1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
12 #include "transaction.h"
13 #include "print-tree.h"
18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19 *root, struct btrfs_path *path, int level);
20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21 const struct btrfs_key *ins_key, struct btrfs_path *path,
22 int data_size, int extend);
23 static int push_node_left(struct btrfs_trans_handle *trans,
24 struct extent_buffer *dst,
25 struct extent_buffer *src, int empty);
26 static int balance_node_right(struct btrfs_trans_handle *trans,
27 struct extent_buffer *dst_buf,
28 struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
32 static const struct btrfs_csums {
37 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
38 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
39 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
40 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
41 .driver = "blake2b-256" },
44 int btrfs_super_csum_size(const struct btrfs_super_block *s)
46 u16 t = btrfs_super_csum_type(s);
48 * csum type is validated at mount time
50 return btrfs_csums[t].size;
53 const char *btrfs_super_csum_name(u16 csum_type)
55 /* csum type is validated at mount time */
56 return btrfs_csums[csum_type].name;
60 * Return driver name if defined, otherwise the name that's also a valid driver
63 const char *btrfs_super_csum_driver(u16 csum_type)
65 /* csum type is validated at mount time */
66 return btrfs_csums[csum_type].driver ?:
67 btrfs_csums[csum_type].name;
70 size_t __const btrfs_get_num_csums(void)
72 return ARRAY_SIZE(btrfs_csums);
75 struct btrfs_path *btrfs_alloc_path(void)
77 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
80 /* this also releases the path */
81 void btrfs_free_path(struct btrfs_path *p)
85 btrfs_release_path(p);
86 kmem_cache_free(btrfs_path_cachep, p);
90 * path release drops references on the extent buffers in the path
91 * and it drops any locks held by this path
93 * It is safe to call this on paths that no locks or extent buffers held.
95 noinline void btrfs_release_path(struct btrfs_path *p)
99 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
104 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
107 free_extent_buffer(p->nodes[i]);
113 * safely gets a reference on the root node of a tree. A lock
114 * is not taken, so a concurrent writer may put a different node
115 * at the root of the tree. See btrfs_lock_root_node for the
118 * The extent buffer returned by this has a reference taken, so
119 * it won't disappear. It may stop being the root of the tree
120 * at any time because there are no locks held.
122 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
124 struct extent_buffer *eb;
128 eb = rcu_dereference(root->node);
131 * RCU really hurts here, we could free up the root node because
132 * it was COWed but we may not get the new root node yet so do
133 * the inc_not_zero dance and if it doesn't work then
134 * synchronize_rcu and try again.
136 if (atomic_inc_not_zero(&eb->refs)) {
146 /* cowonly root (everything not a reference counted cow subvolume), just get
147 * put onto a simple dirty list. transaction.c walks this to make sure they
148 * get properly updated on disk.
150 static void add_root_to_dirty_list(struct btrfs_root *root)
152 struct btrfs_fs_info *fs_info = root->fs_info;
154 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
155 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
158 spin_lock(&fs_info->trans_lock);
159 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
160 /* Want the extent tree to be the last on the list */
161 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
162 list_move_tail(&root->dirty_list,
163 &fs_info->dirty_cowonly_roots);
165 list_move(&root->dirty_list,
166 &fs_info->dirty_cowonly_roots);
168 spin_unlock(&fs_info->trans_lock);
172 * used by snapshot creation to make a copy of a root for a tree with
173 * a given objectid. The buffer with the new root node is returned in
174 * cow_ret, and this func returns zero on success or a negative error code.
