2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
30 #include <linux/log2.h>
33 #include <drm/i915_drm.h>
36 #include "i915_gem_render_state.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 #include "intel_workarounds.h"
41 /* Rough estimate of the typical request size, performing a flush,
42 * set-context and then emitting the batch.
44 #define LEGACY_REQUEST_SIZE 200
46 static unsigned int __intel_ring_space(unsigned int head,
51 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
52 * same cacheline, the Head Pointer must not be greater than the Tail
55 GEM_BUG_ON(!is_power_of_2(size));
56 return (head - tail - CACHELINE_BYTES) & (size - 1);
59 unsigned int intel_ring_update_space(struct intel_ring *ring)
63 space = __intel_ring_space(ring->head, ring->emit, ring->size);
70 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
76 if (mode & EMIT_INVALIDATE)
79 cs = intel_ring_begin(rq, 2);
85 intel_ring_advance(rq, cs);
91 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
99 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
100 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
101 * also flushed at 2d versus 3d pipeline switches.
105 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
106 * MI_READ_FLUSH is set, and is always flushed on 965.
108 * I915_GEM_DOMAIN_COMMAND may not exist?
110 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
111 * invalidated when MI_EXE_FLUSH is set.
113 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
114 * invalidated with every MI_FLUSH.
118 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
119 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
120 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
121 * are flushed at any MI_FLUSH.
125 if (mode & EMIT_INVALIDATE) {
127 if (IS_G4X(rq->i915) || IS_GEN5(rq->i915))
128 cmd |= MI_INVALIDATE_ISP;
132 if (mode & EMIT_INVALIDATE)
135 cs = intel_ring_begin(rq, i);
142 * A random delay to let the CS invalidate take effect? Without this
143 * delay, the GPU relocation path fails as the CS does not see
144 * the updated contents. Just as important, if we apply the flushes
145 * to the EMIT_FLUSH branch (i.e. immediately after the relocation
146 * write and before the invalidate on the next batch), the relocations
147 * still fail. This implies that is a delay following invalidation
148 * that is required to reset the caches as opposed to a delay to
149 * ensure the memory is written.
151 if (mode & EMIT_INVALIDATE) {
152 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
153 *cs++ = i915_ggtt_offset(rq->engine->scratch) |
154 PIPE_CONTROL_GLOBAL_GTT;
158 for (i = 0; i < 12; i++)
161 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
162 *cs++ = i915_ggtt_offset(rq->engine->scratch) |
163 PIPE_CONTROL_GLOBAL_GTT;
170 intel_ring_advance(rq, cs);
176 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
177 * implementing two workarounds on gen6. From section 1.4.7.1
178 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
180 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
181 * produced by non-pipelined state commands), software needs to first
182 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
185 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
186 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
188 * And the workaround for these two requires this workaround first:
190 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
191 * BEFORE the pipe-control with a post-sync op and no write-cache
194 * And this last workaround is tricky because of the requirements on
195 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
198 * "1 of the following must also be set:
199 * - Render Target Cache Flush Enable ([12] of DW1)
200 * - Depth Cache Flush Enable ([0] of DW1)
201 * - Stall at Pixel Scoreboard ([1] of DW1)
202 * - Depth Stall ([13] of DW1)
203 * - Post-Sync Operation ([13] of DW1)
204 * - Notify Enable ([8] of DW1)"
206 * The cache flushes require the workaround flush that triggered this
207 * one, so we can't use it. Depth stall would trigger the same.
208 * Post-sync nonzero is what triggered this second workaround, so we
209 * can't use that one either. Notify enable is IRQs, which aren't
210 * really our business. That leaves only stall at scoreboard.
213 intel_emit_post_sync_nonzero_flush(struct i915_request *rq)
216 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
219 cs = intel_ring_begin(rq, 6);
223 *cs++ = GFX_OP_PIPE_CONTROL(5);
224 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
225 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
226 *cs++ = 0; /* low dword */
227 *cs++ = 0; /* high dword */
229 intel_ring_advance(rq, cs);
231 cs = intel_ring_begin(rq, 6);
235 *cs++ = GFX_OP_PIPE_CONTROL(5);
236 *cs++ = PIPE_CONTROL_QW_WRITE;
237 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
241 intel_ring_advance(rq, cs);
247 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
250 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
254 /* Force SNB workarounds for PIPE_CONTROL flushes */
255 ret = intel_emit_post_sync_nonzero_flush(rq);
259 /* Just flush everything. Experiments have shown that reducing the
260 * number of bits based on the write domains has little performance
263 if (mode & EMIT_FLUSH) {
264 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
265 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
267 * Ensure that any following seqno writes only happen
268 * when the render cache is indeed flushed.
270 flags |= PIPE_CONTROL_CS_STALL;
272 if (mode & EMIT_INVALIDATE) {
273 flags |= PIPE_CONTROL_TLB_INVALIDATE;
274 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
275 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
276 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
277 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
278 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
280 * TLB invalidate requires a post-sync write.
282 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
285 cs = intel_ring_begin(rq, 4);
289 *cs++ = GFX_OP_PIPE_CONTROL(4);
291 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
293 intel_ring_advance(rq, cs);
299 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
303 cs = intel_ring_begin(rq, 4);
307 *cs++ = GFX_OP_PIPE_CONTROL(4);
308 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
311 intel_ring_advance(rq, cs);
317 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
320 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
324 * Ensure that any following seqno writes only happen when the render
325 * cache is indeed flushed.
327 * Workaround: 4th PIPE_CONTROL command (except the ones with only
328 * read-cache invalidate bits set) must have the CS_STALL bit set. We
329 * don't try to be clever and just set it unconditionally.
331 flags |= PIPE_CONTROL_CS_STALL;
333 /* Just flush everything. Experiments have shown that reducing the
334 * number of bits based on the write domains has little performance
337 if (mode & EMIT_FLUSH) {
338 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
339 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
340 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
341 flags |= PIPE_CONTROL_FLUSH_ENABLE;
343 if (mode & EMIT_INVALIDATE) {
344 flags |= PIPE_CONTROL_TLB_INVALIDATE;
345 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
346 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
347 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
348 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
349 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
350 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
352 * TLB invalidate requires a post-sync write.
