2 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4 * This software is licensed under the terms of the GNU General Public
5 * License version 2, as published by the Free Software Foundation, and
6 * may be copied, distributed, and modified under those terms.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
14 #include <linux/clk.h>
15 #include <linux/slab.h>
16 #include <linux/bitops.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/module.h>
20 #include <linux/mtd/rawnand.h>
21 #include <linux/mtd/partitions.h>
23 #include <linux/of_device.h>
24 #include <linux/delay.h>
25 #include <linux/dma/qcom_bam_dma.h>
27 /* NANDc reg offsets */
28 #define NAND_FLASH_CMD 0x00
29 #define NAND_ADDR0 0x04
30 #define NAND_ADDR1 0x08
31 #define NAND_FLASH_CHIP_SELECT 0x0c
32 #define NAND_EXEC_CMD 0x10
33 #define NAND_FLASH_STATUS 0x14
34 #define NAND_BUFFER_STATUS 0x18
35 #define NAND_DEV0_CFG0 0x20
36 #define NAND_DEV0_CFG1 0x24
37 #define NAND_DEV0_ECC_CFG 0x28
38 #define NAND_DEV1_ECC_CFG 0x2c
39 #define NAND_DEV1_CFG0 0x30
40 #define NAND_DEV1_CFG1 0x34
41 #define NAND_READ_ID 0x40
42 #define NAND_READ_STATUS 0x44
43 #define NAND_DEV_CMD0 0xa0
44 #define NAND_DEV_CMD1 0xa4
45 #define NAND_DEV_CMD2 0xa8
46 #define NAND_DEV_CMD_VLD 0xac
47 #define SFLASHC_BURST_CFG 0xe0
48 #define NAND_ERASED_CW_DETECT_CFG 0xe8
49 #define NAND_ERASED_CW_DETECT_STATUS 0xec
50 #define NAND_EBI2_ECC_BUF_CFG 0xf0
51 #define FLASH_BUF_ACC 0x100
53 #define NAND_CTRL 0xf00
54 #define NAND_VERSION 0xf08
55 #define NAND_READ_LOCATION_0 0xf20
56 #define NAND_READ_LOCATION_1 0xf24
57 #define NAND_READ_LOCATION_2 0xf28
58 #define NAND_READ_LOCATION_3 0xf2c
60 /* dummy register offsets, used by write_reg_dma */
61 #define NAND_DEV_CMD1_RESTORE 0xdead
62 #define NAND_DEV_CMD_VLD_RESTORE 0xbeef
64 /* NAND_FLASH_CMD bits */
65 #define PAGE_ACC BIT(4)
66 #define LAST_PAGE BIT(5)
68 /* NAND_FLASH_CHIP_SELECT bits */
69 #define NAND_DEV_SEL 0
72 /* NAND_FLASH_STATUS bits */
73 #define FS_OP_ERR BIT(4)
74 #define FS_READY_BSY_N BIT(5)
75 #define FS_MPU_ERR BIT(8)
76 #define FS_DEVICE_STS_ERR BIT(16)
77 #define FS_DEVICE_WP BIT(23)
79 /* NAND_BUFFER_STATUS bits */
80 #define BS_UNCORRECTABLE_BIT BIT(8)
81 #define BS_CORRECTABLE_ERR_MSK 0x1f
83 /* NAND_DEVn_CFG0 bits */
84 #define DISABLE_STATUS_AFTER_WRITE 4
86 #define UD_SIZE_BYTES 9
87 #define ECC_PARITY_SIZE_BYTES_RS 19
88 #define SPARE_SIZE_BYTES 23
89 #define NUM_ADDR_CYCLES 27
90 #define STATUS_BFR_READ 30
91 #define SET_RD_MODE_AFTER_STATUS 31
93 /* NAND_DEVn_CFG0 bits */
94 #define DEV0_CFG1_ECC_DISABLE 0
96 #define NAND_RECOVERY_CYCLES 2
97 #define CS_ACTIVE_BSY 5
98 #define BAD_BLOCK_BYTE_NUM 6
99 #define BAD_BLOCK_IN_SPARE_AREA 16
100 #define WR_RD_BSY_GAP 17
101 #define ENABLE_BCH_ECC 27
103 /* NAND_DEV0_ECC_CFG bits */
104 #define ECC_CFG_ECC_DISABLE 0
105 #define ECC_SW_RESET 1
107 #define ECC_PARITY_SIZE_BYTES_BCH 8
108 #define ECC_NUM_DATA_BYTES 16
109 #define ECC_FORCE_CLK_OPEN 30
111 /* NAND_DEV_CMD1 bits */
114 /* NAND_DEV_CMD_VLD bits */
115 #define READ_START_VLD BIT(0)
116 #define READ_STOP_VLD BIT(1)
117 #define WRITE_START_VLD BIT(2)
118 #define ERASE_START_VLD BIT(3)
119 #define SEQ_READ_START_VLD BIT(4)
121 /* NAND_EBI2_ECC_BUF_CFG bits */
124 /* NAND_ERASED_CW_DETECT_CFG bits */
125 #define ERASED_CW_ECC_MASK 1
126 #define AUTO_DETECT_RES 0
127 #define MASK_ECC (1 << ERASED_CW_ECC_MASK)
128 #define RESET_ERASED_DET (1 << AUTO_DETECT_RES)
129 #define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
130 #define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
131 #define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
133 /* NAND_ERASED_CW_DETECT_STATUS bits */
134 #define PAGE_ALL_ERASED BIT(7)
135 #define CODEWORD_ALL_ERASED BIT(6)
136 #define PAGE_ERASED BIT(5)
137 #define CODEWORD_ERASED BIT(4)
138 #define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
139 #define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
141 /* NAND_READ_LOCATION_n bits */
142 #define READ_LOCATION_OFFSET 0
143 #define READ_LOCATION_SIZE 16
144 #define READ_LOCATION_LAST 31
147 #define NAND_VERSION_MAJOR_MASK 0xf0000000
148 #define NAND_VERSION_MAJOR_SHIFT 28
149 #define NAND_VERSION_MINOR_MASK 0x0fff0000
150 #define NAND_VERSION_MINOR_SHIFT 16
153 #define OP_PAGE_READ 0x2
154 #define OP_PAGE_READ_WITH_ECC 0x3
155 #define OP_PAGE_READ_WITH_ECC_SPARE 0x4
156 #define OP_PROGRAM_PAGE 0x6
157 #define OP_PAGE_PROGRAM_WITH_ECC 0x7
158 #define OP_PROGRAM_PAGE_SPARE 0x9
159 #define OP_BLOCK_ERASE 0xa
160 #define OP_FETCH_ID 0xb
161 #define OP_RESET_DEVICE 0xd
163 /* Default Value for NAND_DEV_CMD_VLD */
164 #define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \
165 ERASE_START_VLD | SEQ_READ_START_VLD)
168 #define BAM_MODE_EN BIT(0)
171 * the NAND controller performs reads/writes with ECC in 516 byte chunks.
172 * the driver calls the chunks 'step' or 'codeword' interchangeably
174 #define NANDC_STEP_SIZE 512
177 * the largest page size we support is 8K, this will have 16 steps/codewords
180 #define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
182 /* we read at most 3 registers per codeword scan */
183 #define MAX_REG_RD (3 * MAX_NUM_STEPS)
185 /* ECC modes supported by the controller */
186 #define ECC_NONE BIT(0)
187 #define ECC_RS_4BIT BIT(1)
188 #define ECC_BCH_4BIT BIT(2)
189 #define ECC_BCH_8BIT BIT(3)
191 #define nandc_set_read_loc(nandc, reg, offset, size, is_last) \
192 nandc_set_reg(nandc, NAND_READ_LOCATION_##reg, \
193 ((offset) << READ_LOCATION_OFFSET) | \
194 ((size) << READ_LOCATION_SIZE) | \
195 ((is_last) << READ_LOCATION_LAST))
198 * Returns the actual register address for all NAND_DEV_ registers
199 * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
201 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
203 /* Returns the NAND register physical address */
204 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
206 /* Returns the dma address for reg read buffer */
207 #define reg_buf_dma_addr(chip, vaddr) \
208 ((chip)->reg_read_dma + \
209 ((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
211 #define QPIC_PER_CW_CMD_ELEMENTS 32
212 #define QPIC_PER_CW_CMD_SGL 32
213 #define QPIC_PER_CW_DATA_SGL 8
215 #define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
218 * Flags used in DMA descriptor preparation helper functions
219 * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
221 /* Don't set the EOT in current tx BAM sgl */
222 #define NAND_BAM_NO_EOT BIT(0)
223 /* Set the NWD flag in current BAM sgl */
224 #define NAND_BAM_NWD BIT(1)
225 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
226 #define NAND_BAM_NEXT_SGL BIT(2)
228 * Erased codeword status is being used two times in single transfer so this
229 * flag will determine the current value of erased codeword status register
231 #define NAND_ERASED_CW_SET BIT(4)
234 * This data type corresponds to the BAM transaction which will be used for all
236 * @bam_ce - the array of BAM command elements
237 * @cmd_sgl - sgl for NAND BAM command pipe
238 * @data_sgl - sgl for NAND BAM consumer/producer pipe
239 * @bam_ce_pos - the index in bam_ce which is available for next sgl
240 * @bam_ce_start - the index in bam_ce which marks the start position ce
241 * for current sgl. It will be used for size calculation
243 * @cmd_sgl_pos - current index in command sgl.
