4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
22 #include "../perf_event.h"
25 * Intel PerfMon, used on Core and later.
27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
29 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
30 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
31 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
32 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
33 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
34 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
35 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
36 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
39 static struct event_constraint intel_core_event_constraints[] __read_mostly =
41 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
42 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
43 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
44 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
45 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
46 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
52 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
53 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
54 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
55 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
56 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
57 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
58 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
59 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
60 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
61 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
62 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
63 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
64 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
70 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
71 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
72 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
73 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
74 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
75 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
76 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
77 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
78 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
79 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
80 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
86 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
87 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
88 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
94 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
95 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
96 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
97 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
98 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
99 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
100 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
106 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
107 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
108 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
109 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
110 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
111 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
112 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
113 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
114 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
115 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
116 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
117 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
120 * When HT is off these events can only run on the bottom 4 counters
121 * When HT is on, they are impacted by the HT bug and require EXCL access
123 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
124 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
125 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
126 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
133 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
134 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
135 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
136 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
137 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
138 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
139 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
140 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
141 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
142 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
143 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
144 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
145 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
148 * When HT is off these events can only run on the bottom 4 counters
149 * When HT is on, they are impacted by the HT bug and require EXCL access
151 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
152 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
153 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
154 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
161 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
162 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
163 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
164 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
173 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
175 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
176 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
177 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
183 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
184 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
185 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189 static struct event_constraint intel_skl_event_constraints[] = {
190 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
191 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
192 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
193 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
196 * when HT is off, these can only run on the bottom 4 counters
198 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
199 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
200 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
201 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
202 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
208 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
209 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
214 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
215 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
216 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
217 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
222 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
223 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
224 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
225 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
230 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
231 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
232 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
234 * Note the low 8 bits eventsel code is not a continuous field, containing
235 * some #GPing bits. These are masked out.
237 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
242 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
243 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
245 static struct attribute *nhm_mem_events_attrs[] = {
246 EVENT_PTR(mem_ld_nhm),
251 * topdown events for Intel Core CPUs.
253 * The events are all in slots, which is a free slot in a 4 wide
254 * pipeline. Some events are already reported in slots, for cycle
255 * events we multiply by the pipeline width (4).
257 * With Hyper Threading on, topdown metrics are either summed or averaged
258 * between the threads of a core: (count_t0 + count_t1).
260 * For the average case the metric is always scaled to pipeline width,
261 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
265 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
266 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
269 "event=0xe,umask=0x1"); /* uops_issued.any */
270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
271 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
273 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
275 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
276 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
280 static struct attribute *snb_events_attrs[] = {
281 EVENT_PTR(td_slots_issued),
282 EVENT_PTR(td_slots_retired),
283 EVENT_PTR(td_fetch_bubbles),
284 EVENT_PTR(td_total_slots),
285 EVENT_PTR(td_total_slots_scale),
286 EVENT_PTR(td_recovery_bubbles),
287 EVENT_PTR(td_recovery_bubbles_scale),
291 static struct attribute *snb_mem_events_attrs[] = {
292 EVENT_PTR(mem_ld_snb),
293 EVENT_PTR(mem_st_snb),
297 static struct event_constraint intel_hsw_event_constraints[] = {
298 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
299 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
300 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
301 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
302 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
303 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
304 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
305 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
306 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
307 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
308 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
309 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
312 * When HT is off these events can only run on the bottom 4 counters
313 * When HT is on, they are impacted by the HT bug and require EXCL access
315 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
316 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
317 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
318 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
323 static struct event_constraint intel_bdw_event_constraints[] = {
324 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
325 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
326 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
327 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
328 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
330 * when HT is off, these can only run on the bottom 4 counters
332 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
333 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
334 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
335 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
339 static u64 intel_pmu_event_map(int hw_event)
341 return intel_perfmon_event_map[hw_event];
345 * Notes on the events:
346 * - data reads do not include code reads (comparable to earlier tables)
347 * - data counts include speculative execution (except L1 write, dtlb, bpu)
348 * - remote node access includes remote memory, remote cache, remote mmio.
349 * - prefetches are not included in the counts.
350 * - icache miss does not include decoded icache
353 #define SKL_DEMAND_DATA_RD BIT_ULL(0)
354 #define SKL_DEMAND_RFO BIT_ULL(1)
355 #define SKL_ANY_RESPONSE BIT_ULL(16)
356 #define SKL_SUPPLIER_NONE BIT_ULL(17)
357 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
358 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
359 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
360 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
361 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
362 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
363 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
364 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
365 #define SKL_SPL_HIT BIT_ULL(30)
366 #define SKL_SNOOP_NONE BIT_ULL(31)
367 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
368 #define SKL_SNOOP_MISS BIT_ULL(33)
369 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
370 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
371 #define SKL_SNOOP_HITM BIT_ULL(36)
372 #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
373 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
374 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
375 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
376 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
377 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
378 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
379 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
380 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
381 SKL_SNOOP_HITM|SKL_SPL_HIT)
382 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
383 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
384 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
385 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
386 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
388 static __initconst const u64 skl_hw_cache_event_ids
389 [PERF_COUNT_HW_CACHE_MAX]
390 [PERF_COUNT_HW_CACHE_OP_MAX]
391 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
395 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
396 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
399 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
400 [ C(RESULT_MISS) ] = 0x0,
402 [ C(OP_PREFETCH) ] = {
403 [ C(RESULT_ACCESS) ] = 0x0,
404 [ C(RESULT_MISS) ] = 0x0,
409 [ C(RESULT_ACCESS) ] = 0x0,
410 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
413 [ C(RESULT_ACCESS) ] = -1,
414 [ C(RESULT_MISS) ] = -1,
416 [ C(OP_PREFETCH) ] = {
417 [ C(RESULT_ACCESS) ] = 0x0,
418 [ C(RESULT_MISS) ] = 0x0,
423 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
424 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
427 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
428 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
430 [ C(OP_PREFETCH) ] = {
431 [ C(RESULT_ACCESS) ] = 0x0,
432 [ C(RESULT_MISS) ] = 0x0,
437 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
438 [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
441 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
442 [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
444 [ C(OP_PREFETCH) ] = {
445 [ C(RESULT_ACCESS) ] = 0x0,
446 [ C(RESULT_MISS) ] = 0x0,
451 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
452 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
455 [ C(RESULT_ACCESS) ] = -1,
456 [ C(RESULT_MISS) ] = -1,
458 [ C(OP_PREFETCH) ] = {
459 [ C(RESULT_ACCESS) ] = -1,
460 [ C(RESULT_MISS) ] = -1,
465 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
466 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
469 [ C(RESULT_ACCESS) ] = -1,
470 [ C(RESULT_MISS) ] = -1,
472 [ C(OP_PREFETCH) ] = {
473 [ C(RESULT_ACCESS) ] = -1,
474 [ C(RESULT_MISS) ] = -1,
479 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
480 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
483 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
484 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
486 [ C(OP_PREFETCH) ] = {
487 [ C(RESULT_ACCESS) ] = 0x0,
488 [ C(RESULT_MISS) ] = 0x0,
493 static __initconst const u64 skl_hw_cache_extra_regs
494 [PERF_COUNT_HW_CACHE_MAX]
495 [PERF_COUNT_HW_CACHE_OP_MAX]
496 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
500 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
501 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
502 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
503 SKL_L3_MISS|SKL_ANY_SNOOP|
507 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
508 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
509 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
510 SKL_L3_MISS|SKL_ANY_SNOOP|
513 [ C(OP_PREFETCH) ] = {
514 [ C(RESULT_ACCESS) ] = 0x0,
515 [ C(RESULT_MISS) ] = 0x0,
520 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
521 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
522 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
523 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
526 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
527 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
528 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
529 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
531 [ C(OP_PREFETCH) ] = {
532 [ C(RESULT_ACCESS) ] = 0x0,
533 [ C(RESULT_MISS) ] = 0x0,
538 #define SNB_DMND_DATA_RD (1ULL << 0)
539 #define SNB_DMND_RFO (1ULL << 1)
540 #define SNB_DMND_IFETCH (1ULL << 2)
541 #define SNB_DMND_WB (1ULL << 3)
542 #define SNB_PF_DATA_RD (1ULL << 4)
543 #define SNB_PF_RFO (1ULL << 5)
544 #define SNB_PF_IFETCH (1ULL << 6)
545 #define SNB_LLC_DATA_RD (1ULL << 7)
546 #define SNB_LLC_RFO (1ULL << 8)
547 #define SNB_LLC_IFETCH (1ULL << 9)
548 #define SNB_BUS_LOCKS (1ULL << 10)
549 #define SNB_STRM_ST (1ULL << 11)
550 #define SNB_OTHER (1ULL << 15)
551 #define SNB_RESP_ANY (1ULL << 16)
552 #define SNB_NO_SUPP (1ULL << 17)
553 #define SNB_LLC_HITM (1ULL << 18)
554 #define SNB_LLC_HITE (1ULL << 19)
555 #define SNB_LLC_HITS (1ULL << 20)
556 #define SNB_LLC_HITF (1ULL << 21)
557 #define SNB_LOCAL (1ULL << 22)
558 #define SNB_REMOTE (0xffULL << 23)
559 #define SNB_SNP_NONE (1ULL << 31)
560 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
561 #define SNB_SNP_MISS (1ULL << 33)
562 #define SNB_NO_FWD (1ULL << 34)
563 #define SNB_SNP_FWD (1ULL << 35)
564 #define SNB_HITM (1ULL << 36)
565 #define SNB_NON_DRAM (1ULL << 37)
567 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
568 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
569 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
571 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
572 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
575 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
576 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
578 #define SNB_L3_ACCESS SNB_RESP_ANY
579 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
581 static __initconst const u64 snb_hw_cache_extra_regs
582 [PERF_COUNT_HW_CACHE_MAX]
583 [PERF_COUNT_HW_CACHE_OP_MAX]
584 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
588 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
589 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
592 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
593 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
595 [ C(OP_PREFETCH) ] = {
596 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
597 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
602 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
603 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
606 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
607 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
609 [ C(OP_PREFETCH) ] = {
610 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
611 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
616 static __initconst const u64 snb_hw_cache_event_ids
617 [PERF_COUNT_HW_CACHE_MAX]
618 [PERF_COUNT_HW_CACHE_OP_MAX]
619 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
623 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
624 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
627 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
628 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
630 [ C(OP_PREFETCH) ] = {
631 [ C(RESULT_ACCESS) ] = 0x0,
632 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
637 [ C(RESULT_ACCESS) ] = 0x0,
638 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
641 [ C(RESULT_ACCESS) ] = -1,
642 [ C(RESULT_MISS) ] = -1,
644 [ C(OP_PREFETCH) ] = {
645 [ C(RESULT_ACCESS) ] = 0x0,
646 [ C(RESULT_MISS) ] = 0x0,
651 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
652 [ C(RESULT_ACCESS) ] = 0x01b7,
653 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
654 [ C(RESULT_MISS) ] = 0x01b7,
657 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
658 [ C(RESULT_ACCESS) ] = 0x01b7,
659 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
660 [ C(RESULT_MISS) ] = 0x01b7,
662 [ C(OP_PREFETCH) ] = {
663 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
664 [ C(RESULT_ACCESS) ] = 0x01b7,
665 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
666 [ C(RESULT_MISS) ] = 0x01b7,
671 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
672 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
675 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
676 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
678 [ C(OP_PREFETCH) ] = {
679 [ C(RESULT_ACCESS) ] = 0x0,
680 [ C(RESULT_MISS) ] = 0x0,
685 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
686 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
689 [ C(RESULT_ACCESS) ] = -1,
690 [ C(RESULT_MISS) ] = -1,
692 [ C(OP_PREFETCH) ] = {
693 [ C(RESULT_ACCESS) ] = -1,
694 [ C(RESULT_MISS) ] = -1,
699 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
700 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
703 [ C(RESULT_ACCESS) ] = -1,
704 [ C(RESULT_MISS) ] = -1,
706 [ C(OP_PREFETCH) ] = {
707 [ C(RESULT_ACCESS) ] = -1,
708 [ C(RESULT_MISS) ] = -1,
713 [ C(RESULT_ACCESS) ] = 0x01b7,
714 [ C(RESULT_MISS) ] = 0x01b7,
717 [ C(RESULT_ACCESS) ] = 0x01b7,
718 [ C(RESULT_MISS) ] = 0x01b7,
720 [ C(OP_PREFETCH) ] = {
721 [ C(RESULT_ACCESS) ] = 0x01b7,
722 [ C(RESULT_MISS) ] = 0x01b7,
729 * Notes on the events:
730 * - data reads do not include code reads (comparable to earlier tables)
731 * - data counts include speculative execution (except L1 write, dtlb, bpu)
732 * - remote node access includes remote memory, remote cache, remote mmio.
