2 * Copyright © 2008,2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
29 #include <linux/dma_remapping.h>
30 #include <linux/reservation.h>
31 #include <linux/sync_file.h>
32 #include <linux/uaccess.h>
35 #include <drm/drm_syncobj.h>
36 #include <drm/i915_drm.h>
39 #include "i915_gem_clflush.h"
40 #include "i915_trace.h"
41 #include "intel_drv.h"
42 #include "intel_frontbuffer.h"
48 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
51 #define __EXEC_OBJECT_HAS_REF BIT(31)
52 #define __EXEC_OBJECT_HAS_PIN BIT(30)
53 #define __EXEC_OBJECT_HAS_FENCE BIT(29)
54 #define __EXEC_OBJECT_NEEDS_MAP BIT(28)
55 #define __EXEC_OBJECT_NEEDS_BIAS BIT(27)
56 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */
57 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
59 #define __EXEC_HAS_RELOC BIT(31)
60 #define __EXEC_VALIDATED BIT(30)
61 #define __EXEC_INTERNAL_FLAGS (~0u << 30)
62 #define UPDATE PIN_OFFSET_FIXED
64 #define BATCH_OFFSET_BIAS (256*1024)
66 #define __I915_EXEC_ILLEGAL_FLAGS \
67 (__I915_EXEC_UNKNOWN_FLAGS | \
68 I915_EXEC_CONSTANTS_MASK | \
69 I915_EXEC_RESOURCE_STREAMER)
71 /* Catch emission of unexpected errors for CI! */
72 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
75 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
81 * DOC: User command execution
83 * Userspace submits commands to be executed on the GPU as an instruction
84 * stream within a GEM object we call a batchbuffer. This instructions may
85 * refer to other GEM objects containing auxiliary state such as kernels,
86 * samplers, render targets and even secondary batchbuffers. Userspace does
87 * not know where in the GPU memory these objects reside and so before the
88 * batchbuffer is passed to the GPU for execution, those addresses in the
89 * batchbuffer and auxiliary objects are updated. This is known as relocation,
90 * or patching. To try and avoid having to relocate each object on the next
91 * execution, userspace is told the location of those objects in this pass,
92 * but this remains just a hint as the kernel may choose a new location for
93 * any object in the future.
95 * At the level of talking to the hardware, submitting a batchbuffer for the
96 * GPU to execute is to add content to a buffer from which the HW
97 * command streamer is reading.
99 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
100 * Execlists, this command is not placed on the same buffer as the
103 * 2. Add a command to invalidate caches to the buffer.
105 * 3. Add a batchbuffer start command to the buffer; the start command is
106 * essentially a token together with the GPU address of the batchbuffer
109 * 4. Add a pipeline flush to the buffer.
111 * 5. Add a memory write command to the buffer to record when the GPU
112 * is done executing the batchbuffer. The memory write writes the
113 * global sequence number of the request, ``i915_request::global_seqno``;
114 * the i915 driver uses the current value in the register to determine
115 * if the GPU has completed the batchbuffer.
117 * 6. Add a user interrupt command to the buffer. This command instructs
118 * the GPU to issue an interrupt when the command, pipeline flush and
119 * memory write are completed.
121 * 7. Inform the hardware of the additional commands added to the buffer
122 * (by updating the tail pointer).
124 * Processing an execbuf ioctl is conceptually split up into a few phases.
126 * 1. Validation - Ensure all the pointers, handles and flags are valid.
127 * 2. Reservation - Assign GPU address space for every object
128 * 3. Relocation - Update any addresses to point to the final locations
129 * 4. Serialisation - Order the request with respect to its dependencies
130 * 5. Construction - Construct a request to execute the batchbuffer
131 * 6. Submission (at some point in the future execution)
133 * Reserving resources for the execbuf is the most complicated phase. We
134 * neither want to have to migrate the object in the address space, nor do
135 * we want to have to update any relocations pointing to this object. Ideally,
136 * we want to leave the object where it is and for all the existing relocations
137 * to match. If the object is given a new address, or if userspace thinks the
138 * object is elsewhere, we have to parse all the relocation entries and update
139 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
140 * all the target addresses in all of its objects match the value in the
141 * relocation entries and that they all match the presumed offsets given by the
142 * list of execbuffer objects. Using this knowledge, we know that if we haven't
143 * moved any buffers, all the relocation entries are valid and we can skip
144 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
145 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
147 * The addresses written in the objects must match the corresponding
148 * reloc.presumed_offset which in turn must match the corresponding
151 * Any render targets written to in the batch must be flagged with
154 * To avoid stalling, execobject.offset should match the current
155 * address of that object within the active context.
157 * The reservation is done is multiple phases. First we try and keep any
158 * object already bound in its current location - so as long as meets the
159 * constraints imposed by the new execbuffer. Any object left unbound after the
160 * first pass is then fitted into any available idle space. If an object does
161 * not fit, all objects are removed from the reservation and the process rerun
162 * after sorting the objects into a priority order (more difficult to fit
163 * objects are tried first). Failing that, the entire VM is cleared and we try
164 * to fit the execbuf once last time before concluding that it simply will not
167 * A small complication to all of this is that we allow userspace not only to
168 * specify an alignment and a size for the object in the address space, but
169 * we also allow userspace to specify the exact offset. This objects are
170 * simpler to place (the location is known a priori) all we have to do is make
171 * sure the space is available.
173 * Once all the objects are in place, patching up the buried pointers to point
174 * to the final locations is a fairly simple job of walking over the relocation
175 * entry arrays, looking up the right address and rewriting the value into
176 * the object. Simple! ... The relocation entries are stored in user memory
177 * and so to access them we have to copy them into a local buffer. That copy
178 * has to avoid taking any pagefaults as they may lead back to a GEM object
179 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
180 * the relocation into multiple passes. First we try to do everything within an
181 * atomic context (avoid the pagefaults) which requires that we never wait. If
182 * we detect that we may wait, or if we need to fault, then we have to fallback
183 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
184 * bells yet?) Dropping the mutex means that we lose all the state we have
185 * built up so far for the execbuf and we must reset any global data. However,
186 * we do leave the objects pinned in their final locations - which is a
187 * potential issue for concurrent execbufs. Once we have left the mutex, we can
188 * allocate and copy all the relocation entries into a large array at our
189 * leisure, reacquire the mutex, reclaim all the objects and other state and
190 * then proceed to update any incorrect addresses with the objects.
192 * As we process the relocation entries, we maintain a record of whether the
193 * object is being written to. Using NORELOC, we expect userspace to provide
194 * this information instead. We also check whether we can skip the relocation
195 * by comparing the expected value inside the relocation entry with the target's
196 * final address. If they differ, we have to map the current object and rewrite
197 * the 4 or 8 byte pointer within.
199 * Serialising an execbuf is quite simple according to the rules of the GEM
200 * ABI. Execution within each context is ordered by the order of submission.
201 * Writes to any GEM object are in order of submission and are exclusive. Reads
202 * from a GEM object are unordered with respect to other reads, but ordered by
203 * writes. A write submitted after a read cannot occur before the read, and
204 * similarly any read submitted after a write cannot occur before the write.
