4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 #include "i915_pvinfo.h"
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
44 #define gvt_vdbg_mm(fmt, args...)
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
51 * validate a gm address and related range size,
52 * translate it to host gm address
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
56 if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
57 && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
58 gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
65 /* translate a guest gmadr to host gmadr */
66 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
68 if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
69 "invalid guest gmadr %llx\n", g_addr))
72 if (vgpu_gmadr_is_aperture(vgpu, g_addr))
73 *h_addr = vgpu_aperture_gmadr_base(vgpu)
74 + (g_addr - vgpu_aperture_offset(vgpu));
76 *h_addr = vgpu_hidden_gmadr_base(vgpu)
77 + (g_addr - vgpu_hidden_offset(vgpu));
81 /* translate a host gmadr to guest gmadr */
82 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
84 if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
85 "invalid host gmadr %llx\n", h_addr))
88 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
89 *g_addr = vgpu_aperture_gmadr_base(vgpu)
90 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
92 *g_addr = vgpu_hidden_gmadr_base(vgpu)
93 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
97 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
98 unsigned long *h_index)
103 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
108 *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
112 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
113 unsigned long *g_index)
118 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
123 *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
127 #define gtt_type_is_entry(type) \
128 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
129 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
130 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
132 #define gtt_type_is_pt(type) \
133 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
135 #define gtt_type_is_pte_pt(type) \
136 (type == GTT_TYPE_PPGTT_PTE_PT)
138 #define gtt_type_is_root_pointer(type) \
139 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
141 #define gtt_init_entry(e, t, p, v) do { \
144 memcpy(&(e)->val64, &v, sizeof(v)); \
148 * Mappings between GTT_TYPE* enumerations.
149 * Following information can be found according to the given type:
150 * - type of next level page table
151 * - type of entry inside this level page table
152 * - type of entry with PSE set
154 * If the given type doesn't have such a kind of information,
155 * e.g. give a l4 root entry type, then request to get its PSE type,
156 * give a PTE page table type, then request to get its next level page
157 * table type, as we know l4 root entry doesn't have a PSE bit,
158 * and a PTE page table doesn't have a next level page table type,
159 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
163 struct gtt_type_table_entry {
170 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
172 .entry_type = e_type, \
173 .pt_type = cpt_type, \
174 .next_pt_type = npt_type, \
175 .pse_entry_type = pse_type, \
178 static struct gtt_type_table_entry gtt_type_table[] = {
179 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
180 GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
182 GTT_TYPE_PPGTT_PML4_PT,
184 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
185 GTT_TYPE_PPGTT_PML4_ENTRY,
186 GTT_TYPE_PPGTT_PML4_PT,
187 GTT_TYPE_PPGTT_PDP_PT,
189 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
190 GTT_TYPE_PPGTT_PML4_ENTRY,
191 GTT_TYPE_PPGTT_PML4_PT,
192 GTT_TYPE_PPGTT_PDP_PT,
194 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
195 GTT_TYPE_PPGTT_PDP_ENTRY,
196 GTT_TYPE_PPGTT_PDP_PT,
197 GTT_TYPE_PPGTT_PDE_PT,
198 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
199 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
200 GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
202 GTT_TYPE_PPGTT_PDE_PT,
203 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
204 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
205 GTT_TYPE_PPGTT_PDP_ENTRY,
206 GTT_TYPE_PPGTT_PDP_PT,
207 GTT_TYPE_PPGTT_PDE_PT,
208 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
210 GTT_TYPE_PPGTT_PDE_ENTRY,
211 GTT_TYPE_PPGTT_PDE_PT,
212 GTT_TYPE_PPGTT_PTE_PT,
213 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
214 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
215 GTT_TYPE_PPGTT_PDE_ENTRY,
216 GTT_TYPE_PPGTT_PDE_PT,
217 GTT_TYPE_PPGTT_PTE_PT,
218 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
219 /* We take IPS bit as 'PSE' for PTE level. */
220 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
221 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
222 GTT_TYPE_PPGTT_PTE_PT,
224 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
225 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
226 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
227 GTT_TYPE_PPGTT_PTE_PT,
229 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
230 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
231 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232 GTT_TYPE_PPGTT_PTE_PT,
234 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
236 GTT_TYPE_PPGTT_PDE_ENTRY,
237 GTT_TYPE_PPGTT_PDE_PT,
239 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
240 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
241 GTT_TYPE_PPGTT_PDP_ENTRY,
242 GTT_TYPE_PPGTT_PDP_PT,
244 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
245 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
252 static inline int get_next_pt_type(int type)
254 return gtt_type_table[type].next_pt_type;
257 static inline int get_pt_type(int type)
259 return gtt_type_table[type].pt_type;
262 static inline int get_entry_type(int type)
264 return gtt_type_table[type].entry_type;
267 static inline int get_pse_type(int type)
269 return gtt_type_table[type].pse_entry_type;
272 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
274 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
279 static void ggtt_invalidate(struct drm_i915_private *dev_priv)
281 mmio_hw_access_pre(dev_priv);
282 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
283 mmio_hw_access_post(dev_priv);
286 static void write_pte64(struct drm_i915_private *dev_priv,
287 unsigned long index, u64 pte)
289 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
294 static inline int gtt_get_entry64(void *pt,
295 struct intel_gvt_gtt_entry *e,
296 unsigned long index, bool hypervisor_access, unsigned long gpa,
297 struct intel_vgpu *vgpu)
299 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
302 if (WARN_ON(info->gtt_entry_size != 8))
305 if (hypervisor_access) {
306 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
307 (index << info->gtt_entry_size_shift),
312 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
314 e->val64 = *((u64 *)pt + index);
319 static inline int gtt_set_entry64(void *pt,
320 struct intel_gvt_gtt_entry *e,
321 unsigned long index, bool hypervisor_access, unsigned long gpa,
322 struct intel_vgpu *vgpu)
324 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
327 if (WARN_ON(info->gtt_entry_size != 8))
330 if (hypervisor_access) {
331 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
332 (index << info->gtt_entry_size_shift),
337 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
339 *((u64 *)pt + index) = e->val64;
346 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30)
347 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21)
348 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16)
349 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12)
351 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
352 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
354 #define GTT_64K_PTE_STRIDE 16
356 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
360 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
361 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
362 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
363 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
364 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
365 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
367 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
371 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
373 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
374 e->val64 &= ~ADDR_1G_MASK;
375 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
376 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
377 e->val64 &= ~ADDR_2M_MASK;
378 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
379 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
380 e->val64 &= ~ADDR_64K_MASK;
381 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
383 e->val64 &= ~ADDR_4K_MASK;
384 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
387 e->val64 |= (pfn << PAGE_SHIFT);
390 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
392 return !!(e->val64 & _PAGE_PSE);
395 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
397 if (gen8_gtt_test_pse(e)) {
399 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
400 e->val64 &= ~_PAGE_PSE;
401 e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
403 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
404 e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
405 e->val64 &= ~_PAGE_PSE;
413 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
415 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
418 return !!(e->val64 & GEN8_PDE_IPS_64K);
421 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
423 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
426 e->val64 &= ~GEN8_PDE_IPS_64K;
429 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
432 * i915 writes PDP root pointer registers without present bit,
433 * it also works, so we need to treat root pointer entry
436 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
437 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
438 return (e->val64 != 0);
440 return (e->val64 & _PAGE_PRESENT);
443 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
445 e->val64 &= ~_PAGE_PRESENT;
448 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
450 e->val64 |= _PAGE_PRESENT;
453 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
455 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
458 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
460 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
463 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
465 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
469 * Per-platform GMA routines.