733 * - prefetches are not included in the counts because they are not
737 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
738 #define HSW_DEMAND_RFO BIT_ULL(1)
739 #define HSW_ANY_RESPONSE BIT_ULL(16)
740 #define HSW_SUPPLIER_NONE BIT_ULL(17)
741 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
742 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
743 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
744 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
745 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
746 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
747 HSW_L3_MISS_REMOTE_HOP2P)
748 #define HSW_SNOOP_NONE BIT_ULL(31)
749 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
750 #define HSW_SNOOP_MISS BIT_ULL(33)
751 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
752 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
753 #define HSW_SNOOP_HITM BIT_ULL(36)
754 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
755 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
756 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
757 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
758 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
759 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
760 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
761 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
762 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
763 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
764 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
766 #define BDW_L3_MISS_LOCAL BIT(26)
767 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
768 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
769 HSW_L3_MISS_REMOTE_HOP2P)
772 static __initconst const u64 hsw_hw_cache_event_ids
773 [PERF_COUNT_HW_CACHE_MAX]
774 [PERF_COUNT_HW_CACHE_OP_MAX]
775 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
779 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
780 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
783 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
784 [ C(RESULT_MISS) ] = 0x0,
786 [ C(OP_PREFETCH) ] = {
787 [ C(RESULT_ACCESS) ] = 0x0,
788 [ C(RESULT_MISS) ] = 0x0,
793 [ C(RESULT_ACCESS) ] = 0x0,
794 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
797 [ C(RESULT_ACCESS) ] = -1,
798 [ C(RESULT_MISS) ] = -1,
800 [ C(OP_PREFETCH) ] = {
801 [ C(RESULT_ACCESS) ] = 0x0,
802 [ C(RESULT_MISS) ] = 0x0,
807 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
808 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
811 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
812 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
814 [ C(OP_PREFETCH) ] = {
815 [ C(RESULT_ACCESS) ] = 0x0,
816 [ C(RESULT_MISS) ] = 0x0,
821 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
822 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
825 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
826 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
828 [ C(OP_PREFETCH) ] = {
829 [ C(RESULT_ACCESS) ] = 0x0,
830 [ C(RESULT_MISS) ] = 0x0,
835 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
836 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
839 [ C(RESULT_ACCESS) ] = -1,
840 [ C(RESULT_MISS) ] = -1,
842 [ C(OP_PREFETCH) ] = {
843 [ C(RESULT_ACCESS) ] = -1,
844 [ C(RESULT_MISS) ] = -1,
849 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
850 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
853 [ C(RESULT_ACCESS) ] = -1,
854 [ C(RESULT_MISS) ] = -1,
856 [ C(OP_PREFETCH) ] = {
857 [ C(RESULT_ACCESS) ] = -1,
858 [ C(RESULT_MISS) ] = -1,
863 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
864 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
867 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
868 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
870 [ C(OP_PREFETCH) ] = {
871 [ C(RESULT_ACCESS) ] = 0x0,
872 [ C(RESULT_MISS) ] = 0x0,
877 static __initconst const u64 hsw_hw_cache_extra_regs
878 [PERF_COUNT_HW_CACHE_MAX]
879 [PERF_COUNT_HW_CACHE_OP_MAX]
880 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
884 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
886 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
887 HSW_L3_MISS|HSW_ANY_SNOOP,
890 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
892 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
893 HSW_L3_MISS|HSW_ANY_SNOOP,
895 [ C(OP_PREFETCH) ] = {
896 [ C(RESULT_ACCESS) ] = 0x0,
897 [ C(RESULT_MISS) ] = 0x0,
902 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
903 HSW_L3_MISS_LOCAL_DRAM|
905 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
910 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
911 HSW_L3_MISS_LOCAL_DRAM|
913 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
917 [ C(OP_PREFETCH) ] = {
918 [ C(RESULT_ACCESS) ] = 0x0,
919 [ C(RESULT_MISS) ] = 0x0,
924 static __initconst const u64 westmere_hw_cache_event_ids
925 [PERF_COUNT_HW_CACHE_MAX]
926 [PERF_COUNT_HW_CACHE_OP_MAX]
927 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
931 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
932 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
935 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
936 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
938 [ C(OP_PREFETCH) ] = {
939 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
940 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
945 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
946 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
949 [ C(RESULT_ACCESS) ] = -1,
950 [ C(RESULT_MISS) ] = -1,
952 [ C(OP_PREFETCH) ] = {
953 [ C(RESULT_ACCESS) ] = 0x0,
954 [ C(RESULT_MISS) ] = 0x0,
959 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
960 [ C(RESULT_ACCESS) ] = 0x01b7,
961 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
962 [ C(RESULT_MISS) ] = 0x01b7,
965 * Use RFO, not WRITEBACK, because a write miss would typically occur
969 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
970 [ C(RESULT_ACCESS) ] = 0x01b7,
971 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
972 [ C(RESULT_MISS) ] = 0x01b7,
974 [ C(OP_PREFETCH) ] = {
975 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
976 [ C(RESULT_ACCESS) ] = 0x01b7,
977 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
978 [ C(RESULT_MISS) ] = 0x01b7,
983 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
984 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
987 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
988 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
990 [ C(OP_PREFETCH) ] = {
991 [ C(RESULT_ACCESS) ] = 0x0,
992 [ C(RESULT_MISS) ] = 0x0,
997 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
998 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
1001 [ C(RESULT_ACCESS) ] = -1,
1002 [ C(RESULT_MISS) ] = -1,
1004 [ C(OP_PREFETCH) ] = {
1005 [ C(RESULT_ACCESS) ] = -1,
1006 [ C(RESULT_MISS) ] = -1,
1011 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1012 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1015 [ C(RESULT_ACCESS) ] = -1,
1016 [ C(RESULT_MISS) ] = -1,
1018 [ C(OP_PREFETCH) ] = {
1019 [ C(RESULT_ACCESS) ] = -1,
1020 [ C(RESULT_MISS) ] = -1,
1025 [ C(RESULT_ACCESS) ] = 0x01b7,
1026 [ C(RESULT_MISS) ] = 0x01b7,
1029 [ C(RESULT_ACCESS) ] = 0x01b7,
1030 [ C(RESULT_MISS) ] = 0x01b7,
1032 [ C(OP_PREFETCH) ] = {
1033 [ C(RESULT_ACCESS) ] = 0x01b7,
1034 [ C(RESULT_MISS) ] = 0x01b7,
1040 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1041 * See IA32 SDM Vol 3B 30.6.1.3
1044 #define NHM_DMND_DATA_RD (1 << 0)
1045 #define NHM_DMND_RFO (1 << 1)
1046 #define NHM_DMND_IFETCH (1 << 2)
1047 #define NHM_DMND_WB (1 << 3)
1048 #define NHM_PF_DATA_RD (1 << 4)
1049 #define NHM_PF_DATA_RFO (1 << 5)
1050 #define NHM_PF_IFETCH (1 << 6)
1051 #define NHM_OFFCORE_OTHER (1 << 7)
1052 #define NHM_UNCORE_HIT (1 << 8)
1053 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1054 #define NHM_OTHER_CORE_HITM (1 << 10)
1056 #define NHM_REMOTE_CACHE_FWD (1 << 12)
1057 #define NHM_REMOTE_DRAM (1 << 13)
1058 #define NHM_LOCAL_DRAM (1 << 14)
1059 #define NHM_NON_DRAM (1 << 15)
1061 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1062 #define NHM_REMOTE (NHM_REMOTE_DRAM)
1064 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
1065 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1066 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1068 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1069 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1070 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1072 static __initconst const u64 nehalem_hw_cache_extra_regs
1073 [PERF_COUNT_HW_CACHE_MAX]
1074 [PERF_COUNT_HW_CACHE_OP_MAX]
1075 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1079 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1080 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
1083 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1084 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
1086 [ C(OP_PREFETCH) ] = {
1087 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1088 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1093 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1094 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
1097 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1098 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
1100 [ C(OP_PREFETCH) ] = {
1101 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1102 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1107 static __initconst const u64 nehalem_hw_cache_event_ids
1108 [PERF_COUNT_HW_CACHE_MAX]
1109 [PERF_COUNT_HW_CACHE_OP_MAX]
1110 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1114 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1115 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1118 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1119 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1121 [ C(OP_PREFETCH) ] = {
1122 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1123 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1128 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1129 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1132 [ C(RESULT_ACCESS) ] = -1,
1133 [ C(RESULT_MISS) ] = -1,
1135 [ C(OP_PREFETCH) ] = {
1136 [ C(RESULT_ACCESS) ] = 0x0,
1137 [ C(RESULT_MISS) ] = 0x0,
1142 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1143 [ C(RESULT_ACCESS) ] = 0x01b7,
1144 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1145 [ C(RESULT_MISS) ] = 0x01b7,
1148 * Use RFO, not WRITEBACK, because a write miss would typically occur
1152 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1153 [ C(RESULT_ACCESS) ] = 0x01b7,
1154 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1155 [ C(RESULT_MISS) ] = 0x01b7,
1157 [ C(OP_PREFETCH) ] = {
1158 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1159 [ C(RESULT_ACCESS) ] = 0x01b7,
1160 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1161 [ C(RESULT_MISS) ] = 0x01b7,
1166 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1167 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1170 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1171 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1173 [ C(OP_PREFETCH) ] = {
1174 [ C(RESULT_ACCESS) ] = 0x0,
1175 [ C(RESULT_MISS) ] = 0x0,
1180 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1181 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1184 [ C(RESULT_ACCESS) ] = -1,
1185 [ C(RESULT_MISS) ] = -1,
1187 [ C(OP_PREFETCH) ] = {
1188 [ C(RESULT_ACCESS) ] = -1,
1189 [ C(RESULT_MISS) ] = -1,
1194 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1195 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1198 [ C(RESULT_ACCESS) ] = -1,
1199 [ C(RESULT_MISS) ] = -1,
1201 [ C(OP_PREFETCH) ] = {
1202 [ C(RESULT_ACCESS) ] = -1,
1203 [ C(RESULT_MISS) ] = -1,
1208 [ C(RESULT_ACCESS) ] = 0x01b7,
1209 [ C(RESULT_MISS) ] = 0x01b7,
1212 [ C(RESULT_ACCESS) ] = 0x01b7,
1213 [ C(RESULT_MISS) ] = 0x01b7,
1215 [ C(OP_PREFETCH) ] = {
1216 [ C(RESULT_ACCESS) ] = 0x01b7,
1217 [ C(RESULT_MISS) ] = 0x01b7,
1222 static __initconst const u64 core2_hw_cache_event_ids
1223 [PERF_COUNT_HW_CACHE_MAX]
1224 [PERF_COUNT_HW_CACHE_OP_MAX]
1225 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1229 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1230 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1233 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1234 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1236 [ C(OP_PREFETCH) ] = {
1237 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1238 [ C(RESULT_MISS) ] = 0,
1243 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1244 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1247 [ C(RESULT_ACCESS) ] = -1,
1248 [ C(RESULT_MISS) ] = -1,
1250 [ C(OP_PREFETCH) ] = {
1251 [ C(RESULT_ACCESS) ] = 0,
1252 [ C(RESULT_MISS) ] = 0,
1257 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1258 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1261 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1262 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1264 [ C(OP_PREFETCH) ] = {
1265 [ C(RESULT_ACCESS) ] = 0,
1266 [ C(RESULT_MISS) ] = 0,
1271 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1272 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1275 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1276 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1278 [ C(OP_PREFETCH) ] = {
1279 [ C(RESULT_ACCESS) ] = 0,
1280 [ C(RESULT_MISS) ] = 0,
1285 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1286 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1289 [ C(RESULT_ACCESS) ] = -1,
1290 [ C(RESULT_MISS) ] = -1,
1292 [ C(OP_PREFETCH) ] = {
1293 [ C(RESULT_ACCESS) ] = -1,
1294 [ C(RESULT_MISS) ] = -1,
1299 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1300 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1303 [ C(RESULT_ACCESS) ] = -1,
1304 [ C(RESULT_MISS) ] = -1,
1306 [ C(OP_PREFETCH) ] = {
1307 [ C(RESULT_ACCESS) ] = -1,
1308 [ C(RESULT_MISS) ] = -1,
1313 static __initconst const u64 atom_hw_cache_event_ids
1314 [PERF_COUNT_HW_CACHE_MAX]
1315 [PERF_COUNT_HW_CACHE_OP_MAX]
1316 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1320 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1321 [ C(RESULT_MISS) ] = 0,
1324 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1325 [ C(RESULT_MISS) ] = 0,
1327 [ C(OP_PREFETCH) ] = {
1328 [ C(RESULT_ACCESS) ] = 0x0,
1329 [ C(RESULT_MISS) ] = 0,
1334 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1335 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1338 [ C(RESULT_ACCESS) ] = -1,
1339 [ C(RESULT_MISS) ] = -1,
1341 [ C(OP_PREFETCH) ] = {
1342 [ C(RESULT_ACCESS) ] = 0,
1343 [ C(RESULT_MISS) ] = 0,
1348 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1349 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1352 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1353 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1355 [ C(OP_PREFETCH) ] = {
