1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
6 #include <linux/bsearch.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 #include <linux/fsverity.h>
25 #include "btrfs_inode.h"
26 #include "transaction.h"
27 #include "compression.h"
28 #include "print-tree.h"
29 #include "accessors.h"
31 #include "file-item.h"
34 #include "lru_cache.h"
37 * Maximum number of references an extent can have in order for us to attempt to
38 * issue clone operations instead of write operations. This currently exists to
39 * avoid hitting limitations of the backreference walking code (taking a lot of
40 * time and using too much memory for extents with large number of references).
42 #define SEND_MAX_EXTENT_REFS 1024
45 * A fs_path is a helper to dynamically build path names with unknown size.
46 * It reallocates the internal buffer on demand.
47 * It allows fast adding of path elements on the right side (normal path) and
48 * fast adding to the left side (reversed path). A reversed path can also be
49 * unreversed if needed.
58 unsigned short buf_len:15;
59 unsigned short reversed:1;
63 * Average path length does not exceed 200 bytes, we'll have
64 * better packing in the slab and higher chance to satisfy
65 * an allocation later during send.
70 #define FS_PATH_INLINE_SIZE \
71 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
74 /* reused for each extent */
76 struct btrfs_root *root;
83 #define SEND_MAX_NAME_CACHE_SIZE 256
86 * Limit the root_ids array of struct backref_cache_entry to 17 elements.
87 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
88 * can be satisfied from the kmalloc-192 slab, without wasting any space.
89 * The most common case is to have a single root for cloning, which corresponds
90 * to the send root. Having the user specify more than 16 clone roots is not
91 * common, and in such rare cases we simply don't use caching if the number of
92 * cloning roots that lead down to a leaf is more than 17.
94 #define SEND_MAX_BACKREF_CACHE_ROOTS 17
97 * Max number of entries in the cache.
98 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
99 * maple tree's internal nodes, is 24K.
101 #define SEND_MAX_BACKREF_CACHE_SIZE 128
104 * A backref cache entry maps a leaf to a list of IDs of roots from which the
105 * leaf is accessible and we can use for clone operations.
106 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
109 struct backref_cache_entry {
110 struct btrfs_lru_cache_entry entry;
111 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
112 /* Number of valid elements in the root_ids array. */
116 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
117 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
120 * Max number of entries in the cache that stores directories that were already
121 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
122 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
123 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
125 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64
128 * Max number of entries in the cache that stores directories that were already
129 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
130 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
131 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
133 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64
136 struct file *send_filp;
142 * Whether BTRFS_SEND_A_DATA attribute was already added to current
143 * command (since protocol v2, data must be the last attribute).
146 struct page **send_buf_pages;
147 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
148 /* Protocol version compatibility requested */
151 struct btrfs_root *send_root;
152 struct btrfs_root *parent_root;
153 struct clone_root *clone_roots;
156 /* current state of the compare_tree call */
157 struct btrfs_path *left_path;
158 struct btrfs_path *right_path;
159 struct btrfs_key *cmp_key;
162 * Keep track of the generation of the last transaction that was used
163 * for relocating a block group. This is periodically checked in order
164 * to detect if a relocation happened since the last check, so that we
165 * don't operate on stale extent buffers for nodes (level >= 1) or on
166 * stale disk_bytenr values of file extent items.
168 u64 last_reloc_trans;
171 * infos of the currently processed inode. In case of deleted inodes,
172 * these are the values from the deleted inode.
179 u64 cur_inode_last_extent;
180 u64 cur_inode_next_write_offset;
182 bool cur_inode_new_gen;
183 bool cur_inode_deleted;
184 bool ignore_cur_inode;
185 bool cur_inode_needs_verity;
186 void *verity_descriptor;
190 struct list_head new_refs;
191 struct list_head deleted_refs;
193 struct btrfs_lru_cache name_cache;
196 * The inode we are currently processing. It's not NULL only when we
197 * need to issue write commands for data extents from this inode.
199 struct inode *cur_inode;
200 struct file_ra_state ra;
201 u64 page_cache_clear_start;
202 bool clean_page_cache;
205 * We process inodes by their increasing order, so if before an
206 * incremental send we reverse the parent/child relationship of
207 * directories such that a directory with a lower inode number was
208 * the parent of a directory with a higher inode number, and the one
209 * becoming the new parent got renamed too, we can't rename/move the
210 * directory with lower inode number when we finish processing it - we
211 * must process the directory with higher inode number first, then
212 * rename/move it and then rename/move the directory with lower inode
213 * number. Example follows.
215 * Tree state when the first send was performed:
227 * Tree state when the second (incremental) send is performed:
236 * The sequence of steps that lead to the second state was:
238 * mv /a/b/c/d /a/b/c2/d2
239 * mv /a/b/c /a/b/c2/d2/cc
241 * "c" has lower inode number, but we can't move it (2nd mv operation)
242 * before we move "d", which has higher inode number.
244 * So we just memorize which move/rename operations must be performed
245 * later when their respective parent is processed and moved/renamed.
248 /* Indexed by parent directory inode number. */
249 struct rb_root pending_dir_moves;
252 * Reverse index, indexed by the inode number of a directory that
253 * is waiting for the move/rename of its immediate parent before its
254 * own move/rename can be performed.
256 struct rb_root waiting_dir_moves;
259 * A directory that is going to be rm'ed might have a child directory
260 * which is in the pending directory moves index above. In this case,
261 * the directory can only be removed after the move/rename of its child
262 * is performed. Example:
282 * Sequence of steps that lead to the send snapshot:
283 * rm -f /a/b/c/foo.txt
285 * mv /a/b/c/x /a/b/YY
288 * When the child is processed, its move/rename is delayed until its
289 * parent is processed (as explained above), but all other operations
290 * like update utimes, chown, chgrp, etc, are performed and the paths
291 * that it uses for those operations must use the orphanized name of
292 * its parent (the directory we're going to rm later), so we need to
293 * memorize that name.
295 * Indexed by the inode number of the directory to be deleted.
297 struct rb_root orphan_dirs;
299 struct rb_root rbtree_new_refs;
300 struct rb_root rbtree_deleted_refs;
302 struct btrfs_lru_cache backref_cache;
303 u64 backref_cache_last_reloc_trans;
305 struct btrfs_lru_cache dir_created_cache;
306 struct btrfs_lru_cache dir_utimes_cache;
309 struct pending_dir_move {
311 struct list_head list;
315 struct list_head update_refs;
318 struct waiting_dir_move {
322 * There might be some directory that could not be removed because it
323 * was waiting for this directory inode to be moved first. Therefore
324 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
331 struct orphan_dir_info {
335 u64 last_dir_index_offset;
336 u64 dir_high_seq_ino;
339 struct name_cache_entry {
341 * The key in the entry is an inode number, and the generation matches
342 * the inode's generation.
344 struct btrfs_lru_cache_entry entry;
348 int need_later_update;
349 /* Name length without NUL terminator. */
351 /* Not NUL terminated. */
352 char name[] __counted_by(name_len) __nonstring;
355 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
356 static_assert(offsetof(struct name_cache_entry, entry) == 0);
359 #define ADVANCE_ONLY_NEXT -1
361 enum btrfs_compare_tree_result {
362 BTRFS_COMPARE_TREE_NEW,
363 BTRFS_COMPARE_TREE_DELETED,
364 BTRFS_COMPARE_TREE_CHANGED,
365 BTRFS_COMPARE_TREE_SAME,
369 static void inconsistent_snapshot_error(struct send_ctx *sctx,
370 enum btrfs_compare_tree_result result,
373 const char *result_string;
376 case BTRFS_COMPARE_TREE_NEW:
377 result_string = "new";
379 case BTRFS_COMPARE_TREE_DELETED:
380 result_string = "deleted";
382 case BTRFS_COMPARE_TREE_CHANGED:
383 result_string = "updated";
385 case BTRFS_COMPARE_TREE_SAME:
387 result_string = "unchanged";
391 result_string = "unexpected";
394 btrfs_err(sctx->send_root->fs_info,
395 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
396 result_string, what, sctx->cmp_key->objectid,
397 btrfs_root_id(sctx->send_root),
398 (sctx->parent_root ? btrfs_root_id(sctx->parent_root) : 0));
402 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
404 switch (sctx->proto) {
405 case 1: return cmd <= BTRFS_SEND_C_MAX_V1;
406 case 2: return cmd <= BTRFS_SEND_C_MAX_V2;
407 case 3: return cmd <= BTRFS_SEND_C_MAX_V3;
408 default: return false;
412 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
414 static struct waiting_dir_move *
415 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
417 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
419 static int need_send_hole(struct send_ctx *sctx)
421 return (sctx->parent_root && !sctx->cur_inode_new &&
422 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
423 S_ISREG(sctx->cur_inode_mode));
426 static void fs_path_reset(struct fs_path *p)
429 p->start = p->buf + p->buf_len - 1;
439 static struct fs_path *fs_path_alloc(void)
443 p = kmalloc(sizeof(*p), GFP_KERNEL);
447 p->buf = p->inline_buf;
448 p->buf_len = FS_PATH_INLINE_SIZE;
453 static struct fs_path *fs_path_alloc_reversed(void)
465 static void fs_path_free(struct fs_path *p)
469 if (p->buf != p->inline_buf)
474 static int fs_path_len(struct fs_path *p)
476 return p->end - p->start;
479 static int fs_path_ensure_buf(struct fs_path *p, int len)
487 if (p->buf_len >= len)
490 if (len > PATH_MAX) {
495 path_len = p->end - p->start;
496 old_buf_len = p->buf_len;
499 * Allocate to the next largest kmalloc bucket size, to let
500 * the fast path happen most of the time.
502 len = kmalloc_size_roundup(len);
504 * First time the inline_buf does not suffice
506 if (p->buf == p->inline_buf) {
507 tmp_buf = kmalloc(len, GFP_KERNEL);
509 memcpy(tmp_buf, p->buf, old_buf_len);
511 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
519 tmp_buf = p->buf + old_buf_len - path_len - 1;
520 p->end = p->buf + p->buf_len - 1;
521 p->start = p->end - path_len;
522 memmove(p->start, tmp_buf, path_len + 1);
525 p->end = p->start + path_len;
530 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
536 new_len = p->end - p->start + name_len;
537 if (p->start != p->end)
539 ret = fs_path_ensure_buf(p, new_len);
544 if (p->start != p->end)
546 p->start -= name_len;
547 *prepared = p->start;
549 if (p->start != p->end)
560 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
565 ret = fs_path_prepare_for_add(p, name_len, &prepared);
568 memcpy(prepared, name, name_len);
574 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
579 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
582 memcpy(prepared, p2->start, p2->end - p2->start);
588 static int fs_path_add_from_extent_buffer(struct fs_path *p,
589 struct extent_buffer *eb,
590 unsigned long off, int len)
595 ret = fs_path_prepare_for_add(p, len, &prepared);
599 read_extent_buffer(eb, prepared, off, len);
605 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
607 p->reversed = from->reversed;
610 return fs_path_add_path(p, from);
613 static void fs_path_unreverse(struct fs_path *p)
622 len = p->end - p->start;
624 p->end = p->start + len;
625 memmove(p->start, tmp, len + 1);
629 static struct btrfs_path *alloc_path_for_send(void)
631 struct btrfs_path *path;
633 path = btrfs_alloc_path();
636 path->search_commit_root = 1;
637 path->skip_locking = 1;
638 path->need_commit_sem = 1;
642 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
648 ret = kernel_write(filp, buf + pos, len - pos, off);
659 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
661 struct btrfs_tlv_header *hdr;
662 int total_len = sizeof(*hdr) + len;
663 int left = sctx->send_max_size - sctx->send_size;
665 if (WARN_ON_ONCE(sctx->put_data))
668 if (unlikely(left < total_len))
671 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
672 put_unaligned_le16(attr, &hdr->tlv_type);
673 put_unaligned_le16(len, &hdr->tlv_len);
674 memcpy(hdr + 1, data, len);
675 sctx->send_size += total_len;
680 #define TLV_PUT_DEFINE_INT(bits) \
681 static int tlv_put_u##bits(struct send_ctx *sctx, \
682 u##bits attr, u##bits value) \
684 __le##bits __tmp = cpu_to_le##bits(value); \
685 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
688 TLV_PUT_DEFINE_INT(8)
689 TLV_PUT_DEFINE_INT(32)
690 TLV_PUT_DEFINE_INT(64)
692 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
693 const char *str, int len)
697 return tlv_put(sctx, attr, str, len);
700 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
703 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
706 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
707 struct extent_buffer *eb,
708 struct btrfs_timespec *ts)
710 struct btrfs_timespec bts;
711 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
712 return tlv_put(sctx, attr, &bts, sizeof(bts));
716 #define TLV_PUT(sctx, attrtype, data, attrlen) \
718 ret = tlv_put(sctx, attrtype, data, attrlen); \
720 goto tlv_put_failure; \
723 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
725 ret = tlv_put_u##bits(sctx, attrtype, value); \
727 goto tlv_put_failure; \
730 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
731 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
732 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
733 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
734 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
736 ret = tlv_put_string(sctx, attrtype, str, len); \
738 goto tlv_put_failure; \
740 #define TLV_PUT_PATH(sctx, attrtype, p) \
742 ret = tlv_put_string(sctx, attrtype, p->start, \
743 p->end - p->start); \
745 goto tlv_put_failure; \
747 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
749 ret = tlv_put_uuid(sctx, attrtype, uuid); \
751 goto tlv_put_failure; \
753 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
755 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
757 goto tlv_put_failure; \
760 static int send_header(struct send_ctx *sctx)
762 struct btrfs_stream_header hdr;
764 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
765 hdr.version = cpu_to_le32(sctx->proto);
766 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
771 * For each command/item we want to send to userspace, we call this function.
773 static int begin_cmd(struct send_ctx *sctx, int cmd)
775 struct btrfs_cmd_header *hdr;
777 if (WARN_ON(!sctx->send_buf))
780 if (unlikely(sctx->send_size != 0)) {
781 btrfs_err(sctx->send_root->fs_info,
782 "send: command header buffer not empty cmd %d offset %llu",
783 cmd, sctx->send_off);
787 sctx->send_size += sizeof(*hdr);
788 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
789 put_unaligned_le16(cmd, &hdr->cmd);
794 static int send_cmd(struct send_ctx *sctx)
797 struct btrfs_cmd_header *hdr;
800 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
801 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
802 put_unaligned_le32(0, &hdr->crc);
804 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
805 put_unaligned_le32(crc, &hdr->crc);
807 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
811 sctx->put_data = false;
817 * Sends a move instruction to user space
819 static int send_rename(struct send_ctx *sctx,
820 struct fs_path *from, struct fs_path *to)
822 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
825 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
827 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
831 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
832 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
834 ret = send_cmd(sctx);
842 * Sends a link instruction to user space
844 static int send_link(struct send_ctx *sctx,
845 struct fs_path *path, struct fs_path *lnk)
847 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
850 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
852 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
856 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
857 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
859 ret = send_cmd(sctx);
867 * Sends an unlink instruction to user space
869 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
871 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
874 btrfs_debug(fs_info, "send_unlink %s", path->start);
876 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
880 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
882 ret = send_cmd(sctx);
890 * Sends a rmdir instruction to user space
892 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
894 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
897 btrfs_debug(fs_info, "send_rmdir %s", path->start);
899 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
903 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
905 ret = send_cmd(sctx);
912 struct btrfs_inode_info {
924 * Helper function to retrieve some fields from an inode item.
926 static int get_inode_info(struct btrfs_root *root, u64 ino,
927 struct btrfs_inode_info *info)
930 struct btrfs_path *path;
931 struct btrfs_inode_item *ii;
932 struct btrfs_key key;
934 path = alloc_path_for_send();
939 key.type = BTRFS_INODE_ITEM_KEY;
941 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
951 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
952 struct btrfs_inode_item);
953 info->size = btrfs_inode_size(path->nodes[0], ii);
954 info->gen = btrfs_inode_generation(path->nodes[0], ii);
955 info->mode = btrfs_inode_mode(path->nodes[0], ii);
956 info->uid = btrfs_inode_uid(path->nodes[0], ii);
957 info->gid = btrfs_inode_gid(path->nodes[0], ii);
958 info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
959 info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
961 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
962 * otherwise logically split to 32/32 parts.
964 info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
967 btrfs_free_path(path);
971 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
974 struct btrfs_inode_info info = { 0 };
978 ret = get_inode_info(root, ino, &info);
983 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
988 * Helper function to iterate the entries in ONE btrfs_inode_ref or
989 * btrfs_inode_extref.
990 * The iterate callback may return a non zero value to stop iteration. This can
991 * be a negative value for error codes or 1 to simply stop it.
993 * path must point to the INODE_REF or INODE_EXTREF when called.
995 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
996 struct btrfs_key *found_key, int resolve,
997 iterate_inode_ref_t iterate, void *ctx)
999 struct extent_buffer *eb = path->nodes[0];
1000 struct btrfs_inode_ref *iref;
1001 struct btrfs_inode_extref *extref;
1002 struct btrfs_path *tmp_path;
1006 int slot = path->slots[0];
1013 unsigned long name_off;
1014 unsigned long elem_size;
1017 p = fs_path_alloc_reversed();
1021 tmp_path = alloc_path_for_send();
1028 if (found_key->type == BTRFS_INODE_REF_KEY) {
1029 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1030 struct btrfs_inode_ref);
1031 total = btrfs_item_size(eb, slot);
1032 elem_size = sizeof(*iref);
1034 ptr = btrfs_item_ptr_offset(eb, slot);
1035 total = btrfs_item_size(eb, slot);
1036 elem_size = sizeof(*extref);
1039 while (cur < total) {
1042 if (found_key->type == BTRFS_INODE_REF_KEY) {
1043 iref = (struct btrfs_inode_ref *)(ptr + cur);
1044 name_len = btrfs_inode_ref_name_len(eb, iref);
1045 name_off = (unsigned long)(iref + 1);
1046 index = btrfs_inode_ref_index(eb, iref);
1047 dir = found_key->offset;
1049 extref = (struct btrfs_inode_extref *)(ptr + cur);
1050 name_len = btrfs_inode_extref_name_len(eb, extref);
1051 name_off = (unsigned long)&extref->name;
1052 index = btrfs_inode_extref_index(eb, extref);
1053 dir = btrfs_inode_extref_parent(eb, extref);
1057 start = btrfs_ref_to_path(root, tmp_path, name_len,
1059 p->buf, p->buf_len);
1060 if (IS_ERR(start)) {
1061 ret = PTR_ERR(start);
1064 if (start < p->buf) {
1065 /* overflow , try again with larger buffer */
1066 ret = fs_path_ensure_buf(p,
1067 p->buf_len + p->buf - start);
1070 start = btrfs_ref_to_path(root, tmp_path,
1073 p->buf, p->buf_len);
1074 if (IS_ERR(start)) {
1075 ret = PTR_ERR(start);
1078 if (unlikely(start < p->buf)) {
1079 btrfs_err(root->fs_info,
1080 "send: path ref buffer underflow for key (%llu %u %llu)",
1081 found_key->objectid,
1090 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1096 cur += elem_size + name_len;
1097 ret = iterate(num, dir, index, p, ctx);
1104 btrfs_free_path(tmp_path);
1109 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1110 const char *name, int name_len,
1111 const char *data, int data_len,
1115 * Helper function to iterate the entries in ONE btrfs_dir_item.
1116 * The iterate callback may return a non zero value to stop iteration. This can
1117 * be a negative value for error codes or 1 to simply stop it.
1119 * path must point to the dir item when called.
1121 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1122 iterate_dir_item_t iterate, void *ctx)
1125 struct extent_buffer *eb;
1126 struct btrfs_dir_item *di;
1127 struct btrfs_key di_key;
1139 * Start with a small buffer (1 page). If later we end up needing more
1140 * space, which can happen for xattrs on a fs with a leaf size greater
1141 * than the page size, attempt to increase the buffer. Typically xattr
1145 buf = kmalloc(buf_len, GFP_KERNEL);
1151 eb = path->nodes[0];
1152 slot = path->slots[0];
1153 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1156 total = btrfs_item_size(eb, slot);
1159 while (cur < total) {
1160 name_len = btrfs_dir_name_len(eb, di);
1161 data_len = btrfs_dir_data_len(eb, di);
1162 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1164 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1165 if (name_len > XATTR_NAME_MAX) {
1166 ret = -ENAMETOOLONG;
1169 if (name_len + data_len >
1170 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1178 if (name_len + data_len > PATH_MAX) {
1179 ret = -ENAMETOOLONG;
1184 if (name_len + data_len > buf_len) {
1185 buf_len = name_len + data_len;
1186 if (is_vmalloc_addr(buf)) {
1190 char *tmp = krealloc(buf, buf_len,
1191 GFP_KERNEL | __GFP_NOWARN);
1198 buf = kvmalloc(buf_len, GFP_KERNEL);
1206 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1207 name_len + data_len);
1209 len = sizeof(*di) + name_len + data_len;
1210 di = (struct btrfs_dir_item *)((char *)di + len);
1213 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1230 static int __copy_first_ref(int num, u64 dir, int index,
1231 struct fs_path *p, void *ctx)
1234 struct fs_path *pt = ctx;
1236 ret = fs_path_copy(pt, p);
1240 /* we want the first only */
1245 * Retrieve the first path of an inode. If an inode has more then one
1246 * ref/hardlink, this is ignored.
