2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
24 #include "kvm_cache_regs.h"
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
46 #include <asm/cmpxchg.h>
49 #include <asm/kvm_page_track.h>
53 * When setting this variable to true it enables Two-Dimensional-Paging
54 * where the hardware walks 2 page tables:
55 * 1. the guest-virtual to guest-physical
56 * 2. while doing 1. it walks guest-physical to host-physical
57 * If the hardware supports that we don't need to do shadow paging.
59 bool tdp_enabled = false;
63 AUDIT_POST_PAGE_FAULT,
74 module_param(dbg, bool, 0644);
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78 #define MMU_WARN_ON(x) WARN_ON(x)
80 #define pgprintk(x...) do { } while (0)
81 #define rmap_printk(x...) do { } while (0)
82 #define MMU_WARN_ON(x) do { } while (0)
85 #define PTE_PREFETCH_NUM 8
87 #define PT_FIRST_AVAIL_BITS_SHIFT 10
88 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
90 #define PT64_LEVEL_BITS 9
92 #define PT64_LEVEL_SHIFT(level) \
93 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
95 #define PT64_INDEX(address, level)\
96 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
99 #define PT32_LEVEL_BITS 10
101 #define PT32_LEVEL_SHIFT(level) \
102 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
104 #define PT32_LVL_OFFSET_MASK(level) \
105 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
106 * PT32_LEVEL_BITS))) - 1))
108 #define PT32_INDEX(address, level)\
109 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
112 #define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
113 #define PT64_DIR_BASE_ADDR_MASK \
114 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
115 #define PT64_LVL_ADDR_MASK(level) \
116 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
117 * PT64_LEVEL_BITS))) - 1))
118 #define PT64_LVL_OFFSET_MASK(level) \
119 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT64_LEVEL_BITS))) - 1))
122 #define PT32_BASE_ADDR_MASK PAGE_MASK
123 #define PT32_DIR_BASE_ADDR_MASK \
124 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
125 #define PT32_LVL_ADDR_MASK(level) \
126 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT32_LEVEL_BITS))) - 1))
129 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
130 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
132 #define ACC_EXEC_MASK 1
133 #define ACC_WRITE_MASK PT_WRITABLE_MASK
134 #define ACC_USER_MASK PT_USER_MASK
135 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
137 /* The mask for the R/X bits in EPT PTEs */
138 #define PT64_EPT_READABLE_MASK 0x1ull
139 #define PT64_EPT_EXECUTABLE_MASK 0x4ull
141 #include <trace/events/kvm.h>
143 #define CREATE_TRACE_POINTS
144 #include "mmutrace.h"
146 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
147 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
149 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
151 /* make pte_list_desc fit well in cache line */
152 #define PTE_LIST_EXT 3
155 * Return values of handle_mmio_page_fault and mmu.page_fault:
156 * RET_PF_RETRY: let CPU fault again on the address.
157 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
159 * For handle_mmio_page_fault only:
160 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
168 struct pte_list_desc {
169 u64 *sptes[PTE_LIST_EXT];
170 struct pte_list_desc *more;
173 struct kvm_shadow_walk_iterator {
181 static const union kvm_mmu_page_role mmu_base_role_mask = {
192 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
193 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
195 shadow_walk_okay(&(_walker)); \
196 shadow_walk_next(&(_walker)))
198 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
199 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
200 shadow_walk_okay(&(_walker)); \
201 shadow_walk_next(&(_walker)))
203 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
204 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
205 shadow_walk_okay(&(_walker)) && \
206 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
207 __shadow_walk_next(&(_walker), spte))
209 static struct kmem_cache *pte_list_desc_cache;
210 static struct kmem_cache *mmu_page_header_cache;
211 static struct percpu_counter kvm_total_used_mmu_pages;
213 static u64 __read_mostly shadow_nx_mask;
214 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
215 static u64 __read_mostly shadow_user_mask;
216 static u64 __read_mostly shadow_accessed_mask;
217 static u64 __read_mostly shadow_dirty_mask;
218 static u64 __read_mostly shadow_mmio_mask;
219 static u64 __read_mostly shadow_mmio_value;
220 static u64 __read_mostly shadow_present_mask;
221 static u64 __read_mostly shadow_me_mask;
224 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
225 * Non-present SPTEs with shadow_acc_track_value set are in place for access
228 static u64 __read_mostly shadow_acc_track_mask;
229 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
232 * The mask/shift to use for saving the original R/X bits when marking the PTE
233 * as not-present for access tracking purposes. We do not save the W bit as the
234 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
235 * restored only when a write is attempted to the page.
237 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
238 PT64_EPT_EXECUTABLE_MASK;
239 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
242 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
243 * to guard against L1TF attacks.
245 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
248 * The number of high-order 1 bits to use in the mask above.
250 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
253 * In some cases, we need to preserve the GFN of a non-present or reserved
254 * SPTE when we usurp the upper five bits of the physical address space to
255 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
256 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
257 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
258 * high and low parts. This mask covers the lower bits of the GFN.
260 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
263 static void mmu_spte_set(u64 *sptep, u64 spte);
264 static union kvm_mmu_page_role
265 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
267 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
269 BUG_ON((mmio_mask & mmio_value) != mmio_value);
270 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
271 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
273 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
275 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
277 return sp->role.ad_disabled;
280 static inline bool spte_ad_enabled(u64 spte)
282 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
283 return !(spte & shadow_acc_track_value);
286 static inline u64 spte_shadow_accessed_mask(u64 spte)
288 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
289 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
292 static inline u64 spte_shadow_dirty_mask(u64 spte)
294 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
295 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
298 static inline bool is_access_track_spte(u64 spte)
300 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
304 * the low bit of the generation number is always presumed to be zero.
305 * This disables mmio caching during memslot updates. The concept is
306 * similar to a seqcount but instead of retrying the access we just punt
307 * and ignore the cache.
309 * spte bits 3-11 are used as bits 1-9 of the generation number,
310 * the bits 52-61 are used as bits 10-19 of the generation number.
312 #define MMIO_SPTE_GEN_LOW_SHIFT 2
313 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
315 #define MMIO_GEN_SHIFT 20
316 #define MMIO_GEN_LOW_SHIFT 10
317 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
318 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
320 static u64 generation_mmio_spte_mask(unsigned int gen)
324 WARN_ON(gen & ~MMIO_GEN_MASK);
326 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
327 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
331 static unsigned int get_mmio_spte_generation(u64 spte)
335 spte &= ~shadow_mmio_mask;
337 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
338 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
342 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
344 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
347 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
350 unsigned int gen = kvm_current_mmio_generation(vcpu);
351 u64 mask = generation_mmio_spte_mask(gen);
352 u64 gpa = gfn << PAGE_SHIFT;
354 access &= ACC_WRITE_MASK | ACC_USER_MASK;
355 mask |= shadow_mmio_value | access;
356 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
357 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
358 << shadow_nonpresent_or_rsvd_mask_len;
360 trace_mark_mmio_spte(sptep, gfn, access, gen);
361 mmu_spte_set(sptep, mask);
364 static bool is_mmio_spte(u64 spte)
366 return (spte & shadow_mmio_mask) == shadow_mmio_value;
369 static gfn_t get_mmio_spte_gfn(u64 spte)
371 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
373 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
374 & shadow_nonpresent_or_rsvd_mask;
376 return gpa >> PAGE_SHIFT;
379 static unsigned get_mmio_spte_access(u64 spte)
381 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
382 return (spte & ~mask) & ~PAGE_MASK;
385 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
386 kvm_pfn_t pfn, unsigned access)
388 if (unlikely(is_noslot_pfn(pfn))) {
389 mark_mmio_spte(vcpu, sptep, gfn, access);
396 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
398 unsigned int kvm_gen, spte_gen;
400 kvm_gen = kvm_current_mmio_generation(vcpu);
401 spte_gen = get_mmio_spte_generation(spte);
403 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
404 return likely(kvm_gen == spte_gen);
408 * Sets the shadow PTE masks used by the MMU.
411 * - Setting either @accessed_mask or @dirty_mask requires setting both
412 * - At least one of @accessed_mask or @acc_track_mask must be set
414 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
415 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
416 u64 acc_track_mask, u64 me_mask)
418 BUG_ON(!dirty_mask != !accessed_mask);
419 BUG_ON(!accessed_mask && !acc_track_mask);
420 BUG_ON(acc_track_mask & shadow_acc_track_value);
422 shadow_user_mask = user_mask;
423 shadow_accessed_mask = accessed_mask;
424 shadow_dirty_mask = dirty_mask;
425 shadow_nx_mask = nx_mask;
426 shadow_x_mask = x_mask;
427 shadow_present_mask = p_mask;
428 shadow_acc_track_mask = acc_track_mask;
429 shadow_me_mask = me_mask;
431 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
433 static void kvm_mmu_reset_all_pte_masks(void)
437 shadow_user_mask = 0;
438 shadow_accessed_mask = 0;
439 shadow_dirty_mask = 0;
442 shadow_mmio_mask = 0;
443 shadow_present_mask = 0;
444 shadow_acc_track_mask = 0;
447 * If the CPU has 46 or less physical address bits, then set an
448 * appropriate mask to guard against L1TF attacks. Otherwise, it is
449 * assumed that the CPU is not vulnerable to L1TF.
451 low_phys_bits = boot_cpu_data.x86_phys_bits;
452 if (boot_cpu_data.x86_phys_bits <
453 52 - shadow_nonpresent_or_rsvd_mask_len) {
454 shadow_nonpresent_or_rsvd_mask =
455 rsvd_bits(boot_cpu_data.x86_phys_bits -
456 shadow_nonpresent_or_rsvd_mask_len,
457 boot_cpu_data.x86_phys_bits - 1);
458 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
460 shadow_nonpresent_or_rsvd_lower_gfn_mask =
461 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
464 static int is_cpuid_PSE36(void)
469 static int is_nx(struct kvm_vcpu *vcpu)
471 return vcpu->arch.efer & EFER_NX;
474 static int is_shadow_present_pte(u64 pte)
476 return (pte != 0) && !is_mmio_spte(pte);
479 static int is_large_pte(u64 pte)
481 return pte & PT_PAGE_SIZE_MASK;
484 static int is_last_spte(u64 pte, int level)
486 if (level == PT_PAGE_TABLE_LEVEL)
488 if (is_large_pte(pte))
493 static bool is_executable_pte(u64 spte)
495 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
498 static kvm_pfn_t spte_to_pfn(u64 pte)
500 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
503 static gfn_t pse36_gfn_delta(u32 gpte)
505 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
507 return (gpte & PT32_DIR_PSE36_MASK) << shift;
511 static void __set_spte(u64 *sptep, u64 spte)
513 WRITE_ONCE(*sptep, spte);
516 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
518 WRITE_ONCE(*sptep, spte);
521 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
523 return xchg(sptep, spte);
526 static u64 __get_spte_lockless(u64 *sptep)
528 return READ_ONCE(*sptep);
539 static void count_spte_clear(u64 *sptep, u64 spte)
541 struct kvm_mmu_page *sp = page_header(__pa(sptep));
543 if (is_shadow_present_pte(spte))
546 /* Ensure the spte is completely set before we increase the count */
548 sp->clear_spte_count++;
551 static void __set_spte(u64 *sptep, u64 spte)
553 union split_spte *ssptep, sspte;
555 ssptep = (union split_spte *)sptep;
556 sspte = (union split_spte)spte;
558 ssptep->spte_high = sspte.spte_high;
561 * If we map the spte from nonpresent to present, We should store
562 * the high bits firstly, then set present bit, so cpu can not
563 * fetch this spte while we are setting the spte.
567 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
570 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
572 union split_spte *ssptep, sspte;
574 ssptep = (union split_spte *)sptep;
575 sspte = (union split_spte)spte;
577 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
580 * If we map the spte from present to nonpresent, we should clear
581 * present bit firstly to avoid vcpu fetch the old high bits.
585 ssptep->spte_high = sspte.spte_high;
586 count_spte_clear(sptep, spte);
589 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
591 union split_spte *ssptep, sspte, orig;
593 ssptep = (union split_spte *)sptep;
594 sspte = (union split_spte)spte;
596 /* xchg acts as a barrier before the setting of the high bits */
597 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
598 orig.spte_high = ssptep->spte_high;
599 ssptep->spte_high = sspte.spte_high;
600 count_spte_clear(sptep, spte);
606 * The idea using the light way get the spte on x86_32 guest is from
607 * gup_get_pte(arch/x86/mm/gup.c).
609 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
610 * coalesces them and we are running out of the MMU lock. Therefore
611 * we need to protect against in-progress updates of the spte.
613 * Reading the spte while an update is in progress may get the old value
614 * for the high part of the spte. The race is fine for a present->non-present
615 * change (because the high part of the spte is ignored for non-present spte),
616 * but for a present->present change we must reread the spte.
618 * All such changes are done in two steps (present->non-present and
619 * non-present->present), hence it is enough to count the number of
620 * present->non-present updates: if it changed while reading the spte,
621 * we might have hit the race. This is done using clear_spte_count.
623 static u64 __get_spte_lockless(u64 *sptep)
625 struct kvm_mmu_page *sp = page_header(__pa(sptep));
626 union split_spte spte, *orig = (union split_spte *)sptep;
630 count = sp->clear_spte_count;
633 spte.spte_low = orig->spte_low;
636 spte.spte_high = orig->spte_high;
639 if (unlikely(spte.spte_low != orig->spte_low ||
640 count != sp->clear_spte_count))
647 static bool spte_can_locklessly_be_made_writable(u64 spte)
649 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
650 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
653 static bool spte_has_volatile_bits(u64 spte)
655 if (!is_shadow_present_pte(spte))
659 * Always atomically update spte if it can be updated
660 * out of mmu-lock, it can ensure dirty bit is not lost,
661 * also, it can help us to get a stable is_writable_pte()
662 * to ensure tlb flush is not missed.
664 if (spte_can_locklessly_be_made_writable(spte) ||
665 is_access_track_spte(spte))
668 if (spte_ad_enabled(spte)) {
669 if ((spte & shadow_accessed_mask) == 0 ||
670 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
677 static bool is_accessed_spte(u64 spte)
679 u64 accessed_mask = spte_shadow_accessed_mask(spte);
681 return accessed_mask ? spte & accessed_mask
682 : !is_access_track_spte(spte);
685 static bool is_dirty_spte(u64 spte)
687 u64 dirty_mask = spte_shadow_dirty_mask(spte);
689 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
692 /* Rules for using mmu_spte_set:
693 * Set the sptep from nonpresent to present.
694 * Note: the sptep being assigned *must* be either not present
695 * or in a state where the hardware will not attempt to update
698 static void mmu_spte_set(u64 *sptep, u64 new_spte)
700 WARN_ON(is_shadow_present_pte(*sptep));
701 __set_spte(sptep, new_spte);
705 * Update the SPTE (excluding the PFN), but do not track changes in its
706 * accessed/dirty status.
708 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
710 u64 old_spte = *sptep;
712 WARN_ON(!is_shadow_present_pte(new_spte));
714 if (!is_shadow_present_pte(old_spte)) {
715 mmu_spte_set(sptep, new_spte);
719 if (!spte_has_volatile_bits(old_spte))
720 __update_clear_spte_fast(sptep, new_spte);
722 old_spte = __update_clear_spte_slow(sptep, new_spte);
724 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
729 /* Rules for using mmu_spte_update:
730 * Update the state bits, it means the mapped pfn is not changed.