1356 [ C(RESULT_ACCESS) ] = 0,
1357 [ C(RESULT_MISS) ] = 0,
1362 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1363 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1366 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1367 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1369 [ C(OP_PREFETCH) ] = {
1370 [ C(RESULT_ACCESS) ] = 0,
1371 [ C(RESULT_MISS) ] = 0,
1376 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1377 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1380 [ C(RESULT_ACCESS) ] = -1,
1381 [ C(RESULT_MISS) ] = -1,
1383 [ C(OP_PREFETCH) ] = {
1384 [ C(RESULT_ACCESS) ] = -1,
1385 [ C(RESULT_MISS) ] = -1,
1390 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1391 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1394 [ C(RESULT_ACCESS) ] = -1,
1395 [ C(RESULT_MISS) ] = -1,
1397 [ C(OP_PREFETCH) ] = {
1398 [ C(RESULT_ACCESS) ] = -1,
1399 [ C(RESULT_MISS) ] = -1,
1404 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1405 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1406 /* no_alloc_cycles.not_delivered */
1407 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1408 "event=0xca,umask=0x50");
1409 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1410 /* uops_retired.all */
1411 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1412 "event=0xc2,umask=0x10");
1413 /* uops_retired.all */
1414 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1415 "event=0xc2,umask=0x10");
1417 static struct attribute *slm_events_attrs[] = {
1418 EVENT_PTR(td_total_slots_slm),
1419 EVENT_PTR(td_total_slots_scale_slm),
1420 EVENT_PTR(td_fetch_bubbles_slm),
1421 EVENT_PTR(td_fetch_bubbles_scale_slm),
1422 EVENT_PTR(td_slots_issued_slm),
1423 EVENT_PTR(td_slots_retired_slm),
1427 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1429 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1430 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1431 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1435 #define SLM_DMND_READ SNB_DMND_DATA_RD
1436 #define SLM_DMND_WRITE SNB_DMND_RFO
1437 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1439 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1440 #define SLM_LLC_ACCESS SNB_RESP_ANY
1441 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1443 static __initconst const u64 slm_hw_cache_extra_regs
1444 [PERF_COUNT_HW_CACHE_MAX]
1445 [PERF_COUNT_HW_CACHE_OP_MAX]
1446 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1450 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1451 [ C(RESULT_MISS) ] = 0,
1454 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1455 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1457 [ C(OP_PREFETCH) ] = {
1458 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1459 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1464 static __initconst const u64 slm_hw_cache_event_ids
1465 [PERF_COUNT_HW_CACHE_MAX]
1466 [PERF_COUNT_HW_CACHE_OP_MAX]
1467 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1471 [ C(RESULT_ACCESS) ] = 0,
1472 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1475 [ C(RESULT_ACCESS) ] = 0,
1476 [ C(RESULT_MISS) ] = 0,
1478 [ C(OP_PREFETCH) ] = {
1479 [ C(RESULT_ACCESS) ] = 0,
1480 [ C(RESULT_MISS) ] = 0,
1485 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1486 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1489 [ C(RESULT_ACCESS) ] = -1,
1490 [ C(RESULT_MISS) ] = -1,
1492 [ C(OP_PREFETCH) ] = {
1493 [ C(RESULT_ACCESS) ] = 0,
1494 [ C(RESULT_MISS) ] = 0,
1499 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1500 [ C(RESULT_ACCESS) ] = 0x01b7,
1501 [ C(RESULT_MISS) ] = 0,
1504 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1505 [ C(RESULT_ACCESS) ] = 0x01b7,
1506 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1507 [ C(RESULT_MISS) ] = 0x01b7,
1509 [ C(OP_PREFETCH) ] = {
1510 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1511 [ C(RESULT_ACCESS) ] = 0x01b7,
1512 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1513 [ C(RESULT_MISS) ] = 0x01b7,
1518 [ C(RESULT_ACCESS) ] = 0,
1519 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1522 [ C(RESULT_ACCESS) ] = 0,
1523 [ C(RESULT_MISS) ] = 0,
1525 [ C(OP_PREFETCH) ] = {
1526 [ C(RESULT_ACCESS) ] = 0,
1527 [ C(RESULT_MISS) ] = 0,
1532 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1533 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1536 [ C(RESULT_ACCESS) ] = -1,
1537 [ C(RESULT_MISS) ] = -1,
1539 [ C(OP_PREFETCH) ] = {
1540 [ C(RESULT_ACCESS) ] = -1,
1541 [ C(RESULT_MISS) ] = -1,
1546 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1547 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1550 [ C(RESULT_ACCESS) ] = -1,
1551 [ C(RESULT_MISS) ] = -1,
1553 [ C(OP_PREFETCH) ] = {
1554 [ C(RESULT_ACCESS) ] = -1,
1555 [ C(RESULT_MISS) ] = -1,
1560 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1561 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1562 /* UOPS_NOT_DELIVERED.ANY */
1563 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1564 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1565 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1566 /* UOPS_RETIRED.ANY */
1567 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1568 /* UOPS_ISSUED.ANY */
1569 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1571 static struct attribute *glm_events_attrs[] = {
1572 EVENT_PTR(td_total_slots_glm),
1573 EVENT_PTR(td_total_slots_scale_glm),
1574 EVENT_PTR(td_fetch_bubbles_glm),
1575 EVENT_PTR(td_recovery_bubbles_glm),
1576 EVENT_PTR(td_slots_issued_glm),
1577 EVENT_PTR(td_slots_retired_glm),
1581 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1582 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1583 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1584 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1588 #define GLM_DEMAND_DATA_RD BIT_ULL(0)
1589 #define GLM_DEMAND_RFO BIT_ULL(1)
1590 #define GLM_ANY_RESPONSE BIT_ULL(16)
1591 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
1592 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
1593 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO
1594 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1595 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE
1596 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1597 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
1599 static __initconst const u64 glm_hw_cache_event_ids
1600 [PERF_COUNT_HW_CACHE_MAX]
1601 [PERF_COUNT_HW_CACHE_OP_MAX]
1602 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1605 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1606 [C(RESULT_MISS)] = 0x0,
1609 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1610 [C(RESULT_MISS)] = 0x0,
1612 [C(OP_PREFETCH)] = {
1613 [C(RESULT_ACCESS)] = 0x0,
1614 [C(RESULT_MISS)] = 0x0,
1619 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1620 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1623 [C(RESULT_ACCESS)] = -1,
1624 [C(RESULT_MISS)] = -1,
1626 [C(OP_PREFETCH)] = {
1627 [C(RESULT_ACCESS)] = 0x0,
1628 [C(RESULT_MISS)] = 0x0,
1633 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1634 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1637 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1638 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1640 [C(OP_PREFETCH)] = {
1641 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1642 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1647 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1648 [C(RESULT_MISS)] = 0x0,
1651 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1652 [C(RESULT_MISS)] = 0x0,
1654 [C(OP_PREFETCH)] = {
1655 [C(RESULT_ACCESS)] = 0x0,
1656 [C(RESULT_MISS)] = 0x0,
1661 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1662 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1665 [C(RESULT_ACCESS)] = -1,
1666 [C(RESULT_MISS)] = -1,
1668 [C(OP_PREFETCH)] = {
1669 [C(RESULT_ACCESS)] = -1,
1670 [C(RESULT_MISS)] = -1,
1675 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1676 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1679 [C(RESULT_ACCESS)] = -1,
1680 [C(RESULT_MISS)] = -1,
1682 [C(OP_PREFETCH)] = {
1683 [C(RESULT_ACCESS)] = -1,
1684 [C(RESULT_MISS)] = -1,
1689 static __initconst const u64 glm_hw_cache_extra_regs
1690 [PERF_COUNT_HW_CACHE_MAX]
1691 [PERF_COUNT_HW_CACHE_OP_MAX]
1692 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1695 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
1697 [C(RESULT_MISS)] = GLM_DEMAND_READ|
1701 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
1703 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
1706 [C(OP_PREFETCH)] = {
1707 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
1709 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
1715 static __initconst const u64 glp_hw_cache_event_ids
1716 [PERF_COUNT_HW_CACHE_MAX]
1717 [PERF_COUNT_HW_CACHE_OP_MAX]
1718 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1721 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1722 [C(RESULT_MISS)] = 0x0,
1725 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1726 [C(RESULT_MISS)] = 0x0,
1728 [C(OP_PREFETCH)] = {
1729 [C(RESULT_ACCESS)] = 0x0,
1730 [C(RESULT_MISS)] = 0x0,
1735 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1736 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1739 [C(RESULT_ACCESS)] = -1,
1740 [C(RESULT_MISS)] = -1,
1742 [C(OP_PREFETCH)] = {
1743 [C(RESULT_ACCESS)] = 0x0,
1744 [C(RESULT_MISS)] = 0x0,
1749 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1750 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1753 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1754 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1756 [C(OP_PREFETCH)] = {
1757 [C(RESULT_ACCESS)] = 0x0,
1758 [C(RESULT_MISS)] = 0x0,
1763 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1764 [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1767 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1768 [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
1770 [C(OP_PREFETCH)] = {
1771 [C(RESULT_ACCESS)] = 0x0,
1772 [C(RESULT_MISS)] = 0x0,
1777 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1778 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1781 [C(RESULT_ACCESS)] = -1,
1782 [C(RESULT_MISS)] = -1,
1784 [C(OP_PREFETCH)] = {
1785 [C(RESULT_ACCESS)] = -1,
1786 [C(RESULT_MISS)] = -1,
1791 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1792 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1795 [C(RESULT_ACCESS)] = -1,
1796 [C(RESULT_MISS)] = -1,
1798 [C(OP_PREFETCH)] = {
1799 [C(RESULT_ACCESS)] = -1,
1800 [C(RESULT_MISS)] = -1,
1805 static __initconst const u64 glp_hw_cache_extra_regs
1806 [PERF_COUNT_HW_CACHE_MAX]
1807 [PERF_COUNT_HW_CACHE_OP_MAX]
1808 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1811 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
1813 [C(RESULT_MISS)] = GLM_DEMAND_READ|
1817 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
1819 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
1822 [C(OP_PREFETCH)] = {
1823 [C(RESULT_ACCESS)] = 0x0,
1824 [C(RESULT_MISS)] = 0x0,
1829 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
1830 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
1831 #define KNL_MCDRAM_LOCAL BIT_ULL(21)
1832 #define KNL_MCDRAM_FAR BIT_ULL(22)
1833 #define KNL_DDR_LOCAL BIT_ULL(23)
1834 #define KNL_DDR_FAR BIT_ULL(24)
1835 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1836 KNL_DDR_LOCAL | KNL_DDR_FAR)
1837 #define KNL_L2_READ SLM_DMND_READ
1838 #define KNL_L2_WRITE SLM_DMND_WRITE
1839 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
1840 #define KNL_L2_ACCESS SLM_LLC_ACCESS
1841 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1842 KNL_DRAM_ANY | SNB_SNP_ANY | \
1845 static __initconst const u64 knl_hw_cache_extra_regs
1846 [PERF_COUNT_HW_CACHE_MAX]
1847 [PERF_COUNT_HW_CACHE_OP_MAX]
1848 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1851 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1852 [C(RESULT_MISS)] = 0,
1855 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1856 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
1858 [C(OP_PREFETCH)] = {
1859 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1860 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
1866 * Used from PMIs where the LBRs are already disabled.
1868 * This function could be called consecutively. It is required to remain in
1869 * disabled state if called consecutively.
1871 * During consecutive calls, the same disable value will be written to related
1872 * registers, so the PMU state remains unchanged.
1874 * intel_bts events don't coexist with intel PMU's BTS events because of
1875 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1876 * disabled around intel PMU's event batching etc, only inside the PMI handler.
1878 static void __intel_pmu_disable_all(void)
1880 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1882 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1884 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1885 intel_pmu_disable_bts();
1887 intel_pmu_pebs_disable_all();
1890 static void intel_pmu_disable_all(void)
1892 __intel_pmu_disable_all();
1893 intel_pmu_lbr_disable_all();
1896 static void __intel_pmu_enable_all(int added, bool pmi)
1898 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1900 intel_pmu_pebs_enable_all();
1901 intel_pmu_lbr_enable_all(pmi);
1902 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1903 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1905 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1906 struct perf_event *event =
1907 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1909 if (WARN_ON_ONCE(!event))
1912 intel_pmu_enable_bts(event->hw.config);
1916 static void intel_pmu_enable_all(int added)
1918 __intel_pmu_enable_all(added, false);
1923 * Intel Errata AAK100 (model 26)
1924 * Intel Errata AAP53 (model 30)
1925 * Intel Errata BD53 (model 44)
1927 * The official story:
1928 * These chips need to be 'reset' when adding counters by programming the
1929 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1930 * in sequence on the same PMC or on different PMCs.
1932 * In practise it appears some of these events do in fact count, and
1933 * we need to programm all 4 events.
1935 static void intel_pmu_nhm_workaround(void)
1937 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1938 static const unsigned long nhm_magic[4] = {
1944 struct perf_event *event;
1948 * The Errata requires below steps:
1949 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1950 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1951 * the corresponding PMCx;
1952 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1953 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1954 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1958 * The real steps we choose are a little different from above.