354 flags |= PIPE_CONTROL_QW_WRITE;
355 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
357 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
359 /* Workaround: we must issue a pipe_control with CS-stall bit
360 * set before a pipe_control command that has the state cache
361 * invalidate bit set. */
362 gen7_render_ring_cs_stall_wa(rq);
365 cs = intel_ring_begin(rq, 4);
369 *cs++ = GFX_OP_PIPE_CONTROL(4);
371 *cs++ = scratch_addr;
373 intel_ring_advance(rq, cs);
378 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
380 struct drm_i915_private *dev_priv = engine->i915;
381 struct page *page = virt_to_page(engine->status_page.page_addr);
382 phys_addr_t phys = PFN_PHYS(page_to_pfn(page));
385 addr = lower_32_bits(phys);
386 if (INTEL_GEN(dev_priv) >= 4)
387 addr |= (phys >> 28) & 0xf0;
389 I915_WRITE(HWS_PGA, addr);
392 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
394 struct drm_i915_private *dev_priv = engine->i915;
397 /* The ring status page addresses are no longer next to the rest of
398 * the ring registers as of gen7.
400 if (IS_GEN7(dev_priv)) {
401 switch (engine->id) {
403 * No more rings exist on Gen7. Default case is only to shut up
404 * gcc switch check warning.
407 GEM_BUG_ON(engine->id);
409 mmio = RENDER_HWS_PGA_GEN7;
412 mmio = BLT_HWS_PGA_GEN7;
415 mmio = BSD_HWS_PGA_GEN7;
418 mmio = VEBOX_HWS_PGA_GEN7;
421 } else if (IS_GEN6(dev_priv)) {
422 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
424 mmio = RING_HWS_PGA(engine->mmio_base);
427 if (INTEL_GEN(dev_priv) >= 6) {
431 * Keep the render interrupt unmasked as this papers over
432 * lost interrupts following a reset.
434 if (engine->id == RCS)
437 I915_WRITE(RING_HWSTAM(engine->mmio_base), mask);
440 I915_WRITE(mmio, engine->status_page.ggtt_offset);
443 /* Flush the TLB for this page */
444 if (IS_GEN(dev_priv, 6, 7)) {
445 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
447 /* ring should be idle before issuing a sync flush*/
448 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
451 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
453 if (intel_wait_for_register(dev_priv,
454 reg, INSTPM_SYNC_FLUSH, 0,
456 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
461 static bool stop_ring(struct intel_engine_cs *engine)
463 struct drm_i915_private *dev_priv = engine->i915;
465 if (INTEL_GEN(dev_priv) > 2) {
466 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
467 if (intel_wait_for_register(dev_priv,
468 RING_MI_MODE(engine->mmio_base),
472 DRM_ERROR("%s : timed out trying to stop ring\n",
474 /* Sometimes we observe that the idle flag is not
475 * set even though the ring is empty. So double
476 * check before giving up.
478 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
483 I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));
485 I915_WRITE_HEAD(engine, 0);
486 I915_WRITE_TAIL(engine, 0);
488 /* The ring must be empty before it is disabled */
489 I915_WRITE_CTL(engine, 0);
491 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
494 static int init_ring_common(struct intel_engine_cs *engine)
496 struct drm_i915_private *dev_priv = engine->i915;
497 struct intel_ring *ring = engine->buffer;
500 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
502 if (!stop_ring(engine)) {
503 /* G45 ring initialization often fails to reset head to zero */
504 DRM_DEBUG_DRIVER("%s head not reset to zero "
505 "ctl %08x head %08x tail %08x start %08x\n",
507 I915_READ_CTL(engine),
508 I915_READ_HEAD(engine),
509 I915_READ_TAIL(engine),
510 I915_READ_START(engine));
512 if (!stop_ring(engine)) {
513 DRM_ERROR("failed to set %s head to zero "
514 "ctl %08x head %08x tail %08x start %08x\n",
516 I915_READ_CTL(engine),
517 I915_READ_HEAD(engine),
518 I915_READ_TAIL(engine),
519 I915_READ_START(engine));
525 if (HWS_NEEDS_PHYSICAL(dev_priv))
526 ring_setup_phys_status_page(engine);
528 intel_ring_setup_status_page(engine);
530 intel_engine_reset_breadcrumbs(engine);
532 /* Enforce ordering by reading HEAD register back */
533 I915_READ_HEAD(engine);
535 /* Initialize the ring. This must happen _after_ we've cleared the ring
536 * registers with the above sequence (the readback of the HEAD registers
537 * also enforces ordering), otherwise the hw might lose the new ring
538 * register values. */
539 I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
541 /* WaClearRingBufHeadRegAtInit:ctg,elk */
542 if (I915_READ_HEAD(engine))
543 DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
544 engine->name, I915_READ_HEAD(engine));
546 /* Check that the ring offsets point within the ring! */
547 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
548 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
550 intel_ring_update_space(ring);
551 I915_WRITE_HEAD(engine, ring->head);
552 I915_WRITE_TAIL(engine, ring->tail);
553 (void)I915_READ_TAIL(engine);
555 I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
557 /* If the head is still not zero, the ring is dead */
558 if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
559 RING_VALID, RING_VALID,
561 DRM_ERROR("%s initialization failed "
562 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
564 I915_READ_CTL(engine),
565 I915_READ_CTL(engine) & RING_VALID,
566 I915_READ_HEAD(engine), ring->head,
567 I915_READ_TAIL(engine), ring->tail,
568 I915_READ_START(engine),
569 i915_ggtt_offset(ring->vma));
574 if (INTEL_GEN(dev_priv) > 2)
575 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
577 /* Papering over lost _interrupts_ immediately following the restart */
578 intel_engine_wakeup(engine);
580 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
585 static struct i915_request *reset_prepare(struct intel_engine_cs *engine)
587 intel_engine_stop_cs(engine);
589 if (engine->irq_seqno_barrier)
590 engine->irq_seqno_barrier(engine);
592 return i915_gem_find_active_request(engine);
595 static void skip_request(struct i915_request *rq)
597 void *vaddr = rq->ring->vaddr;
601 if (rq->postfix < head) {
602 memset32(vaddr + head, MI_NOOP,
603 (rq->ring->size - head) / sizeof(u32));
606 memset32(vaddr + head, MI_NOOP, (rq->postfix - head) / sizeof(u32));
609 static void reset_ring(struct intel_engine_cs *engine, struct i915_request *rq)
611 GEM_TRACE("%s seqno=%x\n", engine->name, rq ? rq->global_seqno : 0);
614 * Try to restore the logical GPU state to match the continuation
615 * of the request queue. If we skip the context/PD restore, then
616 * the next request may try to execute assuming that its context
617 * is valid and loaded on the GPU and so may try to access invalid
618 * memory, prompting repeated GPU hangs.
