2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/netdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/workqueue.h>
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/skb.h>
28 #include <linux/can/netlink.h>
29 #include <linux/can/led.h>
31 #include <net/rtnetlink.h>
33 #define MOD_DESC "CAN device driver interface"
35 MODULE_DESCRIPTION(MOD_DESC);
36 MODULE_LICENSE("GPL v2");
39 /* CAN DLC to real data length conversion helpers */
41 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
42 8, 12, 16, 20, 24, 32, 48, 64};
44 /* get data length from can_dlc with sanitized can_dlc */
45 u8 can_dlc2len(u8 can_dlc)
47 return dlc2len[can_dlc & 0x0F];
49 EXPORT_SYMBOL_GPL(can_dlc2len);
51 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */
52 9, 9, 9, 9, /* 9 - 12 */
53 10, 10, 10, 10, /* 13 - 16 */
54 11, 11, 11, 11, /* 17 - 20 */
55 12, 12, 12, 12, /* 21 - 24 */
56 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */
57 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */
58 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */
59 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */
60 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */
62 /* map the sanitized data length to an appropriate data length code */
63 u8 can_len2dlc(u8 len)
65 if (unlikely(len > 64))
70 EXPORT_SYMBOL_GPL(can_len2dlc);
72 #ifdef CONFIG_CAN_CALC_BITTIMING
73 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
74 #define CAN_CALC_SYNC_SEG 1
77 * Bit-timing calculation derived from:
79 * Code based on LinCAN sources and H8S2638 project
80 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
81 * Copyright 2005 Stanislav Marek
84 * Calculates proper bit-timing parameters for a specified bit-rate
85 * and sample-point, which can then be used to set the bit-timing
86 * registers of the CAN controller. You can find more information
87 * in the header file linux/can/netlink.h.
89 static int can_update_sample_point(const struct can_bittiming_const *btc,
90 unsigned int sample_point_nominal, unsigned int tseg,
91 unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
92 unsigned int *sample_point_error_ptr)
94 unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
95 unsigned int sample_point, best_sample_point = 0;
96 unsigned int tseg1, tseg2;
99 for (i = 0; i <= 1; i++) {
100 tseg2 = tseg + CAN_CALC_SYNC_SEG - (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 1000 - i;
101 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
102 tseg1 = tseg - tseg2;
103 if (tseg1 > btc->tseg1_max) {
104 tseg1 = btc->tseg1_max;
105 tseg2 = tseg - tseg1;
108 sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / (tseg + CAN_CALC_SYNC_SEG);
109 sample_point_error = abs(sample_point_nominal - sample_point);
111 if ((sample_point <= sample_point_nominal) && (sample_point_error < best_sample_point_error)) {
112 best_sample_point = sample_point;
113 best_sample_point_error = sample_point_error;
119 if (sample_point_error_ptr)
120 *sample_point_error_ptr = best_sample_point_error;
122 return best_sample_point;
125 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
126 const struct can_bittiming_const *btc)
128 struct can_priv *priv = netdev_priv(dev);
129 unsigned int bitrate; /* current bitrate */
130 unsigned int bitrate_error; /* difference between current and nominal value */
131 unsigned int best_bitrate_error = UINT_MAX;
132 unsigned int sample_point_error; /* difference between current and nominal value */
133 unsigned int best_sample_point_error = UINT_MAX;
134 unsigned int sample_point_nominal; /* nominal sample point */
135 unsigned int best_tseg = 0; /* current best value for tseg */
136 unsigned int best_brp = 0; /* current best value for brp */
137 unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
140 /* Use CiA recommended sample points */
141 if (bt->sample_point) {
142 sample_point_nominal = bt->sample_point;
144 if (bt->bitrate > 800000)
145 sample_point_nominal = 750;
146 else if (bt->bitrate > 500000)
147 sample_point_nominal = 800;
149 sample_point_nominal = 875;
152 /* tseg even = round down, odd = round up */
153 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
154 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
