2 * Contains CPU feature definitions
4 * Copyright (C) 2015 ARM Ltd.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 #define pr_fmt(fmt) "CPU features: " fmt
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/crash_dump.h>
24 #include <linux/sort.h>
25 #include <linux/stop_machine.h>
26 #include <linux/types.h>
29 #include <asm/cpufeature.h>
30 #include <asm/cpu_ops.h>
31 #include <asm/fpsimd.h>
32 #include <asm/mmu_context.h>
33 #include <asm/processor.h>
34 #include <asm/sysreg.h>
35 #include <asm/traps.h>
38 unsigned long elf_hwcap __read_mostly;
39 EXPORT_SYMBOL_GPL(elf_hwcap);
42 #define COMPAT_ELF_HWCAP_DEFAULT \
43 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
44 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
45 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
46 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
47 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
49 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
50 unsigned int compat_elf_hwcap2 __read_mostly;
53 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
54 EXPORT_SYMBOL(cpu_hwcaps);
57 * Flag to indicate if we have computed the system wide
58 * capabilities based on the boot time active CPUs. This
59 * will be used to determine if a new booting CPU should
60 * go through the verification process to make sure that it
61 * supports the system capabilities, without using a hotplug
64 static bool sys_caps_initialised;
66 static inline void set_sys_caps_initialised(void)
68 sys_caps_initialised = true;
71 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
73 /* file-wide pr_fmt adds "CPU features: " prefix */
74 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
78 static struct notifier_block cpu_hwcaps_notifier = {
79 .notifier_call = dump_cpu_hwcaps
82 static int __init register_cpu_hwcaps_dumper(void)
84 atomic_notifier_chain_register(&panic_notifier_list,
85 &cpu_hwcaps_notifier);
88 __initcall(register_cpu_hwcaps_dumper);
90 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
91 EXPORT_SYMBOL(cpu_hwcap_keys);
93 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
101 .safe_val = SAFE_VAL, \
104 /* Define a feature with unsigned values */
105 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
106 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
108 /* Define a feature with a signed value */
109 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
110 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
112 #define ARM64_FTR_END \
117 /* meta feature for alternatives */
118 static bool __maybe_unused
119 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
121 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
124 * NOTE: Any changes to the visibility of features should be kept in
125 * sync with the documentation of the CPU feature register ABI.
127 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
128 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
129 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
130 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
131 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
132 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
133 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
134 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
135 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
136 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
137 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
138 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
139 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
143 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
144 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
145 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
146 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
147 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
151 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
152 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
153 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
154 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
155 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
156 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
157 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
158 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
159 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
160 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
161 /* Linux doesn't care about the EL3 */
162 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
163 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
164 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
165 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
169 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
170 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
174 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
175 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
176 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
177 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
178 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
179 /* Linux shouldn't care about secure memory */
180 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
181 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
182 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
184 * Differing PARange is fine as long as all peripherals and memory are mapped
185 * within the minimum PARange of all CPUs
187 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
191 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
192 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
193 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
194 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
195 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
196 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
197 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
201 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
202 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
203 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
204 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
205 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
206 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
207 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
208 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
212 static const struct arm64_ftr_bits ftr_ctr[] = {
213 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
214 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
215 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
216 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_CWG_SHIFT, 4, 0),
217 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_ERG_SHIFT, 4, 0),
218 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
220 * Linux can handle differing I-cache policies. Userspace JITs will
221 * make use of *minLine.
222 * If we have differing I-cache policies, report it as the weakest - VIPT.
224 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT), /* L1Ip */
225 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
229 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
230 .name = "SYS_CTR_EL0",
234 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
235 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf), /* InnerShr */
236 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), /* FCSE */
237 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
238 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), /* TCM */
239 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* ShareLvl */
240 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf), /* OuterShr */
241 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* PMSA */
242 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* VMSA */
246 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
247 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
248 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
249 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
250 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
251 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
253 * We can instantiate multiple PMU instances with different levels
256 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
257 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
258 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
262 static const struct arm64_ftr_bits ftr_mvfr2[] = {
263 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* FPMisc */
264 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* SIMDMisc */
268 static const struct arm64_ftr_bits ftr_dczid[] = {
269 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
270 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
275 static const struct arm64_ftr_bits ftr_id_isar5[] = {
276 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
277 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
278 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
279 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
280 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
281 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
285 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
286 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* ac2 */
290 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
291 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* State3 */
292 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), /* State2 */
293 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* State1 */
294 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* State0 */
298 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
299 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