176 int btrfs_copy_root(struct btrfs_trans_handle *trans,
177 struct btrfs_root *root,
178 struct extent_buffer *buf,
179 struct extent_buffer **cow_ret, u64 new_root_objectid)
181 struct btrfs_fs_info *fs_info = root->fs_info;
182 struct extent_buffer *cow;
185 struct btrfs_disk_key disk_key;
187 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
188 trans->transid != fs_info->running_transaction->transid);
189 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
190 trans->transid != root->last_trans);
192 level = btrfs_header_level(buf);
194 btrfs_item_key(buf, &disk_key, 0);
196 btrfs_node_key(buf, &disk_key, 0);
198 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
199 &disk_key, level, buf->start, 0);
203 copy_extent_buffer_full(cow, buf);
204 btrfs_set_header_bytenr(cow, cow->start);
205 btrfs_set_header_generation(cow, trans->transid);
206 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
207 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
208 BTRFS_HEADER_FLAG_RELOC);
209 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
210 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
212 btrfs_set_header_owner(cow, new_root_objectid);
214 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
216 WARN_ON(btrfs_header_generation(buf) > trans->transid);
217 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
218 ret = btrfs_inc_ref(trans, root, cow, 1);
220 ret = btrfs_inc_ref(trans, root, cow, 0);
225 btrfs_mark_buffer_dirty(cow);
234 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
235 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
237 MOD_LOG_ROOT_REPLACE,
240 struct tree_mod_root {
245 struct tree_mod_elem {
251 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
254 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
257 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
258 struct btrfs_disk_key key;
261 /* this is used for op == MOD_LOG_MOVE_KEYS */
267 /* this is used for op == MOD_LOG_ROOT_REPLACE */
268 struct tree_mod_root old_root;
272 * Pull a new tree mod seq number for our operation.
274 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
276 return atomic64_inc_return(&fs_info->tree_mod_seq);
280 * This adds a new blocker to the tree mod log's blocker list if the @elem
281 * passed does not already have a sequence number set. So when a caller expects
282 * to record tree modifications, it should ensure to set elem->seq to zero
283 * before calling btrfs_get_tree_mod_seq.
284 * Returns a fresh, unused tree log modification sequence number, even if no new
287 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
288 struct seq_list *elem)
290 write_lock(&fs_info->tree_mod_log_lock);
292 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
293 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
295 write_unlock(&fs_info->tree_mod_log_lock);
300 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
301 struct seq_list *elem)
303 struct rb_root *tm_root;
304 struct rb_node *node;
305 struct rb_node *next;
306 struct tree_mod_elem *tm;
307 u64 min_seq = (u64)-1;
308 u64 seq_putting = elem->seq;
313 write_lock(&fs_info->tree_mod_log_lock);
314 list_del(&elem->list);
317 if (!list_empty(&fs_info->tree_mod_seq_list)) {
318 struct seq_list *first;
320 first = list_first_entry(&fs_info->tree_mod_seq_list,
321 struct seq_list, list);
322 if (seq_putting > first->seq) {
324 * Blocker with lower sequence number exists, we
325 * cannot remove anything from the log.
327 write_unlock(&fs_info->tree_mod_log_lock);
330 min_seq = first->seq;
334 * anything that's lower than the lowest existing (read: blocked)
335 * sequence number can be removed from the tree.
337 tm_root = &fs_info->tree_mod_log;
338 for (node = rb_first(tm_root); node; node = next) {
339 next = rb_next(node);
340 tm = rb_entry(node, struct tree_mod_elem, node);
341 if (tm->seq >= min_seq)
343 rb_erase(node, tm_root);
346 write_unlock(&fs_info->tree_mod_log_lock);
350 * key order of the log:
351 * node/leaf start address -> sequence
353 * The 'start address' is the logical address of the *new* root node
354 * for root replace operations, or the logical address of the affected
355 * block for all other operations.
358 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
360 struct rb_root *tm_root;
361 struct rb_node **new;
362 struct rb_node *parent = NULL;
363 struct tree_mod_elem *cur;
365 lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
367 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
369 tm_root = &fs_info->tree_mod_log;
370 new = &tm_root->rb_node;
372 cur = rb_entry(*new, struct tree_mod_elem, node);
374 if (cur->logical < tm->logical)
375 new = &((*new)->rb_left);
376 else if (cur->logical > tm->logical)
377 new = &((*new)->rb_right);
378 else if (cur->seq < tm->seq)
379 new = &((*new)->rb_left);
380 else if (cur->seq > tm->seq)
381 new = &((*new)->rb_right);
386 rb_link_node(&tm->node, parent, new);
387 rb_insert_color(&tm->node, tm_root);
392 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
393 * returns zero with the tree_mod_log_lock acquired. The caller must hold
394 * this until all tree mod log insertions are recorded in the rb tree and then
395 * write unlock fs_info::tree_mod_log_lock.