244 * @cmd_sgl_start - start index in command sgl.
245 * @tx_sgl_pos - current index in data sgl for tx.
246 * @tx_sgl_start - start index in data sgl for tx.
247 * @rx_sgl_pos - current index in data sgl for rx.
248 * @rx_sgl_start - start index in data sgl for rx.
249 * @wait_second_completion - wait for second DMA desc completion before making
250 * the NAND transfer completion.
251 * @txn_done - completion for NAND transfer.
252 * @last_data_desc - last DMA desc in data channel (tx/rx).
253 * @last_cmd_desc - last DMA desc in command channel.
255 struct bam_transaction {
256 struct bam_cmd_element *bam_ce;
257 struct scatterlist *cmd_sgl;
258 struct scatterlist *data_sgl;
267 bool wait_second_completion;
268 struct completion txn_done;
269 struct dma_async_tx_descriptor *last_data_desc;
270 struct dma_async_tx_descriptor *last_cmd_desc;
274 * This data type corresponds to the nand dma descriptor
275 * @list - list for desc_info
276 * @dir - DMA transfer direction
277 * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
279 * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
280 * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
281 * @dma_desc - low level DMA engine descriptor
284 struct list_head node;
286 enum dma_data_direction dir;
288 struct scatterlist adm_sgl;
290 struct scatterlist *bam_sgl;
294 struct dma_async_tx_descriptor *dma_desc;
298 * holds the current register values that we want to write. acts as a contiguous
299 * chunk of memory which we use to write the controller registers through DMA.
312 __le32 clrflashstatus;
313 __le32 clrreadstatus;
322 __le32 read_location0;
323 __le32 read_location1;
324 __le32 read_location2;
325 __le32 read_location3;
327 __le32 erased_cw_detect_cfg_clr;
328 __le32 erased_cw_detect_cfg_set;
332 * NAND controller data struct
334 * @controller: base controller structure
335 * @host_list: list containing all the chips attached to the
337 * @dev: parent device
339 * @base_phys: physical base address of controller registers
340 * @base_dma: dma base address of controller registers
341 * @core_clk: controller clock
342 * @aon_clk: another controller clock
345 * @cmd_crci: ADM DMA CRCI for command flow control
346 * @data_crci: ADM DMA CRCI for data flow control
347 * @desc_list: DMA descriptor list (list of desc_infos)
349 * @data_buffer: our local DMA buffer for page read/writes,
350 * used when we can't use the buffer provided
351 * by upper layers directly
352 * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf
354 * @reg_read_buf: local buffer for reading back registers via DMA
355 * @reg_read_dma: contains dma address for register read buffer
356 * @reg_read_pos: marker for data read in reg_read_buf
358 * @regs: a contiguous chunk of memory for DMA register
359 * writes. contains the register values to be
360 * written to controller
361 * @cmd1/vld: some fixed controller register values
362 * @props: properties of current NAND controller,
363 * initialized via DT match data
364 * @max_cwperpage: maximum QPIC codewords required. calculated
365 * from all connected NAND devices pagesize
367 struct qcom_nand_controller {
368 struct nand_controller controller;
369 struct list_head host_list;
374 phys_addr_t base_phys;
377 struct clk *core_clk;
381 /* will be used only by QPIC for BAM DMA */
383 struct dma_chan *tx_chan;
384 struct dma_chan *rx_chan;
385 struct dma_chan *cmd_chan;
388 /* will be used only by EBI2 for ADM DMA */
390 struct dma_chan *chan;
391 unsigned int cmd_crci;
392 unsigned int data_crci;
396 struct list_head desc_list;
397 struct bam_transaction *bam_txn;
403 unsigned int max_cwperpage;
405 __le32 *reg_read_buf;
406 dma_addr_t reg_read_dma;
409 struct nandc_regs *regs;
412 const struct qcom_nandc_props *props;
416 * NAND chip structure
418 * @chip: base NAND chip structure
419 * @node: list node to add itself to host_list in
420 * qcom_nand_controller
422 * @cs: chip select value for this chip
423 * @cw_size: the number of bytes in a single step/codeword
424 * of a page, consisting of all data, ecc, spare
426 * @cw_data: the number of bytes within a codeword protected
428 * @use_ecc: request the controller to use ECC for the
429 * upcoming read/write
430 * @bch_enabled: flag to tell whether BCH ECC mode is used
431 * @ecc_bytes_hw: ECC bytes used by controller hardware for this
433 * @status: value to be returned if NAND_CMD_STATUS command
435 * @last_command: keeps track of last command on this chip. used
436 * for reading correct status
438 * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for
439 * ecc/non-ecc mode for the current nand flash
442 struct qcom_nand_host {
443 struct nand_chip chip;
444 struct list_head node;
458 u32 cfg0_raw, cfg1_raw;
466 * This data type corresponds to the NAND controller properties which varies
467 * among different NAND controllers.
468 * @ecc_modes - ecc mode for NAND
469 * @is_bam - whether NAND controller is using BAM
470 * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
472 struct qcom_nandc_props {
475 u32 dev_cmd_reg_start;
478 /* Frees the BAM transaction memory */
479 static void free_bam_transaction(struct qcom_nand_controller *nandc)
481 struct bam_transaction *bam_txn = nandc->bam_txn;
483 devm_kfree(nandc->dev, bam_txn);
486 /* Allocates and Initializes the BAM transaction */
487 static struct bam_transaction *
488 alloc_bam_transaction(struct qcom_nand_controller *nandc)
490 struct bam_transaction *bam_txn;
492 unsigned int num_cw = nandc->max_cwperpage;
496 sizeof(*bam_txn) + num_cw *
497 ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
498 (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
499 (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
501 bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
505 bam_txn = bam_txn_buf;
506 bam_txn_buf += sizeof(*bam_txn);
508 bam_txn->bam_ce = bam_txn_buf;
510 sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
512 bam_txn->cmd_sgl = bam_txn_buf;
514 sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
516 bam_txn->data_sgl = bam_txn_buf;
518 init_completion(&bam_txn->txn_done);
523 /* Clears the BAM transaction indexes */
524 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
526 struct bam_transaction *bam_txn = nandc->bam_txn;
528 if (!nandc->props->is_bam)
531 bam_txn->bam_ce_pos = 0;
532 bam_txn->bam_ce_start = 0;
533 bam_txn->cmd_sgl_pos = 0;
534 bam_txn->cmd_sgl_start = 0;
535 bam_txn->tx_sgl_pos = 0;
536 bam_txn->tx_sgl_start = 0;
537 bam_txn->rx_sgl_pos = 0;
538 bam_txn->rx_sgl_start = 0;
539 bam_txn->last_data_desc = NULL;
540 bam_txn->wait_second_completion = false;
542 sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
543 QPIC_PER_CW_CMD_SGL);
544 sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
545 QPIC_PER_CW_DATA_SGL);
547 reinit_completion(&bam_txn->txn_done);
550 /* Callback for DMA descriptor completion */
551 static void qpic_bam_dma_done(void *data)
553 struct bam_transaction *bam_txn = data;
556 * In case of data transfer with NAND, 2 callbacks will be generated.
557 * One for command channel and another one for data channel.
558 * If current transaction has data descriptors
559 * (i.e. wait_second_completion is true), then set this to false
560 * and wait for second DMA descriptor completion.
562 if (bam_txn->wait_second_completion)
563 bam_txn->wait_second_completion = false;
565 complete(&bam_txn->txn_done);
568 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
570 return container_of(chip, struct qcom_nand_host, chip);
573 static inline struct qcom_nand_controller *
574 get_qcom_nand_controller(struct nand_chip *chip)
576 return container_of(chip->controller, struct qcom_nand_controller,
580 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
582 return ioread32(nandc->base + offset);
585 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
588 iowrite32(val, nandc->base + offset);
591 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
594 if (!nandc->props->is_bam)
598 dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
600 sizeof(*nandc->reg_read_buf),
603 dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
605 sizeof(*nandc->reg_read_buf),
609 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
618 case NAND_FLASH_CHIP_SELECT:
619 return ®s->chip_sel;
622 case NAND_FLASH_STATUS:
623 return ®s->clrflashstatus;
628 case NAND_DEV0_ECC_CFG:
629 return ®s->ecc_bch_cfg;
630 case NAND_READ_STATUS:
631 return ®s->clrreadstatus;
634 case NAND_DEV_CMD1_RESTORE:
635 return ®s->orig_cmd1;
636 case NAND_DEV_CMD_VLD:
638 case NAND_DEV_CMD_VLD_RESTORE:
639 return ®s->orig_vld;
640 case NAND_EBI2_ECC_BUF_CFG:
641 return ®s->ecc_buf_cfg;
642 case NAND_READ_LOCATION_0:
643 return ®s->read_location0;
644 case NAND_READ_LOCATION_1:
645 return ®s->read_location1;
646 case NAND_READ_LOCATION_2:
647 return ®s->read_location2;
648 case NAND_READ_LOCATION_3:
649 return ®s->read_location3;
655 static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
658 struct nandc_regs *regs = nandc->regs;
661 reg = offset_to_nandc_reg(regs, offset);
664 *reg = cpu_to_le32(val);
667 /* helper to configure address register values */
668 static void set_address(struct qcom_nand_host *host, u16 column, int page)
670 struct nand_chip *chip = &host->chip;
671 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
673 if (chip->options & NAND_BUSWIDTH_16)
676 nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
677 nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
681 * update_rw_regs: set up read/write register values, these will be
682 * written to the NAND controller registers via DMA
684 * @num_cw: number of steps for the read/write operation
685 * @read: read or write operation
687 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
689 struct nand_chip *chip = &host->chip;
690 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
691 u32 cmd, cfg0, cfg1, ecc_bch_cfg;
695 cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
697 cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
699 cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
703 cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
704 (num_cw - 1) << CW_PER_PAGE;
707 ecc_bch_cfg = host->ecc_bch_cfg;
709 cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
710 (num_cw - 1) << CW_PER_PAGE;
712 cfg1 = host->cfg1_raw;
713 ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
716 nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
717 nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
718 nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
719 nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
720 nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
721 nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
722 nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
723 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
726 nandc_set_read_loc(nandc, 0, 0, host->use_ecc ?