1248 static int get_inode_path(struct btrfs_root *root,
1249 u64 ino, struct fs_path *path)
1252 struct btrfs_key key, found_key;
1253 struct btrfs_path *p;
1255 p = alloc_path_for_send();
1259 fs_path_reset(path);
1262 key.type = BTRFS_INODE_REF_KEY;
1265 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1272 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1273 if (found_key.objectid != ino ||
1274 (found_key.type != BTRFS_INODE_REF_KEY &&
1275 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1280 ret = iterate_inode_ref(root, p, &found_key, 1,
1281 __copy_first_ref, path);
1291 struct backref_ctx {
1292 struct send_ctx *sctx;
1294 /* number of total found references */
1298 * used for clones found in send_root. clones found behind cur_objectid
1299 * and cur_offset are not considered as allowed clones.
1304 /* may be truncated in case it's the last extent in a file */
1307 /* The bytenr the file extent item we are processing refers to. */
1309 /* The owner (root id) of the data backref for the current extent. */
1311 /* The offset of the data backref for the current extent. */
1315 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1317 u64 root = (u64)(uintptr_t)key;
1318 const struct clone_root *cr = elt;
1320 if (root < btrfs_root_id(cr->root))
1322 if (root > btrfs_root_id(cr->root))
1327 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1329 const struct clone_root *cr1 = e1;
1330 const struct clone_root *cr2 = e2;
1332 if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root))
1334 if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root))
1340 * Called for every backref that is found for the current extent.
1341 * Results are collected in sctx->clone_roots->ino/offset.
1343 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1346 struct backref_ctx *bctx = ctx_;
1347 struct clone_root *clone_root;
1349 /* First check if the root is in the list of accepted clone sources */
1350 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1351 bctx->sctx->clone_roots_cnt,
1352 sizeof(struct clone_root),
1353 __clone_root_cmp_bsearch);
1357 /* This is our own reference, bail out as we can't clone from it. */
1358 if (clone_root->root == bctx->sctx->send_root &&
1359 ino == bctx->cur_objectid &&
1360 offset == bctx->cur_offset)
1364 * Make sure we don't consider clones from send_root that are
1365 * behind the current inode/offset.
1367 if (clone_root->root == bctx->sctx->send_root) {
1369 * If the source inode was not yet processed we can't issue a
1370 * clone operation, as the source extent does not exist yet at
1371 * the destination of the stream.
1373 if (ino > bctx->cur_objectid)
1376 * We clone from the inode currently being sent as long as the
1377 * source extent is already processed, otherwise we could try
1378 * to clone from an extent that does not exist yet at the
1379 * destination of the stream.
1381 if (ino == bctx->cur_objectid &&
1382 offset + bctx->extent_len >
1383 bctx->sctx->cur_inode_next_write_offset)
1388 clone_root->found_ref = true;
1391 * If the given backref refers to a file extent item with a larger
1392 * number of bytes than what we found before, use the new one so that
1393 * we clone more optimally and end up doing less writes and getting
1394 * less exclusive, non-shared extents at the destination.
1396 if (num_bytes > clone_root->num_bytes) {
1397 clone_root->ino = ino;
1398 clone_root->offset = offset;
1399 clone_root->num_bytes = num_bytes;
1402 * Found a perfect candidate, so there's no need to continue
1405 if (num_bytes >= bctx->extent_len)
1406 return BTRFS_ITERATE_EXTENT_INODES_STOP;
1412 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1413 const u64 **root_ids_ret, int *root_count_ret)
1415 struct backref_ctx *bctx = ctx;
1416 struct send_ctx *sctx = bctx->sctx;
1417 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1418 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1419 struct btrfs_lru_cache_entry *raw_entry;
1420 struct backref_cache_entry *entry;
1422 if (sctx->backref_cache.size == 0)
1426 * If relocation happened since we first filled the cache, then we must
1427 * empty the cache and can not use it, because even though we operate on
1428 * read-only roots, their leaves and nodes may have been reallocated and
1429 * now be used for different nodes/leaves of the same tree or some other
1432 * We are called from iterate_extent_inodes() while either holding a
1433 * transaction handle or holding fs_info->commit_root_sem, so no need
1434 * to take any lock here.
1436 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1437 btrfs_lru_cache_clear(&sctx->backref_cache);
1441 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1445 entry = container_of(raw_entry, struct backref_cache_entry, entry);
1446 *root_ids_ret = entry->root_ids;
1447 *root_count_ret = entry->num_roots;
1452 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1455 struct backref_ctx *bctx = ctx;
1456 struct send_ctx *sctx = bctx->sctx;
1457 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1458 struct backref_cache_entry *new_entry;
1459 struct ulist_iterator uiter;
1460 struct ulist_node *node;
1464 * We're called while holding a transaction handle or while holding
1465 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1468 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1469 /* No worries, cache is optional. */
1473 new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1474 new_entry->entry.gen = 0;
1475 new_entry->num_roots = 0;
1476 ULIST_ITER_INIT(&uiter);
1477 while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1478 const u64 root_id = node->val;
1479 struct clone_root *root;
1481 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1482 sctx->clone_roots_cnt, sizeof(struct clone_root),
1483 __clone_root_cmp_bsearch);
1487 /* Too many roots, just exit, no worries as caching is optional. */
1488 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1493 new_entry->root_ids[new_entry->num_roots] = root_id;
1494 new_entry->num_roots++;
1498 * We may have not added any roots to the new cache entry, which means
1499 * none of the roots is part of the list of roots from which we are
1500 * allowed to clone. Cache the new entry as it's still useful to avoid
1501 * backref walking to determine which roots have a path to the leaf.
1503 * Also use GFP_NOFS because we're called while holding a transaction
1504 * handle or while holding fs_info->commit_root_sem.
1506 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1508 ASSERT(ret == 0 || ret == -ENOMEM);
1510 /* Caching is optional, no worries. */
1516 * We are called from iterate_extent_inodes() while either holding a
1517 * transaction handle or holding fs_info->commit_root_sem, so no need
1518 * to take any lock here.
1520 if (sctx->backref_cache.size == 1)
1521 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1524 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1525 const struct extent_buffer *leaf, void *ctx)
1527 const u64 refs = btrfs_extent_refs(leaf, ei);
1528 const struct backref_ctx *bctx = ctx;
1529 const struct send_ctx *sctx = bctx->sctx;
1531 if (bytenr == bctx->bytenr) {
1532 const u64 flags = btrfs_extent_flags(leaf, ei);
1534 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1538 * If we have only one reference and only the send root as a
1539 * clone source - meaning no clone roots were given in the
1540 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1541 * it's our reference and there's no point in doing backref
1542 * walking which is expensive, so exit early.
1544 if (refs == 1 && sctx->clone_roots_cnt == 1)
1549 * Backreference walking (iterate_extent_inodes() below) is currently
1550 * too expensive when an extent has a large number of references, both
1551 * in time spent and used memory. So for now just fallback to write
1552 * operations instead of clone operations when an extent has more than
1553 * a certain amount of references.
1555 if (refs > SEND_MAX_EXTENT_REFS)
1561 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1563 const struct backref_ctx *bctx = ctx;
1565 if (ino == bctx->cur_objectid &&
1566 root == bctx->backref_owner &&
1567 offset == bctx->backref_offset)
1574 * Given an inode, offset and extent item, it finds a good clone for a clone
1575 * instruction. Returns -ENOENT when none could be found. The function makes
1576 * sure that the returned clone is usable at the point where sending is at the
1577 * moment. This means, that no clones are accepted which lie behind the current
1580 * path must point to the extent item when called.
1582 static int find_extent_clone(struct send_ctx *sctx,
1583 struct btrfs_path *path,
1584 u64 ino, u64 data_offset,
1586 struct clone_root **found)
1588 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1594 struct btrfs_file_extent_item *fi;
1595 struct extent_buffer *eb = path->nodes[0];
1596 struct backref_ctx backref_ctx = { 0 };
1597 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1598 struct clone_root *cur_clone_root;
1603 * With fallocate we can get prealloc extents beyond the inode's i_size,
1604 * so we don't do anything here because clone operations can not clone
1605 * to a range beyond i_size without increasing the i_size of the
1606 * destination inode.
1608 if (data_offset >= ino_size)
1611 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1612 extent_type = btrfs_file_extent_type(eb, fi);
1613 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1616 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1620 compressed = btrfs_file_extent_compression(eb, fi);
1621 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1622 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1625 * Setup the clone roots.
1627 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1628 cur_clone_root = sctx->clone_roots + i;
1629 cur_clone_root->ino = (u64)-1;
1630 cur_clone_root->offset = 0;
1631 cur_clone_root->num_bytes = 0;
1632 cur_clone_root->found_ref = false;
1635 backref_ctx.sctx = sctx;
1636 backref_ctx.cur_objectid = ino;
1637 backref_ctx.cur_offset = data_offset;
1638 backref_ctx.bytenr = disk_byte;
1640 * Use the header owner and not the send root's id, because in case of a
1641 * snapshot we can have shared subtrees.
1643 backref_ctx.backref_owner = btrfs_header_owner(eb);
1644 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1647 * The last extent of a file may be too large due to page alignment.
1648 * We need to adjust extent_len in this case so that the checks in
1649 * iterate_backrefs() work.
1651 if (data_offset + num_bytes >= ino_size)
1652 backref_ctx.extent_len = ino_size - data_offset;
1654 backref_ctx.extent_len = num_bytes;
1657 * Now collect all backrefs.
1659 backref_walk_ctx.bytenr = disk_byte;
1660 if (compressed == BTRFS_COMPRESS_NONE)
1661 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1662 backref_walk_ctx.fs_info = fs_info;
1663 backref_walk_ctx.cache_lookup = lookup_backref_cache;
1664 backref_walk_ctx.cache_store = store_backref_cache;
1665 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1666 backref_walk_ctx.check_extent_item = check_extent_item;
1667 backref_walk_ctx.user_ctx = &backref_ctx;
1670 * If have a single clone root, then it's the send root and we can tell
1671 * the backref walking code to skip our own backref and not resolve it,
1672 * since we can not use it for cloning - the source and destination
1673 * ranges can't overlap and in case the leaf is shared through a subtree
1674 * due to snapshots, we can't use those other roots since they are not
1675 * in the list of clone roots.
1677 if (sctx->clone_roots_cnt == 1)
1678 backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1680 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1685 down_read(&fs_info->commit_root_sem);
1686 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1688 * A transaction commit for a transaction in which block group
1689 * relocation was done just happened.
1690 * The disk_bytenr of the file extent item we processed is
1691 * possibly stale, referring to the extent's location before
1692 * relocation. So act as if we haven't found any clone sources
1693 * and fallback to write commands, which will read the correct
1694 * data from the new extent location. Otherwise we will fail
1695 * below because we haven't found our own back reference or we
1696 * could be getting incorrect sources in case the old extent
1697 * was already reallocated after the relocation.
1699 up_read(&fs_info->commit_root_sem);
1702 up_read(&fs_info->commit_root_sem);
1704 btrfs_debug(fs_info,
1705 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1706 data_offset, ino, num_bytes, logical);
1708 if (!backref_ctx.found) {
1709 btrfs_debug(fs_info, "no clones found");
1713 cur_clone_root = NULL;
1714 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1715 struct clone_root *clone_root = &sctx->clone_roots[i];
1717 if (!clone_root->found_ref)
1721 * Choose the root from which we can clone more bytes, to
1722 * minimize write operations and therefore have more extent
1723 * sharing at the destination (the same as in the source).
1725 if (!cur_clone_root ||
1726 clone_root->num_bytes > cur_clone_root->num_bytes) {
1727 cur_clone_root = clone_root;
1730 * We found an optimal clone candidate (any inode from
1731 * any root is fine), so we're done.
1733 if (clone_root->num_bytes >= backref_ctx.extent_len)
1738 if (cur_clone_root) {
1739 *found = cur_clone_root;
1748 static int read_symlink(struct btrfs_root *root,
1750 struct fs_path *dest)
1753 struct btrfs_path *path;
1754 struct btrfs_key key;
1755 struct btrfs_file_extent_item *ei;
1761 path = alloc_path_for_send();
1766 key.type = BTRFS_EXTENT_DATA_KEY;
1768 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1773 * An empty symlink inode. Can happen in rare error paths when
1774 * creating a symlink (transaction committed before the inode
1775 * eviction handler removed the symlink inode items and a crash
1776 * happened in between or the subvol was snapshoted in between).
1777 * Print an informative message to dmesg/syslog so that the user
1778 * can delete the symlink.
1780 btrfs_err(root->fs_info,
1781 "Found empty symlink inode %llu at root %llu",
1782 ino, btrfs_root_id(root));
1787 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1788 struct btrfs_file_extent_item);
1789 type = btrfs_file_extent_type(path->nodes[0], ei);
1790 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1792 btrfs_crit(root->fs_info,
1793 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1794 ino, btrfs_root_id(root), type);
1797 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1798 if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1800 btrfs_crit(root->fs_info,
1801 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1802 ino, btrfs_root_id(root), compression);
1806 off = btrfs_file_extent_inline_start(ei);
1807 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1809 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1812 btrfs_free_path(path);
1817 * Helper function to generate a file name that is unique in the root of
1818 * send_root and parent_root. This is used to generate names for orphan inodes.
1820 static int gen_unique_name(struct send_ctx *sctx,
1822 struct fs_path *dest)
1825 struct btrfs_path *path;
1826 struct btrfs_dir_item *di;
1831 path = alloc_path_for_send();
1836 struct fscrypt_str tmp_name;
1838 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1840 ASSERT(len < sizeof(tmp));
1841 tmp_name.name = tmp;
1842 tmp_name.len = strlen(tmp);
1844 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1845 path, BTRFS_FIRST_FREE_OBJECTID,
1847 btrfs_release_path(path);
1853 /* not unique, try again */
1858 if (!sctx->parent_root) {
1864 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1865 path, BTRFS_FIRST_FREE_OBJECTID,
1867 btrfs_release_path(path);
1873 /* not unique, try again */
1881 ret = fs_path_add(dest, tmp, strlen(tmp));
1884 btrfs_free_path(path);
1889 inode_state_no_change,
1890 inode_state_will_create,
1891 inode_state_did_create,
1892 inode_state_will_delete,
1893 inode_state_did_delete,
1896 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1897 u64 *send_gen, u64 *parent_gen)
1904 struct btrfs_inode_info info;
1906 ret = get_inode_info(sctx->send_root, ino, &info);
1907 if (ret < 0 && ret != -ENOENT)
1909 left_ret = (info.nlink == 0) ? -ENOENT : ret;
1910 left_gen = info.gen;
1912 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1914 if (!sctx->parent_root) {
1915 right_ret = -ENOENT;
1917 ret = get_inode_info(sctx->parent_root, ino, &info);
1918 if (ret < 0 && ret != -ENOENT)
1920 right_ret = (info.nlink == 0) ? -ENOENT : ret;
1921 right_gen = info.gen;
1923 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1926 if (!left_ret && !right_ret) {
1927 if (left_gen == gen && right_gen == gen) {
1928 ret = inode_state_no_change;
1929 } else if (left_gen == gen) {
1930 if (ino < sctx->send_progress)
1931 ret = inode_state_did_create;
1933 ret = inode_state_will_create;
1934 } else if (right_gen == gen) {
1935 if (ino < sctx->send_progress)
1936 ret = inode_state_did_delete;
1938 ret = inode_state_will_delete;
1942 } else if (!left_ret) {
1943 if (left_gen == gen) {
1944 if (ino < sctx->send_progress)
1945 ret = inode_state_did_create;
1947 ret = inode_state_will_create;
1951 } else if (!right_ret) {
1952 if (right_gen == gen) {
1953 if (ino < sctx->send_progress)
1954 ret = inode_state_did_delete;
1956 ret = inode_state_will_delete;
1968 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1969 u64 *send_gen, u64 *parent_gen)
1973 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1976 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1980 if (ret == inode_state_no_change ||
1981 ret == inode_state_did_create ||
1982 ret == inode_state_will_delete)
1992 * Helper function to lookup a dir item in a dir.
1994 static int lookup_dir_item_inode(struct btrfs_root *root,
1995 u64 dir, const char *name, int name_len,
1999 struct btrfs_dir_item *di;
2000 struct btrfs_key key;
2001 struct btrfs_path *path;
2002 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
2004 path = alloc_path_for_send();
2008 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
2009 if (IS_ERR_OR_NULL(di)) {
2010 ret = di ? PTR_ERR(di) : -ENOENT;
2013 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2014 if (key.type == BTRFS_ROOT_ITEM_KEY) {
2018 *found_inode = key.objectid;
2021 btrfs_free_path(path);
2026 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2027 * generation of the parent dir and the name of the dir entry.
2029 static int get_first_ref(struct btrfs_root *root, u64 ino,
2030 u64 *dir, u64 *dir_gen, struct fs_path *name)
2033 struct btrfs_key key;
2034 struct btrfs_key found_key;
2035 struct btrfs_path *path;
2039 path = alloc_path_for_send();
2044 key.type = BTRFS_INODE_REF_KEY;
2047 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2051 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2053 if (ret || found_key.objectid != ino ||
2054 (found_key.type != BTRFS_INODE_REF_KEY &&
2055 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2060 if (found_key.type == BTRFS_INODE_REF_KEY) {
2061 struct btrfs_inode_ref *iref;
2062 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2063 struct btrfs_inode_ref);
2064 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2065 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2066 (unsigned long)(iref + 1),
2068 parent_dir = found_key.offset;
2070 struct btrfs_inode_extref *extref;
2071 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2072 struct btrfs_inode_extref);
2073 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2074 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2075 (unsigned long)&extref->name, len);
2076 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2080 btrfs_release_path(path);
2083 ret = get_inode_gen(root, parent_dir, dir_gen);
2091 btrfs_free_path(path);
2095 static int is_first_ref(struct btrfs_root *root,
2097 const char *name, int name_len)
2100 struct fs_path *tmp_name;
2103 tmp_name = fs_path_alloc();
2107 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2111 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2116 ret = !memcmp(tmp_name->start, name, name_len);
2119 fs_path_free(tmp_name);
2124 * Used by process_recorded_refs to determine if a new ref would overwrite an
2125 * already existing ref. In case it detects an overwrite, it returns the
2126 * inode/gen in who_ino/who_gen.
2127 * When an overwrite is detected, process_recorded_refs does proper orphanizing
2128 * to make sure later references to the overwritten inode are possible.
2129 * Orphanizing is however only required for the first ref of an inode.
2130 * process_recorded_refs does an additional is_first_ref check to see if
2131 * orphanizing is really required.
2133 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2134 const char *name, int name_len,
2135 u64 *who_ino, u64 *who_gen, u64 *who_mode)
2138 u64 parent_root_dir_gen;
2139 u64 other_inode = 0;
2140 struct btrfs_inode_info info;
2142 if (!sctx->parent_root)
2145 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2150 * If we have a parent root we need to verify that the parent dir was
2151 * not deleted and then re-created, if it was then we have no overwrite
2152 * and we can just unlink this entry.
2154 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2157 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2158 parent_root_dir_gen != dir_gen)
2161 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2169 * Check if the overwritten ref was already processed. If yes, the ref
2170 * was already unlinked/moved, so we can safely assume that we will not
2171 * overwrite anything at this point in time.
2173 if (other_inode > sctx->send_progress ||
2174 is_waiting_for_move(sctx, other_inode)) {
2175 ret = get_inode_info(sctx->parent_root, other_inode, &info);
2179 *who_ino = other_inode;
2180 *who_gen = info.gen;
2181 *who_mode = info.mode;
2189 * Checks if the ref was overwritten by an already processed inode. This is
2190 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2191 * thus the orphan name needs be used.
2192 * process_recorded_refs also uses it to avoid unlinking of refs that were
2195 static int did_overwrite_ref(struct send_ctx *sctx,
2196 u64 dir, u64 dir_gen,
2197 u64 ino, u64 ino_gen,
2198 const char *name, int name_len)
2203 u64 send_root_dir_gen;
2205 if (!sctx->parent_root)
2208 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2213 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2216 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2219 /* check if the ref was overwritten by another ref */
2220 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2222 if (ret == -ENOENT) {
2223 /* was never and will never be overwritten */
2225 } else if (ret < 0) {
2229 if (ow_inode == ino) {
2230 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2234 /* It's the same inode, so no overwrite happened. */
2235 if (ow_gen == ino_gen)
2240 * We know that it is or will be overwritten. Check this now.
2241 * The current inode being processed might have been the one that caused
2242 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2243 * the current inode being processed.
2245 if (ow_inode < sctx->send_progress)
2248 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2250 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2254 if (ow_gen == sctx->cur_inode_gen)
2262 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2263 * that got overwritten. This is used by process_recorded_refs to determine
2264 * if it has to use the path as returned by get_cur_path or the orphan name.