732 * Whenever we overwrite a writable spte with a read-only one we
733 * should flush remote TLBs. Otherwise rmap_write_protect
734 * will find a read-only spte, even though the writable spte
735 * might be cached on a CPU's TLB, the return value indicates this
738 * Returns true if the TLB needs to be flushed
740 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
743 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
745 if (!is_shadow_present_pte(old_spte))
749 * For the spte updated out of mmu-lock is safe, since
750 * we always atomically update it, see the comments in
751 * spte_has_volatile_bits().
753 if (spte_can_locklessly_be_made_writable(old_spte) &&
754 !is_writable_pte(new_spte))
758 * Flush TLB when accessed/dirty states are changed in the page tables,
759 * to guarantee consistency between TLB and page tables.
762 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
764 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
767 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
769 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
776 * Rules for using mmu_spte_clear_track_bits:
777 * It sets the sptep from present to nonpresent, and track the
778 * state bits, it is used to clear the last level sptep.
779 * Returns non-zero if the PTE was previously valid.
781 static int mmu_spte_clear_track_bits(u64 *sptep)
784 u64 old_spte = *sptep;
786 if (!spte_has_volatile_bits(old_spte))
787 __update_clear_spte_fast(sptep, 0ull);
789 old_spte = __update_clear_spte_slow(sptep, 0ull);
791 if (!is_shadow_present_pte(old_spte))
794 pfn = spte_to_pfn(old_spte);
797 * KVM does not hold the refcount of the page used by
798 * kvm mmu, before reclaiming the page, we should
799 * unmap it from mmu first.
801 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
803 if (is_accessed_spte(old_spte))
804 kvm_set_pfn_accessed(pfn);
806 if (is_dirty_spte(old_spte))
807 kvm_set_pfn_dirty(pfn);
813 * Rules for using mmu_spte_clear_no_track:
814 * Directly clear spte without caring the state bits of sptep,
815 * it is used to set the upper level spte.
817 static void mmu_spte_clear_no_track(u64 *sptep)
819 __update_clear_spte_fast(sptep, 0ull);
822 static u64 mmu_spte_get_lockless(u64 *sptep)
824 return __get_spte_lockless(sptep);
827 static u64 mark_spte_for_access_track(u64 spte)
829 if (spte_ad_enabled(spte))
830 return spte & ~shadow_accessed_mask;
832 if (is_access_track_spte(spte))
836 * Making an Access Tracking PTE will result in removal of write access
837 * from the PTE. So, verify that we will be able to restore the write
838 * access in the fast page fault path later on.
840 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
841 !spte_can_locklessly_be_made_writable(spte),
842 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
844 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
845 shadow_acc_track_saved_bits_shift),
846 "kvm: Access Tracking saved bit locations are not zero\n");
848 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
849 shadow_acc_track_saved_bits_shift;
850 spte &= ~shadow_acc_track_mask;
855 /* Restore an acc-track PTE back to a regular PTE */
856 static u64 restore_acc_track_spte(u64 spte)
859 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
860 & shadow_acc_track_saved_bits_mask;
862 WARN_ON_ONCE(spte_ad_enabled(spte));
863 WARN_ON_ONCE(!is_access_track_spte(spte));
865 new_spte &= ~shadow_acc_track_mask;
866 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
867 shadow_acc_track_saved_bits_shift);
868 new_spte |= saved_bits;
873 /* Returns the Accessed status of the PTE and resets it at the same time. */
874 static bool mmu_spte_age(u64 *sptep)
876 u64 spte = mmu_spte_get_lockless(sptep);
878 if (!is_accessed_spte(spte))
881 if (spte_ad_enabled(spte)) {
882 clear_bit((ffs(shadow_accessed_mask) - 1),
883 (unsigned long *)sptep);
886 * Capture the dirty status of the page, so that it doesn't get
887 * lost when the SPTE is marked for access tracking.
889 if (is_writable_pte(spte))
890 kvm_set_pfn_dirty(spte_to_pfn(spte));
892 spte = mark_spte_for_access_track(spte);
893 mmu_spte_update_no_track(sptep, spte);
899 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
902 * Prevent page table teardown by making any free-er wait during
903 * kvm_flush_remote_tlbs() IPI to all active vcpus.
908 * Make sure a following spte read is not reordered ahead of the write
911 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
914 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
917 * Make sure the write to vcpu->mode is not reordered in front of
918 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
919 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
921 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
925 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
926 struct kmem_cache *base_cache, int min)
930 if (cache->nobjs >= min)
932 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
933 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
935 return cache->nobjs >= min ? 0 : -ENOMEM;
936 cache->objects[cache->nobjs++] = obj;
941 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
946 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
947 struct kmem_cache *cache)
950 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
953 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
958 if (cache->nobjs >= min)
960 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
961 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
963 return cache->nobjs >= min ? 0 : -ENOMEM;
964 cache->objects[cache->nobjs++] = page;
969 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
972 free_page((unsigned long)mc->objects[--mc->nobjs]);
975 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
979 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
980 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
983 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
986 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
987 mmu_page_header_cache, 4);
992 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
994 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
995 pte_list_desc_cache);
996 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
997 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
998 mmu_page_header_cache);
1001 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1006 p = mc->objects[--mc->nobjs];
1010 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1012 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1015 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1017 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1020 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1022 if (!sp->role.direct)
1023 return sp->gfns[index];
1025 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1028 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1030 if (sp->role.direct)
1031 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
1033 sp->gfns[index] = gfn;
1037 * Return the pointer to the large page information for a given gfn,
1038 * handling slots that are not large page aligned.
1040 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1041 struct kvm_memory_slot *slot,
1046 idx = gfn_to_index(gfn, slot->base_gfn, level);
1047 return &slot->arch.lpage_info[level - 2][idx];
1050 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1051 gfn_t gfn, int count)
1053 struct kvm_lpage_info *linfo;
1056 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1057 linfo = lpage_info_slot(gfn, slot, i);
1058 linfo->disallow_lpage += count;
1059 WARN_ON(linfo->disallow_lpage < 0);
1063 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1065 update_gfn_disallow_lpage_count(slot, gfn, 1);
1068 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1070 update_gfn_disallow_lpage_count(slot, gfn, -1);
1073 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1075 struct kvm_memslots *slots;
1076 struct kvm_memory_slot *slot;
1079 kvm->arch.indirect_shadow_pages++;
1081 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1082 slot = __gfn_to_memslot(slots, gfn);
1084 /* the non-leaf shadow pages are keeping readonly. */
1085 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1086 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1087 KVM_PAGE_TRACK_WRITE);
1089 kvm_mmu_gfn_disallow_lpage(slot, gfn);
1092 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1094 struct kvm_memslots *slots;
1095 struct kvm_memory_slot *slot;
1098 kvm->arch.indirect_shadow_pages--;
1100 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1101 slot = __gfn_to_memslot(slots, gfn);
1102 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1103 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1104 KVM_PAGE_TRACK_WRITE);
1106 kvm_mmu_gfn_allow_lpage(slot, gfn);
1109 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1110 struct kvm_memory_slot *slot)
1112 struct kvm_lpage_info *linfo;
1115 linfo = lpage_info_slot(gfn, slot, level);
1116 return !!linfo->disallow_lpage;
1122 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1125 struct kvm_memory_slot *slot;
1127 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1128 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1131 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1133 unsigned long page_size;
1136 page_size = kvm_host_page_size(kvm, gfn);
1138 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1139 if (page_size >= KVM_HPAGE_SIZE(i))
1148 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1151 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1153 if (no_dirty_log && slot->dirty_bitmap)
1159 static struct kvm_memory_slot *
1160 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1163 struct kvm_memory_slot *slot;
1165 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1166 if (!memslot_valid_for_gpte(slot, no_dirty_log))
1172 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1173 bool *force_pt_level)
1175 int host_level, level, max_level;
1176 struct kvm_memory_slot *slot;
1178 if (unlikely(*force_pt_level))
1179 return PT_PAGE_TABLE_LEVEL;
1181 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1182 *force_pt_level = !memslot_valid_for_gpte(slot, true);
1183 if (unlikely(*force_pt_level))
1184 return PT_PAGE_TABLE_LEVEL;
1186 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1188 if (host_level == PT_PAGE_TABLE_LEVEL)
1191 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1193 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1194 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1201 * About rmap_head encoding:
1203 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1204 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1205 * pte_list_desc containing more mappings.
1209 * Returns the number of pointers in the rmap chain, not counting the new one.
1211 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1212 struct kvm_rmap_head *rmap_head)
1214 struct pte_list_desc *desc;
1217 if (!rmap_head->val) {
1218 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1219 rmap_head->val = (unsigned long)spte;
1220 } else if (!(rmap_head->val & 1)) {
1221 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1222 desc = mmu_alloc_pte_list_desc(vcpu);
1223 desc->sptes[0] = (u64 *)rmap_head->val;
1224 desc->sptes[1] = spte;
1225 rmap_head->val = (unsigned long)desc | 1;
1228 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1229 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1230 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1232 count += PTE_LIST_EXT;
1234 if (desc->sptes[PTE_LIST_EXT-1]) {
1235 desc->more = mmu_alloc_pte_list_desc(vcpu);
1238 for (i = 0; desc->sptes[i]; ++i)
1240 desc->sptes[i] = spte;
1246 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1247 struct pte_list_desc *desc, int i,
1248 struct pte_list_desc *prev_desc)
1252 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1254 desc->sptes[i] = desc->sptes[j];
1255 desc->sptes[j] = NULL;
1258 if (!prev_desc && !desc->more)
1259 rmap_head->val = (unsigned long)desc->sptes[0];
1262 prev_desc->more = desc->more;
1264 rmap_head->val = (unsigned long)desc->more | 1;
1265 mmu_free_pte_list_desc(desc);
1268 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1270 struct pte_list_desc *desc;
1271 struct pte_list_desc *prev_desc;
1274 if (!rmap_head->val) {
1275 pr_err("%s: %p 0->BUG\n", __func__, spte);
1277 } else if (!(rmap_head->val & 1)) {
1278 rmap_printk("%s: %p 1->0\n", __func__, spte);
1279 if ((u64 *)rmap_head->val != spte) {
1280 pr_err("%s: %p 1->BUG\n", __func__, spte);
1285 rmap_printk("%s: %p many->many\n", __func__, spte);
1286 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1289 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1290 if (desc->sptes[i] == spte) {
1291 pte_list_desc_remove_entry(rmap_head,
1292 desc, i, prev_desc);
1299 pr_err("%s: %p many->many\n", __func__, spte);
1304 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1306 mmu_spte_clear_track_bits(sptep);
1307 __pte_list_remove(sptep, rmap_head);
1310 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1311 struct kvm_memory_slot *slot)
1315 idx = gfn_to_index(gfn, slot->base_gfn, level);
1316 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1319 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1320 struct kvm_mmu_page *sp)
1322 struct kvm_memslots *slots;
1323 struct kvm_memory_slot *slot;
1325 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1326 slot = __gfn_to_memslot(slots, gfn);
1327 return __gfn_to_rmap(gfn, sp->role.level, slot);
1330 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1332 struct kvm_mmu_memory_cache *cache;
1334 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1335 return mmu_memory_cache_free_objects(cache);
1338 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1340 struct kvm_mmu_page *sp;
1341 struct kvm_rmap_head *rmap_head;
1343 sp = page_header(__pa(spte));
1344 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1345 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1346 return pte_list_add(vcpu, spte, rmap_head);
1349 static void rmap_remove(struct kvm *kvm, u64 *spte)
1351 struct kvm_mmu_page *sp;
1353 struct kvm_rmap_head *rmap_head;
1355 sp = page_header(__pa(spte));
1356 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1357 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1358 __pte_list_remove(spte, rmap_head);
1362 * Used by the following functions to iterate through the sptes linked by a
1363 * rmap. All fields are private and not assumed to be used outside.
1365 struct rmap_iterator {
1366 /* private fields */
1367 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1368 int pos; /* index of the sptep */
1372 * Iteration must be started by this function. This should also be used after
1373 * removing/dropping sptes from the rmap link because in such cases the
1374 * information in the itererator may not be valid.
1376 * Returns sptep if found, NULL otherwise.
1378 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1379 struct rmap_iterator *iter)
1383 if (!rmap_head->val)
1386 if (!(rmap_head->val & 1)) {
1388 sptep = (u64 *)rmap_head->val;
1392 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1394 sptep = iter->desc->sptes[iter->pos];
1396 BUG_ON(!is_shadow_present_pte(*sptep));
1401 * Must be used with a valid iterator: e.g. after rmap_get_first().
1403 * Returns sptep if found, NULL otherwise.
1405 static u64 *rmap_get_next(struct rmap_iterator *iter)
1410 if (iter->pos < PTE_LIST_EXT - 1) {
1412 sptep = iter->desc->sptes[iter->pos];
1417 iter->desc = iter->desc->more;
1421 /* desc->sptes[0] cannot be NULL */
1422 sptep = iter->desc->sptes[iter->pos];
1429 BUG_ON(!is_shadow_present_pte(*sptep));
1433 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1434 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1435 _spte_; _spte_ = rmap_get_next(_iter_))
1437 static void drop_spte(struct kvm *kvm, u64 *sptep)
1439 if (mmu_spte_clear_track_bits(sptep))
1440 rmap_remove(kvm, sptep);
1444 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1446 if (is_large_pte(*sptep)) {
1447 WARN_ON(page_header(__pa(sptep))->role.level ==
1448 PT_PAGE_TABLE_LEVEL);
1449 drop_spte(kvm, sptep);
1457 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1459 if (__drop_large_spte(vcpu->kvm, sptep))
1460 kvm_flush_remote_tlbs(vcpu->kvm);
1464 * Write-protect on the specified @sptep, @pt_protect indicates whether
1465 * spte write-protection is caused by protecting shadow page table.
1467 * Note: write protection is difference between dirty logging and spte
1469 * - for dirty logging, the spte can be set to writable at anytime if
1470 * its dirty bitmap is properly set.
1471 * - for spte protection, the spte can be writable only after unsync-ing
1474 * Return true if tlb need be flushed.
1476 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1480 if (!is_writable_pte(spte) &&
1481 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1484 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1487 spte &= ~SPTE_MMU_WRITEABLE;
1488 spte = spte & ~PT_WRITABLE_MASK;
1490 return mmu_spte_update(sptep, spte);
1493 static bool __rmap_write_protect(struct kvm *kvm,
1494 struct kvm_rmap_head *rmap_head,
1498 struct rmap_iterator iter;
1501 for_each_rmap_spte(rmap_head, &iter, sptep)
1502 flush |= spte_write_protect(sptep, pt_protect);
1507 static bool spte_clear_dirty(u64 *sptep)
1511 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1513 spte &= ~shadow_dirty_mask;
1515 return mmu_spte_update(sptep, spte);
1518 static bool wrprot_ad_disabled_spte(u64 *sptep)
1520 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1521 (unsigned long *)sptep);
1523 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1525 return was_writable;
1529 * Gets the GFN ready for another round of dirty logging by clearing the
1530 * - D bit on ad-enabled SPTEs, and
1531 * - W bit on ad-disabled SPTEs.
1532 * Returns true iff any D or W bits were cleared.
1534 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1537 struct rmap_iterator iter;
1540 for_each_rmap_spte(rmap_head, &iter, sptep)
1541 if (spte_ad_enabled(*sptep))
1542 flush |= spte_clear_dirty(sptep);
1544 flush |= wrprot_ad_disabled_spte(sptep);
1549 static bool spte_set_dirty(u64 *sptep)
1553 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1555 spte |= shadow_dirty_mask;
1557 return mmu_spte_update(sptep, spte);
1560 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1563 struct rmap_iterator iter;
1566 for_each_rmap_spte(rmap_head, &iter, sptep)
1567 if (spte_ad_enabled(*sptep))
1568 flush |= spte_set_dirty(sptep);
1574 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1575 * @kvm: kvm instance
1576 * @slot: slot to protect
1577 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1578 * @mask: indicates which pages we should protect
1580 * Used when we do not need to care about huge page mappings: e.g. during dirty
1581 * logging we do not have any such mappings.
