2 * BPF JIT compiler for ARM64
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 #define pr_fmt(fmt) "bpf_jit: " fmt
21 #include <linux/bpf.h>
22 #include <linux/filter.h>
23 #include <linux/printk.h>
24 #include <linux/slab.h>
26 #include <asm/byteorder.h>
27 #include <asm/cacheflush.h>
28 #include <asm/debug-monitors.h>
29 #include <asm/set_memory.h>
33 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
34 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
35 #define TCALL_CNT (MAX_BPF_JIT_REG + 2)
36 #define TMP_REG_3 (MAX_BPF_JIT_REG + 3)
38 /* Map BPF registers to A64 registers */
39 static const int bpf2a64[] = {
40 /* return value from in-kernel function, and exit value from eBPF */
41 [BPF_REG_0] = A64_R(7),
42 /* arguments from eBPF program to in-kernel function */
43 [BPF_REG_1] = A64_R(0),
44 [BPF_REG_2] = A64_R(1),
45 [BPF_REG_3] = A64_R(2),
46 [BPF_REG_4] = A64_R(3),
47 [BPF_REG_5] = A64_R(4),
48 /* callee saved registers that in-kernel function will preserve */
49 [BPF_REG_6] = A64_R(19),
50 [BPF_REG_7] = A64_R(20),
51 [BPF_REG_8] = A64_R(21),
52 [BPF_REG_9] = A64_R(22),
53 /* read-only frame pointer to access stack */
54 [BPF_REG_FP] = A64_R(25),
55 /* temporary registers for internal BPF JIT */
56 [TMP_REG_1] = A64_R(10),
57 [TMP_REG_2] = A64_R(11),
58 [TMP_REG_3] = A64_R(12),
60 [TCALL_CNT] = A64_R(26),
61 /* temporary register for blinding constants */
62 [BPF_REG_AX] = A64_R(9),
66 const struct bpf_prog *prog;
74 static inline void emit(const u32 insn, struct jit_ctx *ctx)
76 if (ctx->image != NULL)
77 ctx->image[ctx->idx] = cpu_to_le32(insn);
82 static inline void emit_a64_mov_i(const int is64, const int reg,
83 const s32 val, struct jit_ctx *ctx)
86 u16 lo = val & 0xffff;
90 emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx);
92 emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx);
94 emit(A64_MOVK(is64, reg, lo, 0), ctx);
97 emit(A64_MOVZ(is64, reg, lo, 0), ctx);
99 emit(A64_MOVK(is64, reg, hi, 16), ctx);
103 static int i64_i16_blocks(const u64 val, bool inverse)
105 return (((val >> 0) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
106 (((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
107 (((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
108 (((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000));
111 static inline void emit_a64_mov_i64(const int reg, const u64 val,
114 u64 nrm_tmp = val, rev_tmp = ~val;
118 if (!(nrm_tmp >> 32))
119 return emit_a64_mov_i(0, reg, (u32)val, ctx);
121 inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false);
122 shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) :
123 (fls64(nrm_tmp) - 1)), 16), 0);
125 emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx);
127 emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
130 if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000))
131 emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
137 * This is an unoptimized 64 immediate emission used for BPF to BPF call
138 * addresses. It will always do a full 64 bit decomposition as otherwise
139 * more complexity in the last extra pass is required since we previously
140 * reserved 4 instructions for the address.