205 * Writes are ordered between engines such that only one write occurs at any
206 * time (completing any reads beforehand) - using semaphores where available
207 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
208 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
209 * reads before starting, and any read (either using set-domain or pread) must
210 * flush all GPU writes before starting. (Note we only employ a barrier before,
211 * we currently rely on userspace not concurrently starting a new execution
212 * whilst reading or writing to an object. This may be an advantage or not
213 * depending on how much you trust userspace not to shoot themselves in the
214 * foot.) Serialisation may just result in the request being inserted into
215 * a DAG awaiting its turn, but most simple is to wait on the CPU until
216 * all dependencies are resolved.
218 * After all of that, is just a matter of closing the request and handing it to
219 * the hardware (well, leaving it in a queue to be executed). However, we also
220 * offer the ability for batchbuffers to be run with elevated privileges so
221 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
222 * Before any batch is given extra privileges we first must check that it
223 * contains no nefarious instructions, we check that each instruction is from
224 * our whitelist and all registers are also from an allowed list. We first
225 * copy the user's batchbuffer to a shadow (so that the user doesn't have
226 * access to it, either by the CPU or GPU as we scan it) and then parse each
227 * instruction. If everything is ok, we set a flag telling the hardware to run
228 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
231 struct i915_execbuffer {
232 struct drm_i915_private *i915; /** i915 backpointer */
233 struct drm_file *file; /** per-file lookup tables and limits */
234 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
235 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
236 struct i915_vma **vma;
239 struct intel_engine_cs *engine; /** engine to queue the request to */
240 struct i915_gem_context *ctx; /** context for building the request */
241 struct i915_address_space *vm; /** GTT and vma for the request */
243 struct i915_request *request; /** our request to build */
244 struct i915_vma *batch; /** identity of the batch obj/vma */
246 /** actual size of execobj[] as we may extend it for the cmdparser */
247 unsigned int buffer_count;
249 /** list of vma not yet bound during reservation phase */
250 struct list_head unbound;
252 /** list of vma that have execobj.relocation_count */
253 struct list_head relocs;
256 * Track the most recently used object for relocations, as we
257 * frequently have to perform multiple relocations within the same
261 struct drm_mm_node node; /** temporary GTT binding */
262 unsigned long vaddr; /** Current kmap address */
263 unsigned long page; /** Currently mapped page index */
264 unsigned int gen; /** Cached value of INTEL_GEN */
265 bool use_64bit_reloc : 1;
268 bool needs_unfenced : 1;
270 struct i915_request *rq;
272 unsigned int rq_size;
275 u64 invalid_flags; /** Set of execobj.flags that are invalid */
276 u32 context_flags; /** Set of execobj.flags to insert from the ctx */
278 u32 batch_start_offset; /** Location within object of batch */
279 u32 batch_len; /** Length of batch within object */
280 u32 batch_flags; /** Flags composed for emit_bb_start() */
283 * Indicate either the size of the hastable used to resolve
284 * relocation handles, or if negative that we are using a direct
285 * index into the execobj[].
288 struct hlist_head *buckets; /** ht for relocation handles */
291 #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
294 * Used to convert any address to canonical form.
295 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
296 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
297 * addresses to be in a canonical form:
298 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
299 * canonical form [63:48] == [47]."
301 #define GEN8_HIGH_ADDRESS_BIT 47
302 static inline u64 gen8_canonical_addr(u64 address)
304 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
307 static inline u64 gen8_noncanonical_addr(u64 address)
309 return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
312 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
314 return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
317 static int eb_create(struct i915_execbuffer *eb)
319 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
320 unsigned int size = 1 + ilog2(eb->buffer_count);
323 * Without a 1:1 association between relocation handles and
324 * the execobject[] index, we instead create a hashtable.
325 * We size it dynamically based on available memory, starting
326 * first with 1:1 assocative hash and scaling back until
327 * the allocation succeeds.
329 * Later on we use a positive lut_size to indicate we are
330 * using this hashtable, and a negative value to indicate a
336 /* While we can still reduce the allocation size, don't
337 * raise a warning and allow the allocation to fail.
338 * On the last pass though, we want to try as hard
339 * as possible to perform the allocation and warn
344 flags |= __GFP_NORETRY | __GFP_NOWARN;
346 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
357 eb->lut_size = -eb->buffer_count;
364 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
365 const struct i915_vma *vma,
368 if (vma->node.size < entry->pad_to_size)
371 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
374 if (flags & EXEC_OBJECT_PINNED &&
375 vma->node.start != entry->offset)
378 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
379 vma->node.start < BATCH_OFFSET_BIAS)
382 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
383 (vma->node.start + vma->node.size - 1) >> 32)
386 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
387 !i915_vma_is_map_and_fenceable(vma))
394 eb_pin_vma(struct i915_execbuffer *eb,
395 const struct drm_i915_gem_exec_object2 *entry,
396 struct i915_vma *vma)
398 unsigned int exec_flags = *vma->exec_flags;
402 pin_flags = vma->node.start;
404 pin_flags = entry->offset & PIN_OFFSET_MASK;
406 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
407 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
408 pin_flags |= PIN_GLOBAL;
410 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
413 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
414 if (unlikely(i915_vma_pin_fence(vma))) {
420 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
423 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
424 return !eb_vma_misplaced(entry, vma, exec_flags);
427 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
429 GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
431 if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
432 __i915_vma_unpin_fence(vma);
434 __i915_vma_unpin(vma);
438 eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
440 if (!(*flags & __EXEC_OBJECT_HAS_PIN))
443 __eb_unreserve_vma(vma, *flags);
444 *flags &= ~__EXEC_OBJECT_RESERVED;
448 eb_validate_vma(struct i915_execbuffer *eb,
449 struct drm_i915_gem_exec_object2 *entry,
450 struct i915_vma *vma)
452 if (unlikely(entry->flags & eb->invalid_flags))
455 if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
459 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
460 * any non-page-aligned or non-canonical addresses.
462 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
463 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
466 /* pad_to_size was once a reserved field, so sanitize it */
467 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
468 if (unlikely(offset_in_page(entry->pad_to_size)))
471 entry->pad_to_size = 0;
474 if (unlikely(vma->exec_flags)) {
475 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
476 entry->handle, (int)(entry - eb->exec));
481 * From drm_mm perspective address space is continuous,
482 * so from this point we're always using non-canonical
485 entry->offset = gen8_noncanonical_addr(entry->offset);
487 if (!eb->reloc_cache.has_fence) {
488 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
490 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
491 eb->reloc_cache.needs_unfenced) &&
492 i915_gem_object_is_tiled(vma->obj))
493 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
496 if (!(entry->flags & EXEC_OBJECT_PINNED))
497 entry->flags |= eb->context_flags;
503 eb_add_vma(struct i915_execbuffer *eb,
504 unsigned int i, unsigned batch_idx,
505 struct i915_vma *vma)
507 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
510 GEM_BUG_ON(i915_vma_is_closed(vma));
512 if (!(eb->args->flags & __EXEC_VALIDATED)) {
513 err = eb_validate_vma(eb, entry, vma);
518 if (eb->lut_size > 0) {
519 vma->exec_handle = entry->handle;
520 hlist_add_head(&vma->exec_node,
521 &eb->buckets[hash_32(entry->handle,
525 if (entry->relocation_count)
526 list_add_tail(&vma->reloc_link, &eb->relocs);
529 * Stash a pointer from the vma to execobj, so we can query its flags,
530 * size, alignment etc as provided by the user. Also we stash a pointer
531 * to the vma inside the execobj so that we can use a direct lookup
532 * to find the right target VMA when doing relocations.