727 host->cw_data : host->cw_size, 1);
731 * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
732 * for BAM. This descriptor will be added in the NAND DMA descriptor queue
733 * which will be submitted to DMA engine.
735 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
736 struct dma_chan *chan,
739 struct desc_info *desc;
740 struct scatterlist *sgl;
741 unsigned int sgl_cnt;
743 struct bam_transaction *bam_txn = nandc->bam_txn;
744 enum dma_transfer_direction dir_eng;
745 struct dma_async_tx_descriptor *dma_desc;
747 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
751 if (chan == nandc->cmd_chan) {
752 sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
753 sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
754 bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
755 dir_eng = DMA_MEM_TO_DEV;
756 desc->dir = DMA_TO_DEVICE;
757 } else if (chan == nandc->tx_chan) {
758 sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
759 sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
760 bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
761 dir_eng = DMA_MEM_TO_DEV;
762 desc->dir = DMA_TO_DEVICE;
764 sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
765 sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
766 bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
767 dir_eng = DMA_DEV_TO_MEM;
768 desc->dir = DMA_FROM_DEVICE;
771 sg_mark_end(sgl + sgl_cnt - 1);
772 ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
774 dev_err(nandc->dev, "failure in mapping desc\n");
779 desc->sgl_cnt = sgl_cnt;
782 dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
786 dev_err(nandc->dev, "failure in prep desc\n");
787 dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
792 desc->dma_desc = dma_desc;
794 /* update last data/command descriptor */
795 if (chan == nandc->cmd_chan)
796 bam_txn->last_cmd_desc = dma_desc;
798 bam_txn->last_data_desc = dma_desc;
800 list_add_tail(&desc->node, &nandc->desc_list);
806 * Prepares the command descriptor for BAM DMA which will be used for NAND
807 * register reads and writes. The command descriptor requires the command
808 * to be formed in command element type so this function uses the command
809 * element from bam transaction ce array and fills the same with required
810 * data. A single SGL can contain multiple command elements so
811 * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
812 * after the current command element.
814 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
815 int reg_off, const void *vaddr,
816 int size, unsigned int flags)
820 struct bam_cmd_element *bam_ce_buffer;
821 struct bam_transaction *bam_txn = nandc->bam_txn;
823 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
825 /* fill the command desc */
826 for (i = 0; i < size; i++) {
828 bam_prep_ce(&bam_ce_buffer[i],
829 nandc_reg_phys(nandc, reg_off + 4 * i),
831 reg_buf_dma_addr(nandc,
832 (__le32 *)vaddr + i));
834 bam_prep_ce_le32(&bam_ce_buffer[i],
835 nandc_reg_phys(nandc, reg_off + 4 * i),
837 *((__le32 *)vaddr + i));
840 bam_txn->bam_ce_pos += size;
842 /* use the separate sgl after this command */
843 if (flags & NAND_BAM_NEXT_SGL) {
844 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
845 bam_ce_size = (bam_txn->bam_ce_pos -
846 bam_txn->bam_ce_start) *
847 sizeof(struct bam_cmd_element);
848 sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
849 bam_ce_buffer, bam_ce_size);
850 bam_txn->cmd_sgl_pos++;
851 bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
853 if (flags & NAND_BAM_NWD) {
854 ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
866 * Prepares the data descriptor for BAM DMA which will be used for NAND
867 * data reads and writes.
869 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
871 int size, unsigned int flags)
874 struct bam_transaction *bam_txn = nandc->bam_txn;
877 sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
879 bam_txn->rx_sgl_pos++;
881 sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
883 bam_txn->tx_sgl_pos++;
886 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
887 * is not set, form the DMA descriptor
889 if (!(flags & NAND_BAM_NO_EOT)) {
890 ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
900 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
901 int reg_off, const void *vaddr, int size,
904 struct desc_info *desc;
905 struct dma_async_tx_descriptor *dma_desc;
906 struct scatterlist *sgl;
907 struct dma_slave_config slave_conf;
908 enum dma_transfer_direction dir_eng;
911 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
915 sgl = &desc->adm_sgl;
917 sg_init_one(sgl, vaddr, size);
920 dir_eng = DMA_DEV_TO_MEM;
921 desc->dir = DMA_FROM_DEVICE;
923 dir_eng = DMA_MEM_TO_DEV;
924 desc->dir = DMA_TO_DEVICE;
927 ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
933 memset(&slave_conf, 0x00, sizeof(slave_conf));
935 slave_conf.device_fc = flow_control;
937 slave_conf.src_maxburst = 16;
938 slave_conf.src_addr = nandc->base_dma + reg_off;
939 slave_conf.slave_id = nandc->data_crci;
941 slave_conf.dst_maxburst = 16;
942 slave_conf.dst_addr = nandc->base_dma + reg_off;
943 slave_conf.slave_id = nandc->cmd_crci;
946 ret = dmaengine_slave_config(nandc->chan, &slave_conf);
948 dev_err(nandc->dev, "failed to configure dma channel\n");
952 dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
954 dev_err(nandc->dev, "failed to prepare desc\n");
959 desc->dma_desc = dma_desc;
961 list_add_tail(&desc->node, &nandc->desc_list);
971 * read_reg_dma: prepares a descriptor to read a given number of
972 * contiguous registers to the reg_read_buf pointer
974 * @first: offset of the first register in the contiguous block
975 * @num_regs: number of registers to read
976 * @flags: flags to control DMA descriptor preparation
978 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
979 int num_regs, unsigned int flags)
981 bool flow_control = false;
984 vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
985 nandc->reg_read_pos += num_regs;
987 if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
988 first = dev_cmd_reg_addr(nandc, first);
990 if (nandc->props->is_bam)
991 return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
994 if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
997 return prep_adm_dma_desc(nandc, true, first, vaddr,
998 num_regs * sizeof(u32), flow_control);
1002 * write_reg_dma: prepares a descriptor to write a given number of
1003 * contiguous registers
1005 * @first: offset of the first register in the contiguous block
1006 * @num_regs: number of registers to write
1007 * @flags: flags to control DMA descriptor preparation
1009 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
1010 int num_regs, unsigned int flags)
1012 bool flow_control = false;
1013 struct nandc_regs *regs = nandc->regs;
1016 vaddr = offset_to_nandc_reg(regs, first);
1018 if (first == NAND_ERASED_CW_DETECT_CFG) {
1019 if (flags & NAND_ERASED_CW_SET)
1020 vaddr = ®s->erased_cw_detect_cfg_set;
1022 vaddr = ®s->erased_cw_detect_cfg_clr;
1025 if (first == NAND_EXEC_CMD)
1026 flags |= NAND_BAM_NWD;
1028 if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
1029 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
1031 if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
1032 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
1034 if (nandc->props->is_bam)
1035 return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
1038 if (first == NAND_FLASH_CMD)
1039 flow_control = true;
1041 return prep_adm_dma_desc(nandc, false, first, vaddr,
1042 num_regs * sizeof(u32), flow_control);
1046 * read_data_dma: prepares a DMA descriptor to transfer data from the
1047 * controller's internal buffer to the buffer 'vaddr'
1049 * @reg_off: offset within the controller's data buffer
1050 * @vaddr: virtual address of the buffer we want to write to
1051 * @size: DMA transaction size in bytes
1052 * @flags: flags to control DMA descriptor preparation
1054 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1055 const u8 *vaddr, int size, unsigned int flags)
1057 if (nandc->props->is_bam)
1058 return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
1060 return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
1064 * write_data_dma: prepares a DMA descriptor to transfer data from
1065 * 'vaddr' to the controller's internal buffer
1067 * @reg_off: offset within the controller's data buffer
1068 * @vaddr: virtual address of the buffer we want to read from
1069 * @size: DMA transaction size in bytes
1070 * @flags: flags to control DMA descriptor preparation
1072 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1073 const u8 *vaddr, int size, unsigned int flags)
1075 if (nandc->props->is_bam)
1076 return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
1078 return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
1082 * Helper to prepare DMA descriptors for configuring registers
1083 * before reading a NAND page.
1085 static void config_nand_page_read(struct qcom_nand_controller *nandc)
1087 write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1088 write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1089 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
1090 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
1091 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
1092 NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1096 * Helper to prepare DMA descriptors for configuring registers
1097 * before reading each codeword in NAND page.
1100 config_nand_cw_read(struct qcom_nand_controller *nandc, bool use_ecc)
1102 if (nandc->props->is_bam)
1103 write_reg_dma(nandc, NAND_READ_LOCATION_0, 4,
1106 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1107 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1110 read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
1111 read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
1114 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1119 * Helper to prepare dma descriptors to configure registers needed for reading a
1120 * single codeword in page
1123 config_nand_single_cw_page_read(struct qcom_nand_controller *nandc,
1126 config_nand_page_read(nandc);
1127 config_nand_cw_read(nandc, use_ecc);
1131 * Helper to prepare DMA descriptors used to configure registers needed for
1132 * before writing a NAND page.