300 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
301 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
302 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
303 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
304 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
305 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
306 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
310 static const struct arm64_ftr_bits ftr_zcr[] = {
311 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
312 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0), /* LEN */
317 * Common ftr bits for a 32bit register with all hidden, strict
318 * attributes, with 4bit feature fields and a default safe value of
319 * 0. Covers the following 32bit registers:
320 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
322 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
323 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
324 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
325 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
326 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
327 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
328 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
329 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
330 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
334 /* Table for a single 32bit feature value */
335 static const struct arm64_ftr_bits ftr_single32[] = {
336 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
340 static const struct arm64_ftr_bits ftr_raz[] = {
344 #define ARM64_FTR_REG(id, table) { \
346 .reg = &(struct arm64_ftr_reg){ \
348 .ftr_bits = &((table)[0]), \
351 static const struct __ftr_reg_entry {
353 struct arm64_ftr_reg *reg;
354 } arm64_ftr_regs[] = {
356 /* Op1 = 0, CRn = 0, CRm = 1 */
357 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
358 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
359 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
360 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
361 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
362 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
363 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
365 /* Op1 = 0, CRn = 0, CRm = 2 */
366 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
367 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
368 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
369 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
370 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
371 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
372 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
374 /* Op1 = 0, CRn = 0, CRm = 3 */
375 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
376 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
377 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
379 /* Op1 = 0, CRn = 0, CRm = 4 */
380 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
381 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
382 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
384 /* Op1 = 0, CRn = 0, CRm = 5 */
385 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
386 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
388 /* Op1 = 0, CRn = 0, CRm = 6 */
389 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
390 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
392 /* Op1 = 0, CRn = 0, CRm = 7 */
393 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
394 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
395 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
397 /* Op1 = 0, CRn = 1, CRm = 2 */
398 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
400 /* Op1 = 3, CRn = 0, CRm = 0 */
401 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
402 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
404 /* Op1 = 3, CRn = 14, CRm = 0 */
405 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
408 static int search_cmp_ftr_reg(const void *id, const void *regp)
410 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
414 * get_arm64_ftr_reg - Lookup a feature register entry using its
415 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
416 * ascending order of sys_id , we use binary search to find a matching
419 * returns - Upon success, matching ftr_reg entry for id.
420 * - NULL on failure. It is upto the caller to decide
421 * the impact of a failure.
423 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
425 const struct __ftr_reg_entry *ret;
427 ret = bsearch((const void *)(unsigned long)sys_id,
429 ARRAY_SIZE(arm64_ftr_regs),
430 sizeof(arm64_ftr_regs[0]),
437 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
440 u64 mask = arm64_ftr_mask(ftrp);
443 reg |= (ftr_val << ftrp->shift) & mask;
447 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
452 switch (ftrp->type) {
454 ret = ftrp->safe_val;
457 ret = new < cur ? new : cur;
459 case FTR_HIGHER_SAFE:
460 ret = new > cur ? new : cur;
469 static void __init sort_ftr_regs(void)
473 /* Check that the array is sorted so that we can do the binary search */
474 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
475 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
479 * Initialise the CPU feature register from Boot CPU values.
480 * Also initiliases the strict_mask for the register.
481 * Any bits that are not covered by an arm64_ftr_bits entry are considered
482 * RES0 for the system-wide value, and must strictly match.
484 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
487 u64 strict_mask = ~0x0ULL;
491 const struct arm64_ftr_bits *ftrp;
492 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
496 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
497 u64 ftr_mask = arm64_ftr_mask(ftrp);
498 s64 ftr_new = arm64_ftr_value(ftrp, new);
500 val = arm64_ftr_set_value(ftrp, val, ftr_new);
502 valid_mask |= ftr_mask;
504 strict_mask &= ~ftr_mask;
506 user_mask |= ftr_mask;
508 reg->user_val = arm64_ftr_set_value(ftrp,
516 reg->strict_mask = strict_mask;
517 reg->user_mask = user_mask;
520 extern const struct arm64_cpu_capabilities arm64_errata[];
521 static void __init setup_boot_cpu_capabilities(void);
523 void __init init_cpu_features(struct cpuinfo_arm64 *info)
525 /* Before we start using the tables, make sure it is sorted */
528 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
529 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
530 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
531 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
532 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
533 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
534 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
535 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
536 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
537 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
538 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
539 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
540 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
542 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
543 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
544 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
545 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
546 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
547 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
548 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
549 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
550 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
551 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
552 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
553 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
554 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
555 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
556 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
557 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
558 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
561 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
562 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
567 * Detect and enable early CPU capabilities based on the boot CPU,
568 * after we have initialised the CPU feature infrastructure.
570 setup_boot_cpu_capabilities();
573 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
575 const struct arm64_ftr_bits *ftrp;
577 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
578 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
579 s64 ftr_new = arm64_ftr_value(ftrp, new);
581 if (ftr_cur == ftr_new)
583 /* Find a safe value */
584 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
585 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
590 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
592 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
595 update_cpu_ftr_reg(regp, val);
596 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
598 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
599 regp->name, boot, cpu, val);
604 * Update system wide CPU feature registers with the values from a
605 * non-boot CPU. Also performs SANITY checks to make sure that there
606 * aren't any insane variations from that of the boot CPU.
608 void update_cpu_features(int cpu,
609 struct cpuinfo_arm64 *info,
610 struct cpuinfo_arm64 *boot)
615 * The kernel can handle differing I-cache policies, but otherwise
616 * caches should look identical. Userspace JITs will make use of
619 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
620 info->reg_ctr, boot->reg_ctr);
623 * Userspace may perform DC ZVA instructions. Mismatched block sizes
624 * could result in too much or too little memory being zeroed if a
625 * process is preempted and migrated between CPUs.