2266 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2269 struct fs_path *name = NULL;
2273 if (!sctx->parent_root)
2276 name = fs_path_alloc();
2280 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2284 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2285 name->start, fs_path_len(name));
2292 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2295 struct btrfs_lru_cache_entry *entry;
2297 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2301 return container_of(entry, struct name_cache_entry, entry);
2305 * Used by get_cur_path for each ref up to the root.
2306 * Returns 0 if it succeeded.
2307 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2308 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2309 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2310 * Returns <0 in case of error.
2312 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2316 struct fs_path *dest)
2320 struct name_cache_entry *nce;
2323 * First check if we already did a call to this function with the same
2324 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2325 * return the cached result.
2327 nce = name_cache_search(sctx, ino, gen);
2329 if (ino < sctx->send_progress && nce->need_later_update) {
2330 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2333 *parent_ino = nce->parent_ino;
2334 *parent_gen = nce->parent_gen;
2335 ret = fs_path_add(dest, nce->name, nce->name_len);
2344 * If the inode is not existent yet, add the orphan name and return 1.
2345 * This should only happen for the parent dir that we determine in
2346 * record_new_ref_if_needed().
2348 ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2353 ret = gen_unique_name(sctx, ino, gen, dest);
2361 * Depending on whether the inode was already processed or not, use
2362 * send_root or parent_root for ref lookup.
2364 if (ino < sctx->send_progress)
2365 ret = get_first_ref(sctx->send_root, ino,
2366 parent_ino, parent_gen, dest);
2368 ret = get_first_ref(sctx->parent_root, ino,
2369 parent_ino, parent_gen, dest);
2374 * Check if the ref was overwritten by an inode's ref that was processed
2375 * earlier. If yes, treat as orphan and return 1.
2377 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2378 dest->start, dest->end - dest->start);
2382 fs_path_reset(dest);
2383 ret = gen_unique_name(sctx, ino, gen, dest);
2391 * Store the result of the lookup in the name cache.
2393 nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL);
2399 nce->entry.key = ino;
2400 nce->entry.gen = gen;
2401 nce->parent_ino = *parent_ino;
2402 nce->parent_gen = *parent_gen;
2403 nce->name_len = fs_path_len(dest);
2405 memcpy(nce->name, dest->start, nce->name_len);
2407 if (ino < sctx->send_progress)
2408 nce->need_later_update = 0;
2410 nce->need_later_update = 1;
2412 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2423 * Magic happens here. This function returns the first ref to an inode as it
2424 * would look like while receiving the stream at this point in time.
2425 * We walk the path up to the root. For every inode in between, we check if it
2426 * was already processed/sent. If yes, we continue with the parent as found
2427 * in send_root. If not, we continue with the parent as found in parent_root.
2428 * If we encounter an inode that was deleted at this point in time, we use the
2429 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2430 * that were not created yet and overwritten inodes/refs.
2432 * When do we have orphan inodes:
2433 * 1. When an inode is freshly created and thus no valid refs are available yet
2434 * 2. When a directory lost all it's refs (deleted) but still has dir items
2435 * inside which were not processed yet (pending for move/delete). If anyone
2436 * tried to get the path to the dir items, it would get a path inside that
2438 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2439 * of an unprocessed inode. If in that case the first ref would be
2440 * overwritten, the overwritten inode gets "orphanized". Later when we
2441 * process this overwritten inode, it is restored at a new place by moving
2444 * sctx->send_progress tells this function at which point in time receiving
2447 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2448 struct fs_path *dest)
2451 struct fs_path *name = NULL;
2452 u64 parent_inode = 0;
2456 name = fs_path_alloc();
2463 fs_path_reset(dest);
2465 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2466 struct waiting_dir_move *wdm;
2468 fs_path_reset(name);
2470 if (is_waiting_for_rm(sctx, ino, gen)) {
2471 ret = gen_unique_name(sctx, ino, gen, name);
2474 ret = fs_path_add_path(dest, name);
2478 wdm = get_waiting_dir_move(sctx, ino);
2479 if (wdm && wdm->orphanized) {
2480 ret = gen_unique_name(sctx, ino, gen, name);
2483 ret = get_first_ref(sctx->parent_root, ino,
2484 &parent_inode, &parent_gen, name);
2486 ret = __get_cur_name_and_parent(sctx, ino, gen,
2496 ret = fs_path_add_path(dest, name);
2507 fs_path_unreverse(dest);
2512 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2514 static int send_subvol_begin(struct send_ctx *sctx)
2517 struct btrfs_root *send_root = sctx->send_root;
2518 struct btrfs_root *parent_root = sctx->parent_root;
2519 struct btrfs_path *path;
2520 struct btrfs_key key;
2521 struct btrfs_root_ref *ref;
2522 struct extent_buffer *leaf;
2526 path = btrfs_alloc_path();
2530 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2532 btrfs_free_path(path);
2536 key.objectid = btrfs_root_id(send_root);
2537 key.type = BTRFS_ROOT_BACKREF_KEY;
2540 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2549 leaf = path->nodes[0];
2550 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2551 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2552 key.objectid != btrfs_root_id(send_root)) {
2556 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2557 namelen = btrfs_root_ref_name_len(leaf, ref);
2558 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2559 btrfs_release_path(path);
2562 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2566 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2571 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2573 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2574 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2575 sctx->send_root->root_item.received_uuid);
2577 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2578 sctx->send_root->root_item.uuid);
2580 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2581 btrfs_root_ctransid(&sctx->send_root->root_item));
2583 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2584 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2585 parent_root->root_item.received_uuid);
2587 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2588 parent_root->root_item.uuid);
2589 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2590 btrfs_root_ctransid(&sctx->parent_root->root_item));
2593 ret = send_cmd(sctx);
2597 btrfs_free_path(path);
2602 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2604 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2608 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2610 p = fs_path_alloc();
2614 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2618 ret = get_cur_path(sctx, ino, gen, p);
2621 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2622 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2624 ret = send_cmd(sctx);
2632 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2634 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2638 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2640 p = fs_path_alloc();
2644 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2648 ret = get_cur_path(sctx, ino, gen, p);
2651 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2652 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2654 ret = send_cmd(sctx);
2662 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2664 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2668 if (sctx->proto < 2)
2671 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2673 p = fs_path_alloc();
2677 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2681 ret = get_cur_path(sctx, ino, gen, p);
2684 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2685 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2687 ret = send_cmd(sctx);
2695 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2697 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2701 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2704 p = fs_path_alloc();
2708 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2712 ret = get_cur_path(sctx, ino, gen, p);
2715 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2716 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2717 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2719 ret = send_cmd(sctx);
2727 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2729 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2731 struct fs_path *p = NULL;
2732 struct btrfs_inode_item *ii;
2733 struct btrfs_path *path = NULL;
2734 struct extent_buffer *eb;
2735 struct btrfs_key key;
2738 btrfs_debug(fs_info, "send_utimes %llu", ino);
2740 p = fs_path_alloc();
2744 path = alloc_path_for_send();
2751 key.type = BTRFS_INODE_ITEM_KEY;
2753 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2759 eb = path->nodes[0];
2760 slot = path->slots[0];
2761 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2763 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2767 ret = get_cur_path(sctx, ino, gen, p);
2770 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2771 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2772 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2773 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2774 if (sctx->proto >= 2)
2775 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2777 ret = send_cmd(sctx);
2782 btrfs_free_path(path);
2787 * If the cache is full, we can't remove entries from it and do a call to
2788 * send_utimes() for each respective inode, because we might be finishing
2789 * processing an inode that is a directory and it just got renamed, and existing
2790 * entries in the cache may refer to inodes that have the directory in their
2791 * full path - in which case we would generate outdated paths (pre-rename)
2792 * for the inodes that the cache entries point to. Instead of prunning the
2793 * cache when inserting, do it after we finish processing each inode at
2794 * finish_inode_if_needed().
2796 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2798 struct btrfs_lru_cache_entry *entry;
2801 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2805 /* Caching is optional, don't fail if we can't allocate memory. */
2806 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2808 return send_utimes(sctx, dir, gen);
2813 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2814 ASSERT(ret != -EEXIST);
2817 return send_utimes(sctx, dir, gen);
2823 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2825 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2826 struct btrfs_lru_cache_entry *lru;
2829 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2830 ASSERT(lru != NULL);
2832 ret = send_utimes(sctx, lru->key, lru->gen);
2836 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2843 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2844 * a valid path yet because we did not process the refs yet. So, the inode
2845 * is created as orphan.
2847 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2849 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2853 struct btrfs_inode_info info;
2858 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2860 p = fs_path_alloc();
2864 if (ino != sctx->cur_ino) {
2865 ret = get_inode_info(sctx->send_root, ino, &info);
2872 gen = sctx->cur_inode_gen;
2873 mode = sctx->cur_inode_mode;
2874 rdev = sctx->cur_inode_rdev;
2877 if (S_ISREG(mode)) {
2878 cmd = BTRFS_SEND_C_MKFILE;
2879 } else if (S_ISDIR(mode)) {
2880 cmd = BTRFS_SEND_C_MKDIR;
2881 } else if (S_ISLNK(mode)) {
2882 cmd = BTRFS_SEND_C_SYMLINK;
2883 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2884 cmd = BTRFS_SEND_C_MKNOD;
2885 } else if (S_ISFIFO(mode)) {
2886 cmd = BTRFS_SEND_C_MKFIFO;
2887 } else if (S_ISSOCK(mode)) {
2888 cmd = BTRFS_SEND_C_MKSOCK;
2890 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2891 (int)(mode & S_IFMT));
2896 ret = begin_cmd(sctx, cmd);
2900 ret = gen_unique_name(sctx, ino, gen, p);
2904 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2905 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2907 if (S_ISLNK(mode)) {
2909 ret = read_symlink(sctx->send_root, ino, p);
2912 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2913 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2914 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2915 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2916 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2919 ret = send_cmd(sctx);
2930 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2932 struct btrfs_lru_cache_entry *entry;
2935 /* Caching is optional, ignore any failures. */
2936 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2942 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2948 * We need some special handling for inodes that get processed before the parent
2949 * directory got created. See process_recorded_refs for details.
2950 * This function does the check if we already created the dir out of order.
2952 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2956 struct btrfs_path *path = NULL;
2957 struct btrfs_key key;
2958 struct btrfs_key found_key;
2959 struct btrfs_key di_key;
2960 struct btrfs_dir_item *di;
2962 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2965 path = alloc_path_for_send();
2970 key.type = BTRFS_DIR_INDEX_KEY;
2973 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2974 struct extent_buffer *eb = path->nodes[0];
2976 if (found_key.objectid != key.objectid ||
2977 found_key.type != key.type) {
2982 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2983 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2985 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2986 di_key.objectid < sctx->send_progress) {
2988 cache_dir_created(sctx, dir);
2992 /* Catch error found during iteration */
2996 btrfs_free_path(path);
3001 * Only creates the inode if it is:
3002 * 1. Not a directory
3003 * 2. Or a directory which was not created already due to out of order
3004 * directories. See did_create_dir and process_recorded_refs for details.
3006 static int send_create_inode_if_needed(struct send_ctx *sctx)
3010 if (S_ISDIR(sctx->cur_inode_mode)) {
3011 ret = did_create_dir(sctx, sctx->cur_ino);
3018 ret = send_create_inode(sctx, sctx->cur_ino);
3020 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3021 cache_dir_created(sctx, sctx->cur_ino);
3026 struct recorded_ref {
3027 struct list_head list;
3029 struct fs_path *full_path;
3033 struct rb_node node;
3034 struct rb_root *root;
3037 static struct recorded_ref *recorded_ref_alloc(void)
3039 struct recorded_ref *ref;
3041 ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3044 RB_CLEAR_NODE(&ref->node);
3045 INIT_LIST_HEAD(&ref->list);
3049 static void recorded_ref_free(struct recorded_ref *ref)
3053 if (!RB_EMPTY_NODE(&ref->node))
3054 rb_erase(&ref->node, ref->root);
3055 list_del(&ref->list);
3056 fs_path_free(ref->full_path);
3060 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3062 ref->full_path = path;
3063 ref->name = (char *)kbasename(ref->full_path->start);
3064 ref->name_len = ref->full_path->end - ref->name;
3067 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3069 struct recorded_ref *new;
3071 new = recorded_ref_alloc();
3075 new->dir = ref->dir;
3076 new->dir_gen = ref->dir_gen;
3077 list_add_tail(&new->list, list);
3081 static void __free_recorded_refs(struct list_head *head)
3083 struct recorded_ref *cur;
3085 while (!list_empty(head)) {
3086 cur = list_entry(head->next, struct recorded_ref, list);
3087 recorded_ref_free(cur);
3091 static void free_recorded_refs(struct send_ctx *sctx)
3093 __free_recorded_refs(&sctx->new_refs);
3094 __free_recorded_refs(&sctx->deleted_refs);
3098 * Renames/moves a file/dir to its orphan name. Used when the first
3099 * ref of an unprocessed inode gets overwritten and for all non empty
3102 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3103 struct fs_path *path)
3106 struct fs_path *orphan;
3108 orphan = fs_path_alloc();
3112 ret = gen_unique_name(sctx, ino, gen, orphan);
3116 ret = send_rename(sctx, path, orphan);
3119 fs_path_free(orphan);
3123 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3124 u64 dir_ino, u64 dir_gen)
3126 struct rb_node **p = &sctx->orphan_dirs.rb_node;
3127 struct rb_node *parent = NULL;
3128 struct orphan_dir_info *entry, *odi;
3132 entry = rb_entry(parent, struct orphan_dir_info, node);
3133 if (dir_ino < entry->ino)
3135 else if (dir_ino > entry->ino)
3136 p = &(*p)->rb_right;
3137 else if (dir_gen < entry->gen)
3139 else if (dir_gen > entry->gen)
3140 p = &(*p)->rb_right;
3145 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3147 return ERR_PTR(-ENOMEM);
3150 odi->last_dir_index_offset = 0;
3151 odi->dir_high_seq_ino = 0;
3153 rb_link_node(&odi->node, parent, p);
3154 rb_insert_color(&odi->node, &sctx->orphan_dirs);
3158 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3159 u64 dir_ino, u64 gen)
3161 struct rb_node *n = sctx->orphan_dirs.rb_node;
3162 struct orphan_dir_info *entry;
3165 entry = rb_entry(n, struct orphan_dir_info, node);
3166 if (dir_ino < entry->ino)
3168 else if (dir_ino > entry->ino)
3170 else if (gen < entry->gen)
3172 else if (gen > entry->gen)
3180 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3182 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3187 static void free_orphan_dir_info(struct send_ctx *sctx,
3188 struct orphan_dir_info *odi)
3192 rb_erase(&odi->node, &sctx->orphan_dirs);
3197 * Returns 1 if a directory can be removed at this point in time.
3198 * We check this by iterating all dir items and checking if the inode behind
3199 * the dir item was already processed.
3201 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3205 struct btrfs_root *root = sctx->parent_root;
3206 struct btrfs_path *path;
3207 struct btrfs_key key;
3208 struct btrfs_key found_key;
3209 struct btrfs_key loc;
3210 struct btrfs_dir_item *di;
3211 struct orphan_dir_info *odi = NULL;
3212 u64 dir_high_seq_ino = 0;
3213 u64 last_dir_index_offset = 0;
3216 * Don't try to rmdir the top/root subvolume dir.
3218 if (dir == BTRFS_FIRST_FREE_OBJECTID)
3221 odi = get_orphan_dir_info(sctx, dir, dir_gen);
3222 if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3225 path = alloc_path_for_send();
3231 * Find the inode number associated with the last dir index
3232 * entry. This is very likely the inode with the highest number
3233 * of all inodes that have an entry in the directory. We can
3234 * then use it to avoid future calls to can_rmdir(), when
3235 * processing inodes with a lower number, from having to search
3236 * the parent root b+tree for dir index keys.
3239 key.type = BTRFS_DIR_INDEX_KEY;
3240 key.offset = (u64)-1;
3242 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3245 } else if (ret > 0) {
3246 /* Can't happen, the root is never empty. */
3247 ASSERT(path->slots[0] > 0);
3248 if (WARN_ON(path->slots[0] == 0)) {
3255 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3256 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3257 /* No index keys, dir can be removed. */
3262 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3263 struct btrfs_dir_item);
3264 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3265 dir_high_seq_ino = loc.objectid;
3266 if (sctx->cur_ino < dir_high_seq_ino) {
3271 btrfs_release_path(path);
3275 key.type = BTRFS_DIR_INDEX_KEY;
3276 key.offset = (odi ? odi->last_dir_index_offset : 0);
3278 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3279 struct waiting_dir_move *dm;
3281 if (found_key.objectid != key.objectid ||
3282 found_key.type != key.type)
3285 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3286 struct btrfs_dir_item);
3287 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3289 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3290 last_dir_index_offset = found_key.offset;
3292 dm = get_waiting_dir_move(sctx, loc.objectid);
3294 dm->rmdir_ino = dir;
3295 dm->rmdir_gen = dir_gen;
3300 if (loc.objectid > sctx->cur_ino) {
3309 free_orphan_dir_info(sctx, odi);
3314 btrfs_free_path(path);
3320 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3322 return PTR_ERR(odi);
3327 odi->last_dir_index_offset = last_dir_index_offset;
3328 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3333 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3335 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3337 return entry != NULL;
3340 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3342 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3343 struct rb_node *parent = NULL;
3344 struct waiting_dir_move *entry, *dm;
3346 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3352 dm->orphanized = orphanized;
3356 entry = rb_entry(parent, struct waiting_dir_move, node);
3357 if (ino < entry->ino) {
3359 } else if (ino > entry->ino) {
3360 p = &(*p)->rb_right;
3367 rb_link_node(&dm->node, parent, p);
3368 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3372 static struct waiting_dir_move *
3373 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3375 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3376 struct waiting_dir_move *entry;
3379 entry = rb_entry(n, struct waiting_dir_move, node);
3380 if (ino < entry->ino)
3382 else if (ino > entry->ino)
3390 static void free_waiting_dir_move(struct send_ctx *sctx,
3391 struct waiting_dir_move *dm)
3395 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3399 static int add_pending_dir_move(struct send_ctx *sctx,
3403 struct list_head *new_refs,
3404 struct list_head *deleted_refs,
3405 const bool is_orphan)
3407 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3408 struct rb_node *parent = NULL;
3409 struct pending_dir_move *entry = NULL, *pm;
3410 struct recorded_ref *cur;
3414 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3417 pm->parent_ino = parent_ino;
3420 INIT_LIST_HEAD(&pm->list);
3421 INIT_LIST_HEAD(&pm->update_refs);
3422 RB_CLEAR_NODE(&pm->node);
3426 entry = rb_entry(parent, struct pending_dir_move, node);
3427 if (parent_ino < entry->parent_ino) {
3429 } else if (parent_ino > entry->parent_ino) {
3430 p = &(*p)->rb_right;
3437 list_for_each_entry(cur, deleted_refs, list) {
3438 ret = dup_ref(cur, &pm->update_refs);
3442 list_for_each_entry(cur, new_refs, list) {
3443 ret = dup_ref(cur, &pm->update_refs);
3448 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3453 list_add_tail(&pm->list, &entry->list);
3455 rb_link_node(&pm->node, parent, p);
3456 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3461 __free_recorded_refs(&pm->update_refs);
3467 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3470 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3471 struct pending_dir_move *entry;
3474 entry = rb_entry(n, struct pending_dir_move, node);
3475 if (parent_ino < entry->parent_ino)
3477 else if (parent_ino > entry->parent_ino)
3485 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3486 u64 ino, u64 gen, u64 *ancestor_ino)
3489 u64 parent_inode = 0;
3491 u64 start_ino = ino;
3494 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3495 fs_path_reset(name);
3497 if (is_waiting_for_rm(sctx, ino, gen))
3499 if (is_waiting_for_move(sctx, ino)) {
3500 if (*ancestor_ino == 0)
3501 *ancestor_ino = ino;
3502 ret = get_first_ref(sctx->parent_root, ino,
3503 &parent_inode, &parent_gen, name);
3505 ret = __get_cur_name_and_parent(sctx, ino, gen,
3515 if (parent_inode == start_ino) {
3517 if (*ancestor_ino == 0)
3518 *ancestor_ino = ino;
3527 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3529 struct fs_path *from_path = NULL;
3530 struct fs_path *to_path = NULL;
3531 struct fs_path *name = NULL;
3532 u64 orig_progress = sctx->send_progress;
3533 struct recorded_ref *cur;
3534 u64 parent_ino, parent_gen;
3535 struct waiting_dir_move *dm = NULL;
3542 name = fs_path_alloc();
3543 from_path = fs_path_alloc();
3544 if (!name || !from_path) {
3549 dm = get_waiting_dir_move(sctx, pm->ino);
3551 rmdir_ino = dm->rmdir_ino;
3552 rmdir_gen = dm->rmdir_gen;
3553 is_orphan = dm->orphanized;
3554 free_waiting_dir_move(sctx, dm);
3557 ret = gen_unique_name(sctx, pm->ino,
3558 pm->gen, from_path);
3560 ret = get_first_ref(sctx->parent_root, pm->ino,
3561 &parent_ino, &parent_gen, name);
3564 ret = get_cur_path(sctx, parent_ino, parent_gen,
3568 ret = fs_path_add_path(from_path, name);
3573 sctx->send_progress = sctx->cur_ino + 1;
3574 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3578 LIST_HEAD(deleted_refs);
3579 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3580 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3581 &pm->update_refs, &deleted_refs,
3586 dm = get_waiting_dir_move(sctx, pm->ino);
3588 dm->rmdir_ino = rmdir_ino;
3589 dm->rmdir_gen = rmdir_gen;
3593 fs_path_reset(name);
3596 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3600 ret = send_rename(sctx, from_path, to_path);
3605 struct orphan_dir_info *odi;
3608 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3610 /* already deleted */
3615 ret = can_rmdir(sctx, rmdir_ino, gen);
3621 name = fs_path_alloc();
3626 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3629 ret = send_rmdir(sctx, name);
3635 ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3640 * After rename/move, need to update the utimes of both new parent(s)
3641 * and old parent(s).