1134 static void config_nand_page_write(struct qcom_nand_controller *nandc)
1136 write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1137 write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1138 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
1143 * Helper to prepare DMA descriptors for configuring registers
1144 * before writing each codeword in NAND page.
1146 static void config_nand_cw_write(struct qcom_nand_controller *nandc)
1148 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1149 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1151 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1153 write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1154 write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1158 * the following functions are used within chip->legacy.cmdfunc() to
1159 * perform different NAND_CMD_* commands
1162 /* sets up descriptors for NAND_CMD_PARAM */
1163 static int nandc_param(struct qcom_nand_host *host)
1165 struct nand_chip *chip = &host->chip;
1166 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1169 * NAND_CMD_PARAM is called before we know much about the FLASH chip
1170 * in use. we configure the controller to perform a raw read of 512
1171 * bytes to read onfi params
1173 nandc_set_reg(nandc, NAND_FLASH_CMD, OP_PAGE_READ | PAGE_ACC | LAST_PAGE);
1174 nandc_set_reg(nandc, NAND_ADDR0, 0);
1175 nandc_set_reg(nandc, NAND_ADDR1, 0);
1176 nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
1177 | 512 << UD_SIZE_BYTES
1178 | 5 << NUM_ADDR_CYCLES
1179 | 0 << SPARE_SIZE_BYTES);
1180 nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
1181 | 0 << CS_ACTIVE_BSY
1182 | 17 << BAD_BLOCK_BYTE_NUM
1183 | 1 << BAD_BLOCK_IN_SPARE_AREA
1184 | 2 << WR_RD_BSY_GAP
1186 | 1 << DEV0_CFG1_ECC_DISABLE);
1187 nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
1189 /* configure CMD1 and VLD for ONFI param probing */
1190 nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
1191 (nandc->vld & ~READ_START_VLD));
1192 nandc_set_reg(nandc, NAND_DEV_CMD1,
1193 (nandc->cmd1 & ~(0xFF << READ_ADDR))
1194 | NAND_CMD_PARAM << READ_ADDR);
1196 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1198 nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
1199 nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
1200 nandc_set_read_loc(nandc, 0, 0, 512, 1);
1202 write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
1203 write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1205 nandc->buf_count = 512;
1206 memset(nandc->data_buffer, 0xff, nandc->buf_count);
1208 config_nand_single_cw_page_read(nandc, false);
1210 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1211 nandc->buf_count, 0);
1213 /* restore CMD1 and VLD regs */
1214 write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
1215 write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
1220 /* sets up descriptors for NAND_CMD_ERASE1 */
1221 static int erase_block(struct qcom_nand_host *host, int page_addr)
1223 struct nand_chip *chip = &host->chip;
1224 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1226 nandc_set_reg(nandc, NAND_FLASH_CMD,
1227 OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
1228 nandc_set_reg(nandc, NAND_ADDR0, page_addr);
1229 nandc_set_reg(nandc, NAND_ADDR1, 0);
1230 nandc_set_reg(nandc, NAND_DEV0_CFG0,
1231 host->cfg0_raw & ~(7 << CW_PER_PAGE));
1232 nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
1233 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1234 nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
1235 nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
1237 write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
1238 write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1239 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1241 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1243 write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1244 write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1249 /* sets up descriptors for NAND_CMD_READID */
1250 static int read_id(struct qcom_nand_host *host, int column)
1252 struct nand_chip *chip = &host->chip;
1253 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1258 nandc_set_reg(nandc, NAND_FLASH_CMD, OP_FETCH_ID);
1259 nandc_set_reg(nandc, NAND_ADDR0, column);
1260 nandc_set_reg(nandc, NAND_ADDR1, 0);
1261 nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT,
1262 nandc->props->is_bam ? 0 : DM_EN);
1263 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1265 write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1266 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1268 read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1273 /* sets up descriptors for NAND_CMD_RESET */
1274 static int reset(struct qcom_nand_host *host)
1276 struct nand_chip *chip = &host->chip;
1277 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1279 nandc_set_reg(nandc, NAND_FLASH_CMD, OP_RESET_DEVICE);
1280 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1282 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1283 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1285 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1290 /* helpers to submit/free our list of dma descriptors */
1291 static int submit_descs(struct qcom_nand_controller *nandc)
1293 struct desc_info *desc;
1294 dma_cookie_t cookie = 0;
1295 struct bam_transaction *bam_txn = nandc->bam_txn;
1298 if (nandc->props->is_bam) {
1299 if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1300 r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1305 if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1306 r = prepare_bam_async_desc(nandc, nandc->tx_chan,
1307 DMA_PREP_INTERRUPT);
1312 if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1313 r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
1320 list_for_each_entry(desc, &nandc->desc_list, node)
1321 cookie = dmaengine_submit(desc->dma_desc);
1323 if (nandc->props->is_bam) {
1324 bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
1325 bam_txn->last_cmd_desc->callback_param = bam_txn;
1326 if (bam_txn->last_data_desc) {
1327 bam_txn->last_data_desc->callback = qpic_bam_dma_done;
1328 bam_txn->last_data_desc->callback_param = bam_txn;
1329 bam_txn->wait_second_completion = true;
1332 dma_async_issue_pending(nandc->tx_chan);
1333 dma_async_issue_pending(nandc->rx_chan);
1334 dma_async_issue_pending(nandc->cmd_chan);
1336 if (!wait_for_completion_timeout(&bam_txn->txn_done,
1337 QPIC_NAND_COMPLETION_TIMEOUT))
1340 if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1347 static void free_descs(struct qcom_nand_controller *nandc)
1349 struct desc_info *desc, *n;
1351 list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1352 list_del(&desc->node);
1354 if (nandc->props->is_bam)
1355 dma_unmap_sg(nandc->dev, desc->bam_sgl,
1356 desc->sgl_cnt, desc->dir);
1358 dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1365 /* reset the register read buffer for next NAND operation */
1366 static void clear_read_regs(struct qcom_nand_controller *nandc)
1368 nandc->reg_read_pos = 0;
1369 nandc_read_buffer_sync(nandc, false);
1372 static void pre_command(struct qcom_nand_host *host, int command)
1374 struct nand_chip *chip = &host->chip;
1375 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1377 nandc->buf_count = 0;
1378 nandc->buf_start = 0;
1379 host->use_ecc = false;
1380 host->last_command = command;
1382 clear_read_regs(nandc);
1384 if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
1385 command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
1386 clear_bam_transaction(nandc);
1390 * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1391 * privately maintained status byte, this status byte can be read after
1392 * NAND_CMD_STATUS is called
1394 static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
1396 struct nand_chip *chip = &host->chip;
1397 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1398 struct nand_ecc_ctrl *ecc = &chip->ecc;
1402 num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
1403 nandc_read_buffer_sync(nandc, true);
1405 for (i = 0; i < num_cw; i++) {
1406 u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1408 if (flash_status & FS_MPU_ERR)
1409 host->status &= ~NAND_STATUS_WP;
1411 if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
1413 FS_DEVICE_STS_ERR)))
1414 host->status |= NAND_STATUS_FAIL;
1418 static void post_command(struct qcom_nand_host *host, int command)
1420 struct nand_chip *chip = &host->chip;
1421 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1424 case NAND_CMD_READID:
1425 nandc_read_buffer_sync(nandc, true);
1426 memcpy(nandc->data_buffer, nandc->reg_read_buf,
1429 case NAND_CMD_PAGEPROG:
1430 case NAND_CMD_ERASE1:
1431 parse_erase_write_errors(host, command);
1439 * Implements chip->legacy.cmdfunc. It's only used for a limited set of
1440 * commands. The rest of the commands wouldn't be called by upper layers.
1441 * For example, NAND_CMD_READOOB would never be called because we have our own
1442 * versions of read_oob ops for nand_ecc_ctrl.
1444 static void qcom_nandc_command(struct nand_chip *chip, unsigned int command,
1445 int column, int page_addr)
1447 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1448 struct nand_ecc_ctrl *ecc = &chip->ecc;
1449 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1453 pre_command(host, command);
1456 case NAND_CMD_RESET:
1461 case NAND_CMD_READID:
1462 nandc->buf_count = 4;
1463 ret = read_id(host, column);
1467 case NAND_CMD_PARAM:
1468 ret = nandc_param(host);
1472 case NAND_CMD_ERASE1:
1473 ret = erase_block(host, page_addr);
1477 case NAND_CMD_READ0:
1478 /* we read the entire page for now */
1479 WARN_ON(column != 0);
1481 host->use_ecc = true;
1482 set_address(host, 0, page_addr);
1483 update_rw_regs(host, ecc->steps, true);
1486 case NAND_CMD_SEQIN:
1487 WARN_ON(column != 0);
1488 set_address(host, 0, page_addr);
1491 case NAND_CMD_PAGEPROG:
1492 case NAND_CMD_STATUS:
1499 dev_err(nandc->dev, "failure executing command %d\n",
1506 ret = submit_descs(nandc);
1509 "failure submitting descs for command %d\n",
1515 post_command(host, command);
1519 * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1520 * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1522 * when using RS ECC, the HW reports the same erros when reading an erased CW,
1523 * but it notifies that it is an erased CW by placing special characters at
1524 * certain offsets in the buffer.
