2 * Performance events x86 architecture code
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
33 #include <asm/stacktrace.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
42 #include <asm/unwind.h>
44 #include "perf_event.h"
46 struct x86_pmu x86_pmu __read_mostly;
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
54 u64 __read_mostly hw_cache_event_ids
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59 [PERF_COUNT_HW_CACHE_MAX]
60 [PERF_COUNT_HW_CACHE_OP_MAX]
61 [PERF_COUNT_HW_CACHE_RESULT_MAX];
64 * Propagate event elapsed time into the generic event.
65 * Can only be executed on the CPU where the event is active.
66 * Returns the delta events processed.
68 u64 x86_perf_event_update(struct perf_event *event)
70 struct hw_perf_event *hwc = &event->hw;
71 int shift = 64 - x86_pmu.cntval_bits;
72 u64 prev_raw_count, new_raw_count;
76 if (idx == INTEL_PMC_IDX_FIXED_BTS)
80 * Careful: an NMI might modify the previous event value.
82 * Our tactic to handle this is to first atomically read and
83 * exchange a new raw count - then add that new-prev delta
84 * count to the generic event atomically:
87 prev_raw_count = local64_read(&hwc->prev_count);
88 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
90 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91 new_raw_count) != prev_raw_count)
95 * Now we have the new raw value and have updated the prev
96 * timestamp already. We can now calculate the elapsed delta
97 * (event-)time and add that to the generic event.
99 * Careful, not all hw sign-extends above the physical width
102 delta = (new_raw_count << shift) - (prev_raw_count << shift);
105 local64_add(delta, &event->count);
106 local64_sub(delta, &hwc->period_left);
108 return new_raw_count;
112 * Find and validate any extra registers to set up.
114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
116 struct hw_perf_event_extra *reg;
117 struct extra_reg *er;
119 reg = &event->hw.extra_reg;
121 if (!x86_pmu.extra_regs)
124 for (er = x86_pmu.extra_regs; er->msr; er++) {
125 if (er->event != (config & er->config_mask))
127 if (event->attr.config1 & ~er->valid_mask)
129 /* Check if the extra msrs can be safely accessed*/
130 if (!er->extra_msr_access)
134 reg->config = event->attr.config1;
141 static atomic_t active_events;
142 static atomic_t pmc_refcount;
143 static DEFINE_MUTEX(pmc_reserve_mutex);
145 #ifdef CONFIG_X86_LOCAL_APIC
147 static bool reserve_pmc_hardware(void)
151 for (i = 0; i < x86_pmu.num_counters; i++) {
152 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
156 for (i = 0; i < x86_pmu.num_counters; i++) {
157 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
164 for (i--; i >= 0; i--)
165 release_evntsel_nmi(x86_pmu_config_addr(i));
167 i = x86_pmu.num_counters;
170 for (i--; i >= 0; i--)
171 release_perfctr_nmi(x86_pmu_event_addr(i));
176 static void release_pmc_hardware(void)
180 for (i = 0; i < x86_pmu.num_counters; i++) {
181 release_perfctr_nmi(x86_pmu_event_addr(i));
182 release_evntsel_nmi(x86_pmu_config_addr(i));
188 static bool reserve_pmc_hardware(void) { return true; }
189 static void release_pmc_hardware(void) {}
193 static bool check_hw_exists(void)
195 u64 val, val_fail = -1, val_new= ~0;
196 int i, reg, reg_fail = -1, ret = 0;
201 * Check to see if the BIOS enabled any of the counters, if so
204 for (i = 0; i < x86_pmu.num_counters; i++) {
205 reg = x86_pmu_config_addr(i);
206 ret = rdmsrl_safe(reg, &val);
209 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
218 if (x86_pmu.num_counters_fixed) {
219 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220 ret = rdmsrl_safe(reg, &val);
223 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
224 if (val & (0x03 << i*4)) {
233 * If all the counters are enabled, the below test will always
234 * fail. The tools will also become useless in this scenario.
235 * Just fail and disable the hardware counters.
238 if (reg_safe == -1) {
244 * Read the current value, change it and read it back to see if it
245 * matches, this is needed to detect certain hardware emulators
246 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
248 reg = x86_pmu_event_addr(reg_safe);
249 if (rdmsrl_safe(reg, &val))
252 ret = wrmsrl_safe(reg, val);
253 ret |= rdmsrl_safe(reg, &val_new);
254 if (ret || val != val_new)
258 * We still allow the PMU driver to operate:
261 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
269 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270 pr_cont("PMU not available due to virtualization, using software events only.\n");
272 pr_cont("Broken PMU hardware detected, using software events only.\n");
273 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
280 static void hw_perf_event_destroy(struct perf_event *event)
282 x86_release_hardware();
283 atomic_dec(&active_events);
286 void hw_perf_lbr_event_destroy(struct perf_event *event)
288 hw_perf_event_destroy(event);
290 /* undo the lbr/bts event accounting */
291 x86_del_exclusive(x86_lbr_exclusive_lbr);
294 static inline int x86_pmu_initialized(void)
296 return x86_pmu.handle_irq != NULL;
300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
302 struct perf_event_attr *attr = &event->attr;
303 unsigned int cache_type, cache_op, cache_result;
306 config = attr->config;
308 cache_type = (config >> 0) & 0xff;
309 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
311 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
313 cache_op = (config >> 8) & 0xff;
314 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
316 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
318 cache_result = (config >> 16) & 0xff;
319 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
321 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
323 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
332 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333 return x86_pmu_extra_regs(val, event);
336 int x86_reserve_hardware(void)
340 if (!atomic_inc_not_zero(&pmc_refcount)) {
341 mutex_lock(&pmc_reserve_mutex);
342 if (atomic_read(&pmc_refcount) == 0) {
343 if (!reserve_pmc_hardware())
346 reserve_ds_buffers();
349 atomic_inc(&pmc_refcount);
350 mutex_unlock(&pmc_reserve_mutex);
356 void x86_release_hardware(void)
358 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
359 release_pmc_hardware();
360 release_ds_buffers();
361 mutex_unlock(&pmc_reserve_mutex);
366 * Check if we can create event of a certain type (that no conflicting events
369 int x86_add_exclusive(unsigned int what)
374 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
375 * LBR and BTS are still mutually exclusive.