471 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
473 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
475 trace_gma_index(__func__, gma, x);
479 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
480 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
482 unsigned long x = (exp); \
483 trace_gma_index(__func__, gma, x); \
487 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
488 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
489 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
490 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
491 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
493 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
494 .get_entry = gtt_get_entry64,
495 .set_entry = gtt_set_entry64,
496 .clear_present = gtt_entry_clear_present,
497 .set_present = gtt_entry_set_present,
498 .test_present = gen8_gtt_test_present,
499 .test_pse = gen8_gtt_test_pse,
500 .clear_pse = gen8_gtt_clear_pse,
501 .clear_ips = gen8_gtt_clear_ips,
502 .test_ips = gen8_gtt_test_ips,
503 .clear_64k_splited = gen8_gtt_clear_64k_splited,
504 .set_64k_splited = gen8_gtt_set_64k_splited,
505 .test_64k_splited = gen8_gtt_test_64k_splited,
506 .get_pfn = gen8_gtt_get_pfn,
507 .set_pfn = gen8_gtt_set_pfn,
510 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
511 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
512 .gma_to_pte_index = gen8_gma_to_pte_index,
513 .gma_to_pde_index = gen8_gma_to_pde_index,
514 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
515 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
516 .gma_to_pml4_index = gen8_gma_to_pml4_index,
519 /* Update entry type per pse and ips bit. */
520 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
521 struct intel_gvt_gtt_entry *entry, bool ips)
523 switch (entry->type) {
524 case GTT_TYPE_PPGTT_PDE_ENTRY:
525 case GTT_TYPE_PPGTT_PDP_ENTRY:
526 if (pte_ops->test_pse(entry))
527 entry->type = get_pse_type(entry->type);
529 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
531 entry->type = get_pse_type(entry->type);
534 GEM_BUG_ON(!gtt_type_is_entry(entry->type));
537 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
543 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
544 struct intel_gvt_gtt_entry *entry, unsigned long index,
547 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
549 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
551 entry->type = mm->ppgtt_mm.root_entry_type;
552 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
553 mm->ppgtt_mm.shadow_pdps,
554 entry, index, false, 0, mm->vgpu);
555 update_entry_type_for_real(pte_ops, entry, false);
558 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
559 struct intel_gvt_gtt_entry *entry, unsigned long index)
561 _ppgtt_get_root_entry(mm, entry, index, true);
564 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
565 struct intel_gvt_gtt_entry *entry, unsigned long index)
567 _ppgtt_get_root_entry(mm, entry, index, false);
570 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
571 struct intel_gvt_gtt_entry *entry, unsigned long index,
574 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
576 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
577 mm->ppgtt_mm.shadow_pdps,
578 entry, index, false, 0, mm->vgpu);
581 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
582 struct intel_gvt_gtt_entry *entry, unsigned long index)
584 _ppgtt_set_root_entry(mm, entry, index, true);
587 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
588 struct intel_gvt_gtt_entry *entry, unsigned long index)
590 _ppgtt_set_root_entry(mm, entry, index, false);
593 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
594 struct intel_gvt_gtt_entry *entry, unsigned long index)
596 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
598 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
600 entry->type = GTT_TYPE_GGTT_PTE;
601 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
605 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
606 struct intel_gvt_gtt_entry *entry, unsigned long index)
608 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
610 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
612 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
616 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
617 struct intel_gvt_gtt_entry *entry, unsigned long index)
619 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
621 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
623 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
626 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
627 struct intel_gvt_gtt_entry *entry, unsigned long index)
629 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
631 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
633 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
637 * PPGTT shadow page table helpers.
639 static inline int ppgtt_spt_get_entry(
640 struct intel_vgpu_ppgtt_spt *spt,
641 void *page_table, int type,
642 struct intel_gvt_gtt_entry *e, unsigned long index,
645 struct intel_gvt *gvt = spt->vgpu->gvt;
646 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
649 e->type = get_entry_type(type);
651 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
654 ret = ops->get_entry(page_table, e, index, guest,
655 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
660 update_entry_type_for_real(ops, e, guest ?
