struct sge_uld_txq, q);
535 tasklet_schedule(&oq->qresume_tsk);
537 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
538 const struct cpl_fw6_msg *p = (void *)rsp;
540 #ifdef CONFIG_CHELSIO_T4_DCB
541 const struct fw_port_cmd *pcmd = (const void *)p->data;
542 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
543 unsigned int action =
544 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
546 if (cmd == FW_PORT_CMD &&
547 (action == FW_PORT_ACTION_GET_PORT_INFO ||
548 action == FW_PORT_ACTION_GET_PORT_INFO32)) {
549 int port = FW_PORT_CMD_PORTID_G(
550 be32_to_cpu(pcmd->op_to_portid));
551 struct net_device *dev;
552 int dcbxdis, state_input;
554 dev = q->adap->port[q->adap->chan_map[port]];
555 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
556 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
557 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
558 & FW_PORT_CMD_DCBXDIS32_F));
559 state_input = (dcbxdis
560 ? CXGB4_DCB_INPUT_FW_DISABLED
561 : CXGB4_DCB_INPUT_FW_ENABLED);
563 cxgb4_dcb_state_fsm(dev, state_input);
566 if (cmd == FW_PORT_CMD &&
567 action == FW_PORT_ACTION_L2_DCB_CFG)
568 dcb_rpl(q->adap, pcmd);
572 t4_handle_fw_rpl(q->adap, p->data);
573 } else if (opcode == CPL_L2T_WRITE_RPL) {
574 const struct cpl_l2t_write_rpl *p = (void *)rsp;
576 do_l2t_write_rpl(q->adap, p);
577 } else if (opcode == CPL_SMT_WRITE_RPL) {
578 const struct cpl_smt_write_rpl *p = (void *)rsp;
580 do_smt_write_rpl(q->adap, p);
581 } else if (opcode == CPL_SET_TCB_RPL) {
582 const struct cpl_set_tcb_rpl *p = (void *)rsp;
584 filter_rpl(q->adap, p);
585 } else if (opcode == CPL_ACT_OPEN_RPL) {
586 const struct cpl_act_open_rpl *p = (void *)rsp;
588 hash_filter_rpl(q->adap, p);
589 } else if (opcode == CPL_ABORT_RPL_RSS) {
590 const struct cpl_abort_rpl_rss *p = (void *)rsp;
592 hash_del_filter_rpl(q->adap, p);
593 } else if (opcode == CPL_SRQ_TABLE_RPL) {
594 const struct cpl_srq_table_rpl *p = (void *)rsp;
596 do_srq_table_rpl(q->adap, p);
598 dev_err(q->adap->pdev_dev,
599 "unexpected CPL %#x on FW event queue\n", opcode);
604 static void disable_msi(struct adapter *adapter)
606 if (adapter->flags & USING_MSIX) {
607 pci_disable_msix(adapter->pdev);
608 adapter->flags &= ~USING_MSIX;
609 } else if (adapter->flags & USING_MSI) {
610 pci_disable_msi(adapter->pdev);
611 adapter->flags &= ~USING_MSI;
616 * Interrupt handler for non-data events used with MSI-X.
618 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
620 struct adapter *adap = cookie;
621 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
625 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
627 if (adap->flags & MASTER_PF)
628 t4_slow_intr_handler(adap);
633 * Name the MSI-X interrupts.
635 static void name_msix_vecs(struct adapter *adap)
637 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
639 /* non-data interrupts */
640 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
643 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
644 adap->port[0]->name);
646 /* Ethernet queues */
647 for_each_port(adap, j) {
648 struct net_device *d = adap->port[j];
649 const struct port_info *pi = netdev_priv(d);
651 for (i = 0; i < pi->nqsets; i++, msi_idx++)
652 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
657 static int request_msix_queue_irqs(struct adapter *adap)
659 struct sge *s = &adap->sge;
663 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
664 adap->msix_info[1].desc, &s->fw_evtq);
668 for_each_ethrxq(s, ethqidx) {
669 err = request_irq(adap->msix_info[msi_index].vec,
671 adap->msix_info[msi_index].desc,
672 &s->ethrxq[ethqidx].rspq);
680 while (--ethqidx >= 0)
681 free_irq(adap->msix_info[--msi_index].vec,
682 &s->ethrxq[ethqidx].rspq);
683 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
687 static void free_msix_queue_irqs(struct adapter *adap)
689 int i, msi_index = 2;
690 struct sge *s = &adap->sge;
692 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
693 for_each_ethrxq(s, i)
694 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
698 * cxgb4_write_rss - write the RSS table for a given port
700 * @queues: array of queue indices for RSS
702 * Sets up the portion of the HW RSS table for the port's VI to distribute
703 * packets to the Rx queues in @queues.
704 * Should never be called before setting up sge eth rx queues
706 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
710 struct adapter *adapter = pi->adapter;
711 const struct sge_eth_rxq *rxq;
713 rxq = &adapter->sge.ethrxq[pi->first_qset];
714 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
718 /* map the queue indices to queue ids */
719 for (i = 0; i < pi->rss_size; i++, queues++)
720 rss[i] = rxq[*queues].rspq.abs_id;
722 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
723 pi->rss_size, rss, pi->rss_size);
724 /* If Tunnel All Lookup isn't specified in the global RSS
725 * Configuration, then we need to specify a default Ingress
726 * Queue for any ingress packets which aren't hashed. We'll
727 * use our first ingress queue ...
730 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
731 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
732 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
733 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
734 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
735 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
742 * setup_rss - configure RSS
745 * Sets up RSS for each port.
747 static int setup_rss(struct adapter *adap)
751 for_each_port(adap, i) {
752 const struct port_info *pi = adap2pinfo(adap, i);
754 /* Fill default values with equal distribution */
755 for (j = 0; j < pi->rss_size; j++)
756 pi->rss[j] = j % pi->nqsets;
758 err = cxgb4_write_rss(pi, pi->rss);
766 * Return the channel of the ingress queue with the given qid.
768 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
770 qid -= p->ingr_start;
771 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
775 * Wait until all NAPI handlers are descheduled.
777 static void quiesce_rx(struct adapter *adap)
781 for (i = 0; i < adap->sge.ingr_sz; i++) {
782 struct sge_rspq *q = adap->sge.ingr_map[i];
785 napi_disable(&q->napi);
789 /* Disable interrupt and napi handler */
790 static void disable_interrupts(struct adapter *adap)
792 if (adap->flags & FULL_INIT_DONE) {
793 t4_intr_disable(adap);
794 if (adap->flags & USING_MSIX) {
795 free_msix_queue_irqs(adap);
796 free_irq(adap->msix_info[0].vec, adap);
798 free_irq(adap->pdev->irq, adap);
805 * Enable NAPI scheduling and interrupt generation for all Rx queues.
807 static void enable_rx(struct adapter *adap)
811 for (i = 0; i < adap->sge.ingr_sz; i++) {
812 struct sge_rspq *q = adap->sge.ingr_map[i];
817 napi_enable(&q->napi);
819 /* 0-increment GTS to start the timer and enable interrupts */
820 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
821 SEINTARM_V(q->intr_params) |
822 INGRESSQID_V(q->cntxt_id));
827 static int setup_fw_sge_queues(struct adapter *adap)
829 struct sge *s = &adap->sge;
832 bitmap_zero(s->starving_fl, s->egr_sz);
833 bitmap_zero(s->txq_maperr, s->egr_sz);
835 if (adap->flags & USING_MSIX)
836 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */
838 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
839 NULL, NULL, NULL, -1);
842 adap->msi_idx = -((int)s->intrq.abs_id + 1);
845 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
846 adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
851 * setup_sge_queues - configure SGE Tx/Rx/response queues
854 * Determines how many sets of SGE queues to use and initializes them.
855 * We support multiple queue sets per port if we have MSI-X, otherwise
856 * just one queue set per port.
858 static int setup_sge_queues(struct adapter *adap)
861 struct sge *s = &adap->sge;
862 struct sge_uld_rxq_info *rxq_info = NULL;
863 unsigned int cmplqid = 0;
866 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
868 for_each_port(adap, i) {
869 struct net_device *dev = adap->port[i];
870 struct port_info *pi = netdev_priv(dev);
871 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
872 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
874 for (j = 0; j < pi->nqsets; j++, q++) {
875 if (adap->msi_idx > 0)
877 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
878 adap->msi_idx, &q->fl,
881 t4_get_tp_ch_map(adap,
886 memset(&q->stats, 0, sizeof(q->stats));
888 for (j = 0; j < pi->nqsets; j++, t++) {
889 err = t4_sge_alloc_eth_txq(adap, t, dev,
890 netdev_get_tx_queue(dev, j),
891 s->fw_evtq.cntxt_id);
897 for_each_port(adap, i) {
898 /* Note that cmplqid below is 0 if we don't
899 * have RDMA queues, and that's the right value.
902 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
904 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
905 s->fw_evtq.cntxt_id, cmplqid);
910 if (!is_t4(adap->params.chip)) {
911 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
912 netdev_get_tx_queue(adap->port[0], 0)
913 , s->fw_evtq.cntxt_id);
918 t4_write_reg(adap, is_t4(adap->params.chip) ?
919 MPS_TRC_RSS_CONTROL_A :
920 MPS_T5_TRC_RSS_CONTROL_A,
921 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
922 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
925 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
926 t4_free_sge_resources(adap);
930 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
931 struct net_device *sb_dev,
932 select_queue_fallback_t fallback)
936 #ifdef CONFIG_CHELSIO_T4_DCB
937 /* If a Data Center Bridging has been successfully negotiated on this
938 * link then we'll use the skb's priority to map it to a TX Queue.
939 * The skb's priority is determined via the VLAN Tag Priority Code
942 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
946 err = vlan_get_tag(skb, &vlan_tci);
950 "TX Packet without VLAN Tag on DCB Link\n");
953 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
954 #ifdef CONFIG_CHELSIO_T4_FCOE
955 if (skb->protocol == htons(ETH_P_FCOE))
956 txq = skb->priority & 0x7;
957 #endif /* CONFIG_CHELSIO_T4_FCOE */
961 #endif /* CONFIG_CHELSIO_T4_DCB */
964 txq = (skb_rx_queue_recorded(skb)
965 ? skb_get_rx_queue(skb)
966 : smp_processor_id());
968 while (unlikely(txq >= dev->real_num_tx_queues))
969 txq -= dev->real_num_tx_queues;
974 return fallback(dev, skb, NULL) % dev->real_num_tx_queues;
977 static int closest_timer(const struct sge *s, int time)
979 int i, delta, match = 0, min_delta = INT_MAX;
981 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
982 delta = time - s->timer_val[i];
985 if (delta < min_delta) {
993 static int closest_thres(const struct sge *s, int thres)
995 int i, delta, match = 0, min_delta = INT_MAX;
997 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
998 delta = thres - s->counter_val[i];
1001 if (delta < min_delta) {
1010 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1012 * @us: the hold-off time in us, or 0 to disable timer
1013 * @cnt: the hold-off packet count, or 0 to disable counter
1015 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1016 * one of the two needs to be enabled for the queue to generate interrupts.
1018 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1019 unsigned int us, unsigned int cnt)
1021 struct adapter *adap = q->adap;
1023 if ((us | cnt) == 0)
1030 new_idx = closest_thres(&adap->sge, cnt);
1031 if (q->desc && q->pktcnt_idx != new_idx) {
1032 /* the queue has already been created, update it */
1033 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1034 FW_PARAMS_PARAM_X_V(
1035 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1036 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1037 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1042 q->pktcnt_idx = new_idx;
1045 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1046 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1050 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1052 const struct port_info *pi = netdev_priv(dev);
1053 netdev_features_t changed = dev->features ^ features;
1056 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1059 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1061 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1063 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1067 static int setup_debugfs(struct adapter *adap)
1069 if (IS_ERR_OR_NULL(adap->debugfs_root))
1072 #ifdef CONFIG_DEBUG_FS
1073 t4_setup_debugfs(adap);
1079 * upper-layer driver support
1083 * Allocate an active-open TID and set it to the supplied value.
1085 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1089 spin_lock_bh(&t->atid_lock);
1091 union aopen_entry *p = t->afree;
1093 atid = (p - t->atid_tab) + t->atid_base;
1098 spin_unlock_bh(&t->atid_lock);
1101 EXPORT_SYMBOL(cxgb4_alloc_atid);
1104 * Release an active-open TID.
1106 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1108 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1110 spin_lock_bh(&t->atid_lock);
1114 spin_unlock_bh(&t->atid_lock);
1116 EXPORT_SYMBOL(cxgb4_free_atid);
1119 * Allocate a server TID and set it to the supplied value.
1121 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1125 spin_lock_bh(&t->stid_lock);
1126 if (family == PF_INET) {
1127 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1128 if (stid < t->nstids)
1129 __set_bit(stid, t->stid_bmap);
1133 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1138 t->stid_tab[stid].data = data;
1139 stid += t->stid_base;
1140 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1141 * This is equivalent to 4 TIDs. With CLIP enabled it
1144 if (family == PF_INET6) {
1145 t->stids_in_use += 2;
1146 t->v6_stids_in_use += 2;
1151 spin_unlock_bh(&t->stid_lock);
1154 EXPORT_SYMBOL(cxgb4_alloc_stid);
1156 /* Allocate a server filter TID and set it to the supplied value.
1158 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1162 spin_lock_bh(&t->stid_lock);
1163 if (family == PF_INET) {
1164 stid = find_next_zero_bit(t->stid_bmap,
1165 t->nstids + t->nsftids, t->nstids);
1166 if (stid < (t->nstids + t->nsftids))
1167 __set_bit(stid, t->stid_bmap);
1174 t->stid_tab[stid].data = data;
1176 stid += t->sftid_base;
1179 spin_unlock_bh(&t->stid_lock);
1182 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1184 /* Release a server TID.
1186 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1188 /* Is it a server filter TID? */
1189 if (t->nsftids && (stid >= t->sftid_base)) {
1190 stid -= t->sftid_base;
1193 stid -= t->stid_base;
1196 spin_lock_bh(&t->stid_lock);
1197 if (family == PF_INET)
1198 __clear_bit(stid, t->stid_bmap);
1200 bitmap_release_region(t->stid_bmap, stid, 1);
1201 t->stid_tab[stid].data = NULL;
1202 if (stid < t->nstids) {
1203 if (family == PF_INET6) {
1204 t->stids_in_use -= 2;
1205 t->v6_stids_in_use -= 2;
1213 spin_unlock_bh(&t->stid_lock);
1215 EXPORT_SYMBOL(cxgb4_free_stid);
1218 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1220 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1223 struct cpl_tid_release *req;
1225 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1226 req = __skb_put(skb, sizeof(*req));
1227 INIT_TP_WR(req, tid);
1228 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1232 * Queue a TID release request and if necessary schedule a work queue to
1235 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1238 void **p = &t->tid_tab[tid];
1239 struct adapter *adap = container_of(t, struct adapter, tids);
1241 spin_lock_bh(&adap->tid_release_lock);
1242 *p = adap->tid_release_head;
1243 /* Low 2 bits encode the Tx channel number */
1244 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1245 if (!adap->tid_release_task_busy) {
1246 adap->tid_release_task_busy = true;
1247 queue_work(adap->workq, &adap->tid_release_task);
1249 spin_unlock_bh(&adap->tid_release_lock);
1253 * Process the list of pending TID release requests.
1255 static void process_tid_release_list(struct work_struct *work)
1257 struct sk_buff *skb;
1258 struct adapter *adap;
1260 adap = container_of(work, struct adapter, tid_release_task);
1262 spin_lock_bh(&adap->tid_release_lock);
1263 while (adap->tid_release_head) {
1264 void **p = adap->tid_release_head;
1265 unsigned int chan = (uintptr_t)p & 3;
1266 p = (void *)p - chan;
1268 adap->tid_release_head = *p;
1270 spin_unlock_bh(&adap->tid_release_lock);
1272 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1274 schedule_timeout_uninterruptible(1);
1276 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1277 t4_ofld_send(adap, skb);
1278 spin_lock_bh(&adap->tid_release_lock);
1280 adap->tid_release_task_busy = false;
1281 spin_unlock_bh(&adap->tid_release_lock);
1285 * Release a TID and inform HW. If we are unable to allocate the release
1286 * message we defer to a work queue.