377 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
380 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
381 mutex_lock(&pmc_reserve_mutex);
382 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
383 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
386 atomic_inc(&x86_pmu.lbr_exclusive[what]);
387 mutex_unlock(&pmc_reserve_mutex);
390 atomic_inc(&active_events);
394 mutex_unlock(&pmc_reserve_mutex);
398 void x86_del_exclusive(unsigned int what)
400 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
403 atomic_dec(&x86_pmu.lbr_exclusive[what]);
404 atomic_dec(&active_events);
407 int x86_setup_perfctr(struct perf_event *event)
409 struct perf_event_attr *attr = &event->attr;
410 struct hw_perf_event *hwc = &event->hw;
413 if (!is_sampling_event(event)) {
414 hwc->sample_period = x86_pmu.max_period;
415 hwc->last_period = hwc->sample_period;
416 local64_set(&hwc->period_left, hwc->sample_period);
419 if (attr->type == PERF_TYPE_RAW)
420 return x86_pmu_extra_regs(event->attr.config, event);
422 if (attr->type == PERF_TYPE_HW_CACHE)
423 return set_ext_hw_attr(hwc, event);
425 if (attr->config >= x86_pmu.max_events)
428 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
433 config = x86_pmu.event_map(attr->config);
441 hwc->config |= config;
447 * check that branch_sample_type is compatible with
448 * settings needed for precise_ip > 1 which implies
449 * using the LBR to capture ALL taken branches at the
450 * priv levels of the measurement
452 static inline int precise_br_compat(struct perf_event *event)
454 u64 m = event->attr.branch_sample_type;
457 /* must capture all branches */
458 if (!(m & PERF_SAMPLE_BRANCH_ANY))
461 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
463 if (!event->attr.exclude_user)
464 b |= PERF_SAMPLE_BRANCH_USER;
466 if (!event->attr.exclude_kernel)
467 b |= PERF_SAMPLE_BRANCH_KERNEL;
470 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
476 int x86_pmu_max_precise(void)
480 /* Support for constant skid */
481 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
484 /* Support for IP fixup */
485 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
488 if (x86_pmu.pebs_prec_dist)
494 int x86_pmu_hw_config(struct perf_event *event)
496 if (event->attr.precise_ip) {
497 int precise = x86_pmu_max_precise();
499 if (event->attr.precise_ip > precise)
502 /* There's no sense in having PEBS for non sampling events: */
503 if (!is_sampling_event(event))
507 * check that PEBS LBR correction does not conflict with
508 * whatever the user is asking with attr->branch_sample_type
510 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
511 u64 *br_type = &event->attr.branch_sample_type;
513 if (has_branch_stack(event)) {
514 if (!precise_br_compat(event))
517 /* branch_sample_type is compatible */
521 * user did not specify branch_sample_type
523 * For PEBS fixups, we capture all
524 * the branches at the priv level of the
527 *br_type = PERF_SAMPLE_BRANCH_ANY;
529 if (!event->attr.exclude_user)
530 *br_type |= PERF_SAMPLE_BRANCH_USER;
532 if (!event->attr.exclude_kernel)
533 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
537 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
538 event->attach_state |= PERF_ATTACH_TASK_DATA;
542 * (keep 'enabled' bit clear for now)
544 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
547 * Count user and OS events unless requested not to
549 if (!event->attr.exclude_user)
550 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
551 if (!event->attr.exclude_kernel)
552 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
554 if (event->attr.type == PERF_TYPE_RAW)
555 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
557 if (event->attr.sample_period && x86_pmu.limit_period) {
558 if (x86_pmu.limit_period(event, event->attr.sample_period) >
559 event->attr.sample_period)
563 return x86_setup_perfctr(event);
567 * Setup the hardware configuration for a given attr_type
569 static int __x86_pmu_event_init(struct perf_event *event)
573 if (!x86_pmu_initialized())
576 err = x86_reserve_hardware();
580 atomic_inc(&active_events);
581 event->destroy = hw_perf_event_destroy;
584 event->hw.last_cpu = -1;
585 event->hw.last_tag = ~0ULL;
588 event->hw.extra_reg.idx = EXTRA_REG_NONE;
589 event->hw.branch_reg.idx = EXTRA_REG_NONE;
591 return x86_pmu.hw_config(event);
594 void x86_pmu_disable_all(void)
596 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
599 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
602 if (!test_bit(idx, cpuc->active_mask))
604 rdmsrl(x86_pmu_config_addr(idx), val);
605 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
607 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
608 wrmsrl(x86_pmu_config_addr(idx), val);
613 * There may be PMI landing after enabled=0. The PMI hitting could be before or
616 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
617 * It will not be re-enabled in the NMI handler again, because enabled=0. After
618 * handling the NMI, disable_all will be called, which will not change the
619 * state either. If PMI hits after disable_all, the PMU is already disabled
620 * before entering NMI handler. The NMI handler will not change the state
623 * So either situation is harmless.
625 static void x86_pmu_disable(struct pmu *pmu)
627 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
629 if (!x86_pmu_initialized())
639 x86_pmu.disable_all();
642 void x86_pmu_enable_all(int added)
644 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
647 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
648 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
650 if (!test_bit(idx, cpuc->active_mask))
653 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
657 static struct pmu pmu;
659 static inline int is_x86_event(struct perf_event *event)
661 return event->pmu == &pmu;
665 * Event scheduler state:
667 * Assign events iterating over all events and counters, beginning
668 * with events with least weights first. Keep the current iterator
669 * state in struct sched_state.
673 int event; /* event index */
674 int counter; /* counter index */
675 int unassigned; /* number of events to be assigned left */
676 int nr_gp; /* number of GP counters used */
677 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
680 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
681 #define SCHED_STATES_MAX 2
688 struct event_constraint **constraints;
689 struct sched_state state;
690 struct sched_state saved[SCHED_STATES_MAX];
694 * Initialize interator that runs through all events and counters.