620 * If the request was guilty, we still restore the logical state
621 * in case the next request requires it (e.g. the aliasing ppgtt),
622 * but skip over the hung batch.
624 * If the request was innocent, we try to replay the request with
625 * the restored context.
628 /* If the rq hung, jump to its breadcrumb and skip the batch */
629 rq->ring->head = intel_ring_wrap(rq->ring, rq->head);
630 if (rq->fence.error == -EIO)
635 static void reset_finish(struct intel_engine_cs *engine)
639 static int intel_rcs_ctx_init(struct i915_request *rq)
643 ret = intel_ctx_workarounds_emit(rq);
647 ret = i915_gem_render_state_emit(rq);
654 static int init_render_ring(struct intel_engine_cs *engine)
656 struct drm_i915_private *dev_priv = engine->i915;
657 int ret = init_ring_common(engine);
661 intel_whitelist_workarounds_apply(engine);
663 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
664 if (IS_GEN(dev_priv, 4, 6))
665 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
667 /* We need to disable the AsyncFlip performance optimisations in order
668 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
669 * programmed to '1' on all products.
671 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
673 if (IS_GEN(dev_priv, 6, 7))
674 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
676 /* Required for the hardware to program scanline values for waiting */
677 /* WaEnableFlushTlbInvalidationMode:snb */
678 if (IS_GEN6(dev_priv))
680 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
682 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
683 if (IS_GEN7(dev_priv))
684 I915_WRITE(GFX_MODE_GEN7,
685 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
686 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
688 if (IS_GEN6(dev_priv)) {
689 /* From the Sandybridge PRM, volume 1 part 3, page 24:
690 * "If this bit is set, STCunit will have LRA as replacement
691 * policy. [...] This bit must be reset. LRA replacement
692 * policy is not supported."
694 I915_WRITE(CACHE_MODE_0,
695 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
698 if (IS_GEN(dev_priv, 6, 7))
699 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
701 if (INTEL_GEN(dev_priv) >= 6)
702 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
707 static u32 *gen6_signal(struct i915_request *rq, u32 *cs)
709 struct drm_i915_private *dev_priv = rq->i915;
710 struct intel_engine_cs *engine;
711 enum intel_engine_id id;
714 for_each_engine(engine, dev_priv, id) {
717 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
720 mbox_reg = rq->engine->semaphore.mbox.signal[engine->hw_id];
721 if (i915_mmio_reg_valid(mbox_reg)) {
722 *cs++ = MI_LOAD_REGISTER_IMM(1);
723 *cs++ = i915_mmio_reg_offset(mbox_reg);
724 *cs++ = rq->global_seqno;
734 static void cancel_requests(struct intel_engine_cs *engine)
736 struct i915_request *request;
739 spin_lock_irqsave(&engine->timeline.lock, flags);
741 /* Mark all submitted requests as skipped. */
742 list_for_each_entry(request, &engine->timeline.requests, link) {
743 GEM_BUG_ON(!request->global_seqno);
744 if (!i915_request_completed(request))
745 dma_fence_set_error(&request->fence, -EIO);
747 /* Remaining _unready_ requests will be nop'ed when submitted */
749 spin_unlock_irqrestore(&engine->timeline.lock, flags);
752 static void i9xx_submit_request(struct i915_request *request)
754 struct drm_i915_private *dev_priv = request->i915;
756 i915_request_submit(request);
758 I915_WRITE_TAIL(request->engine,
759 intel_ring_set_tail(request->ring, request->tail));
762 static void i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
764 *cs++ = MI_STORE_DWORD_INDEX;
765 *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
766 *cs++ = rq->global_seqno;
767 *cs++ = MI_USER_INTERRUPT;
769 rq->tail = intel_ring_offset(rq, cs);
770 assert_ring_tail_valid(rq->ring, rq->tail);
773 static const int i9xx_emit_breadcrumb_sz = 4;
775 static void gen6_sema_emit_breadcrumb(struct i915_request *rq, u32 *cs)
777 return i9xx_emit_breadcrumb(rq, rq->engine->semaphore.signal(rq, cs));
781 gen6_ring_sync_to(struct i915_request *rq, struct i915_request *signal)
783 u32 dw1 = MI_SEMAPHORE_MBOX |
784 MI_SEMAPHORE_COMPARE |
785 MI_SEMAPHORE_REGISTER;
786 u32 wait_mbox = signal->engine->semaphore.mbox.wait[rq->engine->hw_id];
789 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
791 cs = intel_ring_begin(rq, 4);
795 *cs++ = dw1 | wait_mbox;
796 /* Throughout all of the GEM code, seqno passed implies our current
797 * seqno is >= the last seqno executed. However for hardware the
798 * comparison is strictly greater than.
800 *cs++ = signal->global_seqno - 1;
803 intel_ring_advance(rq, cs);
809 gen5_seqno_barrier(struct intel_engine_cs *engine)
811 /* MI_STORE are internally buffered by the GPU and not flushed
812 * either by MI_FLUSH or SyncFlush or any other combination of
815 * "Only the submission of the store operation is guaranteed.
816 * The write result will be complete (coherent) some time later
817 * (this is practically a finite period but there is no guaranteed
820 * Empirically, we observe that we need a delay of at least 75us to
821 * be sure that the seqno write is visible by the CPU.
823 usleep_range(125, 250);
827 gen6_seqno_barrier(struct intel_engine_cs *engine)
829 struct drm_i915_private *dev_priv = engine->i915;
831 /* Workaround to force correct ordering between irq and seqno writes on
832 * ivb (and maybe also on snb) by reading from a CS register (like
833 * ACTHD) before reading the status page.
835 * Note that this effectively stalls the read by the time it takes to
836 * do a memory transaction, which more or less ensures that the write
837 * from the GPU has sufficient time to invalidate the CPU cacheline.
838 * Alternatively we could delay the interrupt from the CS ring to give
839 * the write time to land, but that would incur a delay after every
840 * batch i.e. much more frequent than a delay when waiting for the
841 * interrupt (with the same net latency).
843 * Also note that to prevent whole machine hangs on gen7, we have to
844 * take the spinlock to guard against concurrent cacheline access.
