2 * FDT related Helper functions used by the EFI stub on multiple
3 * architectures. This should be #included by the EFI stub
4 * implementation files.
6 * Copyright 2013 Linaro Limited; author Roy Franz
8 * This file is part of the Linux kernel, and is made available
9 * under the terms of the GNU General Public License version 2.
13 #include <linux/efi.h>
14 #include <linux/libfdt.h>
19 #define EFI_DT_ADDR_CELLS_DEFAULT 2
20 #define EFI_DT_SIZE_CELLS_DEFAULT 2
22 static void fdt_update_cell_size(efi_system_table_t *sys_table, void *fdt)
26 offset = fdt_path_offset(fdt, "/");
27 /* Set the #address-cells and #size-cells values for an empty tree */
29 fdt_setprop_u32(fdt, offset, "#address-cells",
30 EFI_DT_ADDR_CELLS_DEFAULT);
32 fdt_setprop_u32(fdt, offset, "#size-cells", EFI_DT_SIZE_CELLS_DEFAULT);
35 static efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
36 unsigned long orig_fdt_size,
37 void *fdt, int new_fdt_size, char *cmdline_ptr,
38 u64 initrd_addr, u64 initrd_size)
45 /* Do some checks on provided FDT, if it exists*/
47 if (fdt_check_header(orig_fdt)) {
48 pr_efi_err(sys_table, "Device Tree header not valid!\n");
49 return EFI_LOAD_ERROR;
52 * We don't get the size of the FDT if we get if from a
53 * configuration table.
55 if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
56 pr_efi_err(sys_table, "Truncated device tree! foo!\n");
57 return EFI_LOAD_ERROR;
62 status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
64 status = fdt_create_empty_tree(fdt, new_fdt_size);
67 * Any failure from the following function is non
70 fdt_update_cell_size(sys_table, fdt);
78 * Delete all memory reserve map entries. When booting via UEFI,
79 * kernel will use the UEFI memory map to find reserved regions.
81 num_rsv = fdt_num_mem_rsv(fdt);
83 fdt_del_mem_rsv(fdt, num_rsv);
85 node = fdt_subnode_offset(fdt, 0, "chosen");
87 node = fdt_add_subnode(fdt, 0, "chosen");
89 status = node; /* node is error code when negative */
94 if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
95 status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
96 strlen(cmdline_ptr) + 1);
101 /* Set initrd address/end in device tree, if present */
102 if (initrd_size != 0) {
103 u64 initrd_image_end;
104 u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
106 status = fdt_setprop(fdt, node, "linux,initrd-start",
107 &initrd_image_start, sizeof(u64));
110 initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
111 status = fdt_setprop(fdt, node, "linux,initrd-end",
112 &initrd_image_end, sizeof(u64));
117 /* Add FDT entries for EFI runtime services in chosen node. */
118 node = fdt_subnode_offset(fdt, 0, "chosen");
119 fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
120 status = fdt_setprop(fdt, node, "linux,uefi-system-table",
121 &fdt_val64, sizeof(fdt_val64));
125 fdt_val64 = U64_MAX; /* placeholder */
126 status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
127 &fdt_val64, sizeof(fdt_val64));
131 fdt_val32 = U32_MAX; /* placeholder */
132 status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
133 &fdt_val32, sizeof(fdt_val32));
137 status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
138 &fdt_val32, sizeof(fdt_val32));
142 status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
143 &fdt_val32, sizeof(fdt_val32));
147 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
148 efi_status_t efi_status;
150 efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64),
152 if (efi_status == EFI_SUCCESS) {
153 status = fdt_setprop(fdt, node, "kaslr-seed",
154 &fdt_val64, sizeof(fdt_val64));
157 } else if (efi_status != EFI_NOT_FOUND) {
162 /* shrink the FDT back to its minimum size */
168 if (status == -FDT_ERR_NOSPACE)
169 return EFI_BUFFER_TOO_SMALL;
171 return EFI_LOAD_ERROR;
174 static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
176 int node = fdt_path_offset(fdt, "/chosen");
182 return EFI_LOAD_ERROR;
184 fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
185 err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-start",
186 &fdt_val64, sizeof(fdt_val64));
188 return EFI_LOAD_ERROR;
190 fdt_val32 = cpu_to_fdt32(*map->map_size);
191 err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-size",
192 &fdt_val32, sizeof(fdt_val32));
194 return EFI_LOAD_ERROR;
196 fdt_val32 = cpu_to_fdt32(*map->desc_size);
197 err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-size",
198 &fdt_val32, sizeof(fdt_val32));
200 return EFI_LOAD_ERROR;
202 fdt_val32 = cpu_to_fdt32(*map->desc_ver);
203 err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-ver",
204 &fdt_val32, sizeof(fdt_val32));
206 return EFI_LOAD_ERROR;
211 #ifndef EFI_FDT_ALIGN
212 #define EFI_FDT_ALIGN EFI_PAGE_SIZE
215 struct exit_boot_struct {
216 efi_memory_desc_t *runtime_map;
217 int *runtime_entry_count;
221 static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg,
222 struct efi_boot_memmap *map,
225 struct exit_boot_struct *p = priv;
227 * Update the memory map with virtual addresses. The function will also
228 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
229 * entries so that we can pass it straight to SetVirtualAddressMap()
231 efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
232 p->runtime_map, p->runtime_entry_count);
234 return update_fdt_memmap(p->new_fdt_addr, map);
238 #define MAX_FDT_SIZE SZ_2M
242 * Allocate memory for a new FDT, then add EFI, commandline, and
243 * initrd related fields to the FDT. This routine increases the
244 * FDT allocation size until the allocated memory is large
245 * enough. EFI allocations are in EFI_PAGE_SIZE granules,
246 * which are fixed at 4K bytes, so in most cases the first
247 * allocation should succeed.