155 tsegall = CAN_CALC_SYNC_SEG + tseg / 2;
157 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
158 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
160 /* choose brp step which is possible in system */
161 brp = (brp / btc->brp_inc) * btc->brp_inc;
162 if ((brp < btc->brp_min) || (brp > btc->brp_max))
165 bitrate = priv->clock.freq / (brp * tsegall);
166 bitrate_error = abs(bt->bitrate - bitrate);
168 /* tseg brp biterror */
169 if (bitrate_error > best_bitrate_error)
172 /* reset sample point error if we have a better bitrate */
173 if (bitrate_error < best_bitrate_error)
174 best_sample_point_error = UINT_MAX;
176 can_update_sample_point(btc, sample_point_nominal, tseg / 2, &tseg1, &tseg2, &sample_point_error);
177 if (sample_point_error > best_sample_point_error)
180 best_sample_point_error = sample_point_error;
181 best_bitrate_error = bitrate_error;
182 best_tseg = tseg / 2;
185 if (bitrate_error == 0 && sample_point_error == 0)
189 if (best_bitrate_error) {
190 /* Error in one-tenth of a percent */
191 v64 = (u64)best_bitrate_error * 1000;
192 do_div(v64, bt->bitrate);
193 bitrate_error = (u32)v64;
194 if (bitrate_error > CAN_CALC_MAX_ERROR) {
196 "bitrate error %d.%d%% too high\n",
197 bitrate_error / 10, bitrate_error % 10);
200 netdev_warn(dev, "bitrate error %d.%d%%\n",
201 bitrate_error / 10, bitrate_error % 10);
204 /* real sample point */
205 bt->sample_point = can_update_sample_point(btc, sample_point_nominal, best_tseg,
206 &tseg1, &tseg2, NULL);
208 v64 = (u64)best_brp * 1000 * 1000 * 1000;
209 do_div(v64, priv->clock.freq);
211 bt->prop_seg = tseg1 / 2;
212 bt->phase_seg1 = tseg1 - bt->prop_seg;
213 bt->phase_seg2 = tseg2;
215 /* check for sjw user settings */
216 if (!bt->sjw || !btc->sjw_max) {
219 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
220 if (bt->sjw > btc->sjw_max)
221 bt->sjw = btc->sjw_max;
222 /* bt->sjw must not be higher than tseg2 */
230 bt->bitrate = priv->clock.freq / (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2));
234 #else /* !CONFIG_CAN_CALC_BITTIMING */
235 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
236 const struct can_bittiming_const *btc)
238 netdev_err(dev, "bit-timing calculation not available\n");
241 #endif /* CONFIG_CAN_CALC_BITTIMING */
244 * Checks the validity of the specified bit-timing parameters prop_seg,
245 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
246 * prescaler value brp. You can find more information in the header
247 * file linux/can/netlink.h.
249 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
250 const struct can_bittiming_const *btc)
252 struct can_priv *priv = netdev_priv(dev);
256 tseg1 = bt->prop_seg + bt->phase_seg1;
259 if (bt->sjw > btc->sjw_max ||
260 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
261 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
264 brp64 = (u64)priv->clock.freq * (u64)bt->tq;
265 if (btc->brp_inc > 1)
266 do_div(brp64, btc->brp_inc);
267 brp64 += 500000000UL - 1;
268 do_div(brp64, 1000000000UL); /* the practicable BRP */
269 if (btc->brp_inc > 1)
270 brp64 *= btc->brp_inc;
271 bt->brp = (u32)brp64;
273 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
276 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
277 bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
278 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
283 /* Checks the validity of predefined bitrate settings */
284 static int can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
285 const u32 *bitrate_const,
286 const unsigned int bitrate_const_cnt)
288 struct can_priv *priv = netdev_priv(dev);
291 for (i = 0; i < bitrate_const_cnt; i++) {
292 if (bt->bitrate == bitrate_const[i])
296 if (i >= priv->bitrate_const_cnt)
302 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
303 const struct can_bittiming_const *btc,
304 const u32 *bitrate_const,
305 const unsigned int bitrate_const_cnt)
310 * Depending on the given can_bittiming parameter structure the CAN
311 * timing parameters are calculated based on the provided bitrate OR
312 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
313 * provided directly which are then checked and fixed up.