1959 * A) To reduce MSR operations, we don't run step 1) as they
1960 * are already cleared before this function is called;
1961 * B) Call x86_perf_event_update to save PMCx before configuring
1962 * PERFEVTSELx with magic number;
1963 * C) With step 5), we do clear only when the PERFEVTSELx is
1964 * not used currently.
1965 * D) Call x86_perf_event_set_period to restore PMCx;
1968 /* We always operate 4 pairs of PERF Counters */
1969 for (i = 0; i < 4; i++) {
1970 event = cpuc->events[i];
1972 x86_perf_event_update(event);
1975 for (i = 0; i < 4; i++) {
1976 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1977 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1980 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1981 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1983 for (i = 0; i < 4; i++) {
1984 event = cpuc->events[i];
1987 x86_perf_event_set_period(event);
1988 __x86_pmu_enable_event(&event->hw,
1989 ARCH_PERFMON_EVENTSEL_ENABLE);
1991 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1995 static void intel_pmu_nhm_enable_all(int added)
1998 intel_pmu_nhm_workaround();
1999 intel_pmu_enable_all(added);
2002 static void enable_counter_freeze(void)
2004 update_debugctlmsr(get_debugctlmsr() |
2005 DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2008 static void disable_counter_freeze(void)
2010 update_debugctlmsr(get_debugctlmsr() &
2011 ~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2014 static inline u64 intel_pmu_get_status(void)
2018 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2023 static inline void intel_pmu_ack_status(u64 ack)
2025 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2028 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2030 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2033 mask = 0xfULL << (idx * 4);
2035 rdmsrl(hwc->config_base, ctrl_val);
2037 wrmsrl(hwc->config_base, ctrl_val);
2040 static inline bool event_is_checkpointed(struct perf_event *event)
2042 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2045 static void intel_pmu_disable_event(struct perf_event *event)
2047 struct hw_perf_event *hwc = &event->hw;
2048 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2050 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2051 intel_pmu_disable_bts();
2052 intel_pmu_drain_bts_buffer();
2056 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2057 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2058 cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2060 if (unlikely(event->attr.precise_ip))
2061 intel_pmu_pebs_disable(event);
2063 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2064 intel_pmu_disable_fixed(hwc);
2068 x86_pmu_disable_event(event);
2071 static void intel_pmu_del_event(struct perf_event *event)
2073 if (needs_branch_stack(event))
2074 intel_pmu_lbr_del(event);
2075 if (event->attr.precise_ip)
2076 intel_pmu_pebs_del(event);
2079 static void intel_pmu_read_event(struct perf_event *event)
2081 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2082 intel_pmu_auto_reload_read(event);
2084 x86_perf_event_update(event);
2087 static void intel_pmu_enable_fixed(struct perf_event *event)
2089 struct hw_perf_event *hwc = &event->hw;
2090 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2091 u64 ctrl_val, mask, bits = 0;
2094 * Enable IRQ generation (0x8), if not PEBS,
2095 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2098 if (!event->attr.precise_ip)
2100 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2102 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2106 * ANY bit is supported in v3 and up
2108 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2112 mask = 0xfULL << (idx * 4);
2114 rdmsrl(hwc->config_base, ctrl_val);
2117 wrmsrl(hwc->config_base, ctrl_val);
2120 static void intel_pmu_enable_event(struct perf_event *event)
2122 struct hw_perf_event *hwc = &event->hw;
2123 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2125 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2126 if (!__this_cpu_read(cpu_hw_events.enabled))
2129 intel_pmu_enable_bts(hwc->config);
2133 if (event->attr.exclude_host)
2134 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2135 if (event->attr.exclude_guest)
2136 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2138 if (unlikely(event_is_checkpointed(event)))
2139 cpuc->intel_cp_status |= (1ull << hwc->idx);
2141 if (unlikely(event->attr.precise_ip))
2142 intel_pmu_pebs_enable(event);
2144 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2145 intel_pmu_enable_fixed(event);
2149 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2152 static void intel_pmu_add_event(struct perf_event *event)
2154 if (event->attr.precise_ip)
2155 intel_pmu_pebs_add(event);
2156 if (needs_branch_stack(event))
2157 intel_pmu_lbr_add(event);
2161 * Save and restart an expired event. Called by NMI contexts,
2162 * so it has to be careful about preempting normal event ops:
2164 int intel_pmu_save_and_restart(struct perf_event *event)
2166 x86_perf_event_update(event);
2168 * For a checkpointed counter always reset back to 0. This
2169 * avoids a situation where the counter overflows, aborts the
2170 * transaction and is then set back to shortly before the
2171 * overflow, and overflows and aborts again.
2173 if (unlikely(event_is_checkpointed(event))) {
2174 /* No race with NMIs because the counter should not be armed */
2175 wrmsrl(event->hw.event_base, 0);
2176 local64_set(&event->hw.prev_count, 0);
2178 return x86_perf_event_set_period(event);
2181 static void intel_pmu_reset(void)
2183 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2184 unsigned long flags;
2187 if (!x86_pmu.num_counters)
2190 local_irq_save(flags);
2192 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2194 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2195 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2196 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
2198 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2199 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2202 ds->bts_index = ds->bts_buffer_base;
2204 /* Ack all overflows and disable fixed counters */
2205 if (x86_pmu.version >= 2) {
2206 intel_pmu_ack_status(intel_pmu_get_status());
2207 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2210 /* Reset LBRs and LBR freezing */
2211 if (x86_pmu.lbr_nr) {
2212 update_debugctlmsr(get_debugctlmsr() &
2213 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2216 local_irq_restore(flags);
2219 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2221 struct perf_sample_data data;
2222 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2226 inc_irq_stat(apic_perf_irqs);
2229 * Ignore a range of extra bits in status that do not indicate
2230 * overflow by themselves.
2232 status &= ~(GLOBAL_STATUS_COND_CHG |
2233 GLOBAL_STATUS_ASIF |
2234 GLOBAL_STATUS_LBRS_FROZEN);
2238 * In case multiple PEBS events are sampled at the same time,
2239 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2240 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2241 * having their bits set in the status register. This is a sign
2242 * that there was at least one PEBS record pending at the time
2243 * of the PMU interrupt. PEBS counters must only be processed
2244 * via the drain_pebs() calls and not via the regular sample
2245 * processing loop coming after that the function, otherwise
2246 * phony regular samples may be generated in the sampling buffer
2247 * not marked with the EXACT tag. Another possibility is to have
2248 * one PEBS event and at least one non-PEBS event whic hoverflows
2249 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2250 * not be set, yet the overflow status bit for the PEBS counter will
2253 * To avoid this problem, we systematically ignore the PEBS-enabled
2254 * counters from the GLOBAL_STATUS mask and we always process PEBS
2255 * events via drain_pebs().
2257 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2258 status &= ~cpuc->pebs_enabled;
2260 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2263 * PEBS overflow sets bit 62 in the global status register
2265 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2267 x86_pmu.drain_pebs(regs);
2268 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2274 if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2276 intel_pt_interrupt();
2280 * Checkpointed counters can lead to 'spurious' PMIs because the
2281 * rollback caused by the PMI will have cleared the overflow status
2282 * bit. Therefore always force probe these counters.
2284 status |= cpuc->intel_cp_status;
2286 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2287 struct perf_event *event = cpuc->events[bit];
2291 if (!test_bit(bit, cpuc->active_mask))
2294 if (!intel_pmu_save_and_restart(event))
2297 perf_sample_data_init(&data, 0, event->hw.last_period);
2299 if (has_branch_stack(event))
2300 data.br_stack = &cpuc->lbr_stack;
2302 if (perf_event_overflow(event, &data, regs))
2303 x86_pmu_stop(event, 0);
2309 static bool disable_counter_freezing = true;
2310 static int __init intel_perf_counter_freezing_setup(char *s)
2314 if (kstrtobool(s, &res))
2317 disable_counter_freezing = !res;
2320 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2323 * Simplified handler for Arch Perfmon v4:
2324 * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2325 * This is done automatically on PMU ack.
2326 * - Ack the PMU only after the APIC.
2329 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2331 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2335 int pmu_enabled = cpuc->enabled;
2338 /* PMU has been disabled because of counter freezing */
2340 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2342 intel_bts_disable_local();
2343 handled = intel_pmu_drain_bts_buffer();
2344 handled += intel_bts_interrupt();
2346 status = intel_pmu_get_status();
2350 intel_pmu_lbr_read();
2351 if (++loops > 100) {
2355 WARN(1, "perfevents: irq loop stuck!\n");
2356 perf_event_print_debug();
2364 handled += handle_pmi_common(regs, status);
2366 /* Ack the PMI in the APIC */
2367 apic_write(APIC_LVTPC, APIC_DM_NMI);
2370 * The counters start counting immediately while ack the status.
2371 * Make it as close as possible to IRET. This avoids bogus
2372 * freezing on Skylake CPUs.
2375 intel_pmu_ack_status(status);
2378 * CPU may issues two PMIs very close to each other.
2379 * When the PMI handler services the first one, the
2380 * GLOBAL_STATUS is already updated to reflect both.
2381 * When it IRETs, the second PMI is immediately
2382 * handled and it sees clear status. At the meantime,
2383 * there may be a third PMI, because the freezing bit
2384 * isn't set since the ack in first PMI handlers.
2385 * Double check if there is more work to be done.
2387 status = intel_pmu_get_status();
2393 intel_bts_enable_local();
2394 cpuc->enabled = pmu_enabled;
2399 * This handler is triggered by the local APIC, so the APIC IRQ handling
2402 static int intel_pmu_handle_irq(struct pt_regs *regs)
2404 struct cpu_hw_events *cpuc;
2410 cpuc = this_cpu_ptr(&cpu_hw_events);
2413 * Save the PMU state.
2414 * It needs to be restored when leaving the handler.
2416 pmu_enabled = cpuc->enabled;
2418 * No known reason to not always do late ACK,
2419 * but just in case do it opt-in.
2421 if (!x86_pmu.late_ack)
2422 apic_write(APIC_LVTPC, APIC_DM_NMI);
2423 intel_bts_disable_local();
2425 __intel_pmu_disable_all();
2426 handled = intel_pmu_drain_bts_buffer();
2427 handled += intel_bts_interrupt();
2428 status = intel_pmu_get_status();
2434 intel_pmu_lbr_read();
2435 intel_pmu_ack_status(status);
2436 if (++loops > 100) {
2440 WARN(1, "perfevents: irq loop stuck!\n");
2441 perf_event_print_debug();
2448 handled += handle_pmi_common(regs, status);
2451 * Repeat if there is more work to be done:
2453 status = intel_pmu_get_status();
2458 /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2459 cpuc->enabled = pmu_enabled;
2461 __intel_pmu_enable_all(0, true);
2462 intel_bts_enable_local();
2465 * Only unmask the NMI after the overflow counters
2466 * have been reset. This avoids spurious NMIs on
2469 if (x86_pmu.late_ack)
2470 apic_write(APIC_LVTPC, APIC_DM_NMI);
2474 static struct event_constraint *
2475 intel_bts_constraints(struct perf_event *event)
2477 if (unlikely(intel_pmu_has_bts(event)))
2478 return &bts_constraint;
2483 static int intel_alt_er(int idx, u64 config)
2487 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2490 if (idx == EXTRA_REG_RSP_0)
2491 alt_idx = EXTRA_REG_RSP_1;
2493 if (idx == EXTRA_REG_RSP_1)
2494 alt_idx = EXTRA_REG_RSP_0;
2496 if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2502 static void intel_fixup_er(struct perf_event *event, int idx)
2504 event->hw.extra_reg.idx = idx;
2506 if (idx == EXTRA_REG_RSP_0) {
2507 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2508 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2509 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2510 } else if (idx == EXTRA_REG_RSP_1) {
2511 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2512 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2513 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2518 * manage allocation of shared extra msr for certain events
2521 * per-cpu: to be shared between the various events on a single PMU
2522 * per-core: per-cpu + shared by HT threads
2524 static struct event_constraint *
2525 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2526 struct perf_event *event,
2527 struct hw_perf_event_extra *reg)
2529 struct event_constraint *c = &emptyconstraint;
2530 struct er_account *era;
2531 unsigned long flags;
2535 * reg->alloc can be set due to existing state, so for fake cpuc we
2536 * need to ignore this, otherwise we might fail to allocate proper fake
2537 * state for this extra reg constraint. Also see the comment below.
2539 if (reg->alloc && !cpuc->is_fake)
2540 return NULL; /* call x86_get_event_constraint() */
2543 era = &cpuc->shared_regs->regs[idx];
2545 * we use spin_lock_irqsave() to avoid lockdep issues when
2546 * passing a fake cpuc
2548 raw_spin_lock_irqsave(&era->lock, flags);
2550 if (!atomic_read(&era->ref) || era->config == reg->config) {
2553 * If its a fake cpuc -- as per validate_{group,event}() we
2554 * shouldn't touch event state and we can avoid doing so
2555 * since both will only call get_event_constraints() once
2556 * on each event, this avoids the need for reg->alloc.
2558 * Not doing the ER fixup will only result in era->reg being
2559 * wrong, but since we won't actually try and program hardware
2560 * this isn't a problem either.