142 static inline void emit_addr_mov_i64(const int reg, const u64 val,
148 emit(A64_MOVZ(1, reg, tmp & 0xffff, shift), ctx);
152 emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx);
156 static inline int bpf2a64_offset(int bpf_to, int bpf_from,
157 const struct jit_ctx *ctx)
159 int to = ctx->offset[bpf_to];
160 /* -1 to account for the Branch instruction */
161 int from = ctx->offset[bpf_from] - 1;
166 static void jit_fill_hole(void *area, unsigned int size)
169 /* We are guaranteed to have aligned memory. */
170 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
171 *ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT);
174 static inline int epilogue_offset(const struct jit_ctx *ctx)
176 int to = ctx->epilogue_offset;
182 /* Stack must be multiples of 16B */
183 #define STACK_ALIGN(sz) (((sz) + 15) & ~15)
185 /* Tail call offset to jump into */
186 #define PROLOGUE_OFFSET 7
188 static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf)
190 const struct bpf_prog *prog = ctx->prog;
191 const u8 r6 = bpf2a64[BPF_REG_6];
192 const u8 r7 = bpf2a64[BPF_REG_7];
193 const u8 r8 = bpf2a64[BPF_REG_8];
194 const u8 r9 = bpf2a64[BPF_REG_9];
195 const u8 fp = bpf2a64[BPF_REG_FP];
196 const u8 tcc = bpf2a64[TCALL_CNT];
197 const int idx0 = ctx->idx;
201 * BPF prog stack layout
204 * original A64_SP => 0:+-----+ BPF prologue
206 * current A64_FP => -16:+-----+
207 * | ... | callee saved registers
208 * BPF fp register => -64:+-----+ <= (BPF_FP)
210 * | ... | BPF prog stack
212 * +-----+ <= (BPF_FP - prog->aux->stack_depth)
214 * current A64_SP => +-----+ <= (BPF_FP - ctx->stack_size)
216 * | ... | Function call stack
223 /* Save FP and LR registers to stay align with ARM64 AAPCS */
224 emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
225 emit(A64_MOV(1, A64_FP, A64_SP), ctx);
227 /* Save callee-saved registers */
228 emit(A64_PUSH(r6, r7, A64_SP), ctx);
229 emit(A64_PUSH(r8, r9, A64_SP), ctx);
230 emit(A64_PUSH(fp, tcc, A64_SP), ctx);
232 /* Set up BPF prog stack base register */
233 emit(A64_MOV(1, fp, A64_SP), ctx);
235 if (!ebpf_from_cbpf) {
236 /* Initialize tail_call_cnt */
237 emit(A64_MOVZ(1, tcc, 0, 0), ctx);
239 cur_offset = ctx->idx - idx0;
240 if (cur_offset != PROLOGUE_OFFSET) {
241 pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n",
242 cur_offset, PROLOGUE_OFFSET);
247 ctx->stack_size = STACK_ALIGN(prog->aux->stack_depth);
249 /* Set up function call stack */
250 emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
254 static int out_offset = -1; /* initialized on the first pass of build_body() */
255 static int emit_bpf_tail_call(struct jit_ctx *ctx)
257 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
258 const u8 r2 = bpf2a64[BPF_REG_2];
259 const u8 r3 = bpf2a64[BPF_REG_3];
261 const u8 tmp = bpf2a64[TMP_REG_1];
262 const u8 prg = bpf2a64[TMP_REG_2];
263 const u8 tcc = bpf2a64[TCALL_CNT];
264 const int idx0 = ctx->idx;
265 #define cur_offset (ctx->idx - idx0)