315 if (!bt->tq && bt->bitrate && btc)
316 err = can_calc_bittiming(dev, bt, btc);
317 else if (bt->tq && !bt->bitrate && btc)
318 err = can_fixup_bittiming(dev, bt, btc);
319 else if (!bt->tq && bt->bitrate && bitrate_const)
320 err = can_validate_bitrate(dev, bt, bitrate_const,
328 static void can_update_state_error_stats(struct net_device *dev,
329 enum can_state new_state)
331 struct can_priv *priv = netdev_priv(dev);
333 if (new_state <= priv->state)
337 case CAN_STATE_ERROR_WARNING:
338 priv->can_stats.error_warning++;
340 case CAN_STATE_ERROR_PASSIVE:
341 priv->can_stats.error_passive++;
343 case CAN_STATE_BUS_OFF:
344 priv->can_stats.bus_off++;
351 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
354 case CAN_STATE_ERROR_ACTIVE:
355 return CAN_ERR_CRTL_ACTIVE;
356 case CAN_STATE_ERROR_WARNING:
357 return CAN_ERR_CRTL_TX_WARNING;
358 case CAN_STATE_ERROR_PASSIVE:
359 return CAN_ERR_CRTL_TX_PASSIVE;
365 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
368 case CAN_STATE_ERROR_ACTIVE:
369 return CAN_ERR_CRTL_ACTIVE;
370 case CAN_STATE_ERROR_WARNING:
371 return CAN_ERR_CRTL_RX_WARNING;
372 case CAN_STATE_ERROR_PASSIVE:
373 return CAN_ERR_CRTL_RX_PASSIVE;
379 void can_change_state(struct net_device *dev, struct can_frame *cf,
380 enum can_state tx_state, enum can_state rx_state)
382 struct can_priv *priv = netdev_priv(dev);
383 enum can_state new_state = max(tx_state, rx_state);
385 if (unlikely(new_state == priv->state)) {
386 netdev_warn(dev, "%s: oops, state did not change", __func__);
390 netdev_dbg(dev, "New error state: %d\n", new_state);
392 can_update_state_error_stats(dev, new_state);
393 priv->state = new_state;
398 if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
399 cf->can_id |= CAN_ERR_BUSOFF;
403 cf->can_id |= CAN_ERR_CRTL;
404 cf->data[1] |= tx_state >= rx_state ?
405 can_tx_state_to_frame(dev, tx_state) : 0;
406 cf->data[1] |= tx_state <= rx_state ?
407 can_rx_state_to_frame(dev, rx_state) : 0;
409 EXPORT_SYMBOL_GPL(can_change_state);
412 * Local echo of CAN messages
414 * CAN network devices *should* support a local echo functionality
415 * (see Documentation/networking/can.rst). To test the handling of CAN
416 * interfaces that do not support the local echo both driver types are
417 * implemented. In the case that the driver does not support the echo
418 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
419 * to perform the echo as a fallback solution.
421 static void can_flush_echo_skb(struct net_device *dev)
423 struct can_priv *priv = netdev_priv(dev);
424 struct net_device_stats *stats = &dev->stats;
427 for (i = 0; i < priv->echo_skb_max; i++) {
428 if (priv->echo_skb[i]) {
429 kfree_skb(priv->echo_skb[i]);
430 priv->echo_skb[i] = NULL;
432 stats->tx_aborted_errors++;
438 * Put the skb on the stack to be looped backed locally lateron
440 * The function is typically called in the start_xmit function
441 * of the device driver. The driver must protect access to
442 * priv->echo_skb, if necessary.