627 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
628 info->reg_dczid, boot->reg_dczid);
630 /* If different, timekeeping will be broken (especially with KVM) */
631 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
632 info->reg_cntfrq, boot->reg_cntfrq);
635 * The kernel uses self-hosted debug features and expects CPUs to
636 * support identical debug features. We presently need CTX_CMPs, WRPs,
637 * and BRPs to be identical.
638 * ID_AA64DFR1 is currently RES0.
640 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
641 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
642 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
643 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
645 * Even in big.LITTLE, processors should be identical instruction-set
648 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
649 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
650 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
651 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
654 * Differing PARange support is fine as long as all peripherals and
655 * memory are mapped within the minimum PARange of all CPUs.
656 * Linux should not care about secure memory.
658 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
659 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
660 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
661 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
662 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
663 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
666 * EL3 is not our concern.
668 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
669 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
670 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
671 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
673 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
674 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
677 * If we have AArch32, we care about 32-bit features for compat.
678 * If the system doesn't support AArch32, don't update them.
680 if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
681 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
683 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
684 info->reg_id_dfr0, boot->reg_id_dfr0);
685 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
686 info->reg_id_isar0, boot->reg_id_isar0);
687 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
688 info->reg_id_isar1, boot->reg_id_isar1);
689 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
690 info->reg_id_isar2, boot->reg_id_isar2);
691 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
692 info->reg_id_isar3, boot->reg_id_isar3);
693 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
694 info->reg_id_isar4, boot->reg_id_isar4);
695 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
696 info->reg_id_isar5, boot->reg_id_isar5);
699 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
700 * ACTLR formats could differ across CPUs and therefore would have to
701 * be trapped for virtualization anyway.
703 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
704 info->reg_id_mmfr0, boot->reg_id_mmfr0);
705 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
706 info->reg_id_mmfr1, boot->reg_id_mmfr1);
707 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
708 info->reg_id_mmfr2, boot->reg_id_mmfr2);
709 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
710 info->reg_id_mmfr3, boot->reg_id_mmfr3);
711 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
712 info->reg_id_pfr0, boot->reg_id_pfr0);
713 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
714 info->reg_id_pfr1, boot->reg_id_pfr1);
715 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
716 info->reg_mvfr0, boot->reg_mvfr0);
717 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
718 info->reg_mvfr1, boot->reg_mvfr1);
719 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
720 info->reg_mvfr2, boot->reg_mvfr2);
723 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
724 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
725 info->reg_zcr, boot->reg_zcr);
727 /* Probe vector lengths, unless we already gave up on SVE */
728 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
729 !sys_caps_initialised)
734 * Mismatched CPU features are a recipe for disaster. Don't even
735 * pretend to support them.
738 pr_warn_once("Unsupported CPU feature variation detected.\n");
739 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
743 u64 read_sanitised_ftr_reg(u32 id)
745 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
747 /* We shouldn't get a request for an unsupported register */
749 return regp->sys_val;
752 #define read_sysreg_case(r) \
753 case r: return read_sysreg_s(r)
756 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
757 * Read the system register on the current CPU
759 static u64 __read_sysreg_by_encoding(u32 sys_id)
762 read_sysreg_case(SYS_ID_PFR0_EL1);
763 read_sysreg_case(SYS_ID_PFR1_EL1);
764 read_sysreg_case(SYS_ID_DFR0_EL1);
765 read_sysreg_case(SYS_ID_MMFR0_EL1);
766 read_sysreg_case(SYS_ID_MMFR1_EL1);
767 read_sysreg_case(SYS_ID_MMFR2_EL1);
768 read_sysreg_case(SYS_ID_MMFR3_EL1);
769 read_sysreg_case(SYS_ID_ISAR0_EL1);
770 read_sysreg_case(SYS_ID_ISAR1_EL1);
771 read_sysreg_case(SYS_ID_ISAR2_EL1);
772 read_sysreg_case(SYS_ID_ISAR3_EL1);
773 read_sysreg_case(SYS_ID_ISAR4_EL1);
774 read_sysreg_case(SYS_ID_ISAR5_EL1);
775 read_sysreg_case(SYS_MVFR0_EL1);
776 read_sysreg_case(SYS_MVFR1_EL1);
777 read_sysreg_case(SYS_MVFR2_EL1);
779 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
780 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
781 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
782 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
783 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
784 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
785 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
786 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
787 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
789 read_sysreg_case(SYS_CNTFRQ_EL0);
790 read_sysreg_case(SYS_CTR_EL0);