2562 if (!cpuc->is_fake) {
2563 if (idx != reg->idx)
2564 intel_fixup_er(event, idx);
2567 * x86_schedule_events() can call get_event_constraints()
2568 * multiple times on events in the case of incremental
2569 * scheduling(). reg->alloc ensures we only do the ER
2575 /* lock in msr value */
2576 era->config = reg->config;
2577 era->reg = reg->reg;
2580 atomic_inc(&era->ref);
2583 * need to call x86_get_event_constraint()
2584 * to check if associated event has constraints
2588 idx = intel_alt_er(idx, reg->config);
2589 if (idx != reg->idx) {
2590 raw_spin_unlock_irqrestore(&era->lock, flags);
2594 raw_spin_unlock_irqrestore(&era->lock, flags);
2600 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2601 struct hw_perf_event_extra *reg)
2603 struct er_account *era;
2606 * Only put constraint if extra reg was actually allocated. Also takes
2607 * care of event which do not use an extra shared reg.
2609 * Also, if this is a fake cpuc we shouldn't touch any event state
2610 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2611 * either since it'll be thrown out.
2613 if (!reg->alloc || cpuc->is_fake)
2616 era = &cpuc->shared_regs->regs[reg->idx];
2618 /* one fewer user */
2619 atomic_dec(&era->ref);
2621 /* allocate again next time */
2625 static struct event_constraint *
2626 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2627 struct perf_event *event)
2629 struct event_constraint *c = NULL, *d;
2630 struct hw_perf_event_extra *xreg, *breg;
2632 xreg = &event->hw.extra_reg;
2633 if (xreg->idx != EXTRA_REG_NONE) {
2634 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2635 if (c == &emptyconstraint)
2638 breg = &event->hw.branch_reg;
2639 if (breg->idx != EXTRA_REG_NONE) {
2640 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2641 if (d == &emptyconstraint) {
2642 __intel_shared_reg_put_constraints(cpuc, xreg);
2649 struct event_constraint *
2650 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2651 struct perf_event *event)
2653 struct event_constraint *c;
2655 if (x86_pmu.event_constraints) {
2656 for_each_event_constraint(c, x86_pmu.event_constraints) {
2657 if ((event->hw.config & c->cmask) == c->code) {
2658 event->hw.flags |= c->flags;
2664 return &unconstrained;
2667 static struct event_constraint *
2668 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2669 struct perf_event *event)
2671 struct event_constraint *c;
2673 c = intel_bts_constraints(event);
2677 c = intel_shared_regs_constraints(cpuc, event);
2681 c = intel_pebs_constraints(event);
2685 return x86_get_event_constraints(cpuc, idx, event);
2689 intel_start_scheduling(struct cpu_hw_events *cpuc)
2691 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2692 struct intel_excl_states *xl;
2693 int tid = cpuc->excl_thread_id;
2696 * nothing needed if in group validation mode
2698 if (cpuc->is_fake || !is_ht_workaround_enabled())
2702 * no exclusion needed
2704 if (WARN_ON_ONCE(!excl_cntrs))
2707 xl = &excl_cntrs->states[tid];
2709 xl->sched_started = true;
2711 * lock shared state until we are done scheduling
2712 * in stop_event_scheduling()
2713 * makes scheduling appear as a transaction
2715 raw_spin_lock(&excl_cntrs->lock);
2718 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2720 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2721 struct event_constraint *c = cpuc->event_constraint[idx];
2722 struct intel_excl_states *xl;
2723 int tid = cpuc->excl_thread_id;
2725 if (cpuc->is_fake || !is_ht_workaround_enabled())
2728 if (WARN_ON_ONCE(!excl_cntrs))
2731 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2734 xl = &excl_cntrs->states[tid];
2736 lockdep_assert_held(&excl_cntrs->lock);
2738 if (c->flags & PERF_X86_EVENT_EXCL)
2739 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2741 xl->state[cntr] = INTEL_EXCL_SHARED;
2745 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2747 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2748 struct intel_excl_states *xl;
2749 int tid = cpuc->excl_thread_id;
2752 * nothing needed if in group validation mode
2754 if (cpuc->is_fake || !is_ht_workaround_enabled())
2757 * no exclusion needed
2759 if (WARN_ON_ONCE(!excl_cntrs))
2762 xl = &excl_cntrs->states[tid];
2764 xl->sched_started = false;
2766 * release shared state lock (acquired in intel_start_scheduling())
2768 raw_spin_unlock(&excl_cntrs->lock);
2771 static struct event_constraint *
2772 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2773 int idx, struct event_constraint *c)
2775 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2776 struct intel_excl_states *xlo;
2777 int tid = cpuc->excl_thread_id;
2781 * validating a group does not require
2782 * enforcing cross-thread exclusion
2784 if (cpuc->is_fake || !is_ht_workaround_enabled())
2788 * no exclusion needed
2790 if (WARN_ON_ONCE(!excl_cntrs))
2794 * because we modify the constraint, we need
2795 * to make a copy. Static constraints come
2796 * from static const tables.
2798 * only needed when constraint has not yet
2799 * been cloned (marked dynamic)
2801 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2802 struct event_constraint *cx;
2805 * grab pre-allocated constraint entry
2807 cx = &cpuc->constraint_list[idx];
2810 * initialize dynamic constraint
2811 * with static constraint
2816 * mark constraint as dynamic, so we
2817 * can free it later on
2819 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2824 * From here on, the constraint is dynamic.
2825 * Either it was just allocated above, or it
2826 * was allocated during a earlier invocation
2831 * state of sibling HT
2833 xlo = &excl_cntrs->states[tid ^ 1];
2836 * event requires exclusive counter access
2839 is_excl = c->flags & PERF_X86_EVENT_EXCL;
2840 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2841 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2842 if (!cpuc->n_excl++)
2843 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2847 * Modify static constraint with current dynamic
2850 * EXCLUSIVE: sibling counter measuring exclusive event
2851 * SHARED : sibling counter measuring non-exclusive event
2852 * UNUSED : sibling counter unused
2854 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2856 * exclusive event in sibling counter
2857 * our corresponding counter cannot be used
2858 * regardless of our event
2860 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2861 __clear_bit(i, c->idxmsk);
2863 * if measuring an exclusive event, sibling
2864 * measuring non-exclusive, then counter cannot
2867 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2868 __clear_bit(i, c->idxmsk);
2872 * recompute actual bit weight for scheduling algorithm
2874 c->weight = hweight64(c->idxmsk64);
2877 * if we return an empty mask, then switch
2878 * back to static empty constraint to avoid
2879 * the cost of freeing later on
2882 c = &emptyconstraint;
2887 static struct event_constraint *
2888 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2889 struct perf_event *event)
2891 struct event_constraint *c1 = NULL;
2892 struct event_constraint *c2;
2894 if (idx >= 0) /* fake does < 0 */
2895 c1 = cpuc->event_constraint[idx];
2899 * - static constraint: no change across incremental scheduling calls
2900 * - dynamic constraint: handled by intel_get_excl_constraints()
2902 c2 = __intel_get_event_constraints(cpuc, idx, event);
2903 if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2904 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2905 c1->weight = c2->weight;
2909 if (cpuc->excl_cntrs)
2910 return intel_get_excl_constraints(cpuc, event, idx, c2);
2915 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2916 struct perf_event *event)
2918 struct hw_perf_event *hwc = &event->hw;
2919 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2920 int tid = cpuc->excl_thread_id;
2921 struct intel_excl_states *xl;
2924 * nothing needed if in group validation mode
2929 if (WARN_ON_ONCE(!excl_cntrs))
2932 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2933 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2934 if (!--cpuc->n_excl)
2935 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2939 * If event was actually assigned, then mark the counter state as
2942 if (hwc->idx >= 0) {
2943 xl = &excl_cntrs->states[tid];
2946 * put_constraint may be called from x86_schedule_events()
2947 * which already has the lock held so here make locking
2950 if (!xl->sched_started)
2951 raw_spin_lock(&excl_cntrs->lock);
2953 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2955 if (!xl->sched_started)
2956 raw_spin_unlock(&excl_cntrs->lock);
2961 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2962 struct perf_event *event)
2964 struct hw_perf_event_extra *reg;
2966 reg = &event->hw.extra_reg;
2967 if (reg->idx != EXTRA_REG_NONE)
2968 __intel_shared_reg_put_constraints(cpuc, reg);
2970 reg = &event->hw.branch_reg;
2971 if (reg->idx != EXTRA_REG_NONE)
2972 __intel_shared_reg_put_constraints(cpuc, reg);
2975 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2976 struct perf_event *event)
2978 intel_put_shared_regs_event_constraints(cpuc, event);
2981 * is PMU has exclusive counter restrictions, then
2982 * all events are subject to and must call the
2983 * put_excl_constraints() routine
2985 if (cpuc->excl_cntrs)
2986 intel_put_excl_constraints(cpuc, event);
2989 static void intel_pebs_aliases_core2(struct perf_event *event)
2991 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2993 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2994 * (0x003c) so that we can use it with PEBS.
2996 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2997 * PEBS capable. However we can use INST_RETIRED.ANY_P
2998 * (0x00c0), which is a PEBS capable event, to get the same
3001 * INST_RETIRED.ANY_P counts the number of cycles that retires
3002 * CNTMASK instructions. By setting CNTMASK to a value (16)
3003 * larger than the maximum number of instructions that can be
3004 * retired per cycle (4) and then inverting the condition, we
3005 * count all cycles that retire 16 or less instructions, which
3008 * Thereby we gain a PEBS capable cycle counter.
3010 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3012 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3013 event->hw.config = alt_config;
3017 static void intel_pebs_aliases_snb(struct perf_event *event)
3019 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3021 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3022 * (0x003c) so that we can use it with PEBS.
3024 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3025 * PEBS capable. However we can use UOPS_RETIRED.ALL
3026 * (0x01c2), which is a PEBS capable event, to get the same
3029 * UOPS_RETIRED.ALL counts the number of cycles that retires
3030 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3031 * larger than the maximum number of micro-ops that can be
3032 * retired per cycle (4) and then inverting the condition, we
3033 * count all cycles that retire 16 or less micro-ops, which
3036 * Thereby we gain a PEBS capable cycle counter.
3038 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3040 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3041 event->hw.config = alt_config;
3045 static void intel_pebs_aliases_precdist(struct perf_event *event)
3047 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3049 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3050 * (0x003c) so that we can use it with PEBS.
3052 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3053 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3054 * (0x01c0), which is a PEBS capable event, to get the same
3057 * The PREC_DIST event has special support to minimize sample
3058 * shadowing effects. One drawback is that it can be
3059 * only programmed on counter 1, but that seems like an
3060 * acceptable trade off.
3062 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3064 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3065 event->hw.config = alt_config;
3069 static void intel_pebs_aliases_ivb(struct perf_event *event)
3071 if (event->attr.precise_ip < 3)
3072 return intel_pebs_aliases_snb(event);
3073 return intel_pebs_aliases_precdist(event);
3076 static void intel_pebs_aliases_skl(struct perf_event *event)
3078 if (event->attr.precise_ip < 3)
3079 return intel_pebs_aliases_core2(event);
3080 return intel_pebs_aliases_precdist(event);
3083 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3085 unsigned long flags = x86_pmu.large_pebs_flags;
3087 if (event->attr.use_clockid)
3088 flags &= ~PERF_SAMPLE_TIME;
3089 if (!event->attr.exclude_kernel)
3090 flags &= ~PERF_SAMPLE_REGS_USER;
3091 if (event->attr.sample_regs_user & ~PEBS_REGS)
3092 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3096 static int intel_pmu_bts_config(struct perf_event *event)
3098 struct perf_event_attr *attr = &event->attr;
3100 if (unlikely(intel_pmu_has_bts(event))) {
3101 /* BTS is not supported by this architecture. */
3102 if (!x86_pmu.bts_active)
3105 /* BTS is currently only allowed for user-mode. */
3106 if (!attr->exclude_kernel)
3109 /* BTS is not allowed for precise events. */
3110 if (attr->precise_ip)
3113 /* disallow bts if conflicting events are present */
3114 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3117 event->destroy = hw_perf_lbr_event_destroy;
3123 static int core_pmu_hw_config(struct perf_event *event)
3125 int ret = x86_pmu_hw_config(event);
3130 return intel_pmu_bts_config(event);
3133 static int intel_pmu_hw_config(struct perf_event *event)
3135 int ret = x86_pmu_hw_config(event);
3140 ret = intel_pmu_bts_config(event);
3144 if (event->attr.precise_ip) {
3145 if (!event->attr.freq) {
3146 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3147 if (!(event->attr.sample_type &
3148 ~intel_pmu_large_pebs_flags(event)))
3149 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3151 if (x86_pmu.pebs_aliases)
3152 x86_pmu.pebs_aliases(event);
3154 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3155 event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3158 if (needs_branch_stack(event)) {
3159 ret = intel_pmu_setup_lbr_filter(event);
3164 * BTS is set up earlier in this path, so don't account twice
3166 if (!unlikely(intel_pmu_has_bts(event))) {
3167 /* disallow lbr if conflicting events are present */
3168 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3171 event->destroy = hw_perf_lbr_event_destroy;
3175 if (event->attr.type != PERF_TYPE_RAW)
3178 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3181 if (x86_pmu.version < 3)
3184 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3187 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3192 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3194 if (x86_pmu.guest_get_msrs)
3195 return x86_pmu.guest_get_msrs(nr);
3199 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3201 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3203 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3204 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3206 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3207 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3208 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3210 * If PMU counter has PEBS enabled it is not enough to disable counter
3211 * on a guest entry since PEBS memory write can overshoot guest entry
3212 * and corrupt guest memory. Disabling PEBS solves the problem.