444 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
447 struct can_priv *priv = netdev_priv(dev);
449 BUG_ON(idx >= priv->echo_skb_max);
451 /* check flag whether this packet has to be looped back */
452 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
453 (skb->protocol != htons(ETH_P_CAN) &&
454 skb->protocol != htons(ETH_P_CANFD))) {
459 if (!priv->echo_skb[idx]) {
461 skb = can_create_echo_skb(skb);
465 /* make settings for echo to reduce code in irq context */
466 skb->pkt_type = PACKET_BROADCAST;
467 skb->ip_summed = CHECKSUM_UNNECESSARY;
470 /* save this skb for tx interrupt echo handling */
471 priv->echo_skb[idx] = skb;
473 /* locking problem with netif_stop_queue() ?? */
474 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
478 EXPORT_SYMBOL_GPL(can_put_echo_skb);
480 struct sk_buff *__can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr)
482 struct can_priv *priv = netdev_priv(dev);
483 struct sk_buff *skb = priv->echo_skb[idx];
484 struct canfd_frame *cf;
486 if (idx >= priv->echo_skb_max) {
487 netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n",
488 __func__, idx, priv->echo_skb_max);
493 netdev_err(dev, "%s: BUG! Trying to echo non existing skb: can_priv::echo_skb[%u]\n",
498 /* Using "struct canfd_frame::len" for the frame
499 * length is supported on both CAN and CANFD frames.
501 cf = (struct canfd_frame *)skb->data;
503 priv->echo_skb[idx] = NULL;
509 * Get the skb from the stack and loop it back locally
511 * The function is typically called when the TX done interrupt
512 * is handled in the device driver. The driver must protect
513 * access to priv->echo_skb, if necessary.
515 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
520 skb = __can_get_echo_skb(dev, idx, &len);
528 EXPORT_SYMBOL_GPL(can_get_echo_skb);
531 * Remove the skb from the stack and free it.
533 * The function is typically called when TX failed.
535 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
537 struct can_priv *priv = netdev_priv(dev);
539 BUG_ON(idx >= priv->echo_skb_max);
541 if (priv->echo_skb[idx]) {
542 dev_kfree_skb_any(priv->echo_skb[idx]);
543 priv->echo_skb[idx] = NULL;
546 EXPORT_SYMBOL_GPL(can_free_echo_skb);
549 * CAN device restart for bus-off recovery
551 static void can_restart(struct net_device *dev)
553 struct can_priv *priv = netdev_priv(dev);
554 struct net_device_stats *stats = &dev->stats;
556 struct can_frame *cf;
559 BUG_ON(netif_carrier_ok(dev));
562 * No synchronization needed because the device is bus-off and
563 * no messages can come in or go out.
565 can_flush_echo_skb(dev);
567 /* send restart message upstream */
568 skb = alloc_can_err_skb(dev, &cf);
573 cf->can_id |= CAN_ERR_RESTARTED;
578 stats->rx_bytes += cf->can_dlc;
581 netdev_dbg(dev, "restarted\n");
582 priv->can_stats.restarts++;
584 /* Now restart the device */
585 err = priv->do_set_mode(dev, CAN_MODE_START);
587 netif_carrier_on(dev);
589 netdev_err(dev, "Error %d during restart", err);
592 static void can_restart_work(struct work_struct *work)
594 struct delayed_work *dwork = to_delayed_work(work);
595 struct can_priv *priv = container_of(dwork, struct can_priv, restart_work);
597 can_restart(priv->dev);
600 int can_restart_now(struct net_device *dev)
602 struct can_priv *priv = netdev_priv(dev);
605 * A manual restart is only permitted if automatic restart is
606 * disabled and the device is in the bus-off state
608 if (priv->restart_ms)
610 if (priv->state != CAN_STATE_BUS_OFF)
613 cancel_delayed_work_sync(&priv->restart_work);
622 * This functions should be called when the device goes bus-off to
623 * tell the netif layer that no more packets can be sent or received.
624 * If enabled, a timer is started to trigger bus-off recovery.