696 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
697 int num, int wmin, int wmax, int gpmax)
701 memset(sched, 0, sizeof(*sched));
702 sched->max_events = num;
703 sched->max_weight = wmax;
704 sched->max_gp = gpmax;
705 sched->constraints = constraints;
707 for (idx = 0; idx < num; idx++) {
708 if (constraints[idx]->weight == wmin)
712 sched->state.event = idx; /* start with min weight */
713 sched->state.weight = wmin;
714 sched->state.unassigned = num;
717 static void perf_sched_save_state(struct perf_sched *sched)
719 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
722 sched->saved[sched->saved_states] = sched->state;
723 sched->saved_states++;
726 static bool perf_sched_restore_state(struct perf_sched *sched)
728 if (!sched->saved_states)
731 sched->saved_states--;
732 sched->state = sched->saved[sched->saved_states];
734 /* continue with next counter: */
735 clear_bit(sched->state.counter++, sched->state.used);
741 * Select a counter for the current event to schedule. Return true on
744 static bool __perf_sched_find_counter(struct perf_sched *sched)
746 struct event_constraint *c;
749 if (!sched->state.unassigned)
752 if (sched->state.event >= sched->max_events)
755 c = sched->constraints[sched->state.event];
756 /* Prefer fixed purpose counters */
757 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
758 idx = INTEL_PMC_IDX_FIXED;
759 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
760 if (!__test_and_set_bit(idx, sched->state.used))
765 /* Grab the first unused counter starting with idx */
766 idx = sched->state.counter;
767 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
768 if (!__test_and_set_bit(idx, sched->state.used)) {
769 if (sched->state.nr_gp++ >= sched->max_gp)
779 sched->state.counter = idx;
782 perf_sched_save_state(sched);
787 static bool perf_sched_find_counter(struct perf_sched *sched)
789 while (!__perf_sched_find_counter(sched)) {
790 if (!perf_sched_restore_state(sched))
798 * Go through all unassigned events and find the next one to schedule.
799 * Take events with the least weight first. Return true on success.
801 static bool perf_sched_next_event(struct perf_sched *sched)
803 struct event_constraint *c;
805 if (!sched->state.unassigned || !--sched->state.unassigned)
810 sched->state.event++;
811 if (sched->state.event >= sched->max_events) {
813 sched->state.event = 0;
814 sched->state.weight++;
815 if (sched->state.weight > sched->max_weight)
818 c = sched->constraints[sched->state.event];
819 } while (c->weight != sched->state.weight);
821 sched->state.counter = 0; /* start with first counter */
827 * Assign a counter for each event.
829 int perf_assign_events(struct event_constraint **constraints, int n,
830 int wmin, int wmax, int gpmax, int *assign)
832 struct perf_sched sched;
834 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
837 if (!perf_sched_find_counter(&sched))
840 assign[sched.state.event] = sched.state.counter;
841 } while (perf_sched_next_event(&sched));
843 return sched.state.unassigned;
845 EXPORT_SYMBOL_GPL(perf_assign_events);
847 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
849 struct event_constraint *c;
850 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
851 struct perf_event *e;
852 int i, wmin, wmax, unsched = 0;
853 struct hw_perf_event *hwc;
855 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
857 if (x86_pmu.start_scheduling)
858 x86_pmu.start_scheduling(cpuc);
860 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
861 cpuc->event_constraint[i] = NULL;
862 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
863 cpuc->event_constraint[i] = c;
865 wmin = min(wmin, c->weight);
866 wmax = max(wmax, c->weight);
870 * fastpath, try to reuse previous register
872 for (i = 0; i < n; i++) {
873 hwc = &cpuc->event_list[i]->hw;
874 c = cpuc->event_constraint[i];
880 /* constraint still honored */
881 if (!test_bit(hwc->idx, c->idxmsk))
884 /* not already used */
885 if (test_bit(hwc->idx, used_mask))
888 __set_bit(hwc->idx, used_mask);
890 assign[i] = hwc->idx;
895 int gpmax = x86_pmu.num_counters;
898 * Do not allow scheduling of more than half the available
901 * This helps avoid counter starvation of sibling thread by
902 * ensuring at most half the counters cannot be in exclusive
903 * mode. There is no designated counters for the limits. Any
904 * N/2 counters can be used. This helps with events with
905 * specific counter constraints.
907 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
908 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
911 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
912 wmax, gpmax, assign);
916 * In case of success (unsched = 0), mark events as committed,
917 * so we do not put_constraint() in case new events are added
918 * and fail to be scheduled
920 * We invoke the lower level commit callback to lock the resource
922 * We do not need to do all of this in case we are called to
923 * validate an event group (assign == NULL)
925 if (!unsched && assign) {
926 for (i = 0; i < n; i++) {
927 e = cpuc->event_list[i];
928 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
929 if (x86_pmu.commit_scheduling)
930 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
933 for (i = 0; i < n; i++) {
934 e = cpuc->event_list[i];
936 * do not put_constraint() on comitted events,
937 * because they are good to go
939 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
943 * release events that failed scheduling
945 if (x86_pmu.put_event_constraints)
946 x86_pmu.put_event_constraints(cpuc, e);
950 if (x86_pmu.stop_scheduling)
951 x86_pmu.stop_scheduling(cpuc);
953 return unsched ? -EINVAL : 0;
957 * dogrp: true if must collect siblings events (group)
958 * returns total number of events and error code
960 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
962 struct perf_event *event;
965 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
967 /* current number of events already accepted */
970 if (is_x86_event(leader)) {
973 cpuc->event_list[n] = leader;
979 for_each_sibling_event(event, leader) {
980 if (!is_x86_event(event) ||
981 event->state <= PERF_EVENT_STATE_OFF)
987 cpuc->event_list[n] = event;
993 static inline void x86_assign_hw_event(struct perf_event *event,
994 struct cpu_hw_events *cpuc, int i)
996 struct hw_perf_event *hwc = &event->hw;
998 hwc->idx = cpuc->assign[i];
999 hwc->last_cpu = smp_processor_id();
1000 hwc->last_tag = ++cpuc->tags[i];
1002 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1003 hwc->config_base = 0;
1004 hwc->event_base = 0;
1005 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1006 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1007 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1008 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1010 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1011 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1012 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1017 * x86_perf_rdpmc_index - Return PMC counter used for event
1018 * @event: the perf_event to which the PMC counter was assigned
1020 * The counter assigned to this performance event may change if interrupts
1021 * are enabled. This counter should thus never be used while interrupts are
1022 * enabled. Before this function is used to obtain the assigned counter the
1023 * event should be checked for validity using, for example,
1024 * perf_event_read_local(), within the same interrupt disabled section in
1025 * which this counter is planned to be used.