3214 arr[1].msr = MSR_IA32_PEBS_ENABLE;
3215 arr[1].host = cpuc->pebs_enabled;
3222 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3224 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3225 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3228 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3229 struct perf_event *event = cpuc->events[idx];
3231 arr[idx].msr = x86_pmu_config_addr(idx);
3232 arr[idx].host = arr[idx].guest = 0;
3234 if (!test_bit(idx, cpuc->active_mask))
3237 arr[idx].host = arr[idx].guest =
3238 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3240 if (event->attr.exclude_host)
3241 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3242 else if (event->attr.exclude_guest)
3243 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3246 *nr = x86_pmu.num_counters;
3250 static void core_pmu_enable_event(struct perf_event *event)
3252 if (!event->attr.exclude_host)
3253 x86_pmu_enable_event(event);
3256 static void core_pmu_enable_all(int added)
3258 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3261 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3262 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3264 if (!test_bit(idx, cpuc->active_mask) ||
3265 cpuc->events[idx]->attr.exclude_host)
3268 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3272 static int hsw_hw_config(struct perf_event *event)
3274 int ret = intel_pmu_hw_config(event);
3278 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3280 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3283 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3284 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3287 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3288 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3289 event->attr.precise_ip > 0))
3292 if (event_is_checkpointed(event)) {
3294 * Sampling of checkpointed events can cause situations where
3295 * the CPU constantly aborts because of a overflow, which is
3296 * then checkpointed back and ignored. Forbid checkpointing
3299 * But still allow a long sampling period, so that perf stat
3302 if (event->attr.sample_period > 0 &&
3303 event->attr.sample_period < 0x7fffffff)
3309 static struct event_constraint counter0_constraint =
3310 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3312 static struct event_constraint counter2_constraint =
3313 EVENT_CONSTRAINT(0, 0x4, 0);
3315 static struct event_constraint *
3316 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3317 struct perf_event *event)
3319 struct event_constraint *c;
3321 c = intel_get_event_constraints(cpuc, idx, event);
3323 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3324 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3325 if (c->idxmsk64 & (1U << 2))
3326 return &counter2_constraint;
3327 return &emptyconstraint;
3333 static struct event_constraint *
3334 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3335 struct perf_event *event)
3337 struct event_constraint *c;
3339 /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3340 if (event->attr.precise_ip == 3)
3341 return &counter0_constraint;
3343 c = intel_get_event_constraints(cpuc, idx, event);
3351 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3352 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3353 * the two to enforce a minimum period of 128 (the smallest value that has bits
3354 * 0-5 cleared and >= 100).
3356 * Because of how the code in x86_perf_event_set_period() works, the truncation
3357 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3358 * to make up for the 'lost' events due to carrying the 'error' in period_left.
3360 * Therefore the effective (average) period matches the requested period,
3361 * despite coarser hardware granularity.
3363 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3365 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3366 X86_CONFIG(.event=0xc0, .umask=0x01)) {
3374 PMU_FORMAT_ATTR(event, "config:0-7" );
3375 PMU_FORMAT_ATTR(umask, "config:8-15" );
3376 PMU_FORMAT_ATTR(edge, "config:18" );
3377 PMU_FORMAT_ATTR(pc, "config:19" );
3378 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
3379 PMU_FORMAT_ATTR(inv, "config:23" );
3380 PMU_FORMAT_ATTR(cmask, "config:24-31" );
3381 PMU_FORMAT_ATTR(in_tx, "config:32");
3382 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3384 static struct attribute *intel_arch_formats_attr[] = {
3385 &format_attr_event.attr,
3386 &format_attr_umask.attr,
3387 &format_attr_edge.attr,
3388 &format_attr_pc.attr,
3389 &format_attr_inv.attr,
3390 &format_attr_cmask.attr,
3394 ssize_t intel_event_sysfs_show(char *page, u64 config)
3396 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3398 return x86_event_sysfs_show(page, config, event);
3401 struct intel_shared_regs *allocate_shared_regs(int cpu)
3403 struct intel_shared_regs *regs;
3406 regs = kzalloc_node(sizeof(struct intel_shared_regs),
3407 GFP_KERNEL, cpu_to_node(cpu));
3410 * initialize the locks to keep lockdep happy
3412 for (i = 0; i < EXTRA_REG_MAX; i++)
3413 raw_spin_lock_init(®s->regs[i].lock);
3420 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3422 struct intel_excl_cntrs *c;
3424 c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3425 GFP_KERNEL, cpu_to_node(cpu));
3427 raw_spin_lock_init(&c->lock);
3433 static int intel_pmu_cpu_prepare(int cpu)
3435 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3437 if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3438 cpuc->shared_regs = allocate_shared_regs(cpu);
3439 if (!cpuc->shared_regs)
3443 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3444 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3446 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3447 if (!cpuc->constraint_list)
3448 goto err_shared_regs;
3450 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3451 if (!cpuc->excl_cntrs)
3452 goto err_constraint_list;
3454 cpuc->excl_thread_id = 0;
3459 err_constraint_list:
3460 kfree(cpuc->constraint_list);
3461 cpuc->constraint_list = NULL;
3464 kfree(cpuc->shared_regs);
3465 cpuc->shared_regs = NULL;
3471 static void flip_smm_bit(void *data)
3473 unsigned long set = *(unsigned long *)data;
3476 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3477 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3479 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3480 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3484 static void intel_pmu_cpu_starting(int cpu)
3486 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3487 int core_id = topology_core_id(cpu);
3490 init_debug_store_on_cpu(cpu);
3492 * Deal with CPUs that don't clear their LBRs on power-up.
3494 intel_pmu_lbr_reset();
3496 cpuc->lbr_sel = NULL;
3498 if (x86_pmu.version > 1)
3499 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3501 if (x86_pmu.counter_freezing)
3502 enable_counter_freeze();
3504 if (!cpuc->shared_regs)
3507 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3508 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3509 struct intel_shared_regs *pc;
3511 pc = per_cpu(cpu_hw_events, i).shared_regs;
3512 if (pc && pc->core_id == core_id) {
3513 cpuc->kfree_on_online[0] = cpuc->shared_regs;
3514 cpuc->shared_regs = pc;
3518 cpuc->shared_regs->core_id = core_id;
3519 cpuc->shared_regs->refcnt++;
3522 if (x86_pmu.lbr_sel_map)
3523 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3525 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3526 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3527 struct cpu_hw_events *sibling;
3528 struct intel_excl_cntrs *c;
3530 sibling = &per_cpu(cpu_hw_events, i);
3531 c = sibling->excl_cntrs;
3532 if (c && c->core_id == core_id) {
3533 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3534 cpuc->excl_cntrs = c;
3535 if (!sibling->excl_thread_id)
3536 cpuc->excl_thread_id = 1;
3540 cpuc->excl_cntrs->core_id = core_id;
3541 cpuc->excl_cntrs->refcnt++;
3545 static void free_excl_cntrs(int cpu)
3547 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3548 struct intel_excl_cntrs *c;
3550 c = cpuc->excl_cntrs;
3552 if (c->core_id == -1 || --c->refcnt == 0)
3554 cpuc->excl_cntrs = NULL;
3555 kfree(cpuc->constraint_list);
3556 cpuc->constraint_list = NULL;
3560 static void intel_pmu_cpu_dying(int cpu)
3562 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3563 struct intel_shared_regs *pc;
3565 pc = cpuc->shared_regs;
3567 if (pc->core_id == -1 || --pc->refcnt == 0)
3569 cpuc->shared_regs = NULL;
3572 free_excl_cntrs(cpu);
3574 fini_debug_store_on_cpu(cpu);
3576 if (x86_pmu.counter_freezing)
3577 disable_counter_freeze();
3580 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3583 intel_pmu_pebs_sched_task(ctx, sched_in);
3584 intel_pmu_lbr_sched_task(ctx, sched_in);
3587 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3589 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3591 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3593 static struct attribute *intel_arch3_formats_attr[] = {
3594 &format_attr_event.attr,
3595 &format_attr_umask.attr,
3596 &format_attr_edge.attr,
3597 &format_attr_pc.attr,
3598 &format_attr_any.attr,
3599 &format_attr_inv.attr,
3600 &format_attr_cmask.attr,
3604 static struct attribute *hsw_format_attr[] = {
3605 &format_attr_in_tx.attr,
3606 &format_attr_in_tx_cp.attr,
3607 &format_attr_offcore_rsp.attr,
3608 &format_attr_ldlat.attr,
3612 static struct attribute *nhm_format_attr[] = {
3613 &format_attr_offcore_rsp.attr,
3614 &format_attr_ldlat.attr,
3618 static struct attribute *slm_format_attr[] = {
3619 &format_attr_offcore_rsp.attr,
3623 static struct attribute *skl_format_attr[] = {
3624 &format_attr_frontend.attr,
3628 static __initconst const struct x86_pmu core_pmu = {
3630 .handle_irq = x86_pmu_handle_irq,
3631 .disable_all = x86_pmu_disable_all,
3632 .enable_all = core_pmu_enable_all,
3633 .enable = core_pmu_enable_event,
3634 .disable = x86_pmu_disable_event,
3635 .hw_config = core_pmu_hw_config,
3636 .schedule_events = x86_schedule_events,
3637 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
3638 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
3639 .event_map = intel_pmu_event_map,
3640 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
3642 .large_pebs_flags = LARGE_PEBS_FLAGS,
3645 * Intel PMCs cannot be accessed sanely above 32-bit width,
3646 * so we install an artificial 1<<31 period regardless of
3647 * the generic event period:
3649 .max_period = (1ULL<<31) - 1,
3650 .get_event_constraints = intel_get_event_constraints,
3651 .put_event_constraints = intel_put_event_constraints,
3652 .event_constraints = intel_core_event_constraints,
3653 .guest_get_msrs = core_guest_get_msrs,
3654 .format_attrs = intel_arch_formats_attr,
3655 .events_sysfs_show = intel_event_sysfs_show,
3658 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3659 * together with PMU version 1 and thus be using core_pmu with
3660 * shared_regs. We need following callbacks here to allocate
3663 .cpu_prepare = intel_pmu_cpu_prepare,
3664 .cpu_starting = intel_pmu_cpu_starting,
3665 .cpu_dying = intel_pmu_cpu_dying,
3668 static struct attribute *intel_pmu_attrs[];
3670 static __initconst const struct x86_pmu intel_pmu = {
3672 .handle_irq = intel_pmu_handle_irq,
3673 .disable_all = intel_pmu_disable_all,
3674 .enable_all = intel_pmu_enable_all,
3675 .enable = intel_pmu_enable_event,
3676 .disable = intel_pmu_disable_event,
3677 .add = intel_pmu_add_event,
3678 .del = intel_pmu_del_event,
3679 .read = intel_pmu_read_event,
3680 .hw_config = intel_pmu_hw_config,
3681 .schedule_events = x86_schedule_events,
3682 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
3683 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
3684 .event_map = intel_pmu_event_map,
3685 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
3687 .large_pebs_flags = LARGE_PEBS_FLAGS,
3689 * Intel PMCs cannot be accessed sanely above 32 bit width,
3690 * so we install an artificial 1<<31 period regardless of
3691 * the generic event period:
3693 .max_period = (1ULL << 31) - 1,
3694 .get_event_constraints = intel_get_event_constraints,
3695 .put_event_constraints = intel_put_event_constraints,
3696 .pebs_aliases = intel_pebs_aliases_core2,
3698 .format_attrs = intel_arch3_formats_attr,
3699 .events_sysfs_show = intel_event_sysfs_show,
3701 .attrs = intel_pmu_attrs,
3703 .cpu_prepare = intel_pmu_cpu_prepare,
3704 .cpu_starting = intel_pmu_cpu_starting,
3705 .cpu_dying = intel_pmu_cpu_dying,
3706 .guest_get_msrs = intel_guest_get_msrs,
3707 .sched_task = intel_pmu_sched_task,
3710 static __init void intel_clovertown_quirk(void)
3713 * PEBS is unreliable due to:
3715 * AJ67 - PEBS may experience CPL leaks
3716 * AJ68 - PEBS PMI may be delayed by one event
3717 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3718 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3720 * AJ67 could be worked around by restricting the OS/USR flags.
3721 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3723 * AJ106 could possibly be worked around by not allowing LBR
3724 * usage from PEBS, including the fixup.
3725 * AJ68 could possibly be worked around by always programming
3726 * a pebs_event_reset[0] value and coping with the lost events.