3643 list_for_each_entry(cur, &pm->update_refs, list) {
3645 * The parent inode might have been deleted in the send snapshot
3647 ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3648 if (ret == -ENOENT) {
3655 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3662 fs_path_free(from_path);
3663 fs_path_free(to_path);
3664 sctx->send_progress = orig_progress;
3669 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3671 if (!list_empty(&m->list))
3673 if (!RB_EMPTY_NODE(&m->node))
3674 rb_erase(&m->node, &sctx->pending_dir_moves);
3675 __free_recorded_refs(&m->update_refs);
3679 static void tail_append_pending_moves(struct send_ctx *sctx,
3680 struct pending_dir_move *moves,
3681 struct list_head *stack)
3683 if (list_empty(&moves->list)) {
3684 list_add_tail(&moves->list, stack);
3687 list_splice_init(&moves->list, &list);
3688 list_add_tail(&moves->list, stack);
3689 list_splice_tail(&list, stack);
3691 if (!RB_EMPTY_NODE(&moves->node)) {
3692 rb_erase(&moves->node, &sctx->pending_dir_moves);
3693 RB_CLEAR_NODE(&moves->node);
3697 static int apply_children_dir_moves(struct send_ctx *sctx)
3699 struct pending_dir_move *pm;
3701 u64 parent_ino = sctx->cur_ino;
3704 pm = get_pending_dir_moves(sctx, parent_ino);
3708 tail_append_pending_moves(sctx, pm, &stack);
3710 while (!list_empty(&stack)) {
3711 pm = list_first_entry(&stack, struct pending_dir_move, list);
3712 parent_ino = pm->ino;
3713 ret = apply_dir_move(sctx, pm);
3714 free_pending_move(sctx, pm);
3717 pm = get_pending_dir_moves(sctx, parent_ino);
3719 tail_append_pending_moves(sctx, pm, &stack);
3724 while (!list_empty(&stack)) {
3725 pm = list_first_entry(&stack, struct pending_dir_move, list);
3726 free_pending_move(sctx, pm);
3732 * We might need to delay a directory rename even when no ancestor directory
3733 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3734 * renamed. This happens when we rename a directory to the old name (the name
3735 * in the parent root) of some other unrelated directory that got its rename
3736 * delayed due to some ancestor with higher number that got renamed.
3742 * |---- a/ (ino 257)
3743 * | |---- file (ino 260)
3745 * |---- b/ (ino 258)
3746 * |---- c/ (ino 259)
3750 * |---- a/ (ino 258)
3751 * |---- x/ (ino 259)
3752 * |---- y/ (ino 257)
3753 * |----- file (ino 260)
3755 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3756 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3757 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3760 * 1 - rename 259 from 'c' to 'x'
3761 * 2 - rename 257 from 'a' to 'x/y'
3762 * 3 - rename 258 from 'b' to 'a'
3764 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3765 * be done right away and < 0 on error.
3767 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3768 struct recorded_ref *parent_ref,
3769 const bool is_orphan)
3771 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3772 struct btrfs_path *path;
3773 struct btrfs_key key;
3774 struct btrfs_key di_key;
3775 struct btrfs_dir_item *di;
3779 struct waiting_dir_move *wdm;
3781 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3784 path = alloc_path_for_send();
3788 key.objectid = parent_ref->dir;
3789 key.type = BTRFS_DIR_ITEM_KEY;
3790 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3792 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3795 } else if (ret > 0) {
3800 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3801 parent_ref->name_len);
3807 * di_key.objectid has the number of the inode that has a dentry in the
3808 * parent directory with the same name that sctx->cur_ino is being
3809 * renamed to. We need to check if that inode is in the send root as
3810 * well and if it is currently marked as an inode with a pending rename,
3811 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3812 * that it happens after that other inode is renamed.
3814 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3815 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3820 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3823 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3830 /* Different inode, no need to delay the rename of sctx->cur_ino */
3831 if (right_gen != left_gen) {
3836 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3837 if (wdm && !wdm->orphanized) {
3838 ret = add_pending_dir_move(sctx,
3840 sctx->cur_inode_gen,
3843 &sctx->deleted_refs,
3849 btrfs_free_path(path);
3854 * Check if inode ino2, or any of its ancestors, is inode ino1.
3855 * Return 1 if true, 0 if false and < 0 on error.
3857 static int check_ino_in_path(struct btrfs_root *root,
3862 struct fs_path *fs_path)
3867 return ino1_gen == ino2_gen;
3869 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3874 fs_path_reset(fs_path);
3875 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3879 return parent_gen == ino1_gen;
3886 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3887 * possible path (in case ino2 is not a directory and has multiple hard links).
3888 * Return 1 if true, 0 if false and < 0 on error.
3890 static int is_ancestor(struct btrfs_root *root,
3894 struct fs_path *fs_path)
3896 bool free_fs_path = false;
3899 struct btrfs_path *path = NULL;
3900 struct btrfs_key key;
3903 fs_path = fs_path_alloc();
3906 free_fs_path = true;
3909 path = alloc_path_for_send();
3915 key.objectid = ino2;
3916 key.type = BTRFS_INODE_REF_KEY;
3919 btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3920 struct extent_buffer *leaf = path->nodes[0];
3921 int slot = path->slots[0];
3925 if (key.objectid != ino2)
3927 if (key.type != BTRFS_INODE_REF_KEY &&
3928 key.type != BTRFS_INODE_EXTREF_KEY)
3931 item_size = btrfs_item_size(leaf, slot);
3932 while (cur_offset < item_size) {
3936 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3938 struct btrfs_inode_extref *extref;
3940 ptr = btrfs_item_ptr_offset(leaf, slot);
3941 extref = (struct btrfs_inode_extref *)
3943 parent = btrfs_inode_extref_parent(leaf,
3945 cur_offset += sizeof(*extref);
3946 cur_offset += btrfs_inode_extref_name_len(leaf,
3949 parent = key.offset;
3950 cur_offset = item_size;
3953 ret = get_inode_gen(root, parent, &parent_gen);
3956 ret = check_ino_in_path(root, ino1, ino1_gen,
3957 parent, parent_gen, fs_path);
3967 btrfs_free_path(path);
3969 fs_path_free(fs_path);
3973 static int wait_for_parent_move(struct send_ctx *sctx,
3974 struct recorded_ref *parent_ref,
3975 const bool is_orphan)
3978 u64 ino = parent_ref->dir;
3979 u64 ino_gen = parent_ref->dir_gen;
3980 u64 parent_ino_before, parent_ino_after;
3981 struct fs_path *path_before = NULL;
3982 struct fs_path *path_after = NULL;
3985 path_after = fs_path_alloc();
3986 path_before = fs_path_alloc();
3987 if (!path_after || !path_before) {
3993 * Our current directory inode may not yet be renamed/moved because some
3994 * ancestor (immediate or not) has to be renamed/moved first. So find if
3995 * such ancestor exists and make sure our own rename/move happens after
3996 * that ancestor is processed to avoid path build infinite loops (done
3997 * at get_cur_path()).
3999 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
4000 u64 parent_ino_after_gen;
4002 if (is_waiting_for_move(sctx, ino)) {
4004 * If the current inode is an ancestor of ino in the
4005 * parent root, we need to delay the rename of the
4006 * current inode, otherwise don't delayed the rename
4007 * because we can end up with a circular dependency
4008 * of renames, resulting in some directories never
4009 * getting the respective rename operations issued in
4010 * the send stream or getting into infinite path build
4013 ret = is_ancestor(sctx->parent_root,
4014 sctx->cur_ino, sctx->cur_inode_gen,
4020 fs_path_reset(path_before);
4021 fs_path_reset(path_after);
4023 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4024 &parent_ino_after_gen, path_after);
4027 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4029 if (ret < 0 && ret != -ENOENT) {
4031 } else if (ret == -ENOENT) {
4036 len1 = fs_path_len(path_before);
4037 len2 = fs_path_len(path_after);
4038 if (ino > sctx->cur_ino &&
4039 (parent_ino_before != parent_ino_after || len1 != len2 ||
4040 memcmp(path_before->start, path_after->start, len1))) {
4043 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4046 if (ino_gen == parent_ino_gen) {
4051 ino = parent_ino_after;
4052 ino_gen = parent_ino_after_gen;
4056 fs_path_free(path_before);
4057 fs_path_free(path_after);
4060 ret = add_pending_dir_move(sctx,
4062 sctx->cur_inode_gen,
4065 &sctx->deleted_refs,
4074 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4077 struct fs_path *new_path;
4080 * Our reference's name member points to its full_path member string, so
4081 * we use here a new path.
4083 new_path = fs_path_alloc();
4087 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4089 fs_path_free(new_path);
4092 ret = fs_path_add(new_path, ref->name, ref->name_len);
4094 fs_path_free(new_path);
4098 fs_path_free(ref->full_path);
4099 set_ref_path(ref, new_path);
4105 * When processing the new references for an inode we may orphanize an existing
4106 * directory inode because its old name conflicts with one of the new references
4107 * of the current inode. Later, when processing another new reference of our
4108 * inode, we might need to orphanize another inode, but the path we have in the
4109 * reference reflects the pre-orphanization name of the directory we previously
4110 * orphanized. For example:
4112 * parent snapshot looks like:
4115 * |----- f1 (ino 257)
4116 * |----- f2 (ino 258)
4117 * |----- d1/ (ino 259)
4118 * |----- d2/ (ino 260)
4120 * send snapshot looks like:
4123 * |----- d1 (ino 258)
4124 * |----- f2/ (ino 259)
4125 * |----- f2_link/ (ino 260)
4126 * | |----- f1 (ino 257)
4128 * |----- d2 (ino 258)
4130 * When processing inode 257 we compute the name for inode 259 as "d1", and we
4131 * cache it in the name cache. Later when we start processing inode 258, when
4132 * collecting all its new references we set a full path of "d1/d2" for its new
4133 * reference with name "d2". When we start processing the new references we
4134 * start by processing the new reference with name "d1", and this results in
4135 * orphanizing inode 259, since its old reference causes a conflict. Then we
4136 * move on the next new reference, with name "d2", and we find out we must
4137 * orphanize inode 260, as its old reference conflicts with ours - but for the
4138 * orphanization we use a source path corresponding to the path we stored in the
4139 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4140 * receiver fail since the path component "d1/" no longer exists, it was renamed
4141 * to "o259-6-0/" when processing the previous new reference. So in this case we
4142 * must recompute the path in the new reference and use it for the new
4143 * orphanization operation.
4145 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4150 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4154 fs_path_reset(ref->full_path);
4155 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4159 ret = fs_path_add(ref->full_path, name, ref->name_len);
4163 /* Update the reference's base name pointer. */
4164 set_ref_path(ref, ref->full_path);
4171 * This does all the move/link/unlink/rmdir magic.
4173 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4175 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4177 struct recorded_ref *cur;
4178 struct recorded_ref *cur2;
4179 LIST_HEAD(check_dirs);
4180 struct fs_path *valid_path = NULL;
4184 int did_overwrite = 0;
4186 u64 last_dir_ino_rm = 0;
4187 bool can_rename = true;
4188 bool orphanized_dir = false;
4189 bool orphanized_ancestor = false;
4191 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4194 * This should never happen as the root dir always has the same ref
4195 * which is always '..'
4197 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4199 "send: unexpected inode %llu in process_recorded_refs()",
4205 valid_path = fs_path_alloc();
4212 * First, check if the first ref of the current inode was overwritten
4213 * before. If yes, we know that the current inode was already orphanized
4214 * and thus use the orphan name. If not, we can use get_cur_path to
4215 * get the path of the first ref as it would like while receiving at
4216 * this point in time.
4217 * New inodes are always orphan at the beginning, so force to use the
4218 * orphan name in this case.
4219 * The first ref is stored in valid_path and will be updated if it
4220 * gets moved around.
4222 if (!sctx->cur_inode_new) {
4223 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4224 sctx->cur_inode_gen);
4230 if (sctx->cur_inode_new || did_overwrite) {
4231 ret = gen_unique_name(sctx, sctx->cur_ino,
4232 sctx->cur_inode_gen, valid_path);
4237 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4244 * Before doing any rename and link operations, do a first pass on the
4245 * new references to orphanize any unprocessed inodes that may have a
4246 * reference that conflicts with one of the new references of the current
4247 * inode. This needs to happen first because a new reference may conflict
4248 * with the old reference of a parent directory, so we must make sure
4249 * that the path used for link and rename commands don't use an
4250 * orphanized name when an ancestor was not yet orphanized.
4257 * |----- testdir/ (ino 259)
4258 * | |----- a (ino 257)
4260 * |----- b (ino 258)
4265 * |----- testdir_2/ (ino 259)
4266 * | |----- a (ino 260)
4268 * |----- testdir (ino 257)
4269 * |----- b (ino 257)
4270 * |----- b2 (ino 258)
4272 * Processing the new reference for inode 257 with name "b" may happen
4273 * before processing the new reference with name "testdir". If so, we
4274 * must make sure that by the time we send a link command to create the
4275 * hard link "b", inode 259 was already orphanized, since the generated
4276 * path in "valid_path" already contains the orphanized name for 259.
4277 * We are processing inode 257, so only later when processing 259 we do
4278 * the rename operation to change its temporary (orphanized) name to
4281 list_for_each_entry(cur, &sctx->new_refs, list) {
4282 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4285 if (ret == inode_state_will_create)
4289 * Check if this new ref would overwrite the first ref of another
4290 * unprocessed inode. If yes, orphanize the overwritten inode.
4291 * If we find an overwritten ref that is not the first ref,
4294 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4295 cur->name, cur->name_len,
4296 &ow_inode, &ow_gen, &ow_mode);
4300 ret = is_first_ref(sctx->parent_root,
4301 ow_inode, cur->dir, cur->name,
4306 struct name_cache_entry *nce;
4307 struct waiting_dir_move *wdm;
4309 if (orphanized_dir) {
4310 ret = refresh_ref_path(sctx, cur);
4315 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4319 if (S_ISDIR(ow_mode))
4320 orphanized_dir = true;
4323 * If ow_inode has its rename operation delayed
4324 * make sure that its orphanized name is used in
4325 * the source path when performing its rename
4328 wdm = get_waiting_dir_move(sctx, ow_inode);
4330 wdm->orphanized = true;
4333 * Make sure we clear our orphanized inode's
4334 * name from the name cache. This is because the
4335 * inode ow_inode might be an ancestor of some
4336 * other inode that will be orphanized as well
4337 * later and has an inode number greater than
4338 * sctx->send_progress. We need to prevent
4339 * future name lookups from using the old name
4340 * and get instead the orphan name.
4342 nce = name_cache_search(sctx, ow_inode, ow_gen);
4344 btrfs_lru_cache_remove(&sctx->name_cache,
4348 * ow_inode might currently be an ancestor of
4349 * cur_ino, therefore compute valid_path (the
4350 * current path of cur_ino) again because it
4351 * might contain the pre-orphanization name of
4352 * ow_inode, which is no longer valid.
4354 ret = is_ancestor(sctx->parent_root,
4356 sctx->cur_ino, NULL);
4358 orphanized_ancestor = true;
4359 fs_path_reset(valid_path);
4360 ret = get_cur_path(sctx, sctx->cur_ino,
4361 sctx->cur_inode_gen,
4368 * If we previously orphanized a directory that
4369 * collided with a new reference that we already
4370 * processed, recompute the current path because
4371 * that directory may be part of the path.
4373 if (orphanized_dir) {
4374 ret = refresh_ref_path(sctx, cur);
4378 ret = send_unlink(sctx, cur->full_path);
4386 list_for_each_entry(cur, &sctx->new_refs, list) {
4388 * We may have refs where the parent directory does not exist
4389 * yet. This happens if the parent directories inum is higher
4390 * than the current inum. To handle this case, we create the
4391 * parent directory out of order. But we need to check if this
4392 * did already happen before due to other refs in the same dir.
4394 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4397 if (ret == inode_state_will_create) {
4400 * First check if any of the current inodes refs did
4401 * already create the dir.
4403 list_for_each_entry(cur2, &sctx->new_refs, list) {
4406 if (cur2->dir == cur->dir) {
4413 * If that did not happen, check if a previous inode
4414 * did already create the dir.
4417 ret = did_create_dir(sctx, cur->dir);
4421 ret = send_create_inode(sctx, cur->dir);
4424 cache_dir_created(sctx, cur->dir);
4428 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4429 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4438 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4440 ret = wait_for_parent_move(sctx, cur, is_orphan);
4450 * link/move the ref to the new place. If we have an orphan
4451 * inode, move it and update valid_path. If not, link or move
4452 * it depending on the inode mode.
4454 if (is_orphan && can_rename) {
4455 ret = send_rename(sctx, valid_path, cur->full_path);
4459 ret = fs_path_copy(valid_path, cur->full_path);
4462 } else if (can_rename) {
4463 if (S_ISDIR(sctx->cur_inode_mode)) {
4465 * Dirs can't be linked, so move it. For moved
4466 * dirs, we always have one new and one deleted
4467 * ref. The deleted ref is ignored later.
4469 ret = send_rename(sctx, valid_path,
4472 ret = fs_path_copy(valid_path,
4478 * We might have previously orphanized an inode
4479 * which is an ancestor of our current inode,
4480 * so our reference's full path, which was
4481 * computed before any such orphanizations, must
4484 if (orphanized_dir) {
4485 ret = update_ref_path(sctx, cur);
4489 ret = send_link(sctx, cur->full_path,
4495 ret = dup_ref(cur, &check_dirs);
4500 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4502 * Check if we can already rmdir the directory. If not,
4503 * orphanize it. For every dir item inside that gets deleted
4504 * later, we do this check again and rmdir it then if possible.
4505 * See the use of check_dirs for more details.
4507 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4511 ret = send_rmdir(sctx, valid_path);
4514 } else if (!is_orphan) {
4515 ret = orphanize_inode(sctx, sctx->cur_ino,
4516 sctx->cur_inode_gen, valid_path);
4522 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4523 ret = dup_ref(cur, &check_dirs);
4527 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4528 !list_empty(&sctx->deleted_refs)) {
4530 * We have a moved dir. Add the old parent to check_dirs
4532 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4534 ret = dup_ref(cur, &check_dirs);
4537 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4539 * We have a non dir inode. Go through all deleted refs and
4540 * unlink them if they were not already overwritten by other
4543 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4544 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4545 sctx->cur_ino, sctx->cur_inode_gen,
4546 cur->name, cur->name_len);
4551 * If we orphanized any ancestor before, we need
4552 * to recompute the full path for deleted names,
4553 * since any such path was computed before we
4554 * processed any references and orphanized any
4557 if (orphanized_ancestor) {
4558 ret = update_ref_path(sctx, cur);
4562 ret = send_unlink(sctx, cur->full_path);
4566 ret = dup_ref(cur, &check_dirs);
4571 * If the inode is still orphan, unlink the orphan. This may
4572 * happen when a previous inode did overwrite the first ref
4573 * of this inode and no new refs were added for the current
4574 * inode. Unlinking does not mean that the inode is deleted in
4575 * all cases. There may still be links to this inode in other
4579 ret = send_unlink(sctx, valid_path);
4586 * We did collect all parent dirs where cur_inode was once located. We
4587 * now go through all these dirs and check if they are pending for
4588 * deletion and if it's finally possible to perform the rmdir now.
4589 * We also update the inode stats of the parent dirs here.
4591 list_for_each_entry(cur, &check_dirs, list) {
4593 * In case we had refs into dirs that were not processed yet,
4594 * we don't need to do the utime and rmdir logic for these dirs.
4595 * The dir will be processed later.