626 void can_bus_off(struct net_device *dev)
628 struct can_priv *priv = netdev_priv(dev);
630 netdev_info(dev, "bus-off\n");
632 netif_carrier_off(dev);
634 if (priv->restart_ms)
635 schedule_delayed_work(&priv->restart_work,
636 msecs_to_jiffies(priv->restart_ms));
638 EXPORT_SYMBOL_GPL(can_bus_off);
640 static void can_setup(struct net_device *dev)
642 dev->type = ARPHRD_CAN;
644 dev->hard_header_len = 0;
646 dev->tx_queue_len = 10;
648 /* New-style flags. */
649 dev->flags = IFF_NOARP;
650 dev->features = NETIF_F_HW_CSUM;
653 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
657 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
658 sizeof(struct can_frame));
662 skb->protocol = htons(ETH_P_CAN);
663 skb->pkt_type = PACKET_BROADCAST;
664 skb->ip_summed = CHECKSUM_UNNECESSARY;
666 skb_reset_mac_header(skb);
667 skb_reset_network_header(skb);
668 skb_reset_transport_header(skb);
670 can_skb_reserve(skb);
671 can_skb_prv(skb)->ifindex = dev->ifindex;
672 can_skb_prv(skb)->skbcnt = 0;
674 *cf = skb_put_zero(skb, sizeof(struct can_frame));
678 EXPORT_SYMBOL_GPL(alloc_can_skb);
680 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
681 struct canfd_frame **cfd)
685 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
686 sizeof(struct canfd_frame));
690 skb->protocol = htons(ETH_P_CANFD);
691 skb->pkt_type = PACKET_BROADCAST;
692 skb->ip_summed = CHECKSUM_UNNECESSARY;
694 skb_reset_mac_header(skb);
695 skb_reset_network_header(skb);
696 skb_reset_transport_header(skb);
698 can_skb_reserve(skb);
699 can_skb_prv(skb)->ifindex = dev->ifindex;
700 can_skb_prv(skb)->skbcnt = 0;
702 *cfd = skb_put_zero(skb, sizeof(struct canfd_frame));
706 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
708 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
712 skb = alloc_can_skb(dev, cf);
716 (*cf)->can_id = CAN_ERR_FLAG;
717 (*cf)->can_dlc = CAN_ERR_DLC;
721 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
724 * Allocate and setup space for the CAN network device
726 struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max,
727 unsigned int txqs, unsigned int rxqs)
729 struct net_device *dev;
730 struct can_priv *priv;
734 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
735 echo_skb_max * sizeof(struct sk_buff *);
739 dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup,
744 priv = netdev_priv(dev);
748 priv->echo_skb_max = echo_skb_max;
749 priv->echo_skb = (void *)priv +
750 ALIGN(sizeof_priv, sizeof(struct sk_buff *));
753 priv->state = CAN_STATE_STOPPED;
755 INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
759 EXPORT_SYMBOL_GPL(alloc_candev_mqs);
762 * Free space of the CAN network device
764 void free_candev(struct net_device *dev)
768 EXPORT_SYMBOL_GPL(free_candev);
771 * changing MTU and control mode for CAN/CANFD devices
773 int can_change_mtu(struct net_device *dev, int new_mtu)
775 struct can_priv *priv = netdev_priv(dev);
777 /* Do not allow changing the MTU while running */
778 if (dev->flags & IFF_UP)
781 /* allow change of MTU according to the CANFD ability of the device */
784 /* 'CANFD-only' controllers can not switch to CAN_MTU */
785 if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
788 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
792 /* check for potential CANFD ability */
793 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
794 !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
797 priv->ctrlmode |= CAN_CTRLMODE_FD;
807 EXPORT_SYMBOL_GPL(can_change_mtu);
810 * Common open function when the device gets opened.