248 * EFI boot services are exited at the end of this function.
249 * There must be no allocations between the get_memory_map()
250 * call and the exit_boot_services() call, so the exiting of
251 * boot services is very tightly tied to the creation of the FDT
252 * with the final memory map in it.
255 efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
257 unsigned long *new_fdt_addr,
258 unsigned long max_addr,
259 u64 initrd_addr, u64 initrd_size,
261 unsigned long fdt_addr,
262 unsigned long fdt_size)
264 unsigned long map_size, desc_size, buff_size;
266 unsigned long mmap_key;
267 efi_memory_desc_t *memory_map, *runtime_map;
269 int runtime_entry_count = 0;
270 struct efi_boot_memmap map;
271 struct exit_boot_struct priv;
273 map.map = &runtime_map;
274 map.map_size = &map_size;
275 map.desc_size = &desc_size;
276 map.desc_ver = &desc_ver;
277 map.key_ptr = &mmap_key;
278 map.buff_size = &buff_size;
281 * Get a copy of the current memory map that we will use to prepare
282 * the input for SetVirtualAddressMap(). We don't have to worry about
283 * subsequent allocations adding entries, since they could not affect
284 * the number of EFI_MEMORY_RUNTIME regions.
286 status = efi_get_memory_map(sys_table, &map);
287 if (status != EFI_SUCCESS) {
288 pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
293 "Exiting boot services and installing virtual address map...\n");
295 map.map = &memory_map;
296 status = efi_high_alloc(sys_table, MAX_FDT_SIZE, EFI_FDT_ALIGN,
297 new_fdt_addr, max_addr);
298 if (status != EFI_SUCCESS) {
299 pr_efi_err(sys_table,
300 "Unable to allocate memory for new device tree.\n");
305 * Now that we have done our final memory allocation (and free)
306 * we can get the memory map key needed for exit_boot_services().
308 status = efi_get_memory_map(sys_table, &map);
309 if (status != EFI_SUCCESS)
310 goto fail_free_new_fdt;
312 status = update_fdt(sys_table, (void *)fdt_addr, fdt_size,
313 (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
314 initrd_addr, initrd_size);
316 if (status != EFI_SUCCESS) {
317 pr_efi_err(sys_table, "Unable to construct new device tree.\n");
318 goto fail_free_new_fdt;
321 priv.runtime_map = runtime_map;
322 priv.runtime_entry_count = &runtime_entry_count;
323 priv.new_fdt_addr = (void *)*new_fdt_addr;
324 status = efi_exit_boot_services(sys_table, handle, &map, &priv,
327 if (status == EFI_SUCCESS) {
328 efi_set_virtual_address_map_t *svam;
330 /* Install the new virtual address map */
331 svam = sys_table->runtime->set_virtual_address_map;
332 status = svam(runtime_entry_count * desc_size, desc_size,
333 desc_ver, runtime_map);
336 * We are beyond the point of no return here, so if the call to
337 * SetVirtualAddressMap() failed, we need to signal that to the
338 * incoming kernel but proceed normally otherwise.
340 if (status != EFI_SUCCESS) {
344 * Set the virtual address field of all
345 * EFI_MEMORY_RUNTIME entries to 0. This will signal
346 * the incoming kernel that no virtual translation has
349 for (l = 0; l < map_size; l += desc_size) {
350 efi_memory_desc_t *p = (void *)memory_map + l;
352 if (p->attribute & EFI_MEMORY_RUNTIME)
359 pr_efi_err(sys_table, "Exit boot services failed.\n");
362 efi_free(sys_table, MAX_FDT_SIZE, *new_fdt_addr);
365 sys_table->boottime->free_pool(runtime_map);
366 return EFI_LOAD_ERROR;
369 void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
371 efi_guid_t fdt_guid = DEVICE_TREE_GUID;
372 efi_config_table_t *tables;
376 tables = (efi_config_table_t *) sys_table->tables;
379 for (i = 0; i < sys_table->nr_tables; i++)
380 if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) {
381 fdt = (void *) tables[i].table;
382 if (fdt_check_header(fdt) != 0) {
383 pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
386 *fdt_size = fdt_totalsize(fdt);