266 #define jmp_offset (out_offset - (cur_offset))
269 /* if (index >= array->map.max_entries)
272 off = offsetof(struct bpf_array, map.max_entries);
273 emit_a64_mov_i64(tmp, off, ctx);
274 emit(A64_LDR32(tmp, r2, tmp), ctx);
275 emit(A64_MOV(0, r3, r3), ctx);
276 emit(A64_CMP(0, r3, tmp), ctx);
277 emit(A64_B_(A64_COND_CS, jmp_offset), ctx);
279 /* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
283 emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx);
284 emit(A64_CMP(1, tcc, tmp), ctx);
285 emit(A64_B_(A64_COND_HI, jmp_offset), ctx);
286 emit(A64_ADD_I(1, tcc, tcc, 1), ctx);
288 /* prog = array->ptrs[index];
292 off = offsetof(struct bpf_array, ptrs);
293 emit_a64_mov_i64(tmp, off, ctx);
294 emit(A64_ADD(1, tmp, r2, tmp), ctx);
295 emit(A64_LSL(1, prg, r3, 3), ctx);
296 emit(A64_LDR64(prg, tmp, prg), ctx);
297 emit(A64_CBZ(1, prg, jmp_offset), ctx);
299 /* goto *(prog->bpf_func + prologue_offset); */
300 off = offsetof(struct bpf_prog, bpf_func);
301 emit_a64_mov_i64(tmp, off, ctx);
302 emit(A64_LDR64(tmp, prg, tmp), ctx);
303 emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx);
304 emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
305 emit(A64_BR(tmp), ctx);
308 if (out_offset == -1)
309 out_offset = cur_offset;
310 if (cur_offset != out_offset) {
311 pr_err_once("tail_call out_offset = %d, expected %d!\n",
312 cur_offset, out_offset);
320 static void build_epilogue(struct jit_ctx *ctx)
322 const u8 r0 = bpf2a64[BPF_REG_0];
323 const u8 r6 = bpf2a64[BPF_REG_6];
324 const u8 r7 = bpf2a64[BPF_REG_7];
325 const u8 r8 = bpf2a64[BPF_REG_8];
326 const u8 r9 = bpf2a64[BPF_REG_9];
327 const u8 fp = bpf2a64[BPF_REG_FP];
329 /* We're done with BPF stack */
330 emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
332 /* Restore fs (x25) and x26 */
333 emit(A64_POP(fp, A64_R(26), A64_SP), ctx);
335 /* Restore callee-saved register */
336 emit(A64_POP(r8, r9, A64_SP), ctx);
337 emit(A64_POP(r6, r7, A64_SP), ctx);
339 /* Restore FP/LR registers */
340 emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
342 /* Set return value */
343 emit(A64_MOV(1, A64_R(0), r0), ctx);
345 emit(A64_RET(A64_LR), ctx);
348 /* JITs an eBPF instruction.
350 * 0 - successfully JITed an 8-byte eBPF instruction.
351 * >0 - successfully JITed a 16-byte eBPF instruction.
352 * <0 - failed to JIT.
354 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx,
357 const u8 code = insn->code;
358 const u8 dst = bpf2a64[insn->dst_reg];
359 const u8 src = bpf2a64[insn->src_reg];
360 const u8 tmp = bpf2a64[TMP_REG_1];
361 const u8 tmp2 = bpf2a64[TMP_REG_2];
362 const u8 tmp3 = bpf2a64[TMP_REG_3];
363 const s16 off = insn->off;
364 const s32 imm = insn->imm;
365 const int i = insn - ctx->prog->insnsi;
366 const bool is64 = BPF_CLASS(code) == BPF_ALU64;
367 const bool isdw = BPF_SIZE(code) == BPF_DW;
371 #define check_imm(bits, imm) do { \
372 if ((((imm) > 0) && ((imm) >> (bits))) || \
373 (((imm) < 0) && (~(imm) >> (bits)))) { \