1583 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1584 struct kvm_memory_slot *slot,
1585 gfn_t gfn_offset, unsigned long mask)
1587 struct kvm_rmap_head *rmap_head;
1590 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1591 PT_PAGE_TABLE_LEVEL, slot);
1592 __rmap_write_protect(kvm, rmap_head, false);
1594 /* clear the first set bit */
1600 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1601 * protect the page if the D-bit isn't supported.
1602 * @kvm: kvm instance
1603 * @slot: slot to clear D-bit
1604 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1605 * @mask: indicates which pages we should clear D-bit
1607 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1609 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1610 struct kvm_memory_slot *slot,
1611 gfn_t gfn_offset, unsigned long mask)
1613 struct kvm_rmap_head *rmap_head;
1616 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1617 PT_PAGE_TABLE_LEVEL, slot);
1618 __rmap_clear_dirty(kvm, rmap_head);
1620 /* clear the first set bit */
1624 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1627 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1630 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1631 * enable dirty logging for them.
1633 * Used when we do not need to care about huge page mappings: e.g. during dirty
1634 * logging we do not have any such mappings.
1636 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1637 struct kvm_memory_slot *slot,
1638 gfn_t gfn_offset, unsigned long mask)
1640 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1641 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1644 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1648 * kvm_arch_write_log_dirty - emulate dirty page logging
1649 * @vcpu: Guest mode vcpu
1651 * Emulate arch specific page modification logging for the
1654 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1656 if (kvm_x86_ops->write_log_dirty)
1657 return kvm_x86_ops->write_log_dirty(vcpu);
1662 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1663 struct kvm_memory_slot *slot, u64 gfn)
1665 struct kvm_rmap_head *rmap_head;
1667 bool write_protected = false;
1669 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1670 rmap_head = __gfn_to_rmap(gfn, i, slot);
1671 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1674 return write_protected;
1677 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1679 struct kvm_memory_slot *slot;
1681 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1682 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1685 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1688 struct rmap_iterator iter;
1691 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1692 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1694 pte_list_remove(rmap_head, sptep);
1701 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1702 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1705 return kvm_zap_rmapp(kvm, rmap_head);
1708 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1709 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1713 struct rmap_iterator iter;
1716 pte_t *ptep = (pte_t *)data;
1719 WARN_ON(pte_huge(*ptep));
1720 new_pfn = pte_pfn(*ptep);
1723 for_each_rmap_spte(rmap_head, &iter, sptep) {
1724 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1725 sptep, *sptep, gfn, level);
1729 if (pte_write(*ptep)) {
1730 pte_list_remove(rmap_head, sptep);
1733 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1734 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1736 new_spte &= ~PT_WRITABLE_MASK;
1737 new_spte &= ~SPTE_HOST_WRITEABLE;
1739 new_spte = mark_spte_for_access_track(new_spte);
1741 mmu_spte_clear_track_bits(sptep);
1742 mmu_spte_set(sptep, new_spte);
1747 kvm_flush_remote_tlbs(kvm);
1752 struct slot_rmap_walk_iterator {
1754 struct kvm_memory_slot *slot;
1760 /* output fields. */
1762 struct kvm_rmap_head *rmap;
1765 /* private field. */
1766 struct kvm_rmap_head *end_rmap;
1770 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1772 iterator->level = level;
1773 iterator->gfn = iterator->start_gfn;
1774 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1775 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1780 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1781 struct kvm_memory_slot *slot, int start_level,
1782 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1784 iterator->slot = slot;
1785 iterator->start_level = start_level;
1786 iterator->end_level = end_level;
1787 iterator->start_gfn = start_gfn;
1788 iterator->end_gfn = end_gfn;
1790 rmap_walk_init_level(iterator, iterator->start_level);
1793 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1795 return !!iterator->rmap;
1798 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1800 if (++iterator->rmap <= iterator->end_rmap) {
1801 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1805 if (++iterator->level > iterator->end_level) {
1806 iterator->rmap = NULL;
1810 rmap_walk_init_level(iterator, iterator->level);
1813 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1814 _start_gfn, _end_gfn, _iter_) \
1815 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1816 _end_level_, _start_gfn, _end_gfn); \
1817 slot_rmap_walk_okay(_iter_); \
1818 slot_rmap_walk_next(_iter_))
1820 static int kvm_handle_hva_range(struct kvm *kvm,
1821 unsigned long start,
1824 int (*handler)(struct kvm *kvm,
1825 struct kvm_rmap_head *rmap_head,
1826 struct kvm_memory_slot *slot,
1829 unsigned long data))
1831 struct kvm_memslots *slots;
1832 struct kvm_memory_slot *memslot;
1833 struct slot_rmap_walk_iterator iterator;
1837 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1838 slots = __kvm_memslots(kvm, i);
1839 kvm_for_each_memslot(memslot, slots) {
1840 unsigned long hva_start, hva_end;
1841 gfn_t gfn_start, gfn_end;
1843 hva_start = max(start, memslot->userspace_addr);
1844 hva_end = min(end, memslot->userspace_addr +
1845 (memslot->npages << PAGE_SHIFT));
1846 if (hva_start >= hva_end)
1849 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1850 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1852 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1853 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1855 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1856 PT_MAX_HUGEPAGE_LEVEL,
1857 gfn_start, gfn_end - 1,
1859 ret |= handler(kvm, iterator.rmap, memslot,
1860 iterator.gfn, iterator.level, data);
1867 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1869 int (*handler)(struct kvm *kvm,
1870 struct kvm_rmap_head *rmap_head,
1871 struct kvm_memory_slot *slot,
1872 gfn_t gfn, int level,
1873 unsigned long data))
1875 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1878 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1880 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1883 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1885 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1888 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1889 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1893 struct rmap_iterator uninitialized_var(iter);
1896 for_each_rmap_spte(rmap_head, &iter, sptep)
1897 young |= mmu_spte_age(sptep);
1899 trace_kvm_age_page(gfn, level, slot, young);
1903 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1904 struct kvm_memory_slot *slot, gfn_t gfn,
1905 int level, unsigned long data)
1908 struct rmap_iterator iter;
1910 for_each_rmap_spte(rmap_head, &iter, sptep)
1911 if (is_accessed_spte(*sptep))
1916 #define RMAP_RECYCLE_THRESHOLD 1000
1918 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1920 struct kvm_rmap_head *rmap_head;
1921 struct kvm_mmu_page *sp;
1923 sp = page_header(__pa(spte));
1925 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1927 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1928 kvm_flush_remote_tlbs(vcpu->kvm);
1931 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1933 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1936 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1938 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1942 static int is_empty_shadow_page(u64 *spt)
1947 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1948 if (is_shadow_present_pte(*pos)) {
1949 printk(KERN_ERR "%s: %p %llx\n", __func__,
1958 * This value is the sum of all of the kvm instances's
1959 * kvm->arch.n_used_mmu_pages values. We need a global,
1960 * aggregate version in order to make the slab shrinker
1963 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1965 kvm->arch.n_used_mmu_pages += nr;
1966 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1969 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1971 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1972 hlist_del(&sp->hash_link);
1973 list_del(&sp->link);
1974 free_page((unsigned long)sp->spt);
1975 if (!sp->role.direct)
1976 free_page((unsigned long)sp->gfns);
1977 kmem_cache_free(mmu_page_header_cache, sp);
1980 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1982 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1985 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1986 struct kvm_mmu_page *sp, u64 *parent_pte)
1991 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1994 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1997 __pte_list_remove(parent_pte, &sp->parent_ptes);
2000 static void drop_parent_pte(struct kvm_mmu_page *sp,
2003 mmu_page_remove_parent_pte(sp, parent_pte);
2004 mmu_spte_clear_no_track(parent_pte);
2007 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2009 struct kvm_mmu_page *sp;
2011 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2012 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2014 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2015 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2018 * The active_mmu_pages list is the FIFO list, do not move the
2019 * page until it is zapped. kvm_zap_obsolete_pages depends on
2020 * this feature. See the comments in kvm_zap_obsolete_pages().
2022 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2023 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2027 static void mark_unsync(u64 *spte);
2028 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2031 struct rmap_iterator iter;
2033 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2038 static void mark_unsync(u64 *spte)
2040 struct kvm_mmu_page *sp;
2043 sp = page_header(__pa(spte));
2044 index = spte - sp->spt;
2045 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2047 if (sp->unsync_children++)
2049 kvm_mmu_mark_parents_unsync(sp);
2052 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2053 struct kvm_mmu_page *sp)
2058 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2062 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2063 struct kvm_mmu_page *sp, u64 *spte,
2069 #define KVM_PAGE_ARRAY_NR 16
2071 struct kvm_mmu_pages {
2072 struct mmu_page_and_offset {
2073 struct kvm_mmu_page *sp;
2075 } page[KVM_PAGE_ARRAY_NR];
2079 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2085 for (i=0; i < pvec->nr; i++)
2086 if (pvec->page[i].sp == sp)
2089 pvec->page[pvec->nr].sp = sp;
2090 pvec->page[pvec->nr].idx = idx;
2092 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2095 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2097 --sp->unsync_children;
2098 WARN_ON((int)sp->unsync_children < 0);
2099 __clear_bit(idx, sp->unsync_child_bitmap);
2102 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2103 struct kvm_mmu_pages *pvec)
2105 int i, ret, nr_unsync_leaf = 0;
2107 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2108 struct kvm_mmu_page *child;
2109 u64 ent = sp->spt[i];
2111 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2112 clear_unsync_child_bit(sp, i);
2116 child = page_header(ent & PT64_BASE_ADDR_MASK);
2118 if (child->unsync_children) {
2119 if (mmu_pages_add(pvec, child, i))
2122 ret = __mmu_unsync_walk(child, pvec);
2124 clear_unsync_child_bit(sp, i);
2126 } else if (ret > 0) {
2127 nr_unsync_leaf += ret;
2130 } else if (child->unsync) {
2132 if (mmu_pages_add(pvec, child, i))
2135 clear_unsync_child_bit(sp, i);
2138 return nr_unsync_leaf;
2141 #define INVALID_INDEX (-1)
2143 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2144 struct kvm_mmu_pages *pvec)
2147 if (!sp->unsync_children)
2150 mmu_pages_add(pvec, sp, INVALID_INDEX);
2151 return __mmu_unsync_walk(sp, pvec);
2154 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2156 WARN_ON(!sp->unsync);
2157 trace_kvm_mmu_sync_page(sp);
2159 --kvm->stat.mmu_unsync;
2162 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2163 struct list_head *invalid_list);
2164 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2165 struct list_head *invalid_list);
2168 * NOTE: we should pay more attention on the zapped-obsolete page
2169 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2170 * since it has been deleted from active_mmu_pages but still can be found
2173 * for_each_valid_sp() has skipped that kind of pages.
2175 #define for_each_valid_sp(_kvm, _sp, _gfn) \
2176 hlist_for_each_entry(_sp, \
2177 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2178 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2181 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
2182 for_each_valid_sp(_kvm, _sp, _gfn) \
2183 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2185 /* @sp->gfn should be write-protected at the call site */
2186 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2187 struct list_head *invalid_list)
2189 if (sp->role.cr4_pae != !!is_pae(vcpu)
2190 || vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2191 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2198 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2199 struct list_head *invalid_list,
2200 bool remote_flush, bool local_flush)
2202 if (!list_empty(invalid_list)) {
2203 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2208 kvm_flush_remote_tlbs(vcpu->kvm);
2209 else if (local_flush)
2210 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2213 #ifdef CONFIG_KVM_MMU_AUDIT
2214 #include "mmu_audit.c"
2216 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2217 static void mmu_audit_disable(void) { }
2220 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2222 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2225 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2226 struct list_head *invalid_list)
2228 kvm_unlink_unsync_page(vcpu->kvm, sp);
2229 return __kvm_sync_page(vcpu, sp, invalid_list);
2232 /* @gfn should be write-protected at the call site */
2233 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2234 struct list_head *invalid_list)
2236 struct kvm_mmu_page *s;
2239 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2243 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2244 ret |= kvm_sync_page(vcpu, s, invalid_list);
2250 struct mmu_page_path {
2251 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2252 unsigned int idx[PT64_ROOT_MAX_LEVEL];
2255 #define for_each_sp(pvec, sp, parents, i) \
2256 for (i = mmu_pages_first(&pvec, &parents); \
2257 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2258 i = mmu_pages_next(&pvec, &parents, i))
2260 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2261 struct mmu_page_path *parents,
2266 for (n = i+1; n < pvec->nr; n++) {
2267 struct kvm_mmu_page *sp = pvec->page[n].sp;
2268 unsigned idx = pvec->page[n].idx;
2269 int level = sp->role.level;
2271 parents->idx[level-1] = idx;
2272 if (level == PT_PAGE_TABLE_LEVEL)
2275 parents->parent[level-2] = sp;
2281 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2282 struct mmu_page_path *parents)
2284 struct kvm_mmu_page *sp;
2290 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2292 sp = pvec->page[0].sp;
2293 level = sp->role.level;
2294 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2296 parents->parent[level-2] = sp;
2298 /* Also set up a sentinel. Further entries in pvec are all
2299 * children of sp, so this element is never overwritten.
2301 parents->parent[level-1] = NULL;
2302 return mmu_pages_next(pvec, parents, 0);
2305 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2307 struct kvm_mmu_page *sp;
2308 unsigned int level = 0;
2311 unsigned int idx = parents->idx[level];
2312 sp = parents->parent[level];
2316 WARN_ON(idx == INVALID_INDEX);
2317 clear_unsync_child_bit(sp, idx);
2319 } while (!sp->unsync_children);
2322 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2323 struct kvm_mmu_page *parent)
2326 struct kvm_mmu_page *sp;
2327 struct mmu_page_path parents;
2328 struct kvm_mmu_pages pages;
2329 LIST_HEAD(invalid_list);
2332 while (mmu_unsync_walk(parent, &pages)) {
2333 bool protected = false;
2335 for_each_sp(pages, sp, parents, i)
2336 protected |= rmap_write_protect(vcpu, sp->gfn);
2339 kvm_flush_remote_tlbs(vcpu->kvm);
2343 for_each_sp(pages, sp, parents, i) {
2344 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2345 mmu_pages_clear_parents(&parents);
2347 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2348 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2349 cond_resched_lock(&vcpu->kvm->mmu_lock);
2354 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2357 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2359 atomic_set(&sp->write_flooding_count, 0);
2362 static void clear_sp_write_flooding_count(u64 *spte)
2364 struct kvm_mmu_page *sp = page_header(__pa(spte));
2366 __clear_sp_write_flooding_count(sp);
2369 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2376 union kvm_mmu_page_role role;
2378 struct kvm_mmu_page *sp;
2379 bool need_sync = false;
2382 LIST_HEAD(invalid_list);
2384 role = vcpu->arch.mmu->mmu_role.base;
2386 role.direct = direct;
2389 role.access = access;
2390 if (!vcpu->arch.mmu->direct_map
2391 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2392 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2393 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2394 role.quadrant = quadrant;
2396 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2397 if (sp->gfn != gfn) {
2402 if (!need_sync && sp->unsync)
2405 if (sp->role.word != role.word)
2409 /* The page is good, but __kvm_sync_page might still end
2410 * up zapping it. If so, break in order to rebuild it.