535 eb->flags[i] = entry->flags;
536 vma->exec_flags = &eb->flags[i];
539 * SNA is doing fancy tricks with compressing batch buffers, which leads
540 * to negative relocation deltas. Usually that works out ok since the
541 * relocate address is still positive, except when the batch is placed
542 * very low in the GTT. Ensure this doesn't happen.
544 * Note that actual hangs have only been observed on gen7, but for
545 * paranoia do it everywhere.
547 if (i == batch_idx) {
548 if (entry->relocation_count &&
549 !(eb->flags[i] & EXEC_OBJECT_PINNED))
550 eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
551 if (eb->reloc_cache.has_fence)
552 eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
558 if (eb_pin_vma(eb, entry, vma)) {
559 if (entry->offset != vma->node.start) {
560 entry->offset = vma->node.start | UPDATE;
561 eb->args->flags |= __EXEC_HAS_RELOC;
564 eb_unreserve_vma(vma, vma->exec_flags);
566 list_add_tail(&vma->exec_link, &eb->unbound);
567 if (drm_mm_node_allocated(&vma->node))
568 err = i915_vma_unbind(vma);
570 vma->exec_flags = NULL;
575 static inline int use_cpu_reloc(const struct reloc_cache *cache,
576 const struct drm_i915_gem_object *obj)
578 if (!i915_gem_object_has_struct_page(obj))
581 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
584 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
587 return (cache->has_llc ||
589 obj->cache_level != I915_CACHE_NONE);
592 static int eb_reserve_vma(const struct i915_execbuffer *eb,
593 struct i915_vma *vma)
595 struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
596 unsigned int exec_flags = *vma->exec_flags;
600 pin_flags = PIN_USER | PIN_NONBLOCK;
601 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
602 pin_flags |= PIN_GLOBAL;
605 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
606 * limit address to the first 4GBs for unflagged objects.
608 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
609 pin_flags |= PIN_ZONE_4G;
611 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
612 pin_flags |= PIN_MAPPABLE;
614 if (exec_flags & EXEC_OBJECT_PINNED) {
615 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
616 pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
617 } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
618 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
621 err = i915_vma_pin(vma,
622 entry->pad_to_size, entry->alignment,
627 if (entry->offset != vma->node.start) {
628 entry->offset = vma->node.start | UPDATE;
629 eb->args->flags |= __EXEC_HAS_RELOC;
632 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
633 err = i915_vma_pin_fence(vma);
640 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
643 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
644 GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
649 static int eb_reserve(struct i915_execbuffer *eb)
651 const unsigned int count = eb->buffer_count;
652 struct list_head last;
653 struct i915_vma *vma;
654 unsigned int i, pass;
658 * Attempt to pin all of the buffers into the GTT.
659 * This is done in 3 phases:
661 * 1a. Unbind all objects that do not match the GTT constraints for
662 * the execbuffer (fenceable, mappable, alignment etc).
663 * 1b. Increment pin count for already bound objects.
664 * 2. Bind new objects.
665 * 3. Decrement pin count.
667 * This avoid unnecessary unbinding of later objects in order to make
668 * room for the earlier objects *unless* we need to defragment.
674 list_for_each_entry(vma, &eb->unbound, exec_link) {
675 err = eb_reserve_vma(eb, vma);
682 /* Resort *all* the objects into priority order */
683 INIT_LIST_HEAD(&eb->unbound);
684 INIT_LIST_HEAD(&last);
685 for (i = 0; i < count; i++) {
686 unsigned int flags = eb->flags[i];
687 struct i915_vma *vma = eb->vma[i];
689 if (flags & EXEC_OBJECT_PINNED &&
690 flags & __EXEC_OBJECT_HAS_PIN)
693 eb_unreserve_vma(vma, &eb->flags[i]);
695 if (flags & EXEC_OBJECT_PINNED)
696 /* Pinned must have their slot */
697 list_add(&vma->exec_link, &eb->unbound);
698 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
699 /* Map require the lowest 256MiB (aperture) */
700 list_add_tail(&vma->exec_link, &eb->unbound);
701 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
702 /* Prioritise 4GiB region for restricted bo */
703 list_add(&vma->exec_link, &last);
705 list_add_tail(&vma->exec_link, &last);
707 list_splice_tail(&last, &eb->unbound);
714 /* Too fragmented, unbind everything and retry */
715 err = i915_gem_evict_vm(eb->vm);
726 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
728 if (eb->args->flags & I915_EXEC_BATCH_FIRST)
731 return eb->buffer_count - 1;
734 static int eb_select_context(struct i915_execbuffer *eb)
736 struct i915_gem_context *ctx;
738 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
744 eb->vm = &ctx->ppgtt->vm;
745 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
747 eb->vm = &eb->i915->ggtt.vm;
750 eb->context_flags = 0;
751 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
752 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
757 static int eb_lookup_vmas(struct i915_execbuffer *eb)
759 struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
760 struct drm_i915_gem_object *obj;
761 unsigned int i, batch;
764 if (unlikely(i915_gem_context_is_closed(eb->ctx)))
767 if (unlikely(i915_gem_context_is_banned(eb->ctx)))
770 INIT_LIST_HEAD(&eb->relocs);
771 INIT_LIST_HEAD(&eb->unbound);
773 batch = eb_batch_index(eb);
775 for (i = 0; i < eb->buffer_count; i++) {
776 u32 handle = eb->exec[i].handle;
777 struct i915_lut_handle *lut;
778 struct i915_vma *vma;
780 vma = radix_tree_lookup(handles_vma, handle);
784 obj = i915_gem_object_lookup(eb->file, handle);
785 if (unlikely(!obj)) {
790 vma = i915_vma_instance(obj, eb->vm, NULL);
791 if (unlikely(IS_ERR(vma))) {
796 lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
797 if (unlikely(!lut)) {
802 err = radix_tree_insert(handles_vma, handle, vma);
804 kmem_cache_free(eb->i915->luts, lut);
808 /* transfer ref to ctx */
809 if (!vma->open_count++)
810 i915_vma_reopen(vma);
811 list_add(&lut->obj_link, &obj->lut_list);
812 list_add(&lut->ctx_link, &eb->ctx->handles_list);
814 lut->handle = handle;
817 err = eb_add_vma(eb, i, batch, vma);
821 GEM_BUG_ON(vma != eb->vma[i]);
822 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
823 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
824 eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
827 eb->args->flags |= __EXEC_VALIDATED;
828 return eb_reserve(eb);
831 i915_gem_object_put(obj);
837 static struct i915_vma *
838 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
840 if (eb->lut_size < 0) {
841 if (handle >= -eb->lut_size)
843 return eb->vma[handle];
845 struct hlist_head *head;
846 struct i915_vma *vma;
848 head = &eb->buckets[hash_32(handle, eb->lut_size)];
849 hlist_for_each_entry(vma, head, exec_node) {
850 if (vma->exec_handle == handle)
857 static void eb_release_vmas(const struct i915_execbuffer *eb)
859 const unsigned int count = eb->buffer_count;
862 for (i = 0; i < count; i++) {
863 struct i915_vma *vma = eb->vma[i];
864 unsigned int flags = eb->flags[i];
869 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
870 vma->exec_flags = NULL;
873 if (flags & __EXEC_OBJECT_HAS_PIN)
874 __eb_unreserve_vma(vma, flags);
876 if (flags & __EXEC_OBJECT_HAS_REF)
881 static void eb_reset_vmas(const struct i915_execbuffer *eb)
884 if (eb->lut_size > 0)
885 memset(eb->buckets, 0,
886 sizeof(struct hlist_head) << eb->lut_size);
889 static void eb_destroy(const struct i915_execbuffer *eb)
891 GEM_BUG_ON(eb->reloc_cache.rq);
893 if (eb->lut_size > 0)
898 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
899 const struct i915_vma *target)
901 return gen8_canonical_addr((int)reloc->delta + target->node.start);