374 pr_info("[%2d] imm=%d(0x%x) out of range\n", \
379 #define check_imm19(imm) check_imm(19, imm)
380 #define check_imm26(imm) check_imm(26, imm)
384 case BPF_ALU | BPF_MOV | BPF_X:
385 case BPF_ALU64 | BPF_MOV | BPF_X:
386 emit(A64_MOV(is64, dst, src), ctx);
388 /* dst = dst OP src */
389 case BPF_ALU | BPF_ADD | BPF_X:
390 case BPF_ALU64 | BPF_ADD | BPF_X:
391 emit(A64_ADD(is64, dst, dst, src), ctx);
393 case BPF_ALU | BPF_SUB | BPF_X:
394 case BPF_ALU64 | BPF_SUB | BPF_X:
395 emit(A64_SUB(is64, dst, dst, src), ctx);
397 case BPF_ALU | BPF_AND | BPF_X:
398 case BPF_ALU64 | BPF_AND | BPF_X:
399 emit(A64_AND(is64, dst, dst, src), ctx);
401 case BPF_ALU | BPF_OR | BPF_X:
402 case BPF_ALU64 | BPF_OR | BPF_X:
403 emit(A64_ORR(is64, dst, dst, src), ctx);
405 case BPF_ALU | BPF_XOR | BPF_X:
406 case BPF_ALU64 | BPF_XOR | BPF_X:
407 emit(A64_EOR(is64, dst, dst, src), ctx);
409 case BPF_ALU | BPF_MUL | BPF_X:
410 case BPF_ALU64 | BPF_MUL | BPF_X:
411 emit(A64_MUL(is64, dst, dst, src), ctx);
413 case BPF_ALU | BPF_DIV | BPF_X:
414 case BPF_ALU64 | BPF_DIV | BPF_X:
415 case BPF_ALU | BPF_MOD | BPF_X:
416 case BPF_ALU64 | BPF_MOD | BPF_X:
417 switch (BPF_OP(code)) {
419 emit(A64_UDIV(is64, dst, dst, src), ctx);
422 emit(A64_UDIV(is64, tmp, dst, src), ctx);
423 emit(A64_MUL(is64, tmp, tmp, src), ctx);
424 emit(A64_SUB(is64, dst, dst, tmp), ctx);
428 case BPF_ALU | BPF_LSH | BPF_X:
429 case BPF_ALU64 | BPF_LSH | BPF_X:
430 emit(A64_LSLV(is64, dst, dst, src), ctx);
432 case BPF_ALU | BPF_RSH | BPF_X:
433 case BPF_ALU64 | BPF_RSH | BPF_X:
434 emit(A64_LSRV(is64, dst, dst, src), ctx);
436 case BPF_ALU | BPF_ARSH | BPF_X:
437 case BPF_ALU64 | BPF_ARSH | BPF_X:
438 emit(A64_ASRV(is64, dst, dst, src), ctx);
441 case BPF_ALU | BPF_NEG:
442 case BPF_ALU64 | BPF_NEG:
443 emit(A64_NEG(is64, dst, dst), ctx);
445 /* dst = BSWAP##imm(dst) */
446 case BPF_ALU | BPF_END | BPF_FROM_LE:
447 case BPF_ALU | BPF_END | BPF_FROM_BE:
448 #ifdef CONFIG_CPU_BIG_ENDIAN
449 if (BPF_SRC(code) == BPF_FROM_BE)
451 #else /* !CONFIG_CPU_BIG_ENDIAN */
452 if (BPF_SRC(code) == BPF_FROM_LE)
457 emit(A64_REV16(is64, dst, dst), ctx);
458 /* zero-extend 16 bits into 64 bits */
459 emit(A64_UXTH(is64, dst, dst), ctx);
462 emit(A64_REV32(is64, dst, dst), ctx);
463 /* upper 32 bits already cleared */
466 emit(A64_REV64(dst, dst), ctx);
473 /* zero-extend 16 bits into 64 bits */
474 emit(A64_UXTH(is64, dst, dst), ctx);
477 /* zero-extend 32 bits into 64 bits */
478 emit(A64_UXTW(is64, dst, dst), ctx);
486 case BPF_ALU | BPF_MOV | BPF_K:
487 case BPF_ALU64 | BPF_MOV | BPF_K:
488 emit_a64_mov_i(is64, dst, imm, ctx);
490 /* dst = dst OP imm */
491 case BPF_ALU | BPF_ADD | BPF_K:
492 case BPF_ALU64 | BPF_ADD | BPF_K:
493 emit_a64_mov_i(is64, tmp, imm, ctx);
494 emit(A64_ADD(is64, dst, dst, tmp), ctx);
496 case BPF_ALU | BPF_SUB | BPF_K:
497 case BPF_ALU64 | BPF_SUB | BPF_K:
498 emit_a64_mov_i(is64, tmp, imm, ctx);
499 emit(A64_SUB(is64, dst, dst, tmp), ctx);
501 case BPF_ALU | BPF_AND | BPF_K:
502 case BPF_ALU64 | BPF_AND | BPF_K:
503 emit_a64_mov_i(is64, tmp, imm, ctx);
504 emit(A64_AND(is64, dst, dst, tmp), ctx);
506 case BPF_ALU | BPF_OR | BPF_K:
507 case BPF_ALU64 | BPF_OR | BPF_K:
508 emit_a64_mov_i(is64, tmp, imm, ctx);
509 emit(A64_ORR(is64, dst, dst, tmp), ctx);
511 case BPF_ALU | BPF_XOR | BPF_K:
512 case BPF_ALU64 | BPF_XOR | BPF_K:
513 emit_a64_mov_i(is64, tmp, imm, ctx);
514 emit(A64_EOR(is64, dst, dst, tmp), ctx);
516 case BPF_ALU | BPF_MUL | BPF_K:
517 case BPF_ALU64 | BPF_MUL | BPF_K:
518 emit_a64_mov_i(is64, tmp, imm, ctx);
519 emit(A64_MUL(is64, dst, dst, tmp), ctx);
521 case BPF_ALU | BPF_DIV | BPF_K:
522 case BPF_ALU64 | BPF_DIV | BPF_K:
523 emit_a64_mov_i(is64, tmp, imm, ctx);
524 emit(A64_UDIV(is64, dst, dst, tmp), ctx);
526 case BPF_ALU | BPF_MOD | BPF_K:
527 case BPF_ALU64 | BPF_MOD | BPF_K:
528 emit_a64_mov_i(is64, tmp2, imm, ctx);
529 emit(A64_UDIV(is64, tmp, dst, tmp2), ctx);
530 emit(A64_MUL(is64, tmp, tmp, tmp2), ctx);
531 emit(A64_SUB(is64, dst, dst, tmp), ctx);
533 case BPF_ALU | BPF_LSH | BPF_K:
534 case BPF_ALU64 | BPF_LSH | BPF_K:
535 emit(A64_LSL(is64, dst, dst, imm), ctx);
537 case BPF_ALU | BPF_RSH | BPF_K:
538 case BPF_ALU64 | BPF_RSH | BPF_K:
539 emit(A64_LSR(is64, dst, dst, imm), ctx);
541 case BPF_ALU | BPF_ARSH | BPF_K:
542 case BPF_ALU64 | BPF_ARSH | BPF_K:
543 emit(A64_ASR(is64, dst, dst, imm), ctx);
547 case BPF_JMP | BPF_JA:
548 jmp_offset = bpf2a64_offset(i + off, i, ctx);
549 check_imm26(jmp_offset);
550 emit(A64_B(jmp_offset), ctx);
552 /* IF (dst COND src) JUMP off */
553 case BPF_JMP | BPF_JEQ | BPF_X:
554 case BPF_JMP | BPF_JGT | BPF_X:
555 case BPF_JMP | BPF_JLT | BPF_X:
556 case BPF_JMP | BPF_JGE | BPF_X:
557 case BPF_JMP | BPF_JLE | BPF_X:
558 case BPF_JMP | BPF_JNE | BPF_X:
559 case BPF_JMP | BPF_JSGT | BPF_X:
560 case BPF_JMP | BPF_JSLT | BPF_X:
561 case BPF_JMP | BPF_JSGE | BPF_X:
562 case BPF_JMP | BPF_JSLE | BPF_X:
563 emit(A64_CMP(1, dst, src), ctx);
565 jmp_offset = bpf2a64_offset(i + off, i, ctx);
566 check_imm19(jmp_offset);
567 switch (BPF_OP(code)) {
569 jmp_cond = A64_COND_EQ;
572 jmp_cond = A64_COND_HI;
575 jmp_cond = A64_COND_CC;
578 jmp_cond = A64_COND_CS;
581 jmp_cond = A64_COND_LS;
585 jmp_cond = A64_COND_NE;
588 jmp_cond = A64_COND_GT;
591 jmp_cond = A64_COND_LT;
594 jmp_cond = A64_COND_GE;
597 jmp_cond = A64_COND_LE;
602 emit(A64_B_(jmp_cond, jmp_offset), ctx);
604 case BPF_JMP | BPF_JSET | BPF_X:
605 emit(A64_TST(1, dst, src), ctx);
607 /* IF (dst COND imm) JUMP off */
608 case BPF_JMP | BPF_JEQ | BPF_K:
609 case BPF_JMP | BPF_JGT | BPF_K:
610 case BPF_JMP | BPF_JLT | BPF_K:
611 case BPF_JMP | BPF_JGE | BPF_K:
612 case BPF_JMP | BPF_JLE | BPF_K:
613 case BPF_JMP | BPF_JNE | BPF_K:
614 case BPF_JMP | BPF_JSGT | BPF_K:
615 case BPF_JMP | BPF_JSLT | BPF_K:
616 case BPF_JMP | BPF_JSGE | BPF_K:
617 case BPF_JMP | BPF_JSLE | BPF_K:
618 emit_a64_mov_i(1, tmp, imm, ctx);
619 emit(A64_CMP(1, dst, tmp), ctx);
621 case BPF_JMP | BPF_JSET | BPF_K:
622 emit_a64_mov_i(1, tmp, imm, ctx);
623 emit(A64_TST(1, dst, tmp), ctx);
626 case BPF_JMP | BPF_CALL:
628 const u8 r0 = bpf2a64[BPF_REG_0];
629 bool func_addr_fixed;
633 ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
634 &func_addr, &func_addr_fixed);
638 /* We can use optimized emission here. */
639 emit_a64_mov_i64(tmp, func_addr, ctx);
641 emit_addr_mov_i64(tmp, func_addr, ctx);
642 emit(A64_BLR(tmp), ctx);
643 emit(A64_MOV(1, r0, A64_R(0)), ctx);
647 case BPF_JMP | BPF_TAIL_CALL:
648 if (emit_bpf_tail_call(ctx))
651 /* function return */
652 case BPF_JMP | BPF_EXIT:
653 /* Optimization: when last instruction is EXIT,
654 simply fallthrough to epilogue. */
655 if (i == ctx->prog->len - 1)
657 jmp_offset = epilogue_offset(ctx);
658 check_imm26(jmp_offset);
659 emit(A64_B(jmp_offset), ctx);
663 case BPF_LD | BPF_IMM | BPF_DW:
665 const struct bpf_insn insn1 = insn[1];
668 imm64 = (u64)insn1.imm << 32 | (u32)imm;
669 emit_a64_mov_i64(dst, imm64, ctx);
674 /* LDX: dst = *(size *)(src + off) */
675 case BPF_LDX | BPF_MEM | BPF_W:
676 case BPF_LDX | BPF_MEM | BPF_H:
677 case BPF_LDX | BPF_MEM | BPF_B:
678 case BPF_LDX | BPF_MEM | BPF_DW:
679 emit_a64_mov_i(1, tmp, off, ctx);
680 switch (BPF_SIZE(code)) {
682 emit(A64_LDR32(dst, src, tmp), ctx);
685 emit(A64_LDRH(dst, src, tmp), ctx);
688 emit(A64_LDRB(dst, src, tmp), ctx);
691 emit(A64_LDR64(dst, src, tmp), ctx);
696 /* ST: *(size *)(dst + off) = imm */
697 case BPF_ST | BPF_MEM | BPF_W:
698 case BPF_ST | BPF_MEM | BPF_H:
699 case BPF_ST | BPF_MEM | BPF_B:
700 case BPF_ST | BPF_MEM | BPF_DW:
701 /* Load imm to a register then store it */
702 emit_a64_mov_i(1, tmp2, off, ctx);
703 emit_a64_mov_i(1, tmp, imm, ctx);
704 switch (BPF_SIZE(code)) {
706 emit(A64_STR32(tmp, dst, tmp2), ctx);
709 emit(A64_STRH(tmp, dst, tmp2), ctx);
712 emit(A64_STRB(tmp, dst, tmp2), ctx);
715 emit(A64_STR64(tmp, dst, tmp2), ctx);
720 /* STX: *(size *)(dst + off) = src */
721 case BPF_STX | BPF_MEM | BPF_W:
722 case BPF_STX | BPF_MEM | BPF_H:
723 case BPF_STX | BPF_MEM | BPF_B:
724 case BPF_STX | BPF_MEM | BPF_DW:
725 emit_a64_mov_i(1, tmp, off, ctx);
726 switch (BPF_SIZE(code)) {
728 emit(A64_STR32(src, dst, tmp), ctx);
731 emit(A64_STRH(src, dst, tmp), ctx);
734 emit(A64_STRB(src, dst, tmp), ctx);
737 emit(A64_STR64(src, dst, tmp), ctx);
741 /* STX XADD: lock *(u32 *)(dst + off) += src */
742 case BPF_STX | BPF_XADD | BPF_W:
743 /* STX XADD: lock *(u64 *)(dst + off) += src */
744 case BPF_STX | BPF_XADD | BPF_DW:
745 emit_a64_mov_i(1, tmp, off, ctx);
746 emit(A64_ADD(1, tmp, tmp, dst), ctx);
747 emit(A64_PRFM(tmp, PST, L1, STRM), ctx);
748 emit(A64_LDXR(isdw, tmp2, tmp), ctx);
749 emit(A64_ADD(isdw, tmp2, tmp2, src), ctx);
750 emit(A64_STXR(isdw, tmp2, tmp, tmp3), ctx);
752 check_imm19(jmp_offset);
753 emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
757 pr_err_once("unknown opcode %02x\n", code);
764 static int build_body(struct jit_ctx *ctx, bool extra_pass)
766 const struct bpf_prog *prog = ctx->prog;