812 * This function should be called in the open function of the device
815 int open_candev(struct net_device *dev)
817 struct can_priv *priv = netdev_priv(dev);
819 if (!priv->bittiming.bitrate) {
820 netdev_err(dev, "bit-timing not yet defined\n");
824 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
825 if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
826 (!priv->data_bittiming.bitrate ||
827 (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
828 netdev_err(dev, "incorrect/missing data bit-timing\n");
832 /* Switch carrier on if device was stopped while in bus-off state */
833 if (!netif_carrier_ok(dev))
834 netif_carrier_on(dev);
838 EXPORT_SYMBOL_GPL(open_candev);
841 /* Common function that can be used to understand the limitation of
842 * a transceiver when it provides no means to determine these limitations
845 void of_can_transceiver(struct net_device *dev)
847 struct device_node *dn;
848 struct can_priv *priv = netdev_priv(dev);
849 struct device_node *np = dev->dev.parent->of_node;
852 dn = of_get_child_by_name(np, "can-transceiver");
856 ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max);
857 if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max))
858 netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n");
860 EXPORT_SYMBOL_GPL(of_can_transceiver);
864 * Common close function for cleanup before the device gets closed.
866 * This function should be called in the close function of the device
869 void close_candev(struct net_device *dev)
871 struct can_priv *priv = netdev_priv(dev);
873 cancel_delayed_work_sync(&priv->restart_work);
874 can_flush_echo_skb(dev);
876 EXPORT_SYMBOL_GPL(close_candev);
879 * CAN netlink interface
881 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
882 [IFLA_CAN_STATE] = { .type = NLA_U32 },
883 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
884 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
885 [IFLA_CAN_RESTART] = { .type = NLA_U32 },
886 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
887 [IFLA_CAN_BITTIMING_CONST]
888 = { .len = sizeof(struct can_bittiming_const) },
889 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
890 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
891 [IFLA_CAN_DATA_BITTIMING]
892 = { .len = sizeof(struct can_bittiming) },
893 [IFLA_CAN_DATA_BITTIMING_CONST]
894 = { .len = sizeof(struct can_bittiming_const) },
897 static int can_validate(struct nlattr *tb[], struct nlattr *data[],
898 struct netlink_ext_ack *extack)
900 bool is_can_fd = false;
902 /* Make sure that valid CAN FD configurations always consist of
903 * - nominal/arbitration bittiming
905 * - control mode with CAN_CTRLMODE_FD set
911 if (data[IFLA_CAN_CTRLMODE]) {
912 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
914 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
918 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
922 if (data[IFLA_CAN_DATA_BITTIMING]) {
923 if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
930 static int can_changelink(struct net_device *dev, struct nlattr *tb[],
931 struct nlattr *data[],
932 struct netlink_ext_ack *extack)
934 struct can_priv *priv = netdev_priv(dev);
937 /* We need synchronization with dev->stop() */
940 if (data[IFLA_CAN_BITTIMING]) {
941 struct can_bittiming bt;
943 /* Do not allow changing bittiming while running */
944 if (dev->flags & IFF_UP)
947 /* Calculate bittiming parameters based on
948 * bittiming_const if set, otherwise pass bitrate
949 * directly via do_set_bitrate(). Bail out if neither
952 if (!priv->bittiming_const && !priv->do_set_bittiming)
955 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
956 err = can_get_bittiming(dev, &bt,
957 priv->bittiming_const,
959 priv->bitrate_const_cnt);
963 if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) {
964 netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n",
969 memcpy(&priv->bittiming, &bt, sizeof(bt));
971 if (priv->do_set_bittiming) {
972 /* Finally, set the bit-timing registers */
973 err = priv->do_set_bittiming(dev);
979 if (data[IFLA_CAN_CTRLMODE]) {
980 struct can_ctrlmode *cm;
984 /* Do not allow changing controller mode while running */
985 if (dev->flags & IFF_UP)
987 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