661 spt->guest_page.pde_ips : false);
663 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
664 type, e->type, index, e->val64);
668 static inline int ppgtt_spt_set_entry(
669 struct intel_vgpu_ppgtt_spt *spt,
670 void *page_table, int type,
671 struct intel_gvt_gtt_entry *e, unsigned long index,
674 struct intel_gvt *gvt = spt->vgpu->gvt;
675 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
677 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
680 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
681 type, e->type, index, e->val64);
683 return ops->set_entry(page_table, e, index, guest,
684 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
688 #define ppgtt_get_guest_entry(spt, e, index) \
689 ppgtt_spt_get_entry(spt, NULL, \
690 spt->guest_page.type, e, index, true)
692 #define ppgtt_set_guest_entry(spt, e, index) \
693 ppgtt_spt_set_entry(spt, NULL, \
694 spt->guest_page.type, e, index, true)
696 #define ppgtt_get_shadow_entry(spt, e, index) \
697 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
698 spt->shadow_page.type, e, index, false)
700 #define ppgtt_set_shadow_entry(spt, e, index) \
701 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
702 spt->shadow_page.type, e, index, false)
704 static void *alloc_spt(gfp_t gfp_mask)
706 struct intel_vgpu_ppgtt_spt *spt;
708 spt = kzalloc(sizeof(*spt), gfp_mask);
712 spt->shadow_page.page = alloc_page(gfp_mask);
713 if (!spt->shadow_page.page) {
720 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
722 __free_page(spt->shadow_page.page);
726 static int detach_oos_page(struct intel_vgpu *vgpu,
727 struct intel_vgpu_oos_page *oos_page);
729 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
731 struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
733 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
735 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
736 PCI_DMA_BIDIRECTIONAL);
738 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
740 if (spt->guest_page.gfn) {
741 if (spt->guest_page.oos_page)
742 detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
744 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
747 list_del_init(&spt->post_shadow_list);
751 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
753 struct intel_vgpu_ppgtt_spt *spt;
754 struct radix_tree_iter iter;
757 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
758 spt = radix_tree_deref_slot(slot);
763 static int ppgtt_handle_guest_write_page_table_bytes(
764 struct intel_vgpu_ppgtt_spt *spt,
765 u64 pa, void *p_data, int bytes);
767 static int ppgtt_write_protection_handler(
768 struct intel_vgpu_page_track *page_track,
769 u64 gpa, void *data, int bytes)
771 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
775 if (bytes != 4 && bytes != 8)
778 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
784 /* Find a spt by guest gfn. */
785 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
786 struct intel_vgpu *vgpu, unsigned long gfn)
788 struct intel_vgpu_page_track *track;
790 track = intel_vgpu_find_page_track(vgpu, gfn);
791 if (track && track->handler == ppgtt_write_protection_handler)
792 return track->priv_data;
797 /* Find the spt by shadow page mfn. */
798 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
799 struct intel_vgpu *vgpu, unsigned long mfn)
801 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
804 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
806 /* Allocate shadow page table without guest page. */
807 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
808 struct intel_vgpu *vgpu, intel_gvt_gtt_type_t type)
810 struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
811 struct intel_vgpu_ppgtt_spt *spt = NULL;
816 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
818 if (reclaim_one_ppgtt_mm(vgpu->gvt))
821 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
822 return ERR_PTR(-ENOMEM);
826 atomic_set(&spt->refcount, 1);
827 INIT_LIST_HEAD(&spt->post_shadow_list);
832 spt->shadow_page.type = type;
833 daddr = dma_map_page(kdev, spt->shadow_page.page,
834 0, 4096, PCI_DMA_BIDIRECTIONAL);
835 if (dma_mapping_error(kdev, daddr)) {
836 gvt_vgpu_err("fail to map dma addr\n");
840 spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
841 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
843 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
850 dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
856 /* Allocate shadow page table associated with specific gfn. */
857 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
858 struct intel_vgpu *vgpu, intel_gvt_gtt_type_t type,
859 unsigned long gfn, bool guest_pde_ips)
861 struct intel_vgpu_ppgtt_spt *spt;
864 spt = ppgtt_alloc_spt(vgpu, type);
871 ret = intel_vgpu_register_page_track(vgpu, gfn,
872 ppgtt_write_protection_handler, spt);
878 spt->guest_page.type = type;
879 spt->guest_page.gfn = gfn;
880 spt->guest_page.pde_ips = guest_pde_ips;
882 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
887 #define pt_entry_size_shift(spt) \
888 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
890 #define pt_entries(spt) \
891 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
893 #define for_each_present_guest_entry(spt, e, i) \
894 for (i = 0; i < pt_entries(spt); \
895 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
896 if (!ppgtt_get_guest_entry(spt, e, i) && \
897 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
899 #define for_each_present_shadow_entry(spt, e, i) \
900 for (i = 0; i < pt_entries(spt); \
901 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
902 if (!ppgtt_get_shadow_entry(spt, e, i) && \
903 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
905 #define for_each_shadow_entry(spt, e, i) \
906 for (i = 0; i < pt_entries(spt); \
907 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
908 if (!ppgtt_get_shadow_entry(spt, e, i))
910 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
912 int v = atomic_read(&spt->refcount);
914 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
915 atomic_inc(&spt->refcount);
918 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
920 int v = atomic_read(&spt->refcount);
922 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
923 return atomic_dec_return(&spt->refcount);
926 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
928 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
929 struct intel_gvt_gtt_entry *e)
931 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
932 struct intel_vgpu_ppgtt_spt *s;
933 intel_gvt_gtt_type_t cur_pt_type;
935 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
937 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
938 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
939 cur_pt_type = get_next_pt_type(e->type) + 1;
940 if (ops->get_pfn(e) ==
941 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
944 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
946 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
950 return ppgtt_invalidate_spt(s);
953 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
954 struct intel_gvt_gtt_entry *entry)
956 struct intel_vgpu *vgpu = spt->vgpu;
957 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
961 pfn = ops->get_pfn(entry);
962 type = spt->shadow_page.type;
964 /* Uninitialized spte or unshadowed spte. */
965 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
968 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
971 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
973 struct intel_vgpu *vgpu = spt->vgpu;
974 struct intel_gvt_gtt_entry e;
978 trace_spt_change(spt->vgpu->id, "die", spt,
979 spt->guest_page.gfn, spt->shadow_page.type);
981 if (ppgtt_put_spt(spt) > 0)
984 for_each_present_shadow_entry(spt, &e, index) {
986 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
987 gvt_vdbg_mm("invalidate 4K entry\n");
988 ppgtt_invalidate_pte(spt, &e);
990 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
991 /* We don't setup 64K shadow entry so far. */
992 WARN(1, "suspicious 64K gtt entry\n");
994 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
995 gvt_vdbg_mm("invalidate 2M entry\n");
997 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
998 WARN(1, "GVT doesn't support 1GB page\n");
1000 case GTT_TYPE_PPGTT_PML4_ENTRY:
1001 case GTT_TYPE_PPGTT_PDP_ENTRY:
1002 case GTT_TYPE_PPGTT_PDE_ENTRY:
1003 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1004 ret = ppgtt_invalidate_spt_by_shadow_entry(
1014 trace_spt_change(spt->vgpu->id, "release", spt,
1015 spt->guest_page.gfn, spt->shadow_page.type);
1016 ppgtt_free_spt(spt);
1019 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1020 spt, e.val64, e.type);
1024 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1026 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1028 if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1029 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1030 GAMW_ECO_ENABLE_64K_IPS_FIELD;
1032 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1033 } else if (INTEL_GEN(dev_priv) >= 11) {
1034 /* 64K paging only controlled by IPS bit in PTE now. */
1040 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1042 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1043 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1045 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1046 struct intel_vgpu_ppgtt_spt *spt = NULL;
1050 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1052 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1053 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1055 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1059 if (ips != spt->guest_page.pde_ips) {
1060 spt->guest_page.pde_ips = ips;
1062 gvt_dbg_mm("reshadow PDE since ips changed\n");
1063 clear_page(spt->shadow_page.vaddr);
1064 ret = ppgtt_populate_spt(spt);
1071 int type = get_next_pt_type(we->type);
1073 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1079 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1083 ret = ppgtt_populate_spt(spt);
1087 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1088 spt->shadow_page.type);
1093 ppgtt_free_spt(spt);
1095 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1096 spt, we->val64, we->type);
1097 return ERR_PTR(ret);
1100 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1101 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1103 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1105 se->type = ge->type;
1106 se->val64 = ge->val64;
1108 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1109 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1112 ops->set_pfn(se, s->shadow_page.mfn);
1116 * Check if can do 2M page
1117 * @vgpu: target vgpu
1118 * @entry: target pfn's gtt entry
1120 * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1121 * negtive if found err.