397 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
398 struct extent_buffer *eb) {
400 if (list_empty(&(fs_info)->tree_mod_seq_list))
402 if (eb && btrfs_header_level(eb) == 0)
405 write_lock(&fs_info->tree_mod_log_lock);
406 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
407 write_unlock(&fs_info->tree_mod_log_lock);
414 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
415 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
416 struct extent_buffer *eb)
419 if (list_empty(&(fs_info)->tree_mod_seq_list))
421 if (eb && btrfs_header_level(eb) == 0)
427 static struct tree_mod_elem *
428 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
429 enum mod_log_op op, gfp_t flags)
431 struct tree_mod_elem *tm;
433 tm = kzalloc(sizeof(*tm), flags);
437 tm->logical = eb->start;
438 if (op != MOD_LOG_KEY_ADD) {
439 btrfs_node_key(eb, &tm->key, slot);
440 tm->blockptr = btrfs_node_blockptr(eb, slot);
444 tm->generation = btrfs_node_ptr_generation(eb, slot);
445 RB_CLEAR_NODE(&tm->node);
450 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
451 enum mod_log_op op, gfp_t flags)
453 struct tree_mod_elem *tm;
456 if (!tree_mod_need_log(eb->fs_info, eb))
459 tm = alloc_tree_mod_elem(eb, slot, op, flags);
463 if (tree_mod_dont_log(eb->fs_info, eb)) {
468 ret = __tree_mod_log_insert(eb->fs_info, tm);
469 write_unlock(&eb->fs_info->tree_mod_log_lock);
476 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
477 int dst_slot, int src_slot, int nr_items)
479 struct tree_mod_elem *tm = NULL;
480 struct tree_mod_elem **tm_list = NULL;
485 if (!tree_mod_need_log(eb->fs_info, eb))
488 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
492 tm = kzalloc(sizeof(*tm), GFP_NOFS);
498 tm->logical = eb->start;
500 tm->move.dst_slot = dst_slot;
501 tm->move.nr_items = nr_items;
502 tm->op = MOD_LOG_MOVE_KEYS;
504 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
505 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
506 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
513 if (tree_mod_dont_log(eb->fs_info, eb))
518 * When we override something during the move, we log these removals.
519 * This can only happen when we move towards the beginning of the
520 * buffer, i.e. dst_slot < src_slot.
522 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
523 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
528 ret = __tree_mod_log_insert(eb->fs_info, tm);
531 write_unlock(&eb->fs_info->tree_mod_log_lock);
536 for (i = 0; i < nr_items; i++) {
537 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
538 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
542 write_unlock(&eb->fs_info->tree_mod_log_lock);
550 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
551 struct tree_mod_elem **tm_list,
557 for (i = nritems - 1; i >= 0; i--) {
558 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
560 for (j = nritems - 1; j > i; j--)
561 rb_erase(&tm_list[j]->node,
562 &fs_info->tree_mod_log);
570 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
571 struct extent_buffer *new_root, int log_removal)
573 struct btrfs_fs_info *fs_info = old_root->fs_info;
574 struct tree_mod_elem *tm = NULL;
575 struct tree_mod_elem **tm_list = NULL;
580 if (!tree_mod_need_log(fs_info, NULL))
583 if (log_removal && btrfs_header_level(old_root) > 0) {
584 nritems = btrfs_header_nritems(old_root);
585 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
591 for (i = 0; i < nritems; i++) {
592 tm_list[i] = alloc_tree_mod_elem(old_root, i,
593 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
601 tm = kzalloc(sizeof(*tm), GFP_NOFS);
607 tm->logical = new_root->start;
608 tm->old_root.logical = old_root->start;
609 tm->old_root.level = btrfs_header_level(old_root);
610 tm->generation = btrfs_header_generation(old_root);
611 tm->op = MOD_LOG_ROOT_REPLACE;
613 if (tree_mod_dont_log(fs_info, NULL))
617 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
619 ret = __tree_mod_log_insert(fs_info, tm);
621 write_unlock(&fs_info->tree_mod_log_lock);
630 for (i = 0; i < nritems; i++)
639 static struct tree_mod_elem *
640 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
643 struct rb_root *tm_root;
644 struct rb_node *node;
645 struct tree_mod_elem *cur = NULL;
646 struct tree_mod_elem *found = NULL;
648 read_lock(&fs_info->tree_mod_log_lock);
649 tm_root = &fs_info->tree_mod_log;
650 node = tm_root->rb_node;
652 cur = rb_entry(node, struct tree_mod_elem, node);
653 if (cur->logical < start) {
654 node = node->rb_left;
655 } else if (cur->logical > start) {
656 node = node->rb_right;
657 } else if (cur->seq < min_seq) {
658 node = node->rb_left;
659 } else if (!smallest) {
660 /* we want the node with the highest seq */
662 BUG_ON(found->seq > cur->seq);
664 node = node->rb_left;
665 } else if (cur->seq > min_seq) {
666 /* we want the node with the smallest seq */
668 BUG_ON(found->seq < cur->seq);
670 node = node->rb_right;
676 read_unlock(&fs_info->tree_mod_log_lock);
682 * this returns the element from the log with the smallest time sequence
683 * value that's in the log (the oldest log item). any element with a time
684 * sequence lower than min_seq will be ignored.