769 for (i = 0; i < prog->len; i++) {
770 const struct bpf_insn *insn = &prog->insnsi[i];
773 ret = build_insn(insn, ctx, extra_pass);
776 if (ctx->image == NULL)
777 ctx->offset[i] = ctx->idx;
780 if (ctx->image == NULL)
781 ctx->offset[i] = ctx->idx;
789 static int validate_code(struct jit_ctx *ctx)
793 for (i = 0; i < ctx->idx; i++) {
794 u32 a64_insn = le32_to_cpu(ctx->image[i]);
796 if (a64_insn == AARCH64_BREAK_FAULT)
803 static inline void bpf_flush_icache(void *start, void *end)
805 flush_icache_range((unsigned long)start, (unsigned long)end);
808 struct arm64_jit_data {
809 struct bpf_binary_header *header;
814 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
816 struct bpf_prog *tmp, *orig_prog = prog;
817 struct bpf_binary_header *header;
818 struct arm64_jit_data *jit_data;
819 bool was_classic = bpf_prog_was_classic(prog);
820 bool tmp_blinded = false;
821 bool extra_pass = false;
826 if (!prog->jit_requested)
829 tmp = bpf_jit_blind_constants(prog);
830 /* If blinding was requested and we failed during blinding,
831 * we must fall back to the interpreter.
840 jit_data = prog->aux->jit_data;
842 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
847 prog->aux->jit_data = jit_data;
849 if (jit_data->ctx.offset) {
851 image_ptr = jit_data->image;
852 header = jit_data->header;
854 image_size = sizeof(u32) * ctx.idx;
857 memset(&ctx, 0, sizeof(ctx));
860 ctx.offset = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
861 if (ctx.offset == NULL) {
866 /* 1. Initial fake pass to compute ctx->idx. */
868 /* Fake pass to fill in ctx->offset. */
869 if (build_body(&ctx, extra_pass)) {
874 if (build_prologue(&ctx, was_classic)) {
879 ctx.epilogue_offset = ctx.idx;
880 build_epilogue(&ctx);
882 /* Now we know the actual image size. */
883 image_size = sizeof(u32) * ctx.idx;
884 header = bpf_jit_binary_alloc(image_size, &image_ptr,
885 sizeof(u32), jit_fill_hole);
886 if (header == NULL) {
891 /* 2. Now, the actual pass. */
893 ctx.image = (__le32 *)image_ptr;
897 build_prologue(&ctx, was_classic);
899 if (build_body(&ctx, extra_pass)) {
900 bpf_jit_binary_free(header);
905 build_epilogue(&ctx);
907 /* 3. Extra pass to validate JITed code. */
908 if (validate_code(&ctx)) {
909 bpf_jit_binary_free(header);
914 /* And we're done. */
915 if (bpf_jit_enable > 1)
916 bpf_jit_dump(prog->len, image_size, 2, ctx.image);
918 bpf_flush_icache(header, ctx.image + ctx.idx);
920 if (!prog->is_func || extra_pass) {
921 if (extra_pass && ctx.idx != jit_data->ctx.idx) {
922 pr_err_once("multi-func JIT bug %d != %d\n",
923 ctx.idx, jit_data->ctx.idx);
924 bpf_jit_binary_free(header);
925 prog->bpf_func = NULL;
929 bpf_jit_binary_lock_ro(header);
932 jit_data->image = image_ptr;
933 jit_data->header = header;
935 prog->bpf_func = (void *)ctx.image;
937 prog->jited_len = image_size;
939 if (!prog->is_func || extra_pass) {
943 prog->aux->jit_data = NULL;
947 bpf_jit_prog_release_other(prog, prog == orig_prog ?