1123 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1124 struct intel_gvt_gtt_entry *entry)
1126 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1129 if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M))
1132 pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1133 if (pfn == INTEL_GVT_INVALID_ADDR)
1136 return PageTransHuge(pfn_to_page(pfn));
1139 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1140 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1141 struct intel_gvt_gtt_entry *se)
1143 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1144 struct intel_vgpu_ppgtt_spt *sub_spt;
1145 struct intel_gvt_gtt_entry sub_se;
1146 unsigned long start_gfn;
1147 dma_addr_t dma_addr;
1148 unsigned long sub_index;
1151 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1153 start_gfn = ops->get_pfn(se);
1155 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1156 if (IS_ERR(sub_spt))
1157 return PTR_ERR(sub_spt);
1159 for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1160 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1161 start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1163 ppgtt_invalidate_spt(spt);
1166 sub_se.val64 = se->val64;
1168 /* Copy the PAT field from PDE. */
1169 sub_se.val64 &= ~_PAGE_PAT;
1170 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1172 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1173 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1176 /* Clear dirty field. */
1177 se->val64 &= ~_PAGE_DIRTY;
1181 ops->set_pfn(se, sub_spt->shadow_page.mfn);
1182 ppgtt_set_shadow_entry(spt, se, index);
1186 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1187 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1188 struct intel_gvt_gtt_entry *se)
1190 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1191 struct intel_gvt_gtt_entry entry = *se;
1192 unsigned long start_gfn;
1193 dma_addr_t dma_addr;
1196 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1198 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1200 start_gfn = ops->get_pfn(se);
1202 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1203 ops->set_64k_splited(&entry);
1205 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1206 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1207 start_gfn + i, PAGE_SIZE, &dma_addr);
1211 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1212 ppgtt_set_shadow_entry(spt, &entry, index + i);
1217 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1218 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1219 struct intel_gvt_gtt_entry *ge)
1221 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1222 struct intel_gvt_gtt_entry se = *ge;
1223 unsigned long gfn, page_size = PAGE_SIZE;
1224 dma_addr_t dma_addr;
1227 if (!pte_ops->test_present(ge))
1230 gfn = pte_ops->get_pfn(ge);
1233 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1234 gvt_vdbg_mm("shadow 4K gtt entry\n");
1236 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1237 gvt_vdbg_mm("shadow 64K gtt entry\n");
1239 * The layout of 64K page is special, the page size is
1240 * controlled by uper PDE. To be simple, we always split
1241 * 64K page to smaller 4K pages in shadow PT.
1243 return split_64KB_gtt_entry(vgpu, spt, index, &se);
1244 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1245 gvt_vdbg_mm("shadow 2M gtt entry\n");
1246 ret = is_2MB_gtt_possible(vgpu, ge);
1248 return split_2MB_gtt_entry(vgpu, spt, index, &se);
1251 page_size = I915_GTT_PAGE_SIZE_2M;
1253 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1254 gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1261 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1266 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1267 ppgtt_set_shadow_entry(spt, &se, index);
1271 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1273 struct intel_vgpu *vgpu = spt->vgpu;
1274 struct intel_gvt *gvt = vgpu->gvt;
1275 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1276 struct intel_vgpu_ppgtt_spt *s;
1277 struct intel_gvt_gtt_entry se, ge;
1278 unsigned long gfn, i;
1281 trace_spt_change(spt->vgpu->id, "born", spt,
1282 spt->guest_page.gfn, spt->shadow_page.type);
1284 for_each_present_guest_entry(spt, &ge, i) {
1285 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1286 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1291 ppgtt_get_shadow_entry(spt, &se, i);
1292 ppgtt_generate_shadow_entry(&se, s, &ge);
1293 ppgtt_set_shadow_entry(spt, &se, i);
1295 gfn = ops->get_pfn(&ge);
1296 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1297 ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1298 ppgtt_set_shadow_entry(spt, &se, i);
1302 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1309 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1310 spt, ge.val64, ge.type);
1314 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1315 struct intel_gvt_gtt_entry *se, unsigned long index)
1317 struct intel_vgpu *vgpu = spt->vgpu;
1318 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1321 trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1322 spt->shadow_page.type, se->val64, index);
1324 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1325 se->type, index, se->val64);
1327 if (!ops->test_present(se))
1330 if (ops->get_pfn(se) ==
1331 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1334 if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1335 struct intel_vgpu_ppgtt_spt *s =
1336 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1338 gvt_vgpu_err("fail to find guest page\n");
1342 ret = ppgtt_invalidate_spt(s);
1346 /* We don't setup 64K shadow entry so far. */
1347 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1348 "suspicious 64K entry\n");
1349 ppgtt_invalidate_pte(spt, se);
1354 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1355 spt, se->val64, se->type);
1359 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1360 struct intel_gvt_gtt_entry *we, unsigned long index)
1362 struct intel_vgpu *vgpu = spt->vgpu;
1363 struct intel_gvt_gtt_entry m;
1364 struct intel_vgpu_ppgtt_spt *s;
1367 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1370 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1371 we->type, index, we->val64);
1373 if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1374 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1379 ppgtt_get_shadow_entry(spt, &m, index);
1380 ppgtt_generate_shadow_entry(&m, s, we);
1381 ppgtt_set_shadow_entry(spt, &m, index);
1383 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1389 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1390 spt, we->val64, we->type);
1394 static int sync_oos_page(struct intel_vgpu *vgpu,
1395 struct intel_vgpu_oos_page *oos_page)
1397 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1398 struct intel_gvt *gvt = vgpu->gvt;
1399 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1400 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1401 struct intel_gvt_gtt_entry old, new;
1405 trace_oos_change(vgpu->id, "sync", oos_page->id,
1406 spt, spt->guest_page.type);
1408 old.type = new.type = get_entry_type(spt->guest_page.type);
1409 old.val64 = new.val64 = 0;
1411 for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1412 info->gtt_entry_size_shift); index++) {
1413 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1414 ops->get_entry(NULL, &new, index, true,
1415 spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1417 if (old.val64 == new.val64
1418 && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1421 trace_oos_sync(vgpu->id, oos_page->id,
1422 spt, spt->guest_page.type,
1425 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1429 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1432 spt->guest_page.write_cnt = 0;
1433 list_del_init(&spt->post_shadow_list);
1437 static int detach_oos_page(struct intel_vgpu *vgpu,
1438 struct intel_vgpu_oos_page *oos_page)
1440 struct intel_gvt *gvt = vgpu->gvt;
1441 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1443 trace_oos_change(vgpu->id, "detach", oos_page->id,
1444 spt, spt->guest_page.type);
1446 spt->guest_page.write_cnt = 0;
1447 spt->guest_page.oos_page = NULL;
1448 oos_page->spt = NULL;
1450 list_del_init(&oos_page->vm_list);
1451 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1456 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1457 struct intel_vgpu_ppgtt_spt *spt)
1459 struct intel_gvt *gvt = spt->vgpu->gvt;
1462 ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1463 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1464 oos_page->mem, I915_GTT_PAGE_SIZE);
1468 oos_page->spt = spt;
1469 spt->guest_page.oos_page = oos_page;