686 static struct tree_mod_elem *
687 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
690 return __tree_mod_log_search(fs_info, start, min_seq, 1);
694 * this returns the element from the log with the largest time sequence
695 * value that's in the log (the most recent log item). any element with
696 * a time sequence lower than min_seq will be ignored.
698 static struct tree_mod_elem *
699 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
701 return __tree_mod_log_search(fs_info, start, min_seq, 0);
704 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
705 struct extent_buffer *src, unsigned long dst_offset,
706 unsigned long src_offset, int nr_items)
708 struct btrfs_fs_info *fs_info = dst->fs_info;
710 struct tree_mod_elem **tm_list = NULL;
711 struct tree_mod_elem **tm_list_add, **tm_list_rem;
715 if (!tree_mod_need_log(fs_info, NULL))
718 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
721 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
726 tm_list_add = tm_list;
727 tm_list_rem = tm_list + nr_items;
728 for (i = 0; i < nr_items; i++) {
729 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
730 MOD_LOG_KEY_REMOVE, GFP_NOFS);
731 if (!tm_list_rem[i]) {
736 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
737 MOD_LOG_KEY_ADD, GFP_NOFS);
738 if (!tm_list_add[i]) {
744 if (tree_mod_dont_log(fs_info, NULL))
748 for (i = 0; i < nr_items; i++) {
749 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
752 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
757 write_unlock(&fs_info->tree_mod_log_lock);
763 for (i = 0; i < nr_items * 2; i++) {
764 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
765 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
769 write_unlock(&fs_info->tree_mod_log_lock);
775 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
777 struct tree_mod_elem **tm_list = NULL;
782 if (btrfs_header_level(eb) == 0)
785 if (!tree_mod_need_log(eb->fs_info, NULL))
788 nritems = btrfs_header_nritems(eb);
789 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
793 for (i = 0; i < nritems; i++) {
794 tm_list[i] = alloc_tree_mod_elem(eb, i,
795 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
802 if (tree_mod_dont_log(eb->fs_info, eb))
805 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
806 write_unlock(&eb->fs_info->tree_mod_log_lock);
814 for (i = 0; i < nritems; i++)
822 * check if the tree block can be shared by multiple trees
824 int btrfs_block_can_be_shared(struct btrfs_root *root,
825 struct extent_buffer *buf)
828 * Tree blocks not in reference counted trees and tree roots
829 * are never shared. If a block was allocated after the last
830 * snapshot and the block was not allocated by tree relocation,
831 * we know the block is not shared.
833 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
834 buf != root->node && buf != root->commit_root &&
835 (btrfs_header_generation(buf) <=
836 btrfs_root_last_snapshot(&root->root_item) ||
837 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
843 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
844 struct btrfs_root *root,
845 struct extent_buffer *buf,
846 struct extent_buffer *cow,
849 struct btrfs_fs_info *fs_info = root->fs_info;
857 * Backrefs update rules:
859 * Always use full backrefs for extent pointers in tree block
860 * allocated by tree relocation.
862 * If a shared tree block is no longer referenced by its owner
863 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
864 * use full backrefs for extent pointers in tree block.
866 * If a tree block is been relocating
867 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
868 * use full backrefs for extent pointers in tree block.