3728 * But taken together it might just make sense to not enable PEBS on
3731 pr_warn("PEBS disabled due to CPU errata\n");
3733 x86_pmu.pebs_constraints = NULL;
3736 static int intel_snb_pebs_broken(int cpu)
3738 u32 rev = UINT_MAX; /* default to broken for unknown models */
3740 switch (cpu_data(cpu).x86_model) {
3741 case INTEL_FAM6_SANDYBRIDGE:
3745 case INTEL_FAM6_SANDYBRIDGE_X:
3746 switch (cpu_data(cpu).x86_stepping) {
3747 case 6: rev = 0x618; break;
3748 case 7: rev = 0x70c; break;
3752 return (cpu_data(cpu).microcode < rev);
3755 static void intel_snb_check_microcode(void)
3757 int pebs_broken = 0;
3760 for_each_online_cpu(cpu) {
3761 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3765 if (pebs_broken == x86_pmu.pebs_broken)
3769 * Serialized by the microcode lock..
3771 if (x86_pmu.pebs_broken) {
3772 pr_info("PEBS enabled due to microcode update\n");
3773 x86_pmu.pebs_broken = 0;
3775 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3776 x86_pmu.pebs_broken = 1;
3780 static bool is_lbr_from(unsigned long msr)
3782 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3784 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3788 * Under certain circumstances, access certain MSR may cause #GP.
3789 * The function tests if the input MSR can be safely accessed.
3791 static bool check_msr(unsigned long msr, u64 mask)
3793 u64 val_old, val_new, val_tmp;
3796 * Read the current value, change it and read it back to see if it
3797 * matches, this is needed to detect certain hardware emulators
3798 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3800 if (rdmsrl_safe(msr, &val_old))
3804 * Only change the bits which can be updated by wrmsrl.
3806 val_tmp = val_old ^ mask;
3808 if (is_lbr_from(msr))
3809 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3811 if (wrmsrl_safe(msr, val_tmp) ||
3812 rdmsrl_safe(msr, &val_new))
3816 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3817 * should equal rdmsrl()'s even with the quirk.
3819 if (val_new != val_tmp)
3822 if (is_lbr_from(msr))
3823 val_old = lbr_from_signext_quirk_wr(val_old);
3825 /* Here it's sure that the MSR can be safely accessed.
3826 * Restore the old value and return.
3828 wrmsrl(msr, val_old);
3833 static __init void intel_sandybridge_quirk(void)
3835 x86_pmu.check_microcode = intel_snb_check_microcode;
3837 intel_snb_check_microcode();
3841 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3842 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3843 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3844 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3845 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3846 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3847 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3848 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3851 static __init void intel_arch_events_quirk(void)
3855 /* disable event that reported as not presend by cpuid */
3856 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3857 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3858 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3859 intel_arch_events_map[bit].name);
3863 static __init void intel_nehalem_quirk(void)
3865 union cpuid10_ebx ebx;
3867 ebx.full = x86_pmu.events_maskl;
3868 if (ebx.split.no_branch_misses_retired) {
3870 * Erratum AAJ80 detected, we work it around by using
3871 * the BR_MISP_EXEC.ANY event. This will over-count
3872 * branch-misses, but it's still much better than the
3873 * architectural event which is often completely bogus:
3875 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3876 ebx.split.no_branch_misses_retired = 0;
3877 x86_pmu.events_maskl = ebx.full;
3878 pr_info("CPU erratum AAJ80 worked around\n");
3882 static bool intel_glp_counter_freezing_broken(int cpu)
3884 u32 rev = UINT_MAX; /* default to broken for unknown stepping */
3886 switch (cpu_data(cpu).x86_stepping) {
3895 return (cpu_data(cpu).microcode < rev);
3898 static __init void intel_glp_counter_freezing_quirk(void)
3900 /* Check if it's already disabled */
3901 if (disable_counter_freezing)
3905 * If the system starts with the wrong ucode, leave the
3906 * counter-freezing feature permanently disabled.
3908 if (intel_glp_counter_freezing_broken(raw_smp_processor_id())) {
3909 pr_info("PMU counter freezing disabled due to CPU errata,"
3910 "please upgrade microcode\n");
3911 x86_pmu.counter_freezing = false;
3912 x86_pmu.handle_irq = intel_pmu_handle_irq;
3917 * enable software workaround for errata:
3922 * Only needed when HT is enabled. However detecting
3923 * if HT is enabled is difficult (model specific). So instead,
3924 * we enable the workaround in the early boot, and verify if
3925 * it is needed in a later initcall phase once we have valid
3926 * topology information to check if HT is actually enabled
3928 static __init void intel_ht_bug(void)
3930 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3932 x86_pmu.start_scheduling = intel_start_scheduling;
3933 x86_pmu.commit_scheduling = intel_commit_scheduling;
3934 x86_pmu.stop_scheduling = intel_stop_scheduling;
3937 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
3938 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
3940 /* Haswell special events */
3941 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
3942 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
3943 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
3944 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
3945 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
3946 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
3947 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
3948 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
3949 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
3950 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
3951 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
3952 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
3954 static struct attribute *hsw_events_attrs[] = {
3955 EVENT_PTR(td_slots_issued),
3956 EVENT_PTR(td_slots_retired),
3957 EVENT_PTR(td_fetch_bubbles),
3958 EVENT_PTR(td_total_slots),
3959 EVENT_PTR(td_total_slots_scale),
3960 EVENT_PTR(td_recovery_bubbles),
3961 EVENT_PTR(td_recovery_bubbles_scale),
3965 static struct attribute *hsw_mem_events_attrs[] = {
3966 EVENT_PTR(mem_ld_hsw),
3967 EVENT_PTR(mem_st_hsw),
3971 static struct attribute *hsw_tsx_events_attrs[] = {
3972 EVENT_PTR(tx_start),
3973 EVENT_PTR(tx_commit),
3974 EVENT_PTR(tx_abort),
3975 EVENT_PTR(tx_capacity),
3976 EVENT_PTR(tx_conflict),
3977 EVENT_PTR(el_start),
3978 EVENT_PTR(el_commit),
3979 EVENT_PTR(el_abort),
3980 EVENT_PTR(el_capacity),
3981 EVENT_PTR(el_conflict),
3982 EVENT_PTR(cycles_t),
3983 EVENT_PTR(cycles_ct),
3987 static ssize_t freeze_on_smi_show(struct device *cdev,
3988 struct device_attribute *attr,
3991 return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
3994 static DEFINE_MUTEX(freeze_on_smi_mutex);
3996 static ssize_t freeze_on_smi_store(struct device *cdev,
3997 struct device_attribute *attr,
3998 const char *buf, size_t count)
4003 ret = kstrtoul(buf, 0, &val);
4010 mutex_lock(&freeze_on_smi_mutex);
4012 if (x86_pmu.attr_freeze_on_smi == val)
4015 x86_pmu.attr_freeze_on_smi = val;
4018 on_each_cpu(flip_smm_bit, &val, 1);
4021 mutex_unlock(&freeze_on_smi_mutex);
4026 static DEVICE_ATTR_RW(freeze_on_smi);
4028 static ssize_t branches_show(struct device *cdev,
4029 struct device_attribute *attr,
4032 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
4035 static DEVICE_ATTR_RO(branches);
4037 static struct attribute *lbr_attrs[] = {
4038 &dev_attr_branches.attr,
4042 static char pmu_name_str[30];
4044 static ssize_t pmu_name_show(struct device *cdev,
4045 struct device_attribute *attr,
4048 return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
4051 static DEVICE_ATTR_RO(pmu_name);
4053 static struct attribute *intel_pmu_caps_attrs[] = {
4054 &dev_attr_pmu_name.attr,
4058 static struct attribute *intel_pmu_attrs[] = {
4059 &dev_attr_freeze_on_smi.attr,
4063 static __init struct attribute **
4064 get_events_attrs(struct attribute **base,
4065 struct attribute **mem,
4066 struct attribute **tsx)
4068 struct attribute **attrs = base;
4069 struct attribute **old;
4071 if (mem && x86_pmu.pebs)
4072 attrs = merge_attr(attrs, mem);
4074 if (tsx && boot_cpu_has(X86_FEATURE_RTM)) {
4076 attrs = merge_attr(attrs, tsx);
4084 __init int intel_pmu_init(void)
4086 struct attribute **extra_attr = NULL;
4087 struct attribute **mem_attr = NULL;
4088 struct attribute **tsx_attr = NULL;
4089 struct attribute **to_free = NULL;
4090 union cpuid10_edx edx;
4091 union cpuid10_eax eax;
4092 union cpuid10_ebx ebx;
4093 struct event_constraint *c;
4094 unsigned int unused;
4095 struct extra_reg *er;
4099 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4100 switch (boot_cpu_data.x86) {
4102 return p6_pmu_init();
4104 return knc_pmu_init();
4106 return p4_pmu_init();
4112 * Check whether the Architectural PerfMon supports
4113 * Branch Misses Retired hw_event or not.
4115 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
4116 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4119 version = eax.split.version_id;
4123 x86_pmu = intel_pmu;
4125 x86_pmu.version = version;
4126 x86_pmu.num_counters = eax.split.num_counters;
4127 x86_pmu.cntval_bits = eax.split.bit_width;
4128 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
4130 x86_pmu.events_maskl = ebx.full;
4131 x86_pmu.events_mask_len = eax.split.mask_length;
4133 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
4136 * Quirk: v2 perfmon does not report fixed-purpose events, so
4137 * assume at least 3 events, when not running in a hypervisor:
4140 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
4142 x86_pmu.num_counters_fixed =
4143 max((int)edx.split.num_counters_fixed, assume);
4147 x86_pmu.counter_freezing = !disable_counter_freezing;
4149 if (boot_cpu_has(X86_FEATURE_PDCM)) {
4152 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
4153 x86_pmu.intel_cap.capabilities = capabilities;
4158 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
4161 * Install the hw-cache-events table:
4163 switch (boot_cpu_data.x86_model) {
4164 case INTEL_FAM6_CORE_YONAH:
4165 pr_cont("Core events, ");
4169 case INTEL_FAM6_CORE2_MEROM:
4170 x86_add_quirk(intel_clovertown_quirk);
4171 case INTEL_FAM6_CORE2_MEROM_L:
4172 case INTEL_FAM6_CORE2_PENRYN:
4173 case INTEL_FAM6_CORE2_DUNNINGTON:
4174 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
4175 sizeof(hw_cache_event_ids));
4177 intel_pmu_lbr_init_core();
4179 x86_pmu.event_constraints = intel_core2_event_constraints;
4180 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
4181 pr_cont("Core2 events, ");
4185 case INTEL_FAM6_NEHALEM:
4186 case INTEL_FAM6_NEHALEM_EP:
4187 case INTEL_FAM6_NEHALEM_EX:
4188 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
4189 sizeof(hw_cache_event_ids));
4190 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4191 sizeof(hw_cache_extra_regs));
4193 intel_pmu_lbr_init_nhm();
4195 x86_pmu.event_constraints = intel_nehalem_event_constraints;
4196 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
4197 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4198 x86_pmu.extra_regs = intel_nehalem_extra_regs;
4200 mem_attr = nhm_mem_events_attrs;
4202 /* UOPS_ISSUED.STALLED_CYCLES */
4203 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4204 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4205 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4206 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4207 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4209 intel_pmu_pebs_data_source_nhm();
4210 x86_add_quirk(intel_nehalem_quirk);
4211 x86_pmu.pebs_no_tlb = 1;
4212 extra_attr = nhm_format_attr;
4214 pr_cont("Nehalem events, ");
4218 case INTEL_FAM6_ATOM_BONNELL:
4219 case INTEL_FAM6_ATOM_BONNELL_MID:
4220 case INTEL_FAM6_ATOM_SALTWELL:
4221 case INTEL_FAM6_ATOM_SALTWELL_MID:
4222 case INTEL_FAM6_ATOM_SALTWELL_TABLET:
4223 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
4224 sizeof(hw_cache_event_ids));
4226 intel_pmu_lbr_init_atom();
4228 x86_pmu.event_constraints = intel_gen_event_constraints;
4229 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4230 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4231 pr_cont("Atom events, ");
4235 case INTEL_FAM6_ATOM_SILVERMONT:
4236 case INTEL_FAM6_ATOM_SILVERMONT_X:
4237 case INTEL_FAM6_ATOM_SILVERMONT_MID:
4238 case INTEL_FAM6_ATOM_AIRMONT:
4239 case INTEL_FAM6_ATOM_AIRMONT_MID:
4240 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4241 sizeof(hw_cache_event_ids));
4242 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4243 sizeof(hw_cache_extra_regs));
4245 intel_pmu_lbr_init_slm();
4247 x86_pmu.event_constraints = intel_slm_event_constraints;
4248 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4249 x86_pmu.extra_regs = intel_slm_extra_regs;
4250 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4251 x86_pmu.cpu_events = slm_events_attrs;
4252 extra_attr = slm_format_attr;
4253 pr_cont("Silvermont events, ");
4254 name = "silvermont";
4257 case INTEL_FAM6_ATOM_GOLDMONT:
4258 case INTEL_FAM6_ATOM_GOLDMONT_X:
4259 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4260 sizeof(hw_cache_event_ids));
4261 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4262 sizeof(hw_cache_extra_regs));
4264 intel_pmu_lbr_init_skl();
4266 x86_pmu.event_constraints = intel_slm_event_constraints;
4267 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4268 x86_pmu.extra_regs = intel_glm_extra_regs;
4270 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4271 * for precise cycles.