1027 * Return: The index of the performance monitoring counter assigned to
1030 int x86_perf_rdpmc_index(struct perf_event *event)
1032 lockdep_assert_irqs_disabled();
1034 return event->hw.event_base_rdpmc;
1037 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1038 struct cpu_hw_events *cpuc,
1041 return hwc->idx == cpuc->assign[i] &&
1042 hwc->last_cpu == smp_processor_id() &&
1043 hwc->last_tag == cpuc->tags[i];
1046 static void x86_pmu_start(struct perf_event *event, int flags);
1048 static void x86_pmu_enable(struct pmu *pmu)
1050 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1051 struct perf_event *event;
1052 struct hw_perf_event *hwc;
1053 int i, added = cpuc->n_added;
1055 if (!x86_pmu_initialized())
1061 if (cpuc->n_added) {
1062 int n_running = cpuc->n_events - cpuc->n_added;
1064 * apply assignment obtained either from
1065 * hw_perf_group_sched_in() or x86_pmu_enable()
1067 * step1: save events moving to new counters
1069 for (i = 0; i < n_running; i++) {
1070 event = cpuc->event_list[i];
1074 * we can avoid reprogramming counter if:
1075 * - assigned same counter as last time
1076 * - running on same CPU as last time
1077 * - no other event has used the counter since
1079 if (hwc->idx == -1 ||
1080 match_prev_assignment(hwc, cpuc, i))
1084 * Ensure we don't accidentally enable a stopped
1085 * counter simply because we rescheduled.
1087 if (hwc->state & PERF_HES_STOPPED)
1088 hwc->state |= PERF_HES_ARCH;
1090 x86_pmu_stop(event, PERF_EF_UPDATE);
1094 * step2: reprogram moved events into new counters
1096 for (i = 0; i < cpuc->n_events; i++) {
1097 event = cpuc->event_list[i];
1100 if (!match_prev_assignment(hwc, cpuc, i))
1101 x86_assign_hw_event(event, cpuc, i);
1102 else if (i < n_running)
1105 if (hwc->state & PERF_HES_ARCH)
1108 x86_pmu_start(event, PERF_EF_RELOAD);
1111 perf_events_lapic_init();
1117 x86_pmu.enable_all(added);
1120 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1123 * Set the next IRQ period, based on the hwc->period_left value.
1124 * To be called with the event disabled in hw:
1126 int x86_perf_event_set_period(struct perf_event *event)
1128 struct hw_perf_event *hwc = &event->hw;
1129 s64 left = local64_read(&hwc->period_left);
1130 s64 period = hwc->sample_period;
1131 int ret = 0, idx = hwc->idx;
1133 if (idx == INTEL_PMC_IDX_FIXED_BTS)
1137 * If we are way outside a reasonable range then just skip forward:
1139 if (unlikely(left <= -period)) {
1141 local64_set(&hwc->period_left, left);
1142 hwc->last_period = period;
1146 if (unlikely(left <= 0)) {
1148 local64_set(&hwc->period_left, left);
1149 hwc->last_period = period;
1153 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1155 if (unlikely(left < 2))
1158 if (left > x86_pmu.max_period)
1159 left = x86_pmu.max_period;
1161 if (x86_pmu.limit_period)
1162 left = x86_pmu.limit_period(event, left);
1164 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1167 * The hw event starts counting from this event offset,
1168 * mark it to be able to extra future deltas:
1170 local64_set(&hwc->prev_count, (u64)-left);
1172 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1175 * Due to erratum on certan cpu we need
1176 * a second write to be sure the register
1177 * is updated properly
1179 if (x86_pmu.perfctr_second_write) {
1180 wrmsrl(hwc->event_base,
1181 (u64)(-left) & x86_pmu.cntval_mask);
1184 perf_event_update_userpage(event);
1189 void x86_pmu_enable_event(struct perf_event *event)
1191 if (__this_cpu_read(cpu_hw_events.enabled))
1192 __x86_pmu_enable_event(&event->hw,
1193 ARCH_PERFMON_EVENTSEL_ENABLE);
1197 * Add a single event to the PMU.
1199 * The event is added to the group of enabled events
1200 * but only if it can be scehduled with existing events.
1202 static int x86_pmu_add(struct perf_event *event, int flags)
1204 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1205 struct hw_perf_event *hwc;
1206 int assign[X86_PMC_IDX_MAX];
1211 n0 = cpuc->n_events;
1212 ret = n = collect_events(cpuc, event, false);
1216 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1217 if (!(flags & PERF_EF_START))
1218 hwc->state |= PERF_HES_ARCH;
1221 * If group events scheduling transaction was started,
1222 * skip the schedulability test here, it will be performed
1223 * at commit time (->commit_txn) as a whole.
1225 * If commit fails, we'll call ->del() on all events
1226 * for which ->add() was called.
1228 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1231 ret = x86_pmu.schedule_events(cpuc, n, assign);
1235 * copy new assignment, now we know it is possible
1236 * will be used by hw_perf_enable()
1238 memcpy(cpuc->assign, assign, n*sizeof(int));
1242 * Commit the collect_events() state. See x86_pmu_del() and
1246 cpuc->n_added += n - n0;
1247 cpuc->n_txn += n - n0;
1251 * This is before x86_pmu_enable() will call x86_pmu_start(),
1252 * so we enable LBRs before an event needs them etc..
1262 static void x86_pmu_start(struct perf_event *event, int flags)
1264 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1265 int idx = event->hw.idx;
1267 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1270 if (WARN_ON_ONCE(idx == -1))
1273 if (flags & PERF_EF_RELOAD) {
1274 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1275 x86_perf_event_set_period(event);
1278 event->hw.state = 0;
1280 cpuc->events[idx] = event;
1281 __set_bit(idx, cpuc->active_mask);
1282 __set_bit(idx, cpuc->running);
1283 x86_pmu.enable(event);
1284 perf_event_update_userpage(event);
1287 void perf_event_print_debug(void)
1289 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1291 struct cpu_hw_events *cpuc;
1292 unsigned long flags;
1295 if (!x86_pmu.num_counters)
1298 local_irq_save(flags);
1300 cpu = smp_processor_id();
1301 cpuc = &per_cpu(cpu_hw_events, cpu);
1303 if (x86_pmu.version >= 2) {
1304 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1305 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1306 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1307 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1310 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1311 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1312 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1313 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1314 if (x86_pmu.pebs_constraints) {
1315 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1316 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1318 if (x86_pmu.lbr_nr) {
1319 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1320 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1323 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1325 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1326 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1327 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1329 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1331 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1332 cpu, idx, pmc_ctrl);
1333 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1334 cpu, idx, pmc_count);
1335 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1336 cpu, idx, prev_left);
1338 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1339 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1341 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1342 cpu, idx, pmc_count);
1344 local_irq_restore(flags);
1347 void x86_pmu_stop(struct perf_event *event, int flags)
1349 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1350 struct hw_perf_event *hwc = &event->hw;
1352 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1353 x86_pmu.disable(event);
1354 cpuc->events[hwc->idx] = NULL;
1355 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1356 hwc->state |= PERF_HES_STOPPED;
1359 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1361 * Drain the remaining delta count out of a event
1362 * that we are disabling:
1364 x86_perf_event_update(event);
1365 hwc->state |= PERF_HES_UPTODATE;
1369 static void x86_pmu_del(struct perf_event *event, int flags)
1371 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1375 * event is descheduled
1377 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1380 * If we're called during a txn, we only need to undo x86_pmu.add.