1526 * verify if the page is erased or not, and fix up the page for RS ECC by
1527 * replacing the special characters with 0xff.
1529 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1534 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1535 * is erased by looking for 0x54s at offsets 3 and 175 from the
1536 * beginning of each codeword
1539 empty1 = data_buf[3];
1540 empty2 = data_buf[175];
1543 * if the erased codework markers, if they exist override them with
1546 if ((empty1 == 0x54 && empty2 == 0xff) ||
1547 (empty1 == 0xff && empty2 == 0x54)) {
1549 data_buf[175] = 0xff;
1553 * check if the entire chunk contains 0xffs or not. if it doesn't, then
1554 * restore the original values at the special offsets
1556 if (memchr_inv(data_buf, 0xff, data_len)) {
1557 data_buf[3] = empty1;
1558 data_buf[175] = empty2;
1572 /* reads back FLASH_STATUS register set by the controller */
1573 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
1575 struct nand_chip *chip = &host->chip;
1576 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1579 for (i = 0; i < cw_cnt; i++) {
1580 u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
1582 if (flash & (FS_OP_ERR | FS_MPU_ERR))
1589 /* performs raw read for one codeword */
1591 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
1592 u8 *data_buf, u8 *oob_buf, int page, int cw)
1594 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1595 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1596 struct nand_ecc_ctrl *ecc = &chip->ecc;
1597 int data_size1, data_size2, oob_size1, oob_size2;
1598 int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
1600 nand_read_page_op(chip, page, 0, NULL, 0);
1601 host->use_ecc = false;
1603 clear_bam_transaction(nandc);
1604 set_address(host, host->cw_size * cw, page);
1605 update_rw_regs(host, 1, true);
1606 config_nand_page_read(nandc);
1608 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1609 oob_size1 = host->bbm_size;
1611 if (cw == (ecc->steps - 1)) {
1612 data_size2 = ecc->size - data_size1 -
1613 ((ecc->steps - 1) * 4);
1614 oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
1617 data_size2 = host->cw_data - data_size1;
1618 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1621 if (nandc->props->is_bam) {
1622 nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0);
1623 read_loc += data_size1;
1625 nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0);
1626 read_loc += oob_size1;
1628 nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0);
1629 read_loc += data_size2;
1631 nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1);
1634 config_nand_cw_read(nandc, false);
1636 read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1637 reg_off += data_size1;
1639 read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1640 reg_off += oob_size1;
1642 read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
1643 reg_off += data_size2;
1645 read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
1647 ret = submit_descs(nandc);
1650 dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
1654 return check_flash_errors(host, 1);
1658 * Bitflips can happen in erased codewords also so this function counts the
1659 * number of 0 in each CW for which ECC engine returns the uncorrectable
1660 * error. The page will be assumed as erased if this count is less than or
1661 * equal to the ecc->strength for each CW.
1663 * 1. Both DATA and OOB need to be checked for number of 0. The
1664 * top-level API can be called with only data buf or OOB buf so use
1665 * chip->data_buf if data buf is null and chip->oob_poi if oob buf
1666 * is null for copying the raw bytes.
1667 * 2. Perform raw read for all the CW which has uncorrectable errors.
1668 * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1669 * The BBM and spare bytes bit flip won’t affect the ECC so don’t check
1670 * the number of bitflips in this area.
1673 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
1674 u8 *oob_buf, unsigned long uncorrectable_cws,
1675 int page, unsigned int max_bitflips)
1677 struct nand_chip *chip = &host->chip;
1678 struct mtd_info *mtd = nand_to_mtd(chip);
1679 struct nand_ecc_ctrl *ecc = &chip->ecc;
1680 u8 *cw_data_buf, *cw_oob_buf;
1681 int cw, data_size, oob_size, ret = 0;
1684 data_buf = chip->data_buf;
1689 oob_buf = chip->oob_poi;
1693 for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
1694 if (cw == (ecc->steps - 1)) {
1695 data_size = ecc->size - ((ecc->steps - 1) * 4);
1696 oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
1698 data_size = host->cw_data;
1699 oob_size = host->ecc_bytes_hw;
1702 /* determine starting buffer address for current CW */
1703 cw_data_buf = data_buf + (cw * host->cw_data);
1704 cw_oob_buf = oob_buf + (cw * ecc->bytes);
1706 ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
1707 cw_oob_buf, page, cw);
1712 * make sure it isn't an erased page reported
1713 * as not-erased by HW because of a few bitflips
1715 ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
1716 cw_oob_buf + host->bbm_size,
1720 mtd->ecc_stats.failed++;
1722 mtd->ecc_stats.corrected += ret;
1723 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1727 return max_bitflips;
1731 * reads back status registers set by the controller to notify page read
1732 * errors. this is equivalent to what 'ecc->correct()' would do.
1734 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1735 u8 *oob_buf, int page)
1737 struct nand_chip *chip = &host->chip;
1738 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1739 struct mtd_info *mtd = nand_to_mtd(chip);
1740 struct nand_ecc_ctrl *ecc = &chip->ecc;
1741 unsigned int max_bitflips = 0, uncorrectable_cws = 0;
1742 struct read_stats *buf;
1743 bool flash_op_err = false, erased;
1745 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1747 buf = (struct read_stats *)nandc->reg_read_buf;
1748 nandc_read_buffer_sync(nandc, true);
1750 for (i = 0; i < ecc->steps; i++, buf++) {
1751 u32 flash, buffer, erased_cw;
1752 int data_len, oob_len;
1754 if (i == (ecc->steps - 1)) {
1755 data_len = ecc->size - ((ecc->steps - 1) << 2);
1756 oob_len = ecc->steps << 2;
1758 data_len = host->cw_data;
1762 flash = le32_to_cpu(buf->flash);
1763 buffer = le32_to_cpu(buf->buffer);
1764 erased_cw = le32_to_cpu(buf->erased_cw);
1767 * Check ECC failure for each codeword. ECC failure can
1768 * happen in either of the following conditions
1769 * 1. If number of bitflips are greater than ECC engine
1771 * 2. If this codeword contains all 0xff for which erased
1772 * codeword detection check will be done.
1774 if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
1776 * For BCH ECC, ignore erased codeword errors, if
1777 * ERASED_CW bits are set.
1779 if (host->bch_enabled) {
1780 erased = (erased_cw & ERASED_CW) == ERASED_CW ?
1783 * For RS ECC, HW reports the erased CW by placing
1784 * special characters at certain offsets in the buffer.
1785 * These special characters will be valid only if
1786 * complete page is read i.e. data_buf is not NULL.
1788 } else if (data_buf) {
1789 erased = erased_chunk_check_and_fixup(data_buf,
1796 uncorrectable_cws |= BIT(i);
1798 * Check if MPU or any other operational error (timeout,
1799 * device failure, etc.) happened for this codeword and
1800 * make flash_op_err true. If flash_op_err is set, then
1801 * EIO will be returned for page read.
1803 } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1804 flash_op_err = true;
1806 * No ECC or operational errors happened. Check the number of
1807 * bits corrected and update the ecc_stats.corrected.