846 spin_lock_irq(&dev_priv->uncore.lock);
847 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
848 spin_unlock_irq(&dev_priv->uncore.lock);
852 gen5_irq_enable(struct intel_engine_cs *engine)
854 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
858 gen5_irq_disable(struct intel_engine_cs *engine)
860 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
864 i9xx_irq_enable(struct intel_engine_cs *engine)
866 struct drm_i915_private *dev_priv = engine->i915;
868 dev_priv->irq_mask &= ~engine->irq_enable_mask;
869 I915_WRITE(IMR, dev_priv->irq_mask);
870 POSTING_READ_FW(RING_IMR(engine->mmio_base));
874 i9xx_irq_disable(struct intel_engine_cs *engine)
876 struct drm_i915_private *dev_priv = engine->i915;
878 dev_priv->irq_mask |= engine->irq_enable_mask;
879 I915_WRITE(IMR, dev_priv->irq_mask);
883 i8xx_irq_enable(struct intel_engine_cs *engine)
885 struct drm_i915_private *dev_priv = engine->i915;
887 dev_priv->irq_mask &= ~engine->irq_enable_mask;
888 I915_WRITE16(IMR, dev_priv->irq_mask);
889 POSTING_READ16(RING_IMR(engine->mmio_base));
893 i8xx_irq_disable(struct intel_engine_cs *engine)
895 struct drm_i915_private *dev_priv = engine->i915;
897 dev_priv->irq_mask |= engine->irq_enable_mask;
898 I915_WRITE16(IMR, dev_priv->irq_mask);
902 bsd_ring_flush(struct i915_request *rq, u32 mode)
906 cs = intel_ring_begin(rq, 2);
912 intel_ring_advance(rq, cs);
917 gen6_irq_enable(struct intel_engine_cs *engine)
919 struct drm_i915_private *dev_priv = engine->i915;
921 I915_WRITE_IMR(engine,
922 ~(engine->irq_enable_mask |
923 engine->irq_keep_mask));
924 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
928 gen6_irq_disable(struct intel_engine_cs *engine)
930 struct drm_i915_private *dev_priv = engine->i915;
932 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
933 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
937 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
939 struct drm_i915_private *dev_priv = engine->i915;
941 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
942 gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
946 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
948 struct drm_i915_private *dev_priv = engine->i915;
950 I915_WRITE_IMR(engine, ~0);
951 gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
955 i965_emit_bb_start(struct i915_request *rq,
956 u64 offset, u32 length,
957 unsigned int dispatch_flags)
961 cs = intel_ring_begin(rq, 2);
965 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
966 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
968 intel_ring_advance(rq, cs);
973 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
974 #define I830_BATCH_LIMIT (256*1024)
975 #define I830_TLB_ENTRIES (2)
976 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
978 i830_emit_bb_start(struct i915_request *rq,
980 unsigned int dispatch_flags)
982 u32 *cs, cs_offset = i915_ggtt_offset(rq->engine->scratch);
984 cs = intel_ring_begin(rq, 6);
988 /* Evict the invalid PTE TLBs */
989 *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
990 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
991 *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
995 intel_ring_advance(rq, cs);
997 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
998 if (len > I830_BATCH_LIMIT)
1001 cs = intel_ring_begin(rq, 6 + 2);
1005 /* Blit the batch (which has now all relocs applied) to the
1006 * stable batch scratch bo area (so that the CS never
1007 * stumbles over its tlb invalidation bug) ...
1009 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
1010 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1011 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1018 intel_ring_advance(rq, cs);
1020 /* ... and execute it. */
1024 cs = intel_ring_begin(rq, 2);
1028 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1029 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1030 MI_BATCH_NON_SECURE);
1031 intel_ring_advance(rq, cs);
1037 i915_emit_bb_start(struct i915_request *rq,
1038 u64 offset, u32 len,
1039 unsigned int dispatch_flags)
1043 cs = intel_ring_begin(rq, 2);
1047 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1048 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1049 MI_BATCH_NON_SECURE);
1050 intel_ring_advance(rq, cs);
1055 int intel_ring_pin(struct intel_ring *ring)
1057 struct i915_vma *vma = ring->vma;
1058 enum i915_map_type map =
1059 HAS_LLC(vma->vm->i915) ? I915_MAP_WB : I915_MAP_WC;
1064 GEM_BUG_ON(ring->vaddr);
1068 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1069 flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1071 if (vma->obj->stolen)
1072 flags |= PIN_MAPPABLE;
1076 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1077 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1078 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1080 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1085 ret = i915_vma_pin(vma, 0, 0, flags);
1089 if (i915_vma_is_map_and_fenceable(vma))
1090 addr = (void __force *)i915_vma_pin_iomap(vma);
1092 addr = i915_gem_object_pin_map(vma->obj, map);
1096 vma->obj->pin_global++;
1102 i915_vma_unpin(vma);
1103 return PTR_ERR(addr);
1106 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1108 GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
1113 intel_ring_update_space(ring);
1116 void intel_ring_unpin(struct intel_ring *ring)
1118 GEM_BUG_ON(!ring->vma);
1119 GEM_BUG_ON(!ring->vaddr);
1121 /* Discard any unused bytes beyond that submitted to hw. */
1122 intel_ring_reset(ring, ring->tail);
1124 if (i915_vma_is_map_and_fenceable(ring->vma))
1125 i915_vma_unpin_iomap(ring->vma);
1127 i915_gem_object_unpin_map(ring->vma->obj);
1130 ring->vma->obj->pin_global--;
1131 i915_vma_unpin(ring->vma);
1134 static struct i915_vma *
1135 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1137 struct i915_address_space *vm = &dev_priv->ggtt.vm;
1138 struct drm_i915_gem_object *obj;
1139 struct i915_vma *vma;
1141 obj = i915_gem_object_create_stolen(dev_priv, size);
1143 obj = i915_gem_object_create_internal(dev_priv, size);
1145 return ERR_CAST(obj);
1148 * Mark ring buffers as read-only from GPU side (so no stray overwrites)
1149 * if supported by the platform's GGTT.