1471 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1473 trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1474 spt, spt->guest_page.type);
1478 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1480 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1483 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1487 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1488 spt, spt->guest_page.type);
1490 list_del_init(&oos_page->vm_list);
1491 return sync_oos_page(spt->vgpu, oos_page);
1494 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1496 struct intel_gvt *gvt = spt->vgpu->gvt;
1497 struct intel_gvt_gtt *gtt = &gvt->gtt;
1498 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1501 WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1503 if (list_empty(>t->oos_page_free_list_head)) {
1504 oos_page = container_of(gtt->oos_page_use_list_head.next,
1505 struct intel_vgpu_oos_page, list);
1506 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1509 ret = detach_oos_page(spt->vgpu, oos_page);
1513 oos_page = container_of(gtt->oos_page_free_list_head.next,
1514 struct intel_vgpu_oos_page, list);
1515 return attach_oos_page(oos_page, spt);
1518 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1520 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1522 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1525 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1526 spt, spt->guest_page.type);
1528 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1529 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1533 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1536 * This function is called before submitting a guest workload to host,
1537 * to sync all the out-of-synced shadow for vGPU
1540 * Zero on success, negative error code if failed.
1542 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1544 struct list_head *pos, *n;
1545 struct intel_vgpu_oos_page *oos_page;
1548 if (!enable_out_of_sync)
1551 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1552 oos_page = container_of(pos,
1553 struct intel_vgpu_oos_page, vm_list);
1554 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1562 * The heart of PPGTT shadow page table.
1564 static int ppgtt_handle_guest_write_page_table(
1565 struct intel_vgpu_ppgtt_spt *spt,
1566 struct intel_gvt_gtt_entry *we, unsigned long index)
1568 struct intel_vgpu *vgpu = spt->vgpu;
1569 int type = spt->shadow_page.type;
1570 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1571 struct intel_gvt_gtt_entry old_se;
1575 new_present = ops->test_present(we);
1578 * Adding the new entry first and then removing the old one, that can
1579 * guarantee the ppgtt table is validated during the window between
1580 * adding and removal.
1582 ppgtt_get_shadow_entry(spt, &old_se, index);
1585 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1590 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1595 /* For 64KB splited entries, we need clear them all. */
1596 if (ops->test_64k_splited(&old_se) &&
1597 !(index % GTT_64K_PTE_STRIDE)) {
1598 gvt_vdbg_mm("remove splited 64K shadow entries\n");
1599 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1600 ops->clear_64k_splited(&old_se);
1601 ops->set_pfn(&old_se,
1602 vgpu->gtt.scratch_pt[type].page_mfn);
1603 ppgtt_set_shadow_entry(spt, &old_se, index + i);
1605 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1606 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1607 ops->clear_pse(&old_se);
1608 ops->set_pfn(&old_se,
1609 vgpu->gtt.scratch_pt[type].page_mfn);
1610 ppgtt_set_shadow_entry(spt, &old_se, index);
1612 ops->set_pfn(&old_se,
1613 vgpu->gtt.scratch_pt[type].page_mfn);
1614 ppgtt_set_shadow_entry(spt, &old_se, index);
1620 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1621 spt, we->val64, we->type);
1627 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1629 return enable_out_of_sync
1630 && gtt_type_is_pte_pt(spt->guest_page.type)
1631 && spt->guest_page.write_cnt >= 2;
1634 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1635 unsigned long index)
1637 set_bit(index, spt->post_shadow_bitmap);
1638 if (!list_empty(&spt->post_shadow_list))
1641 list_add_tail(&spt->post_shadow_list,
1642 &spt->vgpu->gtt.post_shadow_list_head);
1646 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1649 * This function is called before submitting a guest workload to host,
1650 * to flush all the post shadows for a vGPU.
1653 * Zero on success, negative error code if failed.
1655 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1657 struct list_head *pos, *n;
1658 struct intel_vgpu_ppgtt_spt *spt;
1659 struct intel_gvt_gtt_entry ge;
1660 unsigned long index;
1663 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1664 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1667 for_each_set_bit(index, spt->post_shadow_bitmap,
1668 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1669 ppgtt_get_guest_entry(spt, &ge, index);
1671 ret = ppgtt_handle_guest_write_page_table(spt,
1675 clear_bit(index, spt->post_shadow_bitmap);
1677 list_del_init(&spt->post_shadow_list);
1682 static int ppgtt_handle_guest_write_page_table_bytes(
1683 struct intel_vgpu_ppgtt_spt *spt,
1684 u64 pa, void *p_data, int bytes)
1686 struct intel_vgpu *vgpu = spt->vgpu;
1687 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1688 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1689 struct intel_gvt_gtt_entry we, se;
1690 unsigned long index;
1693 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1695 ppgtt_get_guest_entry(spt, &we, index);
1698 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1699 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1702 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1703 (index % GTT_64K_PTE_STRIDE)) {
1704 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1709 if (bytes == info->gtt_entry_size) {
1710 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1714 if (!test_bit(index, spt->post_shadow_bitmap)) {
1715 int type = spt->shadow_page.type;
1717 ppgtt_get_shadow_entry(spt, &se, index);
1718 ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1721 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1722 ppgtt_set_shadow_entry(spt, &se, index);
1724 ppgtt_set_post_shadow(spt, index);
1727 if (!enable_out_of_sync)
1730 spt->guest_page.write_cnt++;
1732 if (spt->guest_page.oos_page)
1733 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1736 if (can_do_out_of_sync(spt)) {
1737 if (!spt->guest_page.oos_page)
1738 ppgtt_allocate_oos_page(spt);
1740 ret = ppgtt_set_guest_page_oos(spt);
1747 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1749 struct intel_vgpu *vgpu = mm->vgpu;
1750 struct intel_gvt *gvt = vgpu->gvt;
1751 struct intel_gvt_gtt *gtt = &gvt->gtt;
1752 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1753 struct intel_gvt_gtt_entry se;
1756 if (!mm->ppgtt_mm.shadowed)
1759 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1760 ppgtt_get_shadow_root_entry(mm, &se, index);
1762 if (!ops->test_present(&se))
1765 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1767 ppgtt_set_shadow_root_entry(mm, &se, index);
1769 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1770 NULL, se.type, se.val64, index);
1773 mm->ppgtt_mm.shadowed = false;
1777 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1779 struct intel_vgpu *vgpu = mm->vgpu;
1780 struct intel_gvt *gvt = vgpu->gvt;
1781 struct intel_gvt_gtt *gtt = &gvt->gtt;
1782 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1783 struct intel_vgpu_ppgtt_spt *spt;
1784 struct intel_gvt_gtt_entry ge, se;
1787 if (mm->ppgtt_mm.shadowed)
1790 mm->ppgtt_mm.shadowed = true;
1792 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1793 ppgtt_get_guest_root_entry(mm, &ge, index);
1795 if (!ops->test_present(&ge))
1798 trace_spt_guest_change(vgpu->id, __func__, NULL,
1799 ge.type, ge.val64, index);
1801 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1803 gvt_vgpu_err("fail to populate guest root pointer\n");
1807 ppgtt_generate_shadow_entry(&se, spt, &ge);
1808 ppgtt_set_shadow_root_entry(mm, &se, index);
1810 trace_spt_guest_change(vgpu->id, "populate root pointer",
1811 NULL, se.type, se.val64, index);
1816 invalidate_ppgtt_mm(mm);
1820 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1822 struct intel_vgpu_mm *mm;
1824 mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1829 kref_init(&mm->ref);
1830 atomic_set(&mm->pincount, 0);
1835 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1841 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1843 * @root_entry_type: ppgtt root entry type
1844 * @pdps: guest pdps.