791 read_sysreg_case(SYS_DCZID_EL0);
799 #include <linux/irqchip/arm-gic-v3.h>
802 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
804 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
806 return val >= entry->min_field_value;
810 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
814 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
815 if (scope == SCOPE_SYSTEM)
816 val = read_sanitised_ftr_reg(entry->sys_reg);
818 val = __read_sysreg_by_encoding(entry->sys_reg);
820 return feature_matches(val, entry);
823 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
827 if (!has_cpuid_feature(entry, scope))
830 has_sre = gic_enable_sre();
832 pr_warn_once("%s present but disabled by higher exception level\n",
838 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
840 u32 midr = read_cpuid_id();
842 /* Cavium ThunderX pass 1.x and 2.x */
843 return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
844 MIDR_CPU_VAR_REV(0, 0),
845 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
848 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
850 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
852 return cpuid_feature_extract_signed_field(pfr0,
853 ID_AA64PFR0_FP_SHIFT) < 0;
856 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
861 if (scope == SCOPE_SYSTEM)
862 ctr = arm64_ftr_reg_ctrel0.sys_val;
864 ctr = read_cpuid_effective_cachetype();
866 return ctr & BIT(CTR_IDC_SHIFT);
869 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
872 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
873 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
874 * to the CTR_EL0 on this CPU and emulate it with the real/safe
877 if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
878 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
881 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
886 if (scope == SCOPE_SYSTEM)
887 ctr = arm64_ftr_reg_ctrel0.sys_val;
889 ctr = read_cpuid_cachetype();
891 return ctr & BIT(CTR_DIC_SHIFT);
894 static bool __maybe_unused
895 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
898 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
899 * may share TLB entries with a CPU stuck in the crashed
902 if (is_kdump_kernel())
905 return has_cpuid_feature(entry, scope);
908 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
909 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
911 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
914 /* List of CPUs that are not vulnerable and don't need KPTI */
915 static const struct midr_range kpti_safe_list[] = {
916 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
917 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
920 char const *str = "command line option";
923 * For reasons that aren't entirely clear, enabling KPTI on Cavium
924 * ThunderX leads to apparent I-cache corruption of kernel text, which
925 * ends as well as you might imagine. Don't even try.
927 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
928 str = "ARM64_WORKAROUND_CAVIUM_27456";
934 pr_info_once("kernel page table isolation forced %s by %s\n",
935 __kpti_forced > 0 ? "ON" : "OFF", str);
936 return __kpti_forced > 0;
939 /* Useful for KASLR robustness */
940 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
943 /* Don't force KPTI for CPUs that are not vulnerable */
944 if (is_midr_in_range_list(read_cpuid_id(), kpti_safe_list))
947 /* Defer to CPU feature registers */
948 return !has_cpuid_feature(entry, scope);
952 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
954 typedef void (kpti_remap_fn)(int, int, phys_addr_t);
955 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
956 kpti_remap_fn *remap_fn;
958 static bool kpti_applied = false;
959 int cpu = smp_processor_id();
964 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
967 remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
968 cpu_uninstall_idmap();
976 static int __init parse_kpti(char *str)
979 int ret = strtobool(str, &enabled);
984 __kpti_forced = enabled ? 1 : -1;
987 early_param("kpti", parse_kpti);
988 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
990 #ifdef CONFIG_ARM64_HW_AFDBM
991 static inline void __cpu_enable_hw_dbm(void)
993 u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
995 write_sysreg(tcr, tcr_el1);
999 static bool cpu_has_broken_dbm(void)
1001 /* List of CPUs which have broken DBM support. */
1002 static const struct midr_range cpus[] = {
1003 #ifdef CONFIG_ARM64_ERRATUM_1024718
1004 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0), // A55 r0p0 -r1p0
1009 return is_midr_in_range_list(read_cpuid_id(), cpus);
1012 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1014 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1015 !cpu_has_broken_dbm();
1018 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1020 if (cpu_can_use_dbm(cap))
1021 __cpu_enable_hw_dbm();
1024 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1027 static bool detected = false;
1029 * DBM is a non-conflicting feature. i.e, the kernel can safely
1030 * run a mix of CPUs with and without the feature. So, we
1031 * unconditionally enable the capability to allow any late CPU
1032 * to use the feature. We only enable the control bits on the
1033 * CPU, if it actually supports.
1035 * We have to make sure we print the "feature" detection only
1036 * when at least one CPU actually uses it. So check if this CPU
1037 * can actually use it and print the message exactly once.
1039 * This is safe as all CPUs (including secondary CPUs - due to the
1040 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1041 * goes through the "matches" check exactly once. Also if a CPU
1042 * matches the criteria, it is guaranteed that the CPU will turn
1043 * the DBM on, as the capability is unconditionally enabled.
1045 if (!detected && cpu_can_use_dbm(cap)) {
1047 pr_info("detected: Hardware dirty bit management\n");
1055 #ifdef CONFIG_ARM64_VHE
1056 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1058 return is_kernel_in_hyp_mode();
1061 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1064 * Copy register values that aren't redirected by hardware.