1288 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1289 unsigned short family)
1291 struct sk_buff *skb;
1292 struct adapter *adap = container_of(t, struct adapter, tids);
1294 WARN_ON(tid >= t->ntids);
1296 if (t->tid_tab[tid]) {
1297 t->tid_tab[tid] = NULL;
1298 atomic_dec(&t->conns_in_use);
1299 if (t->hash_base && (tid >= t->hash_base)) {
1300 if (family == AF_INET6)
1301 atomic_sub(2, &t->hash_tids_in_use);
1303 atomic_dec(&t->hash_tids_in_use);
1305 if (family == AF_INET6)
1306 atomic_sub(2, &t->tids_in_use);
1308 atomic_dec(&t->tids_in_use);
1312 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1314 mk_tid_release(skb, chan, tid);
1315 t4_ofld_send(adap, skb);
1317 cxgb4_queue_tid_release(t, chan, tid);
1319 EXPORT_SYMBOL(cxgb4_remove_tid);
1322 * Allocate and initialize the TID tables. Returns 0 on success.
1324 static int tid_init(struct tid_info *t)
1326 struct adapter *adap = container_of(t, struct adapter, tids);
1327 unsigned int max_ftids = t->nftids + t->nsftids;
1328 unsigned int natids = t->natids;
1329 unsigned int stid_bmap_size;
1330 unsigned int ftid_bmap_size;
1333 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1334 ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1335 size = t->ntids * sizeof(*t->tid_tab) +
1336 natids * sizeof(*t->atid_tab) +
1337 t->nstids * sizeof(*t->stid_tab) +
1338 t->nsftids * sizeof(*t->stid_tab) +
1339 stid_bmap_size * sizeof(long) +
1340 max_ftids * sizeof(*t->ftid_tab) +
1341 ftid_bmap_size * sizeof(long);
1343 t->tid_tab = kvzalloc(size, GFP_KERNEL);
1347 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1348 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1349 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1350 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1351 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1352 spin_lock_init(&t->stid_lock);
1353 spin_lock_init(&t->atid_lock);
1354 spin_lock_init(&t->ftid_lock);
1356 t->stids_in_use = 0;
1357 t->v6_stids_in_use = 0;
1358 t->sftids_in_use = 0;
1360 t->atids_in_use = 0;
1361 atomic_set(&t->tids_in_use, 0);
1362 atomic_set(&t->conns_in_use, 0);
1363 atomic_set(&t->hash_tids_in_use, 0);
1365 /* Setup the free list for atid_tab and clear the stid bitmap. */
1368 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1369 t->afree = t->atid_tab;
1372 if (is_offload(adap)) {
1373 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1374 /* Reserve stid 0 for T4/T5 adapters */
1375 if (!t->stid_base &&
1376 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1377 __set_bit(0, t->stid_bmap);
1380 bitmap_zero(t->ftid_bmap, t->nftids);
1385 * cxgb4_create_server - create an IP server
1387 * @stid: the server TID
1388 * @sip: local IP address to bind server to
1389 * @sport: the server's TCP port
1390 * @queue: queue to direct messages from this server to
1392 * Create an IP server for the given port and address.
1393 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1395 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1396 __be32 sip, __be16 sport, __be16 vlan,
1400 struct sk_buff *skb;
1401 struct adapter *adap;
1402 struct cpl_pass_open_req *req;
1405 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1409 adap = netdev2adap(dev);
1410 req = __skb_put(skb, sizeof(*req));
1412 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1413 req->local_port = sport;
1414 req->peer_port = htons(0);
1415 req->local_ip = sip;
1416 req->peer_ip = htonl(0);
1417 chan = rxq_to_chan(&adap->sge, queue);
1418 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1419 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1420 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1421 ret = t4_mgmt_tx(adap, skb);
1422 return net_xmit_eval(ret);
1424 EXPORT_SYMBOL(cxgb4_create_server);
1426 /* cxgb4_create_server6 - create an IPv6 server
1428 * @stid: the server TID
1429 * @sip: local IPv6 address to bind server to
1430 * @sport: the server's TCP port
1431 * @queue: queue to direct messages from this server to
1433 * Create an IPv6 server for the given port and address.
1434 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1436 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1437 const struct in6_addr *sip, __be16 sport,
1441 struct sk_buff *skb;
1442 struct adapter *adap;
1443 struct cpl_pass_open_req6 *req;
1446 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1450 adap = netdev2adap(dev);
1451 req = __skb_put(skb, sizeof(*req));
1453 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1454 req->local_port = sport;
1455 req->peer_port = htons(0);
1456 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1457 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1458 req->peer_ip_hi = cpu_to_be64(0);
1459 req->peer_ip_lo = cpu_to_be64(0);
1460 chan = rxq_to_chan(&adap->sge, queue);
1461 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1462 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1463 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1464 ret = t4_mgmt_tx(adap, skb);
1465 return net_xmit_eval(ret);
1467 EXPORT_SYMBOL(cxgb4_create_server6);
1469 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1470 unsigned int queue, bool ipv6)
1472 struct sk_buff *skb;
1473 struct adapter *adap;
1474 struct cpl_close_listsvr_req *req;
1477 adap = netdev2adap(dev);
1479 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1483 req = __skb_put(skb, sizeof(*req));
1485 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1486 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1487 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1488 ret = t4_mgmt_tx(adap, skb);
1489 return net_xmit_eval(ret);
1491 EXPORT_SYMBOL(cxgb4_remove_server);
1494 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1495 * @mtus: the HW MTU table
1496 * @mtu: the target MTU
1497 * @idx: index of selected entry in the MTU table
1499 * Returns the index and the value in the HW MTU table that is closest to
1500 * but does not exceed @mtu, unless @mtu is smaller than any value in the
1501 * table, in which case that smallest available value is selected.
1503 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1508 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1514 EXPORT_SYMBOL(cxgb4_best_mtu);
1517 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1518 * @mtus: the HW MTU table
1519 * @header_size: Header Size
1520 * @data_size_max: maximum Data Segment Size
1521 * @data_size_align: desired Data Segment Size Alignment (2^N)
1522 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1524 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
1525 * MTU Table based solely on a Maximum MTU parameter, we break that
1526 * parameter up into a Header Size and Maximum Data Segment Size, and
1527 * provide a desired Data Segment Size Alignment. If we find an MTU in
1528 * the Hardware MTU Table which will result in a Data Segment Size with
1529 * the requested alignment _and_ that MTU isn't "too far" from the
1530 * closest MTU, then we'll return that rather than the closest MTU.
1532 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1533 unsigned short header_size,
1534 unsigned short data_size_max,
1535 unsigned short data_size_align,
1536 unsigned int *mtu_idxp)
1538 unsigned short max_mtu = header_size + data_size_max;
1539 unsigned short data_size_align_mask = data_size_align - 1;
1540 int mtu_idx, aligned_mtu_idx;
1542 /* Scan the MTU Table till we find an MTU which is larger than our
1543 * Maximum MTU or we reach the end of the table. Along the way,
1544 * record the last MTU found, if any, which will result in a Data
1545 * Segment Length matching the requested alignment.
1547 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1548 unsigned short data_size = mtus[mtu_idx] - header_size;
1550 /* If this MTU minus the Header Size would result in a
1551 * Data Segment Size of the desired alignment, remember it.
1553 if ((data_size & data_size_align_mask) == 0)
1554 aligned_mtu_idx = mtu_idx;
1556 /* If we're not at the end of the Hardware MTU Table and the
1557 * next element is larger than our Maximum MTU, drop out of
1560 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1564 /* If we fell out of the loop because we ran to the end of the table,
1565 * then we just have to use the last [largest] entry.
1567 if (mtu_idx == NMTUS)
1570 /* If we found an MTU which resulted in the requested Data Segment
1571 * Length alignment and that's "not far" from the largest MTU which is
1572 * less than or equal to the maximum MTU, then use that.
1574 if (aligned_mtu_idx >= 0 &&
1575 mtu_idx - aligned_mtu_idx <= 1)
1576 mtu_idx = aligned_mtu_idx;
1578 /* If the caller has passed in an MTU Index pointer, pass the
1579 * MTU Index back. Return the MTU value.
1582 *mtu_idxp = mtu_idx;
1583 return mtus[mtu_idx];
1585 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1588 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1590 * @viid: VI id of the given port
1592 * Return the SMT index for this VI.
1594 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1596 /* In T4/T5, SMT contains 256 SMAC entries organized in
1597 * 128 rows of 2 entries each.
1598 * In T6, SMT contains 256 SMAC entries in 256 rows.
1599 * TODO: The below code needs to be updated when we add support
1602 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1603 return ((viid & 0x7f) << 1);
1605 return (viid & 0x7f);
1607 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1610 * cxgb4_port_chan - get the HW channel of a port
1611 * @dev: the net device for the port
1613 * Return the HW Tx channel of the given port.
1615 unsigned int cxgb4_port_chan(const struct net_device *dev)
1617 return netdev2pinfo(dev)->tx_chan;
1619 EXPORT_SYMBOL(cxgb4_port_chan);
1621 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1623 struct adapter *adap = netdev2adap(dev);
1624 u32 v1, v2, lp_count, hp_count;
1626 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1627 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1628 if (is_t4(adap->params.chip)) {
1629 lp_count = LP_COUNT_G(v1);
1630 hp_count = HP_COUNT_G(v1);
1632 lp_count = LP_COUNT_T5_G(v1);
1633 hp_count = HP_COUNT_T5_G(v2);
1635 return lpfifo ? lp_count : hp_count;
1637 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1640 * cxgb4_port_viid - get the VI id of a port
1641 * @dev: the net device for the port
1643 * Return the VI id of the given port.
1645 unsigned int cxgb4_port_viid(const struct net_device *dev)
1647 return netdev2pinfo(dev)->viid;
1649 EXPORT_SYMBOL(cxgb4_port_viid);
1652 * cxgb4_port_idx - get the index of a port
1653 * @dev: the net device for the port
1655 * Return the index of the given port.
1657 unsigned int cxgb4_port_idx(const struct net_device *dev)
1659 return netdev2pinfo(dev)->port_id;
1661 EXPORT_SYMBOL(cxgb4_port_idx);
1663 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1664 struct tp_tcp_stats *v6)
1666 struct adapter *adap = pci_get_drvdata(pdev);
1668 spin_lock(&adap->stats_lock);
1669 t4_tp_get_tcp_stats(adap, v4, v6, false);
1670 spin_unlock(&adap->stats_lock);
1672 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1674 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1675 const unsigned int *pgsz_order)
1677 struct adapter *adap = netdev2adap(dev);
1679 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1680 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1681 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1682 HPZ3_V(pgsz_order[3]));
1684 EXPORT_SYMBOL(cxgb4_iscsi_init);
1686 int cxgb4_flush_eq_cache(struct net_device *dev)
1688 struct adapter *adap = netdev2adap(dev);
1690 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
1692 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1694 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1696 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1700 spin_lock(&adap->win0_lock);
1701 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1702 sizeof(indices), (__be32 *)&indices,
1704 spin_unlock(&adap->win0_lock);
1706 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1707 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1712 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1715 struct adapter *adap = netdev2adap(dev);
1716 u16 hw_pidx, hw_cidx;
1719 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1723 if (pidx != hw_pidx) {
1727 if (pidx >= hw_pidx)
1728 delta = pidx - hw_pidx;
1730 delta = size - hw_pidx + pidx;
1732 if (is_t4(adap->params.chip))
1733 val = PIDX_V(delta);
1735 val = PIDX_T5_V(delta);
1737 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1743 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1745 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1747 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1748 u32 edc0_end, edc1_end, mc0_end, mc1_end;
1749 u32 offset, memtype, memaddr;
1750 struct adapter *adap;
1754 adap = netdev2adap(dev);
1756 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1758 /* Figure out where the offset lands in the Memory Type/Address scheme.
1759 * This code assumes that the memory is laid out starting at offset 0
1760 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1761 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
1762 * MC0, and some have both MC0 and MC1.
1764 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1765 edc0_size = EDRAM0_SIZE_G(size) << 20;
1766 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1767 edc1_size = EDRAM1_SIZE_G(size) << 20;
1768 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1769 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1771 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
1772 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1773 hma_size = EXT_MEM1_SIZE_G(size) << 20;
1775 edc0_end = edc0_size;
1776 edc1_end = edc0_end + edc1_size;
1777 mc0_end = edc1_end + mc0_size;
1779 if (offset < edc0_end) {
1782 } else if (offset < edc1_end) {
1784 memaddr = offset - edc0_end;
1786 if (hma_size && (offset < (edc1_end + hma_size))) {
1788 memaddr = offset - edc1_end;
1789 } else if (offset < mc0_end) {
1791 memaddr = offset - edc1_end;
1792 } else if (is_t5(adap->params.chip)) {
1793 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1794 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1795 mc1_end = mc0_end + mc1_size;
1796 if (offset < mc1_end) {
1798 memaddr = offset - mc0_end;
1800 /* offset beyond the end of any memory */
1804 /* T4/T6 only has a single memory channel */
1809 spin_lock(&adap->win0_lock);
1810 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1811 spin_unlock(&adap->win0_lock);
1815 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1819 EXPORT_SYMBOL(cxgb4_read_tpte);
1821 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1824 struct adapter *adap;
1826 adap = netdev2adap(dev);
1827 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1828 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1830 return ((u64)hi << 32) | (u64)lo;
1832 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1834 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1836 enum cxgb4_bar2_qtype qtype,
1839 unsigned int *pbar2_qid)
1841 return t4_bar2_sge_qregs(netdev2adap(dev),
1843 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1844 ? T4_BAR2_QTYPE_EGRESS
1845 : T4_BAR2_QTYPE_INGRESS),
1850 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1852 static struct pci_driver cxgb4_driver;
1854 static void check_neigh_update(struct neighbour *neigh)
1856 const struct device *parent;
1857 const struct net_device *netdev = neigh->dev;
1859 if (is_vlan_dev(netdev))
1860 netdev = vlan_dev_real_dev(netdev);
1861 parent = netdev->dev.parent;
1862 if (parent && parent->driver == &cxgb4_driver.driver)
1863 t4_l2t_update(dev_get_drvdata(parent), neigh);
1866 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1870 case NETEVENT_NEIGH_UPDATE:
1871 check_neigh_update(data);
1873 case NETEVENT_REDIRECT:
1880 static bool netevent_registered;
1881 static struct notifier_block cxgb4_netevent_nb = {
1882 .notifier_call = netevent_cb
1885 static void drain_db_fifo(struct adapter *adap, int usecs)
1887 u32 v1, v2, lp_count, hp_count;
1890 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1891 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1892 if (is_t4(adap->params.chip)) {
1893 lp_count = LP_COUNT_G(v1);
1894 hp_count = HP_COUNT_G(v1);
1896 lp_count = LP_COUNT_T5_G(v1);
1897 hp_count = HP_COUNT_T5_G(v2);
1900 if (lp_count == 0 && hp_count == 0)
1902 set_current_state(TASK_UNINTERRUPTIBLE);
1903 schedule_timeout(usecs_to_jiffies(usecs));
1907 static void disable_txq_db(struct sge_txq *q)
1909 unsigned long flags;
1911 spin_lock_irqsave(&q->db_lock, flags);
1913 spin_unlock_irqrestore(&q->db_lock, flags);
1916 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1918 spin_lock_irq(&q->db_lock);
1919 if (q->db_pidx_inc) {
1920 /* Make sure that all writes to the TX descriptors
1921 * are committed before we tell HW about them.