1812 stat = buffer & BS_CORRECTABLE_ERR_MSK;
1813 mtd->ecc_stats.corrected += stat;
1814 max_bitflips = max(max_bitflips, stat);
1818 data_buf += data_len;
1820 oob_buf += oob_len + ecc->bytes;
1826 if (!uncorrectable_cws)
1827 return max_bitflips;
1829 return check_for_erased_page(host, data_buf_start, oob_buf_start,
1830 uncorrectable_cws, page,
1835 * helper to perform the actual page read operation, used by ecc->read_page(),
1838 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1839 u8 *oob_buf, int page)
1841 struct nand_chip *chip = &host->chip;
1842 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1843 struct nand_ecc_ctrl *ecc = &chip->ecc;
1844 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1847 config_nand_page_read(nandc);
1849 /* queue cmd descs for each codeword */
1850 for (i = 0; i < ecc->steps; i++) {
1851 int data_size, oob_size;
1853 if (i == (ecc->steps - 1)) {
1854 data_size = ecc->size - ((ecc->steps - 1) << 2);
1855 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1858 data_size = host->cw_data;
1859 oob_size = host->ecc_bytes_hw + host->spare_bytes;
1862 if (nandc->props->is_bam) {
1863 if (data_buf && oob_buf) {
1864 nandc_set_read_loc(nandc, 0, 0, data_size, 0);
1865 nandc_set_read_loc(nandc, 1, data_size,
1867 } else if (data_buf) {
1868 nandc_set_read_loc(nandc, 0, 0, data_size, 1);
1870 nandc_set_read_loc(nandc, 0, data_size,
1875 config_nand_cw_read(nandc, true);
1878 read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1882 * when ecc is enabled, the controller doesn't read the real
1883 * or dummy bad block markers in each chunk. To maintain a
1884 * consistent layout across RAW and ECC reads, we just
1885 * leave the real/dummy BBM offsets empty (i.e, filled with
1891 for (j = 0; j < host->bbm_size; j++)
1894 read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1895 oob_buf, oob_size, 0);
1899 data_buf += data_size;
1901 oob_buf += oob_size;
1904 ret = submit_descs(nandc);
1908 dev_err(nandc->dev, "failure to read page/oob\n");
1912 return parse_read_errors(host, data_buf_start, oob_buf_start, page);
1916 * a helper that copies the last step/codeword of a page (containing free oob)
1917 * into our local buffer
1919 static int copy_last_cw(struct qcom_nand_host *host, int page)
1921 struct nand_chip *chip = &host->chip;
1922 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1923 struct nand_ecc_ctrl *ecc = &chip->ecc;
1927 clear_read_regs(nandc);
1929 size = host->use_ecc ? host->cw_data : host->cw_size;
1931 /* prepare a clean read buffer */
1932 memset(nandc->data_buffer, 0xff, size);
1934 set_address(host, host->cw_size * (ecc->steps - 1), page);
1935 update_rw_regs(host, 1, true);
1937 config_nand_single_cw_page_read(nandc, host->use_ecc);
1939 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
1941 ret = submit_descs(nandc);
1943 dev_err(nandc->dev, "failed to copy last codeword\n");
1950 /* implements ecc->read_page() */
1951 static int qcom_nandc_read_page(struct nand_chip *chip, uint8_t *buf,
1952 int oob_required, int page)
1954 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1955 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1956 u8 *data_buf, *oob_buf = NULL;
1958 nand_read_page_op(chip, page, 0, NULL, 0);
1960 oob_buf = oob_required ? chip->oob_poi : NULL;
1962 clear_bam_transaction(nandc);
1964 return read_page_ecc(host, data_buf, oob_buf, page);
1967 /* implements ecc->read_page_raw() */
1968 static int qcom_nandc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1969 int oob_required, int page)
1971 struct mtd_info *mtd = nand_to_mtd(chip);
1972 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1973 struct nand_ecc_ctrl *ecc = &chip->ecc;
1975 u8 *data_buf = buf, *oob_buf = chip->oob_poi;
1977 for (cw = 0; cw < ecc->steps; cw++) {
1978 ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
1983 data_buf += host->cw_data;
1984 oob_buf += ecc->bytes;
1990 /* implements ecc->read_oob() */
1991 static int qcom_nandc_read_oob(struct nand_chip *chip, int page)
1993 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1994 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1995 struct nand_ecc_ctrl *ecc = &chip->ecc;
1997 clear_read_regs(nandc);
1998 clear_bam_transaction(nandc);
2000 host->use_ecc = true;
2001 set_address(host, 0, page);
2002 update_rw_regs(host, ecc->steps, true);
2004 return read_page_ecc(host, NULL, chip->oob_poi, page);
2007 /* implements ecc->write_page() */
2008 static int qcom_nandc_write_page(struct nand_chip *chip, const uint8_t *buf,
2009 int oob_required, int page)
2011 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2012 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2013 struct nand_ecc_ctrl *ecc = &chip->ecc;
2014 u8 *data_buf, *oob_buf;
2017 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2019 clear_read_regs(nandc);
2020 clear_bam_transaction(nandc);
2022 data_buf = (u8 *)buf;
2023 oob_buf = chip->oob_poi;
2025 host->use_ecc = true;
2026 update_rw_regs(host, ecc->steps, false);
2027 config_nand_page_write(nandc);
2029 for (i = 0; i < ecc->steps; i++) {
2030 int data_size, oob_size;
2032 if (i == (ecc->steps - 1)) {
2033 data_size = ecc->size - ((ecc->steps - 1) << 2);
2034 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
2037 data_size = host->cw_data;
2038 oob_size = ecc->bytes;
2042 write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
2043 i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
2046 * when ECC is enabled, we don't really need to write anything
2047 * to oob for the first n - 1 codewords since these oob regions
2048 * just contain ECC bytes that's written by the controller
2049 * itself. For the last codeword, we skip the bbm positions and
2050 * write to the free oob area.
2052 if (i == (ecc->steps - 1)) {
2053 oob_buf += host->bbm_size;
2055 write_data_dma(nandc, FLASH_BUF_ACC + data_size,
2056 oob_buf, oob_size, 0);
2059 config_nand_cw_write(nandc);
2061 data_buf += data_size;
2062 oob_buf += oob_size;
2065 ret = submit_descs(nandc);
2067 dev_err(nandc->dev, "failure to write page\n");
2072 ret = nand_prog_page_end_op(chip);
2077 /* implements ecc->write_page_raw() */
2078 static int qcom_nandc_write_page_raw(struct nand_chip *chip,
2079 const uint8_t *buf, int oob_required,
2082 struct mtd_info *mtd = nand_to_mtd(chip);
2083 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2084 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2085 struct nand_ecc_ctrl *ecc = &chip->ecc;
2086 u8 *data_buf, *oob_buf;
2089 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2090 clear_read_regs(nandc);
2091 clear_bam_transaction(nandc);
2093 data_buf = (u8 *)buf;
2094 oob_buf = chip->oob_poi;
2096 host->use_ecc = false;
2097 update_rw_regs(host, ecc->steps, false);
2098 config_nand_page_write(nandc);
2100 for (i = 0; i < ecc->steps; i++) {
2101 int data_size1, data_size2, oob_size1, oob_size2;
2102 int reg_off = FLASH_BUF_ACC;
2104 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
2105 oob_size1 = host->bbm_size;
2107 if (i == (ecc->steps - 1)) {
2108 data_size2 = ecc->size - data_size1 -
2109 ((ecc->steps - 1) << 2);
2110 oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
2113 data_size2 = host->cw_data - data_size1;
2114 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
2117 write_data_dma(nandc, reg_off, data_buf, data_size1,
2119 reg_off += data_size1;
2120 data_buf += data_size1;
2122 write_data_dma(nandc, reg_off, oob_buf, oob_size1,
2124 reg_off += oob_size1;
2125 oob_buf += oob_size1;
2127 write_data_dma(nandc, reg_off, data_buf, data_size2,
2129 reg_off += data_size2;
2130 data_buf += data_size2;
2132 write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
2133 oob_buf += oob_size2;
2135 config_nand_cw_write(nandc);
2138 ret = submit_descs(nandc);
2140 dev_err(nandc->dev, "failure to write raw page\n");
2145 ret = nand_prog_page_end_op(chip);
2151 * implements ecc->write_oob()
2153 * the NAND controller cannot write only data or only OOB within a codeword
2154 * since ECC is calculated for the combined codeword. So update the OOB from
2155 * chip->oob_poi, and pad the data area with OxFF before writing.
2157 static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
2159 struct mtd_info *mtd = nand_to_mtd(chip);
2160 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2161 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2162 struct nand_ecc_ctrl *ecc = &chip->ecc;
2163 u8 *oob = chip->oob_poi;
2164 int data_size, oob_size;
2167 host->use_ecc = true;
2168 clear_bam_transaction(nandc);
2170 /* calculate the data and oob size for the last codeword/step */
2171 data_size = ecc->size - ((ecc->steps - 1) << 2);
2172 oob_size = mtd->oobavail;
2174 memset(nandc->data_buffer, 0xff, host->cw_data);
2175 /* override new oob content to last codeword */
2176 mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
2179 set_address(host, host->cw_size * (ecc->steps - 1), page);
2180 update_rw_regs(host, 1, false);
2182 config_nand_page_write(nandc);
2183 write_data_dma(nandc, FLASH_BUF_ACC,
2184 nandc->data_buffer, data_size + oob_size, 0);
2185 config_nand_cw_write(nandc);
2187 ret = submit_descs(nandc);
2192 dev_err(nandc->dev, "failure to write oob\n");
2196 return nand_prog_page_end_op(chip);
2199 static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs)
2201 struct mtd_info *mtd = nand_to_mtd(chip);
2202 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2203 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2204 struct nand_ecc_ctrl *ecc = &chip->ecc;
2205 int page, ret, bbpos, bad = 0;
2207 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2210 * configure registers for a raw sub page read, the address is set to
2211 * the beginning of the last codeword, we don't care about reading ecc
2212 * portion of oob. we just want the first few bytes from this codeword
2213 * that contains the BBM
2215 host->use_ecc = false;
2217 clear_bam_transaction(nandc);
2218 ret = copy_last_cw(host, page);
2222 if (check_flash_errors(host, 1)) {
2223 dev_warn(nandc->dev, "error when trying to read BBM\n");
2227 bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2229 bad = nandc->data_buffer[bbpos] != 0xff;
2231 if (chip->options & NAND_BUSWIDTH_16)
2232 bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2237 static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
2239 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2240 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2241 struct nand_ecc_ctrl *ecc = &chip->ecc;
2244 clear_read_regs(nandc);
2245 clear_bam_transaction(nandc);
2248 * to mark the BBM as bad, we flash the entire last codeword with 0s.