1151 if (vm->has_read_only)
1152 i915_gem_object_set_readonly(obj);
1154 vma = i915_vma_instance(obj, vm, NULL);
1161 i915_gem_object_put(obj);
1166 intel_engine_create_ring(struct intel_engine_cs *engine,
1167 struct i915_timeline *timeline,
1170 struct intel_ring *ring;
1171 struct i915_vma *vma;
1173 GEM_BUG_ON(!is_power_of_2(size));
1174 GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1175 GEM_BUG_ON(timeline == &engine->timeline);
1176 lockdep_assert_held(&engine->i915->drm.struct_mutex);
1178 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1180 return ERR_PTR(-ENOMEM);
1182 INIT_LIST_HEAD(&ring->request_list);
1183 ring->timeline = i915_timeline_get(timeline);
1186 /* Workaround an erratum on the i830 which causes a hang if
1187 * the TAIL pointer points to within the last 2 cachelines
1190 ring->effective_size = size;
1191 if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1192 ring->effective_size -= 2 * CACHELINE_BYTES;
1194 intel_ring_update_space(ring);
1196 vma = intel_ring_create_vma(engine->i915, size);
1199 return ERR_CAST(vma);
1207 intel_ring_free(struct intel_ring *ring)
1209 struct drm_i915_gem_object *obj = ring->vma->obj;
1211 i915_vma_close(ring->vma);
1212 __i915_gem_object_release_unless_active(obj);
1214 i915_timeline_put(ring->timeline);
1218 static void intel_ring_context_destroy(struct intel_context *ce)
1220 GEM_BUG_ON(ce->pin_count);
1225 GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1226 i915_gem_object_put(ce->state->obj);
1229 static int __context_pin_ppgtt(struct i915_gem_context *ctx)
1231 struct i915_hw_ppgtt *ppgtt;
1234 ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1236 err = gen6_ppgtt_pin(ppgtt);
1241 static void __context_unpin_ppgtt(struct i915_gem_context *ctx)
1243 struct i915_hw_ppgtt *ppgtt;
1245 ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1247 gen6_ppgtt_unpin(ppgtt);
1250 static int __context_pin(struct intel_context *ce)
1252 struct i915_vma *vma;
1260 * Clear this page out of any CPU caches for coherent swap-in/out.
1261 * We only want to do this on the first bind so that we do not stall
1262 * on an active context (which by nature is already on the GPU).
1264 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1265 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1270 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1275 * And mark is as a globally pinned object to let the shrinker know
1276 * it cannot reclaim the object until we release it.
1278 vma->obj->pin_global++;
1283 static void __context_unpin(struct intel_context *ce)
1285 struct i915_vma *vma;
1291 vma->obj->pin_global--;
1292 i915_vma_unpin(vma);
1295 static void intel_ring_context_unpin(struct intel_context *ce)
1297 __context_unpin_ppgtt(ce->gem_context);
1298 __context_unpin(ce);
1300 i915_gem_context_put(ce->gem_context);
1303 static struct i915_vma *
1304 alloc_context_vma(struct intel_engine_cs *engine)
1306 struct drm_i915_private *i915 = engine->i915;
1307 struct drm_i915_gem_object *obj;
1308 struct i915_vma *vma;
1311 obj = i915_gem_object_create(i915, engine->context_size);
1313 return ERR_CAST(obj);
1315 if (engine->default_state) {
1316 void *defaults, *vaddr;
1318 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1319 if (IS_ERR(vaddr)) {
1320 err = PTR_ERR(vaddr);
1324 defaults = i915_gem_object_pin_map(engine->default_state,
1326 if (IS_ERR(defaults)) {
1327 err = PTR_ERR(defaults);
1331 memcpy(vaddr, defaults, engine->context_size);
1333 i915_gem_object_unpin_map(engine->default_state);
1334 i915_gem_object_unpin_map(obj);
1338 * Try to make the context utilize L3 as well as LLC.
1340 * On VLV we don't have L3 controls in the PTEs so we
1341 * shouldn't touch the cache level, especially as that
1342 * would make the object snooped which might have a
1343 * negative performance impact.
1345 * Snooping is required on non-llc platforms in execlist
1346 * mode, but since all GGTT accesses use PAT entry 0 we
1347 * get snooping anyway regardless of cache_level.
1349 * This is only applicable for Ivy Bridge devices since
1350 * later platforms don't have L3 control bits in the PTE.
1352 if (IS_IVYBRIDGE(i915)) {
1353 /* Ignore any error, regard it as a simple optimisation */
1354 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1357 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
1366 i915_gem_object_unpin_map(obj);
1368 i915_gem_object_put(obj);
1369 return ERR_PTR(err);
1372 static struct intel_context *
1373 __ring_context_pin(struct intel_engine_cs *engine,
1374 struct i915_gem_context *ctx,
1375 struct intel_context *ce)
1379 if (!ce->state && engine->context_size) {
1380 struct i915_vma *vma;
1382 vma = alloc_context_vma(engine);
1391 err = __context_pin(ce);
1395 err = __context_pin_ppgtt(ce->gem_context);
1399 i915_gem_context_get(ctx);
1401 /* One ringbuffer to rule them all */
1402 GEM_BUG_ON(!engine->buffer);
1403 ce->ring = engine->buffer;
1408 __context_unpin(ce);
1411 return ERR_PTR(err);
1414 static const struct intel_context_ops ring_context_ops = {
1415 .unpin = intel_ring_context_unpin,
1416 .destroy = intel_ring_context_destroy,
1419 static struct intel_context *
1420 intel_ring_context_pin(struct intel_engine_cs *engine,
1421 struct i915_gem_context *ctx)
1423 struct intel_context *ce = to_intel_context(ctx, engine);
1425 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1427 if (likely(ce->pin_count++))
1429 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1431 ce->ops = &ring_context_ops;
1433 return __ring_context_pin(engine, ctx, ce);
1436 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1438 struct i915_timeline *timeline;
1439 struct intel_ring *ring;
1443 intel_engine_setup_common(engine);
1445 timeline = i915_timeline_create(engine->i915, engine->name);
1446 if (IS_ERR(timeline)) {
1447 err = PTR_ERR(timeline);
1451 ring = intel_engine_create_ring(engine, timeline, 32 * PAGE_SIZE);
1452 i915_timeline_put(timeline);
1454 err = PTR_ERR(ring);
1458 err = intel_ring_pin(ring);
1462 GEM_BUG_ON(engine->buffer);
1463 engine->buffer = ring;
1466 if (HAS_BROKEN_CS_TLB(engine->i915))
1467 size = I830_WA_SIZE;
1468 err = intel_engine_create_scratch(engine, size);
1472 err = intel_engine_init_common(engine);
1479 intel_engine_cleanup_scratch(engine);
1481 intel_ring_unpin(ring);
1483 intel_ring_free(ring);
1485 intel_engine_cleanup_common(engine);
1489 void intel_engine_cleanup(struct intel_engine_cs *engine)
1491 struct drm_i915_private *dev_priv = engine->i915;
1493 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1494 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1496 intel_ring_unpin(engine->buffer);
1497 intel_ring_free(engine->buffer);
1499 if (engine->cleanup)
1500 engine->cleanup(engine);
1502 intel_engine_cleanup_common(engine);
1504 dev_priv->engine[engine->id] = NULL;
1508 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1510 struct intel_engine_cs *engine;
1511 enum intel_engine_id id;
1513 /* Restart from the beginning of the rings for convenience */
1514 for_each_engine(engine, dev_priv, id)
1515 intel_ring_reset(engine->buffer, 0);
1518 static int load_pd_dir(struct i915_request *rq,
1519 const struct i915_hw_ppgtt *ppgtt)
1521 const struct intel_engine_cs * const engine = rq->engine;
1524 cs = intel_ring_begin(rq, 6);
1528 *cs++ = MI_LOAD_REGISTER_IMM(1);
1529 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1530 *cs++ = PP_DIR_DCLV_2G;
1532 *cs++ = MI_LOAD_REGISTER_IMM(1);
1533 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1534 *cs++ = ppgtt->pd.base.ggtt_offset << 10;
1536 intel_ring_advance(rq, cs);
1541 static int flush_pd_dir(struct i915_request *rq)
1543 const struct intel_engine_cs * const engine = rq->engine;
1546 cs = intel_ring_begin(rq, 4);
1550 /* Stall until the page table load is complete */
1551 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1552 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1553 *cs++ = i915_ggtt_offset(engine->scratch);
1556 intel_ring_advance(rq, cs);
1560 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1562 struct drm_i915_private *i915 = rq->i915;
1563 struct intel_engine_cs *engine = rq->engine;
1564 enum intel_engine_id id;
1565 const int num_rings =
1566 /* Use an extended w/a on gen7 if signalling from other rings */
1567 (HAS_LEGACY_SEMAPHORES(i915) && IS_GEN7(i915)) ?