1924 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1925 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1929 spin_unlock_irq(&q->db_lock);
1932 static void disable_dbs(struct adapter *adap)
1936 for_each_ethrxq(&adap->sge, i)
1937 disable_txq_db(&adap->sge.ethtxq[i].q);
1938 if (is_offload(adap)) {
1939 struct sge_uld_txq_info *txq_info =
1940 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1943 for_each_ofldtxq(&adap->sge, i) {
1944 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1946 disable_txq_db(&txq->q);
1950 for_each_port(adap, i)
1951 disable_txq_db(&adap->sge.ctrlq[i].q);
1954 static void enable_dbs(struct adapter *adap)
1958 for_each_ethrxq(&adap->sge, i)
1959 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1960 if (is_offload(adap)) {
1961 struct sge_uld_txq_info *txq_info =
1962 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1965 for_each_ofldtxq(&adap->sge, i) {
1966 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1968 enable_txq_db(adap, &txq->q);
1972 for_each_port(adap, i)
1973 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1976 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1978 enum cxgb4_uld type = CXGB4_ULD_RDMA;
1980 if (adap->uld && adap->uld[type].handle)
1981 adap->uld[type].control(adap->uld[type].handle, cmd);
1984 static void process_db_full(struct work_struct *work)
1986 struct adapter *adap;
1988 adap = container_of(work, struct adapter, db_full_task);
1990 drain_db_fifo(adap, dbfifo_drain_delay);
1992 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1993 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1994 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1995 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1996 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1998 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1999 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2002 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2004 u16 hw_pidx, hw_cidx;
2007 spin_lock_irq(&q->db_lock);
2008 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2011 if (q->db_pidx != hw_pidx) {
2015 if (q->db_pidx >= hw_pidx)
2016 delta = q->db_pidx - hw_pidx;
2018 delta = q->size - hw_pidx + q->db_pidx;
2020 if (is_t4(adap->params.chip))
2021 val = PIDX_V(delta);
2023 val = PIDX_T5_V(delta);
2025 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2026 QID_V(q->cntxt_id) | val);
2031 spin_unlock_irq(&q->db_lock);
2033 CH_WARN(adap, "DB drop recovery failed.\n");
2036 static void recover_all_queues(struct adapter *adap)
2040 for_each_ethrxq(&adap->sge, i)
2041 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2042 if (is_offload(adap)) {
2043 struct sge_uld_txq_info *txq_info =
2044 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2046 for_each_ofldtxq(&adap->sge, i) {
2047 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2049 sync_txq_pidx(adap, &txq->q);
2053 for_each_port(adap, i)
2054 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2057 static void process_db_drop(struct work_struct *work)
2059 struct adapter *adap;
2061 adap = container_of(work, struct adapter, db_drop_task);
2063 if (is_t4(adap->params.chip)) {
2064 drain_db_fifo(adap, dbfifo_drain_delay);
2065 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2066 drain_db_fifo(adap, dbfifo_drain_delay);
2067 recover_all_queues(adap);
2068 drain_db_fifo(adap, dbfifo_drain_delay);
2070 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2071 } else if (is_t5(adap->params.chip)) {
2072 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2073 u16 qid = (dropped_db >> 15) & 0x1ffff;
2074 u16 pidx_inc = dropped_db & 0x1fff;
2076 unsigned int bar2_qid;
2079 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2080 0, &bar2_qoffset, &bar2_qid);
2082 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2083 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2085 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2086 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2088 /* Re-enable BAR2 WC */
2089 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2092 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2093 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2096 void t4_db_full(struct adapter *adap)
2098 if (is_t4(adap->params.chip)) {
2100 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2101 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2102 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2103 queue_work(adap->workq, &adap->db_full_task);
2107 void t4_db_dropped(struct adapter *adap)
2109 if (is_t4(adap->params.chip)) {
2111 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2113 queue_work(adap->workq, &adap->db_drop_task);
2116 void t4_register_netevent_notifier(void)
2118 if (!netevent_registered) {
2119 register_netevent_notifier(&cxgb4_netevent_nb);
2120 netevent_registered = true;
2124 static void detach_ulds(struct adapter *adap)
2128 mutex_lock(&uld_mutex);
2129 list_del(&adap->list_node);
2131 for (i = 0; i < CXGB4_ULD_MAX; i++)
2132 if (adap->uld && adap->uld[i].handle)
2133 adap->uld[i].state_change(adap->uld[i].handle,
2134 CXGB4_STATE_DETACH);
2136 if (netevent_registered && list_empty(&adapter_list)) {
2137 unregister_netevent_notifier(&cxgb4_netevent_nb);
2138 netevent_registered = false;
2140 mutex_unlock(&uld_mutex);
2143 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2147 mutex_lock(&uld_mutex);
2148 for (i = 0; i < CXGB4_ULD_MAX; i++)
2149 if (adap->uld && adap->uld[i].handle)
2150 adap->uld[i].state_change(adap->uld[i].handle,
2152 mutex_unlock(&uld_mutex);
2155 #if IS_ENABLED(CONFIG_IPV6)
2156 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2157 unsigned long event, void *data)
2159 struct inet6_ifaddr *ifa = data;
2160 struct net_device *event_dev = ifa->idev->dev;
2161 const struct device *parent = NULL;
2162 #if IS_ENABLED(CONFIG_BONDING)
2163 struct adapter *adap;
2165 if (is_vlan_dev(event_dev))
2166 event_dev = vlan_dev_real_dev(event_dev);
2167 #if IS_ENABLED(CONFIG_BONDING)
2168 if (event_dev->flags & IFF_MASTER) {
2169 list_for_each_entry(adap, &adapter_list, list_node) {
2172 cxgb4_clip_get(adap->port[0],
2173 (const u32 *)ifa, 1);
2176 cxgb4_clip_release(adap->port[0],
2177 (const u32 *)ifa, 1);
2188 parent = event_dev->dev.parent;
2190 if (parent && parent->driver == &cxgb4_driver.driver) {
2193 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2196 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2205 static bool inet6addr_registered;
2206 static struct notifier_block cxgb4_inet6addr_notifier = {
2207 .notifier_call = cxgb4_inet6addr_handler
2210 static void update_clip(const struct adapter *adap)
2213 struct net_device *dev;
2218 for (i = 0; i < MAX_NPORTS; i++) {
2219 dev = adap->port[i];
2223 ret = cxgb4_update_root_dev_clip(dev);
2230 #endif /* IS_ENABLED(CONFIG_IPV6) */
2233 * cxgb_up - enable the adapter
2234 * @adap: adapter being enabled
2236 * Called when the first port is enabled, this function performs the
2237 * actions necessary to make an adapter operational, such as completing
2238 * the initialization of HW modules, and enabling interrupts.
2240 * Must be called with the rtnl lock held.
2242 static int cxgb_up(struct adapter *adap)
2246 mutex_lock(&uld_mutex);
2247 err = setup_sge_queues(adap);
2250 err = setup_rss(adap);
2254 if (adap->flags & USING_MSIX) {
2255 name_msix_vecs(adap);
2256 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2257 adap->msix_info[0].desc, adap);
2260 err = request_msix_queue_irqs(adap);
2262 free_irq(adap->msix_info[0].vec, adap);
2266 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2267 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2268 adap->port[0]->name, adap);
2275 t4_intr_enable(adap);
2276 adap->flags |= FULL_INIT_DONE;
2277 mutex_unlock(&uld_mutex);
2279 notify_ulds(adap, CXGB4_STATE_UP);
2280 #if IS_ENABLED(CONFIG_IPV6)
2283 /* Initialize hash mac addr list*/
2284 INIT_LIST_HEAD(&adap->mac_hlist);
2288 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2290 t4_free_sge_resources(adap);
2292 mutex_unlock(&uld_mutex);
2296 static void cxgb_down(struct adapter *adapter)
2298 cancel_work_sync(&adapter->tid_release_task);
2299 cancel_work_sync(&adapter->db_full_task);
2300 cancel_work_sync(&adapter->db_drop_task);
2301 adapter->tid_release_task_busy = false;
2302 adapter->tid_release_head = NULL;
2304 t4_sge_stop(adapter);
2305 t4_free_sge_resources(adapter);
2306 adapter->flags &= ~FULL_INIT_DONE;
2310 * net_device operations
2312 static int cxgb_open(struct net_device *dev)
2315 struct port_info *pi = netdev_priv(dev);
2316 struct adapter *adapter = pi->adapter;
2318 netif_carrier_off(dev);
2320 if (!(adapter->flags & FULL_INIT_DONE)) {
2321 err = cxgb_up(adapter);
2326 /* It's possible that the basic port information could have
2327 * changed since we first read it.
2329 err = t4_update_port_info(pi);
2333 err = link_start(dev);
2335 netif_tx_start_all_queues(dev);
2339 static int cxgb_close(struct net_device *dev)
2341 struct port_info *pi = netdev_priv(dev);
2342 struct adapter *adapter = pi->adapter;
2345 netif_tx_stop_all_queues(dev);
2346 netif_carrier_off(dev);
2347 ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2348 false, false, false);
2349 #ifdef CONFIG_CHELSIO_T4_DCB
2350 cxgb4_dcb_reset(dev);
2351 dcb_tx_queue_prio_enable(dev, false);
2356 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2357 __be32 sip, __be16 sport, __be16 vlan,
2358 unsigned int queue, unsigned char port, unsigned char mask)
2361 struct filter_entry *f;
2362 struct adapter *adap;
2366 adap = netdev2adap(dev);
2368 /* Adjust stid to correct filter index */
2369 stid -= adap->tids.sftid_base;
2370 stid += adap->tids.nftids;
2372 /* Check to make sure the filter requested is writable ...
2374 f = &adap->tids.ftid_tab[stid];
2375 ret = writable_filter(f);
2379 /* Clear out any old resources being used by the filter before
2380 * we start constructing the new filter.
2383 clear_filter(adap, f);
2385 /* Clear out filter specifications */
2386 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2387 f->fs.val.lport = cpu_to_be16(sport);
2388 f->fs.mask.lport = ~0;
2390 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2391 for (i = 0; i < 4; i++) {
2392 f->fs.val.lip[i] = val[i];
2393 f->fs.mask.lip[i] = ~0;
2395 if (adap->params.tp.vlan_pri_map & PORT_F) {
2396 f->fs.val.iport = port;
2397 f->fs.mask.iport = mask;
2401 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2402 f->fs.val.proto = IPPROTO_TCP;
2403 f->fs.mask.proto = ~0;
2408 /* Mark filter as locked */
2412 /* Save the actual tid. We need this to get the corresponding
2413 * filter entry structure in filter_rpl.
2415 f->tid = stid + adap->tids.ftid_base;
2416 ret = set_filter_wr(adap, stid);
2418 clear_filter(adap, f);
2424 EXPORT_SYMBOL(cxgb4_create_server_filter);
2426 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2427 unsigned int queue, bool ipv6)
2429 struct filter_entry *f;
2430 struct adapter *adap;
2432 adap = netdev2adap(dev);
2434 /* Adjust stid to correct filter index */
2435 stid -= adap->tids.sftid_base;
2436 stid += adap->tids.nftids;
2438 f = &adap->tids.ftid_tab[stid];
2439 /* Unlock the filter */
2442 return delete_filter(adap, stid);
2444 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2446 static void cxgb_get_stats(struct net_device *dev,
2447 struct rtnl_link_stats64 *ns)
2449 struct port_stats stats;
2450 struct port_info *p = netdev_priv(dev);
2451 struct adapter *adapter = p->adapter;
2453 /* Block retrieving statistics during EEH error
2454 * recovery. Otherwise, the recovery might fail
2455 * and the PCI device will be removed permanently
2457 spin_lock(&adapter->stats_lock);
2458 if (!netif_device_present(dev)) {
2459 spin_unlock(&adapter->stats_lock);
2462 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2464 spin_unlock(&adapter->stats_lock);
2466 ns->tx_bytes = stats.tx_octets;
2467 ns->tx_packets = stats.tx_frames;
2468 ns->rx_bytes = stats.rx_octets;
2469 ns->rx_packets = stats.rx_frames;
2470 ns->multicast = stats.rx_mcast_frames;
2472 /* detailed rx_errors */
2473 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2475 ns->rx_over_errors = 0;
2476 ns->rx_crc_errors = stats.rx_fcs_err;
2477 ns->rx_frame_errors = stats.rx_symbol_err;
2478 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 +
2479 stats.rx_ovflow2 + stats.rx_ovflow3 +
2480 stats.rx_trunc0 + stats.rx_trunc1 +
2481 stats.rx_trunc2 + stats.rx_trunc3;
2482 ns->rx_missed_errors = 0;
2484 /* detailed tx_errors */
2485 ns->tx_aborted_errors = 0;
2486 ns->tx_carrier_errors = 0;
2487 ns->tx_fifo_errors = 0;
2488 ns->tx_heartbeat_errors = 0;
2489 ns->tx_window_errors = 0;
2491 ns->tx_errors = stats.tx_error_frames;
2492 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2493 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2496 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2499 int ret = 0, prtad, devad;
2500 struct port_info *pi = netdev_priv(dev);
2501 struct adapter *adapter = pi->adapter;
2502 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2506 if (pi->mdio_addr < 0)
2508 data->phy_id = pi->mdio_addr;
2512 if (mdio_phy_id_is_c45(data->phy_id)) {
2513 prtad = mdio_phy_id_prtad(data->phy_id);
2514 devad = mdio_phy_id_devad(data->phy_id);
2515 } else if (data->phy_id < 32) {
2516 prtad = data->phy_id;
2518 data->reg_num &= 0x1f;
2522 mbox = pi->adapter->pf;
2523 if (cmd == SIOCGMIIREG)
2524 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2525 data->reg_num, &data->val_out);
2527 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2528 data->reg_num, data->val_in);
2531 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2532 sizeof(pi->tstamp_config)) ?
2535 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2536 sizeof(pi->tstamp_config)))
2539 if (!is_t4(adapter->params.chip)) {
2540 switch (pi->tstamp_config.tx_type) {
2541 case HWTSTAMP_TX_OFF:
2542 case HWTSTAMP_TX_ON:
2548 switch (pi->tstamp_config.rx_filter) {
2549 case HWTSTAMP_FILTER_NONE:
2550 pi->rxtstamp = false;
2552 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2553 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2554 cxgb4_ptprx_timestamping(pi, pi->port_id,
2557 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2558 cxgb4_ptprx_timestamping(pi, pi->port_id,
2561 case HWTSTAMP_FILTER_ALL:
2562 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2563 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2564 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2565 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2566 pi->rxtstamp = true;
2569 pi->tstamp_config.rx_filter =
2570 HWTSTAMP_FILTER_NONE;
2574 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2575 (pi->tstamp_config.rx_filter ==
2576 HWTSTAMP_FILTER_NONE)) {
2577 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2578 pi->ptp_enable = false;
2581 if (pi->tstamp_config.rx_filter !=
2582 HWTSTAMP_FILTER_NONE) {
2583 if (cxgb4_ptp_redirect_rx_packet(adapter,
2585 pi->ptp_enable = true;
2588 /* For T4 Adapters */
2589 switch (pi->tstamp_config.rx_filter) {
2590 case HWTSTAMP_FILTER_NONE:
2591 pi->rxtstamp = false;
2593 case HWTSTAMP_FILTER_ALL:
2594 pi->rxtstamp = true;
2597 pi->tstamp_config.rx_filter =
2598 HWTSTAMP_FILTER_NONE;
2602 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2603 sizeof(pi->tstamp_config)) ?