1381 * The events never got scheduled and ->cancel_txn will truncate
1384 * XXX assumes any ->del() called during a TXN will only be on
1385 * an event added during that same TXN.
1387 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1391 * Not a TXN, therefore cleanup properly.
1393 x86_pmu_stop(event, PERF_EF_UPDATE);
1395 for (i = 0; i < cpuc->n_events; i++) {
1396 if (event == cpuc->event_list[i])
1400 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1403 /* If we have a newly added event; make sure to decrease n_added. */
1404 if (i >= cpuc->n_events - cpuc->n_added)
1407 if (x86_pmu.put_event_constraints)
1408 x86_pmu.put_event_constraints(cpuc, event);
1410 /* Delete the array entry. */
1411 while (++i < cpuc->n_events) {
1412 cpuc->event_list[i-1] = cpuc->event_list[i];
1413 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1417 perf_event_update_userpage(event);
1422 * This is after x86_pmu_stop(); so we disable LBRs after any
1423 * event can need them etc..
1429 int x86_pmu_handle_irq(struct pt_regs *regs)
1431 struct perf_sample_data data;
1432 struct cpu_hw_events *cpuc;
1433 struct perf_event *event;
1434 int idx, handled = 0;
1437 cpuc = this_cpu_ptr(&cpu_hw_events);
1440 * Some chipsets need to unmask the LVTPC in a particular spot
1441 * inside the nmi handler. As a result, the unmasking was pushed
1442 * into all the nmi handlers.
1444 * This generic handler doesn't seem to have any issues where the
1445 * unmasking occurs so it was left at the top.
1447 apic_write(APIC_LVTPC, APIC_DM_NMI);
1449 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1450 if (!test_bit(idx, cpuc->active_mask)) {
1452 * Though we deactivated the counter some cpus
1453 * might still deliver spurious interrupts still
1454 * in flight. Catch them:
1456 if (__test_and_clear_bit(idx, cpuc->running))
1461 event = cpuc->events[idx];
1463 val = x86_perf_event_update(event);
1464 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1471 perf_sample_data_init(&data, 0, event->hw.last_period);
1473 if (!x86_perf_event_set_period(event))
1476 if (perf_event_overflow(event, &data, regs))
1477 x86_pmu_stop(event, 0);
1481 inc_irq_stat(apic_perf_irqs);
1486 void perf_events_lapic_init(void)
1488 if (!x86_pmu.apic || !x86_pmu_initialized())
1492 * Always use NMI for PMU
1494 apic_write(APIC_LVTPC, APIC_DM_NMI);
1498 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1505 * All PMUs/events that share this PMI handler should make sure to
1506 * increment active_events for their events.
1508 if (!atomic_read(&active_events))
1511 start_clock = sched_clock();
1512 ret = x86_pmu.handle_irq(regs);
1513 finish_clock = sched_clock();
1515 perf_sample_event_took(finish_clock - start_clock);
1519 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1521 struct event_constraint emptyconstraint;
1522 struct event_constraint unconstrained;
1524 static int x86_pmu_prepare_cpu(unsigned int cpu)
1526 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1529 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1530 cpuc->kfree_on_online[i] = NULL;
1531 if (x86_pmu.cpu_prepare)
1532 return x86_pmu.cpu_prepare(cpu);
1536 static int x86_pmu_dead_cpu(unsigned int cpu)
1538 if (x86_pmu.cpu_dead)
1539 x86_pmu.cpu_dead(cpu);
1543 static int x86_pmu_online_cpu(unsigned int cpu)
1545 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1548 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1549 kfree(cpuc->kfree_on_online[i]);
1550 cpuc->kfree_on_online[i] = NULL;
1555 static int x86_pmu_starting_cpu(unsigned int cpu)
1557 if (x86_pmu.cpu_starting)
1558 x86_pmu.cpu_starting(cpu);
1562 static int x86_pmu_dying_cpu(unsigned int cpu)
1564 if (x86_pmu.cpu_dying)
1565 x86_pmu.cpu_dying(cpu);
1569 static void __init pmu_check_apic(void)
1571 if (boot_cpu_has(X86_FEATURE_APIC))
1575 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1576 pr_info("no hardware sampling interrupt available.\n");
1579 * If we have a PMU initialized but no APIC
1580 * interrupts, we cannot sample hardware
1581 * events (user-space has to fall back and
1582 * sample via a hrtimer based software event):
1584 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1588 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1594 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1595 * out of events_attr attributes.
1597 static void __init filter_events(struct attribute **attrs)
1599 struct device_attribute *d;
1600 struct perf_pmu_events_attr *pmu_attr;
1604 for (i = 0; attrs[i]; i++) {
1605 d = (struct device_attribute *)attrs[i];
1606 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1608 if (pmu_attr->event_str)
1610 if (x86_pmu.event_map(i + offset))
1613 for (j = i; attrs[j]; j++)
1614 attrs[j] = attrs[j + 1];
1616 /* Check the shifted attr. */
1620 * event_map() is index based, the attrs array is organized
1621 * by increasing event index. If we shift the events, then
1622 * we need to compensate for the event_map(), otherwise
1623 * we are looking up the wrong event in the map
1629 /* Merge two pointer arrays */
1630 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1632 struct attribute **new;
1635 for (j = 0; a && a[j]; j++)
1637 for (i = 0; b && b[i]; i++)
1641 new = kmalloc_array(j, sizeof(struct attribute *), GFP_KERNEL);
1646 for (i = 0; a && a[i]; i++)
1648 for (i = 0; b && b[i]; i++)
1655 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1657 struct perf_pmu_events_attr *pmu_attr = \
1658 container_of(attr, struct perf_pmu_events_attr, attr);
1659 u64 config = x86_pmu.event_map(pmu_attr->id);
1661 /* string trumps id */
1662 if (pmu_attr->event_str)
1663 return sprintf(page, "%s", pmu_attr->event_str);
1665 return x86_pmu.events_sysfs_show(page, config);
1667 EXPORT_SYMBOL_GPL(events_sysfs_show);
1669 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1672 struct perf_pmu_events_ht_attr *pmu_attr =
1673 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1676 * Report conditional events depending on Hyper-Threading.