4597 if (cur->dir > sctx->cur_ino)
4600 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4604 if (ret == inode_state_did_create ||
4605 ret == inode_state_no_change) {
4606 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4609 } else if (ret == inode_state_did_delete &&
4610 cur->dir != last_dir_ino_rm) {
4611 ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4615 ret = get_cur_path(sctx, cur->dir,
4616 cur->dir_gen, valid_path);
4619 ret = send_rmdir(sctx, valid_path);
4622 last_dir_ino_rm = cur->dir;
4630 __free_recorded_refs(&check_dirs);
4631 free_recorded_refs(sctx);
4632 fs_path_free(valid_path);
4636 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4638 const struct recorded_ref *data = k;
4639 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4642 if (data->dir > ref->dir)
4644 if (data->dir < ref->dir)
4646 if (data->dir_gen > ref->dir_gen)
4648 if (data->dir_gen < ref->dir_gen)
4650 if (data->name_len > ref->name_len)
4652 if (data->name_len < ref->name_len)
4654 result = strcmp(data->name, ref->name);
4662 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4664 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4666 return rbtree_ref_comp(entry, parent) < 0;
4669 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4670 struct fs_path *name, u64 dir, u64 dir_gen,
4671 struct send_ctx *sctx)
4674 struct fs_path *path = NULL;
4675 struct recorded_ref *ref = NULL;
4677 path = fs_path_alloc();
4683 ref = recorded_ref_alloc();
4689 ret = get_cur_path(sctx, dir, dir_gen, path);
4692 ret = fs_path_add_path(path, name);
4697 ref->dir_gen = dir_gen;
4698 set_ref_path(ref, path);
4699 list_add_tail(&ref->list, refs);
4700 rb_add(&ref->node, root, rbtree_ref_less);
4704 if (path && (!ref || !ref->full_path))
4706 recorded_ref_free(ref);
4711 static int record_new_ref_if_needed(int num, u64 dir, int index,
4712 struct fs_path *name, void *ctx)
4715 struct send_ctx *sctx = ctx;
4716 struct rb_node *node = NULL;
4717 struct recorded_ref data;
4718 struct recorded_ref *ref;
4721 ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4726 data.dir_gen = dir_gen;
4727 set_ref_path(&data, name);
4728 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4730 ref = rb_entry(node, struct recorded_ref, node);
4731 recorded_ref_free(ref);
4733 ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4734 &sctx->new_refs, name, dir, dir_gen,
4741 static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4742 struct fs_path *name, void *ctx)
4745 struct send_ctx *sctx = ctx;
4746 struct rb_node *node = NULL;
4747 struct recorded_ref data;
4748 struct recorded_ref *ref;
4751 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4756 data.dir_gen = dir_gen;
4757 set_ref_path(&data, name);
4758 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4760 ref = rb_entry(node, struct recorded_ref, node);
4761 recorded_ref_free(ref);
4763 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4764 &sctx->deleted_refs, name, dir,
4771 static int record_new_ref(struct send_ctx *sctx)
4775 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4776 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4785 static int record_deleted_ref(struct send_ctx *sctx)
4789 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4790 sctx->cmp_key, 0, record_deleted_ref_if_needed,
4800 static int record_changed_ref(struct send_ctx *sctx)
4804 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4805 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4808 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4809 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4819 * Record and process all refs at once. Needed when an inode changes the
4820 * generation number, which means that it was deleted and recreated.
4822 static int process_all_refs(struct send_ctx *sctx,
4823 enum btrfs_compare_tree_result cmd)
4827 struct btrfs_root *root;
4828 struct btrfs_path *path;
4829 struct btrfs_key key;
4830 struct btrfs_key found_key;
4831 iterate_inode_ref_t cb;
4832 int pending_move = 0;
4834 path = alloc_path_for_send();
4838 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4839 root = sctx->send_root;
4840 cb = record_new_ref_if_needed;
4841 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4842 root = sctx->parent_root;
4843 cb = record_deleted_ref_if_needed;
4845 btrfs_err(sctx->send_root->fs_info,
4846 "Wrong command %d in process_all_refs", cmd);
4851 key.objectid = sctx->cmp_key->objectid;
4852 key.type = BTRFS_INODE_REF_KEY;
4854 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4855 if (found_key.objectid != key.objectid ||
4856 (found_key.type != BTRFS_INODE_REF_KEY &&
4857 found_key.type != BTRFS_INODE_EXTREF_KEY))
4860 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4864 /* Catch error found during iteration */
4869 btrfs_release_path(path);
4872 * We don't actually care about pending_move as we are simply
4873 * re-creating this inode and will be rename'ing it into place once we
4874 * rename the parent directory.
4876 ret = process_recorded_refs(sctx, &pending_move);
4878 btrfs_free_path(path);
4882 static int send_set_xattr(struct send_ctx *sctx,
4883 struct fs_path *path,
4884 const char *name, int name_len,
4885 const char *data, int data_len)
4889 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4893 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4894 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4895 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4897 ret = send_cmd(sctx);
4904 static int send_remove_xattr(struct send_ctx *sctx,
4905 struct fs_path *path,
4906 const char *name, int name_len)
4910 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4914 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4915 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4917 ret = send_cmd(sctx);
4924 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4925 const char *name, int name_len, const char *data,
4926 int data_len, void *ctx)
4929 struct send_ctx *sctx = ctx;
4931 struct posix_acl_xattr_header dummy_acl;
4933 /* Capabilities are emitted by finish_inode_if_needed */
4934 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4937 p = fs_path_alloc();
4942 * This hack is needed because empty acls are stored as zero byte
4943 * data in xattrs. Problem with that is, that receiving these zero byte
4944 * acls will fail later. To fix this, we send a dummy acl list that
4945 * only contains the version number and no entries.
4947 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4948 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4949 if (data_len == 0) {
4950 dummy_acl.a_version =
4951 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4952 data = (char *)&dummy_acl;
4953 data_len = sizeof(dummy_acl);
4957 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4961 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4968 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4969 const char *name, int name_len,
4970 const char *data, int data_len, void *ctx)
4973 struct send_ctx *sctx = ctx;
4976 p = fs_path_alloc();
4980 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4984 ret = send_remove_xattr(sctx, p, name, name_len);
4991 static int process_new_xattr(struct send_ctx *sctx)
4995 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4996 __process_new_xattr, sctx);
5001 static int process_deleted_xattr(struct send_ctx *sctx)
5003 return iterate_dir_item(sctx->parent_root, sctx->right_path,
5004 __process_deleted_xattr, sctx);
5007 struct find_xattr_ctx {
5015 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
5016 int name_len, const char *data, int data_len, void *vctx)
5018 struct find_xattr_ctx *ctx = vctx;
5020 if (name_len == ctx->name_len &&
5021 strncmp(name, ctx->name, name_len) == 0) {
5022 ctx->found_idx = num;
5023 ctx->found_data_len = data_len;
5024 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
5025 if (!ctx->found_data)
5032 static int find_xattr(struct btrfs_root *root,
5033 struct btrfs_path *path,
5034 struct btrfs_key *key,
5035 const char *name, int name_len,
5036 char **data, int *data_len)
5039 struct find_xattr_ctx ctx;
5042 ctx.name_len = name_len;
5044 ctx.found_data = NULL;
5045 ctx.found_data_len = 0;
5047 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5051 if (ctx.found_idx == -1)
5054 *data = ctx.found_data;
5055 *data_len = ctx.found_data_len;
5057 kfree(ctx.found_data);
5059 return ctx.found_idx;
5063 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5064 const char *name, int name_len,
5065 const char *data, int data_len,
5069 struct send_ctx *sctx = ctx;
5070 char *found_data = NULL;
5071 int found_data_len = 0;
5073 ret = find_xattr(sctx->parent_root, sctx->right_path,
5074 sctx->cmp_key, name, name_len, &found_data,
5076 if (ret == -ENOENT) {
5077 ret = __process_new_xattr(num, di_key, name, name_len, data,
5079 } else if (ret >= 0) {
5080 if (data_len != found_data_len ||
5081 memcmp(data, found_data, data_len)) {
5082 ret = __process_new_xattr(num, di_key, name, name_len,
5083 data, data_len, ctx);
5093 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5094 const char *name, int name_len,
5095 const char *data, int data_len,
5099 struct send_ctx *sctx = ctx;
5101 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5102 name, name_len, NULL, NULL);
5104 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5112 static int process_changed_xattr(struct send_ctx *sctx)
5116 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5117 __process_changed_new_xattr, sctx);
5120 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5121 __process_changed_deleted_xattr, sctx);
5127 static int process_all_new_xattrs(struct send_ctx *sctx)
5131 struct btrfs_root *root;
5132 struct btrfs_path *path;
5133 struct btrfs_key key;
5134 struct btrfs_key found_key;
5136 path = alloc_path_for_send();
5140 root = sctx->send_root;
5142 key.objectid = sctx->cmp_key->objectid;
5143 key.type = BTRFS_XATTR_ITEM_KEY;
5145 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5146 if (found_key.objectid != key.objectid ||
5147 found_key.type != key.type) {
5152 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5156 /* Catch error found during iteration */
5160 btrfs_free_path(path);
5164 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5165 struct fsverity_descriptor *desc)
5169 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5173 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5174 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5175 le8_to_cpu(desc->hash_algorithm));
5176 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5177 1U << le8_to_cpu(desc->log_blocksize));
5178 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5179 le8_to_cpu(desc->salt_size));
5180 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5181 le32_to_cpu(desc->sig_size));
5183 ret = send_cmd(sctx);
5190 static int process_verity(struct send_ctx *sctx)
5193 struct inode *inode;
5196 inode = btrfs_iget(sctx->cur_ino, sctx->send_root);
5198 return PTR_ERR(inode);
5200 ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5204 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5208 if (!sctx->verity_descriptor) {
5209 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5211 if (!sctx->verity_descriptor) {
5217 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5221 p = fs_path_alloc();
5226 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5230 ret = send_verity(sctx, p, sctx->verity_descriptor);
5241 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5243 return sctx->send_max_size - SZ_16K;
5246 static int put_data_header(struct send_ctx *sctx, u32 len)
5248 if (WARN_ON_ONCE(sctx->put_data))
5250 sctx->put_data = true;
5251 if (sctx->proto >= 2) {
5253 * Since v2, the data attribute header doesn't include a length,
5254 * it is implicitly to the end of the command.
5256 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5258 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5259 sctx->send_size += sizeof(__le16);
5261 struct btrfs_tlv_header *hdr;
5263 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5265 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5266 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5267 put_unaligned_le16(len, &hdr->tlv_len);
5268 sctx->send_size += sizeof(*hdr);
5273 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5275 struct btrfs_root *root = sctx->send_root;
5276 struct btrfs_fs_info *fs_info = root->fs_info;
5277 struct folio *folio;
5278 pgoff_t index = offset >> PAGE_SHIFT;
5280 unsigned pg_offset = offset_in_page(offset);
5281 struct address_space *mapping = sctx->cur_inode->i_mapping;
5284 ret = put_data_header(sctx, len);
5288 last_index = (offset + len - 1) >> PAGE_SHIFT;
5290 while (index <= last_index) {
5291 unsigned cur_len = min_t(unsigned, len,
5292 PAGE_SIZE - pg_offset);
5294 folio = filemap_lock_folio(mapping, index);
5295 if (IS_ERR(folio)) {
5296 page_cache_sync_readahead(mapping,
5297 &sctx->ra, NULL, index,
5298 last_index + 1 - index);
5300 folio = filemap_grab_folio(mapping, index);
5301 if (IS_ERR(folio)) {
5302 ret = PTR_ERR(folio);
5307 WARN_ON(folio_order(folio));
5309 if (folio_test_readahead(folio))
5310 page_cache_async_readahead(mapping, &sctx->ra, NULL, folio,
5311 last_index + 1 - index);
5313 if (!folio_test_uptodate(folio)) {
5314 btrfs_read_folio(NULL, folio);
5316 if (!folio_test_uptodate(folio)) {
5317 folio_unlock(folio);
5319 "send: IO error at offset %llu for inode %llu root %llu",
5320 folio_pos(folio), sctx->cur_ino,
5321 btrfs_root_id(sctx->send_root));
5328 memcpy_from_folio(sctx->send_buf + sctx->send_size, folio,
5329 pg_offset, cur_len);
5330 folio_unlock(folio);
5335 sctx->send_size += cur_len;
5342 * Read some bytes from the current inode/file and send a write command to
5345 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5347 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5351 p = fs_path_alloc();
5355 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5357 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5361 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5365 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5366 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5367 ret = put_file_data(sctx, offset, len);
5371 ret = send_cmd(sctx);
5380 * Send a clone command to user space.
5382 static int send_clone(struct send_ctx *sctx,
5383 u64 offset, u32 len,
5384 struct clone_root *clone_root)
5390 btrfs_debug(sctx->send_root->fs_info,
5391 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5392 offset, len, btrfs_root_id(clone_root->root),
5393 clone_root->ino, clone_root->offset);
5395 p = fs_path_alloc();
5399 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5403 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5407 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5408 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5409 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5411 if (clone_root->root == sctx->send_root) {
5412 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5415 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5417 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5423 * If the parent we're using has a received_uuid set then use that as
5424 * our clone source as that is what we will look for when doing a
5427 * This covers the case that we create a snapshot off of a received
5428 * subvolume and then use that as the parent and try to receive on a
5431 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5432 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5433 clone_root->root->root_item.received_uuid);
5435 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5436 clone_root->root->root_item.uuid);
5437 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5438 btrfs_root_ctransid(&clone_root->root->root_item));
5439 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5440 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5441 clone_root->offset);
5443 ret = send_cmd(sctx);
5452 * Send an update extent command to user space.
5454 static int send_update_extent(struct send_ctx *sctx,
5455 u64 offset, u32 len)
5460 p = fs_path_alloc();
5464 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5468 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5472 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5473 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5474 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5476 ret = send_cmd(sctx);
5484 static int send_hole(struct send_ctx *sctx, u64 end)
5486 struct fs_path *p = NULL;
5487 u64 read_size = max_send_read_size(sctx);
5488 u64 offset = sctx->cur_inode_last_extent;
5492 * A hole that starts at EOF or beyond it. Since we do not yet support
5493 * fallocate (for extent preallocation and hole punching), sending a
5494 * write of zeroes starting at EOF or beyond would later require issuing
5495 * a truncate operation which would undo the write and achieve nothing.
5497 if (offset >= sctx->cur_inode_size)
5501 * Don't go beyond the inode's i_size due to prealloc extents that start
5504 end = min_t(u64, end, sctx->cur_inode_size);
5506 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5507 return send_update_extent(sctx, offset, end - offset);
5509 p = fs_path_alloc();
5512 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5514 goto tlv_put_failure;
5515 while (offset < end) {
5516 u64 len = min(end - offset, read_size);
5518 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5521 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5522 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5523 ret = put_data_header(sctx, len);
5526 memset(sctx->send_buf + sctx->send_size, 0, len);
5527 sctx->send_size += len;
5528 ret = send_cmd(sctx);
5533 sctx->cur_inode_next_write_offset = offset;
5539 static int send_encoded_inline_extent(struct send_ctx *sctx,
5540 struct btrfs_path *path, u64 offset,
5543 struct btrfs_root *root = sctx->send_root;
5544 struct btrfs_fs_info *fs_info = root->fs_info;
5545 struct inode *inode;
5546 struct fs_path *fspath;
5547 struct extent_buffer *leaf = path->nodes[0];
5548 struct btrfs_key key;
5549 struct btrfs_file_extent_item *ei;
5554 inode = btrfs_iget(sctx->cur_ino, root);
5556 return PTR_ERR(inode);
5558 fspath = fs_path_alloc();
5564 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5568 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5572 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5574 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5575 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5577 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5578 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5579 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5580 min(key.offset + ram_bytes - offset, len));
5581 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5582 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5583 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5584 btrfs_file_extent_compression(leaf, ei));
5587 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5589 ret = put_data_header(sctx, inline_size);
5592 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5593 btrfs_file_extent_inline_start(ei), inline_size);
5594 sctx->send_size += inline_size;
5596 ret = send_cmd(sctx);
5600 fs_path_free(fspath);
5605 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5606 u64 offset, u64 len)
5608 struct btrfs_root *root = sctx->send_root;
5609 struct btrfs_fs_info *fs_info = root->fs_info;
5610 struct inode *inode;
5611 struct fs_path *fspath;
5612 struct extent_buffer *leaf = path->nodes[0];
5613 struct btrfs_key key;
5614 struct btrfs_file_extent_item *ei;
5615 u64 disk_bytenr, disk_num_bytes;
5617 struct btrfs_cmd_header *hdr;
5621 inode = btrfs_iget(sctx->cur_ino, root);
5623 return PTR_ERR(inode);
5625 fspath = fs_path_alloc();
5631 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5635 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5639 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5640 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5641 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5642 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5644 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5645 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5646 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5647 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5649 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5650 btrfs_file_extent_ram_bytes(leaf, ei));
5651 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5652 offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5653 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5654 btrfs_file_extent_compression(leaf, ei));
5657 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5658 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5660 ret = put_data_header(sctx, disk_num_bytes);
5665 * We want to do I/O directly into the send buffer, so get the next page
5666 * boundary in the send buffer. This means that there may be a gap
5667 * between the beginning of the command and the file data.
5669 data_offset = PAGE_ALIGN(sctx->send_size);
5670 if (data_offset > sctx->send_max_size ||
5671 sctx->send_max_size - data_offset < disk_num_bytes) {
5677 * Note that send_buf is a mapping of send_buf_pages, so this is really
5678 * reading into send_buf.
5680 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5681 disk_bytenr, disk_num_bytes,
5682 sctx->send_buf_pages +
5683 (data_offset >> PAGE_SHIFT));
5687 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5688 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5690 crc = crc32c(0, sctx->send_buf, sctx->send_size);
5691 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5692 hdr->crc = cpu_to_le32(crc);
5694 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5697 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5698 disk_num_bytes, &sctx->send_off);
5700 sctx->send_size = 0;
5701 sctx->put_data = false;
5705 fs_path_free(fspath);
5710 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5711 const u64 offset, const u64 len)
5713 const u64 end = offset + len;
5714 struct extent_buffer *leaf = path->nodes[0];
5715 struct btrfs_file_extent_item *ei;
5716 u64 read_size = max_send_read_size(sctx);
5719 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5720 return send_update_extent(sctx, offset, len);
5722 ei = btrfs_item_ptr(leaf, path->slots[0],
5723 struct btrfs_file_extent_item);
5724 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5725 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5726 bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5727 BTRFS_FILE_EXTENT_INLINE);
5730 * Send the compressed extent unless the compressed data is
5731 * larger than the decompressed data. This can happen if we're
5732 * not sending the entire extent, either because it has been
5733 * partially overwritten/truncated or because this is a part of
5734 * the extent that we couldn't clone in clone_range().
5737 btrfs_file_extent_inline_item_len(leaf,
5738 path->slots[0]) <= len) {
5739 return send_encoded_inline_extent(sctx, path, offset,
5741 } else if (!is_inline &&
5742 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5743 return send_encoded_extent(sctx, path, offset, len);
5747 if (sctx->cur_inode == NULL) {
5748 struct btrfs_root *root = sctx->send_root;
5750 sctx->cur_inode = btrfs_iget(sctx->cur_ino, root);
5751 if (IS_ERR(sctx->cur_inode)) {
5752 int err = PTR_ERR(sctx->cur_inode);
5754 sctx->cur_inode = NULL;
5757 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5758 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5761 * It's very likely there are no pages from this inode in the page
5762 * cache, so after reading extents and sending their data, we clean
5763 * the page cache to avoid trashing the page cache (adding pressure
5764 * to the page cache and forcing eviction of other data more useful
5765 * for applications).
5767 * We decide if we should clean the page cache simply by checking
5768 * if the inode's mapping nrpages is 0 when we first open it, and
5769 * not by using something like filemap_range_has_page() before
5770 * reading an extent because when we ask the readahead code to
5771 * read a given file range, it may (and almost always does) read
5772 * pages from beyond that range (see the documentation for
5773 * page_cache_sync_readahead()), so it would not be reliable,
5774 * because after reading the first extent future calls to
5775 * filemap_range_has_page() would return true because the readahead
5776 * on the previous extent resulted in reading pages of the current
5779 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5780 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5783 while (sent < len) {
5784 u64 size = min(len - sent, read_size);
5787 ret = send_write(sctx, offset + sent, size);
5793 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5795 * Always operate only on ranges that are a multiple of the page
5796 * size. This is not only to prevent zeroing parts of a page in
5797 * the case of subpage sector size, but also to guarantee we evict
5798 * pages, as passing a range that is smaller than page size does
5799 * not evict the respective page (only zeroes part of its content).
5801 * Always start from the end offset of the last range cleared.
5802 * This is because the readahead code may (and very often does)
5803 * reads pages beyond the range we request for readahead. So if
5804 * we have an extent layout like this:
5806 * [ extent A ] [ extent B ] [ extent C ]
5808 * When we ask page_cache_sync_readahead() to read extent A, it
5809 * may also trigger reads for pages of extent B. If we are doing
5810 * an incremental send and extent B has not changed between the
5811 * parent and send snapshots, some or all of its pages may end
5812 * up being read and placed in the page cache. So when truncating
5813 * the page cache we always start from the end offset of the
5814 * previously processed extent up to the end of the current
5817 truncate_inode_pages_range(&sctx->cur_inode->i_data,
5818 sctx->page_cache_clear_start,
5820 sctx->page_cache_clear_start = end;
5827 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5828 * found, call send_set_xattr function to emit it.