2611 static void cxgb_set_rxmode(struct net_device *dev)
2613 /* unfortunately we can't return errors to the stack */
2614 set_rxmode(dev, -1, false);
2617 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2620 struct port_info *pi = netdev_priv(dev);
2622 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2629 #ifdef CONFIG_PCI_IOV
2630 static int cxgb4_mgmt_open(struct net_device *dev)
2632 /* Turn carrier off since we don't have to transmit anything on this
2635 netif_carrier_off(dev);
2639 /* Fill MAC address that will be assigned by the FW */
2640 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
2642 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2643 unsigned int i, vf, nvfs;
2648 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
2650 err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2654 na = adap->params.vpd.na;
2655 for (i = 0; i < ETH_ALEN; i++)
2656 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2657 hex2val(na[2 * i + 1]));
2659 a = (hw_addr[0] << 8) | hw_addr[1];
2660 b = (hw_addr[1] << 8) | hw_addr[2];
2662 a |= 0x0200; /* locally assigned Ethernet MAC address */
2663 a &= ~0x0100; /* not a multicast Ethernet MAC address */
2664 macaddr[0] = a >> 8;
2665 macaddr[1] = a & 0xff;
2667 for (i = 2; i < 5; i++)
2668 macaddr[i] = hw_addr[i + 1];
2670 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
2672 macaddr[5] = adap->pf * 16 + vf;
2673 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
2677 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2679 struct port_info *pi = netdev_priv(dev);
2680 struct adapter *adap = pi->adapter;
2683 /* verify MAC addr is valid */
2684 if (!is_valid_ether_addr(mac)) {
2685 dev_err(pi->adapter->pdev_dev,
2686 "Invalid Ethernet address %pM for VF %d\n",
2691 dev_info(pi->adapter->pdev_dev,
2692 "Setting MAC %pM on VF %d\n", mac, vf);
2693 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2695 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2699 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
2700 int vf, struct ifla_vf_info *ivi)
2702 struct port_info *pi = netdev_priv(dev);
2703 struct adapter *adap = pi->adapter;
2704 struct vf_info *vfinfo;
2706 if (vf >= adap->num_vfs)
2708 vfinfo = &adap->vfinfo[vf];
2711 ivi->max_tx_rate = vfinfo->tx_rate;
2712 ivi->min_tx_rate = 0;
2713 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
2714 ivi->vlan = vfinfo->vlan;
2718 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
2719 struct netdev_phys_item_id *ppid)
2721 struct port_info *pi = netdev_priv(dev);
2722 unsigned int phy_port_id;
2724 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2725 ppid->id_len = sizeof(phy_port_id);
2726 memcpy(ppid->id, &phy_port_id, ppid->id_len);
2730 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
2731 int min_tx_rate, int max_tx_rate)
2733 struct port_info *pi = netdev_priv(dev);
2734 struct adapter *adap = pi->adapter;
2735 unsigned int link_ok, speed, mtu;
2736 u32 fw_pfvf, fw_class;
2741 if (vf >= adap->num_vfs)
2745 dev_err(adap->pdev_dev,
2746 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2751 if (max_tx_rate == 0) {
2752 /* unbind VF to to any Traffic Class */
2754 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2755 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2756 fw_class = 0xffffffff;
2757 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
2758 &fw_pfvf, &fw_class);
2760 dev_err(adap->pdev_dev,
2761 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
2765 dev_info(adap->pdev_dev,
2766 "PF %d VF %d is unbound from TX Rate Limiting\n",
2768 adap->vfinfo[vf].tx_rate = 0;
2772 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2773 if (ret != FW_SUCCESS) {
2774 dev_err(adap->pdev_dev,
2775 "Failed to get link information for VF %d\n", vf);
2780 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2784 if (max_tx_rate > speed) {
2785 dev_err(adap->pdev_dev,
2786 "Max tx rate %d for VF %d can't be > link-speed %u",
2787 max_tx_rate, vf, speed);
2792 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2793 pktsize = pktsize - sizeof(struct ethhdr) - 4;
2794 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2795 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2796 /* configure Traffic Class for rate-limiting */
2797 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2798 SCHED_CLASS_LEVEL_CL_RL,
2799 SCHED_CLASS_MODE_CLASS,
2800 SCHED_CLASS_RATEUNIT_BITS,
2801 SCHED_CLASS_RATEMODE_ABS,
2802 pi->tx_chan, class_id, 0,
2803 max_tx_rate * 1000, 0, pktsize);
2805 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2809 dev_info(adap->pdev_dev,
2810 "Class %d with MSS %u configured with rate %u\n",
2811 class_id, pktsize, max_tx_rate);
2813 /* bind VF to configured Traffic Class */
2814 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2815 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2816 fw_class = class_id;
2817 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2820 dev_err(adap->pdev_dev,
2821 "Err %d in binding PF %d VF %d to Traffic Class %d\n",
2822 ret, adap->pf, vf, class_id);
2825 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2826 adap->pf, vf, class_id);
2827 adap->vfinfo[vf].tx_rate = max_tx_rate;
2831 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
2832 u16 vlan, u8 qos, __be16 vlan_proto)
2834 struct port_info *pi = netdev_priv(dev);
2835 struct adapter *adap = pi->adapter;
2838 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
2841 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
2842 return -EPROTONOSUPPORT;
2844 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
2846 adap->vfinfo[vf].vlan = vlan;
2850 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
2851 ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
2854 #endif /* CONFIG_PCI_IOV */
2856 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2859 struct sockaddr *addr = p;
2860 struct port_info *pi = netdev_priv(dev);
2862 if (!is_valid_ether_addr(addr->sa_data))
2863 return -EADDRNOTAVAIL;
2865 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2866 pi->xact_addr_filt, addr->sa_data, true, true);
2870 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2871 pi->xact_addr_filt = ret;
2875 #ifdef CONFIG_NET_POLL_CONTROLLER
2876 static void cxgb_netpoll(struct net_device *dev)
2878 struct port_info *pi = netdev_priv(dev);
2879 struct adapter *adap = pi->adapter;
2881 if (adap->flags & USING_MSIX) {
2883 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2885 for (i = pi->nqsets; i; i--, rx++)
2886 t4_sge_intr_msix(0, &rx->rspq);
2888 t4_intr_handler(adap)(0, adap);
2892 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2894 struct port_info *pi = netdev_priv(dev);
2895 struct adapter *adap = pi->adapter;
2896 struct sched_class *e;
2897 struct ch_sched_params p;
2898 struct ch_sched_queue qe;
2902 if (!can_sched(dev))
2905 if (index < 0 || index > pi->nqsets - 1)
2908 if (!(adap->flags & FULL_INIT_DONE)) {
2909 dev_err(adap->pdev_dev,
2910 "Failed to rate limit on queue %d. Link Down?\n",
2915 /* Convert from Mbps to Kbps */
2916 req_rate = rate * 1000;
2918 /* Max rate is 100 Gbps */
2919 if (req_rate > SCHED_MAX_RATE_KBPS) {
2920 dev_err(adap->pdev_dev,
2921 "Invalid rate %u Mbps, Max rate is %u Mbps\n",
2922 rate, SCHED_MAX_RATE_KBPS / 1000);
2926 /* First unbind the queue from any existing class */
2927 memset(&qe, 0, sizeof(qe));
2929 qe.class = SCHED_CLS_NONE;
2931 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2933 dev_err(adap->pdev_dev,
2934 "Unbinding Queue %d on port %d fail. Err: %d\n",
2935 index, pi->port_id, err);
2939 /* Queue already unbound */
2943 /* Fetch any available unused or matching scheduling class */
2944 memset(&p, 0, sizeof(p));
2945 p.type = SCHED_CLASS_TYPE_PACKET;
2946 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL;
2947 p.u.params.mode = SCHED_CLASS_MODE_CLASS;
2948 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2949 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2950 p.u.params.channel = pi->tx_chan;
2951 p.u.params.class = SCHED_CLS_NONE;
2952 p.u.params.minrate = 0;
2953 p.u.params.maxrate = req_rate;
2954 p.u.params.weight = 0;
2955 p.u.params.pktsize = dev->mtu;
2957 e = cxgb4_sched_class_alloc(dev, &p);
2961 /* Bind the queue to a scheduling class */
2962 memset(&qe, 0, sizeof(qe));
2966 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2968 dev_err(adap->pdev_dev,
2969 "Queue rate limiting failed. Err: %d\n", err);
2973 static int cxgb_setup_tc_flower(struct net_device *dev,
2974 struct tc_cls_flower_offload *cls_flower)
2976 switch (cls_flower->command) {
2977 case TC_CLSFLOWER_REPLACE:
2978 return cxgb4_tc_flower_replace(dev, cls_flower);
2979 case TC_CLSFLOWER_DESTROY:
2980 return cxgb4_tc_flower_destroy(dev, cls_flower);
2981 case TC_CLSFLOWER_STATS:
2982 return cxgb4_tc_flower_stats(dev, cls_flower);
2988 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
2989 struct tc_cls_u32_offload *cls_u32)
2991 switch (cls_u32->command) {
2992 case TC_CLSU32_NEW_KNODE:
2993 case TC_CLSU32_REPLACE_KNODE:
2994 return cxgb4_config_knode(dev, cls_u32);
2995 case TC_CLSU32_DELETE_KNODE:
2996 return cxgb4_delete_knode(dev, cls_u32);
3002 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3005 struct net_device *dev = cb_priv;
3006 struct port_info *pi = netdev2pinfo(dev);
3007 struct adapter *adap = netdev2adap(dev);
3009 if (!(adap->flags & FULL_INIT_DONE)) {
3010 dev_err(adap->pdev_dev,
3011 "Failed to setup tc on port %d. Link Down?\n",
3016 if (!tc_cls_can_offload_and_chain0(dev, type_data))
3020 case TC_SETUP_CLSU32:
3021 return cxgb_setup_tc_cls_u32(dev, type_data);
3022 case TC_SETUP_CLSFLOWER:
3023 return cxgb_setup_tc_flower(dev, type_data);
3029 static int cxgb_setup_tc_block(struct net_device *dev,
3030 struct tc_block_offload *f)
3032 struct port_info *pi = netdev2pinfo(dev);
3034 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3037 switch (f->command) {
3039 return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb,
3040 pi, dev, f->extack);
3041 case TC_BLOCK_UNBIND:
3042 tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi);
3049 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3053 case TC_SETUP_BLOCK:
3054 return cxgb_setup_tc_block(dev, type_data);
3060 static void cxgb_del_udp_tunnel(struct net_device *netdev,
3061 struct udp_tunnel_info *ti)
3063 struct port_info *pi = netdev_priv(netdev);
3064 struct adapter *adapter = pi->adapter;
3065 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3066 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3069 if (chip_ver < CHELSIO_T6)
3073 case UDP_TUNNEL_TYPE_VXLAN:
3074 if (!adapter->vxlan_port_cnt ||
3075 adapter->vxlan_port != ti->port)
3076 return; /* Invalid VxLAN destination port */
3078 adapter->vxlan_port_cnt--;
3079 if (adapter->vxlan_port_cnt)
3082 adapter->vxlan_port = 0;
3083 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3085 case UDP_TUNNEL_TYPE_GENEVE:
3086 if (!adapter->geneve_port_cnt ||
3087 adapter->geneve_port != ti->port)
3088 return; /* Invalid GENEVE destination port */
3090 adapter->geneve_port_cnt--;
3091 if (adapter->geneve_port_cnt)
3094 adapter->geneve_port = 0;
3095 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3101 /* Matchall mac entries can be deleted only after all tunnel ports
3102 * are brought down or removed.
3104 if (!adapter->rawf_cnt)
3106 for_each_port(adapter, i) {
3107 pi = adap2pinfo(adapter, i);
3108 ret = t4_free_raw_mac_filt(adapter, pi->viid,
3109 match_all_mac, match_all_mac,
3110 adapter->rawf_start +
3112 1, pi->port_id, false);
3114 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3118 atomic_dec(&adapter->mps_encap[adapter->rawf_start +
3119 pi->port_id].refcnt);
3123 static void cxgb_add_udp_tunnel(struct net_device *netdev,
3124 struct udp_tunnel_info *ti)
3126 struct port_info *pi = netdev_priv(netdev);
3127 struct adapter *adapter = pi->adapter;
3128 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3129 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3132 if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
3136 case UDP_TUNNEL_TYPE_VXLAN:
3137 /* Callback for adding vxlan port can be called with the same
3138 * port for both IPv4 and IPv6. We should not disable the
3139 * offloading when the same port for both protocols is added
3140 * and later one of them is removed.
3142 if (adapter->vxlan_port_cnt &&
3143 adapter->vxlan_port == ti->port) {
3144 adapter->vxlan_port_cnt++;
3148 /* We will support only one VxLAN port */
3149 if (adapter->vxlan_port_cnt) {
3150 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3151 be16_to_cpu(adapter->vxlan_port),
3152 be16_to_cpu(ti->port));
3156 adapter->vxlan_port = ti->port;
3157 adapter->vxlan_port_cnt = 1;
3159 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3160 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3162 case UDP_TUNNEL_TYPE_GENEVE:
3163 if (adapter->geneve_port_cnt &&
3164 adapter->geneve_port == ti->port) {
3165 adapter->geneve_port_cnt++;
3169 /* We will support only one GENEVE port */
3170 if (adapter->geneve_port_cnt) {
3171 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3172 be16_to_cpu(adapter->geneve_port),
3173 be16_to_cpu(ti->port));
3177 adapter->geneve_port = ti->port;
3178 adapter->geneve_port_cnt = 1;
3180 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3181 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3187 /* Create a 'match all' mac filter entry for inner mac,
3188 * if raw mac interface is supported. Once the linux kernel provides
3189 * driver entry points for adding/deleting the inner mac addresses,
3190 * we will remove this 'match all' entry and fallback to adding
3191 * exact match filters.
3193 for_each_port(adapter, i) {
3194 pi = adap2pinfo(adapter, i);
3196 ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3199 adapter->rawf_start +
3201 1, pi->port_id, false);
3203 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3204 be16_to_cpu(ti->port));
3205 cxgb_del_udp_tunnel(netdev, ti);
3208 atomic_inc(&adapter->mps_encap[ret].refcnt);
3212 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3213 struct net_device *dev,
3214 netdev_features_t features)
3216 struct port_info *pi = netdev_priv(dev);
3217 struct adapter *adapter = pi->adapter;
3219 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3222 /* Check if hw supports offload for this packet */
3223 if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3226 /* Offload is not supported for this encapsulated packet */
3227 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3230 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3231 netdev_features_t features)
3233 /* Disable GRO, if RX_CSUM is disabled */
3234 if (!(features & NETIF_F_RXCSUM))
3235 features &= ~NETIF_F_GRO;
3240 static const struct net_device_ops cxgb4_netdev_ops = {
3241 .ndo_open = cxgb_open,
3242 .ndo_stop = cxgb_close,
3243 .ndo_start_xmit = t4_start_xmit,
3244 .ndo_select_queue = cxgb_select_queue,
3245 .ndo_get_stats64 = cxgb_get_stats,
3246 .ndo_set_rx_mode = cxgb_set_rxmode,
3247 .ndo_set_mac_address = cxgb_set_mac_addr,
3248 .ndo_set_features = cxgb_set_features,
3249 .ndo_validate_addr = eth_validate_addr,
3250 .ndo_do_ioctl = cxgb_ioctl,
3251 .ndo_change_mtu = cxgb_change_mtu,
3252 #ifdef CONFIG_NET_POLL_CONTROLLER
3253 .ndo_poll_controller = cxgb_netpoll,
3255 #ifdef CONFIG_CHELSIO_T4_FCOE
3256 .ndo_fcoe_enable = cxgb_fcoe_enable,
3257 .ndo_fcoe_disable = cxgb_fcoe_disable,
3258 #endif /* CONFIG_CHELSIO_T4_FCOE */
3259 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate,
3260 .ndo_setup_tc = cxgb_setup_tc,
3261 .ndo_udp_tunnel_add = cxgb_add_udp_tunnel,
3262 .ndo_udp_tunnel_del = cxgb_del_udp_tunnel,
3263 .ndo_features_check = cxgb_features_check,
3264 .ndo_fix_features = cxgb_fix_features,
3267 #ifdef CONFIG_PCI_IOV
3268 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3269 .ndo_open = cxgb4_mgmt_open,
3270 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac,
3271 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config,
3272 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate,
3273 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id,
3274 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan,
3278 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3279 struct ethtool_drvinfo *info)
3281 struct adapter *adapter = netdev2adap(dev);
3283 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3284 strlcpy(info->version, cxgb4_driver_version,
3285 sizeof(info->version));
3286 strlcpy(info->bus_info, pci_name(adapter->pdev),
3287 sizeof(info->bus_info));
3290 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3291 .get_drvinfo = cxgb4_mgmt_get_drvinfo,
3294 static void notify_fatal_err(struct work_struct *work)
3296 struct adapter *adap;
3298 adap = container_of(work, struct adapter, fatal_err_notify_task);
3299 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3302 void t4_fatal_err(struct adapter *adap)
3306 if (pci_channel_offline(adap->pdev))
3309 /* Disable the SGE since ULDs are going to free resources that
3310 * could be exposed to the adapter. RDMA MWs for example...
3312 t4_shutdown_adapter(adap);
3313 for_each_port(adap, port) {
3314 struct net_device *dev = adap->port[port];
3316 /* If we get here in very early initialization the network
3317 * devices may not have been set up yet.
3322 netif_tx_stop_all_queues(dev);
3323 netif_carrier_off(dev);
3325 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3326 queue_work(adap->workq, &adap->fatal_err_notify_task);
3329 static void setup_memwin(struct adapter *adap)
3331 u32 nic_win_base = t4_get_util_window(adap);
3333 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3336 static void setup_memwin_rdma(struct adapter *adap)
3338 if (adap->vres.ocq.size) {
3342 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3343 start &= PCI_BASE_ADDRESS_MEM_MASK;
3344 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3345 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3347 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3348 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3350 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3351 adap->vres.ocq.start);
3353 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3357 /* HMA Definitions */
3359 /* The maximum number of address that can be send in a single FW cmd */
3360 #define HMA_MAX_ADDR_IN_CMD 5
3362 #define HMA_PAGE_SIZE PAGE_SIZE
3364 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */
3366 #define HMA_PAGE_ORDER \
3367 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \
3368 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3370 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3371 * configuration(in units of MB).
3373 #define HMA_MIN_TOTAL_SIZE 1
3374 #define HMA_MAX_TOTAL_SIZE \
3375 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \
3376 HMA_MAX_NO_FW_ADDRESS) >> 20)
3378 static void adap_free_hma_mem(struct adapter *adapter)
3380 struct scatterlist *iter;
3384 if (!adapter->hma.sgt)
3387 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
3388 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
3389 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
3390 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
3393 for_each_sg(adapter->hma.sgt->sgl, iter,
3394 adapter->hma.sgt->orig_nents, i) {
3395 page = sg_page(iter);
3397 __free_pages(page, HMA_PAGE_ORDER);
3400 kfree(adapter->hma.phy_addr);
3401 sg_free_table(adapter->hma.sgt);
3402 kfree(adapter->hma.sgt);
3403 adapter->hma.sgt = NULL;
3406 static int adap_config_hma(struct adapter *adapter)
3408 struct scatterlist *sgl, *iter;
3409 struct sg_table *sgt;
3410 struct page *newpage;
3411 unsigned int i, j, k;
3412 u32 param, hma_size;
3418 /* HMA is supported only for T6+ cards.
3419 * Avoid initializing HMA in kdump kernels.
3421 if (is_kdump_kernel() ||
3422 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3425 /* Get the HMA region size required by fw */
3426 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3427 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
3428 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3429 1, ¶m, &hma_size);
3430 /* An error means card has its own memory or HMA is not supported by
3431 * the firmware. Return without any errors.