1846 * This function is used to create a ppgtt mm object for a vGPU.
1849 * Zero on success, negative error code in pointer if failed.
1851 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1852 intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
1854 struct intel_gvt *gvt = vgpu->gvt;
1855 struct intel_vgpu_mm *mm;
1858 mm = vgpu_alloc_mm(vgpu);
1860 return ERR_PTR(-ENOMEM);
1862 mm->type = INTEL_GVT_MM_PPGTT;
1864 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1865 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1866 mm->ppgtt_mm.root_entry_type = root_entry_type;
1868 INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1869 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1871 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1872 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1874 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1875 sizeof(mm->ppgtt_mm.guest_pdps));
1877 ret = shadow_ppgtt_mm(mm);
1879 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1881 return ERR_PTR(ret);
1884 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1885 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1889 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1891 struct intel_vgpu_mm *mm;
1892 unsigned long nr_entries;
1894 mm = vgpu_alloc_mm(vgpu);
1896 return ERR_PTR(-ENOMEM);
1898 mm->type = INTEL_GVT_MM_GGTT;
1900 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1901 mm->ggtt_mm.virtual_ggtt =
1902 vzalloc(array_size(nr_entries,
1903 vgpu->gvt->device_info.gtt_entry_size));
1904 if (!mm->ggtt_mm.virtual_ggtt) {
1906 return ERR_PTR(-ENOMEM);
1913 * _intel_vgpu_mm_release - destroy a mm object
1914 * @mm_ref: a kref object
1916 * This function is used to destroy a mm object for vGPU
1919 void _intel_vgpu_mm_release(struct kref *mm_ref)
1921 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1923 if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1924 gvt_err("vgpu mm pin count bug detected\n");
1926 if (mm->type == INTEL_GVT_MM_PPGTT) {
1927 list_del(&mm->ppgtt_mm.list);
1928 list_del(&mm->ppgtt_mm.lru_list);
1929 invalidate_ppgtt_mm(mm);
1931 vfree(mm->ggtt_mm.virtual_ggtt);
1938 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1939 * @mm: a vGPU mm object
1941 * This function is called when user doesn't want to use a vGPU mm object
1943 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1945 atomic_dec(&mm->pincount);
1949 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1950 * @mm: target vgpu mm
1952 * This function is called when user wants to use a vGPU mm object. If this
1953 * mm object hasn't been shadowed yet, the shadow will be populated at this
1957 * Zero on success, negative error code if failed.
1959 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1963 atomic_inc(&mm->pincount);
1965 if (mm->type == INTEL_GVT_MM_PPGTT) {
1966 ret = shadow_ppgtt_mm(mm);
1970 list_move_tail(&mm->ppgtt_mm.lru_list,
1971 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
1978 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
1980 struct intel_vgpu_mm *mm;
1981 struct list_head *pos, *n;
1983 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
1984 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
1986 if (atomic_read(&mm->pincount))
1989 list_del_init(&mm->ppgtt_mm.lru_list);
1990 invalidate_ppgtt_mm(mm);
1997 * GMA translation APIs.
1999 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2000 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2002 struct intel_vgpu *vgpu = mm->vgpu;
2003 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2004 struct intel_vgpu_ppgtt_spt *s;
2006 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2011 ppgtt_get_shadow_entry(s, e, index);
2013 ppgtt_get_guest_entry(s, e, index);
2018 * intel_vgpu_gma_to_gpa - translate a gma to GPA
2019 * @mm: mm object. could be a PPGTT or GGTT mm object
2020 * @gma: graphics memory address in this mm object
2022 * This function is used to translate a graphics memory address in specific
2023 * graphics memory space to guest physical address.