1568 INTEL_INFO(i915)->num_rings - 1 :
1570 bool force_restore = false;
1574 flags |= MI_MM_SPACE_GTT;
1575 if (IS_HASWELL(i915))
1576 /* These flags are for resource streamer on HSW+ */
1577 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1579 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1583 len += 2 + (num_rings ? 4*num_rings + 6 : 0);
1584 if (flags & MI_FORCE_RESTORE) {
1585 GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1586 flags &= ~MI_FORCE_RESTORE;
1587 force_restore = true;
1591 cs = intel_ring_begin(rq, len);
1595 /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1596 if (IS_GEN7(i915)) {
1597 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1599 struct intel_engine_cs *signaller;
1601 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1602 for_each_engine(signaller, i915, id) {
1603 if (signaller == engine)
1606 *cs++ = i915_mmio_reg_offset(
1607 RING_PSMI_CTL(signaller->mmio_base));
1608 *cs++ = _MASKED_BIT_ENABLE(
1609 GEN6_PSMI_SLEEP_MSG_DISABLE);
1614 if (force_restore) {
1616 * The HW doesn't handle being told to restore the current
1617 * context very well. Quite often it likes goes to go off and
1618 * sulk, especially when it is meant to be reloading PP_DIR.
1619 * A very simple fix to force the reload is to simply switch
1620 * away from the current context and back again.
1622 * Note that the kernel_context will contain random state
1623 * following the INHIBIT_RESTORE. We accept this since we
1624 * never use the kernel_context state; it is merely a
1625 * placeholder we use to flush other contexts.
1627 *cs++ = MI_SET_CONTEXT;
1628 *cs++ = i915_ggtt_offset(to_intel_context(i915->kernel_context,
1635 *cs++ = MI_SET_CONTEXT;
1636 *cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1638 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1639 * WaMiSetContext_Hang:snb,ivb,vlv
1643 if (IS_GEN7(i915)) {
1645 struct intel_engine_cs *signaller;
1646 i915_reg_t last_reg = {}; /* keep gcc quiet */
1648 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1649 for_each_engine(signaller, i915, id) {
1650 if (signaller == engine)
1653 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1654 *cs++ = i915_mmio_reg_offset(last_reg);
1655 *cs++ = _MASKED_BIT_DISABLE(
1656 GEN6_PSMI_SLEEP_MSG_DISABLE);
1659 /* Insert a delay before the next switch! */
1660 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1661 *cs++ = i915_mmio_reg_offset(last_reg);
1662 *cs++ = i915_ggtt_offset(engine->scratch);
1665 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1668 intel_ring_advance(rq, cs);
1673 static int remap_l3(struct i915_request *rq, int slice)
1675 u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1681 cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1686 * Note: We do not worry about the concurrent register cacheline hang
1687 * here because no other code should access these registers other than
1688 * at initialization time.
1690 *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1691 for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1692 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1693 *cs++ = remap_info[i];
1696 intel_ring_advance(rq, cs);
1701 static int switch_context(struct i915_request *rq)
1703 struct intel_engine_cs *engine = rq->engine;
1704 struct i915_gem_context *ctx = rq->gem_context;
1705 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
1706 unsigned int unwind_mm = 0;
1710 lockdep_assert_held(&rq->i915->drm.struct_mutex);
1711 GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1717 * Baytail takes a little more convincing that it really needs
1718 * to reload the PD between contexts. It is not just a little
1719 * longer, as adding more stalls after the load_pd_dir (i.e.
1720 * adding a long loop around flush_pd_dir) is not as effective
1721 * as reloading the PD umpteen times. 32 is derived from
1722 * experimentation (gem_exec_parallel/fds) and has no good
1726 if (engine->id == BCS && IS_VALLEYVIEW(engine->i915))
1730 ret = load_pd_dir(rq, ppgtt);
1735 if (intel_engine_flag(engine) & ppgtt->pd_dirty_rings) {
1736 unwind_mm = intel_engine_flag(engine);
1737 ppgtt->pd_dirty_rings &= ~unwind_mm;
1738 hw_flags = MI_FORCE_RESTORE;
1742 if (rq->hw_context->state) {
1743 GEM_BUG_ON(engine->id != RCS);
1746 * The kernel context(s) is treated as pure scratch and is not
1747 * expected to retain any state (as we sacrifice it during
1748 * suspend and on resume it may be corrupted). This is ok,
1749 * as nothing actually executes using the kernel context; it
1750 * is purely used for flushing user contexts.