869 * The reason for this is some operations (such as drop tree)
870 * are only allowed for blocks use full backrefs.
873 if (btrfs_block_can_be_shared(root, buf)) {
874 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
875 btrfs_header_level(buf), 1,
881 btrfs_handle_fs_error(fs_info, ret, NULL);
886 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
887 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
888 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
893 owner = btrfs_header_owner(buf);
894 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
895 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
898 if ((owner == root->root_key.objectid ||
899 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
900 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
901 ret = btrfs_inc_ref(trans, root, buf, 1);
905 if (root->root_key.objectid ==
906 BTRFS_TREE_RELOC_OBJECTID) {
907 ret = btrfs_dec_ref(trans, root, buf, 0);
910 ret = btrfs_inc_ref(trans, root, cow, 1);
914 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
917 if (root->root_key.objectid ==
918 BTRFS_TREE_RELOC_OBJECTID)
919 ret = btrfs_inc_ref(trans, root, cow, 1);
921 ret = btrfs_inc_ref(trans, root, cow, 0);
925 if (new_flags != 0) {
926 int level = btrfs_header_level(buf);
928 ret = btrfs_set_disk_extent_flags(trans,
931 new_flags, level, 0);
936 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
937 if (root->root_key.objectid ==
938 BTRFS_TREE_RELOC_OBJECTID)
939 ret = btrfs_inc_ref(trans, root, cow, 1);
941 ret = btrfs_inc_ref(trans, root, cow, 0);
944 ret = btrfs_dec_ref(trans, root, buf, 1);
948 btrfs_clean_tree_block(buf);
954 static struct extent_buffer *alloc_tree_block_no_bg_flush(
955 struct btrfs_trans_handle *trans,
956 struct btrfs_root *root,
958 const struct btrfs_disk_key *disk_key,
963 struct btrfs_fs_info *fs_info = root->fs_info;
964 struct extent_buffer *ret;
967 * If we are COWing a node/leaf from the extent, chunk, device or free
968 * space trees, make sure that we do not finish block group creation of
969 * pending block groups. We do this to avoid a deadlock.
970 * COWing can result in allocation of a new chunk, and flushing pending
971 * block groups (btrfs_create_pending_block_groups()) can be triggered
972 * when finishing allocation of a new chunk. Creation of a pending block
973 * group modifies the extent, chunk, device and free space trees,
974 * therefore we could deadlock with ourselves since we are holding a
975 * lock on an extent buffer that btrfs_create_pending_block_groups() may
977 * For similar reasons, we also need to delay flushing pending block
978 * groups when splitting a leaf or node, from one of those trees, since
979 * we are holding a write lock on it and its parent or when inserting a
980 * new root node for one of those trees.
982 if (root == fs_info->extent_root ||
983 root == fs_info->chunk_root ||
984 root == fs_info->dev_root ||
985 root == fs_info->free_space_root)
986 trans->can_flush_pending_bgs = false;
988 ret = btrfs_alloc_tree_block(trans, root, parent_start,
989 root->root_key.objectid, disk_key, level,
991 trans->can_flush_pending_bgs = true;
997 * does the dirty work in cow of a single block. The parent block (if
998 * supplied) is updated to point to the new cow copy. The new buffer is marked
999 * dirty and returned locked. If you modify the block it needs to be marked
1002 * search_start -- an allocation hint for the new block
1004 * empty_size -- a hint that you plan on doing more cow. This is the size in
1005 * bytes the allocator should try to find free next to the block it returns.
1006 * This is just a hint and may be ignored by the allocator.