2412 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2415 WARN_ON(!list_empty(&invalid_list));
2416 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2419 if (sp->unsync_children)
2420 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2422 __clear_sp_write_flooding_count(sp);
2423 trace_kvm_mmu_get_page(sp, false);
2427 ++vcpu->kvm->stat.mmu_cache_miss;
2429 sp = kvm_mmu_alloc_page(vcpu, direct);
2433 hlist_add_head(&sp->hash_link,
2434 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2437 * we should do write protection before syncing pages
2438 * otherwise the content of the synced shadow page may
2439 * be inconsistent with guest page table.
2441 account_shadowed(vcpu->kvm, sp);
2442 if (level == PT_PAGE_TABLE_LEVEL &&
2443 rmap_write_protect(vcpu, gfn))
2444 kvm_flush_remote_tlbs(vcpu->kvm);
2446 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2447 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2449 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2450 clear_page(sp->spt);
2451 trace_kvm_mmu_get_page(sp, true);
2453 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2455 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2456 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2460 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2461 struct kvm_vcpu *vcpu, hpa_t root,
2464 iterator->addr = addr;
2465 iterator->shadow_addr = root;
2466 iterator->level = vcpu->arch.mmu->shadow_root_level;
2468 if (iterator->level == PT64_ROOT_4LEVEL &&
2469 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2470 !vcpu->arch.mmu->direct_map)
2473 if (iterator->level == PT32E_ROOT_LEVEL) {
2475 * prev_root is currently only used for 64-bit hosts. So only
2476 * the active root_hpa is valid here.
2478 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2480 iterator->shadow_addr
2481 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2482 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2484 if (!iterator->shadow_addr)
2485 iterator->level = 0;
2489 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2490 struct kvm_vcpu *vcpu, u64 addr)
2492 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2496 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2498 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2501 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2502 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2506 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2509 if (is_last_spte(spte, iterator->level)) {
2510 iterator->level = 0;
2514 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2518 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2520 __shadow_walk_next(iterator, *iterator->sptep);
2523 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2524 struct kvm_mmu_page *sp)
2528 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2530 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2531 shadow_user_mask | shadow_x_mask | shadow_me_mask;
2533 if (sp_ad_disabled(sp))
2534 spte |= shadow_acc_track_value;
2536 spte |= shadow_accessed_mask;
2538 mmu_spte_set(sptep, spte);
2540 mmu_page_add_parent_pte(vcpu, sp, sptep);
2542 if (sp->unsync_children || sp->unsync)
2546 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2547 unsigned direct_access)
2549 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2550 struct kvm_mmu_page *child;
2553 * For the direct sp, if the guest pte's dirty bit
2554 * changed form clean to dirty, it will corrupt the
2555 * sp's access: allow writable in the read-only sp,
2556 * so we should update the spte at this point to get
2557 * a new sp with the correct access.
2559 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2560 if (child->role.access == direct_access)
2563 drop_parent_pte(child, sptep);
2564 kvm_flush_remote_tlbs(vcpu->kvm);
2568 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2572 struct kvm_mmu_page *child;
2575 if (is_shadow_present_pte(pte)) {
2576 if (is_last_spte(pte, sp->role.level)) {
2577 drop_spte(kvm, spte);
2578 if (is_large_pte(pte))
2581 child = page_header(pte & PT64_BASE_ADDR_MASK);
2582 drop_parent_pte(child, spte);
2587 if (is_mmio_spte(pte))
2588 mmu_spte_clear_no_track(spte);
2593 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2594 struct kvm_mmu_page *sp)
2598 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2599 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2602 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2605 struct rmap_iterator iter;
2607 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2608 drop_parent_pte(sp, sptep);
2611 static int mmu_zap_unsync_children(struct kvm *kvm,
2612 struct kvm_mmu_page *parent,
2613 struct list_head *invalid_list)
2616 struct mmu_page_path parents;
2617 struct kvm_mmu_pages pages;
2619 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2622 while (mmu_unsync_walk(parent, &pages)) {
2623 struct kvm_mmu_page *sp;
2625 for_each_sp(pages, sp, parents, i) {
2626 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2627 mmu_pages_clear_parents(&parents);
2635 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2636 struct list_head *invalid_list)
2640 trace_kvm_mmu_prepare_zap_page(sp);
2641 ++kvm->stat.mmu_shadow_zapped;
2642 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2643 kvm_mmu_page_unlink_children(kvm, sp);
2644 kvm_mmu_unlink_parents(kvm, sp);
2646 if (!sp->role.invalid && !sp->role.direct)
2647 unaccount_shadowed(kvm, sp);
2650 kvm_unlink_unsync_page(kvm, sp);
2651 if (!sp->root_count) {
2654 list_move(&sp->link, invalid_list);
2655 kvm_mod_used_mmu_pages(kvm, -1);
2657 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2660 * The obsolete pages can not be used on any vcpus.
2661 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2663 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2664 kvm_reload_remote_mmus(kvm);
2667 sp->role.invalid = 1;
2671 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2672 struct list_head *invalid_list)
2674 struct kvm_mmu_page *sp, *nsp;
2676 if (list_empty(invalid_list))
2680 * We need to make sure everyone sees our modifications to
2681 * the page tables and see changes to vcpu->mode here. The barrier
2682 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2683 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2685 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2686 * guest mode and/or lockless shadow page table walks.
2688 kvm_flush_remote_tlbs(kvm);
2690 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2691 WARN_ON(!sp->role.invalid || sp->root_count);
2692 kvm_mmu_free_page(sp);
2696 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2697 struct list_head *invalid_list)
2699 struct kvm_mmu_page *sp;
2701 if (list_empty(&kvm->arch.active_mmu_pages))
2704 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2705 struct kvm_mmu_page, link);
2706 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2710 * Changing the number of mmu pages allocated to the vm
2711 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2713 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2715 LIST_HEAD(invalid_list);
2717 spin_lock(&kvm->mmu_lock);
2719 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2720 /* Need to free some mmu pages to achieve the goal. */
2721 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2722 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2725 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2726 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2729 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2731 spin_unlock(&kvm->mmu_lock);
2734 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2736 struct kvm_mmu_page *sp;
2737 LIST_HEAD(invalid_list);
2740 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2742 spin_lock(&kvm->mmu_lock);
2743 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2744 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2747 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2749 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2750 spin_unlock(&kvm->mmu_lock);
2754 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2756 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2758 trace_kvm_mmu_unsync_page(sp);
2759 ++vcpu->kvm->stat.mmu_unsync;
2762 kvm_mmu_mark_parents_unsync(sp);
2765 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2768 struct kvm_mmu_page *sp;
2770 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2773 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2780 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2781 kvm_unsync_page(vcpu, sp);
2785 * We need to ensure that the marking of unsync pages is visible
2786 * before the SPTE is updated to allow writes because
2787 * kvm_mmu_sync_roots() checks the unsync flags without holding
2788 * the MMU lock and so can race with this. If the SPTE was updated
2789 * before the page had been marked as unsync-ed, something like the
2790 * following could happen:
2793 * ---------------------------------------------------------------------
2794 * 1.2 Host updates SPTE
2796 * 2.1 Guest writes a GPTE for GVA X.
2797 * (GPTE being in the guest page table shadowed
2798 * by the SP from CPU 1.)
2799 * This reads SPTE during the page table walk.
2800 * Since SPTE.W is read as 1, there is no
2803 * 2.2 Guest issues TLB flush.
2804 * That causes a VM Exit.
2806 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2807 * Since it is false, so it just returns.
2809 * 2.4 Guest accesses GVA X.
2810 * Since the mapping in the SP was not updated,
2811 * so the old mapping for GVA X incorrectly
2815 * (sp->unsync = true)
2817 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2818 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2819 * pairs with this write barrier.
2826 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2829 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2831 * Some reserved pages, such as those from NVDIMM
2832 * DAX devices, are not for MMIO, and can be mapped
2833 * with cached memory type for better performance.
2834 * However, the above check misconceives those pages
2835 * as MMIO, and results in KVM mapping them with UC
2836 * memory type, which would hurt the performance.
2837 * Therefore, we check the host memory type in addition
2838 * and only treat UC/UC-/WC pages as MMIO.
2840 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2845 /* Bits which may be returned by set_spte() */
2846 #define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
2847 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
2849 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2850 unsigned pte_access, int level,
2851 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2852 bool can_unsync, bool host_writable)
2856 struct kvm_mmu_page *sp;
2858 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2861 sp = page_header(__pa(sptep));
2862 if (sp_ad_disabled(sp))
2863 spte |= shadow_acc_track_value;
2866 * For the EPT case, shadow_present_mask is 0 if hardware
2867 * supports exec-only page table entries. In that case,
2868 * ACC_USER_MASK and shadow_user_mask are used to represent
2869 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2871 spte |= shadow_present_mask;
2873 spte |= spte_shadow_accessed_mask(spte);
2875 if (pte_access & ACC_EXEC_MASK)
2876 spte |= shadow_x_mask;
2878 spte |= shadow_nx_mask;
2880 if (pte_access & ACC_USER_MASK)
2881 spte |= shadow_user_mask;
2883 if (level > PT_PAGE_TABLE_LEVEL)
2884 spte |= PT_PAGE_SIZE_MASK;
2886 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2887 kvm_is_mmio_pfn(pfn));
2890 spte |= SPTE_HOST_WRITEABLE;
2892 pte_access &= ~ACC_WRITE_MASK;
2894 if (!kvm_is_mmio_pfn(pfn))
2895 spte |= shadow_me_mask;
2897 spte |= (u64)pfn << PAGE_SHIFT;
2899 if (pte_access & ACC_WRITE_MASK) {
2902 * Other vcpu creates new sp in the window between
2903 * mapping_level() and acquiring mmu-lock. We can
2904 * allow guest to retry the access, the mapping can
2905 * be fixed if guest refault.
2907 if (level > PT_PAGE_TABLE_LEVEL &&
2908 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2911 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2914 * Optimization: for pte sync, if spte was writable the hash
2915 * lookup is unnecessary (and expensive). Write protection
2916 * is responsibility of mmu_get_page / kvm_sync_page.
2917 * Same reasoning can be applied to dirty page accounting.
2919 if (!can_unsync && is_writable_pte(*sptep))
2922 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2923 pgprintk("%s: found shadow page for %llx, marking ro\n",
2925 ret |= SET_SPTE_WRITE_PROTECTED_PT;
2926 pte_access &= ~ACC_WRITE_MASK;
2927 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2931 if (pte_access & ACC_WRITE_MASK) {
2932 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2933 spte |= spte_shadow_dirty_mask(spte);
2937 spte = mark_spte_for_access_track(spte);
2940 if (mmu_spte_update(sptep, spte))
2941 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2946 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2947 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2948 bool speculative, bool host_writable)
2950 int was_rmapped = 0;
2953 int ret = RET_PF_RETRY;
2956 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2957 *sptep, write_fault, gfn);
2959 if (is_shadow_present_pte(*sptep)) {
2961 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2962 * the parent of the now unreachable PTE.
2964 if (level > PT_PAGE_TABLE_LEVEL &&
2965 !is_large_pte(*sptep)) {
2966 struct kvm_mmu_page *child;
2969 child = page_header(pte & PT64_BASE_ADDR_MASK);
2970 drop_parent_pte(child, sptep);
2972 } else if (pfn != spte_to_pfn(*sptep)) {
2973 pgprintk("hfn old %llx new %llx\n",
2974 spte_to_pfn(*sptep), pfn);
2975 drop_spte(vcpu->kvm, sptep);
2981 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2982 speculative, true, host_writable);
2983 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2985 ret = RET_PF_EMULATE;
2986 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2988 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2989 kvm_flush_remote_tlbs(vcpu->kvm);
2991 if (unlikely(is_mmio_spte(*sptep)))
2992 ret = RET_PF_EMULATE;
2994 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2995 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2996 is_large_pte(*sptep)? "2MB" : "4kB",
2997 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2999 if (!was_rmapped && is_large_pte(*sptep))
3000 ++vcpu->kvm->stat.lpages;
3002 if (is_shadow_present_pte(*sptep)) {
3004 rmap_count = rmap_add(vcpu, sptep, gfn);
3005 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3006 rmap_recycle(vcpu, sptep, gfn);
3010 kvm_release_pfn_clean(pfn);
3015 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3018 struct kvm_memory_slot *slot;
3020 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3022 return KVM_PFN_ERR_FAULT;
3024 return gfn_to_pfn_memslot_atomic(slot, gfn);
3027 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3028 struct kvm_mmu_page *sp,
3029 u64 *start, u64 *end)
3031 struct page *pages[PTE_PREFETCH_NUM];
3032 struct kvm_memory_slot *slot;
3033 unsigned access = sp->role.access;
3037 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3038 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3042 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3046 for (i = 0; i < ret; i++, gfn++, start++)
3047 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3048 page_to_pfn(pages[i]), true, true);
3053 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3054 struct kvm_mmu_page *sp, u64 *sptep)
3056 u64 *spte, *start = NULL;
3059 WARN_ON(!sp->role.direct);
3061 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3064 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3065 if (is_shadow_present_pte(*spte) || spte == sptep) {
3068 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3076 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3078 struct kvm_mmu_page *sp;
3080 sp = page_header(__pa(sptep));
3083 * Without accessed bits, there's no way to distinguish between
3084 * actually accessed translations and prefetched, so disable pte
3085 * prefetch if accessed bits aren't available.
3087 if (sp_ad_disabled(sp))
3090 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3093 __direct_pte_prefetch(vcpu, sp, sptep);
3096 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
3097 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
3099 struct kvm_shadow_walk_iterator iterator;
3100 struct kvm_mmu_page *sp;
3104 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3107 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
3108 if (iterator.level == level) {
3109 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
3110 write, level, gfn, pfn, prefault,
3112 direct_pte_prefetch(vcpu, iterator.sptep);
3113 ++vcpu->stat.pf_fixed;
3117 drop_large_spte(vcpu, iterator.sptep);
3118 if (!is_shadow_present_pte(*iterator.sptep)) {
3119 u64 base_addr = iterator.addr;
3121 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
3122 pseudo_gfn = base_addr >> PAGE_SHIFT;
3123 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
3124 iterator.level - 1, 1, ACC_ALL);
3126 link_shadow_page(vcpu, iterator.sptep, sp);
3132 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3134 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3137 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3140 * Do not cache the mmio info caused by writing the readonly gfn
3141 * into the spte otherwise read access on readonly gfn also can
3142 * caused mmio page fault and treat it as mmio access.
3144 if (pfn == KVM_PFN_ERR_RO_FAULT)
3145 return RET_PF_EMULATE;
3147 if (pfn == KVM_PFN_ERR_HWPOISON) {
3148 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3149 return RET_PF_RETRY;
3155 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3156 gfn_t *gfnp, kvm_pfn_t *pfnp,
3159 kvm_pfn_t pfn = *pfnp;
3161 int level = *levelp;
3164 * Check if it's a transparent hugepage. If this would be an
3165 * hugetlbfs page, level wouldn't be set to
3166 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3169 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3170 level == PT_PAGE_TABLE_LEVEL &&
3171 PageTransCompoundMap(pfn_to_page(pfn)) &&
3172 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3175 * mmu_notifier_retry was successful and we hold the
3176 * mmu_lock here, so the pmd can't become splitting
3177 * from under us, and in turn
3178 * __split_huge_page_refcount() can't run from under
3179 * us and we can safely transfer the refcount from
3180 * PG_tail to PG_head as we switch the pfn to tail to
3183 *levelp = level = PT_DIRECTORY_LEVEL;
3184 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3185 VM_BUG_ON((gfn & mask) != (pfn & mask));
3189 kvm_release_pfn_clean(pfn);
3197 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3198 kvm_pfn_t pfn, unsigned access, int *ret_val)
3200 /* The pfn is invalid, report the error! */
3201 if (unlikely(is_error_pfn(pfn))) {
3202 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3206 if (unlikely(is_noslot_pfn(pfn)))
3207 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3212 static bool page_fault_can_be_fast(u32 error_code)
3215 * Do not fix the mmio spte with invalid generation number which
3216 * need to be updated by slow page fault path.