4272 * :pp is identical to :ppp
4274 x86_pmu.pebs_aliases = NULL;
4275 x86_pmu.pebs_prec_dist = true;
4276 x86_pmu.lbr_pt_coexist = true;
4277 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4278 x86_pmu.cpu_events = glm_events_attrs;
4279 extra_attr = slm_format_attr;
4280 pr_cont("Goldmont events, ");
4284 case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
4285 x86_add_quirk(intel_glp_counter_freezing_quirk);
4286 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4287 sizeof(hw_cache_event_ids));
4288 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4289 sizeof(hw_cache_extra_regs));
4291 intel_pmu_lbr_init_skl();
4293 x86_pmu.event_constraints = intel_slm_event_constraints;
4294 x86_pmu.extra_regs = intel_glm_extra_regs;
4296 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4297 * for precise cycles.
4299 x86_pmu.pebs_aliases = NULL;
4300 x86_pmu.pebs_prec_dist = true;
4301 x86_pmu.lbr_pt_coexist = true;
4302 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4303 x86_pmu.flags |= PMU_FL_PEBS_ALL;
4304 x86_pmu.get_event_constraints = glp_get_event_constraints;
4305 x86_pmu.cpu_events = glm_events_attrs;
4306 /* Goldmont Plus has 4-wide pipeline */
4307 event_attr_td_total_slots_scale_glm.event_str = "4";
4308 extra_attr = slm_format_attr;
4309 pr_cont("Goldmont plus events, ");
4310 name = "goldmont_plus";
4313 case INTEL_FAM6_WESTMERE:
4314 case INTEL_FAM6_WESTMERE_EP:
4315 case INTEL_FAM6_WESTMERE_EX:
4316 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4317 sizeof(hw_cache_event_ids));
4318 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4319 sizeof(hw_cache_extra_regs));
4321 intel_pmu_lbr_init_nhm();
4323 x86_pmu.event_constraints = intel_westmere_event_constraints;
4324 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4325 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4326 x86_pmu.extra_regs = intel_westmere_extra_regs;
4327 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4329 mem_attr = nhm_mem_events_attrs;
4331 /* UOPS_ISSUED.STALLED_CYCLES */
4332 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4333 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4334 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4335 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4336 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4338 intel_pmu_pebs_data_source_nhm();
4339 extra_attr = nhm_format_attr;
4340 pr_cont("Westmere events, ");
4344 case INTEL_FAM6_SANDYBRIDGE:
4345 case INTEL_FAM6_SANDYBRIDGE_X:
4346 x86_add_quirk(intel_sandybridge_quirk);
4347 x86_add_quirk(intel_ht_bug);
4348 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4349 sizeof(hw_cache_event_ids));
4350 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4351 sizeof(hw_cache_extra_regs));
4353 intel_pmu_lbr_init_snb();
4355 x86_pmu.event_constraints = intel_snb_event_constraints;
4356 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4357 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4358 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4359 x86_pmu.extra_regs = intel_snbep_extra_regs;
4361 x86_pmu.extra_regs = intel_snb_extra_regs;
4364 /* all extra regs are per-cpu when HT is on */
4365 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4366 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4368 x86_pmu.cpu_events = snb_events_attrs;
4369 mem_attr = snb_mem_events_attrs;
4371 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4372 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4373 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4374 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4375 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4376 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4378 extra_attr = nhm_format_attr;
4380 pr_cont("SandyBridge events, ");
4381 name = "sandybridge";
4384 case INTEL_FAM6_IVYBRIDGE:
4385 case INTEL_FAM6_IVYBRIDGE_X:
4386 x86_add_quirk(intel_ht_bug);
4387 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4388 sizeof(hw_cache_event_ids));
4389 /* dTLB-load-misses on IVB is different than SNB */
4390 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4392 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4393 sizeof(hw_cache_extra_regs));
4395 intel_pmu_lbr_init_snb();
4397 x86_pmu.event_constraints = intel_ivb_event_constraints;
4398 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4399 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4400 x86_pmu.pebs_prec_dist = true;
4401 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4402 x86_pmu.extra_regs = intel_snbep_extra_regs;
4404 x86_pmu.extra_regs = intel_snb_extra_regs;
4405 /* all extra regs are per-cpu when HT is on */
4406 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4407 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4409 x86_pmu.cpu_events = snb_events_attrs;
4410 mem_attr = snb_mem_events_attrs;
4412 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4413 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4414 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4416 extra_attr = nhm_format_attr;
4418 pr_cont("IvyBridge events, ");
4423 case INTEL_FAM6_HASWELL_CORE:
4424 case INTEL_FAM6_HASWELL_X:
4425 case INTEL_FAM6_HASWELL_ULT:
4426 case INTEL_FAM6_HASWELL_GT3E:
4427 x86_add_quirk(intel_ht_bug);
4428 x86_pmu.late_ack = true;
4429 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4430 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4432 intel_pmu_lbr_init_hsw();
4434 x86_pmu.event_constraints = intel_hsw_event_constraints;
4435 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4436 x86_pmu.extra_regs = intel_snbep_extra_regs;
4437 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4438 x86_pmu.pebs_prec_dist = true;
4439 /* all extra regs are per-cpu when HT is on */
4440 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4441 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4443 x86_pmu.hw_config = hsw_hw_config;
4444 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4445 x86_pmu.cpu_events = hsw_events_attrs;
4446 x86_pmu.lbr_double_abort = true;
4447 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4448 hsw_format_attr : nhm_format_attr;
4449 mem_attr = hsw_mem_events_attrs;
4450 tsx_attr = hsw_tsx_events_attrs;
4451 pr_cont("Haswell events, ");
4455 case INTEL_FAM6_BROADWELL_CORE:
4456 case INTEL_FAM6_BROADWELL_XEON_D:
4457 case INTEL_FAM6_BROADWELL_GT3E:
4458 case INTEL_FAM6_BROADWELL_X:
4459 x86_pmu.late_ack = true;
4460 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4461 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4463 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4464 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
4465 BDW_L3_MISS|HSW_SNOOP_DRAM;
4466 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
4468 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
4469 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4470 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
4471 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4473 intel_pmu_lbr_init_hsw();
4475 x86_pmu.event_constraints = intel_bdw_event_constraints;
4476 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
4477 x86_pmu.extra_regs = intel_snbep_extra_regs;
4478 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4479 x86_pmu.pebs_prec_dist = true;
4480 /* all extra regs are per-cpu when HT is on */
4481 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4482 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4484 x86_pmu.hw_config = hsw_hw_config;
4485 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4486 x86_pmu.cpu_events = hsw_events_attrs;
4487 x86_pmu.limit_period = bdw_limit_period;
4488 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4489 hsw_format_attr : nhm_format_attr;
4490 mem_attr = hsw_mem_events_attrs;
4491 tsx_attr = hsw_tsx_events_attrs;
4492 pr_cont("Broadwell events, ");
4496 case INTEL_FAM6_XEON_PHI_KNL:
4497 case INTEL_FAM6_XEON_PHI_KNM:
4498 memcpy(hw_cache_event_ids,
4499 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4500 memcpy(hw_cache_extra_regs,
4501 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4502 intel_pmu_lbr_init_knl();
4504 x86_pmu.event_constraints = intel_slm_event_constraints;
4505 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4506 x86_pmu.extra_regs = intel_knl_extra_regs;
4508 /* all extra regs are per-cpu when HT is on */
4509 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4510 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4511 extra_attr = slm_format_attr;
4512 pr_cont("Knights Landing/Mill events, ");
4513 name = "knights-landing";
4516 case INTEL_FAM6_SKYLAKE_MOBILE:
4517 case INTEL_FAM6_SKYLAKE_DESKTOP:
4518 case INTEL_FAM6_SKYLAKE_X:
4519 case INTEL_FAM6_KABYLAKE_MOBILE:
4520 case INTEL_FAM6_KABYLAKE_DESKTOP:
4521 x86_pmu.late_ack = true;
4522 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4523 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4524 intel_pmu_lbr_init_skl();
4526 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4527 event_attr_td_recovery_bubbles.event_str_noht =
4528 "event=0xd,umask=0x1,cmask=1";
4529 event_attr_td_recovery_bubbles.event_str_ht =
4530 "event=0xd,umask=0x1,cmask=1,any=1";
4532 x86_pmu.event_constraints = intel_skl_event_constraints;
4533 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
4534 x86_pmu.extra_regs = intel_skl_extra_regs;
4535 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
4536 x86_pmu.pebs_prec_dist = true;
4537 /* all extra regs are per-cpu when HT is on */
4538 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4539 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4541 x86_pmu.hw_config = hsw_hw_config;
4542 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4543 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4544 hsw_format_attr : nhm_format_attr;
4545 extra_attr = merge_attr(extra_attr, skl_format_attr);
4546 to_free = extra_attr;
4547 x86_pmu.cpu_events = hsw_events_attrs;
4548 mem_attr = hsw_mem_events_attrs;
4549 tsx_attr = hsw_tsx_events_attrs;
4550 intel_pmu_pebs_data_source_skl(
4551 boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X);
4552 pr_cont("Skylake events, ");
4557 switch (x86_pmu.version) {
4559 x86_pmu.event_constraints = intel_v1_event_constraints;
4560 pr_cont("generic architected perfmon v1, ");
4561 name = "generic_arch_v1";
4565 * default constraints for v2 and up
4567 x86_pmu.event_constraints = intel_gen_event_constraints;
4568 pr_cont("generic architected perfmon, ");
4569 name = "generic_arch_v2+";
4574 snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
4576 if (version >= 2 && extra_attr) {
4577 x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
4579 WARN_ON(!x86_pmu.format_attrs);
4582 x86_pmu.cpu_events = get_events_attrs(x86_pmu.cpu_events,
4583 mem_attr, tsx_attr);
4585 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
4586 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
4587 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
4588 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
4590 x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
4592 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
4593 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
4594 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
4595 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
4598 x86_pmu.intel_ctrl |=
4599 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
4601 if (x86_pmu.event_constraints) {
4603 * event on fixed counter2 (REF_CYCLES) only works on this
4604 * counter, so do not extend mask to generic counters
4606 for_each_event_constraint(c, x86_pmu.event_constraints) {
4607 if (c->cmask == FIXED_EVENT_FLAGS
4608 && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
4609 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
4612 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
4613 c->weight = hweight64(c->idxmsk64);
4618 * Access LBR MSR may cause #GP under certain circumstances.
4619 * E.g. KVM doesn't support LBR MSR
4620 * Check all LBT MSR here.
4621 * Disable LBR access if any LBR MSRs can not be accessed.
4623 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4625 for (i = 0; i < x86_pmu.lbr_nr; i++) {
4626 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4627 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4631 x86_pmu.caps_attrs = intel_pmu_caps_attrs;
4633 if (x86_pmu.lbr_nr) {
4634 x86_pmu.caps_attrs = merge_attr(x86_pmu.caps_attrs, lbr_attrs);
4635 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4639 * Access extra MSR may cause #GP under certain circumstances.
4640 * E.g. KVM doesn't support offcore event
4641 * Check all extra_regs here.
4643 if (x86_pmu.extra_regs) {
4644 for (er = x86_pmu.extra_regs; er->msr; er++) {
4645 er->extra_msr_access = check_msr(er->msr, 0x11UL);
4646 /* Disable LBR select mapping */
4647 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4648 x86_pmu.lbr_sel_map = NULL;
4652 /* Support full width counters using alternative MSR range */
4653 if (x86_pmu.intel_cap.full_width_write) {
4654 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
4655 x86_pmu.perfctr = MSR_IA32_PMC0;
4656 pr_cont("full-width counters, ");
4660 * For arch perfmon 4 use counter freezing to avoid
4661 * several MSR accesses in the PMI.
4663 if (x86_pmu.counter_freezing)
4664 x86_pmu.handle_irq = intel_pmu_handle_irq_v4;
4671 * HT bug: phase 2 init
4672 * Called once we have valid topology information to check
4673 * whether or not HT is enabled
4674 * If HT is off, then we disable the workaround
4676 static __init int fixup_ht_bug(void)
4680 * problem not present on this CPU model, nothing to do
4682 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4685 if (topology_max_smt_threads() > 1) {
4686 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4692 hardlockup_detector_perf_stop();
4694 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4696 x86_pmu.start_scheduling = NULL;
4697 x86_pmu.commit_scheduling = NULL;
4698 x86_pmu.stop_scheduling = NULL;
4700 hardlockup_detector_perf_restart();
4702 for_each_online_cpu(c)
4706 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4709 subsys_initcall(fixup_ht_bug)