904 static void reloc_cache_init(struct reloc_cache *cache,
905 struct drm_i915_private *i915)
909 /* Must be a variable in the struct to allow GCC to unroll. */
910 cache->gen = INTEL_GEN(i915);
911 cache->has_llc = HAS_LLC(i915);
912 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
913 cache->has_fence = cache->gen < 4;
914 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
915 cache->node.allocated = false;
920 static inline void *unmask_page(unsigned long p)
922 return (void *)(uintptr_t)(p & PAGE_MASK);
925 static inline unsigned int unmask_flags(unsigned long p)
927 return p & ~PAGE_MASK;
930 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
932 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
934 struct drm_i915_private *i915 =
935 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
939 static void reloc_gpu_flush(struct reloc_cache *cache)
941 GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
942 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
943 i915_gem_object_unpin_map(cache->rq->batch->obj);
944 i915_gem_chipset_flush(cache->rq->i915);
946 i915_request_add(cache->rq);
950 static void reloc_cache_reset(struct reloc_cache *cache)
955 reloc_gpu_flush(cache);
960 vaddr = unmask_page(cache->vaddr);
961 if (cache->vaddr & KMAP) {
962 if (cache->vaddr & CLFLUSH_AFTER)
965 kunmap_atomic(vaddr);
966 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
969 io_mapping_unmap_atomic((void __iomem *)vaddr);
970 if (cache->node.allocated) {
971 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
973 ggtt->vm.clear_range(&ggtt->vm,
976 drm_mm_remove_node(&cache->node);
978 i915_vma_unpin((struct i915_vma *)cache->node.mm);
986 static void *reloc_kmap(struct drm_i915_gem_object *obj,
987 struct reloc_cache *cache,
993 kunmap_atomic(unmask_page(cache->vaddr));
995 unsigned int flushes;
998 err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
1000 return ERR_PTR(err);
1002 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1003 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1005 cache->vaddr = flushes | KMAP;
1006 cache->node.mm = (void *)obj;
1011 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
1012 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1018 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1019 struct reloc_cache *cache,
1022 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1023 unsigned long offset;
1027 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1029 struct i915_vma *vma;
1032 if (use_cpu_reloc(cache, obj))
1035 err = i915_gem_object_set_to_gtt_domain(obj, true);
1037 return ERR_PTR(err);
1039 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1044 memset(&cache->node, 0, sizeof(cache->node));
1045 err = drm_mm_insert_node_in_range
1046 (&ggtt->vm.mm, &cache->node,
1047 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1048 0, ggtt->mappable_end,
1050 if (err) /* no inactive aperture space, use cpu reloc */
1053 err = i915_vma_put_fence(vma);
1055 i915_vma_unpin(vma);
1056 return ERR_PTR(err);
1059 cache->node.start = vma->node.start;
1060 cache->node.mm = (void *)vma;
1064 offset = cache->node.start;
1065 if (cache->node.allocated) {
1067 ggtt->vm.insert_page(&ggtt->vm,
1068 i915_gem_object_get_dma_address(obj, page),
1069 offset, I915_CACHE_NONE, 0);
1071 offset += page << PAGE_SHIFT;
1074 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1077 cache->vaddr = (unsigned long)vaddr;
1082 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1083 struct reloc_cache *cache,
1088 if (cache->page == page) {
1089 vaddr = unmask_page(cache->vaddr);
1092 if ((cache->vaddr & KMAP) == 0)
1093 vaddr = reloc_iomap(obj, cache, page);
1095 vaddr = reloc_kmap(obj, cache, page);
1101 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1103 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1104 if (flushes & CLFLUSH_BEFORE) {
1112 * Writes to the same cacheline are serialised by the CPU
1113 * (including clflush). On the write path, we only require
1114 * that it hits memory in an orderly fashion and place
1115 * mb barriers at the start and end of the relocation phase
1116 * to ensure ordering of clflush wrt to the system.
1118 if (flushes & CLFLUSH_AFTER)
1124 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1125 struct i915_vma *vma,
1128 struct reloc_cache *cache = &eb->reloc_cache;
1129 struct drm_i915_gem_object *obj;
1130 struct i915_request *rq;
1131 struct i915_vma *batch;
1135 if (DBG_FORCE_RELOC == FORCE_GPU_RELOC) {
1137 if (obj->cache_dirty & ~obj->cache_coherent)
1138 i915_gem_clflush_object(obj, 0);
1139 obj->write_domain = 0;
1142 GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
1144 obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
1146 return PTR_ERR(obj);
1148 cmd = i915_gem_object_pin_map(obj,
1152 i915_gem_object_unpin_pages(obj);
1154 return PTR_ERR(cmd);
1156 err = i915_gem_object_set_to_wc_domain(obj, false);
1160 batch = i915_vma_instance(obj, vma->vm, NULL);
1161 if (IS_ERR(batch)) {
1162 err = PTR_ERR(batch);
1166 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1170 rq = i915_request_alloc(eb->engine, eb->ctx);
1176 err = i915_request_await_object(rq, vma->obj, true);
1180 err = eb->engine->emit_bb_start(rq,
1181 batch->node.start, PAGE_SIZE,
1182 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1186 GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1187 err = i915_vma_move_to_active(batch, rq, 0);
1191 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1196 i915_vma_unpin(batch);
1199 cache->rq_cmd = cmd;
1202 /* Return with batch mapping (cmd) still pinned */
1206 i915_request_skip(rq, err);
1208 i915_request_add(rq);
1210 i915_vma_unpin(batch);
1212 i915_gem_object_unpin_map(obj);
1216 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1217 struct i915_vma *vma,
1220 struct reloc_cache *cache = &eb->reloc_cache;
1223 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1224 reloc_gpu_flush(cache);
1226 if (unlikely(!cache->rq)) {
1229 /* If we need to copy for the cmdparser, we will stall anyway */
1230 if (eb_use_cmdparser(eb))
1231 return ERR_PTR(-EWOULDBLOCK);
1233 if (!intel_engine_can_store_dword(eb->engine))
1234 return ERR_PTR(-ENODEV);
1236 err = __reloc_gpu_alloc(eb, vma, len);
1238 return ERR_PTR(err);
1241 cmd = cache->rq_cmd + cache->rq_size;
1242 cache->rq_size += len;
1248 relocate_entry(struct i915_vma *vma,
1249 const struct drm_i915_gem_relocation_entry *reloc,
1250 struct i915_execbuffer *eb,
1251 const struct i915_vma *target)
1253 u64 offset = reloc->offset;
1254 u64 target_offset = relocation_target(reloc, target);
1255 bool wide = eb->reloc_cache.use_64bit_reloc;
1258 if (!eb->reloc_cache.vaddr &&
1259 (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1260 !reservation_object_test_signaled_rcu(vma->resv, true))) {
1261 const unsigned int gen = eb->reloc_cache.gen;
1267 len = offset & 7 ? 8 : 5;
1273 batch = reloc_gpu(eb, vma, len);
1277 addr = gen8_canonical_addr(vma->node.start + offset);
1280 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1281 *batch++ = lower_32_bits(addr);
1282 *batch++ = upper_32_bits(addr);
1283 *batch++ = lower_32_bits(target_offset);
1285 addr = gen8_canonical_addr(addr + 4);
1287 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1288 *batch++ = lower_32_bits(addr);
1289 *batch++ = upper_32_bits(addr);
1290 *batch++ = upper_32_bits(target_offset);
1292 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1293 *batch++ = lower_32_bits(addr);
1294 *batch++ = upper_32_bits(addr);
1295 *batch++ = lower_32_bits(target_offset);
1296 *batch++ = upper_32_bits(target_offset);
1298 } else if (gen >= 6) {
1299 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1302 *batch++ = target_offset;
1303 } else if (gen >= 4) {