2249 * we don't care about the rest of the content in the codeword since
2250 * we aren't going to use this block again
2252 memset(nandc->data_buffer, 0x00, host->cw_size);
2254 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2257 host->use_ecc = false;
2258 set_address(host, host->cw_size * (ecc->steps - 1), page);
2259 update_rw_regs(host, 1, false);
2261 config_nand_page_write(nandc);
2262 write_data_dma(nandc, FLASH_BUF_ACC,
2263 nandc->data_buffer, host->cw_size, 0);
2264 config_nand_cw_write(nandc);
2266 ret = submit_descs(nandc);
2271 dev_err(nandc->dev, "failure to update BBM\n");
2275 return nand_prog_page_end_op(chip);
2279 * the three functions below implement chip->legacy.read_byte(),
2280 * chip->legacy.read_buf() and chip->legacy.write_buf() respectively. these
2281 * aren't used for reading/writing page data, they are used for smaller data
2282 * like reading id, status etc
2284 static uint8_t qcom_nandc_read_byte(struct nand_chip *chip)
2286 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2287 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2288 u8 *buf = nandc->data_buffer;
2291 if (host->last_command == NAND_CMD_STATUS) {
2294 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2299 if (nandc->buf_start < nandc->buf_count)
2300 ret = buf[nandc->buf_start++];
2305 static void qcom_nandc_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
2307 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2308 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2310 memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
2311 nandc->buf_start += real_len;
2314 static void qcom_nandc_write_buf(struct nand_chip *chip, const uint8_t *buf,
2317 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2318 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2320 memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
2322 nandc->buf_start += real_len;
2325 /* we support only one external chip for now */
2326 static void qcom_nandc_select_chip(struct nand_chip *chip, int chipnr)
2328 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2333 dev_warn(nandc->dev, "invalid chip select\n");
2337 * NAND controller page layout info
2339 * Layout with ECC enabled:
2341 * |----------------------| |---------------------------------|
2342 * | xx.......yy| | *********xx.......yy|
2343 * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy|
2344 * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy|
2345 * | xx.......yy| | *********xx.......yy|
2346 * |----------------------| |---------------------------------|
2347 * codeword 1,2..n-1 codeword n
2348 * <---(528/532 Bytes)--> <-------(528/532 Bytes)--------->
2350 * n = Number of codewords in the page
2352 * * = Spare/free bytes
2353 * x = Unused byte(s)
2354 * y = Reserved byte(s)
2356 * 2K page: n = 4, spare = 16 bytes
2357 * 4K page: n = 8, spare = 32 bytes
2358 * 8K page: n = 16, spare = 64 bytes
2360 * the qcom nand controller operates at a sub page/codeword level. each
2361 * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2362 * the number of ECC bytes vary based on the ECC strength and the bus width.
2364 * the first n - 1 codewords contains 516 bytes of user data, the remaining
2365 * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2366 * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2368 * When we access a page with ECC enabled, the reserved bytes(s) are not
2369 * accessible at all. When reading, we fill up these unreadable positions
2370 * with 0xffs. When writing, the controller skips writing the inaccessible
2373 * Layout with ECC disabled:
2375 * |------------------------------| |---------------------------------------|
2376 * | yy xx.......| | bb *********xx.......|
2377 * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..|
2378 * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......|
2379 * | yy xx.......| | bb *********xx.......|
2380 * |------------------------------| |---------------------------------------|
2381 * codeword 1,2..n-1 codeword n
2382 * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)----------->
2384 * n = Number of codewords in the page
2386 * * = Spare/free bytes
2387 * x = Unused byte(s)
2388 * y = Dummy Bad Bock byte(s)
2389 * b = Real Bad Block byte(s)
2390 * size1/size2 = function of codeword size and 'n'
2392 * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2393 * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2394 * Block Markers. In the last codeword, this position contains the real BBM
2396 * In order to have a consistent layout between RAW and ECC modes, we assume
2397 * the following OOB layout arrangement:
2399 * |-----------| |--------------------|
2400 * |yyxx.......| |bb*********xx.......|
2401 * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..|
2402 * |yyxx.......| |bb*********xx.......|
2403 * |yyxx.......| |bb*********xx.......|
2404 * |-----------| |--------------------|
2405 * first n - 1 nth OOB region
2408 * n = Number of codewords in the page
2410 * * = FREE OOB bytes
2411 * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2412 * x = Unused byte(s)
2413 * b = Real bad block byte(s) (inaccessible when ECC enabled)
2415 * This layout is read as is when ECC is disabled. When ECC is enabled, the
2416 * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2417 * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2418 * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2419 * the sum of the three).
2421 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2422 struct mtd_oob_region *oobregion)
2424 struct nand_chip *chip = mtd_to_nand(mtd);
2425 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2426 struct nand_ecc_ctrl *ecc = &chip->ecc;
2432 oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2434 oobregion->offset = 0;
2436 oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2437 oobregion->offset = mtd->oobsize - oobregion->length;
2443 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2444 struct mtd_oob_region *oobregion)
2446 struct nand_chip *chip = mtd_to_nand(mtd);
2447 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2448 struct nand_ecc_ctrl *ecc = &chip->ecc;
2453 oobregion->length = ecc->steps * 4;
2454 oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2459 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2460 .ecc = qcom_nand_ooblayout_ecc,
2461 .free = qcom_nand_ooblayout_free,
2465 qcom_nandc_calc_ecc_bytes(int step_size, int strength)
2467 return strength == 4 ? 12 : 16;
2469 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
2470 NANDC_STEP_SIZE, 4, 8);
2472 static int qcom_nand_attach_chip(struct nand_chip *chip)
2474 struct mtd_info *mtd = nand_to_mtd(chip);
2475 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2476 struct nand_ecc_ctrl *ecc = &chip->ecc;
2477 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2478 int cwperpage, bad_block_byte, ret;
2482 /* controller only supports 512 bytes data steps */
2483 ecc->size = NANDC_STEP_SIZE;
2484 wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2485 cwperpage = mtd->writesize / NANDC_STEP_SIZE;
2488 * Each CW has 4 available OOB bytes which will be protected with ECC
2489 * so remaining bytes can be used for ECC.
2491 ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
2492 mtd->oobsize - (cwperpage * 4));
2494 dev_err(nandc->dev, "No valid ECC settings possible\n");
2498 if (ecc->strength >= 8) {
2499 /* 8 bit ECC defaults to BCH ECC on all platforms */
2500 host->bch_enabled = true;
2504 host->ecc_bytes_hw = 14;
2505 host->spare_bytes = 0;
2508 host->ecc_bytes_hw = 13;
2509 host->spare_bytes = 2;
2514 * if the controller supports BCH for 4 bit ECC, the controller
2515 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2518 if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2520 host->bch_enabled = true;
2524 host->ecc_bytes_hw = 8;
2525 host->spare_bytes = 2;
2528 host->ecc_bytes_hw = 7;
2529 host->spare_bytes = 4;
2534 host->ecc_bytes_hw = 10;
2537 host->spare_bytes = 0;
2540 host->spare_bytes = 1;
2547 * we consider ecc->bytes as the sum of all the non-data content in a
2548 * step. It gives us a clean representation of the oob area (even if
2549 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2550 * ECC and 12 bytes for 4 bit ECC
2552 ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2554 ecc->read_page = qcom_nandc_read_page;
2555 ecc->read_page_raw = qcom_nandc_read_page_raw;
2556 ecc->read_oob = qcom_nandc_read_oob;
2557 ecc->write_page = qcom_nandc_write_page;
2558 ecc->write_page_raw = qcom_nandc_write_page_raw;
2559 ecc->write_oob = qcom_nandc_write_oob;
2561 ecc->mode = NAND_ECC_HW;
2563 mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2565 nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2569 * DATA_UD_BYTES varies based on whether the read/write command protects
2570 * spare data with ECC too. We protect spare data by default, so we set
2571 * it to main + spare data, which are 512 and 4 bytes respectively.
2573 host->cw_data = 516;
2576 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2579 host->cw_size = host->cw_data + ecc->bytes;
2580 bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2582 host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2583 | host->cw_data << UD_SIZE_BYTES
2584 | 0 << DISABLE_STATUS_AFTER_WRITE
2585 | 5 << NUM_ADDR_CYCLES
2586 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2587 | 0 << STATUS_BFR_READ
2588 | 1 << SET_RD_MODE_AFTER_STATUS
2589 | host->spare_bytes << SPARE_SIZE_BYTES;
2591 host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2592 | 0 << CS_ACTIVE_BSY
2593 | bad_block_byte << BAD_BLOCK_BYTE_NUM
2594 | 0 << BAD_BLOCK_IN_SPARE_AREA
2595 | 2 << WR_RD_BSY_GAP
2596 | wide_bus << WIDE_FLASH
2597 | host->bch_enabled << ENABLE_BCH_ECC;
2599 host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2600 | host->cw_size << UD_SIZE_BYTES
2601 | 5 << NUM_ADDR_CYCLES
2602 | 0 << SPARE_SIZE_BYTES;
2604 host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2605 | 0 << CS_ACTIVE_BSY
2606 | 17 << BAD_BLOCK_BYTE_NUM
2607 | 1 << BAD_BLOCK_IN_SPARE_AREA
2608 | 2 << WR_RD_BSY_GAP
2609 | wide_bus << WIDE_FLASH
2610 | 1 << DEV0_CFG1_ECC_DISABLE;
2612 host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2614 | host->cw_data << ECC_NUM_DATA_BYTES
2615 | 1 << ECC_FORCE_CLK_OPEN
2616 | ecc_mode << ECC_MODE
2617 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2619 host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2621 host->clrflashstatus = FS_READY_BSY_N;
2622 host->clrreadstatus = 0xc0;
2623 nandc->regs->erased_cw_detect_cfg_clr =
2624 cpu_to_le32(CLR_ERASED_PAGE_DET);
2625 nandc->regs->erased_cw_detect_cfg_set =
2626 cpu_to_le32(SET_ERASED_PAGE_DET);
2629 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2630 host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2631 host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2637 static const struct nand_controller_ops qcom_nandc_ops = {
2638 .attach_chip = qcom_nand_attach_chip,
2641 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
2645 ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
2647 dev_err(nandc->dev, "failed to set DMA mask\n");
2652 * we use the internal buffer for reading ONFI params, reading small
2653 * data like ID and status, and preforming read-copy-write operations
2654 * when writing to a codeword partially. 532 is the maximum possible
2655 * size of a codeword for our nand controller
2657 nandc->buf_size = 532;
2659 nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
2661 if (!nandc->data_buffer)
2664 nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
2669 nandc->reg_read_buf = devm_kcalloc(nandc->dev,
2670 MAX_REG_RD, sizeof(*nandc->reg_read_buf),
2672 if (!nandc->reg_read_buf)
2675 if (nandc->props->is_bam) {
2676 nandc->reg_read_dma =
2677 dma_map_single(nandc->dev, nandc->reg_read_buf,
2679 sizeof(*nandc->reg_read_buf),
2681 if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
2682 dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
2686 nandc->tx_chan = dma_request_slave_channel(nandc->dev, "tx");
2687 if (!nandc->tx_chan) {
2688 dev_err(nandc->dev, "failed to request tx channel\n");
2692 nandc->rx_chan = dma_request_slave_channel(nandc->dev, "rx");
2693 if (!nandc->rx_chan) {
2694 dev_err(nandc->dev, "failed to request rx channel\n");
2698 nandc->cmd_chan = dma_request_slave_channel(nandc->dev, "cmd");
2699 if (!nandc->cmd_chan) {
2700 dev_err(nandc->dev, "failed to request cmd channel\n");
2705 * Initially allocate BAM transaction to read ONFI param page.