3218 if (unlikely(error_code & PFERR_RSVD_MASK))
3221 /* See if the page fault is due to an NX violation */
3222 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3223 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3227 * #PF can be fast if:
3228 * 1. The shadow page table entry is not present, which could mean that
3229 * the fault is potentially caused by access tracking (if enabled).
3230 * 2. The shadow page table entry is present and the fault
3231 * is caused by write-protect, that means we just need change the W
3232 * bit of the spte which can be done out of mmu-lock.
3234 * However, if access tracking is disabled we know that a non-present
3235 * page must be a genuine page fault where we have to create a new SPTE.
3236 * So, if access tracking is disabled, we return true only for write
3237 * accesses to a present page.
3240 return shadow_acc_track_mask != 0 ||
3241 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3242 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3246 * Returns true if the SPTE was fixed successfully. Otherwise,
3247 * someone else modified the SPTE from its original value.
3250 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3251 u64 *sptep, u64 old_spte, u64 new_spte)
3255 WARN_ON(!sp->role.direct);
3258 * Theoretically we could also set dirty bit (and flush TLB) here in
3259 * order to eliminate unnecessary PML logging. See comments in
3260 * set_spte. But fast_page_fault is very unlikely to happen with PML
3261 * enabled, so we do not do this. This might result in the same GPA
3262 * to be logged in PML buffer again when the write really happens, and
3263 * eventually to be called by mark_page_dirty twice. But it's also no
3264 * harm. This also avoids the TLB flush needed after setting dirty bit
3265 * so non-PML cases won't be impacted.
3267 * Compare with set_spte where instead shadow_dirty_mask is set.
3269 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3272 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3274 * The gfn of direct spte is stable since it is
3275 * calculated by sp->gfn.
3277 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3278 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3284 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3286 if (fault_err_code & PFERR_FETCH_MASK)
3287 return is_executable_pte(spte);
3289 if (fault_err_code & PFERR_WRITE_MASK)
3290 return is_writable_pte(spte);
3292 /* Fault was on Read access */
3293 return spte & PT_PRESENT_MASK;
3298 * - true: let the vcpu to access on the same address again.
3299 * - false: let the real page fault path to fix it.
3301 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3304 struct kvm_shadow_walk_iterator iterator;
3305 struct kvm_mmu_page *sp;
3306 bool fault_handled = false;
3308 uint retry_count = 0;
3310 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3313 if (!page_fault_can_be_fast(error_code))
3316 walk_shadow_page_lockless_begin(vcpu);
3321 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3322 if (!is_shadow_present_pte(spte) ||
3323 iterator.level < level)
3326 sp = page_header(__pa(iterator.sptep));
3327 if (!is_last_spte(spte, sp->role.level))
3331 * Check whether the memory access that caused the fault would
3332 * still cause it if it were to be performed right now. If not,
3333 * then this is a spurious fault caused by TLB lazily flushed,
3334 * or some other CPU has already fixed the PTE after the
3335 * current CPU took the fault.
3337 * Need not check the access of upper level table entries since
3338 * they are always ACC_ALL.
3340 if (is_access_allowed(error_code, spte)) {
3341 fault_handled = true;
3347 if (is_access_track_spte(spte))
3348 new_spte = restore_acc_track_spte(new_spte);
3351 * Currently, to simplify the code, write-protection can
3352 * be removed in the fast path only if the SPTE was
3353 * write-protected for dirty-logging or access tracking.
3355 if ((error_code & PFERR_WRITE_MASK) &&
3356 spte_can_locklessly_be_made_writable(spte))
3358 new_spte |= PT_WRITABLE_MASK;
3361 * Do not fix write-permission on the large spte. Since
3362 * we only dirty the first page into the dirty-bitmap in
3363 * fast_pf_fix_direct_spte(), other pages are missed
3364 * if its slot has dirty logging enabled.
3366 * Instead, we let the slow page fault path create a
3367 * normal spte to fix the access.
3369 * See the comments in kvm_arch_commit_memory_region().
3371 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3375 /* Verify that the fault can be handled in the fast path */
3376 if (new_spte == spte ||
3377 !is_access_allowed(error_code, new_spte))
3381 * Currently, fast page fault only works for direct mapping
3382 * since the gfn is not stable for indirect shadow page. See
3383 * Documentation/virtual/kvm/locking.txt to get more detail.
3385 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3386 iterator.sptep, spte,
3391 if (++retry_count > 4) {
3392 printk_once(KERN_WARNING
3393 "kvm: Fast #PF retrying more than 4 times.\n");
3399 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3400 spte, fault_handled);
3401 walk_shadow_page_lockless_end(vcpu);
3403 return fault_handled;
3406 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3407 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3408 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3410 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3411 gfn_t gfn, bool prefault)
3415 bool force_pt_level = false;
3417 unsigned long mmu_seq;
3418 bool map_writable, write = error_code & PFERR_WRITE_MASK;
3420 level = mapping_level(vcpu, gfn, &force_pt_level);
3421 if (likely(!force_pt_level)) {
3423 * This path builds a PAE pagetable - so we can map
3424 * 2mb pages at maximum. Therefore check if the level
3425 * is larger than that.
3427 if (level > PT_DIRECTORY_LEVEL)
3428 level = PT_DIRECTORY_LEVEL;
3430 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3433 if (fast_page_fault(vcpu, v, level, error_code))
3434 return RET_PF_RETRY;
3436 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3439 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3440 return RET_PF_RETRY;
3442 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3445 spin_lock(&vcpu->kvm->mmu_lock);
3446 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3448 if (make_mmu_pages_available(vcpu) < 0)
3450 if (likely(!force_pt_level))
3451 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3452 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3453 spin_unlock(&vcpu->kvm->mmu_lock);
3458 spin_unlock(&vcpu->kvm->mmu_lock);
3459 kvm_release_pfn_clean(pfn);
3460 return RET_PF_RETRY;
3463 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3464 struct list_head *invalid_list)
3466 struct kvm_mmu_page *sp;
3468 if (!VALID_PAGE(*root_hpa))
3471 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3473 if (!sp->root_count && sp->role.invalid)
3474 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3476 *root_hpa = INVALID_PAGE;
3479 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3480 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3481 ulong roots_to_free)
3484 LIST_HEAD(invalid_list);
3485 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3487 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3489 /* Before acquiring the MMU lock, see if we need to do any real work. */
3490 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3491 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3492 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3493 VALID_PAGE(mmu->prev_roots[i].hpa))
3496 if (i == KVM_MMU_NUM_PREV_ROOTS)
3500 spin_lock(&vcpu->kvm->mmu_lock);
3502 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3503 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3504 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3507 if (free_active_root) {
3508 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3509 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3510 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3513 for (i = 0; i < 4; ++i)
3514 if (mmu->pae_root[i] != 0)
3515 mmu_free_root_page(vcpu->kvm,
3518 mmu->root_hpa = INVALID_PAGE;
3522 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3523 spin_unlock(&vcpu->kvm->mmu_lock);
3525 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3527 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3531 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3532 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3539 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3541 struct kvm_mmu_page *sp;
3544 if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3545 spin_lock(&vcpu->kvm->mmu_lock);
3546 if(make_mmu_pages_available(vcpu) < 0) {
3547 spin_unlock(&vcpu->kvm->mmu_lock);
3550 sp = kvm_mmu_get_page(vcpu, 0, 0,
3551 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3553 spin_unlock(&vcpu->kvm->mmu_lock);
3554 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3555 } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3556 for (i = 0; i < 4; ++i) {
3557 hpa_t root = vcpu->arch.mmu->pae_root[i];
3559 MMU_WARN_ON(VALID_PAGE(root));
3560 spin_lock(&vcpu->kvm->mmu_lock);
3561 if (make_mmu_pages_available(vcpu) < 0) {
3562 spin_unlock(&vcpu->kvm->mmu_lock);
3565 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3566 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3567 root = __pa(sp->spt);
3569 spin_unlock(&vcpu->kvm->mmu_lock);
3570 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3572 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3579 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3581 struct kvm_mmu_page *sp;
3586 root_gfn = vcpu->arch.mmu->get_cr3(vcpu) >> PAGE_SHIFT;
3588 if (mmu_check_root(vcpu, root_gfn))
3592 * Do we shadow a long mode page table? If so we need to
3593 * write-protect the guests page table root.
3595 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3596 hpa_t root = vcpu->arch.mmu->root_hpa;
3598 MMU_WARN_ON(VALID_PAGE(root));
3600 spin_lock(&vcpu->kvm->mmu_lock);
3601 if (make_mmu_pages_available(vcpu) < 0) {
3602 spin_unlock(&vcpu->kvm->mmu_lock);
3605 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3606 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3607 root = __pa(sp->spt);
3609 spin_unlock(&vcpu->kvm->mmu_lock);
3610 vcpu->arch.mmu->root_hpa = root;
3615 * We shadow a 32 bit page table. This may be a legacy 2-level
3616 * or a PAE 3-level page table. In either case we need to be aware that
3617 * the shadow page table may be a PAE or a long mode page table.
3619 pm_mask = PT_PRESENT_MASK;
3620 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3621 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3623 for (i = 0; i < 4; ++i) {
3624 hpa_t root = vcpu->arch.mmu->pae_root[i];
3626 MMU_WARN_ON(VALID_PAGE(root));
3627 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3628 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3629 if (!(pdptr & PT_PRESENT_MASK)) {
3630 vcpu->arch.mmu->pae_root[i] = 0;
3633 root_gfn = pdptr >> PAGE_SHIFT;
3634 if (mmu_check_root(vcpu, root_gfn))
3637 spin_lock(&vcpu->kvm->mmu_lock);
3638 if (make_mmu_pages_available(vcpu) < 0) {
3639 spin_unlock(&vcpu->kvm->mmu_lock);
3642 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3644 root = __pa(sp->spt);
3646 spin_unlock(&vcpu->kvm->mmu_lock);
3648 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3650 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3653 * If we shadow a 32 bit page table with a long mode page
3654 * table we enter this path.
3656 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3657 if (vcpu->arch.mmu->lm_root == NULL) {
3659 * The additional page necessary for this is only
3660 * allocated on demand.
3665 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3666 if (lm_root == NULL)
3669 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3671 vcpu->arch.mmu->lm_root = lm_root;
3674 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3680 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3682 if (vcpu->arch.mmu->direct_map)
3683 return mmu_alloc_direct_roots(vcpu);
3685 return mmu_alloc_shadow_roots(vcpu);
3688 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3691 struct kvm_mmu_page *sp;
3693 if (vcpu->arch.mmu->direct_map)
3696 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3699 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3701 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3702 hpa_t root = vcpu->arch.mmu->root_hpa;
3703 sp = page_header(root);
3706 * Even if another CPU was marking the SP as unsync-ed
3707 * simultaneously, any guest page table changes are not
3708 * guaranteed to be visible anyway until this VCPU issues a TLB
3709 * flush strictly after those changes are made. We only need to
3710 * ensure that the other CPU sets these flags before any actual
3711 * changes to the page tables are made. The comments in
3712 * mmu_need_write_protect() describe what could go wrong if this
3713 * requirement isn't satisfied.
3715 if (!smp_load_acquire(&sp->unsync) &&
3716 !smp_load_acquire(&sp->unsync_children))
3719 spin_lock(&vcpu->kvm->mmu_lock);
3720 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3722 mmu_sync_children(vcpu, sp);
3724 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3725 spin_unlock(&vcpu->kvm->mmu_lock);
3729 spin_lock(&vcpu->kvm->mmu_lock);
3730 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3732 for (i = 0; i < 4; ++i) {
3733 hpa_t root = vcpu->arch.mmu->pae_root[i];
3735 if (root && VALID_PAGE(root)) {
3736 root &= PT64_BASE_ADDR_MASK;
3737 sp = page_header(root);
3738 mmu_sync_children(vcpu, sp);
3742 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3743 spin_unlock(&vcpu->kvm->mmu_lock);
3745 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3747 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3748 u32 access, struct x86_exception *exception)
3751 exception->error_code = 0;
3755 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3757 struct x86_exception *exception)
3760 exception->error_code = 0;
3761 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3765 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3767 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3769 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3770 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3773 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3775 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3778 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3780 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3783 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3786 * A nested guest cannot use the MMIO cache if it is using nested
3787 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3789 if (mmu_is_nested(vcpu))
3793 return vcpu_match_mmio_gpa(vcpu, addr);
3795 return vcpu_match_mmio_gva(vcpu, addr);
3798 /* return true if reserved bit is detected on spte. */
3800 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3802 struct kvm_shadow_walk_iterator iterator;
3803 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3805 bool reserved = false;
3807 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3810 walk_shadow_page_lockless_begin(vcpu);
3812 for (shadow_walk_init(&iterator, vcpu, addr),
3813 leaf = root = iterator.level;
3814 shadow_walk_okay(&iterator);
3815 __shadow_walk_next(&iterator, spte)) {
3816 spte = mmu_spte_get_lockless(iterator.sptep);
3818 sptes[leaf - 1] = spte;
3821 if (!is_shadow_present_pte(spte))
3824 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
3828 walk_shadow_page_lockless_end(vcpu);
3831 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3833 while (root > leaf) {
3834 pr_err("------ spte 0x%llx level %d.\n",
3835 sptes[root - 1], root);
3844 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3849 if (mmio_info_in_cache(vcpu, addr, direct))
3850 return RET_PF_EMULATE;
3852 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3853 if (WARN_ON(reserved))
3856 if (is_mmio_spte(spte)) {
3857 gfn_t gfn = get_mmio_spte_gfn(spte);
3858 unsigned access = get_mmio_spte_access(spte);
3860 if (!check_mmio_spte(vcpu, spte))
3861 return RET_PF_INVALID;
3866 trace_handle_mmio_page_fault(addr, gfn, access);
3867 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3868 return RET_PF_EMULATE;
3872 * If the page table is zapped by other cpus, let CPU fault again on
3875 return RET_PF_RETRY;
3878 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3879 u32 error_code, gfn_t gfn)
3881 if (unlikely(error_code & PFERR_RSVD_MASK))
3884 if (!(error_code & PFERR_PRESENT_MASK) ||
3885 !(error_code & PFERR_WRITE_MASK))
3889 * guest is writing the page which is write tracked which can
3890 * not be fixed by page fault handler.