988 ctrlstatic = priv->ctrlmode_static;
989 maskedflags = cm->flags & cm->mask;
991 /* check whether provided bits are allowed to be passed */
992 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
995 /* do not check for static fd-non-iso if 'fd' is disabled */
996 if (!(maskedflags & CAN_CTRLMODE_FD))
997 ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
999 /* make sure static options are provided by configuration */
1000 if ((maskedflags & ctrlstatic) != ctrlstatic)
1003 /* clear bits to be modified and copy the flag values */
1004 priv->ctrlmode &= ~cm->mask;
1005 priv->ctrlmode |= maskedflags;
1007 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
1008 if (priv->ctrlmode & CAN_CTRLMODE_FD)
1009 dev->mtu = CANFD_MTU;
1014 if (data[IFLA_CAN_RESTART_MS]) {
1015 /* Do not allow changing restart delay while running */
1016 if (dev->flags & IFF_UP)
1018 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
1021 if (data[IFLA_CAN_RESTART]) {
1022 /* Do not allow a restart while not running */
1023 if (!(dev->flags & IFF_UP))
1025 err = can_restart_now(dev);
1030 if (data[IFLA_CAN_DATA_BITTIMING]) {
1031 struct can_bittiming dbt;
1033 /* Do not allow changing bittiming while running */
1034 if (dev->flags & IFF_UP)
1037 /* Calculate bittiming parameters based on
1038 * data_bittiming_const if set, otherwise pass bitrate
1039 * directly via do_set_bitrate(). Bail out if neither
1042 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
1045 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
1047 err = can_get_bittiming(dev, &dbt,
1048 priv->data_bittiming_const,
1049 priv->data_bitrate_const,
1050 priv->data_bitrate_const_cnt);
1054 if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) {
1055 netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n",
1060 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
1062 if (priv->do_set_data_bittiming) {
1063 /* Finally, set the bit-timing registers */
1064 err = priv->do_set_data_bittiming(dev);
1070 if (data[IFLA_CAN_TERMINATION]) {
1071 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1072 const unsigned int num_term = priv->termination_const_cnt;
1075 if (!priv->do_set_termination)
1078 /* check whether given value is supported by the interface */
1079 for (i = 0; i < num_term; i++) {
1080 if (termval == priv->termination_const[i])
1086 /* Finally, set the termination value */
1087 err = priv->do_set_termination(dev, termval);
1091 priv->termination = termval;
1097 static size_t can_get_size(const struct net_device *dev)
1099 struct can_priv *priv = netdev_priv(dev);
1102 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */
1103 size += nla_total_size(sizeof(struct can_bittiming));
1104 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */
1105 size += nla_total_size(sizeof(struct can_bittiming_const));
1106 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */
1107 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */
1108 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */
1109 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */
1110 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */
1111 size += nla_total_size(sizeof(struct can_berr_counter));
1112 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */
1113 size += nla_total_size(sizeof(struct can_bittiming));
1114 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */
1115 size += nla_total_size(sizeof(struct can_bittiming_const));
1116 if (priv->termination_const) {
1117 size += nla_total_size(sizeof(priv->termination)); /* IFLA_CAN_TERMINATION */
1118 size += nla_total_size(sizeof(*priv->termination_const) * /* IFLA_CAN_TERMINATION_CONST */
1119 priv->termination_const_cnt);
1121 if (priv->bitrate_const) /* IFLA_CAN_BITRATE_CONST */
1122 size += nla_total_size(sizeof(*priv->bitrate_const) *
1123 priv->bitrate_const_cnt);
1124 if (priv->data_bitrate_const) /* IFLA_CAN_DATA_BITRATE_CONST */
1125 size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1126 priv->data_bitrate_const_cnt);
1127 size += sizeof(priv->bitrate_max); /* IFLA_CAN_BITRATE_MAX */
1132 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1134 struct can_priv *priv = netdev_priv(dev);
1135 struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1136 struct can_berr_counter bec;