1066 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1067 * this value to tpidr_el2 before we patch the code. Once we've done
1068 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1071 if (!alternatives_applied)
1072 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1076 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1078 u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1080 /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1081 WARN_ON(val & (7 << 27 | 7 << 21));
1084 #ifdef CONFIG_ARM64_SSBD
1085 static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
1087 if (user_mode(regs))
1090 if (instr & BIT(PSTATE_Imm_shift))
1091 regs->pstate |= PSR_SSBS_BIT;
1093 regs->pstate &= ~PSR_SSBS_BIT;
1095 arm64_skip_faulting_instruction(regs, 4);
1099 static struct undef_hook ssbs_emulation_hook = {
1100 .instr_mask = ~(1U << PSTATE_Imm_shift),
1101 .instr_val = 0xd500401f | PSTATE_SSBS,
1102 .fn = ssbs_emulation_handler,
1105 static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
1107 static bool undef_hook_registered = false;
1108 static DEFINE_SPINLOCK(hook_lock);
1110 spin_lock(&hook_lock);
1111 if (!undef_hook_registered) {
1112 register_undef_hook(&ssbs_emulation_hook);
1113 undef_hook_registered = true;
1115 spin_unlock(&hook_lock);
1117 if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1118 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
1119 arm64_set_ssbd_mitigation(false);
1121 arm64_set_ssbd_mitigation(true);
1124 #endif /* CONFIG_ARM64_SSBD */
1126 #ifdef CONFIG_ARM64_PAN
1127 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1130 * We modify PSTATE. This won't work from irq context as the PSTATE
1131 * is discarded once we return from the exception.
1133 WARN_ON_ONCE(in_interrupt());
1135 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1136 asm(SET_PSTATE_PAN(1));
1138 #endif /* CONFIG_ARM64_PAN */
1140 #ifdef CONFIG_ARM64_RAS_EXTN
1141 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1143 /* Firmware may have left a deferred SError in this register. */
1144 write_sysreg_s(0, SYS_DISR_EL1);
1146 #endif /* CONFIG_ARM64_RAS_EXTN */
1148 static const struct arm64_cpu_capabilities arm64_features[] = {
1150 .desc = "GIC system register CPU interface",
1151 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1152 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1153 .matches = has_useable_gicv3_cpuif,
1154 .sys_reg = SYS_ID_AA64PFR0_EL1,
1155 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1156 .sign = FTR_UNSIGNED,
1157 .min_field_value = 1,
1159 #ifdef CONFIG_ARM64_PAN
1161 .desc = "Privileged Access Never",
1162 .capability = ARM64_HAS_PAN,
1163 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1164 .matches = has_cpuid_feature,
1165 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1166 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1167 .sign = FTR_UNSIGNED,
1168 .min_field_value = 1,
1169 .cpu_enable = cpu_enable_pan,
1171 #endif /* CONFIG_ARM64_PAN */
1172 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1174 .desc = "LSE atomic instructions",
1175 .capability = ARM64_HAS_LSE_ATOMICS,
1176 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1177 .matches = has_cpuid_feature,
1178 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1179 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1180 .sign = FTR_UNSIGNED,
1181 .min_field_value = 2,
1183 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1185 .desc = "Software prefetching using PRFM",
1186 .capability = ARM64_HAS_NO_HW_PREFETCH,
1187 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1188 .matches = has_no_hw_prefetch,
1190 #ifdef CONFIG_ARM64_UAO
1192 .desc = "User Access Override",
1193 .capability = ARM64_HAS_UAO,
1194 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1195 .matches = has_cpuid_feature,
1196 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1197 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
1198 .min_field_value = 1,
1200 * We rely on stop_machine() calling uao_thread_switch() to set
1201 * UAO immediately after patching.
1204 #endif /* CONFIG_ARM64_UAO */
1205 #ifdef CONFIG_ARM64_PAN
1207 .capability = ARM64_ALT_PAN_NOT_UAO,
1208 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1209 .matches = cpufeature_pan_not_uao,
1211 #endif /* CONFIG_ARM64_PAN */
1212 #ifdef CONFIG_ARM64_VHE
1214 .desc = "Virtualization Host Extensions",
1215 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1216 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1217 .matches = runs_at_el2,
1218 .cpu_enable = cpu_copy_el2regs,
1220 #endif /* CONFIG_ARM64_VHE */
1222 .desc = "32-bit EL0 Support",
1223 .capability = ARM64_HAS_32BIT_EL0,
1224 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1225 .matches = has_cpuid_feature,
1226 .sys_reg = SYS_ID_AA64PFR0_EL1,
1227 .sign = FTR_UNSIGNED,
1228 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1229 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1231 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1233 .desc = "Kernel page table isolation (KPTI)",
1234 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1235 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1237 * The ID feature fields below are used to indicate that
1238 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1241 .sys_reg = SYS_ID_AA64PFR0_EL1,
1242 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1243 .min_field_value = 1,
1244 .matches = unmap_kernel_at_el0,
1245 .cpu_enable = kpti_install_ng_mappings,
1249 /* FP/SIMD is not implemented */
1250 .capability = ARM64_HAS_NO_FPSIMD,
1251 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1252 .min_field_value = 0,
1253 .matches = has_no_fpsimd,
1255 #ifdef CONFIG_ARM64_PMEM
1257 .desc = "Data cache clean to Point of Persistence",
1258 .capability = ARM64_HAS_DCPOP,
1259 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1260 .matches = has_cpuid_feature,
1261 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1262 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1263 .min_field_value = 1,
1266 #ifdef CONFIG_ARM64_SVE
1268 .desc = "Scalable Vector Extension",
1269 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1270 .capability = ARM64_SVE,
1271 .sys_reg = SYS_ID_AA64PFR0_EL1,
1272 .sign = FTR_UNSIGNED,
1273 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1274 .min_field_value = ID_AA64PFR0_SVE,
1275 .matches = has_cpuid_feature,