3433 if (ret || !hma_size)
3436 if (hma_size < HMA_MIN_TOTAL_SIZE ||
3437 hma_size > HMA_MAX_TOTAL_SIZE) {
3438 dev_err(adapter->pdev_dev,
3439 "HMA size %uMB beyond bounds(%u-%lu)MB\n",
3440 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
3444 page_size = HMA_PAGE_SIZE;
3445 page_order = HMA_PAGE_ORDER;
3446 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
3447 if (unlikely(!adapter->hma.sgt)) {
3448 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
3451 sgt = adapter->hma.sgt;
3452 /* FW returned value will be in MB's
3454 sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
3455 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
3456 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
3457 kfree(adapter->hma.sgt);
3458 adapter->hma.sgt = NULL;
3462 sgl = adapter->hma.sgt->sgl;
3463 node = dev_to_node(adapter->pdev_dev);
3464 for_each_sg(sgl, iter, sgt->orig_nents, i) {
3465 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
3466 __GFP_ZERO, page_order);
3468 dev_err(adapter->pdev_dev,
3469 "Not enough memory for HMA page allocation\n");
3473 sg_set_page(iter, newpage, page_size << page_order, 0);
3476 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
3479 dev_err(adapter->pdev_dev,
3480 "Not enough memory for HMA DMA mapping");
3484 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
3486 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
3488 if (unlikely(!adapter->hma.phy_addr))
3491 for_each_sg(sgl, iter, sgt->nents, i) {
3492 newpage = sg_page(iter);
3493 adapter->hma.phy_addr[i] = sg_dma_address(iter);
3496 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
3497 /* Pass on the addresses to firmware */
3498 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
3499 struct fw_hma_cmd hma_cmd;
3500 u8 naddr = HMA_MAX_ADDR_IN_CMD;
3501 u8 soc = 0, eoc = 0;
3502 u8 hma_mode = 1; /* Presently we support only Page table mode */
3504 soc = (i == 0) ? 1 : 0;
3505 eoc = (i == ncmds - 1) ? 1 : 0;
3507 /* For last cmd, set naddr corresponding to remaining
3510 if (i == ncmds - 1) {
3511 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
3512 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
3514 memset(&hma_cmd, 0, sizeof(hma_cmd));
3515 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
3516 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3517 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
3519 hma_cmd.mode_to_pcie_params =
3520 htonl(FW_HMA_CMD_MODE_V(hma_mode) |
3521 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
3523 /* HMA cmd size specified in MB's */
3524 hma_cmd.naddr_size =
3525 htonl(FW_HMA_CMD_SIZE_V(hma_size) |
3526 FW_HMA_CMD_NADDR_V(naddr));
3528 /* Total Page size specified in units of 4K */
3529 hma_cmd.addr_size_pkd =
3530 htonl(FW_HMA_CMD_ADDR_SIZE_V
3531 ((page_size << page_order) >> 12));
3533 /* Fill the 5 addresses */
3534 for (j = 0; j < naddr; j++) {
3535 hma_cmd.phy_address[j] =
3536 cpu_to_be64(adapter->hma.phy_addr[j + k]);
3538 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
3539 sizeof(hma_cmd), &hma_cmd);
3541 dev_err(adapter->pdev_dev,
3542 "HMA FW command failed with err %d\n", ret);
3548 dev_info(adapter->pdev_dev,
3549 "Reserved %uMB host memory for HMA\n", hma_size);
3553 adap_free_hma_mem(adapter);
3557 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3562 /* Now that we've successfully configured and initialized the adapter
3563 * can ask the Firmware what resources it has provisioned for us.
3565 ret = t4_get_pfres(adap);
3567 dev_err(adap->pdev_dev,
3568 "Unable to retrieve resource provisioning information\n");
3572 /* get device capabilities */
3573 memset(c, 0, sizeof(*c));
3574 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3575 FW_CMD_REQUEST_F | FW_CMD_READ_F);
3576 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3577 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3581 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3582 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3583 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3587 ret = t4_config_glbl_rss(adap, adap->pf,
3588 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3589 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3590 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3594 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3595 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3602 /* tweak some settings */
3603 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3604 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3605 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3606 v = t4_read_reg(adap, TP_PIO_DATA_A);
3607 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3609 /* first 4 Tx modulation queues point to consecutive Tx channels */
3610 adap->params.tp.tx_modq_map = 0xE4;
3611 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3612 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3614 /* associate each Tx modulation queue with consecutive Tx channels */
3616 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3617 &v, 1, TP_TX_SCHED_HDR_A);
3618 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3619 &v, 1, TP_TX_SCHED_FIFO_A);
3620 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3621 &v, 1, TP_TX_SCHED_PCMD_A);
3623 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3624 if (is_offload(adap)) {
3625 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3626 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3627 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3628 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3629 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3630 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3631 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3632 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3633 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3634 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3637 /* get basic stuff going */
3638 return t4_early_init(adap, adap->pf);
3642 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
3644 #define MAX_ATIDS 8192U
3647 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3649 * If the firmware we're dealing with has Configuration File support, then
3650 * we use that to perform all configuration
3654 * Tweak configuration based on module parameters, etc. Most of these have
3655 * defaults assigned to them by Firmware Configuration Files (if we're using
3656 * them) but need to be explicitly set if we're using hard-coded
3657 * initialization. But even in the case of using Firmware Configuration
3658 * Files, we'd like to expose the ability to change these via module
3659 * parameters so these are essentially common tweaks/settings for
3660 * Configuration Files and hard-coded initialization ...
3662 static int adap_init0_tweaks(struct adapter *adapter)
3665 * Fix up various Host-Dependent Parameters like Page Size, Cache
3666 * Line Size, etc. The firmware default is for a 4KB Page Size and
3667 * 64B Cache Line Size ...
3669 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3672 * Process module parameters which affect early initialization.
3674 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3675 dev_err(&adapter->pdev->dev,
3676 "Ignoring illegal rx_dma_offset=%d, using 2\n",
3680 t4_set_reg_field(adapter, SGE_CONTROL_A,
3681 PKTSHIFT_V(PKTSHIFT_M),
3682 PKTSHIFT_V(rx_dma_offset));
3685 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3686 * adds the pseudo header itself.
3688 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3689 CSUM_HAS_PSEUDO_HDR_F, 0);
3694 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3695 * unto themselves and they contain their own firmware to perform their
3698 static int phy_aq1202_version(const u8 *phy_fw_data,
3703 /* At offset 0x8 you're looking for the primary image's
3704 * starting offset which is 3 Bytes wide
3706 * At offset 0xa of the primary image, you look for the offset
3707 * of the DRAM segment which is 3 Bytes wide.
3709 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3712 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3713 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3714 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3716 offset = le24(phy_fw_data + 0x8) << 12;
3717 offset = le24(phy_fw_data + offset + 0xa);
3718 return be16(phy_fw_data + offset + 0x27e);
3725 static struct info_10gbt_phy_fw {
3726 unsigned int phy_fw_id; /* PCI Device ID */
3727 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
3728 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3729 int phy_flash; /* Has FLASH for PHY Firmware */
3730 } phy_info_array[] = {
3732 PHY_AQ1202_DEVICEID,
3733 PHY_AQ1202_FIRMWARE,
3738 PHY_BCM84834_DEVICEID,
3739 PHY_BCM84834_FIRMWARE,
3746 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3750 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3751 if (phy_info_array[i].phy_fw_id == devid)
3752 return &phy_info_array[i];
3757 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
3758 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
3759 * we return a negative error number. If we transfer new firmware we return 1
3760 * (from t4_load_phy_fw()). If we don't do anything we return 0.
3762 static int adap_init0_phy(struct adapter *adap)
3764 const struct firmware *phyf;
3766 struct info_10gbt_phy_fw *phy_info;
3768 /* Use the device ID to determine which PHY file to flash.
3770 phy_info = find_phy_info(adap->pdev->device);
3772 dev_warn(adap->pdev_dev,
3773 "No PHY Firmware file found for this PHY\n");
3777 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3778 * use that. The adapter firmware provides us with a memory buffer
3779 * where we can load a PHY firmware file from the host if we want to
3780 * override the PHY firmware File in flash.
3782 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3785 /* For adapters without FLASH attached to PHY for their
3786 * firmware, it's obviously a fatal error if we can't get the
3787 * firmware to the adapter. For adapters with PHY firmware
3788 * FLASH storage, it's worth a warning if we can't find the
3789 * PHY Firmware but we'll neuter the error ...
3791 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3792 "/lib/firmware/%s, error %d\n",
3793 phy_info->phy_fw_file, -ret);
3794 if (phy_info->phy_flash) {
3795 int cur_phy_fw_ver = 0;
3797 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3798 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3799 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3806 /* Load PHY Firmware onto adapter.
3808 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3809 phy_info->phy_fw_version,
3810 (u8 *)phyf->data, phyf->size);
3812 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3815 int new_phy_fw_ver = 0;
3817 if (phy_info->phy_fw_version)
3818 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3820 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3821 "Firmware /lib/firmware/%s, version %#x\n",
3822 phy_info->phy_fw_file, new_phy_fw_ver);
3825 release_firmware(phyf);
3831 * Attempt to initialize the adapter via a Firmware Configuration File.
3833 static int adap_init0_config(struct adapter *adapter, int reset)
3835 struct fw_caps_config_cmd caps_cmd;
3836 const struct firmware *cf;
3837 unsigned long mtype = 0, maddr = 0;
3838 u32 finiver, finicsum, cfcsum;
3840 int config_issued = 0;
3841 char *fw_config_file, fw_config_file_path[256];
3842 char *config_name = NULL;
3845 * Reset device if necessary.
3848 ret = t4_fw_reset(adapter, adapter->mbox,
3849 PIORSTMODE_F | PIORST_F);
3854 /* If this is a 10Gb/s-BT adapter make sure the chip-external
3855 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
3856 * to be performed after any global adapter RESET above since some
3857 * PHYs only have local RAM copies of the PHY firmware.
3859 if (is_10gbt_device(adapter->pdev->device)) {
3860 ret = adap_init0_phy(adapter);
3865 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3866 * then use that. Otherwise, use the configuration file stored
3867 * in the adapter flash ...
3869 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3871 fw_config_file = FW4_CFNAME;
3874 fw_config_file = FW5_CFNAME;
3877 fw_config_file = FW6_CFNAME;
3880 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3881 adapter->pdev->device);
3886 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3888 config_name = "On FLASH";
3889 mtype = FW_MEMTYPE_CF_FLASH;
3890 maddr = t4_flash_cfg_addr(adapter);
3892 u32 params[7], val[7];
3894 sprintf(fw_config_file_path,
3895 "/lib/firmware/%s", fw_config_file);
3896 config_name = fw_config_file_path;
3898 if (cf->size >= FLASH_CFG_MAX_SIZE)
3901 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3902 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3903 ret = t4_query_params(adapter, adapter->mbox,
3904 adapter->pf, 0, 1, params, val);
3907 * For t4_memory_rw() below addresses and
3908 * sizes have to be in terms of multiples of 4
3909 * bytes. So, if the Configuration File isn't
3910 * a multiple of 4 bytes in length we'll have
3911 * to write that out separately since we can't
3912 * guarantee that the bytes following the
3913 * residual byte in the buffer returned by
3914 * request_firmware() are zeroed out ...
3916 size_t resid = cf->size & 0x3;
3917 size_t size = cf->size & ~0x3;
3918 __be32 *data = (__be32 *)cf->data;
3920 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3921 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3923 spin_lock(&adapter->win0_lock);
3924 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3925 size, data, T4_MEMORY_WRITE);
3926 if (ret == 0 && resid != 0) {
3933 last.word = data[size >> 2];
3934 for (i = resid; i < 4; i++)
3936 ret = t4_memory_rw(adapter, 0, mtype,
3941 spin_unlock(&adapter->win0_lock);
3945 release_firmware(cf);
3951 * Issue a Capability Configuration command to the firmware to get it
3952 * to parse the Configuration File. We don't use t4_fw_config_file()
3953 * because we want the ability to modify various features after we've
3954 * processed the configuration file ...
3956 memset(&caps_cmd, 0, sizeof(caps_cmd));
3957 caps_cmd.op_to_write =
3958 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3961 caps_cmd.cfvalid_to_len16 =
3962 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3963 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3964 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3965 FW_LEN16(caps_cmd));
3966 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3969 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3970 * Configuration File in FLASH), our last gasp effort is to use the
3971 * Firmware Configuration File which is embedded in the firmware. A
3972 * very few early versions of the firmware didn't have one embedded
3973 * but we can ignore those.
3975 if (ret == -ENOENT) {
3976 memset(&caps_cmd, 0, sizeof(caps_cmd));
3977 caps_cmd.op_to_write =
3978 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3981 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3982 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3983 sizeof(caps_cmd), &caps_cmd);
3984 config_name = "Firmware Default";
3991 finiver = ntohl(caps_cmd.finiver);
3992 finicsum = ntohl(caps_cmd.finicsum);
3993 cfcsum = ntohl(caps_cmd.cfcsum);
3994 if (finicsum != cfcsum)
3995 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3996 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4000 * And now tell the firmware to use the configuration we just loaded.
4002 caps_cmd.op_to_write =
4003 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4006 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4007 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4013 * Tweak configuration based on system architecture, module
4016 ret = adap_init0_tweaks(adapter);
4020 /* We will proceed even if HMA init fails. */
4021 ret = adap_config_hma(adapter);
4023 dev_err(adapter->pdev_dev,
4024 "HMA configuration failed with error %d\n", ret);
4027 * And finally tell the firmware to initialize itself using the
4028 * parameters from the Configuration File.
4030 ret = t4_fw_initialize(adapter, adapter->mbox);
4034 /* Emit Firmware Configuration File information and return
4037 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4038 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4039 config_name, finiver, cfcsum);
4043 * Something bad happened. Return the error ... (If the "error"
4044 * is that there's no Configuration File on the adapter we don't
4045 * want to issue a warning since this is fairly common.)
4048 if (config_issued && ret != -ENOENT)
4049 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4054 static struct fw_info fw_info_array[] = {
4057 .fs_name = FW4_CFNAME,
4058 .fw_mod_name = FW4_FNAME,
4060 .chip = FW_HDR_CHIP_T4,
4061 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4062 .intfver_nic = FW_INTFVER(T4, NIC),
4063 .intfver_vnic = FW_INTFVER(T4, VNIC),
4064 .intfver_ri = FW_INTFVER(T4, RI),
4065 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4066 .intfver_fcoe = FW_INTFVER(T4, FCOE),
4070 .fs_name = FW5_CFNAME,
4071 .fw_mod_name = FW5_FNAME,
4073 .chip = FW_HDR_CHIP_T5,
4074 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4075 .intfver_nic = FW_INTFVER(T5, NIC),
4076 .intfver_vnic = FW_INTFVER(T5, VNIC),
4077 .intfver_ri = FW_INTFVER(T5, RI),
4078 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4079 .intfver_fcoe = FW_INTFVER(T5, FCOE),
4083 .fs_name = FW6_CFNAME,
4084 .fw_mod_name = FW6_FNAME,
4086 .chip = FW_HDR_CHIP_T6,
4087 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4088 .intfver_nic = FW_INTFVER(T6, NIC),
4089 .intfver_vnic = FW_INTFVER(T6, VNIC),
4090 .intfver_ofld = FW_INTFVER(T6, OFLD),
4091 .intfver_ri = FW_INTFVER(T6, RI),
4092 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4093 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4094 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4095 .intfver_fcoe = FW_INTFVER(T6, FCOE),
4101 static struct fw_info *find_fw_info(int chip)
4105 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4106 if (fw_info_array[i].chip == chip)
4107 return &fw_info_array[i];
4113 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4115 static int adap_init0(struct adapter *adap)
4119 enum dev_state state;
4120 u32 params[7], val[7];
4121 struct fw_caps_config_cmd caps_cmd;
4124 /* Grab Firmware Device Log parameters as early as possible so we have
4125 * access to it for debugging, etc.
4127 ret = t4_init_devlog_params(adap);
4131 /* Contact FW, advertising Master capability */
4132 ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4133 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4135 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4139 if (ret == adap->mbox)
4140 adap->flags |= MASTER_PF;
4143 * If we're the Master PF Driver and the device is uninitialized,
4144 * then let's consider upgrading the firmware ... (We always want
4145 * to check the firmware version number in order to A. get it for
4146 * later reporting and B. to warn if the currently loaded firmware
4147 * is excessively mismatched relative to the driver.)