1137 enum can_state state = priv->state;
1139 if (priv->do_get_state)
1140 priv->do_get_state(dev, &state);
1142 if ((priv->bittiming.bitrate &&
1143 nla_put(skb, IFLA_CAN_BITTIMING,
1144 sizeof(priv->bittiming), &priv->bittiming)) ||
1146 (priv->bittiming_const &&
1147 nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1148 sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1150 nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1151 nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1152 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1153 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1155 (priv->do_get_berr_counter &&
1156 !priv->do_get_berr_counter(dev, &bec) &&
1157 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1159 (priv->data_bittiming.bitrate &&
1160 nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1161 sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1163 (priv->data_bittiming_const &&
1164 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1165 sizeof(*priv->data_bittiming_const),
1166 priv->data_bittiming_const)) ||
1168 (priv->termination_const &&
1169 (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1170 nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1171 sizeof(*priv->termination_const) *
1172 priv->termination_const_cnt,
1173 priv->termination_const))) ||
1175 (priv->bitrate_const &&
1176 nla_put(skb, IFLA_CAN_BITRATE_CONST,
1177 sizeof(*priv->bitrate_const) *
1178 priv->bitrate_const_cnt,
1179 priv->bitrate_const)) ||
1181 (priv->data_bitrate_const &&
1182 nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1183 sizeof(*priv->data_bitrate_const) *
1184 priv->data_bitrate_const_cnt,
1185 priv->data_bitrate_const)) ||
1187 (nla_put(skb, IFLA_CAN_BITRATE_MAX,
1188 sizeof(priv->bitrate_max),
1189 &priv->bitrate_max))
1197 static size_t can_get_xstats_size(const struct net_device *dev)
1199 return sizeof(struct can_device_stats);
1202 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1204 struct can_priv *priv = netdev_priv(dev);
1206 if (nla_put(skb, IFLA_INFO_XSTATS,
1207 sizeof(priv->can_stats), &priv->can_stats))
1208 goto nla_put_failure;
1215 static int can_newlink(struct net *src_net, struct net_device *dev,
1216 struct nlattr *tb[], struct nlattr *data[],
1217 struct netlink_ext_ack *extack)
1222 static void can_dellink(struct net_device *dev, struct list_head *head)
1227 static struct rtnl_link_ops can_link_ops __read_mostly = {
1229 .maxtype = IFLA_CAN_MAX,
1230 .policy = can_policy,
1232 .validate = can_validate,
1233 .newlink = can_newlink,
1234 .changelink = can_changelink,
1235 .dellink = can_dellink,
1236 .get_size = can_get_size,
1237 .fill_info = can_fill_info,
1238 .get_xstats_size = can_get_xstats_size,
1239 .fill_xstats = can_fill_xstats,
1243 * Register the CAN network device
1245 int register_candev(struct net_device *dev)
1247 struct can_priv *priv = netdev_priv(dev);
1249 /* Ensure termination_const, termination_const_cnt and
1250 * do_set_termination consistency. All must be either set or
1253 if ((!priv->termination_const != !priv->termination_const_cnt) ||
1254 (!priv->termination_const != !priv->do_set_termination))
1257 if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1260 if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1263 dev->rtnl_link_ops = &can_link_ops;
1264 return register_netdev(dev);
1266 EXPORT_SYMBOL_GPL(register_candev);
1269 * Unregister the CAN network device
1271 void unregister_candev(struct net_device *dev)
1273 unregister_netdev(dev);
1275 EXPORT_SYMBOL_GPL(unregister_candev);
1278 * Test if a network device is a candev based device
1279 * and return the can_priv* if so.
1281 struct can_priv *safe_candev_priv(struct net_device *dev)
1283 if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
1286 return netdev_priv(dev);
1288 EXPORT_SYMBOL_GPL(safe_candev_priv);
1290 static __init int can_dev_init(void)
1294 can_led_notifier_init();
1296 err = rtnl_link_register(&can_link_ops);
1298 printk(KERN_INFO MOD_DESC "\n");
1302 module_init(can_dev_init);
1304 static __exit void can_dev_exit(void)
1306 rtnl_link_unregister(&can_link_ops);
1308 can_led_notifier_exit();
1310 module_exit(can_dev_exit);
1312 MODULE_ALIAS_RTNL_LINK("can");