5830 * Return 0 if there isn't a capability, or when the capability was emitted
5831 * successfully, or < 0 if an error occurred.
5833 static int send_capabilities(struct send_ctx *sctx)
5835 struct fs_path *fspath = NULL;
5836 struct btrfs_path *path;
5837 struct btrfs_dir_item *di;
5838 struct extent_buffer *leaf;
5839 unsigned long data_ptr;
5844 path = alloc_path_for_send();
5848 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5849 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5851 /* There is no xattr for this inode */
5853 } else if (IS_ERR(di)) {
5858 leaf = path->nodes[0];
5859 buf_len = btrfs_dir_data_len(leaf, di);
5861 fspath = fs_path_alloc();
5862 buf = kmalloc(buf_len, GFP_KERNEL);
5863 if (!fspath || !buf) {
5868 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5872 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5873 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5875 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5876 strlen(XATTR_NAME_CAPS), buf, buf_len);
5879 fs_path_free(fspath);
5880 btrfs_free_path(path);
5884 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5885 struct clone_root *clone_root, const u64 disk_byte,
5886 u64 data_offset, u64 offset, u64 len)
5888 struct btrfs_path *path;
5889 struct btrfs_key key;
5891 struct btrfs_inode_info info;
5892 u64 clone_src_i_size = 0;
5895 * Prevent cloning from a zero offset with a length matching the sector
5896 * size because in some scenarios this will make the receiver fail.
5898 * For example, if in the source filesystem the extent at offset 0
5899 * has a length of sectorsize and it was written using direct IO, then
5900 * it can never be an inline extent (even if compression is enabled).
5901 * Then this extent can be cloned in the original filesystem to a non
5902 * zero file offset, but it may not be possible to clone in the
5903 * destination filesystem because it can be inlined due to compression
5904 * on the destination filesystem (as the receiver's write operations are
5905 * always done using buffered IO). The same happens when the original
5906 * filesystem does not have compression enabled but the destination
5909 if (clone_root->offset == 0 &&
5910 len == sctx->send_root->fs_info->sectorsize)
5911 return send_extent_data(sctx, dst_path, offset, len);
5913 path = alloc_path_for_send();
5918 * There are inodes that have extents that lie behind its i_size. Don't
5919 * accept clones from these extents.
5921 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5922 btrfs_release_path(path);
5925 clone_src_i_size = info.size;
5928 * We can't send a clone operation for the entire range if we find
5929 * extent items in the respective range in the source file that
5930 * refer to different extents or if we find holes.
5931 * So check for that and do a mix of clone and regular write/copy
5932 * operations if needed.
5936 * mkfs.btrfs -f /dev/sda
5937 * mount /dev/sda /mnt
5938 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5939 * cp --reflink=always /mnt/foo /mnt/bar
5940 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5941 * btrfs subvolume snapshot -r /mnt /mnt/snap
5943 * If when we send the snapshot and we are processing file bar (which
5944 * has a higher inode number than foo) we blindly send a clone operation
5945 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5946 * a file bar that matches the content of file foo - iow, doesn't match
5947 * the content from bar in the original filesystem.
5949 key.objectid = clone_root->ino;
5950 key.type = BTRFS_EXTENT_DATA_KEY;
5951 key.offset = clone_root->offset;
5952 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5955 if (ret > 0 && path->slots[0] > 0) {
5956 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5957 if (key.objectid == clone_root->ino &&
5958 key.type == BTRFS_EXTENT_DATA_KEY)
5963 struct extent_buffer *leaf = path->nodes[0];
5964 int slot = path->slots[0];
5965 struct btrfs_file_extent_item *ei;
5969 u64 clone_data_offset;
5970 bool crossed_src_i_size = false;
5972 if (slot >= btrfs_header_nritems(leaf)) {
5973 ret = btrfs_next_leaf(clone_root->root, path);
5981 btrfs_item_key_to_cpu(leaf, &key, slot);
5984 * We might have an implicit trailing hole (NO_HOLES feature
5985 * enabled). We deal with it after leaving this loop.
5987 if (key.objectid != clone_root->ino ||
5988 key.type != BTRFS_EXTENT_DATA_KEY)
5991 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5992 type = btrfs_file_extent_type(leaf, ei);
5993 if (type == BTRFS_FILE_EXTENT_INLINE) {
5994 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5995 ext_len = PAGE_ALIGN(ext_len);
5997 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
6000 if (key.offset + ext_len <= clone_root->offset)
6003 if (key.offset > clone_root->offset) {
6004 /* Implicit hole, NO_HOLES feature enabled. */
6005 u64 hole_len = key.offset - clone_root->offset;
6009 ret = send_extent_data(sctx, dst_path, offset,
6018 clone_root->offset += hole_len;
6019 data_offset += hole_len;
6022 if (key.offset >= clone_root->offset + len)
6025 if (key.offset >= clone_src_i_size)
6028 if (key.offset + ext_len > clone_src_i_size) {
6029 ext_len = clone_src_i_size - key.offset;
6030 crossed_src_i_size = true;
6033 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6034 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6035 clone_root->offset = key.offset;
6036 if (clone_data_offset < data_offset &&
6037 clone_data_offset + ext_len > data_offset) {
6040 extent_offset = data_offset - clone_data_offset;
6041 ext_len -= extent_offset;
6042 clone_data_offset += extent_offset;
6043 clone_root->offset += extent_offset;
6047 clone_len = min_t(u64, ext_len, len);
6049 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6050 clone_data_offset == data_offset) {
6051 const u64 src_end = clone_root->offset + clone_len;
6052 const u64 sectorsize = SZ_64K;
6055 * We can't clone the last block, when its size is not
6056 * sector size aligned, into the middle of a file. If we
6057 * do so, the receiver will get a failure (-EINVAL) when
6058 * trying to clone or will silently corrupt the data in
6059 * the destination file if it's on a kernel without the
6060 * fix introduced by commit ac765f83f1397646
6061 * ("Btrfs: fix data corruption due to cloning of eof
6064 * So issue a clone of the aligned down range plus a
6065 * regular write for the eof block, if we hit that case.
6067 * Also, we use the maximum possible sector size, 64K,
6068 * because we don't know what's the sector size of the
6069 * filesystem that receives the stream, so we have to
6070 * assume the largest possible sector size.
6072 if (src_end == clone_src_i_size &&
6073 !IS_ALIGNED(src_end, sectorsize) &&
6074 offset + clone_len < sctx->cur_inode_size) {
6077 slen = ALIGN_DOWN(src_end - clone_root->offset,
6080 ret = send_clone(sctx, offset, slen,
6085 ret = send_extent_data(sctx, dst_path,
6089 ret = send_clone(sctx, offset, clone_len,
6092 } else if (crossed_src_i_size && clone_len < len) {
6094 * If we are at i_size of the clone source inode and we
6095 * can not clone from it, terminate the loop. This is
6096 * to avoid sending two write operations, one with a
6097 * length matching clone_len and the final one after
6098 * this loop with a length of len - clone_len.
6100 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6101 * was passed to the send ioctl), this helps avoid
6102 * sending an encoded write for an offset that is not
6103 * sector size aligned, in case the i_size of the source
6104 * inode is not sector size aligned. That will make the
6105 * receiver fallback to decompression of the data and
6106 * writing it using regular buffered IO, therefore while
6107 * not incorrect, it's not optimal due decompression and
6108 * possible re-compression at the receiver.
6112 ret = send_extent_data(sctx, dst_path, offset,
6122 offset += clone_len;
6123 clone_root->offset += clone_len;
6126 * If we are cloning from the file we are currently processing,
6127 * and using the send root as the clone root, we must stop once
6128 * the current clone offset reaches the current eof of the file
6129 * at the receiver, otherwise we would issue an invalid clone
6130 * operation (source range going beyond eof) and cause the
6131 * receiver to fail. So if we reach the current eof, bail out
6132 * and fallback to a regular write.
6134 if (clone_root->root == sctx->send_root &&
6135 clone_root->ino == sctx->cur_ino &&
6136 clone_root->offset >= sctx->cur_inode_next_write_offset)
6139 data_offset += clone_len;
6145 ret = send_extent_data(sctx, dst_path, offset, len);
6149 btrfs_free_path(path);
6153 static int send_write_or_clone(struct send_ctx *sctx,
6154 struct btrfs_path *path,
6155 struct btrfs_key *key,
6156 struct clone_root *clone_root)
6159 u64 offset = key->offset;
6161 u64 bs = sctx->send_root->fs_info->sectorsize;
6162 struct btrfs_file_extent_item *ei;
6166 struct btrfs_inode_info info = { 0 };
6168 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6172 num_bytes = end - offset;
6177 if (IS_ALIGNED(end, bs))
6181 * If the extent end is not aligned, we can clone if the extent ends at
6182 * the i_size of the inode and the clone range ends at the i_size of the
6183 * source inode, otherwise the clone operation fails with -EINVAL.
6185 if (end != sctx->cur_inode_size)
6188 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
6192 if (clone_root->offset + num_bytes == info.size) {
6194 * The final size of our file matches the end offset, but it may
6195 * be that its current size is larger, so we have to truncate it
6196 * to any value between the start offset of the range and the
6197 * final i_size, otherwise the clone operation is invalid
6198 * because it's unaligned and it ends before the current EOF.
6199 * We do this truncate to the final i_size when we finish
6200 * processing the inode, but it's too late by then. And here we
6201 * truncate to the start offset of the range because it's always
6202 * sector size aligned while if it were the final i_size it
6203 * would result in dirtying part of a page, filling part of a
6204 * page with zeroes and then having the clone operation at the
6205 * receiver trigger IO and wait for it due to the dirty page.
6207 if (sctx->parent_root != NULL) {
6208 ret = send_truncate(sctx, sctx->cur_ino,
6209 sctx->cur_inode_gen, offset);
6217 ret = send_extent_data(sctx, path, offset, num_bytes);
6218 sctx->cur_inode_next_write_offset = end;
6222 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6223 struct btrfs_file_extent_item);
6224 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6225 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6226 ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset,
6228 sctx->cur_inode_next_write_offset = end;
6232 static int is_extent_unchanged(struct send_ctx *sctx,
6233 struct btrfs_path *left_path,
6234 struct btrfs_key *ekey)
6237 struct btrfs_key key;
6238 struct btrfs_path *path = NULL;
6239 struct extent_buffer *eb;
6241 struct btrfs_key found_key;
6242 struct btrfs_file_extent_item *ei;
6247 u64 left_offset_fixed;
6255 path = alloc_path_for_send();
6259 eb = left_path->nodes[0];
6260 slot = left_path->slots[0];
6261 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6262 left_type = btrfs_file_extent_type(eb, ei);
6264 if (left_type != BTRFS_FILE_EXTENT_REG) {
6268 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6269 left_len = btrfs_file_extent_num_bytes(eb, ei);
6270 left_offset = btrfs_file_extent_offset(eb, ei);
6271 left_gen = btrfs_file_extent_generation(eb, ei);
6274 * Following comments will refer to these graphics. L is the left
6275 * extents which we are checking at the moment. 1-8 are the right
6276 * extents that we iterate.
6279 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6282 * |--1--|-2b-|...(same as above)
6284 * Alternative situation. Happens on files where extents got split.
6286 * |-----------7-----------|-6-|
6288 * Alternative situation. Happens on files which got larger.
6291 * Nothing follows after 8.
6294 key.objectid = ekey->objectid;
6295 key.type = BTRFS_EXTENT_DATA_KEY;
6296 key.offset = ekey->offset;
6297 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6306 * Handle special case where the right side has no extents at all.
6308 eb = path->nodes[0];
6309 slot = path->slots[0];
6310 btrfs_item_key_to_cpu(eb, &found_key, slot);
6311 if (found_key.objectid != key.objectid ||
6312 found_key.type != key.type) {
6313 /* If we're a hole then just pretend nothing changed */
6314 ret = (left_disknr) ? 0 : 1;
6319 * We're now on 2a, 2b or 7.
6322 while (key.offset < ekey->offset + left_len) {
6323 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6324 right_type = btrfs_file_extent_type(eb, ei);
6325 if (right_type != BTRFS_FILE_EXTENT_REG &&
6326 right_type != BTRFS_FILE_EXTENT_INLINE) {
6331 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6332 right_len = btrfs_file_extent_ram_bytes(eb, ei);
6333 right_len = PAGE_ALIGN(right_len);
6335 right_len = btrfs_file_extent_num_bytes(eb, ei);
6339 * Are we at extent 8? If yes, we know the extent is changed.
6340 * This may only happen on the first iteration.
6342 if (found_key.offset + right_len <= ekey->offset) {
6343 /* If we're a hole just pretend nothing changed */
6344 ret = (left_disknr) ? 0 : 1;
6349 * We just wanted to see if when we have an inline extent, what
6350 * follows it is a regular extent (wanted to check the above
6351 * condition for inline extents too). This should normally not
6352 * happen but it's possible for example when we have an inline
6353 * compressed extent representing data with a size matching
6354 * the page size (currently the same as sector size).
6356 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6361 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6362 right_offset = btrfs_file_extent_offset(eb, ei);
6363 right_gen = btrfs_file_extent_generation(eb, ei);
6365 left_offset_fixed = left_offset;
6366 if (key.offset < ekey->offset) {
6367 /* Fix the right offset for 2a and 7. */
6368 right_offset += ekey->offset - key.offset;
6370 /* Fix the left offset for all behind 2a and 2b */
6371 left_offset_fixed += key.offset - ekey->offset;
6375 * Check if we have the same extent.
6377 if (left_disknr != right_disknr ||
6378 left_offset_fixed != right_offset ||
6379 left_gen != right_gen) {
6385 * Go to the next extent.
6387 ret = btrfs_next_item(sctx->parent_root, path);
6391 eb = path->nodes[0];
6392 slot = path->slots[0];
6393 btrfs_item_key_to_cpu(eb, &found_key, slot);
6395 if (ret || found_key.objectid != key.objectid ||
6396 found_key.type != key.type) {
6397 key.offset += right_len;
6400 if (found_key.offset != key.offset + right_len) {
6408 * We're now behind the left extent (treat as unchanged) or at the end
6409 * of the right side (treat as changed).
6411 if (key.offset >= ekey->offset + left_len)
6418 btrfs_free_path(path);
6422 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6424 struct btrfs_path *path;
6425 struct btrfs_root *root = sctx->send_root;
6426 struct btrfs_key key;
6429 path = alloc_path_for_send();
6433 sctx->cur_inode_last_extent = 0;
6435 key.objectid = sctx->cur_ino;
6436 key.type = BTRFS_EXTENT_DATA_KEY;
6437 key.offset = offset;
6438 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6442 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6443 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6446 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6448 btrfs_free_path(path);
6452 static int range_is_hole_in_parent(struct send_ctx *sctx,
6456 struct btrfs_path *path;
6457 struct btrfs_key key;
6458 struct btrfs_root *root = sctx->parent_root;
6459 u64 search_start = start;
6462 path = alloc_path_for_send();
6466 key.objectid = sctx->cur_ino;
6467 key.type = BTRFS_EXTENT_DATA_KEY;
6468 key.offset = search_start;
6469 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6472 if (ret > 0 && path->slots[0] > 0)
6475 while (search_start < end) {
6476 struct extent_buffer *leaf = path->nodes[0];
6477 int slot = path->slots[0];
6478 struct btrfs_file_extent_item *fi;
6481 if (slot >= btrfs_header_nritems(leaf)) {
6482 ret = btrfs_next_leaf(root, path);
6490 btrfs_item_key_to_cpu(leaf, &key, slot);
6491 if (key.objectid < sctx->cur_ino ||
6492 key.type < BTRFS_EXTENT_DATA_KEY)
6494 if (key.objectid > sctx->cur_ino ||
6495 key.type > BTRFS_EXTENT_DATA_KEY ||
6499 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6500 extent_end = btrfs_file_extent_end(path);
6501 if (extent_end <= start)
6503 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6504 search_start = extent_end;
6514 btrfs_free_path(path);
6518 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6519 struct btrfs_key *key)
6523 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6527 * Get last extent's end offset (exclusive) if we haven't determined it
6528 * yet (we're processing the first file extent item that is new), or if
6529 * we're at the first slot of a leaf and the last extent's end is less
6530 * than the current extent's offset, because we might have skipped
6531 * entire leaves that contained only file extent items for our current
6532 * inode. These leaves have a generation number smaller (older) than the
6533 * one in the current leaf and the leaf our last extent came from, and
6534 * are located between these 2 leaves.
6536 if ((sctx->cur_inode_last_extent == (u64)-1) ||
6537 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) {
6538 ret = get_last_extent(sctx, key->offset - 1);
6543 if (sctx->cur_inode_last_extent < key->offset) {
6544 ret = range_is_hole_in_parent(sctx,
6545 sctx->cur_inode_last_extent,
6550 ret = send_hole(sctx, key->offset);
6554 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6558 static int process_extent(struct send_ctx *sctx,
6559 struct btrfs_path *path,
6560 struct btrfs_key *key)
6562 struct clone_root *found_clone = NULL;
6565 if (S_ISLNK(sctx->cur_inode_mode))
6568 if (sctx->parent_root && !sctx->cur_inode_new) {
6569 ret = is_extent_unchanged(sctx, path, key);
6577 struct btrfs_file_extent_item *ei;
6580 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6581 struct btrfs_file_extent_item);
6582 type = btrfs_file_extent_type(path->nodes[0], ei);
6583 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6584 type == BTRFS_FILE_EXTENT_REG) {
6586 * The send spec does not have a prealloc command yet,
6587 * so just leave a hole for prealloc'ed extents until
6588 * we have enough commands queued up to justify rev'ing
6591 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6596 /* Have a hole, just skip it. */
6597 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6604 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6605 sctx->cur_inode_size, &found_clone);
6606 if (ret != -ENOENT && ret < 0)
6609 ret = send_write_or_clone(sctx, path, key, found_clone);
6613 ret = maybe_send_hole(sctx, path, key);
6618 static int process_all_extents(struct send_ctx *sctx)
6622 struct btrfs_root *root;
6623 struct btrfs_path *path;
6624 struct btrfs_key key;
6625 struct btrfs_key found_key;
6627 root = sctx->send_root;
6628 path = alloc_path_for_send();
6632 key.objectid = sctx->cmp_key->objectid;
6633 key.type = BTRFS_EXTENT_DATA_KEY;
6635 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6636 if (found_key.objectid != key.objectid ||
6637 found_key.type != key.type) {
6642 ret = process_extent(sctx, path, &found_key);
6646 /* Catch error found during iteration */
6650 btrfs_free_path(path);
6654 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6656 int *refs_processed)
6660 if (sctx->cur_ino == 0)
6662 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6663 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6665 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6668 ret = process_recorded_refs(sctx, pending_move);
6672 *refs_processed = 1;
6677 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6680 struct btrfs_inode_info info;
6691 bool need_fileattr = false;
6692 int need_truncate = 1;
6693 int pending_move = 0;
6694 int refs_processed = 0;
6696 if (sctx->ignore_cur_inode)
6699 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6705 * We have processed the refs and thus need to advance send_progress.
6706 * Now, calls to get_cur_xxx will take the updated refs of the current
6707 * inode into account.
6709 * On the other hand, if our current inode is a directory and couldn't
6710 * be moved/renamed because its parent was renamed/moved too and it has
6711 * a higher inode number, we can only move/rename our current inode
6712 * after we moved/renamed its parent. Therefore in this case operate on
6713 * the old path (pre move/rename) of our current inode, and the
6714 * move/rename will be performed later.
6716 if (refs_processed && !pending_move)
6717 sctx->send_progress = sctx->cur_ino + 1;
6719 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6721 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6723 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6726 left_mode = info.mode;
6727 left_uid = info.uid;
6728 left_gid = info.gid;
6729 left_fileattr = info.fileattr;
6731 if (!sctx->parent_root || sctx->cur_inode_new) {
6733 if (!S_ISLNK(sctx->cur_inode_mode))
6735 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6740 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6743 old_size = info.size;
6744 right_mode = info.mode;
6745 right_uid = info.uid;
6746 right_gid = info.gid;
6747 right_fileattr = info.fileattr;
6749 if (left_uid != right_uid || left_gid != right_gid)
6751 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6753 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6754 need_fileattr = true;
6755 if ((old_size == sctx->cur_inode_size) ||
6756 (sctx->cur_inode_size > old_size &&
6757 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6761 if (S_ISREG(sctx->cur_inode_mode)) {
6762 if (need_send_hole(sctx)) {
6763 if (sctx->cur_inode_last_extent == (u64)-1 ||
6764 sctx->cur_inode_last_extent <
6765 sctx->cur_inode_size) {
6766 ret = get_last_extent(sctx, (u64)-1);
6770 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6771 ret = range_is_hole_in_parent(sctx,
6772 sctx->cur_inode_last_extent,
6773 sctx->cur_inode_size);
6776 } else if (ret == 0) {
6777 ret = send_hole(sctx, sctx->cur_inode_size);
6781 /* Range is already a hole, skip. */
6786 if (need_truncate) {
6787 ret = send_truncate(sctx, sctx->cur_ino,
6788 sctx->cur_inode_gen,
6789 sctx->cur_inode_size);
6796 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6797 left_uid, left_gid);
6802 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6807 if (need_fileattr) {
6808 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6814 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6815 && sctx->cur_inode_needs_verity) {
6816 ret = process_verity(sctx);
6821 ret = send_capabilities(sctx);
6826 * If other directory inodes depended on our current directory
6827 * inode's move/rename, now do their move/rename operations.