1304 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1307 *batch++ = target_offset;
1309 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1311 *batch++ = target_offset;
1313 /* And again for good measure (blb/pnv) */
1314 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1316 *batch++ = target_offset;
1323 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1325 return PTR_ERR(vaddr);
1327 clflush_write32(vaddr + offset_in_page(offset),
1328 lower_32_bits(target_offset),
1329 eb->reloc_cache.vaddr);
1332 offset += sizeof(u32);
1333 target_offset >>= 32;
1339 return target->node.start | UPDATE;
1343 eb_relocate_entry(struct i915_execbuffer *eb,
1344 struct i915_vma *vma,
1345 const struct drm_i915_gem_relocation_entry *reloc)
1347 struct i915_vma *target;
1350 /* we've already hold a reference to all valid objects */
1351 target = eb_get_vma(eb, reloc->target_handle);
1352 if (unlikely(!target))
1355 /* Validate that the target is in a valid r/w GPU domain */
1356 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1357 DRM_DEBUG("reloc with multiple write domains: "
1358 "target %d offset %d "
1359 "read %08x write %08x",
1360 reloc->target_handle,
1361 (int) reloc->offset,
1362 reloc->read_domains,
1363 reloc->write_domain);
1366 if (unlikely((reloc->write_domain | reloc->read_domains)
1367 & ~I915_GEM_GPU_DOMAINS)) {
1368 DRM_DEBUG("reloc with read/write non-GPU domains: "
1369 "target %d offset %d "
1370 "read %08x write %08x",
1371 reloc->target_handle,
1372 (int) reloc->offset,
1373 reloc->read_domains,
1374 reloc->write_domain);
1378 if (reloc->write_domain) {
1379 *target->exec_flags |= EXEC_OBJECT_WRITE;
1382 * Sandybridge PPGTT errata: We need a global gtt mapping
1383 * for MI and pipe_control writes because the gpu doesn't
1384 * properly redirect them through the ppgtt for non_secure
1387 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1388 IS_GEN6(eb->i915)) {
1389 err = i915_vma_bind(target, target->obj->cache_level,
1392 "Unexpected failure to bind target VMA!"))
1398 * If the relocation already has the right value in it, no
1399 * more work needs to be done.
1401 if (!DBG_FORCE_RELOC &&
1402 gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1405 /* Check that the relocation address is valid... */
1406 if (unlikely(reloc->offset >
1407 vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1408 DRM_DEBUG("Relocation beyond object bounds: "
1409 "target %d offset %d size %d.\n",
1410 reloc->target_handle,
1415 if (unlikely(reloc->offset & 3)) {
1416 DRM_DEBUG("Relocation not 4-byte aligned: "
1417 "target %d offset %d.\n",
1418 reloc->target_handle,
1419 (int)reloc->offset);
1424 * If we write into the object, we need to force the synchronisation
1425 * barrier, either with an asynchronous clflush or if we executed the
1426 * patching using the GPU (though that should be serialised by the
1427 * timeline). To be completely sure, and since we are required to
1428 * do relocations we are already stalling, disable the user's opt
1429 * out of our synchronisation.
1431 *vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1433 /* and update the user's relocation entry */
1434 return relocate_entry(vma, reloc, eb, target);
1437 static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1439 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1440 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1441 struct drm_i915_gem_relocation_entry __user *urelocs;
1442 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1443 unsigned int remain;
1445 urelocs = u64_to_user_ptr(entry->relocs_ptr);
1446 remain = entry->relocation_count;
1447 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1451 * We must check that the entire relocation array is safe
1452 * to read. However, if the array is not writable the user loses
1453 * the updated relocation values.
1455 if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1459 struct drm_i915_gem_relocation_entry *r = stack;
1460 unsigned int count =
1461 min_t(unsigned int, remain, ARRAY_SIZE(stack));
1462 unsigned int copied;
1465 * This is the fast path and we cannot handle a pagefault
1466 * whilst holding the struct mutex lest the user pass in the
1467 * relocations contained within a mmaped bo. For in such a case
1468 * we, the page fault handler would call i915_gem_fault() and
1469 * we would try to acquire the struct mutex again. Obviously
1470 * this is bad and so lockdep complains vehemently.
1472 pagefault_disable();
1473 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1475 if (unlikely(copied)) {
1482 u64 offset = eb_relocate_entry(eb, vma, r);
1484 if (likely(offset == 0)) {
1485 } else if ((s64)offset < 0) {
1486 remain = (int)offset;
1490 * Note that reporting an error now
1491 * leaves everything in an inconsistent
1492 * state as we have *already* changed
1493 * the relocation value inside the
1494 * object. As we have not changed the
1495 * reloc.presumed_offset or will not
1496 * change the execobject.offset, on the
1497 * call we may not rewrite the value
1498 * inside the object, leaving it
1499 * dangling and causing a GPU hang. Unless
1500 * userspace dynamically rebuilds the
1501 * relocations on each execbuf rather than
1502 * presume a static tree.
1504 * We did previously check if the relocations
1505 * were writable (access_ok), an error now
1506 * would be a strange race with mprotect,
1507 * having already demonstrated that we
1508 * can read from this userspace address.
1510 offset = gen8_canonical_addr(offset & ~UPDATE);
1511 if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
1516 } while (r++, --count);
1517 urelocs += ARRAY_SIZE(stack);
1520 reloc_cache_reset(&eb->reloc_cache);
1525 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1527 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1528 struct drm_i915_gem_relocation_entry *relocs =
1529 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1533 for (i = 0; i < entry->relocation_count; i++) {
1534 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1536 if ((s64)offset < 0) {
1543 reloc_cache_reset(&eb->reloc_cache);
1547 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1549 const char __user *addr, *end;
1551 char __maybe_unused c;
1553 size = entry->relocation_count;
1557 if (size > N_RELOC(ULONG_MAX))
1560 addr = u64_to_user_ptr(entry->relocs_ptr);
1561 size *= sizeof(struct drm_i915_gem_relocation_entry);
1562 if (!access_ok(VERIFY_READ, addr, size))
1566 for (; addr < end; addr += PAGE_SIZE) {
1567 int err = __get_user(c, addr);
1571 return __get_user(c, end - 1);
1574 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1576 const unsigned int count = eb->buffer_count;
1580 for (i = 0; i < count; i++) {
1581 const unsigned int nreloc = eb->exec[i].relocation_count;
1582 struct drm_i915_gem_relocation_entry __user *urelocs;
1583 struct drm_i915_gem_relocation_entry *relocs;
1585 unsigned long copied;
1590 err = check_relocations(&eb->exec[i]);
1594 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1595 size = nreloc * sizeof(*relocs);
1597 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1603 /* copy_from_user is limited to < 4GiB */
1607 min_t(u64, BIT_ULL(31), size - copied);
1609 if (__copy_from_user((char *)relocs + copied,
1610 (char __user *)urelocs + copied,
1619 } while (copied < size);
1622 * As we do not update the known relocation offsets after
1623 * relocating (due to the complexities in lock handling),
1624 * we need to mark them as invalid now so that we force the
1625 * relocation processing next time. Just in case the target
1626 * object is evicted and then rebound into its old
1627 * presumed_offset before the next execbuffer - if that
1628 * happened we would make the mistake of assuming that the
1629 * relocations were valid.