4150 t4_get_version_info(adap);
4151 ret = t4_check_fw_version(adap);
4152 /* If firmware is too old (not supported by driver) force an update. */
4154 state = DEV_STATE_UNINIT;
4155 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
4156 struct fw_info *fw_info;
4157 struct fw_hdr *card_fw;
4158 const struct firmware *fw;
4159 const u8 *fw_data = NULL;
4160 unsigned int fw_size = 0;
4162 /* This is the firmware whose headers the driver was compiled
4165 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4166 if (fw_info == NULL) {
4167 dev_err(adap->pdev_dev,
4168 "unable to get firmware info for chip %d.\n",
4169 CHELSIO_CHIP_VERSION(adap->params.chip));
4173 /* allocate memory to read the header of the firmware on the
4176 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4182 /* Get FW from from /lib/firmware/ */
4183 ret = request_firmware(&fw, fw_info->fw_mod_name,
4186 dev_err(adap->pdev_dev,
4187 "unable to load firmware image %s, error %d\n",
4188 fw_info->fw_mod_name, ret);
4194 /* upgrade FW logic */
4195 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4199 release_firmware(fw);
4206 /* If the firmware is initialized already, emit a simply note to that
4207 * effect. Otherwise, it's time to try initializing the adapter.
4209 if (state == DEV_STATE_INIT) {
4210 ret = adap_config_hma(adap);
4212 dev_err(adap->pdev_dev,
4213 "HMA configuration failed with error %d\n",
4215 dev_info(adap->pdev_dev, "Coming up as %s: "\
4216 "Adapter already initialized\n",
4217 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
4219 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4220 "Initializing adapter\n");
4222 /* Find out whether we're dealing with a version of the
4223 * firmware which has configuration file support.
4225 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4226 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4227 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4230 /* If the firmware doesn't support Configuration Files,
4234 dev_err(adap->pdev_dev, "firmware doesn't support "
4235 "Firmware Configuration Files\n");
4239 /* The firmware provides us with a memory buffer where we can
4240 * load a Configuration File from the host if we want to
4241 * override the Configuration File in flash.
4243 ret = adap_init0_config(adap, reset);
4244 if (ret == -ENOENT) {
4245 dev_err(adap->pdev_dev, "no Configuration File "
4246 "present on adapter.\n");
4250 dev_err(adap->pdev_dev, "could not initialize "
4251 "adapter, error %d\n", -ret);
4256 /* Now that we've successfully configured and initialized the adapter
4257 * (or found it already initialized), we can ask the Firmware what
4258 * resources it has provisioned for us.
4260 ret = t4_get_pfres(adap);
4262 dev_err(adap->pdev_dev,
4263 "Unable to retrieve resource provisioning information\n");
4267 /* Grab VPD parameters. This should be done after we establish a
4268 * connection to the firmware since some of the VPD parameters
4269 * (notably the Core Clock frequency) are retrieved via requests to
4270 * the firmware. On the other hand, we need these fairly early on
4271 * so we do this right after getting ahold of the firmware.
4273 * We need to do this after initializing the adapter because someone
4274 * could have FLASHed a new VPD which won't be read by the firmware
4275 * until we do the RESET ...
4277 ret = t4_get_vpd_params(adap, &adap->params.vpd);
4281 /* Find out what ports are available to us. Note that we need to do
4282 * this before calling adap_init0_no_config() since it needs nports
4286 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4287 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4288 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4292 adap->params.nports = hweight32(port_vec);
4293 adap->params.portvec = port_vec;
4295 /* Give the SGE code a chance to pull in anything that it needs ...
4296 * Note that this must be called after we retrieve our VPD parameters
4297 * in order to know how to convert core ticks to seconds, etc.
4299 ret = t4_sge_init(adap);
4303 if (is_bypass_device(adap->pdev->device))
4304 adap->params.bypass = 1;
4307 * Grab some of our basic fundamental operating parameters.
4309 #define FW_PARAM_DEV(param) \
4310 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
4311 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
4313 #define FW_PARAM_PFVF(param) \
4314 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
4315 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \
4316 FW_PARAMS_PARAM_Y_V(0) | \
4317 FW_PARAMS_PARAM_Z_V(0)
4319 params[0] = FW_PARAM_PFVF(EQ_START);
4320 params[1] = FW_PARAM_PFVF(L2T_START);
4321 params[2] = FW_PARAM_PFVF(L2T_END);
4322 params[3] = FW_PARAM_PFVF(FILTER_START);
4323 params[4] = FW_PARAM_PFVF(FILTER_END);
4324 params[5] = FW_PARAM_PFVF(IQFLINT_START);
4325 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4328 adap->sge.egr_start = val[0];
4329 adap->l2t_start = val[1];
4330 adap->l2t_end = val[2];
4331 adap->tids.ftid_base = val[3];
4332 adap->tids.nftids = val[4] - val[3] + 1;
4333 adap->sge.ingr_start = val[5];
4335 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4336 /* Read the raw mps entries. In T6, the last 2 tcam entries
4337 * are reserved for raw mac addresses (rawf = 2, one per port).
4339 params[0] = FW_PARAM_PFVF(RAWF_START);
4340 params[1] = FW_PARAM_PFVF(RAWF_END);
4341 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4344 adap->rawf_start = val[0];
4345 adap->rawf_cnt = val[1] - val[0] + 1;
4349 /* qids (ingress/egress) returned from firmware can be anywhere
4350 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4351 * Hence driver needs to allocate memory for this range to
4352 * store the queue info. Get the highest IQFLINT/EQ index returned
4353 * in FW_EQ_*_CMD.alloc command.
4355 params[0] = FW_PARAM_PFVF(EQ_END);
4356 params[1] = FW_PARAM_PFVF(IQFLINT_END);
4357 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4360 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4361 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4363 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4364 sizeof(*adap->sge.egr_map), GFP_KERNEL);
4365 if (!adap->sge.egr_map) {
4370 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4371 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4372 if (!adap->sge.ingr_map) {
4377 /* Allocate the memory for the vaious egress queue bitmaps
4378 * ie starving_fl, txq_maperr and blocked_fl.
4380 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4381 sizeof(long), GFP_KERNEL);
4382 if (!adap->sge.starving_fl) {
4387 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4388 sizeof(long), GFP_KERNEL);
4389 if (!adap->sge.txq_maperr) {
4394 #ifdef CONFIG_DEBUG_FS
4395 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4396 sizeof(long), GFP_KERNEL);
4397 if (!adap->sge.blocked_fl) {
4403 params[0] = FW_PARAM_PFVF(CLIP_START);
4404 params[1] = FW_PARAM_PFVF(CLIP_END);
4405 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4408 adap->clipt_start = val[0];
4409 adap->clipt_end = val[1];
4411 /* We don't yet have a PARAMs calls to retrieve the number of Traffic
4412 * Classes supported by the hardware/firmware so we hard code it here
4415 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4417 /* query params related to active filter region */
4418 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4419 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4420 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4421 /* If Active filter size is set we enable establishing
4422 * offload connection through firmware work request
4424 if ((val[0] != val[1]) && (ret >= 0)) {
4425 adap->flags |= FW_OFLD_CONN;
4426 adap->tids.aftid_base = val[0];
4427 adap->tids.aftid_end = val[1];
4430 /* If we're running on newer firmware, let it know that we're
4431 * prepared to deal with encapsulated CPL messages. Older
4432 * firmware won't understand this and we'll just get
4433 * unencapsulated messages ...
4435 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4437 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4440 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4441 * capability. Earlier versions of the firmware didn't have the
4442 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4443 * permission to use ULPTX MEMWRITE DSGL.
4445 if (is_t4(adap->params.chip)) {
4446 adap->params.ulptx_memwrite_dsgl = false;
4448 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4449 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4451 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4454 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4455 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
4456 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4458 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
4460 /* See if FW supports FW_FILTER2 work request */
4461 if (is_t4(adap->params.chip)) {
4462 adap->params.filter2_wr_support = 0;
4464 params[0] = FW_PARAM_DEV(FILTER2_WR);
4465 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4467 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
4471 * Get device capabilities so we can determine what resources we need
4474 memset(&caps_cmd, 0, sizeof(caps_cmd));
4475 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4476 FW_CMD_REQUEST_F | FW_CMD_READ_F);
4477 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4478 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4483 if (caps_cmd.ofldcaps ||
4484 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) {
4485 /* query offload-related parameters */
4486 params[0] = FW_PARAM_DEV(NTID);
4487 params[1] = FW_PARAM_PFVF(SERVER_START);
4488 params[2] = FW_PARAM_PFVF(SERVER_END);
4489 params[3] = FW_PARAM_PFVF(TDDP_START);
4490 params[4] = FW_PARAM_PFVF(TDDP_END);
4491 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4492 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4496 adap->tids.ntids = val[0];
4497 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4498 adap->tids.stid_base = val[1];
4499 adap->tids.nstids = val[2] - val[1] + 1;
4501 * Setup server filter region. Divide the available filter
4502 * region into two parts. Regular filters get 1/3rd and server
4503 * filters get 2/3rd part. This is only enabled if workarond
4505 * 1. For regular filters.
4506 * 2. Server filter: This are special filters which are used
4507 * to redirect SYN packets to offload queue.
4509 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4510 adap->tids.sftid_base = adap->tids.ftid_base +
4511 DIV_ROUND_UP(adap->tids.nftids, 3);
4512 adap->tids.nsftids = adap->tids.nftids -
4513 DIV_ROUND_UP(adap->tids.nftids, 3);
4514 adap->tids.nftids = adap->tids.sftid_base -
4515 adap->tids.ftid_base;
4517 adap->vres.ddp.start = val[3];
4518 adap->vres.ddp.size = val[4] - val[3] + 1;
4519 adap->params.ofldq_wr_cred = val[5];
4521 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4522 ret = init_hash_filter(adap);
4526 adap->params.offload = 1;
4527 adap->num_ofld_uld += 1;
4530 if (caps_cmd.rdmacaps) {
4531 params[0] = FW_PARAM_PFVF(STAG_START);
4532 params[1] = FW_PARAM_PFVF(STAG_END);
4533 params[2] = FW_PARAM_PFVF(RQ_START);
4534 params[3] = FW_PARAM_PFVF(RQ_END);
4535 params[4] = FW_PARAM_PFVF(PBL_START);
4536 params[5] = FW_PARAM_PFVF(PBL_END);
4537 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4541 adap->vres.stag.start = val[0];
4542 adap->vres.stag.size = val[1] - val[0] + 1;
4543 adap->vres.rq.start = val[2];
4544 adap->vres.rq.size = val[3] - val[2] + 1;
4545 adap->vres.pbl.start = val[4];
4546 adap->vres.pbl.size = val[5] - val[4] + 1;
4548 params[0] = FW_PARAM_PFVF(SRQ_START);
4549 params[1] = FW_PARAM_PFVF(SRQ_END);
4550 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4553 adap->vres.srq.start = val[0];
4554 adap->vres.srq.size = val[1] - val[0] + 1;
4556 if (adap->vres.srq.size) {
4557 adap->srq = t4_init_srq(adap->vres.srq.size);
4559 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
4562 params[0] = FW_PARAM_PFVF(SQRQ_START);
4563 params[1] = FW_PARAM_PFVF(SQRQ_END);
4564 params[2] = FW_PARAM_PFVF(CQ_START);
4565 params[3] = FW_PARAM_PFVF(CQ_END);
4566 params[4] = FW_PARAM_PFVF(OCQ_START);
4567 params[5] = FW_PARAM_PFVF(OCQ_END);
4568 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4572 adap->vres.qp.start = val[0];
4573 adap->vres.qp.size = val[1] - val[0] + 1;
4574 adap->vres.cq.start = val[2];
4575 adap->vres.cq.size = val[3] - val[2] + 1;
4576 adap->vres.ocq.start = val[4];
4577 adap->vres.ocq.size = val[5] - val[4] + 1;
4579 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4580 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4581 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4584 adap->params.max_ordird_qp = 8;
4585 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4588 adap->params.max_ordird_qp = val[0];
4589 adap->params.max_ird_adapter = val[1];
4591 dev_info(adap->pdev_dev,
4592 "max_ordird_qp %d max_ird_adapter %d\n",
4593 adap->params.max_ordird_qp,
4594 adap->params.max_ird_adapter);
4596 /* Enable write_with_immediate if FW supports it */
4597 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
4598 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4600 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
4602 /* Enable write_cmpl if FW supports it */
4603 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
4604 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4606 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
4607 adap->num_ofld_uld += 2;
4609 if (caps_cmd.iscsicaps) {
4610 params[0] = FW_PARAM_PFVF(ISCSI_START);
4611 params[1] = FW_PARAM_PFVF(ISCSI_END);
4612 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4616 adap->vres.iscsi.start = val[0];
4617 adap->vres.iscsi.size = val[1] - val[0] + 1;
4618 /* LIO target and cxgb4i initiaitor */
4619 adap->num_ofld_uld += 2;
4621 if (caps_cmd.cryptocaps) {
4622 if (ntohs(caps_cmd.cryptocaps) &
4623 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
4624 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
4625 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4631 adap->vres.ncrypto_fc = val[0];
4633 adap->num_ofld_uld += 1;
4635 if (ntohs(caps_cmd.cryptocaps) &
4636 FW_CAPS_CONFIG_TLS_INLINE) {
4637 params[0] = FW_PARAM_PFVF(TLS_START);
4638 params[1] = FW_PARAM_PFVF(TLS_END);
4639 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4643 adap->vres.key.start = val[0];
4644 adap->vres.key.size = val[1] - val[0] + 1;
4647 adap->params.crypto = ntohs(caps_cmd.cryptocaps);
4649 #undef FW_PARAM_PFVF
4652 /* The MTU/MSS Table is initialized by now, so load their values. If
4653 * we're initializing the adapter, then we'll make any modifications
4654 * we want to the MTU/MSS Table and also initialize the congestion
4657 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4658 if (state != DEV_STATE_INIT) {
4661 /* The default MTU Table contains values 1492 and 1500.
4662 * However, for TCP, it's better to have two values which are
4663 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4664 * This allows us to have a TCP Data Payload which is a
4665 * multiple of 8 regardless of what combination of TCP Options
4666 * are in use (always a multiple of 4 bytes) which is
4667 * important for performance reasons. For instance, if no
4668 * options are in use, then we have a 20-byte IP header and a
4669 * 20-byte TCP header. In this case, a 1500-byte MSS would
4670 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4671 * which is not a multiple of 8. So using an MSS of 1488 in
4672 * this case results in a TCP Data Payload of 1448 bytes which
4673 * is a multiple of 8. On the other hand, if 12-byte TCP Time
4674 * Stamps have been negotiated, then an MTU of 1500 bytes
4675 * results in a TCP Data Payload of 1448 bytes which, as
4676 * above, is a multiple of 8 bytes ...
4678 for (i = 0; i < NMTUS; i++)
4679 if (adap->params.mtus[i] == 1492) {
4680 adap->params.mtus[i] = 1488;
4684 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4685 adap->params.b_wnd);
4687 t4_init_sge_params(adap);
4688 adap->flags |= FW_OK;
4689 t4_init_tp_params(adap, true);
4693 * Something bad happened. If a command timed out or failed with EIO
4694 * FW does not operate within its spec or something catastrophic
4695 * happened to HW/FW, stop issuing commands.
4698 adap_free_hma_mem(adap);
4699 kfree(adap->sge.egr_map);
4700 kfree(adap->sge.ingr_map);
4701 kfree(adap->sge.starving_fl);
4702 kfree(adap->sge.txq_maperr);
4703 #ifdef CONFIG_DEBUG_FS
4704 kfree(adap->sge.blocked_fl);
4706 if (ret != -ETIMEDOUT && ret != -EIO)
4707 t4_fw_bye(adap, adap->mbox);
4713 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4714 pci_channel_state_t state)
4717 struct adapter *adap = pci_get_drvdata(pdev);
4723 adap->flags &= ~FW_OK;
4724 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4725 spin_lock(&adap->stats_lock);
4726 for_each_port(adap, i) {
4727 struct net_device *dev = adap->port[i];
4729 netif_device_detach(dev);
4730 netif_carrier_off(dev);
4733 spin_unlock(&adap->stats_lock);
4734 disable_interrupts(adap);
4735 if (adap->flags & FULL_INIT_DONE)
4738 if ((adap->flags & DEV_ENABLED)) {
4739 pci_disable_device(pdev);
4740 adap->flags &= ~DEV_ENABLED;
4742 out: return state == pci_channel_io_perm_failure ?