3892 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3898 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3900 struct kvm_shadow_walk_iterator iterator;
3903 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3906 walk_shadow_page_lockless_begin(vcpu);
3907 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3908 clear_sp_write_flooding_count(iterator.sptep);
3909 if (!is_shadow_present_pte(spte))
3912 walk_shadow_page_lockless_end(vcpu);
3915 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3916 u32 error_code, bool prefault)
3918 gfn_t gfn = gva >> PAGE_SHIFT;
3921 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3923 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3924 return RET_PF_EMULATE;
3926 r = mmu_topup_memory_caches(vcpu);
3930 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
3933 return nonpaging_map(vcpu, gva & PAGE_MASK,
3934 error_code, gfn, prefault);
3937 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3939 struct kvm_arch_async_pf arch;
3941 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3943 arch.direct_map = vcpu->arch.mmu->direct_map;
3944 arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3946 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3949 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3951 if (unlikely(!lapic_in_kernel(vcpu) ||
3952 kvm_event_needs_reinjection(vcpu) ||
3953 vcpu->arch.exception.pending))
3956 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3959 return kvm_x86_ops->interrupt_allowed(vcpu);
3962 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3963 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3965 struct kvm_memory_slot *slot;
3969 * Don't expose private memslots to L2.
3971 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
3972 *pfn = KVM_PFN_NOSLOT;
3976 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3978 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3980 return false; /* *pfn has correct page already */
3982 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3983 trace_kvm_try_async_get_page(gva, gfn);
3984 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3985 trace_kvm_async_pf_doublefault(gva, gfn);
3986 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3988 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3992 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3996 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3997 u64 fault_address, char *insn, int insn_len)
4001 vcpu->arch.l1tf_flush_l1d = true;
4002 switch (vcpu->arch.apf.host_apf_reason) {
4004 trace_kvm_page_fault(fault_address, error_code);
4006 if (kvm_event_needs_reinjection(vcpu))
4007 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4008 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4011 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4012 vcpu->arch.apf.host_apf_reason = 0;
4013 local_irq_disable();
4014 kvm_async_pf_task_wait(fault_address, 0);
4017 case KVM_PV_REASON_PAGE_READY:
4018 vcpu->arch.apf.host_apf_reason = 0;
4019 local_irq_disable();
4020 kvm_async_pf_task_wake(fault_address);
4026 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4029 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4031 int page_num = KVM_PAGES_PER_HPAGE(level);
4033 gfn &= ~(page_num - 1);
4035 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4038 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
4044 bool force_pt_level;
4045 gfn_t gfn = gpa >> PAGE_SHIFT;
4046 unsigned long mmu_seq;
4047 int write = error_code & PFERR_WRITE_MASK;
4050 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4052 if (page_fault_handle_page_track(vcpu, error_code, gfn))
4053 return RET_PF_EMULATE;
4055 r = mmu_topup_memory_caches(vcpu);
4059 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4060 PT_DIRECTORY_LEVEL);
4061 level = mapping_level(vcpu, gfn, &force_pt_level);
4062 if (likely(!force_pt_level)) {
4063 if (level > PT_DIRECTORY_LEVEL &&
4064 !check_hugepage_cache_consistency(vcpu, gfn, level))
4065 level = PT_DIRECTORY_LEVEL;
4066 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4069 if (fast_page_fault(vcpu, gpa, level, error_code))
4070 return RET_PF_RETRY;
4072 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4075 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4076 return RET_PF_RETRY;
4078 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4081 spin_lock(&vcpu->kvm->mmu_lock);
4082 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4084 if (make_mmu_pages_available(vcpu) < 0)
4086 if (likely(!force_pt_level))
4087 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
4088 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
4089 spin_unlock(&vcpu->kvm->mmu_lock);
4094 spin_unlock(&vcpu->kvm->mmu_lock);
4095 kvm_release_pfn_clean(pfn);
4096 return RET_PF_RETRY;
4099 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4100 struct kvm_mmu *context)
4102 context->page_fault = nonpaging_page_fault;
4103 context->gva_to_gpa = nonpaging_gva_to_gpa;
4104 context->sync_page = nonpaging_sync_page;
4105 context->invlpg = nonpaging_invlpg;
4106 context->update_pte = nonpaging_update_pte;
4107 context->root_level = 0;
4108 context->shadow_root_level = PT32E_ROOT_LEVEL;
4109 context->direct_map = true;
4110 context->nx = false;
4114 * Find out if a previously cached root matching the new CR3/role is available.
4115 * The current root is also inserted into the cache.
4116 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4118 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4119 * false is returned. This root should now be freed by the caller.
4121 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4122 union kvm_mmu_page_role new_role)
4125 struct kvm_mmu_root_info root;
4126 struct kvm_mmu *mmu = vcpu->arch.mmu;
4128 root.cr3 = mmu->get_cr3(vcpu);
4129 root.hpa = mmu->root_hpa;
4131 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4132 swap(root, mmu->prev_roots[i]);
4134 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4135 page_header(root.hpa) != NULL &&
4136 new_role.word == page_header(root.hpa)->role.word)
4140 mmu->root_hpa = root.hpa;
4142 return i < KVM_MMU_NUM_PREV_ROOTS;
4145 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4146 union kvm_mmu_page_role new_role,
4147 bool skip_tlb_flush)
4149 struct kvm_mmu *mmu = vcpu->arch.mmu;
4152 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4153 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4154 * later if necessary.
4156 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4157 mmu->root_level >= PT64_ROOT_4LEVEL) {
4158 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4161 if (cached_root_available(vcpu, new_cr3, new_role)) {
4163 * It is possible that the cached previous root page is
4164 * obsolete because of a change in the MMU
4165 * generation number. However, that is accompanied by
4166 * KVM_REQ_MMU_RELOAD, which will free the root that we
4167 * have set here and allocate a new one.
4170 kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4171 if (!skip_tlb_flush) {
4172 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4173 kvm_x86_ops->tlb_flush(vcpu, true);
4177 * The last MMIO access's GVA and GPA are cached in the
4178 * VCPU. When switching to a new CR3, that GVA->GPA
4179 * mapping may no longer be valid. So clear any cached
4180 * MMIO info even when we don't need to sync the shadow
4183 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4185 __clear_sp_write_flooding_count(
4186 page_header(mmu->root_hpa));
4195 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4196 union kvm_mmu_page_role new_role,
4197 bool skip_tlb_flush)
4199 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4200 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4201 KVM_MMU_ROOT_CURRENT);
4204 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4206 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4209 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4211 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4213 return kvm_read_cr3(vcpu);
4216 static void inject_page_fault(struct kvm_vcpu *vcpu,
4217 struct x86_exception *fault)
4219 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
4222 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4223 unsigned access, int *nr_present)
4225 if (unlikely(is_mmio_spte(*sptep))) {
4226 if (gfn != get_mmio_spte_gfn(*sptep)) {
4227 mmu_spte_clear_no_track(sptep);
4232 mark_mmio_spte(vcpu, sptep, gfn, access);
4239 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4240 unsigned level, unsigned gpte)
4243 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4244 * If it is clear, there are no large pages at this level, so clear
4245 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4247 gpte &= level - mmu->last_nonleaf_level;
4250 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4251 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4252 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4254 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4256 return gpte & PT_PAGE_SIZE_MASK;
4259 #define PTTYPE_EPT 18 /* arbitrary */
4260 #define PTTYPE PTTYPE_EPT
4261 #include "paging_tmpl.h"
4265 #include "paging_tmpl.h"
4269 #include "paging_tmpl.h"
4273 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4274 struct rsvd_bits_validate *rsvd_check,
4275 int maxphyaddr, int level, bool nx, bool gbpages,
4278 u64 exb_bit_rsvd = 0;
4279 u64 gbpages_bit_rsvd = 0;
4280 u64 nonleaf_bit8_rsvd = 0;
4282 rsvd_check->bad_mt_xwr = 0;
4285 exb_bit_rsvd = rsvd_bits(63, 63);
4287 gbpages_bit_rsvd = rsvd_bits(7, 7);
4290 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4291 * leaf entries) on AMD CPUs only.
4294 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4297 case PT32_ROOT_LEVEL:
4298 /* no rsvd bits for 2 level 4K page table entries */
4299 rsvd_check->rsvd_bits_mask[0][1] = 0;
4300 rsvd_check->rsvd_bits_mask[0][0] = 0;
4301 rsvd_check->rsvd_bits_mask[1][0] =
4302 rsvd_check->rsvd_bits_mask[0][0];
4305 rsvd_check->rsvd_bits_mask[1][1] = 0;
4309 if (is_cpuid_PSE36())
4310 /* 36bits PSE 4MB page */
4311 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4313 /* 32 bits PSE 4MB page */
4314 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4316 case PT32E_ROOT_LEVEL:
4317 rsvd_check->rsvd_bits_mask[0][2] =
4318 rsvd_bits(maxphyaddr, 63) |
4319 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
4320 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4321 rsvd_bits(maxphyaddr, 62); /* PDE */
4322 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4323 rsvd_bits(maxphyaddr, 62); /* PTE */
4324 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4325 rsvd_bits(maxphyaddr, 62) |
4326 rsvd_bits(13, 20); /* large page */
4327 rsvd_check->rsvd_bits_mask[1][0] =
4328 rsvd_check->rsvd_bits_mask[0][0];
4330 case PT64_ROOT_5LEVEL:
4331 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4332 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4333 rsvd_bits(maxphyaddr, 51);
4334 rsvd_check->rsvd_bits_mask[1][4] =
4335 rsvd_check->rsvd_bits_mask[0][4];
4336 case PT64_ROOT_4LEVEL:
4337 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4338 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4339 rsvd_bits(maxphyaddr, 51);
4340 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4341 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4342 rsvd_bits(maxphyaddr, 51);
4343 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4344 rsvd_bits(maxphyaddr, 51);
4345 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4346 rsvd_bits(maxphyaddr, 51);
4347 rsvd_check->rsvd_bits_mask[1][3] =
4348 rsvd_check->rsvd_bits_mask[0][3];
4349 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4350 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4352 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4353 rsvd_bits(maxphyaddr, 51) |
4354 rsvd_bits(13, 20); /* large page */
4355 rsvd_check->rsvd_bits_mask[1][0] =
4356 rsvd_check->rsvd_bits_mask[0][0];
4361 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4362 struct kvm_mmu *context)
4364 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4365 cpuid_maxphyaddr(vcpu), context->root_level,
4367 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4368 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4372 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4373 int maxphyaddr, bool execonly)
4377 rsvd_check->rsvd_bits_mask[0][4] =
4378 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4379 rsvd_check->rsvd_bits_mask[0][3] =
4380 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4381 rsvd_check->rsvd_bits_mask[0][2] =
4382 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4383 rsvd_check->rsvd_bits_mask[0][1] =
4384 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4385 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4388 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4389 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4390 rsvd_check->rsvd_bits_mask[1][2] =
4391 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4392 rsvd_check->rsvd_bits_mask[1][1] =
4393 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4394 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4396 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4397 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4398 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4399 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4400 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4402 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4403 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4405 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4408 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4409 struct kvm_mmu *context, bool execonly)
4411 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4412 cpuid_maxphyaddr(vcpu), execonly);
4416 * the page table on host is the shadow page table for the page
4417 * table in guest or amd nested guest, its mmu features completely
4418 * follow the features in guest.
4421 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4423 bool uses_nx = context->nx ||
4424 context->mmu_role.base.smep_andnot_wp;
4425 struct rsvd_bits_validate *shadow_zero_check;
4429 * Passing "true" to the last argument is okay; it adds a check
4430 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4432 shadow_zero_check = &context->shadow_zero_check;
4433 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4434 boot_cpu_data.x86_phys_bits,
4435 context->shadow_root_level, uses_nx,
4436 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4437 is_pse(vcpu), true);
4439 if (!shadow_me_mask)
4442 for (i = context->shadow_root_level; --i >= 0;) {
4443 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4444 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4448 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4450 static inline bool boot_cpu_is_amd(void)
4452 WARN_ON_ONCE(!tdp_enabled);
4453 return shadow_x_mask == 0;
4457 * the direct page table on host, use as much mmu features as
4458 * possible, however, kvm currently does not do execution-protection.
4461 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4462 struct kvm_mmu *context)
4464 struct rsvd_bits_validate *shadow_zero_check;
4467 shadow_zero_check = &context->shadow_zero_check;
4469 if (boot_cpu_is_amd())
4470 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4471 boot_cpu_data.x86_phys_bits,
4472 context->shadow_root_level, false,
4473 boot_cpu_has(X86_FEATURE_GBPAGES),
4476 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4477 boot_cpu_data.x86_phys_bits,
4480 if (!shadow_me_mask)
4483 for (i = context->shadow_root_level; --i >= 0;) {
4484 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4485 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4490 * as the comments in reset_shadow_zero_bits_mask() except it
4491 * is the shadow page table for intel nested guest.
4494 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4495 struct kvm_mmu *context, bool execonly)
4497 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4498 boot_cpu_data.x86_phys_bits, execonly);
4501 #define BYTE_MASK(access) \
4502 ((1 & (access) ? 2 : 0) | \
4503 (2 & (access) ? 4 : 0) | \
4504 (3 & (access) ? 8 : 0) | \
4505 (4 & (access) ? 16 : 0) | \
4506 (5 & (access) ? 32 : 0) | \
4507 (6 & (access) ? 64 : 0) | \
4508 (7 & (access) ? 128 : 0))
4511 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4512 struct kvm_mmu *mmu, bool ept)
4516 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4517 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4518 const u8 u = BYTE_MASK(ACC_USER_MASK);
4520 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4521 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4522 bool cr0_wp = is_write_protection(vcpu);
4524 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4525 unsigned pfec = byte << 1;
4528 * Each "*f" variable has a 1 bit for each UWX value
4529 * that causes a fault with the given PFEC.
4532 /* Faults from writes to non-writable pages */
4533 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4534 /* Faults from user mode accesses to supervisor pages */
4535 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4536 /* Faults from fetches of non-executable pages*/
4537 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4538 /* Faults from kernel mode fetches of user pages */
4540 /* Faults from kernel mode accesses of user pages */
4544 /* Faults from kernel mode accesses to user pages */
4545 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4547 /* Not really needed: !nx will cause pte.nx to fault */
4551 /* Allow supervisor writes if !cr0.wp */
4553 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4555 /* Disallow supervisor fetches of user code if cr4.smep */
4557 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4560 * SMAP:kernel-mode data accesses from user-mode
4561 * mappings should fault. A fault is considered
4562 * as a SMAP violation if all of the following
4563 * conditions are true:
4564 * - X86_CR4_SMAP is set in CR4
4565 * - A user page is accessed
4566 * - The access is not a fetch
4567 * - Page fault in kernel mode
4568 * - if CPL = 3 or X86_EFLAGS_AC is clear
4570 * Here, we cover the first three conditions.
4571 * The fourth is computed dynamically in permission_fault();
4572 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4573 * *not* subject to SMAP restrictions.
4576 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4579 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4584 * PKU is an additional mechanism by which the paging controls access to
4585 * user-mode addresses based on the value in the PKRU register. Protection
4586 * key violations are reported through a bit in the page fault error code.
4587 * Unlike other bits of the error code, the PK bit is not known at the
4588 * call site of e.g. gva_to_gpa; it must be computed directly in
4589 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4590 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4592 * In particular the following conditions come from the error code, the
4593 * page tables and the machine state:
4594 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4595 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4596 * - PK is always zero if U=0 in the page tables
4597 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4599 * The PKRU bitmask caches the result of these four conditions. The error
4600 * code (minus the P bit) and the page table's U bit form an index into the
4601 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4602 * with the two bits of the PKRU register corresponding to the protection key.
4603 * For the first three conditions above the bits will be 00, thus masking
4604 * away both AD and WD. For all reads or if the last condition holds, WD
4605 * only will be masked away.