1631 user_access_begin();
1632 for (copied = 0; copied < nreloc; copied++)
1634 &urelocs[copied].presumed_offset,
1638 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1645 struct drm_i915_gem_relocation_entry *relocs =
1646 u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1647 if (eb->exec[i].relocation_count)
1653 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1655 const unsigned int count = eb->buffer_count;
1658 if (unlikely(i915_modparams.prefault_disable))
1661 for (i = 0; i < count; i++) {
1664 err = check_relocations(&eb->exec[i]);
1672 static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1674 struct drm_device *dev = &eb->i915->drm;
1675 bool have_copy = false;
1676 struct i915_vma *vma;
1680 if (signal_pending(current)) {
1685 /* We may process another execbuffer during the unlock... */
1687 mutex_unlock(&dev->struct_mutex);
1690 * We take 3 passes through the slowpatch.
1692 * 1 - we try to just prefault all the user relocation entries and
1693 * then attempt to reuse the atomic pagefault disabled fast path again.
1695 * 2 - we copy the user entries to a local buffer here outside of the
1696 * local and allow ourselves to wait upon any rendering before
1699 * 3 - we already have a local copy of the relocation entries, but
1700 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1703 err = eb_prefault_relocations(eb);
1704 } else if (!have_copy) {
1705 err = eb_copy_relocations(eb);
1706 have_copy = err == 0;
1712 mutex_lock(&dev->struct_mutex);
1716 /* A frequent cause for EAGAIN are currently unavailable client pages */
1717 flush_workqueue(eb->i915->mm.userptr_wq);
1719 err = i915_mutex_lock_interruptible(dev);
1721 mutex_lock(&dev->struct_mutex);
1725 /* reacquire the objects */
1726 err = eb_lookup_vmas(eb);
1730 GEM_BUG_ON(!eb->batch);
1732 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1734 pagefault_disable();
1735 err = eb_relocate_vma(eb, vma);
1740 err = eb_relocate_vma_slow(eb, vma);
1747 * Leave the user relocations as are, this is the painfully slow path,
1748 * and we want to avoid the complication of dropping the lock whilst
1749 * having buffers reserved in the aperture and so causing spurious
1750 * ENOSPC for random operations.
1759 const unsigned int count = eb->buffer_count;
1762 for (i = 0; i < count; i++) {
1763 const struct drm_i915_gem_exec_object2 *entry =
1765 struct drm_i915_gem_relocation_entry *relocs;
1767 if (!entry->relocation_count)
1770 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1778 static int eb_relocate(struct i915_execbuffer *eb)
1780 if (eb_lookup_vmas(eb))
1783 /* The objects are in their final locations, apply the relocations. */
1784 if (eb->args->flags & __EXEC_HAS_RELOC) {
1785 struct i915_vma *vma;
1787 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1788 if (eb_relocate_vma(eb, vma))
1796 return eb_relocate_slow(eb);
1799 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1801 const unsigned int count = eb->buffer_count;
1805 for (i = 0; i < count; i++) {
1806 unsigned int flags = eb->flags[i];
1807 struct i915_vma *vma = eb->vma[i];
1808 struct drm_i915_gem_object *obj = vma->obj;
1810 if (flags & EXEC_OBJECT_CAPTURE) {
1811 struct i915_capture_list *capture;
1813 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1814 if (unlikely(!capture))
1817 capture->next = eb->request->capture_list;
1818 capture->vma = eb->vma[i];
1819 eb->request->capture_list = capture;
1823 * If the GPU is not _reading_ through the CPU cache, we need
1824 * to make sure that any writes (both previous GPU writes from
1825 * before a change in snooping levels and normal CPU writes)
1826 * caught in that cache are flushed to main memory.
1829 * obj->cache_dirty &&
1830 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1831 * but gcc's optimiser doesn't handle that as well and emits
1832 * two jumps instead of one. Maybe one day...
1834 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1835 if (i915_gem_clflush_object(obj, 0))
1836 flags &= ~EXEC_OBJECT_ASYNC;
1839 if (flags & EXEC_OBJECT_ASYNC)
1842 err = i915_request_await_object
1843 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
1848 for (i = 0; i < count; i++) {
1849 unsigned int flags = eb->flags[i];
1850 struct i915_vma *vma = eb->vma[i];
1852 err = i915_vma_move_to_active(vma, eb->request, flags);
1853 if (unlikely(err)) {
1854 i915_request_skip(eb->request, err);
1858 __eb_unreserve_vma(vma, flags);
1859 vma->exec_flags = NULL;
1861 if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1866 /* Unconditionally flush any chipset caches (for streaming writes). */
1867 i915_gem_chipset_flush(eb->i915);
1872 static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1874 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1877 /* Kernel clipping was a DRI1 misfeature */
1878 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1879 if (exec->num_cliprects || exec->cliprects_ptr)
1883 if (exec->DR4 == 0xffffffff) {
1884 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1887 if (exec->DR1 || exec->DR4)
1890 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1896 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1901 if (!IS_GEN7(rq->i915) || rq->engine->id != RCS) {
1902 DRM_DEBUG("sol reset is gen7/rcs only\n");
1906 cs = intel_ring_begin(rq, 4 * 2 + 2);
1910 *cs++ = MI_LOAD_REGISTER_IMM(4);
1911 for (i = 0; i < 4; i++) {
1912 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1916 intel_ring_advance(rq, cs);
1921 static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1923 struct drm_i915_gem_object *shadow_batch_obj;
1924 struct i915_vma *vma;
1927 shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
1928 PAGE_ALIGN(eb->batch_len));
1929 if (IS_ERR(shadow_batch_obj))
1930 return ERR_CAST(shadow_batch_obj);
1932 err = intel_engine_cmd_parser(eb->engine,
1935 eb->batch_start_offset,
1939 if (err == -EACCES) /* unhandled chained batch */
1946 vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1950 eb->vma[eb->buffer_count] = i915_vma_get(vma);
1951 eb->flags[eb->buffer_count] =
1952 __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
1953 vma->exec_flags = &eb->flags[eb->buffer_count];
1957 i915_gem_object_unpin_pages(shadow_batch_obj);
1962 add_to_client(struct i915_request *rq, struct drm_file *file)
1964 rq->file_priv = file->driver_priv;
1965 list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
1968 static int eb_submit(struct i915_execbuffer *eb)
1972 err = eb_move_to_gpu(eb);
1976 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1977 err = i915_reset_gen7_sol_offsets(eb->request);
1982 err = eb->engine->emit_bb_start(eb->request,
1983 eb->batch->node.start +
1984 eb->batch_start_offset,
1994 * Find one BSD ring to dispatch the corresponding BSD command.
1995 * The engine index is returned.