4743 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4746 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4749 struct fw_caps_config_cmd c;
4750 struct adapter *adap = pci_get_drvdata(pdev);
4753 pci_restore_state(pdev);
4754 pci_save_state(pdev);
4755 return PCI_ERS_RESULT_RECOVERED;
4758 if (!(adap->flags & DEV_ENABLED)) {
4759 if (pci_enable_device(pdev)) {
4760 dev_err(&pdev->dev, "Cannot reenable PCI "
4761 "device after reset\n");
4762 return PCI_ERS_RESULT_DISCONNECT;
4764 adap->flags |= DEV_ENABLED;
4767 pci_set_master(pdev);
4768 pci_restore_state(pdev);
4769 pci_save_state(pdev);
4771 if (t4_wait_dev_ready(adap->regs) < 0)
4772 return PCI_ERS_RESULT_DISCONNECT;
4773 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4774 return PCI_ERS_RESULT_DISCONNECT;
4775 adap->flags |= FW_OK;
4776 if (adap_init1(adap, &c))
4777 return PCI_ERS_RESULT_DISCONNECT;
4779 for_each_port(adap, i) {
4780 struct port_info *p = adap2pinfo(adap, i);
4782 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4785 return PCI_ERS_RESULT_DISCONNECT;
4787 p->xact_addr_filt = -1;
4790 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4791 adap->params.b_wnd);
4794 return PCI_ERS_RESULT_DISCONNECT;
4795 return PCI_ERS_RESULT_RECOVERED;
4798 static void eeh_resume(struct pci_dev *pdev)
4801 struct adapter *adap = pci_get_drvdata(pdev);
4807 for_each_port(adap, i) {
4808 struct net_device *dev = adap->port[i];
4810 if (netif_running(dev)) {
4812 cxgb_set_rxmode(dev);
4814 netif_device_attach(dev);
4820 static const struct pci_error_handlers cxgb4_eeh = {
4821 .error_detected = eeh_err_detected,
4822 .slot_reset = eeh_slot_reset,
4823 .resume = eeh_resume,
4826 /* Return true if the Link Configuration supports "High Speeds" (those greater
4829 static inline bool is_x_10g_port(const struct link_config *lc)
4831 unsigned int speeds, high_speeds;
4833 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
4834 high_speeds = speeds &
4835 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
4837 return high_speeds != 0;
4841 * Perform default configuration of DMA queues depending on the number and type
4842 * of ports we found and the number of available CPUs. Most settings can be
4843 * modified by the admin prior to actual use.
4845 static int cfg_queues(struct adapter *adap)
4847 struct sge *s = &adap->sge;
4848 int i, n10g = 0, qidx = 0;
4849 int niqflint, neq, avail_eth_qsets;
4850 int max_eth_qsets = 32;
4851 #ifndef CONFIG_CHELSIO_T4_DCB
4855 /* Reduce memory usage in kdump environment, disable all offload.
4857 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4858 adap->params.offload = 0;
4859 adap->params.crypto = 0;
4862 /* Calculate the number of Ethernet Queue Sets available based on
4863 * resources provisioned for us. We always have an Asynchronous
4864 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy
4865 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
4866 * Ingress Queue. Meanwhile, we need two Egress Queues for each
4867 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
4869 * Note that we should also take into account all of the various
4870 * Offload Queues. But, in any situation where we're operating in
4871 * a Resource Constrained Provisioning environment, doing any Offload
4872 * at all is problematic ...
4874 niqflint = adap->params.pfres.niqflint - 1;
4875 if (!(adap->flags & USING_MSIX))
4877 neq = adap->params.pfres.neq / 2;
4878 avail_eth_qsets = min(niqflint, neq);
4880 if (avail_eth_qsets > max_eth_qsets)
4881 avail_eth_qsets = max_eth_qsets;
4883 if (avail_eth_qsets < adap->params.nports) {
4884 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
4885 avail_eth_qsets, adap->params.nports);
4889 /* Count the number of 10Gb/s or better ports */
4890 for_each_port(adap, i)
4891 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4893 #ifdef CONFIG_CHELSIO_T4_DCB
4894 /* For Data Center Bridging support we need to be able to support up
4895 * to 8 Traffic Priorities; each of which will be assigned to its
4896 * own TX Queue in order to prevent Head-Of-Line Blocking.
4898 if (adap->params.nports * 8 > avail_eth_qsets) {
4899 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
4900 avail_eth_qsets, adap->params.nports * 8);
4904 for_each_port(adap, i) {
4905 struct port_info *pi = adap2pinfo(adap, i);
4907 pi->first_qset = qidx;
4908 pi->nqsets = is_kdump_kernel() ? 1 : 8;
4911 #else /* !CONFIG_CHELSIO_T4_DCB */
4913 * We default to 1 queue per non-10G port and up to # of cores queues
4917 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
4918 if (q10g > netif_get_num_default_rss_queues())
4919 q10g = netif_get_num_default_rss_queues();
4921 if (is_kdump_kernel())
4924 for_each_port(adap, i) {
4925 struct port_info *pi = adap2pinfo(adap, i);
4927 pi->first_qset = qidx;
4928 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4931 #endif /* !CONFIG_CHELSIO_T4_DCB */
4934 s->max_ethqsets = qidx; /* MSI-X may lower it later */
4938 * For offload we use 1 queue/channel if all ports are up to 1G,
4939 * otherwise we divide all available queues amongst the channels
4940 * capped by the number of available cores.
4943 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4944 s->ofldqsets = roundup(i, adap->params.nports);
4946 s->ofldqsets = adap->params.nports;
4950 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4951 struct sge_eth_rxq *r = &s->ethrxq[i];
4953 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4957 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4958 s->ethtxq[i].q.size = 1024;
4960 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4961 s->ctrlq[i].q.size = 512;
4963 if (!is_t4(adap->params.chip))
4964 s->ptptxq.q.size = 8;
4966 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4967 init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4973 * Reduce the number of Ethernet queues across all ports to at most n.
4974 * n provides at least one queue per port.
4976 static void reduce_ethqs(struct adapter *adap, int n)
4979 struct port_info *pi;
4981 while (n < adap->sge.ethqsets)
4982 for_each_port(adap, i) {
4983 pi = adap2pinfo(adap, i);
4984 if (pi->nqsets > 1) {
4986 adap->sge.ethqsets--;
4987 if (adap->sge.ethqsets <= n)
4993 for_each_port(adap, i) {
4994 pi = adap2pinfo(adap, i);
5000 static int get_msix_info(struct adapter *adap)
5002 struct uld_msix_info *msix_info;
5003 unsigned int max_ingq = 0;
5005 if (is_offload(adap))
5006 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
5007 if (is_pci_uld(adap))
5008 max_ingq += MAX_OFLD_QSETS * adap->num_uld;
5013 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
5017 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
5018 sizeof(long), GFP_KERNEL);
5019 if (!adap->msix_bmap_ulds.msix_bmap) {
5023 spin_lock_init(&adap->msix_bmap_ulds.lock);
5024 adap->msix_info_ulds = msix_info;
5029 static void free_msix_info(struct adapter *adap)
5031 if (!(adap->num_uld && adap->num_ofld_uld))
5034 kfree(adap->msix_info_ulds);
5035 kfree(adap->msix_bmap_ulds.msix_bmap);
5038 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5039 #define EXTRA_VECS 2
5041 static int enable_msix(struct adapter *adap)
5043 int ofld_need = 0, uld_need = 0;
5044 int i, j, want, need, allocated;
5045 struct sge *s = &adap->sge;
5046 unsigned int nchan = adap->params.nports;
5047 struct msix_entry *entries;
5048 int max_ingq = MAX_INGQ;
5050 if (is_pci_uld(adap))
5051 max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
5052 if (is_offload(adap))
5053 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
5054 entries = kmalloc_array(max_ingq + 1, sizeof(*entries),
5060 if (get_msix_info(adap)) {
5061 adap->params.offload = 0;
5062 adap->params.crypto = 0;
5065 for (i = 0; i < max_ingq + 1; ++i)
5066 entries[i].entry = i;
5068 want = s->max_ethqsets + EXTRA_VECS;
5069 if (is_offload(adap)) {
5070 want += adap->num_ofld_uld * s->ofldqsets;
5071 ofld_need = adap->num_ofld_uld * nchan;
5073 if (is_pci_uld(adap)) {
5074 want += adap->num_uld * s->ofldqsets;
5075 uld_need = adap->num_uld * nchan;
5077 #ifdef CONFIG_CHELSIO_T4_DCB
5078 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5081 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5083 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5085 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5086 if (allocated < 0) {
5087 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
5088 " not using MSI-X\n");
5093 /* Distribute available vectors to the various queue groups.
5094 * Every group gets its minimum requirement and NIC gets top
5095 * priority for leftovers.
5097 i = allocated - EXTRA_VECS - ofld_need - uld_need;
5098 if (i < s->max_ethqsets) {
5099 s->max_ethqsets = i;
5100 if (i < s->ethqsets)
5101 reduce_ethqs(adap, i);
5104 if (allocated < want)
5105 s->nqs_per_uld = nchan;
5107 s->nqs_per_uld = s->ofldqsets;
5110 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
5111 adap->msix_info[i].vec = entries[i].vector;
5113 for (j = 0 ; i < allocated; ++i, j++) {
5114 adap->msix_info_ulds[j].vec = entries[i].vector;
5115 adap->msix_info_ulds[j].idx = i;
5117 adap->msix_bmap_ulds.mapsize = j;
5119 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
5120 "nic %d per uld %d\n",
5121 allocated, s->max_ethqsets, s->nqs_per_uld);
5129 static int init_rss(struct adapter *adap)
5134 err = t4_init_rss_mode(adap, adap->mbox);
5138 for_each_port(adap, i) {
5139 struct port_info *pi = adap2pinfo(adap, i);
5141 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5148 /* Dump basic information about the adapter */
5149 static void print_adapter_info(struct adapter *adapter)
5151 /* Hardware/Firmware/etc. Version/Revision IDs */
5152 t4_dump_version_info(adapter);
5154 /* Software/Hardware configuration */
5155 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
5156 is_offload(adapter) ? "R" : "",
5157 ((adapter->flags & USING_MSIX) ? "MSI-X" :
5158 (adapter->flags & USING_MSI) ? "MSI" : ""),
5159 is_offload(adapter) ? "Offload" : "non-Offload");
5162 static void print_port_info(const struct net_device *dev)
5166 const struct port_info *pi = netdev_priv(dev);
5167 const struct adapter *adap = pi->adapter;
5169 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
5170 bufp += sprintf(bufp, "100M/");
5171 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
5172 bufp += sprintf(bufp, "1G/");
5173 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
5174 bufp += sprintf(bufp, "10G/");
5175 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
5176 bufp += sprintf(bufp, "25G/");
5177 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
5178 bufp += sprintf(bufp, "40G/");
5179 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
5180 bufp += sprintf(bufp, "50G/");
5181 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
5182 bufp += sprintf(bufp, "100G/");
5183 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
5184 bufp += sprintf(bufp, "200G/");
5185 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
5186 bufp += sprintf(bufp, "400G/");
5189 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
5191 netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
5192 dev->name, adap->params.vpd.id, adap->name, buf);
5196 * Free the following resources:
5197 * - memory used for tables
5200 * - resources FW is holding for us
5202 static void free_some_resources(struct adapter *adapter)
5206 kvfree(adapter->mps_encap);
5207 kvfree(adapter->smt);
5208 kvfree(adapter->l2t);
5209 kvfree(adapter->srq);
5210 t4_cleanup_sched(adapter);
5211 kvfree(adapter->tids.tid_tab);
5212 cxgb4_cleanup_tc_flower(adapter);
5213 cxgb4_cleanup_tc_u32(adapter);
5214 kfree(adapter->sge.egr_map);
5215 kfree(adapter->sge.ingr_map);
5216 kfree(adapter->sge.starving_fl);
5217 kfree(adapter->sge.txq_maperr);
5218 #ifdef CONFIG_DEBUG_FS
5219 kfree(adapter->sge.blocked_fl);
5221 disable_msi(adapter);
5223 for_each_port(adapter, i)
5224 if (adapter->port[i]) {
5225 struct port_info *pi = adap2pinfo(adapter, i);
5228 t4_free_vi(adapter, adapter->mbox, adapter->pf,
5230 kfree(adap2pinfo(adapter, i)->rss);
5231 free_netdev(adapter->port[i]);
5233 if (adapter->flags & FW_OK)
5234 t4_fw_bye(adapter, adapter->pf);
5237 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5238 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5239 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5240 #define SEGMENT_SIZE 128
5242 static int t4_get_chip_type(struct adapter *adap, int ver)
5244 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
5248 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5250 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5252 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5259 #ifdef CONFIG_PCI_IOV
5260 static void cxgb4_mgmt_setup(struct net_device *dev)
5262 dev->type = ARPHRD_NONE;
5264 dev->hard_header_len = 0;
5266 dev->tx_queue_len = 0;
5267 dev->flags |= IFF_NOARP;
5268 dev->priv_flags |= IFF_NO_QUEUE;
5270 /* Initialize the device structure. */
5271 dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5272 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5275 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5277 struct adapter *adap = pci_get_drvdata(pdev);
5279 int current_vfs = pci_num_vf(pdev);
5282 pcie_fw = readl(adap->regs + PCIE_FW_A);
5283 /* Check if fw is initialized */
5284 if (!(pcie_fw & PCIE_FW_INIT_F)) {
5285 dev_warn(&pdev->dev, "Device not initialized\n");
5289 /* If any of the VF's is already assigned to Guest OS, then
5290 * SRIOV for the same cannot be modified
5292 if (current_vfs && pci_vfs_assigned(pdev)) {
5294 "Cannot modify SR-IOV while VFs are assigned\n");
5297 /* Note that the upper-level code ensures that we're never called with
5298 * a non-zero "num_vfs" when we already have VFs instantiated. But
5299 * it never hurts to code defensively.
5301 if (num_vfs != 0 && current_vfs != 0)
5304 /* Nothing to do for no change. */
5305 if (num_vfs == current_vfs)
5308 /* Disable SRIOV when zero is passed. */
5310 pci_disable_sriov(pdev);
5311 /* free VF Management Interface */
5312 unregister_netdev(adap->port[0]);
5313 free_netdev(adap->port[0]);
5314 adap->port[0] = NULL;
5316 /* free VF resources */
5318 kfree(adap->vfinfo);
5319 adap->vfinfo = NULL;
5324 struct fw_pfvf_cmd port_cmd, port_rpl;
5325 struct net_device *netdev;
5326 unsigned int pmask, port;
5327 struct pci_dev *pbridge;
5328 struct port_info *pi;
5329 char name[IFNAMSIZ];
5334 /* If we want to instantiate Virtual Functions, then our
5335 * parent bridge's PCI-E needs to support Alternative Routing
5336 * ID (ARI) because our VFs will show up at function offset 8
5339 pbridge = pdev->bus->self;
5340 pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP);
5341 pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags);
5342 pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2);
5344 if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
5345 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
5346 /* Our parent bridge does not support ARI so issue a
5347 * warning and skip instantiating the VFs. They
5348 * won't be reachable.
5350 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
5351 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
5352 PCI_FUNC(pbridge->devfn));
5355 memset(&port_cmd, 0, sizeof(port_cmd));
5356 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
5359 FW_PFVF_CMD_PFN_V(adap->pf) |
5360 FW_PFVF_CMD_VFN_V(0));
5361 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
5362 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
5366 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
5367 port = ffs(pmask) - 1;
5368 /* Allocate VF Management Interface. */
5369 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
5371 netdev = alloc_netdev(sizeof(struct port_info),
5372 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
5376 pi = netdev_priv(netdev);
5380 SET_NETDEV_DEV(netdev, &pdev->dev);
5382 adap->port[0] = netdev;
5385 err = register_netdev(adap->port[0]);
5387 pr_info("Unable to register VF mgmt netdev %s\n", name);
5388 free_netdev(adap->port[0]);
5389 adap->port[0] = NULL;
5392 /* Allocate and set up VF Information. */
5393 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
5394 sizeof(struct vf_info), GFP_KERNEL);
5395 if (!adap->vfinfo) {
5396 unregister_netdev(adap->port[0]);
5397 free_netdev(adap->port[0]);
5398 adap->port[0] = NULL;
5401 cxgb4_mgmt_fill_vf_station_mac_addr(adap);
5403 /* Instantiate the requested number of VFs. */
5404 err = pci_enable_sriov(pdev, num_vfs);
5406 pr_info("Unable to instantiate %d VFs\n", num_vfs);
5408 unregister_netdev(adap->port[0]);
5409 free_netdev(adap->port[0]);
5410 adap->port[0] = NULL;
5411 kfree(adap->vfinfo);
5412 adap->vfinfo = NULL;
5417 adap->num_vfs = num_vfs;
5420 #endif /* CONFIG_PCI_IOV */
5422 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5424 struct net_device *netdev;
5425 struct adapter *adapter;
5426 static int adap_idx = 1;
5427 int s_qpp, qpp, num_seg;
5428 struct port_info *pi;
5429 bool highdma = false;
5430 enum chip_type chip;
5437 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5439 err = pci_request_regions(pdev, KBUILD_MODNAME);
5441 /* Just info, some other driver may have claimed the device. */
5442 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5446 err = pci_enable_device(pdev);
5448 dev_err(&pdev->dev, "cannot enable PCI device\n");
5449 goto out_release_regions;
5452 regs = pci_ioremap_bar(pdev, 0);
5454 dev_err(&pdev->dev, "cannot map device registers\n");
5456 goto out_disable_device;
5459 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5462 goto out_unmap_bar0;
5465 adapter->regs = regs;
5466 err = t4_wait_dev_ready(regs);
5468 goto out_free_adapter;
5470 /* We control everything through one PF */
5471 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5472 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
5473 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
5475 dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
5477 goto out_free_adapter;
5479 chip_ver = CHELSIO_CHIP_VERSION(chip);
5480 func = chip_ver <= CHELSIO_T5 ?