1276 .cpu_enable = sve_kernel_enable,
1278 #endif /* CONFIG_ARM64_SVE */
1279 #ifdef CONFIG_ARM64_RAS_EXTN
1281 .desc = "RAS Extension Support",
1282 .capability = ARM64_HAS_RAS_EXTN,
1283 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1284 .matches = has_cpuid_feature,
1285 .sys_reg = SYS_ID_AA64PFR0_EL1,
1286 .sign = FTR_UNSIGNED,
1287 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1288 .min_field_value = ID_AA64PFR0_RAS_V1,
1289 .cpu_enable = cpu_clear_disr,
1291 #endif /* CONFIG_ARM64_RAS_EXTN */
1293 .desc = "Data cache clean to the PoU not required for I/D coherence",
1294 .capability = ARM64_HAS_CACHE_IDC,
1295 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1296 .matches = has_cache_idc,
1297 .cpu_enable = cpu_emulate_effective_ctr,
1300 .desc = "Instruction cache invalidation not required for I/D coherence",
1301 .capability = ARM64_HAS_CACHE_DIC,
1302 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1303 .matches = has_cache_dic,
1306 .desc = "Stage-2 Force Write-Back",
1307 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1308 .capability = ARM64_HAS_STAGE2_FWB,
1309 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1310 .sign = FTR_UNSIGNED,
1311 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
1312 .min_field_value = 1,
1313 .matches = has_cpuid_feature,
1314 .cpu_enable = cpu_has_fwb,
1316 #ifdef CONFIG_ARM64_HW_AFDBM
1319 * Since we turn this on always, we don't want the user to
1320 * think that the feature is available when it may not be.
1321 * So hide the description.
1323 * .desc = "Hardware pagetable Dirty Bit Management",
1326 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1327 .capability = ARM64_HW_DBM,
1328 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1329 .sign = FTR_UNSIGNED,
1330 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1331 .min_field_value = 2,
1332 .matches = has_hw_dbm,
1333 .cpu_enable = cpu_enable_hw_dbm,
1337 .desc = "CRC32 instructions",
1338 .capability = ARM64_HAS_CRC32,
1339 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1340 .matches = has_cpuid_feature,
1341 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1342 .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1343 .min_field_value = 1,
1345 #ifdef CONFIG_ARM64_SSBD
1347 .desc = "Speculative Store Bypassing Safe (SSBS)",
1348 .capability = ARM64_SSBS,
1349 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1350 .matches = has_cpuid_feature,
1351 .sys_reg = SYS_ID_AA64PFR1_EL1,
1352 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
1353 .sign = FTR_UNSIGNED,
1354 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1355 .cpu_enable = cpu_enable_ssbs,
1358 #ifdef CONFIG_ARM64_CNP
1360 .desc = "Common not Private translations",
1361 .capability = ARM64_HAS_CNP,
1362 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1363 .matches = has_useable_cnp,
1364 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1365 .sign = FTR_UNSIGNED,
1366 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
1367 .min_field_value = 1,
1368 .cpu_enable = cpu_enable_cnp,
1374 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \
1377 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
1378 .matches = has_cpuid_feature, \
1380 .field_pos = field, \
1382 .min_field_value = min_value, \
1383 .hwcap_type = cap_type, \
1387 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1388 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
1389 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
1390 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
1391 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
1392 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
1393 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
1394 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
1395 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
1396 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
1397 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
1398 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
1399 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
1400 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
1401 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FLAGM),
1402 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
1403 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
1404 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
1405 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
1406 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_DIT),
1407 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1408 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1409 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1410 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1411 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ILRCPC),
1412 HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_USCAT),
1413 #ifdef CONFIG_ARM64_SVE
1414 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
1416 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, HWCAP_SSBS),
1420 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1421 #ifdef CONFIG_COMPAT
1422 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1423 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1424 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1425 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1426 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1431 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1433 switch (cap->hwcap_type) {
1435 elf_hwcap |= cap->hwcap;
1437 #ifdef CONFIG_COMPAT
1438 case CAP_COMPAT_HWCAP:
1439 compat_elf_hwcap |= (u32)cap->hwcap;
1441 case CAP_COMPAT_HWCAP2:
1442 compat_elf_hwcap2 |= (u32)cap->hwcap;
1451 /* Check if we have a particular HWCAP enabled */
1452 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1456 switch (cap->hwcap_type) {
1458 rc = (elf_hwcap & cap->hwcap) != 0;
1460 #ifdef CONFIG_COMPAT
1461 case CAP_COMPAT_HWCAP:
1462 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1464 case CAP_COMPAT_HWCAP2:
1465 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1476 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1478 /* We support emulation of accesses to CPU ID feature registers */
1479 elf_hwcap |= HWCAP_CPUID;
1480 for (; hwcaps->matches; hwcaps++)
1481 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1482 cap_set_elf_hwcap(hwcaps);
1486 * Check if the current CPU has a given feature capability.