4607 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4618 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4619 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4624 wp = is_write_protection(vcpu);
4626 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4627 unsigned pfec, pkey_bits;
4628 bool check_pkey, check_write, ff, uf, wf, pte_user;
4631 ff = pfec & PFERR_FETCH_MASK;
4632 uf = pfec & PFERR_USER_MASK;
4633 wf = pfec & PFERR_WRITE_MASK;
4635 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4636 pte_user = pfec & PFERR_RSVD_MASK;
4639 * Only need to check the access which is not an
4640 * instruction fetch and is to a user page.
4642 check_pkey = (!ff && pte_user);
4644 * write access is controlled by PKRU if it is a
4645 * user access or CR0.WP = 1.
4647 check_write = check_pkey && wf && (uf || wp);
4649 /* PKRU.AD stops both read and write access. */
4650 pkey_bits = !!check_pkey;
4651 /* PKRU.WD stops write access. */
4652 pkey_bits |= (!!check_write) << 1;
4654 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4658 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4660 unsigned root_level = mmu->root_level;
4662 mmu->last_nonleaf_level = root_level;
4663 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4664 mmu->last_nonleaf_level++;
4667 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4668 struct kvm_mmu *context,
4671 context->nx = is_nx(vcpu);
4672 context->root_level = level;
4674 reset_rsvds_bits_mask(vcpu, context);
4675 update_permission_bitmask(vcpu, context, false);
4676 update_pkru_bitmask(vcpu, context, false);
4677 update_last_nonleaf_level(vcpu, context);
4679 MMU_WARN_ON(!is_pae(vcpu));
4680 context->page_fault = paging64_page_fault;
4681 context->gva_to_gpa = paging64_gva_to_gpa;
4682 context->sync_page = paging64_sync_page;
4683 context->invlpg = paging64_invlpg;
4684 context->update_pte = paging64_update_pte;
4685 context->shadow_root_level = level;
4686 context->direct_map = false;
4689 static void paging64_init_context(struct kvm_vcpu *vcpu,
4690 struct kvm_mmu *context)
4692 int root_level = is_la57_mode(vcpu) ?
4693 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4695 paging64_init_context_common(vcpu, context, root_level);
4698 static void paging32_init_context(struct kvm_vcpu *vcpu,
4699 struct kvm_mmu *context)
4701 context->nx = false;
4702 context->root_level = PT32_ROOT_LEVEL;
4704 reset_rsvds_bits_mask(vcpu, context);
4705 update_permission_bitmask(vcpu, context, false);
4706 update_pkru_bitmask(vcpu, context, false);
4707 update_last_nonleaf_level(vcpu, context);
4709 context->page_fault = paging32_page_fault;
4710 context->gva_to_gpa = paging32_gva_to_gpa;
4711 context->sync_page = paging32_sync_page;
4712 context->invlpg = paging32_invlpg;
4713 context->update_pte = paging32_update_pte;
4714 context->shadow_root_level = PT32E_ROOT_LEVEL;
4715 context->direct_map = false;
4718 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4719 struct kvm_mmu *context)
4721 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4724 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4726 union kvm_mmu_extended_role ext = {0};
4728 ext.cr0_pg = !!is_paging(vcpu);
4729 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4730 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4731 ext.cr4_pse = !!is_pse(vcpu);
4732 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4733 ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4740 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4743 union kvm_mmu_role role = {0};
4745 role.base.access = ACC_ALL;
4746 role.base.nxe = !!is_nx(vcpu);
4747 role.base.cr4_pae = !!is_pae(vcpu);
4748 role.base.cr0_wp = is_write_protection(vcpu);
4749 role.base.smm = is_smm(vcpu);
4750 role.base.guest_mode = is_guest_mode(vcpu);
4755 role.ext = kvm_calc_mmu_role_ext(vcpu);
4760 static union kvm_mmu_role
4761 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4763 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4765 role.base.ad_disabled = (shadow_accessed_mask == 0);
4766 role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4767 role.base.direct = true;
4772 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4774 struct kvm_mmu *context = vcpu->arch.mmu;
4775 union kvm_mmu_role new_role =
4776 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4778 new_role.base.word &= mmu_base_role_mask.word;
4779 if (new_role.as_u64 == context->mmu_role.as_u64)
4782 context->mmu_role.as_u64 = new_role.as_u64;
4783 context->page_fault = tdp_page_fault;
4784 context->sync_page = nonpaging_sync_page;
4785 context->invlpg = nonpaging_invlpg;
4786 context->update_pte = nonpaging_update_pte;
4787 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4788 context->direct_map = true;
4789 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4790 context->get_cr3 = get_cr3;
4791 context->get_pdptr = kvm_pdptr_read;
4792 context->inject_page_fault = kvm_inject_page_fault;
4794 if (!is_paging(vcpu)) {
4795 context->nx = false;
4796 context->gva_to_gpa = nonpaging_gva_to_gpa;
4797 context->root_level = 0;
4798 } else if (is_long_mode(vcpu)) {
4799 context->nx = is_nx(vcpu);
4800 context->root_level = is_la57_mode(vcpu) ?
4801 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4802 reset_rsvds_bits_mask(vcpu, context);
4803 context->gva_to_gpa = paging64_gva_to_gpa;
4804 } else if (is_pae(vcpu)) {
4805 context->nx = is_nx(vcpu);
4806 context->root_level = PT32E_ROOT_LEVEL;
4807 reset_rsvds_bits_mask(vcpu, context);
4808 context->gva_to_gpa = paging64_gva_to_gpa;
4810 context->nx = false;
4811 context->root_level = PT32_ROOT_LEVEL;
4812 reset_rsvds_bits_mask(vcpu, context);
4813 context->gva_to_gpa = paging32_gva_to_gpa;
4816 update_permission_bitmask(vcpu, context, false);
4817 update_pkru_bitmask(vcpu, context, false);
4818 update_last_nonleaf_level(vcpu, context);
4819 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4822 static union kvm_mmu_role
4823 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4825 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4827 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4828 !is_write_protection(vcpu);
4829 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4830 !is_write_protection(vcpu);
4831 role.base.direct = !is_paging(vcpu);
4833 if (!is_long_mode(vcpu))
4834 role.base.level = PT32E_ROOT_LEVEL;
4835 else if (is_la57_mode(vcpu))
4836 role.base.level = PT64_ROOT_5LEVEL;
4838 role.base.level = PT64_ROOT_4LEVEL;
4843 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4845 struct kvm_mmu *context = vcpu->arch.mmu;
4846 union kvm_mmu_role new_role =
4847 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4849 new_role.base.word &= mmu_base_role_mask.word;
4850 if (new_role.as_u64 == context->mmu_role.as_u64)
4853 if (!is_paging(vcpu))
4854 nonpaging_init_context(vcpu, context);
4855 else if (is_long_mode(vcpu))
4856 paging64_init_context(vcpu, context);
4857 else if (is_pae(vcpu))
4858 paging32E_init_context(vcpu, context);
4860 paging32_init_context(vcpu, context);
4862 context->mmu_role.as_u64 = new_role.as_u64;
4863 reset_shadow_zero_bits_mask(vcpu, context);
4865 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4867 static union kvm_mmu_role
4868 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4871 union kvm_mmu_role role;
4873 /* Base role is inherited from root_mmu */
4874 role.base.word = vcpu->arch.root_mmu.mmu_role.base.word;
4875 role.ext = kvm_calc_mmu_role_ext(vcpu);
4877 role.base.level = PT64_ROOT_4LEVEL;
4878 role.base.direct = false;
4879 role.base.ad_disabled = !accessed_dirty;
4880 role.base.guest_mode = true;
4881 role.base.access = ACC_ALL;
4883 role.ext.execonly = execonly;
4888 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4889 bool accessed_dirty, gpa_t new_eptp)
4891 struct kvm_mmu *context = vcpu->arch.mmu;
4892 union kvm_mmu_role new_role =
4893 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4896 __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
4898 new_role.base.word &= mmu_base_role_mask.word;
4899 if (new_role.as_u64 == context->mmu_role.as_u64)
4902 context->shadow_root_level = PT64_ROOT_4LEVEL;
4905 context->ept_ad = accessed_dirty;
4906 context->page_fault = ept_page_fault;
4907 context->gva_to_gpa = ept_gva_to_gpa;
4908 context->sync_page = ept_sync_page;
4909 context->invlpg = ept_invlpg;
4910 context->update_pte = ept_update_pte;
4911 context->root_level = PT64_ROOT_4LEVEL;
4912 context->direct_map = false;
4913 context->mmu_role.as_u64 = new_role.as_u64;
4915 update_permission_bitmask(vcpu, context, true);
4916 update_pkru_bitmask(vcpu, context, true);
4917 update_last_nonleaf_level(vcpu, context);
4918 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4919 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4921 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4923 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4925 struct kvm_mmu *context = vcpu->arch.mmu;
4927 kvm_init_shadow_mmu(vcpu);
4928 context->set_cr3 = kvm_x86_ops->set_cr3;
4929 context->get_cr3 = get_cr3;
4930 context->get_pdptr = kvm_pdptr_read;
4931 context->inject_page_fault = kvm_inject_page_fault;
4934 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4936 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4937 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4939 new_role.base.word &= mmu_base_role_mask.word;
4940 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4943 g_context->mmu_role.as_u64 = new_role.as_u64;
4944 g_context->get_cr3 = get_cr3;
4945 g_context->get_pdptr = kvm_pdptr_read;
4946 g_context->inject_page_fault = kvm_inject_page_fault;
4949 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4950 * L1's nested page tables (e.g. EPT12). The nested translation
4951 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4952 * L2's page tables as the first level of translation and L1's
4953 * nested page tables as the second level of translation. Basically
4954 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4956 if (!is_paging(vcpu)) {
4957 g_context->nx = false;
4958 g_context->root_level = 0;
4959 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4960 } else if (is_long_mode(vcpu)) {
4961 g_context->nx = is_nx(vcpu);
4962 g_context->root_level = is_la57_mode(vcpu) ?
4963 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4964 reset_rsvds_bits_mask(vcpu, g_context);
4965 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4966 } else if (is_pae(vcpu)) {
4967 g_context->nx = is_nx(vcpu);
4968 g_context->root_level = PT32E_ROOT_LEVEL;
4969 reset_rsvds_bits_mask(vcpu, g_context);
4970 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4972 g_context->nx = false;
4973 g_context->root_level = PT32_ROOT_LEVEL;
4974 reset_rsvds_bits_mask(vcpu, g_context);
4975 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4978 update_permission_bitmask(vcpu, g_context, false);
4979 update_pkru_bitmask(vcpu, g_context, false);
4980 update_last_nonleaf_level(vcpu, g_context);
4983 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4988 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4990 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4991 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4994 if (mmu_is_nested(vcpu))
4995 init_kvm_nested_mmu(vcpu);
4996 else if (tdp_enabled)
4997 init_kvm_tdp_mmu(vcpu);
4999 init_kvm_softmmu(vcpu);
5001 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5003 static union kvm_mmu_page_role
5004 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5006 union kvm_mmu_role role;
5009 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5011 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5016 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5018 kvm_mmu_unload(vcpu);
5019 kvm_init_mmu(vcpu, true);
5021 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5023 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5027 r = mmu_topup_memory_caches(vcpu);
5030 r = mmu_alloc_roots(vcpu);
5031 kvm_mmu_sync_roots(vcpu);
5034 kvm_mmu_load_cr3(vcpu);
5035 kvm_x86_ops->tlb_flush(vcpu, true);
5039 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5041 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5043 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5044 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5045 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5046 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5048 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5050 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5051 struct kvm_mmu_page *sp, u64 *spte,
5054 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5055 ++vcpu->kvm->stat.mmu_pde_zapped;
5059 ++vcpu->kvm->stat.mmu_pte_updated;
5060 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5063 static bool need_remote_flush(u64 old, u64 new)
5065 if (!is_shadow_present_pte(old))
5067 if (!is_shadow_present_pte(new))
5069 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5071 old ^= shadow_nx_mask;
5072 new ^= shadow_nx_mask;
5073 return (old & ~new & PT64_PERM_MASK) != 0;
5076 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5083 * Assume that the pte write on a page table of the same type
5084 * as the current vcpu paging mode since we update the sptes only
5085 * when they have the same mode.
5087 if (is_pae(vcpu) && *bytes == 4) {
5088 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5093 if (*bytes == 4 || *bytes == 8) {
5094 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5103 * If we're seeing too many writes to a page, it may no longer be a page table,
5104 * or we may be forking, in which case it is better to unmap the page.
5106 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5109 * Skip write-flooding detected for the sp whose level is 1, because
5110 * it can become unsync, then the guest page is not write-protected.
5112 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5115 atomic_inc(&sp->write_flooding_count);
5116 return atomic_read(&sp->write_flooding_count) >= 3;
5120 * Misaligned accesses are too much trouble to fix up; also, they usually
5121 * indicate a page is not used as a page table.
5123 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5126 unsigned offset, pte_size, misaligned;
5128 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5129 gpa, bytes, sp->role.word);
5131 offset = offset_in_page(gpa);
5132 pte_size = sp->role.cr4_pae ? 8 : 4;
5135 * Sometimes, the OS only writes the last one bytes to update status
5136 * bits, for example, in linux, andb instruction is used in clear_bit().
5138 if (!(offset & (pte_size - 1)) && bytes == 1)
5141 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5142 misaligned |= bytes < 4;
5147 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5149 unsigned page_offset, quadrant;
5153 page_offset = offset_in_page(gpa);
5154 level = sp->role.level;
5156 if (!sp->role.cr4_pae) {
5157 page_offset <<= 1; /* 32->64 */
5159 * A 32-bit pde maps 4MB while the shadow pdes map
5160 * only 2MB. So we need to double the offset again
5161 * and zap two pdes instead of one.
5163 if (level == PT32_ROOT_LEVEL) {
5164 page_offset &= ~7; /* kill rounding error */
5168 quadrant = page_offset >> PAGE_SHIFT;
5169 page_offset &= ~PAGE_MASK;
5170 if (quadrant != sp->role.quadrant)
5174 spte = &sp->spt[page_offset / sizeof(*spte)];
5178 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5179 const u8 *new, int bytes,
5180 struct kvm_page_track_notifier_node *node)
5182 gfn_t gfn = gpa >> PAGE_SHIFT;
5183 struct kvm_mmu_page *sp;
5184 LIST_HEAD(invalid_list);
5185 u64 entry, gentry, *spte;
5187 bool remote_flush, local_flush;
5190 * If we don't have indirect shadow pages, it means no page is
5191 * write-protected, so we can exit simply.
5193 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5196 remote_flush = local_flush = false;
5198 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5201 * No need to care whether allocation memory is successful
5202 * or not since pte prefetch is skiped if it does not have
5203 * enough objects in the cache.
5205 mmu_topup_memory_caches(vcpu);
5207 spin_lock(&vcpu->kvm->mmu_lock);
5209 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5211 ++vcpu->kvm->stat.mmu_pte_write;
5212 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5214 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5215 if (detect_write_misaligned(sp, gpa, bytes) ||
5216 detect_write_flooding(sp)) {
5217 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5218 ++vcpu->kvm->stat.mmu_flooded;
5222 spte = get_written_sptes(sp, gpa, &npte);
5228 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5231 mmu_page_zap_pte(vcpu->kvm, sp, spte);
5233 !((sp->role.word ^ base_role)
5234 & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5235 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5236 if (need_remote_flush(entry, *spte))
5237 remote_flush = true;
5241 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5242 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5243 spin_unlock(&vcpu->kvm->mmu_lock);
5246 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5251 if (vcpu->arch.mmu->direct_map)
5254 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5256 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5260 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5262 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5264 LIST_HEAD(invalid_list);
5266 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5269 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5270 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5273 ++vcpu->kvm->stat.mmu_recycled;
5275 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5277 if (!kvm_mmu_available_pages(vcpu->kvm))
5282 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
5283 void *insn, int insn_len)
5285 int r, emulation_type = 0;
5286 enum emulation_result er;
5287 bool direct = vcpu->arch.mmu->direct_map;
5289 /* With shadow page tables, fault_address contains a GVA or nGPA. */
5290 if (vcpu->arch.mmu->direct_map) {
5291 vcpu->arch.gpa_available = true;
5292 vcpu->arch.gpa_val = cr2;
5296 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5297 r = handle_mmio_page_fault(vcpu, cr2, direct);
5298 if (r == RET_PF_EMULATE)
5302 if (r == RET_PF_INVALID) {
5303 r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5304 lower_32_bits(error_code),
5306 WARN_ON(r == RET_PF_INVALID);
5309 if (r == RET_PF_RETRY)
5315 * Before emulating the instruction, check if the error code
5316 * was due to a RO violation while translating the guest page.