2026 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2028 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2030 struct intel_vgpu *vgpu = mm->vgpu;
2031 struct intel_gvt *gvt = vgpu->gvt;
2032 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2033 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2034 unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2035 unsigned long gma_index[4];
2036 struct intel_gvt_gtt_entry e;
2040 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2041 mm->type != INTEL_GVT_MM_PPGTT);
2043 if (mm->type == INTEL_GVT_MM_GGTT) {
2044 if (!vgpu_gmadr_is_valid(vgpu, gma))
2047 ggtt_get_guest_entry(mm, &e,
2048 gma_ops->gma_to_ggtt_pte_index(gma));
2050 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2051 + (gma & ~I915_GTT_PAGE_MASK);
2053 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2055 switch (mm->ppgtt_mm.root_entry_type) {
2056 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2057 ppgtt_get_shadow_root_entry(mm, &e, 0);
2059 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2060 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2061 gma_index[2] = gma_ops->gma_to_pde_index(gma);
2062 gma_index[3] = gma_ops->gma_to_pte_index(gma);
2065 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2066 ppgtt_get_shadow_root_entry(mm, &e,
2067 gma_ops->gma_to_l3_pdp_index(gma));
2069 gma_index[0] = gma_ops->gma_to_pde_index(gma);
2070 gma_index[1] = gma_ops->gma_to_pte_index(gma);
2077 /* walk the shadow page table and get gpa from guest entry */
2078 for (i = 0; i < levels; i++) {
2079 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2084 if (!pte_ops->test_present(&e)) {
2085 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2090 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2091 (gma & ~I915_GTT_PAGE_MASK);
2092 trace_gma_translate(vgpu->id, "ppgtt", 0,
2093 mm->ppgtt_mm.root_entry_type, gma, gpa);
2098 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2099 return INTEL_GVT_INVALID_ADDR;
2102 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2103 unsigned int off, void *p_data, unsigned int bytes)
2105 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2106 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2107 unsigned long index = off >> info->gtt_entry_size_shift;
2108 struct intel_gvt_gtt_entry e;
2110 if (bytes != 4 && bytes != 8)
2113 ggtt_get_guest_entry(ggtt_mm, &e, index);
2114 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2120 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2122 * @off: register offset
2123 * @p_data: data will be returned to guest
2124 * @bytes: data length
2126 * This function is used to emulate the GTT MMIO register read
2129 * Zero on success, error code if failed.
2131 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2132 void *p_data, unsigned int bytes)
2134 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2137 if (bytes != 4 && bytes != 8)
2140 off -= info->gtt_start_offset;
2141 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2145 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2146 struct intel_gvt_gtt_entry *entry)
2148 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2151 pfn = pte_ops->get_pfn(entry);
2152 if (pfn != vgpu->gvt->gtt.scratch_mfn)
2153 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2157 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2158 void *p_data, unsigned int bytes)
2160 struct intel_gvt *gvt = vgpu->gvt;
2161 const struct intel_gvt_device_info *info = &gvt->device_info;
2162 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2163 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2164 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2165 unsigned long gma, gfn;
2166 struct intel_gvt_gtt_entry e, m;
2167 dma_addr_t dma_addr;
2169 struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2170 bool partial_update = false;
2172 if (bytes != 4 && bytes != 8)
2175 gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2177 /* the VM may configure the whole GM space when ballooning is used */
2178 if (!vgpu_gmadr_is_valid(vgpu, gma))
2181 e.type = GTT_TYPE_GGTT_PTE;
2182 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2185 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2186 * write, save the first 4 bytes in a list and update virtual
2187 * PTE. Only update shadow PTE when the second 4 bytes comes.
2189 if (bytes < info->gtt_entry_size) {
2192 list_for_each_entry_safe(pos, n,
2193 &ggtt_mm->ggtt_mm.partial_pte_list, list) {
2194 if (g_gtt_index == pos->offset >>
2195 info->gtt_entry_size_shift) {
2196 if (off != pos->offset) {
2197 /* the second partial part*/
2198 int last_off = pos->offset &
2199 (info->gtt_entry_size - 1);
2201 memcpy((void *)&e.val64 + last_off,
2202 (void *)&pos->data + last_off,
2205 list_del(&pos->list);
2211 /* update of the first partial part */
2212 pos->data = e.val64;
2213 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2219 /* the first partial part */
2220 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2223 partial_pte->offset = off;
2224 partial_pte->data = e.val64;
2225 list_add_tail(&partial_pte->list,
2226 &ggtt_mm->ggtt_mm.partial_pte_list);
2227 partial_update = true;
2231 if (!partial_update && (ops->test_present(&e))) {
2232 gfn = ops->get_pfn(&e);
2235 /* one PTE update may be issued in multiple writes and the
2236 * first write may not construct a valid gfn
2238 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2239 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2243 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2244 PAGE_SIZE, &dma_addr);
2246 gvt_vgpu_err("fail to populate guest ggtt entry\n");
2247 /* guest driver may read/write the entry when partial
2248 * update the entry in this situation p2m will fail
2249 * settting the shadow entry to point to a scratch page
2251 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2253 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2255 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2256 ops->clear_present(&m);
2260 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2262 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2263 ggtt_invalidate_pte(vgpu, &e);
2265 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2266 ggtt_invalidate(gvt->dev_priv);
2271 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2273 * @off: register offset
2274 * @p_data: data from guest write
2275 * @bytes: data length
2277 * This function is used to emulate the GTT MMIO register write
2280 * Zero on success, error code if failed.
2282 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2283 unsigned int off, void *p_data, unsigned int bytes)
2285 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2288 if (bytes != 4 && bytes != 8)
2291 off -= info->gtt_start_offset;
2292 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2296 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2297 intel_gvt_gtt_type_t type)
2299 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2300 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2301 int page_entry_num = I915_GTT_PAGE_SIZE >>
2302 vgpu->gvt->device_info.gtt_entry_size_shift;
2305 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2308 if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2311 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2313 gvt_vgpu_err("fail to allocate scratch page\n");
2317 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2318 4096, PCI_DMA_BIDIRECTIONAL);
2319 if (dma_mapping_error(dev, daddr)) {
2320 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2321 __free_page(virt_to_page(scratch_pt));
2324 gtt->scratch_pt[type].page_mfn =
2325 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2326 gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2327 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2328 vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2330 /* Build the tree by full filled the scratch pt with the entries which
2331 * point to the next level scratch pt or scratch page. The
2332 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2334 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2335 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2336 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2338 if (type > GTT_TYPE_PPGTT_PTE_PT) {
2339 struct intel_gvt_gtt_entry se;
2341 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2342 se.type = get_entry_type(type - 1);
2343 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2345 /* The entry parameters like present/writeable/cache type
2346 * set to the same as i915's scratch page tree.
2348 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2349 if (type == GTT_TYPE_PPGTT_PDE_PT)
2350 se.val64 |= PPAT_CACHED;
2352 for (i = 0; i < page_entry_num; i++)
2353 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2359 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2362 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2365 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2366 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2367 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2368 I915_GTT_PAGE_SHIFT);
2369 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2370 __free_page(vgpu->gtt.scratch_pt[i].page);
2371 vgpu->gtt.scratch_pt[i].page = NULL;
2372 vgpu->gtt.scratch_pt[i].page_mfn = 0;
2379 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2383 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2384 ret = alloc_scratch_pages(vgpu, i);
2392 release_scratch_page_tree(vgpu);
2397 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2400 * This function is used to initialize per-vGPU graphics memory virtualization
2404 * Zero on success, error code if failed.