1678 * This is overly conservative as usually the HT special
1679 * handling is not needed if the other CPU thread is idle.
1681 * Note this does not (and cannot) handle the case when thread
1682 * siblings are invisible, for example with virtualization
1683 * if they are owned by some other guest. The user tool
1684 * has to re-read when a thread sibling gets onlined later.
1686 return sprintf(page, "%s",
1687 topology_max_smt_threads() > 1 ?
1688 pmu_attr->event_str_ht :
1689 pmu_attr->event_str_noht);
1692 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1693 EVENT_ATTR(instructions, INSTRUCTIONS );
1694 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1695 EVENT_ATTR(cache-misses, CACHE_MISSES );
1696 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1697 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1698 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1699 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1700 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1701 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1703 static struct attribute *empty_attrs;
1705 static struct attribute *events_attr[] = {
1706 EVENT_PTR(CPU_CYCLES),
1707 EVENT_PTR(INSTRUCTIONS),
1708 EVENT_PTR(CACHE_REFERENCES),
1709 EVENT_PTR(CACHE_MISSES),
1710 EVENT_PTR(BRANCH_INSTRUCTIONS),
1711 EVENT_PTR(BRANCH_MISSES),
1712 EVENT_PTR(BUS_CYCLES),
1713 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1714 EVENT_PTR(STALLED_CYCLES_BACKEND),
1715 EVENT_PTR(REF_CPU_CYCLES),
1719 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1721 .attrs = events_attr,
1724 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1726 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1727 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1728 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1729 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1730 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1731 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1735 * We have whole page size to spend and just little data
1736 * to write, so we can safely use sprintf.
1738 ret = sprintf(page, "event=0x%02llx", event);
1741 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1744 ret += sprintf(page + ret, ",edge");
1747 ret += sprintf(page + ret, ",pc");
1750 ret += sprintf(page + ret, ",any");
1753 ret += sprintf(page + ret, ",inv");
1756 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1758 ret += sprintf(page + ret, "\n");
1763 static struct attribute_group x86_pmu_attr_group;
1764 static struct attribute_group x86_pmu_caps_group;
1766 static int __init init_hw_perf_events(void)
1768 struct x86_pmu_quirk *quirk;
1771 pr_info("Performance Events: ");
1773 switch (boot_cpu_data.x86_vendor) {
1774 case X86_VENDOR_INTEL:
1775 err = intel_pmu_init();
1777 case X86_VENDOR_AMD:
1778 err = amd_pmu_init();
1780 case X86_VENDOR_HYGON:
1781 err = amd_pmu_init();
1782 x86_pmu.name = "HYGON";
1788 pr_cont("no PMU driver, software events only.\n");
1794 /* sanity check that the hardware exists or is emulated */
1795 if (!check_hw_exists())
1798 pr_cont("%s PMU driver.\n", x86_pmu.name);
1800 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1802 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1805 if (!x86_pmu.intel_ctrl)
1806 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1808 perf_events_lapic_init();
1809 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1811 unconstrained = (struct event_constraint)
1812 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1813 0, x86_pmu.num_counters, 0, 0);
1815 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1817 if (x86_pmu.caps_attrs) {
1818 struct attribute **tmp;
1820 tmp = merge_attr(x86_pmu_caps_group.attrs, x86_pmu.caps_attrs);
1822 x86_pmu_caps_group.attrs = tmp;
1825 if (x86_pmu.event_attrs)
1826 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1828 if (!x86_pmu.events_sysfs_show)
1829 x86_pmu_events_group.attrs = &empty_attrs;
1831 filter_events(x86_pmu_events_group.attrs);
1833 if (x86_pmu.cpu_events) {
1834 struct attribute **tmp;
1836 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1838 x86_pmu_events_group.attrs = tmp;
1841 if (x86_pmu.attrs) {
1842 struct attribute **tmp;
1844 tmp = merge_attr(x86_pmu_attr_group.attrs, x86_pmu.attrs);
1846 x86_pmu_attr_group.attrs = tmp;
1849 pr_info("... version: %d\n", x86_pmu.version);
1850 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1851 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1852 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1853 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1854 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1855 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1858 * Install callbacks. Core will call them for each online
1861 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1862 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1866 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1867 "perf/x86:starting", x86_pmu_starting_cpu,
1872 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1873 x86_pmu_online_cpu, NULL);
1877 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1884 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1886 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1888 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1891 early_initcall(init_hw_perf_events);
1893 static inline void x86_pmu_read(struct perf_event *event)
1896 return x86_pmu.read(event);
1897 x86_perf_event_update(event);
1901 * Start group events scheduling transaction
1902 * Set the flag to make pmu::enable() not perform the
1903 * schedulability test, it will be performed at commit time
1905 * We only support PERF_PMU_TXN_ADD transactions. Save the
1906 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1909 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1911 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1913 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1915 cpuc->txn_flags = txn_flags;
1916 if (txn_flags & ~PERF_PMU_TXN_ADD)
1919 perf_pmu_disable(pmu);
1920 __this_cpu_write(cpu_hw_events.n_txn, 0);
1924 * Stop group events scheduling transaction
1925 * Clear the flag and pmu::enable() will perform the
1926 * schedulability test.
1928 static void x86_pmu_cancel_txn(struct pmu *pmu)
1930 unsigned int txn_flags;
1931 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1933 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1935 txn_flags = cpuc->txn_flags;
1936 cpuc->txn_flags = 0;
1937 if (txn_flags & ~PERF_PMU_TXN_ADD)
1941 * Truncate collected array by the number of events added in this
1942 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1944 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1945 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1946 perf_pmu_enable(pmu);
1950 * Commit group events scheduling transaction
1951 * Perform the group schedulability test as a whole
1952 * Return 0 if success
1954 * Does not cancel the transaction on failure; expects the caller to do this.