1998 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1999 struct drm_file *file)
2001 struct drm_i915_file_private *file_priv = file->driver_priv;
2003 /* Check whether the file_priv has already selected one ring. */
2004 if ((int)file_priv->bsd_engine < 0)
2005 file_priv->bsd_engine = atomic_fetch_xor(1,
2006 &dev_priv->mm.bsd_engine_dispatch_index);
2008 return file_priv->bsd_engine;
2011 #define I915_USER_RINGS (4)
2013 static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2014 [I915_EXEC_DEFAULT] = RCS,
2015 [I915_EXEC_RENDER] = RCS,
2016 [I915_EXEC_BLT] = BCS,
2017 [I915_EXEC_BSD] = VCS,
2018 [I915_EXEC_VEBOX] = VECS
2021 static struct intel_engine_cs *
2022 eb_select_engine(struct drm_i915_private *dev_priv,
2023 struct drm_file *file,
2024 struct drm_i915_gem_execbuffer2 *args)
2026 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2027 struct intel_engine_cs *engine;
2029 if (user_ring_id > I915_USER_RINGS) {
2030 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2034 if ((user_ring_id != I915_EXEC_BSD) &&
2035 ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
2036 DRM_DEBUG("execbuf with non bsd ring but with invalid "
2037 "bsd dispatch flags: %d\n", (int)(args->flags));
2041 if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
2042 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2044 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2045 bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2046 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2047 bsd_idx <= I915_EXEC_BSD_RING2) {
2048 bsd_idx >>= I915_EXEC_BSD_SHIFT;
2051 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2056 engine = dev_priv->engine[_VCS(bsd_idx)];
2058 engine = dev_priv->engine[user_ring_map[user_ring_id]];
2062 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2070 __free_fence_array(struct drm_syncobj **fences, unsigned int n)
2073 drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2077 static struct drm_syncobj **
2078 get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2079 struct drm_file *file)
2081 const unsigned long nfences = args->num_cliprects;
2082 struct drm_i915_gem_exec_fence __user *user;
2083 struct drm_syncobj **fences;
2087 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2090 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2091 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2092 if (nfences > min_t(unsigned long,
2093 ULONG_MAX / sizeof(*user),
2094 SIZE_MAX / sizeof(*fences)))
2095 return ERR_PTR(-EINVAL);
2097 user = u64_to_user_ptr(args->cliprects_ptr);
2098 if (!access_ok(VERIFY_READ, user, nfences * sizeof(*user)))
2099 return ERR_PTR(-EFAULT);
2101 fences = kvmalloc_array(nfences, sizeof(*fences),
2102 __GFP_NOWARN | GFP_KERNEL);
2104 return ERR_PTR(-ENOMEM);
2106 for (n = 0; n < nfences; n++) {
2107 struct drm_i915_gem_exec_fence fence;
2108 struct drm_syncobj *syncobj;
2110 if (__copy_from_user(&fence, user++, sizeof(fence))) {
2115 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2120 syncobj = drm_syncobj_find(file, fence.handle);
2122 DRM_DEBUG("Invalid syncobj handle provided\n");
2127 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2128 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2130 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2136 __free_fence_array(fences, n);
2137 return ERR_PTR(err);
2141 put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2142 struct drm_syncobj **fences)
2145 __free_fence_array(fences, args->num_cliprects);
2149 await_fence_array(struct i915_execbuffer *eb,
2150 struct drm_syncobj **fences)
2152 const unsigned int nfences = eb->args->num_cliprects;
2156 for (n = 0; n < nfences; n++) {
2157 struct drm_syncobj *syncobj;
2158 struct dma_fence *fence;
2161 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2162 if (!(flags & I915_EXEC_FENCE_WAIT))
2165 fence = drm_syncobj_fence_get(syncobj);
2169 err = i915_request_await_dma_fence(eb->request, fence);
2170 dma_fence_put(fence);
2179 signal_fence_array(struct i915_execbuffer *eb,
2180 struct drm_syncobj **fences)
2182 const unsigned int nfences = eb->args->num_cliprects;
2183 struct dma_fence * const fence = &eb->request->fence;
2186 for (n = 0; n < nfences; n++) {
2187 struct drm_syncobj *syncobj;
2190 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2191 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2194 drm_syncobj_replace_fence(syncobj, 0, fence);
2199 i915_gem_do_execbuffer(struct drm_device *dev,
2200 struct drm_file *file,
2201 struct drm_i915_gem_execbuffer2 *args,
2202 struct drm_i915_gem_exec_object2 *exec,
2203 struct drm_syncobj **fences)
2205 struct i915_execbuffer eb;
2206 struct dma_fence *in_fence = NULL;
2207 struct sync_file *out_fence = NULL;
2208 int out_fence_fd = -1;
2211 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2212 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2213 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2215 eb.i915 = to_i915(dev);
2218 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2219 args->flags |= __EXEC_HAS_RELOC;
2222 eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2224 eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2226 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2227 reloc_cache_init(&eb.reloc_cache, eb.i915);
2229 eb.buffer_count = args->buffer_count;
2230 eb.batch_start_offset = args->batch_start_offset;
2231 eb.batch_len = args->batch_len;
2234 if (args->flags & I915_EXEC_SECURE) {
2235 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2238 eb.batch_flags |= I915_DISPATCH_SECURE;
2240 if (args->flags & I915_EXEC_IS_PINNED)
2241 eb.batch_flags |= I915_DISPATCH_PINNED;
2243 eb.engine = eb_select_engine(eb.i915, file, args);
2247 if (args->flags & I915_EXEC_FENCE_IN) {
2248 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2253 if (args->flags & I915_EXEC_FENCE_OUT) {
2254 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2255 if (out_fence_fd < 0) {
2261 err = eb_create(&eb);
2265 GEM_BUG_ON(!eb.lut_size);
2267 err = eb_select_context(&eb);
2272 * Take a local wakeref for preparing to dispatch the execbuf as
2273 * we expect to access the hardware fairly frequently in the
2274 * process. Upon first dispatch, we acquire another prolonged
2275 * wakeref that we hold until the GPU has been idle for at least
2278 intel_runtime_pm_get(eb.i915);
2280 err = i915_mutex_lock_interruptible(dev);
2284 err = eb_relocate(&eb);
2287 * If the user expects the execobject.offset and
2288 * reloc.presumed_offset to be an exact match,
2289 * as for using NO_RELOC, then we cannot update
2290 * the execobject.offset until we have completed
2293 args->flags &= ~__EXEC_HAS_RELOC;
2297 if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2298 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2302 if (eb.batch_start_offset > eb.batch->size ||
2303 eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2304 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2309 if (eb_use_cmdparser(&eb)) {
2310 struct i915_vma *vma;
2312 vma = eb_parse(&eb, drm_is_current_master(file));
2320 * Batch parsed and accepted:
2322 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
2323 * bit from MI_BATCH_BUFFER_START commands issued in
2324 * the dispatch_execbuffer implementations. We
2325 * specifically don't want that set on batches the
2326 * command parser has accepted.
2328 eb.batch_flags |= I915_DISPATCH_SECURE;
2329 eb.batch_start_offset = 0;
2334 if (eb.batch_len == 0)
2335 eb.batch_len = eb.batch->size - eb.batch_start_offset;
2338 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2339 * batch" bit. Hence we need to pin secure batches into the global gtt.