2406 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2408 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2410 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL);
2412 INIT_LIST_HEAD(>t->ppgtt_mm_list_head);
2413 INIT_LIST_HEAD(>t->oos_page_list_head);
2414 INIT_LIST_HEAD(>t->post_shadow_list_head);
2416 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2417 if (IS_ERR(gtt->ggtt_mm)) {
2418 gvt_vgpu_err("fail to create mm for ggtt.\n");
2419 return PTR_ERR(gtt->ggtt_mm);
2422 intel_vgpu_reset_ggtt(vgpu, false);
2424 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list);
2426 return create_scratch_page_tree(vgpu);
2429 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2431 struct list_head *pos, *n;
2432 struct intel_vgpu_mm *mm;
2434 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2435 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2436 intel_vgpu_destroy_mm(mm);
2439 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2440 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2442 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2443 gvt_err("Why we still has spt not freed?\n");
2444 ppgtt_free_all_spt(vgpu);
2448 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2450 struct intel_gvt_partial_pte *pos, *next;
2452 list_for_each_entry_safe(pos, next,
2453 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2455 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2456 pos->offset, pos->data);
2459 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2460 vgpu->gtt.ggtt_mm = NULL;
2464 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2467 * This function is used to clean up per-vGPU graphics memory virtualization
2471 * Zero on success, error code if failed.
2473 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2475 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2476 intel_vgpu_destroy_ggtt_mm(vgpu);
2477 release_scratch_page_tree(vgpu);
2480 static void clean_spt_oos(struct intel_gvt *gvt)
2482 struct intel_gvt_gtt *gtt = &gvt->gtt;
2483 struct list_head *pos, *n;
2484 struct intel_vgpu_oos_page *oos_page;
2486 WARN(!list_empty(>t->oos_page_use_list_head),
2487 "someone is still using oos page\n");
2489 list_for_each_safe(pos, n, >t->oos_page_free_list_head) {
2490 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2491 list_del(&oos_page->list);
2496 static int setup_spt_oos(struct intel_gvt *gvt)
2498 struct intel_gvt_gtt *gtt = &gvt->gtt;
2499 struct intel_vgpu_oos_page *oos_page;
2503 INIT_LIST_HEAD(>t->oos_page_free_list_head);
2504 INIT_LIST_HEAD(>t->oos_page_use_list_head);
2506 for (i = 0; i < preallocated_oos_pages; i++) {
2507 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2513 INIT_LIST_HEAD(&oos_page->list);
2514 INIT_LIST_HEAD(&oos_page->vm_list);
2516 list_add_tail(&oos_page->list, >t->oos_page_free_list_head);
2519 gvt_dbg_mm("%d oos pages preallocated\n", i);
2528 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2530 * @pdps: pdp root array
2532 * This function is used to find a PPGTT mm object from mm object pool
2535 * pointer to mm object on success, NULL if failed.
2537 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2540 struct intel_vgpu_mm *mm;
2541 struct list_head *pos;
2543 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2544 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2546 switch (mm->ppgtt_mm.root_entry_type) {
2547 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2548 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2551 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2552 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2553 sizeof(mm->ppgtt_mm.guest_pdps)))
2564 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2566 * @root_entry_type: ppgtt root entry type
2569 * This function is used to find or create a PPGTT mm object from a guest.
2572 * Zero on success, negative error code if failed.
2574 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2575 intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
2577 struct intel_vgpu_mm *mm;
2579 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2581 intel_vgpu_mm_get(mm);
2583 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2585 gvt_vgpu_err("fail to create mm\n");
2591 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2595 * This function is used to find a PPGTT mm object from a guest and destroy it.
2598 * Zero on success, negative error code if failed.
2600 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2602 struct intel_vgpu_mm *mm;
2604 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2606 gvt_vgpu_err("fail to find ppgtt instance.\n");
2609 intel_vgpu_mm_put(mm);
2614 * intel_gvt_init_gtt - initialize mm components of a GVT device
2617 * This function is called at the initialization stage, to initialize
2618 * the mm components of a GVT device.
2621 * zero on success, negative error code if failed.
2623 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2627 struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2630 gvt_dbg_core("init gtt\n");
2632 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2633 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2635 page = (void *)get_zeroed_page(GFP_KERNEL);
2637 gvt_err("fail to allocate scratch ggtt page\n");
2641 daddr = dma_map_page(dev, virt_to_page(page), 0,
2642 4096, PCI_DMA_BIDIRECTIONAL);
2643 if (dma_mapping_error(dev, daddr)) {
2644 gvt_err("fail to dmamap scratch ggtt page\n");
2645 __free_page(virt_to_page(page));
2649 gvt->gtt.scratch_page = virt_to_page(page);
2650 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2652 if (enable_out_of_sync) {
2653 ret = setup_spt_oos(gvt);
2655 gvt_err("fail to initialize SPT oos\n");
2656 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2657 __free_page(gvt->gtt.scratch_page);
2661 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2666 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2669 * This function is called at the driver unloading stage, to clean up the
2670 * the mm components of a GVT device.
2673 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2675 struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2676 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2677 I915_GTT_PAGE_SHIFT);
2679 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2681 __free_page(gvt->gtt.scratch_page);
2683 if (enable_out_of_sync)
2688 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2691 * This function is called when invalidate all PPGTT instances of a vGPU.
2694 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2696 struct list_head *pos, *n;
2697 struct intel_vgpu_mm *mm;
2699 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2700 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2701 if (mm->type == INTEL_GVT_MM_PPGTT) {
2702 list_del_init(&mm->ppgtt_mm.lru_list);
2703 if (mm->ppgtt_mm.shadowed)
2704 invalidate_ppgtt_mm(mm);
2710 * intel_vgpu_reset_ggtt - reset the GGTT entry
2712 * @invalidate_old: invalidate old entries
2714 * This function is called at the vGPU create stage
2715 * to reset all the GGTT entries.
2718 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2720 struct intel_gvt *gvt = vgpu->gvt;
2721 struct drm_i915_private *dev_priv = gvt->dev_priv;
2722 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2723 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2724 struct intel_gvt_gtt_entry old_entry;
2728 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2729 pte_ops->set_present(&entry);
2731 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2732 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2733 while (num_entries--) {
2734 if (invalidate_old) {
2735 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2736 ggtt_invalidate_pte(vgpu, &old_entry);
2738 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2741 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2742 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2743 while (num_entries--) {
2744 if (invalidate_old) {
2745 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2746 ggtt_invalidate_pte(vgpu, &old_entry);
2748 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2751 ggtt_invalidate(dev_priv);
2755 * intel_vgpu_reset_gtt - reset the all GTT related status
2758 * This function is called from vfio core to reset reset all
2759 * GTT related status, including GGTT, PPGTT, scratch page.
2762 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2764 /* Shadow pages are only created when there is no page
2765 * table tracking data, so remove page tracking data after
2766 * removing the shadow pages.
2768 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2769 intel_vgpu_reset_ggtt(vgpu, true);