1956 static int x86_pmu_commit_txn(struct pmu *pmu)
1958 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1959 int assign[X86_PMC_IDX_MAX];
1962 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1964 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1965 cpuc->txn_flags = 0;
1971 if (!x86_pmu_initialized())
1974 ret = x86_pmu.schedule_events(cpuc, n, assign);
1979 * copy new assignment, now we know it is possible
1980 * will be used by hw_perf_enable()
1982 memcpy(cpuc->assign, assign, n*sizeof(int));
1984 cpuc->txn_flags = 0;
1985 perf_pmu_enable(pmu);
1989 * a fake_cpuc is used to validate event groups. Due to
1990 * the extra reg logic, we need to also allocate a fake
1991 * per_core and per_cpu structure. Otherwise, group events
1992 * using extra reg may conflict without the kernel being
1993 * able to catch this when the last event gets added to
1996 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1998 kfree(cpuc->shared_regs);
2002 static struct cpu_hw_events *allocate_fake_cpuc(void)
2004 struct cpu_hw_events *cpuc;
2005 int cpu = raw_smp_processor_id();
2007 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2009 return ERR_PTR(-ENOMEM);
2011 /* only needed, if we have extra_regs */
2012 if (x86_pmu.extra_regs) {
2013 cpuc->shared_regs = allocate_shared_regs(cpu);
2014 if (!cpuc->shared_regs)
2020 free_fake_cpuc(cpuc);
2021 return ERR_PTR(-ENOMEM);
2025 * validate that we can schedule this event
2027 static int validate_event(struct perf_event *event)
2029 struct cpu_hw_events *fake_cpuc;
2030 struct event_constraint *c;
2033 fake_cpuc = allocate_fake_cpuc();
2034 if (IS_ERR(fake_cpuc))
2035 return PTR_ERR(fake_cpuc);
2037 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
2039 if (!c || !c->weight)
2042 if (x86_pmu.put_event_constraints)
2043 x86_pmu.put_event_constraints(fake_cpuc, event);
2045 free_fake_cpuc(fake_cpuc);
2051 * validate a single event group
2053 * validation include:
2054 * - check events are compatible which each other
2055 * - events do not compete for the same counter
2056 * - number of events <= number of counters
2058 * validation ensures the group can be loaded onto the
2059 * PMU if it was the only group available.
2061 static int validate_group(struct perf_event *event)
2063 struct perf_event *leader = event->group_leader;
2064 struct cpu_hw_events *fake_cpuc;
2065 int ret = -EINVAL, n;
2067 fake_cpuc = allocate_fake_cpuc();
2068 if (IS_ERR(fake_cpuc))
2069 return PTR_ERR(fake_cpuc);
2071 * the event is not yet connected with its
2072 * siblings therefore we must first collect
2073 * existing siblings, then add the new event
2074 * before we can simulate the scheduling
2076 n = collect_events(fake_cpuc, leader, true);
2080 fake_cpuc->n_events = n;
2081 n = collect_events(fake_cpuc, event, false);
2085 fake_cpuc->n_events = n;
2087 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2090 free_fake_cpuc(fake_cpuc);
2094 static int x86_pmu_event_init(struct perf_event *event)
2099 switch (event->attr.type) {
2101 case PERF_TYPE_HARDWARE:
2102 case PERF_TYPE_HW_CACHE:
2109 err = __x86_pmu_event_init(event);
2112 * we temporarily connect event to its pmu
2113 * such that validate_group() can classify
2114 * it as an x86 event using is_x86_event()
2119 if (event->group_leader != event)
2120 err = validate_group(event);
2122 err = validate_event(event);
2128 event->destroy(event);
2131 if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2132 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2133 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2138 static void refresh_pce(void *ignored)
2140 load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm));
2143 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2145 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2149 * This function relies on not being called concurrently in two
2150 * tasks in the same mm. Otherwise one task could observe
2151 * perf_rdpmc_allowed > 1 and return all the way back to
2152 * userspace with CR4.PCE clear while another task is still
2153 * doing on_each_cpu_mask() to propagate CR4.PCE.
2155 * For now, this can't happen because all callers hold mmap_sem
2156 * for write. If this changes, we'll need a different solution.
2158 lockdep_assert_held_exclusive(&mm->mmap_sem);
2160 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2161 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2164 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2167 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2170 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2171 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2174 static int x86_pmu_event_idx(struct perf_event *event)
2176 int idx = event->hw.idx;
2178 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2181 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2182 idx -= INTEL_PMC_IDX_FIXED;
2189 static ssize_t get_attr_rdpmc(struct device *cdev,
2190 struct device_attribute *attr,
2193 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2196 static ssize_t set_attr_rdpmc(struct device *cdev,
2197 struct device_attribute *attr,
2198 const char *buf, size_t count)
2203 ret = kstrtoul(buf, 0, &val);
2210 if (x86_pmu.attr_rdpmc_broken)
2213 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2215 * Changing into or out of always available, aka
2216 * perf-event-bypassing mode. This path is extremely slow,
2217 * but only root can trigger it, so it's okay.
2220 static_branch_inc(&rdpmc_always_available_key);
2222 static_branch_dec(&rdpmc_always_available_key);
2223 on_each_cpu(refresh_pce, NULL, 1);
2226 x86_pmu.attr_rdpmc = val;
2231 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2233 static struct attribute *x86_pmu_attrs[] = {
2234 &dev_attr_rdpmc.attr,
2238 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2239 .attrs = x86_pmu_attrs,
2242 static ssize_t max_precise_show(struct device *cdev,
2243 struct device_attribute *attr,
2246 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2249 static DEVICE_ATTR_RO(max_precise);
2251 static struct attribute *x86_pmu_caps_attrs[] = {
2252 &dev_attr_max_precise.attr,
2256 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2258 .attrs = x86_pmu_caps_attrs,
2261 static const struct attribute_group *x86_pmu_attr_groups[] = {
2262 &x86_pmu_attr_group,
2263 &x86_pmu_format_group,
2264 &x86_pmu_events_group,
2265 &x86_pmu_caps_group,
2269 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2271 if (x86_pmu.sched_task)
2272 x86_pmu.sched_task(ctx, sched_in);
2275 void perf_check_microcode(void)
2277 if (x86_pmu.check_microcode)
2278 x86_pmu.check_microcode();
2281 static struct pmu pmu = {
2282 .pmu_enable = x86_pmu_enable,
2283 .pmu_disable = x86_pmu_disable,
2285 .attr_groups = x86_pmu_attr_groups,
2287 .event_init = x86_pmu_event_init,
2289 .event_mapped = x86_pmu_event_mapped,
2290 .event_unmapped = x86_pmu_event_unmapped,
2294 .start = x86_pmu_start,
2295 .stop = x86_pmu_stop,
2296 .read = x86_pmu_read,
2298 .start_txn = x86_pmu_start_txn,
2299 .cancel_txn = x86_pmu_cancel_txn,
2300 .commit_txn = x86_pmu_commit_txn,
2302 .event_idx = x86_pmu_event_idx,
2303 .sched_task = x86_pmu_sched_task,
2304 .task_ctx_size = sizeof(struct x86_perf_task_context),
2307 void arch_perf_update_userpage(struct perf_event *event,
2308 struct perf_event_mmap_page *userpg, u64 now)
2310 struct cyc2ns_data data;
2313 userpg->cap_user_time = 0;
2314 userpg->cap_user_time_zero = 0;
2315 userpg->cap_user_rdpmc =
2316 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2317 userpg->pmc_width = x86_pmu.cntval_bits;
2319 if (!using_native_sched_clock() || !sched_clock_stable())
2322 cyc2ns_read_begin(&data);
2324 offset = data.cyc2ns_offset + __sched_clock_offset;
2327 * Internal timekeeping for enabled/running/stopped times
2328 * is always in the local_clock domain.