2340 * hsw should have this fixed, but bdw mucks it up again. */
2341 if (eb.batch_flags & I915_DISPATCH_SECURE) {
2342 struct i915_vma *vma;
2345 * So on first glance it looks freaky that we pin the batch here
2346 * outside of the reservation loop. But:
2347 * - The batch is already pinned into the relevant ppgtt, so we
2348 * already have the backing storage fully allocated.
2349 * - No other BO uses the global gtt (well contexts, but meh),
2350 * so we don't really have issues with multiple objects not
2351 * fitting due to fragmentation.
2352 * So this is actually safe.
2354 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
2363 /* All GPU relocation batches must be submitted prior to the user rq */
2364 GEM_BUG_ON(eb.reloc_cache.rq);
2366 /* Allocate a request for this batch buffer nice and early. */
2367 eb.request = i915_request_alloc(eb.engine, eb.ctx);
2368 if (IS_ERR(eb.request)) {
2369 err = PTR_ERR(eb.request);
2370 goto err_batch_unpin;
2374 err = i915_request_await_dma_fence(eb.request, in_fence);
2380 err = await_fence_array(&eb, fences);
2385 if (out_fence_fd != -1) {
2386 out_fence = sync_file_create(&eb.request->fence);
2394 * Whilst this request exists, batch_obj will be on the
2395 * active_list, and so will hold the active reference. Only when this
2396 * request is retired will the the batch_obj be moved onto the
2397 * inactive_list and lose its active reference. Hence we do not need
2398 * to explicitly hold another reference here.
2400 eb.request->batch = eb.batch;
2402 trace_i915_request_queue(eb.request, eb.batch_flags);
2403 err = eb_submit(&eb);
2405 i915_request_add(eb.request);
2406 add_to_client(eb.request, file);
2409 signal_fence_array(&eb, fences);
2413 fd_install(out_fence_fd, out_fence->file);
2414 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2415 args->rsvd2 |= (u64)out_fence_fd << 32;
2418 fput(out_fence->file);
2423 if (eb.batch_flags & I915_DISPATCH_SECURE)
2424 i915_vma_unpin(eb.batch);
2427 eb_release_vmas(&eb);
2428 mutex_unlock(&dev->struct_mutex);
2430 intel_runtime_pm_put(eb.i915);
2431 i915_gem_context_put(eb.ctx);
2435 if (out_fence_fd != -1)
2436 put_unused_fd(out_fence_fd);
2438 dma_fence_put(in_fence);
2442 static size_t eb_element_size(void)
2444 return (sizeof(struct drm_i915_gem_exec_object2) +
2445 sizeof(struct i915_vma *) +
2446 sizeof(unsigned int));
2449 static bool check_buffer_count(size_t count)
2451 const size_t sz = eb_element_size();
2454 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2455 * array size (see eb_create()). Otherwise, we can accept an array as
2456 * large as can be addressed (though use large arrays at your peril)!
2459 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2463 * Legacy execbuffer just creates an exec2 list from the original exec object
2464 * list array and passes it to the real function.
2467 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2468 struct drm_file *file)
2470 struct drm_i915_gem_execbuffer *args = data;
2471 struct drm_i915_gem_execbuffer2 exec2;
2472 struct drm_i915_gem_exec_object *exec_list = NULL;
2473 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2474 const size_t count = args->buffer_count;
2478 if (!check_buffer_count(count)) {
2479 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2483 exec2.buffers_ptr = args->buffers_ptr;
2484 exec2.buffer_count = args->buffer_count;
2485 exec2.batch_start_offset = args->batch_start_offset;
2486 exec2.batch_len = args->batch_len;
2487 exec2.DR1 = args->DR1;
2488 exec2.DR4 = args->DR4;
2489 exec2.num_cliprects = args->num_cliprects;
2490 exec2.cliprects_ptr = args->cliprects_ptr;
2491 exec2.flags = I915_EXEC_RENDER;
2492 i915_execbuffer2_set_context_id(exec2, 0);
2494 if (!i915_gem_check_execbuffer(&exec2))
2497 /* Copy in the exec list from userland */
2498 exec_list = kvmalloc_array(count, sizeof(*exec_list),
2499 __GFP_NOWARN | GFP_KERNEL);
2500 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2501 __GFP_NOWARN | GFP_KERNEL);
2502 if (exec_list == NULL || exec2_list == NULL) {
2503 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2504 args->buffer_count);
2509 err = copy_from_user(exec_list,
2510 u64_to_user_ptr(args->buffers_ptr),
2511 sizeof(*exec_list) * count);
2513 DRM_DEBUG("copy %d exec entries failed %d\n",
2514 args->buffer_count, err);
2520 for (i = 0; i < args->buffer_count; i++) {
2521 exec2_list[i].handle = exec_list[i].handle;
2522 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2523 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2524 exec2_list[i].alignment = exec_list[i].alignment;
2525 exec2_list[i].offset = exec_list[i].offset;
2526 if (INTEL_GEN(to_i915(dev)) < 4)
2527 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2529 exec2_list[i].flags = 0;
2532 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2533 if (exec2.flags & __EXEC_HAS_RELOC) {
2534 struct drm_i915_gem_exec_object __user *user_exec_list =
2535 u64_to_user_ptr(args->buffers_ptr);
2537 /* Copy the new buffer offsets back to the user's exec list. */
2538 for (i = 0; i < args->buffer_count; i++) {
2539 if (!(exec2_list[i].offset & UPDATE))
2542 exec2_list[i].offset =
2543 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2544 exec2_list[i].offset &= PIN_OFFSET_MASK;
2545 if (__copy_to_user(&user_exec_list[i].offset,
2546 &exec2_list[i].offset,
2547 sizeof(user_exec_list[i].offset)))
2558 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2559 struct drm_file *file)
2561 struct drm_i915_gem_execbuffer2 *args = data;
2562 struct drm_i915_gem_exec_object2 *exec2_list;
2563 struct drm_syncobj **fences = NULL;
2564 const size_t count = args->buffer_count;
2567 if (!check_buffer_count(count)) {
2568 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2572 if (!i915_gem_check_execbuffer(args))
2575 /* Allocate an extra slot for use by the command parser */
2576 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2577 __GFP_NOWARN | GFP_KERNEL);
2578 if (exec2_list == NULL) {
2579 DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2583 if (copy_from_user(exec2_list,
2584 u64_to_user_ptr(args->buffers_ptr),
2585 sizeof(*exec2_list) * count)) {
2586 DRM_DEBUG("copy %zd exec entries failed\n", count);
2591 if (args->flags & I915_EXEC_FENCE_ARRAY) {
2592 fences = get_fence_array(args, file);
2593 if (IS_ERR(fences)) {
2595 return PTR_ERR(fences);
2599 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2602 * Now that we have begun execution of the batchbuffer, we ignore
2603 * any new error after this point. Also given that we have already
2604 * updated the associated relocations, we try to write out the current
2605 * object locations irrespective of any error.
2607 if (args->flags & __EXEC_HAS_RELOC) {
2608 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2609 u64_to_user_ptr(args->buffers_ptr);
2612 /* Copy the new buffer offsets back to the user's exec list. */
2613 user_access_begin();
2614 for (i = 0; i < args->buffer_count; i++) {
2615 if (!(exec2_list[i].offset & UPDATE))
2618 exec2_list[i].offset =
2619 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2620 unsafe_put_user(exec2_list[i].offset,
2621 &user_exec_list[i].offset,
2628 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2629 put_fence_array(args, fences);