1752 if (i915_gem_context_is_kernel(ctx))
1753 hw_flags = MI_RESTORE_INHIBIT;
1755 ret = mi_set_context(rq, hw_flags);
1761 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1765 ret = flush_pd_dir(rq);
1770 * Not only do we need a full barrier (post-sync write) after
1771 * invalidating the TLBs, but we need to wait a little bit
1772 * longer. Whether this is merely delaying us, or the
1773 * subsequent flush is a key part of serialising with the
1774 * post-sync op, this extra pass appears vital before a
1777 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1781 ret = engine->emit_flush(rq, EMIT_FLUSH);
1786 if (ctx->remap_slice) {
1787 for (i = 0; i < MAX_L3_SLICES; i++) {
1788 if (!(ctx->remap_slice & BIT(i)))
1791 ret = remap_l3(rq, i);
1796 ctx->remap_slice = 0;
1803 ppgtt->pd_dirty_rings |= unwind_mm;
1808 static int ring_request_alloc(struct i915_request *request)
1812 GEM_BUG_ON(!request->hw_context->pin_count);
1814 /* Flush enough space to reduce the likelihood of waiting after
1815 * we start building the request - in which case we will just
1816 * have to repeat work.
1818 request->reserved_space += LEGACY_REQUEST_SIZE;
1820 ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1824 ret = switch_context(request);
1828 request->reserved_space -= LEGACY_REQUEST_SIZE;
1832 static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1834 struct i915_request *target;
1837 lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1839 if (intel_ring_update_space(ring) >= bytes)
1842 GEM_BUG_ON(list_empty(&ring->request_list));
1843 list_for_each_entry(target, &ring->request_list, ring_link) {
1844 /* Would completion of this request free enough space? */
1845 if (bytes <= __intel_ring_space(target->postfix,
1846 ring->emit, ring->size))
1850 if (WARN_ON(&target->ring_link == &ring->request_list))
1853 timeout = i915_request_wait(target,
1854 I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1855 MAX_SCHEDULE_TIMEOUT);
1859 i915_request_retire_upto(target);
1861 intel_ring_update_space(ring);
1862 GEM_BUG_ON(ring->space < bytes);
1866 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes)
1868 GEM_BUG_ON(bytes > ring->effective_size);
1869 if (unlikely(bytes > ring->effective_size - ring->emit))
1870 bytes += ring->size - ring->emit;
1872 if (unlikely(bytes > ring->space)) {
1873 int ret = wait_for_space(ring, bytes);
1878 GEM_BUG_ON(ring->space < bytes);
1882 u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1884 struct intel_ring *ring = rq->ring;
1885 const unsigned int remain_usable = ring->effective_size - ring->emit;
1886 const unsigned int bytes = num_dwords * sizeof(u32);
1887 unsigned int need_wrap = 0;
1888 unsigned int total_bytes;
1891 /* Packets must be qword aligned. */
1892 GEM_BUG_ON(num_dwords & 1);
1894 total_bytes = bytes + rq->reserved_space;
1895 GEM_BUG_ON(total_bytes > ring->effective_size);
1897 if (unlikely(total_bytes > remain_usable)) {
1898 const int remain_actual = ring->size - ring->emit;
1900 if (bytes > remain_usable) {
1902 * Not enough space for the basic request. So need to
1903 * flush out the remainder and then wait for
1906 total_bytes += remain_actual;
1907 need_wrap = remain_actual | 1;
1910 * The base request will fit but the reserved space
1911 * falls off the end. So we don't need an immediate
1912 * wrap and only need to effectively wait for the
1913 * reserved size from the start of ringbuffer.
1915 total_bytes = rq->reserved_space + remain_actual;
1919 if (unlikely(total_bytes > ring->space)) {
1923 * Space is reserved in the ringbuffer for finalising the
1924 * request, as that cannot be allowed to fail. During request
1925 * finalisation, reserved_space is set to 0 to stop the
1926 * overallocation and the assumption is that then we never need
1927 * to wait (which has the risk of failing with EINTR).
1929 * See also i915_request_alloc() and i915_request_add().
1931 GEM_BUG_ON(!rq->reserved_space);
1933 ret = wait_for_space(ring, total_bytes);
1935 return ERR_PTR(ret);
1938 if (unlikely(need_wrap)) {
1940 GEM_BUG_ON(need_wrap > ring->space);
1941 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1942 GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1944 /* Fill the tail with MI_NOOP */
1945 memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1946 ring->space -= need_wrap;
1950 GEM_BUG_ON(ring->emit > ring->size - bytes);
1951 GEM_BUG_ON(ring->space < bytes);
1952 cs = ring->vaddr + ring->emit;
1953 GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
1954 ring->emit += bytes;
1955 ring->space -= bytes;
1960 /* Align the ring tail to a cacheline boundary */
1961 int intel_ring_cacheline_align(struct i915_request *rq)
1966 num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1967 if (num_dwords == 0)
1970 num_dwords = CACHELINE_DWORDS - num_dwords;
1971 GEM_BUG_ON(num_dwords & 1);
1973 cs = intel_ring_begin(rq, num_dwords);
1977 memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
1978 intel_ring_advance(rq, cs);
1980 GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
1984 static void gen6_bsd_submit_request(struct i915_request *request)
1986 struct drm_i915_private *dev_priv = request->i915;
1988 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1990 /* Every tail move must follow the sequence below */
1992 /* Disable notification that the ring is IDLE. The GT
1993 * will then assume that it is busy and bring it out of rc6.
1995 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1996 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1998 /* Clear the context id. Here be magic! */
1999 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2001 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2002 if (__intel_wait_for_register_fw(dev_priv,
2003 GEN6_BSD_SLEEP_PSMI_CONTROL,
2004 GEN6_BSD_SLEEP_INDICATOR,
2007 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2009 /* Now that the ring is fully powered up, update the tail */
2010 i9xx_submit_request(request);
2012 /* Let the ring send IDLE messages to the GT again,
2013 * and so let it sleep to conserve power when idle.
2015 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2016 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2018 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2021 static int mi_flush_dw(struct i915_request *rq, u32 flags)
2025 cs = intel_ring_begin(rq, 4);
2032 * We always require a command barrier so that subsequent
2033 * commands, such as breadcrumb interrupts, are strictly ordered
2034 * wrt the contents of the write cache being flushed to memory
2035 * (and thus being coherent from the CPU).
2037 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2040 * Bspec vol 1c.3 - blitter engine command streamer:
2041 * "If ENABLED, all TLBs will be invalidated once the flush
2042 * operation is complete. This bit is only valid when the
2043 * Post-Sync Operation field is a value of 1h or 3h."