5317 * This can occur when using nested virtualization with nested
5318 * paging in both guests. If true, we simply unprotect the page
5319 * and resume the guest.
5321 if (vcpu->arch.mmu->direct_map &&
5322 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5323 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5328 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5329 * optimistically try to just unprotect the page and let the processor
5330 * re-execute the instruction that caused the page fault. Do not allow
5331 * retrying MMIO emulation, as it's not only pointless but could also
5332 * cause us to enter an infinite loop because the processor will keep
5333 * faulting on the non-existent MMIO address. Retrying an instruction
5334 * from a nested guest is also pointless and dangerous as we are only
5335 * explicitly shadowing L1's page tables, i.e. unprotecting something
5336 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5338 if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
5339 emulation_type = EMULTYPE_ALLOW_RETRY;
5342 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5343 * This can happen if a guest gets a page-fault on data access but the HW
5344 * table walker is not able to read the instruction page (e.g instruction
5345 * page is not present in memory). In those cases we simply restart the
5348 if (unlikely(insn && !insn_len))
5351 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
5356 case EMULATE_USER_EXIT:
5357 ++vcpu->stat.mmio_exits;
5365 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5367 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5369 struct kvm_mmu *mmu = vcpu->arch.mmu;
5372 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */
5373 if (is_noncanonical_address(gva, vcpu))
5376 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5379 * INVLPG is required to invalidate any global mappings for the VA,
5380 * irrespective of PCID. Since it would take us roughly similar amount
5381 * of work to determine whether any of the prev_root mappings of the VA
5382 * is marked global, or to just sync it blindly, so we might as well
5383 * just always sync it.
5385 * Mappings not reachable via the current cr3 or the prev_roots will be
5386 * synced when switching to that cr3, so nothing needs to be done here
5389 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5390 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5391 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5393 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5394 ++vcpu->stat.invlpg;
5396 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5398 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5400 struct kvm_mmu *mmu = vcpu->arch.mmu;
5401 bool tlb_flush = false;
5404 if (pcid == kvm_get_active_pcid(vcpu)) {
5405 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5409 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5410 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5411 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5412 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5418 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5420 ++vcpu->stat.invlpg;
5423 * Mappings not reachable via the current cr3 or the prev_roots will be
5424 * synced when switching to that cr3, so nothing needs to be done here
5428 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5430 void kvm_enable_tdp(void)
5434 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5436 void kvm_disable_tdp(void)
5438 tdp_enabled = false;
5440 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5442 static void free_mmu_pages(struct kvm_vcpu *vcpu)
5444 free_page((unsigned long)vcpu->arch.mmu->pae_root);
5445 free_page((unsigned long)vcpu->arch.mmu->lm_root);
5448 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5457 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5458 * Therefore we need to allocate shadow page tables in the first
5459 * 4GB of memory, which happens to fit the DMA32 zone.
5461 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5465 vcpu->arch.mmu->pae_root = page_address(page);
5466 for (i = 0; i < 4; ++i)
5467 vcpu->arch.mmu->pae_root[i] = INVALID_PAGE;
5472 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5476 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5477 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5479 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5480 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5481 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5482 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5484 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5485 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5486 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5487 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5489 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5490 return alloc_mmu_pages(vcpu);
5493 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5494 struct kvm_memory_slot *slot,
5495 struct kvm_page_track_notifier_node *node)
5497 kvm_mmu_invalidate_zap_all_pages(kvm);
5500 void kvm_mmu_init_vm(struct kvm *kvm)
5502 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5504 node->track_write = kvm_mmu_pte_write;
5505 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5506 kvm_page_track_register_notifier(kvm, node);
5509 void kvm_mmu_uninit_vm(struct kvm *kvm)
5511 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5513 kvm_page_track_unregister_notifier(kvm, node);
5516 /* The return value indicates if tlb flush on all vcpus is needed. */
5517 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5519 /* The caller should hold mmu-lock before calling this function. */
5520 static __always_inline bool
5521 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5522 slot_level_handler fn, int start_level, int end_level,
5523 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5525 struct slot_rmap_walk_iterator iterator;
5528 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5529 end_gfn, &iterator) {
5531 flush |= fn(kvm, iterator.rmap);
5533 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5534 if (flush && lock_flush_tlb) {
5535 kvm_flush_remote_tlbs(kvm);
5538 cond_resched_lock(&kvm->mmu_lock);
5542 if (flush && lock_flush_tlb) {
5543 kvm_flush_remote_tlbs(kvm);
5550 static __always_inline bool
5551 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5552 slot_level_handler fn, int start_level, int end_level,
5553 bool lock_flush_tlb)
5555 return slot_handle_level_range(kvm, memslot, fn, start_level,
5556 end_level, memslot->base_gfn,
5557 memslot->base_gfn + memslot->npages - 1,
5561 static __always_inline bool
5562 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5563 slot_level_handler fn, bool lock_flush_tlb)
5565 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5566 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5569 static __always_inline bool
5570 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5571 slot_level_handler fn, bool lock_flush_tlb)
5573 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5574 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5577 static __always_inline bool
5578 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5579 slot_level_handler fn, bool lock_flush_tlb)
5581 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5582 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5585 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5587 struct kvm_memslots *slots;
5588 struct kvm_memory_slot *memslot;
5591 spin_lock(&kvm->mmu_lock);
5592 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5593 slots = __kvm_memslots(kvm, i);
5594 kvm_for_each_memslot(memslot, slots) {
5597 start = max(gfn_start, memslot->base_gfn);
5598 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5602 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5603 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5604 start, end - 1, true);
5608 spin_unlock(&kvm->mmu_lock);
5611 static bool slot_rmap_write_protect(struct kvm *kvm,
5612 struct kvm_rmap_head *rmap_head)
5614 return __rmap_write_protect(kvm, rmap_head, false);
5617 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5618 struct kvm_memory_slot *memslot)
5622 spin_lock(&kvm->mmu_lock);
5623 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5625 spin_unlock(&kvm->mmu_lock);
5628 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5629 * which do tlb flush out of mmu-lock should be serialized by
5630 * kvm->slots_lock otherwise tlb flush would be missed.
5632 lockdep_assert_held(&kvm->slots_lock);
5635 * We can flush all the TLBs out of the mmu lock without TLB
5636 * corruption since we just change the spte from writable to
5637 * readonly so that we only need to care the case of changing
5638 * spte from present to present (changing the spte from present
5639 * to nonpresent will flush all the TLBs immediately), in other
5640 * words, the only case we care is mmu_spte_update() where we
5641 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5642 * instead of PT_WRITABLE_MASK, that means it does not depend
5643 * on PT_WRITABLE_MASK anymore.
5646 kvm_flush_remote_tlbs(kvm);
5649 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5650 struct kvm_rmap_head *rmap_head)
5653 struct rmap_iterator iter;
5654 int need_tlb_flush = 0;
5656 struct kvm_mmu_page *sp;
5659 for_each_rmap_spte(rmap_head, &iter, sptep) {
5660 sp = page_header(__pa(sptep));
5661 pfn = spte_to_pfn(*sptep);
5664 * We cannot do huge page mapping for indirect shadow pages,
5665 * which are found on the last rmap (level = 1) when not using
5666 * tdp; such shadow pages are synced with the page table in
5667 * the guest, and the guest page table is using 4K page size
5668 * mapping if the indirect sp has level = 1.
5670 if (sp->role.direct &&
5671 !kvm_is_reserved_pfn(pfn) &&
5672 PageTransCompoundMap(pfn_to_page(pfn))) {
5673 pte_list_remove(rmap_head, sptep);
5679 return need_tlb_flush;
5682 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5683 const struct kvm_memory_slot *memslot)
5685 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5686 spin_lock(&kvm->mmu_lock);
5687 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5688 kvm_mmu_zap_collapsible_spte, true);
5689 spin_unlock(&kvm->mmu_lock);
5692 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5693 struct kvm_memory_slot *memslot)
5697 spin_lock(&kvm->mmu_lock);
5698 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5699 spin_unlock(&kvm->mmu_lock);
5701 lockdep_assert_held(&kvm->slots_lock);
5704 * It's also safe to flush TLBs out of mmu lock here as currently this
5705 * function is only used for dirty logging, in which case flushing TLB
5706 * out of mmu lock also guarantees no dirty pages will be lost in
5710 kvm_flush_remote_tlbs(kvm);
5712 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5714 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5715 struct kvm_memory_slot *memslot)
5719 spin_lock(&kvm->mmu_lock);
5720 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5722 spin_unlock(&kvm->mmu_lock);
5724 /* see kvm_mmu_slot_remove_write_access */
5725 lockdep_assert_held(&kvm->slots_lock);
5728 kvm_flush_remote_tlbs(kvm);
5730 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5732 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5733 struct kvm_memory_slot *memslot)
5737 spin_lock(&kvm->mmu_lock);
5738 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5739 spin_unlock(&kvm->mmu_lock);
5741 lockdep_assert_held(&kvm->slots_lock);
5743 /* see kvm_mmu_slot_leaf_clear_dirty */
5745 kvm_flush_remote_tlbs(kvm);
5747 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5749 #define BATCH_ZAP_PAGES 10
5750 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5752 struct kvm_mmu_page *sp, *node;
5756 list_for_each_entry_safe_reverse(sp, node,
5757 &kvm->arch.active_mmu_pages, link) {
5761 * No obsolete page exists before new created page since
5762 * active_mmu_pages is the FIFO list.
5764 if (!is_obsolete_sp(kvm, sp))
5768 * Since we are reversely walking the list and the invalid
5769 * list will be moved to the head, skip the invalid page
5770 * can help us to avoid the infinity list walking.
5772 if (sp->role.invalid)
5776 * Need not flush tlb since we only zap the sp with invalid
5777 * generation number.
5779 if (batch >= BATCH_ZAP_PAGES &&
5780 cond_resched_lock(&kvm->mmu_lock)) {
5785 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5786 &kvm->arch.zapped_obsolete_pages);
5794 * Should flush tlb before free page tables since lockless-walking
5795 * may use the pages.
5797 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5801 * Fast invalidate all shadow pages and use lock-break technique
5802 * to zap obsolete pages.
5804 * It's required when memslot is being deleted or VM is being
5805 * destroyed, in these cases, we should ensure that KVM MMU does
5806 * not use any resource of the being-deleted slot or all slots
5807 * after calling the function.
5809 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5811 spin_lock(&kvm->mmu_lock);
5812 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5813 kvm->arch.mmu_valid_gen++;
5816 * Notify all vcpus to reload its shadow page table
5817 * and flush TLB. Then all vcpus will switch to new
5818 * shadow page table with the new mmu_valid_gen.
5820 * Note: we should do this under the protection of
5821 * mmu-lock, otherwise, vcpu would purge shadow page
5822 * but miss tlb flush.
5824 kvm_reload_remote_mmus(kvm);
5826 kvm_zap_obsolete_pages(kvm);
5827 spin_unlock(&kvm->mmu_lock);
5830 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5832 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5835 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5838 * The very rare case: if the generation-number is round,
5839 * zap all shadow pages.
5841 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5842 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5843 kvm_mmu_invalidate_zap_all_pages(kvm);
5847 static unsigned long
5848 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5851 int nr_to_scan = sc->nr_to_scan;
5852 unsigned long freed = 0;
5854 spin_lock(&kvm_lock);
5856 list_for_each_entry(kvm, &vm_list, vm_list) {
5858 LIST_HEAD(invalid_list);
5861 * Never scan more than sc->nr_to_scan VM instances.
5862 * Will not hit this condition practically since we do not try
5863 * to shrink more than one VM and it is very unlikely to see
5864 * !n_used_mmu_pages so many times.
5869 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5870 * here. We may skip a VM instance errorneosly, but we do not
5871 * want to shrink a VM that only started to populate its MMU
5874 if (!kvm->arch.n_used_mmu_pages &&
5875 !kvm_has_zapped_obsolete_pages(kvm))
5878 idx = srcu_read_lock(&kvm->srcu);
5879 spin_lock(&kvm->mmu_lock);
5881 if (kvm_has_zapped_obsolete_pages(kvm)) {
5882 kvm_mmu_commit_zap_page(kvm,
5883 &kvm->arch.zapped_obsolete_pages);
5887 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5889 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5892 spin_unlock(&kvm->mmu_lock);
5893 srcu_read_unlock(&kvm->srcu, idx);
5896 * unfair on small ones
5897 * per-vm shrinkers cry out
5898 * sadness comes quickly
5900 list_move_tail(&kvm->vm_list, &vm_list);
5904 spin_unlock(&kvm_lock);
5908 static unsigned long
5909 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5911 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5914 static struct shrinker mmu_shrinker = {
5915 .count_objects = mmu_shrink_count,
5916 .scan_objects = mmu_shrink_scan,
5917 .seeks = DEFAULT_SEEKS * 10,
5920 static void mmu_destroy_caches(void)
5922 kmem_cache_destroy(pte_list_desc_cache);
5923 kmem_cache_destroy(mmu_page_header_cache);
5926 int kvm_mmu_module_init(void)
5931 * MMU roles use union aliasing which is, generally speaking, an
5932 * undefined behavior. However, we supposedly know how compilers behave
5933 * and the current status quo is unlikely to change. Guardians below are
5934 * supposed to let us know if the assumption becomes false.
5936 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5937 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5938 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5940 kvm_mmu_reset_all_pte_masks();
5942 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5943 sizeof(struct pte_list_desc),
5944 0, SLAB_ACCOUNT, NULL);
5945 if (!pte_list_desc_cache)
5948 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5949 sizeof(struct kvm_mmu_page),
5950 0, SLAB_ACCOUNT, NULL);
5951 if (!mmu_page_header_cache)
5954 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5957 ret = register_shrinker(&mmu_shrinker);
5964 mmu_destroy_caches();
5969 * Calculate mmu pages needed for kvm.
5971 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5973 unsigned int nr_mmu_pages;
5974 unsigned int nr_pages = 0;
5975 struct kvm_memslots *slots;
5976 struct kvm_memory_slot *memslot;
5979 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5980 slots = __kvm_memslots(kvm, i);
5982 kvm_for_each_memslot(memslot, slots)
5983 nr_pages += memslot->npages;
5986 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5987 nr_mmu_pages = max(nr_mmu_pages,
5988 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5990 return nr_mmu_pages;
5993 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5995 kvm_mmu_unload(vcpu);
5996 free_mmu_pages(vcpu);
5997 mmu_free_memory_caches(vcpu);
6000 void kvm_mmu_module_exit(void)
6002 mmu_destroy_caches();
6003 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6004 unregister_shrinker(&mmu_shrinker);
6005 mmu_audit_disable();