6829 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6830 ret = apply_children_dir_moves(sctx);
6834 * Need to send that every time, no matter if it actually
6835 * changed between the two trees as we have done changes to
6836 * the inode before. If our inode is a directory and it's
6837 * waiting to be moved/renamed, we will send its utimes when
6838 * it's moved/renamed, therefore we don't need to do it here.
6840 sctx->send_progress = sctx->cur_ino + 1;
6843 * If the current inode is a non-empty directory, delay issuing
6844 * the utimes command for it, as it's very likely we have inodes
6845 * with an higher number inside it. We want to issue the utimes
6846 * command only after adding all dentries to it.
6848 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6849 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6851 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6859 ret = trim_dir_utimes_cache(sctx);
6864 static void close_current_inode(struct send_ctx *sctx)
6868 if (sctx->cur_inode == NULL)
6871 i_size = i_size_read(sctx->cur_inode);
6874 * If we are doing an incremental send, we may have extents between the
6875 * last processed extent and the i_size that have not been processed
6876 * because they haven't changed but we may have read some of their pages
6877 * through readahead, see the comments at send_extent_data().
6879 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6880 truncate_inode_pages_range(&sctx->cur_inode->i_data,
6881 sctx->page_cache_clear_start,
6882 round_up(i_size, PAGE_SIZE) - 1);
6884 iput(sctx->cur_inode);
6885 sctx->cur_inode = NULL;
6888 static int changed_inode(struct send_ctx *sctx,
6889 enum btrfs_compare_tree_result result)
6892 struct btrfs_key *key = sctx->cmp_key;
6893 struct btrfs_inode_item *left_ii = NULL;
6894 struct btrfs_inode_item *right_ii = NULL;
6898 close_current_inode(sctx);
6900 sctx->cur_ino = key->objectid;
6901 sctx->cur_inode_new_gen = false;
6902 sctx->cur_inode_last_extent = (u64)-1;
6903 sctx->cur_inode_next_write_offset = 0;
6904 sctx->ignore_cur_inode = false;
6907 * Set send_progress to current inode. This will tell all get_cur_xxx
6908 * functions that the current inode's refs are not updated yet. Later,
6909 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6911 sctx->send_progress = sctx->cur_ino;
6913 if (result == BTRFS_COMPARE_TREE_NEW ||
6914 result == BTRFS_COMPARE_TREE_CHANGED) {
6915 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6916 sctx->left_path->slots[0],
6917 struct btrfs_inode_item);
6918 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6921 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6922 sctx->right_path->slots[0],
6923 struct btrfs_inode_item);
6924 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6927 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6928 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6929 sctx->right_path->slots[0],
6930 struct btrfs_inode_item);
6932 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6936 * The cur_ino = root dir case is special here. We can't treat
6937 * the inode as deleted+reused because it would generate a
6938 * stream that tries to delete/mkdir the root dir.
6940 if (left_gen != right_gen &&
6941 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6942 sctx->cur_inode_new_gen = true;
6946 * Normally we do not find inodes with a link count of zero (orphans)
6947 * because the most common case is to create a snapshot and use it
6948 * for a send operation. However other less common use cases involve
6949 * using a subvolume and send it after turning it to RO mode just
6950 * after deleting all hard links of a file while holding an open
6951 * file descriptor against it or turning a RO snapshot into RW mode,
6952 * keep an open file descriptor against a file, delete it and then
6953 * turn the snapshot back to RO mode before using it for a send
6954 * operation. The former is what the receiver operation does.
6955 * Therefore, if we want to send these snapshots soon after they're
6956 * received, we need to handle orphan inodes as well. Moreover, orphans
6957 * can appear not only in the send snapshot but also in the parent
6958 * snapshot. Here are several cases:
6960 * Case 1: BTRFS_COMPARE_TREE_NEW
6961 * | send snapshot | action
6962 * --------------------------------
6963 * nlink | 0 | ignore
6965 * Case 2: BTRFS_COMPARE_TREE_DELETED
6966 * | parent snapshot | action
6967 * ----------------------------------
6968 * nlink | 0 | as usual
6969 * Note: No unlinks will be sent because there're no paths for it.
6971 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6972 * | | parent snapshot | send snapshot | action
6973 * -----------------------------------------------------------------------
6974 * subcase 1 | nlink | 0 | 0 | ignore
6975 * subcase 2 | nlink | >0 | 0 | new_gen(deletion)
6976 * subcase 3 | nlink | 0 | >0 | new_gen(creation)
6979 if (result == BTRFS_COMPARE_TREE_NEW) {
6980 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6981 sctx->ignore_cur_inode = true;
6984 sctx->cur_inode_gen = left_gen;
6985 sctx->cur_inode_new = true;
6986 sctx->cur_inode_deleted = false;
6987 sctx->cur_inode_size = btrfs_inode_size(
6988 sctx->left_path->nodes[0], left_ii);
6989 sctx->cur_inode_mode = btrfs_inode_mode(
6990 sctx->left_path->nodes[0], left_ii);
6991 sctx->cur_inode_rdev = btrfs_inode_rdev(
6992 sctx->left_path->nodes[0], left_ii);
6993 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6994 ret = send_create_inode_if_needed(sctx);
6995 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6996 sctx->cur_inode_gen = right_gen;
6997 sctx->cur_inode_new = false;
6998 sctx->cur_inode_deleted = true;
6999 sctx->cur_inode_size = btrfs_inode_size(
7000 sctx->right_path->nodes[0], right_ii);
7001 sctx->cur_inode_mode = btrfs_inode_mode(
7002 sctx->right_path->nodes[0], right_ii);
7003 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
7004 u32 new_nlinks, old_nlinks;
7006 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
7007 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
7008 if (new_nlinks == 0 && old_nlinks == 0) {
7009 sctx->ignore_cur_inode = true;
7011 } else if (new_nlinks == 0 || old_nlinks == 0) {
7012 sctx->cur_inode_new_gen = 1;
7015 * We need to do some special handling in case the inode was
7016 * reported as changed with a changed generation number. This
7017 * means that the original inode was deleted and new inode
7018 * reused the same inum. So we have to treat the old inode as
7019 * deleted and the new one as new.
7021 if (sctx->cur_inode_new_gen) {
7023 * First, process the inode as if it was deleted.
7025 if (old_nlinks > 0) {
7026 sctx->cur_inode_gen = right_gen;
7027 sctx->cur_inode_new = false;
7028 sctx->cur_inode_deleted = true;
7029 sctx->cur_inode_size = btrfs_inode_size(
7030 sctx->right_path->nodes[0], right_ii);
7031 sctx->cur_inode_mode = btrfs_inode_mode(
7032 sctx->right_path->nodes[0], right_ii);
7033 ret = process_all_refs(sctx,
7034 BTRFS_COMPARE_TREE_DELETED);
7040 * Now process the inode as if it was new.
7042 if (new_nlinks > 0) {
7043 sctx->cur_inode_gen = left_gen;
7044 sctx->cur_inode_new = true;
7045 sctx->cur_inode_deleted = false;
7046 sctx->cur_inode_size = btrfs_inode_size(
7047 sctx->left_path->nodes[0],
7049 sctx->cur_inode_mode = btrfs_inode_mode(
7050 sctx->left_path->nodes[0],
7052 sctx->cur_inode_rdev = btrfs_inode_rdev(
7053 sctx->left_path->nodes[0],
7055 ret = send_create_inode_if_needed(sctx);
7059 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
7063 * Advance send_progress now as we did not get
7064 * into process_recorded_refs_if_needed in the
7067 sctx->send_progress = sctx->cur_ino + 1;
7070 * Now process all extents and xattrs of the
7071 * inode as if they were all new.
7073 ret = process_all_extents(sctx);
7076 ret = process_all_new_xattrs(sctx);
7081 sctx->cur_inode_gen = left_gen;
7082 sctx->cur_inode_new = false;
7083 sctx->cur_inode_new_gen = false;
7084 sctx->cur_inode_deleted = false;
7085 sctx->cur_inode_size = btrfs_inode_size(
7086 sctx->left_path->nodes[0], left_ii);
7087 sctx->cur_inode_mode = btrfs_inode_mode(
7088 sctx->left_path->nodes[0], left_ii);
7097 * We have to process new refs before deleted refs, but compare_trees gives us
7098 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7099 * first and later process them in process_recorded_refs.
7100 * For the cur_inode_new_gen case, we skip recording completely because
7101 * changed_inode did already initiate processing of refs. The reason for this is
7102 * that in this case, compare_tree actually compares the refs of 2 different
7103 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7104 * refs of the right tree as deleted and all refs of the left tree as new.
7106 static int changed_ref(struct send_ctx *sctx,
7107 enum btrfs_compare_tree_result result)
7111 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7112 inconsistent_snapshot_error(sctx, result, "reference");
7116 if (!sctx->cur_inode_new_gen &&
7117 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7118 if (result == BTRFS_COMPARE_TREE_NEW)
7119 ret = record_new_ref(sctx);
7120 else if (result == BTRFS_COMPARE_TREE_DELETED)
7121 ret = record_deleted_ref(sctx);
7122 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7123 ret = record_changed_ref(sctx);
7130 * Process new/deleted/changed xattrs. We skip processing in the
7131 * cur_inode_new_gen case because changed_inode did already initiate processing
7132 * of xattrs. The reason is the same as in changed_ref
7134 static int changed_xattr(struct send_ctx *sctx,
7135 enum btrfs_compare_tree_result result)
7139 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7140 inconsistent_snapshot_error(sctx, result, "xattr");
7144 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7145 if (result == BTRFS_COMPARE_TREE_NEW)
7146 ret = process_new_xattr(sctx);
7147 else if (result == BTRFS_COMPARE_TREE_DELETED)
7148 ret = process_deleted_xattr(sctx);
7149 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7150 ret = process_changed_xattr(sctx);
7157 * Process new/deleted/changed extents. We skip processing in the
7158 * cur_inode_new_gen case because changed_inode did already initiate processing
7159 * of extents. The reason is the same as in changed_ref
7161 static int changed_extent(struct send_ctx *sctx,
7162 enum btrfs_compare_tree_result result)
7167 * We have found an extent item that changed without the inode item
7168 * having changed. This can happen either after relocation (where the
7169 * disk_bytenr of an extent item is replaced at
7170 * relocation.c:replace_file_extents()) or after deduplication into a
7171 * file in both the parent and send snapshots (where an extent item can
7172 * get modified or replaced with a new one). Note that deduplication
7173 * updates the inode item, but it only changes the iversion (sequence
7174 * field in the inode item) of the inode, so if a file is deduplicated
7175 * the same amount of times in both the parent and send snapshots, its
7176 * iversion becomes the same in both snapshots, whence the inode item is
7177 * the same on both snapshots.
7179 if (sctx->cur_ino != sctx->cmp_key->objectid)
7182 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7183 if (result != BTRFS_COMPARE_TREE_DELETED)
7184 ret = process_extent(sctx, sctx->left_path,
7191 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7195 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7196 if (result == BTRFS_COMPARE_TREE_NEW)
7197 sctx->cur_inode_needs_verity = true;
7202 static int dir_changed(struct send_ctx *sctx, u64 dir)
7204 u64 orig_gen, new_gen;
7207 ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7211 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7215 return (orig_gen != new_gen) ? 1 : 0;
7218 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7219 struct btrfs_key *key)
7221 struct btrfs_inode_extref *extref;
7222 struct extent_buffer *leaf;
7223 u64 dirid = 0, last_dirid = 0;
7230 /* Easy case, just check this one dirid */
7231 if (key->type == BTRFS_INODE_REF_KEY) {
7232 dirid = key->offset;
7234 ret = dir_changed(sctx, dirid);
7238 leaf = path->nodes[0];
7239 item_size = btrfs_item_size(leaf, path->slots[0]);
7240 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7241 while (cur_offset < item_size) {
7242 extref = (struct btrfs_inode_extref *)(ptr +
7244 dirid = btrfs_inode_extref_parent(leaf, extref);
7245 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7246 cur_offset += ref_name_len + sizeof(*extref);
7247 if (dirid == last_dirid)
7249 ret = dir_changed(sctx, dirid);
7259 * Updates compare related fields in sctx and simply forwards to the actual
7260 * changed_xxx functions.
7262 static int changed_cb(struct btrfs_path *left_path,
7263 struct btrfs_path *right_path,
7264 struct btrfs_key *key,
7265 enum btrfs_compare_tree_result result,
7266 struct send_ctx *sctx)
7271 * We can not hold the commit root semaphore here. This is because in
7272 * the case of sending and receiving to the same filesystem, using a
7273 * pipe, could result in a deadlock:
7275 * 1) The task running send blocks on the pipe because it's full;
7277 * 2) The task running receive, which is the only consumer of the pipe,
7278 * is waiting for a transaction commit (for example due to a space
7279 * reservation when doing a write or triggering a transaction commit
7280 * when creating a subvolume);
7282 * 3) The transaction is waiting to write lock the commit root semaphore,
7283 * but can not acquire it since it's being held at 1).
7285 * Down this call chain we write to the pipe through kernel_write().
7286 * The same type of problem can also happen when sending to a file that
7287 * is stored in the same filesystem - when reserving space for a write
7288 * into the file, we can trigger a transaction commit.
7290 * Our caller has supplied us with clones of leaves from the send and
7291 * parent roots, so we're safe here from a concurrent relocation and
7292 * further reallocation of metadata extents while we are here. Below we
7293 * also assert that the leaves are clones.
7295 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7298 * We always have a send root, so left_path is never NULL. We will not
7299 * have a leaf when we have reached the end of the send root but have
7300 * not yet reached the end of the parent root.
7302 if (left_path->nodes[0])
7303 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7304 &left_path->nodes[0]->bflags));
7306 * When doing a full send we don't have a parent root, so right_path is
7307 * NULL. When doing an incremental send, we may have reached the end of
7308 * the parent root already, so we don't have a leaf at right_path.
7310 if (right_path && right_path->nodes[0])
7311 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7312 &right_path->nodes[0]->bflags));
7314 if (result == BTRFS_COMPARE_TREE_SAME) {
7315 if (key->type == BTRFS_INODE_REF_KEY ||
7316 key->type == BTRFS_INODE_EXTREF_KEY) {
7317 ret = compare_refs(sctx, left_path, key);
7322 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7323 return maybe_send_hole(sctx, left_path, key);
7327 result = BTRFS_COMPARE_TREE_CHANGED;
7331 sctx->left_path = left_path;
7332 sctx->right_path = right_path;
7333 sctx->cmp_key = key;
7335 ret = finish_inode_if_needed(sctx, 0);
7339 /* Ignore non-FS objects */
7340 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7341 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7344 if (key->type == BTRFS_INODE_ITEM_KEY) {
7345 ret = changed_inode(sctx, result);
7346 } else if (!sctx->ignore_cur_inode) {
7347 if (key->type == BTRFS_INODE_REF_KEY ||
7348 key->type == BTRFS_INODE_EXTREF_KEY)
7349 ret = changed_ref(sctx, result);
7350 else if (key->type == BTRFS_XATTR_ITEM_KEY)
7351 ret = changed_xattr(sctx, result);
7352 else if (key->type == BTRFS_EXTENT_DATA_KEY)
7353 ret = changed_extent(sctx, result);
7354 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7356 ret = changed_verity(sctx, result);
7363 static int search_key_again(const struct send_ctx *sctx,
7364 struct btrfs_root *root,
7365 struct btrfs_path *path,
7366 const struct btrfs_key *key)
7370 if (!path->need_commit_sem)
7371 lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7374 * Roots used for send operations are readonly and no one can add,
7375 * update or remove keys from them, so we should be able to find our
7376 * key again. The only exception is deduplication, which can operate on
7377 * readonly roots and add, update or remove keys to/from them - but at
7378 * the moment we don't allow it to run in parallel with send.
7380 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7383 btrfs_print_tree(path->nodes[path->lowest_level], false);
7384 btrfs_err(root->fs_info,
7385 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7386 key->objectid, key->type, key->offset,
7387 (root == sctx->parent_root ? "parent" : "send"),
7388 btrfs_root_id(root), path->lowest_level,
7389 path->slots[path->lowest_level]);
7396 static int full_send_tree(struct send_ctx *sctx)
7399 struct btrfs_root *send_root = sctx->send_root;
7400 struct btrfs_key key;
7401 struct btrfs_fs_info *fs_info = send_root->fs_info;
7402 struct btrfs_path *path;
7404 path = alloc_path_for_send();
7407 path->reada = READA_FORWARD_ALWAYS;
7409 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7410 key.type = BTRFS_INODE_ITEM_KEY;
7413 down_read(&fs_info->commit_root_sem);
7414 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7415 up_read(&fs_info->commit_root_sem);
7417 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7424 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7426 ret = changed_cb(path, NULL, &key,
7427 BTRFS_COMPARE_TREE_NEW, sctx);
7431 down_read(&fs_info->commit_root_sem);
7432 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7433 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7434 up_read(&fs_info->commit_root_sem);
7436 * A transaction used for relocating a block group was
7437 * committed or is about to finish its commit. Release
7438 * our path (leaf) and restart the search, so that we
7439 * avoid operating on any file extent items that are
7440 * stale, with a disk_bytenr that reflects a pre
7441 * relocation value. This way we avoid as much as
7442 * possible to fallback to regular writes when checking
7443 * if we can clone file ranges.
7445 btrfs_release_path(path);
7446 ret = search_key_again(sctx, send_root, path, &key);
7450 up_read(&fs_info->commit_root_sem);
7453 ret = btrfs_next_item(send_root, path);
7463 ret = finish_inode_if_needed(sctx, 1);
7466 btrfs_free_path(path);
7470 static int replace_node_with_clone(struct btrfs_path *path, int level)
7472 struct extent_buffer *clone;
7474 clone = btrfs_clone_extent_buffer(path->nodes[level]);
7478 free_extent_buffer(path->nodes[level]);
7479 path->nodes[level] = clone;
7484 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7486 struct extent_buffer *eb;
7487 struct extent_buffer *parent = path->nodes[*level];
7488 int slot = path->slots[*level];
7489 const int nritems = btrfs_header_nritems(parent);
7493 lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7494 ASSERT(*level != 0);
7496 eb = btrfs_read_node_slot(parent, slot);
7501 * Trigger readahead for the next leaves we will process, so that it is
7502 * very likely that when we need them they are already in memory and we
7503 * will not block on disk IO. For nodes we only do readahead for one,
7504 * since the time window between processing nodes is typically larger.
7506 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7508 for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7509 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7510 btrfs_readahead_node_child(parent, slot);
7511 reada_done += eb->fs_info->nodesize;
7515 path->nodes[*level - 1] = eb;
7516 path->slots[*level - 1] = 0;
7520 return replace_node_with_clone(path, 0);
7525 static int tree_move_next_or_upnext(struct btrfs_path *path,
7526 int *level, int root_level)
7530 nritems = btrfs_header_nritems(path->nodes[*level]);
7532 path->slots[*level]++;
7534 while (path->slots[*level] >= nritems) {
7535 if (*level == root_level) {
7536 path->slots[*level] = nritems - 1;
7541 path->slots[*level] = 0;
7542 free_extent_buffer(path->nodes[*level]);
7543 path->nodes[*level] = NULL;
7545 path->slots[*level]++;
7547 nritems = btrfs_header_nritems(path->nodes[*level]);
7554 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7557 static int tree_advance(struct btrfs_path *path,
7558 int *level, int root_level,
7560 struct btrfs_key *key,
7565 if (*level == 0 || !allow_down) {
7566 ret = tree_move_next_or_upnext(path, level, root_level);
7568 ret = tree_move_down(path, level, reada_min_gen);
7572 * Even if we have reached the end of a tree, ret is -1, update the key
7573 * anyway, so that in case we need to restart due to a block group
7574 * relocation, we can assert that the last key of the root node still
7575 * exists in the tree.
7578 btrfs_item_key_to_cpu(path->nodes[*level], key,
7579 path->slots[*level]);
7581 btrfs_node_key_to_cpu(path->nodes[*level], key,
7582 path->slots[*level]);
7587 static int tree_compare_item(struct btrfs_path *left_path,
7588 struct btrfs_path *right_path,
7593 unsigned long off1, off2;
7595 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7596 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7600 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7601 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7602 right_path->slots[0]);
7604 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7606 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7613 * A transaction used for relocating a block group was committed or is about to
7614 * finish its commit. Release our paths and restart the search, so that we are
7615 * not using stale extent buffers:
7617 * 1) For levels > 0, we are only holding references of extent buffers, without
7618 * any locks on them, which does not prevent them from having been relocated
7619 * and reallocated after the last time we released the commit root semaphore.