2048 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2052 intel_ring_advance(rq, cs);
2057 static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
2059 return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
2062 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
2064 return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
2068 hsw_emit_bb_start(struct i915_request *rq,
2069 u64 offset, u32 len,
2070 unsigned int dispatch_flags)
2074 cs = intel_ring_begin(rq, 2);
2078 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2079 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
2080 /* bit0-7 is the length on GEN6+ */
2082 intel_ring_advance(rq, cs);
2088 gen6_emit_bb_start(struct i915_request *rq,
2089 u64 offset, u32 len,
2090 unsigned int dispatch_flags)
2094 cs = intel_ring_begin(rq, 2);
2098 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2099 0 : MI_BATCH_NON_SECURE_I965);
2100 /* bit0-7 is the length on GEN6+ */
2102 intel_ring_advance(rq, cs);
2107 /* Blitter support (SandyBridge+) */
2109 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
2111 return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
2114 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2115 struct intel_engine_cs *engine)
2119 if (!HAS_LEGACY_SEMAPHORES(dev_priv))
2122 GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
2123 engine->semaphore.sync_to = gen6_ring_sync_to;
2124 engine->semaphore.signal = gen6_signal;
2127 * The current semaphore is only applied on pre-gen8
2128 * platform. And there is no VCS2 ring on the pre-gen8
2129 * platform. So the semaphore between RCS and VCS2 is
2130 * initialized as INVALID.
2132 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2133 static const struct {
2135 i915_reg_t mbox_reg;
2136 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2138 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
2139 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
2140 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2143 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
2144 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
2145 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2148 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
2149 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
2150 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2153 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2154 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2155 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2159 i915_reg_t mbox_reg;
2161 if (i == engine->hw_id) {
2162 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2163 mbox_reg = GEN6_NOSYNC;
2165 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2166 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2169 engine->semaphore.mbox.wait[i] = wait_mbox;
2170 engine->semaphore.mbox.signal[i] = mbox_reg;
2174 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2175 struct intel_engine_cs *engine)
2177 if (INTEL_GEN(dev_priv) >= 6) {
2178 engine->irq_enable = gen6_irq_enable;
2179 engine->irq_disable = gen6_irq_disable;
2180 engine->irq_seqno_barrier = gen6_seqno_barrier;
2181 } else if (INTEL_GEN(dev_priv) >= 5) {
2182 engine->irq_enable = gen5_irq_enable;
2183 engine->irq_disable = gen5_irq_disable;
2184 engine->irq_seqno_barrier = gen5_seqno_barrier;
2185 } else if (INTEL_GEN(dev_priv) >= 3) {
2186 engine->irq_enable = i9xx_irq_enable;
2187 engine->irq_disable = i9xx_irq_disable;
2189 engine->irq_enable = i8xx_irq_enable;
2190 engine->irq_disable = i8xx_irq_disable;
2194 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2196 engine->submit_request = i9xx_submit_request;
2197 engine->cancel_requests = cancel_requests;
2199 engine->park = NULL;
2200 engine->unpark = NULL;
2203 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2205 i9xx_set_default_submission(engine);
2206 engine->submit_request = gen6_bsd_submit_request;
2209 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2210 struct intel_engine_cs *engine)
2212 /* gen8+ are only supported with execlists */
2213 GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);
2215 intel_ring_init_irq(dev_priv, engine);
2216 intel_ring_init_semaphores(dev_priv, engine);
2218 engine->init_hw = init_ring_common;
2219 engine->reset.prepare = reset_prepare;
2220 engine->reset.reset = reset_ring;
2221 engine->reset.finish = reset_finish;
2223 engine->context_pin = intel_ring_context_pin;
2224 engine->request_alloc = ring_request_alloc;
2226 engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2227 engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2228 if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
2231 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2233 num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2234 engine->emit_breadcrumb_sz += num_rings * 3;
2236 engine->emit_breadcrumb_sz++;
2239 engine->set_default_submission = i9xx_set_default_submission;
2241 if (INTEL_GEN(dev_priv) >= 6)
2242 engine->emit_bb_start = gen6_emit_bb_start;
2243 else if (INTEL_GEN(dev_priv) >= 4)
2244 engine->emit_bb_start = i965_emit_bb_start;
2245 else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2246 engine->emit_bb_start = i830_emit_bb_start;
2248 engine->emit_bb_start = i915_emit_bb_start;
2251 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2253 struct drm_i915_private *dev_priv = engine->i915;
2256 intel_ring_default_vfuncs(dev_priv, engine);
2258 if (HAS_L3_DPF(dev_priv))
2259 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2261 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2263 if (INTEL_GEN(dev_priv) >= 6) {
2264 engine->init_context = intel_rcs_ctx_init;
2265 engine->emit_flush = gen7_render_ring_flush;
2266 if (IS_GEN6(dev_priv))
2267 engine->emit_flush = gen6_render_ring_flush;
2268 } else if (IS_GEN5(dev_priv)) {
2269 engine->emit_flush = gen4_render_ring_flush;
2271 if (INTEL_GEN(dev_priv) < 4)
2272 engine->emit_flush = gen2_render_ring_flush;
2274 engine->emit_flush = gen4_render_ring_flush;
2275 engine->irq_enable_mask = I915_USER_INTERRUPT;
2278 if (IS_HASWELL(dev_priv))
2279 engine->emit_bb_start = hsw_emit_bb_start;
2281 engine->init_hw = init_render_ring;
2283 ret = intel_init_ring_buffer(engine);
2290 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2292 struct drm_i915_private *dev_priv = engine->i915;
2294 intel_ring_default_vfuncs(dev_priv, engine);
2296 if (INTEL_GEN(dev_priv) >= 6) {
2297 /* gen6 bsd needs a special wa for tail updates */
2298 if (IS_GEN6(dev_priv))
2299 engine->set_default_submission = gen6_bsd_set_default_submission;
2300 engine->emit_flush = gen6_bsd_ring_flush;
2301 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2303 engine->emit_flush = bsd_ring_flush;
2304 if (IS_GEN5(dev_priv))
2305 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2307 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2310 return intel_init_ring_buffer(engine);
2313 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2315 struct drm_i915_private *dev_priv = engine->i915;
2317 intel_ring_default_vfuncs(dev_priv, engine);
2319 engine->emit_flush = gen6_ring_flush;
2320 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2322 return intel_init_ring_buffer(engine);
2325 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2327 struct drm_i915_private *dev_priv = engine->i915;
2329 intel_ring_default_vfuncs(dev_priv, engine);
2331 engine->emit_flush = gen6_ring_flush;
2332 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2333 engine->irq_enable = hsw_vebox_irq_enable;
2334 engine->irq_disable = hsw_vebox_irq_disable;
2336 return intel_init_ring_buffer(engine);