1008 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1009 struct btrfs_root *root,
1010 struct extent_buffer *buf,
1011 struct extent_buffer *parent, int parent_slot,
1012 struct extent_buffer **cow_ret,
1013 u64 search_start, u64 empty_size)
1015 struct btrfs_fs_info *fs_info = root->fs_info;
1016 struct btrfs_disk_key disk_key;
1017 struct extent_buffer *cow;
1020 int unlock_orig = 0;
1021 u64 parent_start = 0;
1023 if (*cow_ret == buf)
1026 btrfs_assert_tree_locked(buf);
1028 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1029 trans->transid != fs_info->running_transaction->transid);
1030 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1031 trans->transid != root->last_trans);
1033 level = btrfs_header_level(buf);
1036 btrfs_item_key(buf, &disk_key, 0);
1038 btrfs_node_key(buf, &disk_key, 0);
1040 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1041 parent_start = parent->start;
1043 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1044 level, search_start, empty_size);
1046 return PTR_ERR(cow);
1048 /* cow is set to blocking by btrfs_init_new_buffer */
1050 copy_extent_buffer_full(cow, buf);
1051 btrfs_set_header_bytenr(cow, cow->start);
1052 btrfs_set_header_generation(cow, trans->transid);
1053 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1054 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1055 BTRFS_HEADER_FLAG_RELOC);
1056 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1057 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1059 btrfs_set_header_owner(cow, root->root_key.objectid);
1061 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1063 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1065 btrfs_abort_transaction(trans, ret);
1069 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1070 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1072 btrfs_abort_transaction(trans, ret);
1077 if (buf == root->node) {
1078 WARN_ON(parent && parent != buf);
1079 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1080 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1081 parent_start = buf->start;
1083 atomic_inc(&cow->refs);
1084 ret = tree_mod_log_insert_root(root->node, cow, 1);
1086 rcu_assign_pointer(root->node, cow);
1088 btrfs_free_tree_block(trans, root, buf, parent_start,
1090 free_extent_buffer(buf);
1091 add_root_to_dirty_list(root);
1093 WARN_ON(trans->transid != btrfs_header_generation(parent));
1094 tree_mod_log_insert_key(parent, parent_slot,
1095 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1096 btrfs_set_node_blockptr(parent, parent_slot,
1098 btrfs_set_node_ptr_generation(parent, parent_slot,
1100 btrfs_mark_buffer_dirty(parent);
1102 ret = tree_mod_log_free_eb(buf);
1104 btrfs_abort_transaction(trans, ret);
1108 btrfs_free_tree_block(trans, root, buf, parent_start,
1112 btrfs_tree_unlock(buf);
1113 free_extent_buffer_stale(buf);
1114 btrfs_mark_buffer_dirty(cow);
1120 * returns the logical address of the oldest predecessor of the given root.
1121 * entries older than time_seq are ignored.
1123 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1124 struct extent_buffer *eb_root, u64 time_seq)
1126 struct tree_mod_elem *tm;
1127 struct tree_mod_elem *found = NULL;
1128 u64 root_logical = eb_root->start;
1135 * the very last operation that's logged for a root is the
1136 * replacement operation (if it is replaced at all). this has
1137 * the logical address of the *new* root, making it the very
1138 * first operation that's logged for this root.
1141 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1146 * if there are no tree operation for the oldest root, we simply
1147 * return it. this should only happen if that (old) root is at
1154 * if there's an operation that's not a root replacement, we
1155 * found the oldest version of our root. normally, we'll find a
1156 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1158 if (tm->op != MOD_LOG_ROOT_REPLACE)
1162 root_logical = tm->old_root.logical;
1166 /* if there's no old root to return, return what we found instead */
1174 * tm is a pointer to the first operation to rewind within eb. then, all
1175 * previous operations will be rewound (until we reach something older than
1179 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1180 u64 time_seq, struct tree_mod_elem *first_tm)
1183 struct rb_node *next;
1184 struct tree_mod_elem *tm = first_tm;
1185 unsigned long o_dst;
1186 unsigned long o_src;
1187 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1189 n = btrfs_header_nritems(eb);
1190 read_lock(&fs_info->tree_mod_log_lock);
1191 while (tm && tm->seq >= time_seq) {
1193 * all the operations are recorded with the operator used for
1194 * the modification. as we're going backwards, we do the
1195 * opposite of each operation here.
1198 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1199 BUG_ON(tm->slot < n);
1201 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1202 case MOD_LOG_KEY_REMOVE:
1203 btrfs_set_node_key(eb, &tm->key, tm->slot);
1204 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1205 btrfs_set_node_ptr_generation(eb, tm->slot,
1209 case MOD_LOG_KEY_REPLACE:
1210 BUG_ON(tm->slot >= n);
1211 btrfs_set_node_key(eb, &tm->key, tm->slot);
1212 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1213 btrfs_set_node_ptr_generation(eb, tm->slot,
1216 case MOD_LOG_KEY_ADD:
1217 /* if a move operation is needed it's in the log */
1220 case MOD_LOG_MOVE_KEYS:
1221 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1222 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1223 memmove_extent_buffer(eb, o_dst, o_src,
1224 tm->move.nr_items * p_size);
1226 case MOD_LOG_ROOT_REPLACE:
1228 * this operation is special. for roots, this must be
1229 * handled explicitly before rewinding.