2330 userpg->cap_user_time = 1;
2331 userpg->time_mult = data.cyc2ns_mul;
2332 userpg->time_shift = data.cyc2ns_shift;
2333 userpg->time_offset = offset - now;
2336 * cap_user_time_zero doesn't make sense when we're using a different
2337 * time base for the records.
2339 if (!event->attr.use_clockid) {
2340 userpg->cap_user_time_zero = 1;
2341 userpg->time_zero = offset;
2348 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2350 struct unwind_state state;
2353 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2354 /* TODO: We don't support guest os callchain now */
2358 if (perf_callchain_store(entry, regs->ip))
2361 for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2362 unwind_next_frame(&state)) {
2363 addr = unwind_get_return_address(&state);
2364 if (!addr || perf_callchain_store(entry, addr))
2370 valid_user_frame(const void __user *fp, unsigned long size)
2372 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2375 static unsigned long get_segment_base(unsigned int segment)
2377 struct desc_struct *desc;
2378 unsigned int idx = segment >> 3;
2380 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2381 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2382 struct ldt_struct *ldt;
2384 /* IRQs are off, so this synchronizes with smp_store_release */
2385 ldt = READ_ONCE(current->active_mm->context.ldt);
2386 if (!ldt || idx >= ldt->nr_entries)
2389 desc = &ldt->entries[idx];
2394 if (idx >= GDT_ENTRIES)
2397 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2400 return get_desc_base(desc);
2403 #ifdef CONFIG_IA32_EMULATION
2405 #include <linux/compat.h>
2408 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2410 /* 32-bit process in 64-bit kernel. */
2411 unsigned long ss_base, cs_base;
2412 struct stack_frame_ia32 frame;
2413 const void __user *fp;
2415 if (!test_thread_flag(TIF_IA32))
2418 cs_base = get_segment_base(regs->cs);
2419 ss_base = get_segment_base(regs->ss);
2421 fp = compat_ptr(ss_base + regs->bp);
2422 pagefault_disable();
2423 while (entry->nr < entry->max_stack) {
2424 unsigned long bytes;
2425 frame.next_frame = 0;
2426 frame.return_address = 0;
2428 if (!valid_user_frame(fp, sizeof(frame)))
2431 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2434 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2438 perf_callchain_store(entry, cs_base + frame.return_address);
2439 fp = compat_ptr(ss_base + frame.next_frame);
2446 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2453 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2455 struct stack_frame frame;
2456 const unsigned long __user *fp;
2458 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2459 /* TODO: We don't support guest os callchain now */
2464 * We don't know what to do with VM86 stacks.. ignore them for now.
2466 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2469 fp = (unsigned long __user *)regs->bp;
2471 perf_callchain_store(entry, regs->ip);
2473 if (!nmi_uaccess_okay())
2476 if (perf_callchain_user32(regs, entry))
2479 pagefault_disable();
2480 while (entry->nr < entry->max_stack) {
2481 unsigned long bytes;
2483 frame.next_frame = NULL;
2484 frame.return_address = 0;
2486 if (!valid_user_frame(fp, sizeof(frame)))
2489 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2492 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2496 perf_callchain_store(entry, frame.return_address);
2497 fp = (void __user *)frame.next_frame;
2503 * Deal with code segment offsets for the various execution modes:
2505 * VM86 - the good olde 16 bit days, where the linear address is
2506 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2508 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2509 * to figure out what the 32bit base address is.
2511 * X32 - has TIF_X32 set, but is running in x86_64
2513 * X86_64 - CS,DS,SS,ES are all zero based.
2515 static unsigned long code_segment_base(struct pt_regs *regs)
2518 * For IA32 we look at the GDT/LDT segment base to convert the
2519 * effective IP to a linear address.
2522 #ifdef CONFIG_X86_32
2524 * If we are in VM86 mode, add the segment offset to convert to a
2527 if (regs->flags & X86_VM_MASK)
2528 return 0x10 * regs->cs;
2530 if (user_mode(regs) && regs->cs != __USER_CS)
2531 return get_segment_base(regs->cs);
2533 if (user_mode(regs) && !user_64bit_mode(regs) &&
2534 regs->cs != __USER32_CS)
2535 return get_segment_base(regs->cs);
2540 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2542 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2543 return perf_guest_cbs->get_guest_ip();
2545 return regs->ip + code_segment_base(regs);
2548 unsigned long perf_misc_flags(struct pt_regs *regs)
2552 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2553 if (perf_guest_cbs->is_user_mode())
2554 misc |= PERF_RECORD_MISC_GUEST_USER;
2556 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2558 if (user_mode(regs))
2559 misc |= PERF_RECORD_MISC_USER;
2561 misc |= PERF_RECORD_MISC_KERNEL;
2564 if (regs->flags & PERF_EFLAGS_EXACT)
2565 misc |= PERF_RECORD_MISC_EXACT_IP;
2570 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2572 cap->version = x86_pmu.version;
2573 cap->num_counters_gp = x86_pmu.num_counters;
2574 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2575 cap->bit_width_gp = x86_pmu.cntval_bits;
2576 cap->bit_width_fixed = x86_pmu.cntval_bits;
2577 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2578 cap->events_mask_len = x86_pmu.events_mask_len;
2580 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);