5481 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5483 adapter->pdev = pdev;
5484 adapter->pdev_dev = &pdev->dev;
5485 adapter->name = pci_name(pdev);
5486 adapter->mbox = func;
5488 adapter->params.chip = chip;
5489 adapter->adap_idx = adap_idx;
5490 adapter->msg_enable = DFLT_MSG_ENABLE;
5491 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5492 (sizeof(struct mbox_cmd) *
5493 T4_OS_LOG_MBOX_CMDS),
5495 if (!adapter->mbox_log) {
5497 goto out_free_adapter;
5499 spin_lock_init(&adapter->mbox_lock);
5500 INIT_LIST_HEAD(&adapter->mlist.list);
5501 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
5502 pci_set_drvdata(pdev, adapter);
5504 if (func != ent->driver_data) {
5505 pci_disable_device(pdev);
5506 pci_save_state(pdev); /* to restore SR-IOV later */
5510 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5512 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5514 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5515 "coherent allocations\n");
5516 goto out_free_adapter;
5519 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5521 dev_err(&pdev->dev, "no usable DMA configuration\n");
5522 goto out_free_adapter;
5526 pci_enable_pcie_error_reporting(pdev);
5527 pci_set_master(pdev);
5528 pci_save_state(pdev);
5530 adapter->workq = create_singlethread_workqueue("cxgb4");
5531 if (!adapter->workq) {
5533 goto out_free_adapter;
5536 /* PCI device has been enabled */
5537 adapter->flags |= DEV_ENABLED;
5538 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5540 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
5541 * Ingress Packet Data to Free List Buffers in order to allow for
5542 * chipset performance optimizations between the Root Complex and
5543 * Memory Controllers. (Messages to the associated Ingress Queue
5544 * notifying new Packet Placement in the Free Lists Buffers will be
5545 * send without the Relaxed Ordering Attribute thus guaranteeing that
5546 * all preceding PCIe Transaction Layer Packets will be processed
5547 * first.) But some Root Complexes have various issues with Upstream
5548 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
5549 * The PCIe devices which under the Root Complexes will be cleared the
5550 * Relaxed Ordering bit in the configuration space, So we check our
5551 * PCIe configuration space to see if it's flagged with advice against
5552 * using Relaxed Ordering.
5554 if (!pcie_relaxed_ordering_enabled(pdev))
5555 adapter->flags |= ROOT_NO_RELAXED_ORDERING;
5557 spin_lock_init(&adapter->stats_lock);
5558 spin_lock_init(&adapter->tid_release_lock);
5559 spin_lock_init(&adapter->win0_lock);
5561 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5562 INIT_WORK(&adapter->db_full_task, process_db_full);
5563 INIT_WORK(&adapter->db_drop_task, process_db_drop);
5564 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
5566 err = t4_prep_adapter(adapter);
5568 goto out_free_adapter;
5570 if (is_kdump_kernel()) {
5571 /* Collect hardware state and append to /proc/vmcore */
5572 err = cxgb4_cudbg_vmcore_add_dump(adapter);
5574 dev_warn(adapter->pdev_dev,
5575 "Fail collecting vmcore device dump, err: %d. Continuing\n",
5581 if (!is_t4(adapter->params.chip)) {
5582 s_qpp = (QUEUESPERPAGEPF0_S +
5583 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5585 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5586 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5587 num_seg = PAGE_SIZE / SEGMENT_SIZE;
5589 /* Each segment size is 128B. Write coalescing is enabled only
5590 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5591 * queue is less no of segments that can be accommodated in
5594 if (qpp > num_seg) {
5596 "Incorrect number of egress queues per page\n");
5598 goto out_free_adapter;
5600 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5601 pci_resource_len(pdev, 2));
5602 if (!adapter->bar2) {
5603 dev_err(&pdev->dev, "cannot map device bar2 region\n");
5605 goto out_free_adapter;
5609 setup_memwin(adapter);
5610 err = adap_init0(adapter);
5611 #ifdef CONFIG_DEBUG_FS
5612 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5614 setup_memwin_rdma(adapter);
5618 /* configure SGE_STAT_CFG_A to read WC stats */
5619 if (!is_t4(adapter->params.chip))
5620 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5621 (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5624 for_each_port(adapter, i) {
5625 netdev = alloc_etherdev_mq(sizeof(struct port_info),
5632 SET_NETDEV_DEV(netdev, &pdev->dev);
5634 adapter->port[i] = netdev;
5635 pi = netdev_priv(netdev);
5636 pi->adapter = adapter;
5637 pi->xact_addr_filt = -1;
5639 netdev->irq = pdev->irq;
5641 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5642 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5643 NETIF_F_RXCSUM | NETIF_F_RXHASH |
5644 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
5647 if (chip_ver > CHELSIO_T5) {
5648 netdev->hw_enc_features |= NETIF_F_IP_CSUM |
5651 NETIF_F_GSO_UDP_TUNNEL |
5652 NETIF_F_TSO | NETIF_F_TSO6;
5654 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL;
5658 netdev->hw_features |= NETIF_F_HIGHDMA;
5659 netdev->features |= netdev->hw_features;
5660 netdev->vlan_features = netdev->features & VLAN_FEAT;
5662 netdev->priv_flags |= IFF_UNICAST_FLT;
5664 /* MTU range: 81 - 9600 */
5665 netdev->min_mtu = 81; /* accommodate SACK */
5666 netdev->max_mtu = MAX_MTU;
5668 netdev->netdev_ops = &cxgb4_netdev_ops;
5669 #ifdef CONFIG_CHELSIO_T4_DCB
5670 netdev->dcbnl_ops = &cxgb4_dcb_ops;
5671 cxgb4_dcb_state_init(netdev);
5672 cxgb4_dcb_version_init(netdev);
5674 cxgb4_set_ethtool_ops(netdev);
5677 cxgb4_init_ethtool_dump(adapter);
5679 pci_set_drvdata(pdev, adapter);
5681 if (adapter->flags & FW_OK) {
5682 err = t4_port_init(adapter, func, func, 0);
5685 } else if (adapter->params.nports == 1) {
5686 /* If we don't have a connection to the firmware -- possibly
5687 * because of an error -- grab the raw VPD parameters so we
5688 * can set the proper MAC Address on the debug network
5689 * interface that we've created.
5691 u8 hw_addr[ETH_ALEN];
5692 u8 *na = adapter->params.vpd.na;
5694 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5696 for (i = 0; i < ETH_ALEN; i++)
5697 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5698 hex2val(na[2 * i + 1]));
5699 t4_set_hw_addr(adapter, 0, hw_addr);
5703 if (!(adapter->flags & FW_OK))
5704 goto fw_attach_fail;
5706 /* Configure queues and allocate tables now, they can be needed as
5707 * soon as the first register_netdev completes.
5709 err = cfg_queues(adapter);
5713 adapter->smt = t4_init_smt();
5714 if (!adapter->smt) {
5715 /* We tolerate a lack of SMT, giving up some functionality */
5716 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
5719 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5720 if (!adapter->l2t) {
5721 /* We tolerate a lack of L2T, giving up some functionality */
5722 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5723 adapter->params.offload = 0;
5726 adapter->mps_encap = kvcalloc(adapter->params.arch.mps_tcam_size,
5727 sizeof(struct mps_encap_entry),
5729 if (!adapter->mps_encap)
5730 dev_warn(&pdev->dev, "could not allocate MPS Encap entries, continuing\n");
5732 #if IS_ENABLED(CONFIG_IPV6)
5733 if (chip_ver <= CHELSIO_T5 &&
5734 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5735 /* CLIP functionality is not present in hardware,
5736 * hence disable all offload features
5738 dev_warn(&pdev->dev,
5739 "CLIP not enabled in hardware, continuing\n");
5740 adapter->params.offload = 0;
5742 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5743 adapter->clipt_end);
5744 if (!adapter->clipt) {
5745 /* We tolerate a lack of clip_table, giving up
5746 * some functionality
5748 dev_warn(&pdev->dev,
5749 "could not allocate Clip table, continuing\n");
5750 adapter->params.offload = 0;
5755 for_each_port(adapter, i) {
5756 pi = adap2pinfo(adapter, i);
5757 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5759 dev_warn(&pdev->dev,
5760 "could not activate scheduling on port %d\n",
5764 if (tid_init(&adapter->tids) < 0) {
5765 dev_warn(&pdev->dev, "could not allocate TID table, "
5767 adapter->params.offload = 0;
5769 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5770 if (!adapter->tc_u32)
5771 dev_warn(&pdev->dev,
5772 "could not offload tc u32, continuing\n");
5774 if (cxgb4_init_tc_flower(adapter))
5775 dev_warn(&pdev->dev,
5776 "could not offload tc flower, continuing\n");
5779 if (is_offload(adapter) || is_hashfilter(adapter)) {
5780 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5781 u32 hash_base, hash_reg;
5783 if (chip_ver <= CHELSIO_T5) {
5784 hash_reg = LE_DB_TID_HASHBASE_A;
5785 hash_base = t4_read_reg(adapter, hash_reg);
5786 adapter->tids.hash_base = hash_base / 4;
5788 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5789 hash_base = t4_read_reg(adapter, hash_reg);
5790 adapter->tids.hash_base = hash_base;
5795 /* See what interrupts we'll be using */
5796 if (msi > 1 && enable_msix(adapter) == 0)
5797 adapter->flags |= USING_MSIX;
5798 else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5799 adapter->flags |= USING_MSI;
5801 free_msix_info(adapter);
5804 /* check for PCI Express bandwidth capabiltites */
5805 pcie_print_link_status(pdev);
5807 err = init_rss(adapter);
5811 err = setup_fw_sge_queues(adapter);
5813 dev_err(adapter->pdev_dev,
5814 "FW sge queue allocation failed, err %d", err);
5820 * The card is now ready to go. If any errors occur during device
5821 * registration we do not fail the whole card but rather proceed only
5822 * with the ports we manage to register successfully. However we must
5823 * register at least one net device.
5825 for_each_port(adapter, i) {
5826 pi = adap2pinfo(adapter, i);
5827 adapter->port[i]->dev_port = pi->lport;
5828 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5829 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5831 netif_carrier_off(adapter->port[i]);
5833 err = register_netdev(adapter->port[i]);
5836 adapter->chan_map[pi->tx_chan] = i;
5837 print_port_info(adapter->port[i]);
5840 dev_err(&pdev->dev, "could not register any net devices\n");
5844 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5848 if (cxgb4_debugfs_root) {
5849 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5850 cxgb4_debugfs_root);
5851 setup_debugfs(adapter);
5854 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5855 pdev->needs_freset = 1;
5857 if (is_uld(adapter)) {
5858 mutex_lock(&uld_mutex);
5859 list_add_tail(&adapter->list_node, &adapter_list);
5860 mutex_unlock(&uld_mutex);
5863 if (!is_t4(adapter->params.chip))
5864 cxgb4_ptp_init(adapter);
5866 if (IS_REACHABLE(CONFIG_THERMAL) &&
5867 !is_t4(adapter->params.chip) && (adapter->flags & FW_OK))
5868 cxgb4_thermal_init(adapter);
5870 print_adapter_info(adapter);
5874 t4_free_sge_resources(adapter);
5875 free_some_resources(adapter);
5876 if (adapter->flags & USING_MSIX)
5877 free_msix_info(adapter);
5878 if (adapter->num_uld || adapter->num_ofld_uld)
5879 t4_uld_mem_free(adapter);
5881 if (!is_t4(adapter->params.chip))
5882 iounmap(adapter->bar2);
5885 destroy_workqueue(adapter->workq);
5887 kfree(adapter->mbox_log);
5892 pci_disable_pcie_error_reporting(pdev);
5893 pci_disable_device(pdev);
5894 out_release_regions:
5895 pci_release_regions(pdev);
5899 static void remove_one(struct pci_dev *pdev)
5901 struct adapter *adapter = pci_get_drvdata(pdev);
5904 pci_release_regions(pdev);
5908 adapter->flags |= SHUTTING_DOWN;
5910 if (adapter->pf == 4) {
5913 /* Tear down per-adapter Work Queue first since it can contain
5914 * references to our adapter data structure.
5916 destroy_workqueue(adapter->workq);
5918 if (is_uld(adapter)) {
5919 detach_ulds(adapter);
5920 t4_uld_clean_up(adapter);
5923 adap_free_hma_mem(adapter);
5925 disable_interrupts(adapter);
5927 for_each_port(adapter, i)
5928 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5929 unregister_netdev(adapter->port[i]);
5931 debugfs_remove_recursive(adapter->debugfs_root);
5933 if (!is_t4(adapter->params.chip))
5934 cxgb4_ptp_stop(adapter);
5935 if (IS_REACHABLE(CONFIG_THERMAL))
5936 cxgb4_thermal_remove(adapter);
5938 /* If we allocated filters, free up state associated with any
5941 clear_all_filters(adapter);
5943 if (adapter->flags & FULL_INIT_DONE)
5946 if (adapter->flags & USING_MSIX)
5947 free_msix_info(adapter);
5948 if (adapter->num_uld || adapter->num_ofld_uld)
5949 t4_uld_mem_free(adapter);
5950 free_some_resources(adapter);
5951 #if IS_ENABLED(CONFIG_IPV6)
5952 t4_cleanup_clip_tbl(adapter);
5954 if (!is_t4(adapter->params.chip))
5955 iounmap(adapter->bar2);
5957 #ifdef CONFIG_PCI_IOV
5959 cxgb4_iov_configure(adapter->pdev, 0);
5962 iounmap(adapter->regs);
5963 pci_disable_pcie_error_reporting(pdev);
5964 if ((adapter->flags & DEV_ENABLED)) {
5965 pci_disable_device(pdev);
5966 adapter->flags &= ~DEV_ENABLED;
5968 pci_release_regions(pdev);
5969 kfree(adapter->mbox_log);
5974 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5975 * delivery. This is essentially a stripped down version of the PCI remove()
5976 * function where we do the minimal amount of work necessary to shutdown any
5979 static void shutdown_one(struct pci_dev *pdev)
5981 struct adapter *adapter = pci_get_drvdata(pdev);
5983 /* As with remove_one() above (see extended comment), we only want do
5984 * do cleanup on PCI Devices which went all the way through init_one()
5988 pci_release_regions(pdev);
5992 adapter->flags |= SHUTTING_DOWN;
5994 if (adapter->pf == 4) {
5997 for_each_port(adapter, i)
5998 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5999 cxgb_close(adapter->port[i]);
6001 if (is_uld(adapter)) {
6002 detach_ulds(adapter);
6003 t4_uld_clean_up(adapter);
6006 disable_interrupts(adapter);
6007 disable_msi(adapter);
6009 t4_sge_stop(adapter);
6010 if (adapter->flags & FW_OK)
6011 t4_fw_bye(adapter, adapter->mbox);
6015 static struct pci_driver cxgb4_driver = {
6016 .name = KBUILD_MODNAME,
6017 .id_table = cxgb4_pci_tbl,
6019 .remove = remove_one,
6020 .shutdown = shutdown_one,
6021 #ifdef CONFIG_PCI_IOV
6022 .sriov_configure = cxgb4_iov_configure,
6024 .err_handler = &cxgb4_eeh,
6027 static int __init cxgb4_init_module(void)
6031 /* Debugfs support is optional, just warn if this fails */
6032 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6033 if (!cxgb4_debugfs_root)
6034 pr_warn("could not create debugfs entry, continuing\n");
6036 ret = pci_register_driver(&cxgb4_driver);
6038 debugfs_remove(cxgb4_debugfs_root);
6040 #if IS_ENABLED(CONFIG_IPV6)
6041 if (!inet6addr_registered) {
6042 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6043 inet6addr_registered = true;
6050 static void __exit cxgb4_cleanup_module(void)
6052 #if IS_ENABLED(CONFIG_IPV6)
6053 if (inet6addr_registered) {
6054 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6055 inet6addr_registered = false;
6058 pci_unregister_driver(&cxgb4_driver);
6059 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
6062 module_init(cxgb4_init_module);
6063 module_exit(cxgb4_cleanup_module);