1230 * for non-roots, this operation may exist if the node
1231 * was a root: root A -> child B; then A gets empty and
1232 * B is promoted to the new root. in the mod log, we'll
1233 * have a root-replace operation for B, a tree block
1234 * that is no root. we simply ignore that operation.
1238 next = rb_next(&tm->node);
1241 tm = rb_entry(next, struct tree_mod_elem, node);
1242 if (tm->logical != first_tm->logical)
1245 read_unlock(&fs_info->tree_mod_log_lock);
1246 btrfs_set_header_nritems(eb, n);
1250 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1251 * is returned. If rewind operations happen, a fresh buffer is returned. The
1252 * returned buffer is always read-locked. If the returned buffer is not the
1253 * input buffer, the lock on the input buffer is released and the input buffer
1254 * is freed (its refcount is decremented).
1256 static struct extent_buffer *
1257 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1258 struct extent_buffer *eb, u64 time_seq)
1260 struct extent_buffer *eb_rewin;
1261 struct tree_mod_elem *tm;
1266 if (btrfs_header_level(eb) == 0)
1269 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1273 btrfs_set_path_blocking(path);
1274 btrfs_set_lock_blocking_read(eb);
1276 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1277 BUG_ON(tm->slot != 0);
1278 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1280 btrfs_tree_read_unlock_blocking(eb);
1281 free_extent_buffer(eb);
1284 btrfs_set_header_bytenr(eb_rewin, eb->start);
1285 btrfs_set_header_backref_rev(eb_rewin,
1286 btrfs_header_backref_rev(eb));
1287 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1288 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1290 eb_rewin = btrfs_clone_extent_buffer(eb);
1292 btrfs_tree_read_unlock_blocking(eb);
1293 free_extent_buffer(eb);
1298 btrfs_tree_read_unlock_blocking(eb);
1299 free_extent_buffer(eb);
1301 btrfs_tree_read_lock(eb_rewin);
1302 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1303 WARN_ON(btrfs_header_nritems(eb_rewin) >
1304 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1310 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1311 * value. If there are no changes, the current root->root_node is returned. If
1312 * anything changed in between, there's a fresh buffer allocated on which the
1313 * rewind operations are done. In any case, the returned buffer is read locked.
1314 * Returns NULL on error (with no locks held).
1316 static inline struct extent_buffer *
1317 get_old_root(struct btrfs_root *root, u64 time_seq)
1319 struct btrfs_fs_info *fs_info = root->fs_info;
1320 struct tree_mod_elem *tm;
1321 struct extent_buffer *eb = NULL;
1322 struct extent_buffer *eb_root;
1323 u64 eb_root_owner = 0;
1324 struct extent_buffer *old;
1325 struct tree_mod_root *old_root = NULL;
1326 u64 old_generation = 0;
1330 eb_root = btrfs_read_lock_root_node(root);
1331 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1335 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1336 old_root = &tm->old_root;
1337 old_generation = tm->generation;
1338 logical = old_root->logical;
1339 level = old_root->level;
1341 logical = eb_root->start;
1342 level = btrfs_header_level(eb_root);
1345 tm = tree_mod_log_search(fs_info, logical, time_seq);
1346 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1347 btrfs_tree_read_unlock(eb_root);
1348 free_extent_buffer(eb_root);
1349 old = read_tree_block(fs_info, logical, 0, level, NULL);
1350 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1352 free_extent_buffer(old);
1354 "failed to read tree block %llu from get_old_root",
1357 eb = btrfs_clone_extent_buffer(old);
1358 free_extent_buffer(old);
1360 } else if (old_root) {
1361 eb_root_owner = btrfs_header_owner(eb_root);
1362 btrfs_tree_read_unlock(eb_root);
1363 free_extent_buffer(eb_root);
1364 eb = alloc_dummy_extent_buffer(fs_info, logical);
1366 btrfs_set_lock_blocking_read(eb_root);
1367 eb = btrfs_clone_extent_buffer(eb_root);
1368 btrfs_tree_read_unlock_blocking(eb_root);
1369 free_extent_buffer(eb_root);
1374 btrfs_tree_read_lock(eb);
1376 btrfs_set_header_bytenr(eb, eb->start);
1377 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1378 btrfs_set_header_owner(eb, eb_root_owner);
1379 btrfs_set_header_level(eb, old_root->level);