1487 * Should be called from non-preemptible context.
1489 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1492 const struct arm64_cpu_capabilities *caps;
1494 if (WARN_ON(preemptible()))
1497 for (caps = cap_array; caps->matches; caps++)
1498 if (caps->capability == cap)
1499 return caps->matches(caps, SCOPE_LOCAL_CPU);
1504 static void __update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1505 u16 scope_mask, const char *info)
1507 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1508 for (; caps->matches; caps++) {
1509 if (!(caps->type & scope_mask) ||
1510 !caps->matches(caps, cpucap_default_scope(caps)))
1513 if (!cpus_have_cap(caps->capability) && caps->desc)
1514 pr_info("%s %s\n", info, caps->desc);
1515 cpus_set_cap(caps->capability);
1519 static void update_cpu_capabilities(u16 scope_mask)
1521 __update_cpu_capabilities(arm64_errata, scope_mask,
1522 "enabling workaround for");
1523 __update_cpu_capabilities(arm64_features, scope_mask, "detected:");
1526 static int __enable_cpu_capability(void *arg)
1528 const struct arm64_cpu_capabilities *cap = arg;
1530 cap->cpu_enable(cap);
1535 * Run through the enabled capabilities and enable() it on all active
1539 __enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1542 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1543 for (; caps->matches; caps++) {
1544 unsigned int num = caps->capability;
1546 if (!(caps->type & scope_mask) || !cpus_have_cap(num))
1549 /* Ensure cpus_have_const_cap(num) works */
1550 static_branch_enable(&cpu_hwcap_keys[num]);
1552 if (caps->cpu_enable) {
1554 * Capabilities with SCOPE_BOOT_CPU scope are finalised
1555 * before any secondary CPU boots. Thus, each secondary
1556 * will enable the capability as appropriate via
1557 * check_local_cpu_capabilities(). The only exception is
1558 * the boot CPU, for which the capability must be
1559 * enabled here. This approach avoids costly
1560 * stop_machine() calls for this case.
1562 * Otherwise, use stop_machine() as it schedules the
1563 * work allowing us to modify PSTATE, instead of
1564 * on_each_cpu() which uses an IPI, giving us a PSTATE
1565 * that disappears when we return.
1567 if (scope_mask & SCOPE_BOOT_CPU)
1568 caps->cpu_enable(caps);
1570 stop_machine(__enable_cpu_capability,
1571 (void *)caps, cpu_online_mask);
1576 static void __init enable_cpu_capabilities(u16 scope_mask)
1578 __enable_cpu_capabilities(arm64_errata, scope_mask);
1579 __enable_cpu_capabilities(arm64_features, scope_mask);
1583 * Run through the list of capabilities to check for conflicts.
1584 * If the system has already detected a capability, take necessary
1585 * action on this CPU.
1587 * Returns "false" on conflicts.
1590 __verify_local_cpu_caps(const struct arm64_cpu_capabilities *caps,
1593 bool cpu_has_cap, system_has_cap;
1595 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1597 for (; caps->matches; caps++) {
1598 if (!(caps->type & scope_mask))
1601 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1602 system_has_cap = cpus_have_cap(caps->capability);
1604 if (system_has_cap) {
1606 * Check if the new CPU misses an advertised feature,
1607 * which is not safe to miss.
1609 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
1612 * We have to issue cpu_enable() irrespective of
1613 * whether the CPU has it or not, as it is enabeld
1614 * system wide. It is upto the call back to take
1615 * appropriate action on this CPU.
1617 if (caps->cpu_enable)
1618 caps->cpu_enable(caps);
1621 * Check if the CPU has this capability if it isn't
1622 * safe to have when the system doesn't.
1624 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
1629 if (caps->matches) {
1630 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1631 smp_processor_id(), caps->capability,
1632 caps->desc, system_has_cap, cpu_has_cap);
1639 static bool verify_local_cpu_caps(u16 scope_mask)
1641 return __verify_local_cpu_caps(arm64_errata, scope_mask) &&
1642 __verify_local_cpu_caps(arm64_features, scope_mask);
1646 * Check for CPU features that are used in early boot
1647 * based on the Boot CPU value.
1649 static void check_early_cpu_features(void)
1651 verify_cpu_asid_bits();
1653 * Early features are used by the kernel already. If there
1654 * is a conflict, we cannot proceed further.
1656 if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
1661 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1664 for (; caps->matches; caps++)
1665 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1666 pr_crit("CPU%d: missing HWCAP: %s\n",
1667 smp_processor_id(), caps->desc);
1672 static void verify_sve_features(void)
1674 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1675 u64 zcr = read_zcr_features();
1677 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1678 unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1680 if (len < safe_len || sve_verify_vq_map()) {
1681 pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1682 smp_processor_id());
1686 /* Add checks on other ZCR bits here if necessary */
1691 * Run through the enabled system capabilities and enable() it on this CPU.