2706 * After detecting all the devices, this BAM transaction will
2707 * be freed and the next BAM tranasction will be allocated with
2708 * maximum codeword size
2710 nandc->max_cwperpage = 1;
2711 nandc->bam_txn = alloc_bam_transaction(nandc);
2712 if (!nandc->bam_txn) {
2714 "failed to allocate bam transaction\n");
2718 nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx");
2721 "failed to request slave channel\n");
2726 INIT_LIST_HEAD(&nandc->desc_list);
2727 INIT_LIST_HEAD(&nandc->host_list);
2729 nand_controller_init(&nandc->controller);
2730 nandc->controller.ops = &qcom_nandc_ops;
2735 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
2737 if (nandc->props->is_bam) {
2738 if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
2739 dma_unmap_single(nandc->dev, nandc->reg_read_dma,
2741 sizeof(*nandc->reg_read_buf),
2745 dma_release_channel(nandc->tx_chan);
2748 dma_release_channel(nandc->rx_chan);
2750 if (nandc->cmd_chan)
2751 dma_release_channel(nandc->cmd_chan);
2754 dma_release_channel(nandc->chan);
2758 /* one time setup of a few nand controller registers */
2759 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
2764 nandc_write(nandc, SFLASHC_BURST_CFG, 0);
2765 nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
2766 NAND_DEV_CMD_VLD_VAL);
2768 /* enable ADM or BAM DMA */
2769 if (nandc->props->is_bam) {
2770 nand_ctrl = nandc_read(nandc, NAND_CTRL);
2771 nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
2773 nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
2776 /* save the original values of these registers */
2777 nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
2778 nandc->vld = NAND_DEV_CMD_VLD_VAL;
2783 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
2784 struct qcom_nand_host *host,
2785 struct device_node *dn)
2787 struct nand_chip *chip = &host->chip;
2788 struct mtd_info *mtd = nand_to_mtd(chip);
2789 struct device *dev = nandc->dev;
2792 ret = of_property_read_u32(dn, "reg", &host->cs);
2794 dev_err(dev, "can't get chip-select\n");
2798 nand_set_flash_node(chip, dn);
2799 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2803 mtd->owner = THIS_MODULE;
2804 mtd->dev.parent = dev;
2806 chip->legacy.cmdfunc = qcom_nandc_command;
2807 chip->select_chip = qcom_nandc_select_chip;
2808 chip->legacy.read_byte = qcom_nandc_read_byte;
2809 chip->legacy.read_buf = qcom_nandc_read_buf;
2810 chip->legacy.write_buf = qcom_nandc_write_buf;
2811 chip->legacy.set_features = nand_get_set_features_notsupp;
2812 chip->legacy.get_features = nand_get_set_features_notsupp;
2815 * the bad block marker is readable only when we read the last codeword
2816 * of a page with ECC disabled. currently, the nand_base and nand_bbt
2817 * helpers don't allow us to read BB from a nand chip with ECC
2818 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2819 * and block_markbad helpers until we permanently switch to using
2820 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2822 chip->legacy.block_bad = qcom_nandc_block_bad;
2823 chip->legacy.block_markbad = qcom_nandc_block_markbad;
2825 chip->controller = &nandc->controller;
2826 chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER |
2829 /* set up initial status value */
2830 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2832 ret = nand_scan(chip, 1);
2836 ret = mtd_device_register(mtd, NULL, 0);
2843 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
2845 struct device *dev = nandc->dev;
2846 struct device_node *dn = dev->of_node, *child;
2847 struct qcom_nand_host *host;
2850 if (nandc->props->is_bam) {
2851 free_bam_transaction(nandc);
2852 nandc->bam_txn = alloc_bam_transaction(nandc);
2853 if (!nandc->bam_txn) {
2855 "failed to allocate bam transaction\n");
2860 for_each_available_child_of_node(dn, child) {
2861 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2867 ret = qcom_nand_host_init_and_register(nandc, host, child);
2869 devm_kfree(dev, host);
2873 list_add_tail(&host->node, &nandc->host_list);
2876 if (list_empty(&nandc->host_list))
2882 /* parse custom DT properties here */
2883 static int qcom_nandc_parse_dt(struct platform_device *pdev)
2885 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2886 struct device_node *np = nandc->dev->of_node;
2889 if (!nandc->props->is_bam) {
2890 ret = of_property_read_u32(np, "qcom,cmd-crci",
2893 dev_err(nandc->dev, "command CRCI unspecified\n");
2897 ret = of_property_read_u32(np, "qcom,data-crci",
2900 dev_err(nandc->dev, "data CRCI unspecified\n");
2908 static int qcom_nandc_probe(struct platform_device *pdev)
2910 struct qcom_nand_controller *nandc;
2911 const void *dev_data;
2912 struct device *dev = &pdev->dev;
2913 struct resource *res;
2916 nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
2920 platform_set_drvdata(pdev, nandc);
2923 dev_data = of_device_get_match_data(dev);
2925 dev_err(&pdev->dev, "failed to get device data\n");
2929 nandc->props = dev_data;
2931 nandc->core_clk = devm_clk_get(dev, "core");
2932 if (IS_ERR(nandc->core_clk))
2933 return PTR_ERR(nandc->core_clk);
2935 nandc->aon_clk = devm_clk_get(dev, "aon");
2936 if (IS_ERR(nandc->aon_clk))
2937 return PTR_ERR(nandc->aon_clk);
2939 ret = qcom_nandc_parse_dt(pdev);
2943 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2944 nandc->base = devm_ioremap_resource(dev, res);
2945 if (IS_ERR(nandc->base))
2946 return PTR_ERR(nandc->base);
2948 nandc->base_phys = res->start;
2949 nandc->base_dma = dma_map_resource(dev, res->start,
2951 DMA_BIDIRECTIONAL, 0);
2952 if (!nandc->base_dma)
2955 ret = qcom_nandc_alloc(nandc);
2957 goto err_nandc_alloc;
2959 ret = clk_prepare_enable(nandc->core_clk);
2963 ret = clk_prepare_enable(nandc->aon_clk);
2967 ret = qcom_nandc_setup(nandc);
2971 ret = qcom_probe_nand_devices(nandc);
2978 clk_disable_unprepare(nandc->aon_clk);
2980 clk_disable_unprepare(nandc->core_clk);
2982 qcom_nandc_unalloc(nandc);
2984 dma_unmap_resource(dev, res->start, resource_size(res),
2985 DMA_BIDIRECTIONAL, 0);
2990 static int qcom_nandc_remove(struct platform_device *pdev)
2992 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2993 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2994 struct qcom_nand_host *host;
2996 list_for_each_entry(host, &nandc->host_list, node)
2997 nand_release(&host->chip);
3000 qcom_nandc_unalloc(nandc);
3002 clk_disable_unprepare(nandc->aon_clk);
3003 clk_disable_unprepare(nandc->core_clk);
3005 dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
3006 DMA_BIDIRECTIONAL, 0);
3011 static const struct qcom_nandc_props ipq806x_nandc_props = {
3012 .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
3014 .dev_cmd_reg_start = 0x0,
3017 static const struct qcom_nandc_props ipq4019_nandc_props = {
3018 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3020 .dev_cmd_reg_start = 0x0,
3023 static const struct qcom_nandc_props ipq8074_nandc_props = {
3024 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3026 .dev_cmd_reg_start = 0x7000,
3030 * data will hold a struct pointer containing more differences once we support
3031 * more controller variants
3033 static const struct of_device_id qcom_nandc_of_match[] = {
3035 .compatible = "qcom,ipq806x-nand",
3036 .data = &ipq806x_nandc_props,
3039 .compatible = "qcom,ipq4019-nand",
3040 .data = &ipq4019_nandc_props,
3043 .compatible = "qcom,ipq8074-nand",
3044 .data = &ipq8074_nandc_props,
3048 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
3050 static struct platform_driver qcom_nandc_driver = {
3052 .name = "qcom-nandc",
3053 .of_match_table = qcom_nandc_of_match,
3055 .probe = qcom_nandc_probe,
3056 .remove = qcom_nandc_remove,
3058 module_platform_driver(qcom_nandc_driver);
3061 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3062 MODULE_LICENSE("GPL v2");