7620 * The exception are the root nodes, for which we always have a clone, see
7621 * the comment at btrfs_compare_trees();
7623 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7624 * we are safe from the concurrent relocation and reallocation. However they
7625 * can have file extent items with a pre relocation disk_bytenr value, so we
7626 * restart the start from the current commit roots and clone the new leaves so
7627 * that we get the post relocation disk_bytenr values. Not doing so, could
7628 * make us clone the wrong data in case there are new extents using the old
7629 * disk_bytenr that happen to be shared.
7631 static int restart_after_relocation(struct btrfs_path *left_path,
7632 struct btrfs_path *right_path,
7633 const struct btrfs_key *left_key,
7634 const struct btrfs_key *right_key,
7637 const struct send_ctx *sctx)
7642 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7644 btrfs_release_path(left_path);
7645 btrfs_release_path(right_path);
7648 * Since keys can not be added or removed to/from our roots because they
7649 * are readonly and we do not allow deduplication to run in parallel
7650 * (which can add, remove or change keys), the layout of the trees should
7653 left_path->lowest_level = left_level;
7654 ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7658 right_path->lowest_level = right_level;
7659 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7664 * If the lowest level nodes are leaves, clone them so that they can be
7665 * safely used by changed_cb() while not under the protection of the
7666 * commit root semaphore, even if relocation and reallocation happens in
7669 if (left_level == 0) {
7670 ret = replace_node_with_clone(left_path, 0);
7675 if (right_level == 0) {
7676 ret = replace_node_with_clone(right_path, 0);
7682 * Now clone the root nodes (unless they happen to be the leaves we have
7683 * already cloned). This is to protect against concurrent snapshotting of
7684 * the send and parent roots (see the comment at btrfs_compare_trees()).
7686 root_level = btrfs_header_level(sctx->send_root->commit_root);
7687 if (root_level > 0) {
7688 ret = replace_node_with_clone(left_path, root_level);
7693 root_level = btrfs_header_level(sctx->parent_root->commit_root);
7694 if (root_level > 0) {
7695 ret = replace_node_with_clone(right_path, root_level);
7704 * This function compares two trees and calls the provided callback for
7705 * every changed/new/deleted item it finds.
7706 * If shared tree blocks are encountered, whole subtrees are skipped, making
7707 * the compare pretty fast on snapshotted subvolumes.
7709 * This currently works on commit roots only. As commit roots are read only,
7710 * we don't do any locking. The commit roots are protected with transactions.
7711 * Transactions are ended and rejoined when a commit is tried in between.
7713 * This function checks for modifications done to the trees while comparing.
7714 * If it detects a change, it aborts immediately.
7716 static int btrfs_compare_trees(struct btrfs_root *left_root,
7717 struct btrfs_root *right_root, struct send_ctx *sctx)
7719 struct btrfs_fs_info *fs_info = left_root->fs_info;
7722 struct btrfs_path *left_path = NULL;
7723 struct btrfs_path *right_path = NULL;
7724 struct btrfs_key left_key;
7725 struct btrfs_key right_key;
7726 char *tmp_buf = NULL;
7727 int left_root_level;
7728 int right_root_level;
7731 int left_end_reached = 0;
7732 int right_end_reached = 0;
7733 int advance_left = 0;
7734 int advance_right = 0;
7741 left_path = btrfs_alloc_path();
7746 right_path = btrfs_alloc_path();
7752 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7758 left_path->search_commit_root = 1;
7759 left_path->skip_locking = 1;
7760 right_path->search_commit_root = 1;
7761 right_path->skip_locking = 1;
7764 * Strategy: Go to the first items of both trees. Then do
7766 * If both trees are at level 0
7767 * Compare keys of current items
7768 * If left < right treat left item as new, advance left tree
7770 * If left > right treat right item as deleted, advance right tree
7772 * If left == right do deep compare of items, treat as changed if
7773 * needed, advance both trees and repeat
7774 * If both trees are at the same level but not at level 0
7775 * Compare keys of current nodes/leafs
7776 * If left < right advance left tree and repeat
7777 * If left > right advance right tree and repeat
7778 * If left == right compare blockptrs of the next nodes/leafs
7779 * If they match advance both trees but stay at the same level
7781 * If they don't match advance both trees while allowing to go
7783 * If tree levels are different
7784 * Advance the tree that needs it and repeat
7786 * Advancing a tree means:
7787 * If we are at level 0, try to go to the next slot. If that's not
7788 * possible, go one level up and repeat. Stop when we found a level
7789 * where we could go to the next slot. We may at this point be on a
7792 * If we are not at level 0 and not on shared tree blocks, go one
7795 * If we are not at level 0 and on shared tree blocks, go one slot to
7796 * the right if possible or go up and right.
7799 down_read(&fs_info->commit_root_sem);
7800 left_level = btrfs_header_level(left_root->commit_root);
7801 left_root_level = left_level;
7803 * We clone the root node of the send and parent roots to prevent races
7804 * with snapshot creation of these roots. Snapshot creation COWs the
7805 * root node of a tree, so after the transaction is committed the old
7806 * extent can be reallocated while this send operation is still ongoing.
7807 * So we clone them, under the commit root semaphore, to be race free.
7809 left_path->nodes[left_level] =
7810 btrfs_clone_extent_buffer(left_root->commit_root);
7811 if (!left_path->nodes[left_level]) {
7816 right_level = btrfs_header_level(right_root->commit_root);
7817 right_root_level = right_level;
7818 right_path->nodes[right_level] =
7819 btrfs_clone_extent_buffer(right_root->commit_root);
7820 if (!right_path->nodes[right_level]) {
7825 * Our right root is the parent root, while the left root is the "send"
7826 * root. We know that all new nodes/leaves in the left root must have
7827 * a generation greater than the right root's generation, so we trigger
7828 * readahead for those nodes and leaves of the left root, as we know we
7829 * will need to read them at some point.
7831 reada_min_gen = btrfs_header_generation(right_root->commit_root);
7833 if (left_level == 0)
7834 btrfs_item_key_to_cpu(left_path->nodes[left_level],
7835 &left_key, left_path->slots[left_level]);
7837 btrfs_node_key_to_cpu(left_path->nodes[left_level],
7838 &left_key, left_path->slots[left_level]);
7839 if (right_level == 0)
7840 btrfs_item_key_to_cpu(right_path->nodes[right_level],
7841 &right_key, right_path->slots[right_level]);
7843 btrfs_node_key_to_cpu(right_path->nodes[right_level],
7844 &right_key, right_path->slots[right_level]);
7846 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7849 if (need_resched() ||
7850 rwsem_is_contended(&fs_info->commit_root_sem)) {
7851 up_read(&fs_info->commit_root_sem);
7853 down_read(&fs_info->commit_root_sem);
7856 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7857 ret = restart_after_relocation(left_path, right_path,
7858 &left_key, &right_key,
7859 left_level, right_level,
7863 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7866 if (advance_left && !left_end_reached) {
7867 ret = tree_advance(left_path, &left_level,
7869 advance_left != ADVANCE_ONLY_NEXT,
7870 &left_key, reada_min_gen);
7872 left_end_reached = ADVANCE;
7877 if (advance_right && !right_end_reached) {
7878 ret = tree_advance(right_path, &right_level,
7880 advance_right != ADVANCE_ONLY_NEXT,
7881 &right_key, reada_min_gen);
7883 right_end_reached = ADVANCE;
7889 if (left_end_reached && right_end_reached) {
7892 } else if (left_end_reached) {
7893 if (right_level == 0) {
7894 up_read(&fs_info->commit_root_sem);
7895 ret = changed_cb(left_path, right_path,
7897 BTRFS_COMPARE_TREE_DELETED,
7901 down_read(&fs_info->commit_root_sem);
7903 advance_right = ADVANCE;
7905 } else if (right_end_reached) {
7906 if (left_level == 0) {
7907 up_read(&fs_info->commit_root_sem);
7908 ret = changed_cb(left_path, right_path,
7910 BTRFS_COMPARE_TREE_NEW,
7914 down_read(&fs_info->commit_root_sem);
7916 advance_left = ADVANCE;
7920 if (left_level == 0 && right_level == 0) {
7921 up_read(&fs_info->commit_root_sem);
7922 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7924 ret = changed_cb(left_path, right_path,
7926 BTRFS_COMPARE_TREE_NEW,
7928 advance_left = ADVANCE;
7929 } else if (cmp > 0) {
7930 ret = changed_cb(left_path, right_path,
7932 BTRFS_COMPARE_TREE_DELETED,
7934 advance_right = ADVANCE;
7936 enum btrfs_compare_tree_result result;
7938 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7939 ret = tree_compare_item(left_path, right_path,
7942 result = BTRFS_COMPARE_TREE_CHANGED;
7944 result = BTRFS_COMPARE_TREE_SAME;
7945 ret = changed_cb(left_path, right_path,
7946 &left_key, result, sctx);
7947 advance_left = ADVANCE;
7948 advance_right = ADVANCE;
7953 down_read(&fs_info->commit_root_sem);
7954 } else if (left_level == right_level) {
7955 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7957 advance_left = ADVANCE;
7958 } else if (cmp > 0) {
7959 advance_right = ADVANCE;
7961 left_blockptr = btrfs_node_blockptr(
7962 left_path->nodes[left_level],
7963 left_path->slots[left_level]);
7964 right_blockptr = btrfs_node_blockptr(
7965 right_path->nodes[right_level],
7966 right_path->slots[right_level]);
7967 left_gen = btrfs_node_ptr_generation(
7968 left_path->nodes[left_level],
7969 left_path->slots[left_level]);
7970 right_gen = btrfs_node_ptr_generation(
7971 right_path->nodes[right_level],
7972 right_path->slots[right_level]);
7973 if (left_blockptr == right_blockptr &&
7974 left_gen == right_gen) {
7976 * As we're on a shared block, don't
7977 * allow to go deeper.
7979 advance_left = ADVANCE_ONLY_NEXT;
7980 advance_right = ADVANCE_ONLY_NEXT;
7982 advance_left = ADVANCE;
7983 advance_right = ADVANCE;
7986 } else if (left_level < right_level) {
7987 advance_right = ADVANCE;
7989 advance_left = ADVANCE;
7994 up_read(&fs_info->commit_root_sem);
7996 btrfs_free_path(left_path);
7997 btrfs_free_path(right_path);
8002 static int send_subvol(struct send_ctx *sctx)
8006 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
8007 ret = send_header(sctx);
8012 ret = send_subvol_begin(sctx);
8016 if (sctx->parent_root) {
8017 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
8020 ret = finish_inode_if_needed(sctx, 1);
8024 ret = full_send_tree(sctx);
8030 free_recorded_refs(sctx);
8035 * If orphan cleanup did remove any orphans from a root, it means the tree
8036 * was modified and therefore the commit root is not the same as the current
8037 * root anymore. This is a problem, because send uses the commit root and
8038 * therefore can see inode items that don't exist in the current root anymore,
8039 * and for example make calls to btrfs_iget, which will do tree lookups based
8040 * on the current root and not on the commit root. Those lookups will fail,
8041 * returning a -ESTALE error, and making send fail with that error. So make
8042 * sure a send does not see any orphans we have just removed, and that it will
8043 * see the same inodes regardless of whether a transaction commit happened
8044 * before it started (meaning that the commit root will be the same as the
8045 * current root) or not.
8047 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
8049 struct btrfs_root *root = sctx->parent_root;
8051 if (root && root->node != root->commit_root)
8052 return btrfs_commit_current_transaction(root);
8054 for (int i = 0; i < sctx->clone_roots_cnt; i++) {
8055 root = sctx->clone_roots[i].root;
8056 if (root->node != root->commit_root)
8057 return btrfs_commit_current_transaction(root);
8064 * Make sure any existing dellaloc is flushed for any root used by a send
8065 * operation so that we do not miss any data and we do not race with writeback
8066 * finishing and changing a tree while send is using the tree. This could
8067 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8068 * a send operation then uses the subvolume.
8069 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8071 static int flush_delalloc_roots(struct send_ctx *sctx)
8073 struct btrfs_root *root = sctx->parent_root;
8078 ret = btrfs_start_delalloc_snapshot(root, false);
8081 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8084 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8085 root = sctx->clone_roots[i].root;
8086 ret = btrfs_start_delalloc_snapshot(root, false);
8089 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8095 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8097 spin_lock(&root->root_item_lock);
8098 root->send_in_progress--;
8100 * Not much left to do, we don't know why it's unbalanced and
8101 * can't blindly reset it to 0.
8103 if (root->send_in_progress < 0)
8104 btrfs_err(root->fs_info,
8105 "send_in_progress unbalanced %d root %llu",
8106 root->send_in_progress, btrfs_root_id(root));
8107 spin_unlock(&root->root_item_lock);
8110 static void dedupe_in_progress_warn(const struct btrfs_root *root)
8112 btrfs_warn_rl(root->fs_info,
8113 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8114 btrfs_root_id(root), root->dedupe_in_progress);
8117 long btrfs_ioctl_send(struct btrfs_inode *inode, const struct btrfs_ioctl_send_args *arg)
8120 struct btrfs_root *send_root = inode->root;
8121 struct btrfs_fs_info *fs_info = send_root->fs_info;
8122 struct btrfs_root *clone_root;
8123 struct send_ctx *sctx = NULL;
8125 u64 *clone_sources_tmp = NULL;
8126 int clone_sources_to_rollback = 0;
8128 int sort_clone_roots = 0;
8129 struct btrfs_lru_cache_entry *entry;
8130 struct btrfs_lru_cache_entry *tmp;
8132 if (!capable(CAP_SYS_ADMIN))
8136 * The subvolume must remain read-only during send, protect against
8137 * making it RW. This also protects against deletion.
8139 spin_lock(&send_root->root_item_lock);
8140 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8141 dedupe_in_progress_warn(send_root);
8142 spin_unlock(&send_root->root_item_lock);
8145 send_root->send_in_progress++;
8146 spin_unlock(&send_root->root_item_lock);
8149 * Userspace tools do the checks and warn the user if it's
8152 if (!btrfs_root_readonly(send_root)) {
8158 * Check that we don't overflow at later allocations, we request
8159 * clone_sources_count + 1 items, and compare to unsigned long inside
8160 * access_ok. Also set an upper limit for allocation size so this can't
8161 * easily exhaust memory. Max number of clone sources is about 200K.
8163 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8168 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8173 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8179 INIT_LIST_HEAD(&sctx->new_refs);
8180 INIT_LIST_HEAD(&sctx->deleted_refs);
8182 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8183 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8184 btrfs_lru_cache_init(&sctx->dir_created_cache,
8185 SEND_MAX_DIR_CREATED_CACHE_SIZE);
8187 * This cache is periodically trimmed to a fixed size elsewhere, see
8188 * cache_dir_utimes() and trim_dir_utimes_cache().
8190 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8192 sctx->pending_dir_moves = RB_ROOT;
8193 sctx->waiting_dir_moves = RB_ROOT;
8194 sctx->orphan_dirs = RB_ROOT;
8195 sctx->rbtree_new_refs = RB_ROOT;
8196 sctx->rbtree_deleted_refs = RB_ROOT;
8198 sctx->flags = arg->flags;
8200 if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8201 if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8205 /* Zero means "use the highest version" */
8206 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8210 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8215 sctx->send_filp = fget(arg->send_fd);
8216 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8221 sctx->send_root = send_root;
8223 * Unlikely but possible, if the subvolume is marked for deletion but
8224 * is slow to remove the directory entry, send can still be started
8226 if (btrfs_root_dead(sctx->send_root)) {
8231 sctx->clone_roots_cnt = arg->clone_sources_count;
8233 if (sctx->proto >= 2) {
8234 u32 send_buf_num_pages;
8236 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8237 sctx->send_buf = vmalloc(sctx->send_max_size);
8238 if (!sctx->send_buf) {
8242 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8243 sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8244 sizeof(*sctx->send_buf_pages),
8246 if (!sctx->send_buf_pages) {
8250 for (i = 0; i < send_buf_num_pages; i++) {
8251 sctx->send_buf_pages[i] =
8252 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8255 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8256 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8258 if (!sctx->send_buf) {
8263 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8264 sizeof(*sctx->clone_roots),
8266 if (!sctx->clone_roots) {
8271 alloc_size = array_size(sizeof(*arg->clone_sources),
8272 arg->clone_sources_count);
8274 if (arg->clone_sources_count) {
8275 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8276 if (!clone_sources_tmp) {
8281 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8288 for (i = 0; i < arg->clone_sources_count; i++) {
8289 clone_root = btrfs_get_fs_root(fs_info,
8290 clone_sources_tmp[i], true);
8291 if (IS_ERR(clone_root)) {
8292 ret = PTR_ERR(clone_root);
8295 spin_lock(&clone_root->root_item_lock);
8296 if (!btrfs_root_readonly(clone_root) ||
8297 btrfs_root_dead(clone_root)) {
8298 spin_unlock(&clone_root->root_item_lock);
8299 btrfs_put_root(clone_root);
8303 if (clone_root->dedupe_in_progress) {
8304 dedupe_in_progress_warn(clone_root);
8305 spin_unlock(&clone_root->root_item_lock);
8306 btrfs_put_root(clone_root);
8310 clone_root->send_in_progress++;
8311 spin_unlock(&clone_root->root_item_lock);
8313 sctx->clone_roots[i].root = clone_root;
8314 clone_sources_to_rollback = i + 1;
8316 kvfree(clone_sources_tmp);
8317 clone_sources_tmp = NULL;
8320 if (arg->parent_root) {
8321 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8323 if (IS_ERR(sctx->parent_root)) {
8324 ret = PTR_ERR(sctx->parent_root);
8328 spin_lock(&sctx->parent_root->root_item_lock);
8329 sctx->parent_root->send_in_progress++;
8330 if (!btrfs_root_readonly(sctx->parent_root) ||
8331 btrfs_root_dead(sctx->parent_root)) {
8332 spin_unlock(&sctx->parent_root->root_item_lock);
8336 if (sctx->parent_root->dedupe_in_progress) {
8337 dedupe_in_progress_warn(sctx->parent_root);
8338 spin_unlock(&sctx->parent_root->root_item_lock);
8342 spin_unlock(&sctx->parent_root->root_item_lock);
8346 * Clones from send_root are allowed, but only if the clone source
8347 * is behind the current send position. This is checked while searching
8348 * for possible clone sources.
8350 sctx->clone_roots[sctx->clone_roots_cnt++].root =
8351 btrfs_grab_root(sctx->send_root);
8353 /* We do a bsearch later */
8354 sort(sctx->clone_roots, sctx->clone_roots_cnt,
8355 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8357 sort_clone_roots = 1;
8359 ret = flush_delalloc_roots(sctx);
8363 ret = ensure_commit_roots_uptodate(sctx);
8367 ret = send_subvol(sctx);
8371 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8372 ret = send_utimes(sctx, entry->key, entry->gen);
8375 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8378 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8379 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8382 ret = send_cmd(sctx);
8388 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8389 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8391 struct pending_dir_move *pm;
8393 n = rb_first(&sctx->pending_dir_moves);
8394 pm = rb_entry(n, struct pending_dir_move, node);
8395 while (!list_empty(&pm->list)) {
8396 struct pending_dir_move *pm2;
8398 pm2 = list_first_entry(&pm->list,
8399 struct pending_dir_move, list);
8400 free_pending_move(sctx, pm2);
8402 free_pending_move(sctx, pm);
8405 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8406 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8408 struct waiting_dir_move *dm;
8410 n = rb_first(&sctx->waiting_dir_moves);
8411 dm = rb_entry(n, struct waiting_dir_move, node);
8412 rb_erase(&dm->node, &sctx->waiting_dir_moves);
8416 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8417 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8419 struct orphan_dir_info *odi;
8421 n = rb_first(&sctx->orphan_dirs);
8422 odi = rb_entry(n, struct orphan_dir_info, node);
8423 free_orphan_dir_info(sctx, odi);
8426 if (sort_clone_roots) {
8427 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8428 btrfs_root_dec_send_in_progress(
8429 sctx->clone_roots[i].root);
8430 btrfs_put_root(sctx->clone_roots[i].root);
8433 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8434 btrfs_root_dec_send_in_progress(
8435 sctx->clone_roots[i].root);
8436 btrfs_put_root(sctx->clone_roots[i].root);
8439 btrfs_root_dec_send_in_progress(send_root);
8441 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8442 btrfs_root_dec_send_in_progress(sctx->parent_root);
8443 btrfs_put_root(sctx->parent_root);
8446 kvfree(clone_sources_tmp);
8449 if (sctx->send_filp)
8450 fput(sctx->send_filp);
8452 kvfree(sctx->clone_roots);
8453 kfree(sctx->send_buf_pages);
8454 kvfree(sctx->send_buf);
8455 kvfree(sctx->verity_descriptor);
8457 close_current_inode(sctx);
8459 btrfs_lru_cache_clear(&sctx->name_cache);
8460 btrfs_lru_cache_clear(&sctx->backref_cache);
8461 btrfs_lru_cache_clear(&sctx->dir_created_cache);
8462 btrfs_lru_cache_clear(&sctx->dir_utimes_cache);