1692 * The capabilities were decided based on the available CPUs at the boot time.
1693 * Any new CPU should match the system wide status of the capability. If the
1694 * new CPU doesn't have a capability which the system now has enabled, we
1695 * cannot do anything to fix it up and could cause unexpected failures. So
1698 static void verify_local_cpu_capabilities(void)
1701 * The capabilities with SCOPE_BOOT_CPU are checked from
1702 * check_early_cpu_features(), as they need to be verified
1703 * on all secondary CPUs.
1705 if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1708 verify_local_elf_hwcaps(arm64_elf_hwcaps);
1710 if (system_supports_32bit_el0())
1711 verify_local_elf_hwcaps(compat_elf_hwcaps);
1713 if (system_supports_sve())
1714 verify_sve_features();
1717 void check_local_cpu_capabilities(void)
1720 * All secondary CPUs should conform to the early CPU features
1721 * in use by the kernel based on boot CPU.
1723 check_early_cpu_features();
1726 * If we haven't finalised the system capabilities, this CPU gets
1727 * a chance to update the errata work arounds and local features.
1728 * Otherwise, this CPU should verify that it has all the system
1729 * advertised capabilities.
1731 if (!sys_caps_initialised)
1732 update_cpu_capabilities(SCOPE_LOCAL_CPU);
1734 verify_local_cpu_capabilities();
1737 static void __init setup_boot_cpu_capabilities(void)
1739 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1740 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
1741 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1742 enable_cpu_capabilities(SCOPE_BOOT_CPU);
1745 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1746 EXPORT_SYMBOL(arm64_const_caps_ready);
1748 static void __init mark_const_caps_ready(void)
1750 static_branch_enable(&arm64_const_caps_ready);
1753 extern const struct arm64_cpu_capabilities arm64_errata[];
1755 bool this_cpu_has_cap(unsigned int cap)
1757 return (__this_cpu_has_cap(arm64_features, cap) ||
1758 __this_cpu_has_cap(arm64_errata, cap));
1761 static void __init setup_system_capabilities(void)
1764 * We have finalised the system-wide safe feature
1765 * registers, finalise the capabilities that depend
1766 * on it. Also enable all the available capabilities,
1767 * that are not enabled already.
1769 update_cpu_capabilities(SCOPE_SYSTEM);
1770 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
1773 void __init setup_cpu_features(void)
1777 setup_system_capabilities();
1778 mark_const_caps_ready();
1779 setup_elf_hwcaps(arm64_elf_hwcaps);
1781 if (system_supports_32bit_el0())
1782 setup_elf_hwcaps(compat_elf_hwcaps);
1784 if (system_uses_ttbr0_pan())
1785 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
1788 minsigstksz_setup();
1790 /* Advertise that we have computed the system capabilities */
1791 set_sys_caps_initialised();
1794 * Check for sane CTR_EL0.CWG value.
1796 cwg = cache_type_cwg();
1798 pr_warn("No Cache Writeback Granule information, assuming %d\n",
1802 static bool __maybe_unused
1803 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1805 return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1808 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
1810 cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
1814 * We emulate only the following system register space.
1815 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1816 * See Table C5-6 System instruction encodings for System register accesses,
1817 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1819 static inline bool __attribute_const__ is_emulated(u32 id)
1821 return (sys_reg_Op0(id) == 0x3 &&
1822 sys_reg_CRn(id) == 0x0 &&
1823 sys_reg_Op1(id) == 0x0 &&
1824 (sys_reg_CRm(id) == 0 ||
1825 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1829 * With CRm == 0, reg should be one of :
1830 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1832 static inline int emulate_id_reg(u32 id, u64 *valp)
1836 *valp = read_cpuid_id();
1839 *valp = SYS_MPIDR_SAFE_VAL;
1841 case SYS_REVIDR_EL1:
1842 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1852 static int emulate_sys_reg(u32 id, u64 *valp)
1854 struct arm64_ftr_reg *regp;
1856 if (!is_emulated(id))
1859 if (sys_reg_CRm(id) == 0)
1860 return emulate_id_reg(id, valp);
1862 regp = get_arm64_ftr_reg(id);
1864 *valp = arm64_ftr_reg_user_value(regp);
1867 * The untracked registers are either IMPLEMENTATION DEFINED
1868 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1874 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
1879 rc = emulate_sys_reg(sys_reg, &val);
1881 pt_regs_write_reg(regs, rt, val);
1882 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1887 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1892 * sys_reg values are defined as used in mrs/msr instruction.
1893 * shift the imm value to get the encoding.
1895 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1896 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1897 return do_emulate_mrs(regs, sys_reg, rt);
1900 static struct undef_hook mrs_hook = {
1901 .instr_mask = 0xfff00000,
1902 .instr_val = 0xd5300000,
1903 .pstate_mask = PSR_AA32_MODE_MASK,
1904 .pstate_val = PSR_MODE_EL0t,
1908 static int __init enable_mrs_emulation(void)
1910 register_undef_hook(&mrs_hook);
1914 core_initcall(enable_mrs_emulation);