1380 btrfs_set_header_generation(eb, old_generation);
1383 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1385 WARN_ON(btrfs_header_level(eb) != 0);
1386 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1391 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1393 struct tree_mod_elem *tm;
1395 struct extent_buffer *eb_root = btrfs_root_node(root);
1397 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1398 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1399 level = tm->old_root.level;
1401 level = btrfs_header_level(eb_root);
1403 free_extent_buffer(eb_root);
1408 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1409 struct btrfs_root *root,
1410 struct extent_buffer *buf)
1412 if (btrfs_is_testing(root->fs_info))
1415 /* Ensure we can see the FORCE_COW bit */
1416 smp_mb__before_atomic();
1419 * We do not need to cow a block if
1420 * 1) this block is not created or changed in this transaction;
1421 * 2) this block does not belong to TREE_RELOC tree;
1422 * 3) the root is not forced COW.
1424 * What is forced COW:
1425 * when we create snapshot during committing the transaction,
1426 * after we've finished copying src root, we must COW the shared
1427 * block to ensure the metadata consistency.
1429 if (btrfs_header_generation(buf) == trans->transid &&
1430 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1431 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1432 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1433 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1439 * cows a single block, see __btrfs_cow_block for the real work.
1440 * This version of it has extra checks so that a block isn't COWed more than
1441 * once per transaction, as long as it hasn't been written yet
1443 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1444 struct btrfs_root *root, struct extent_buffer *buf,
1445 struct extent_buffer *parent, int parent_slot,
1446 struct extent_buffer **cow_ret)
1448 struct btrfs_fs_info *fs_info = root->fs_info;
1452 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1454 "COW'ing blocks on a fs root that's being dropped");
1456 if (trans->transaction != fs_info->running_transaction)
1457 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1459 fs_info->running_transaction->transid);
1461 if (trans->transid != fs_info->generation)
1462 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1463 trans->transid, fs_info->generation);
1465 if (!should_cow_block(trans, root, buf)) {
1466 trans->dirty = true;
1471 search_start = buf->start & ~((u64)SZ_1G - 1);
1474 btrfs_set_lock_blocking_write(parent);
1475 btrfs_set_lock_blocking_write(buf);
1478 * Before CoWing this block for later modification, check if it's
1479 * the subtree root and do the delayed subtree trace if needed.
1481 * Also We don't care about the error, as it's handled internally.
1483 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1484 ret = __btrfs_cow_block(trans, root, buf, parent,
1485 parent_slot, cow_ret, search_start, 0);
1487 trace_btrfs_cow_block(root, buf, *cow_ret);
1493 * helper function for defrag to decide if two blocks pointed to by a
1494 * node are actually close by
1496 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1498 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1500 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1506 * compare two keys in a memcmp fashion
1508 static int comp_keys(const struct btrfs_disk_key *disk,
1509 const struct btrfs_key *k2)
1511 struct btrfs_key k1;
1513 btrfs_disk_key_to_cpu(&k1, disk);
1515 return btrfs_comp_cpu_keys(&k1, k2);
1519 * same as comp_keys only with two btrfs_key's
1521 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1523 if (k1->objectid > k2->objectid)
1525 if (k1->objectid < k2->objectid)
1527 if (k1->type > k2->type)
1529 if (k1->type < k2->type)
1531 if (k1->offset > k2->offset)
1533 if (k1->offset < k2->offset)
1539 * this is used by the defrag code to go through all the
1540 * leaves pointed to by a node and reallocate them so that
1541 * disk order is close to key order
1543 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1544 struct btrfs_root *root, struct extent_buffer *parent,
1545 int start_slot, u64 *last_ret,
1546 struct btrfs_key *progress)
1548 struct btrfs_fs_info *fs_info = root->fs_info;
1549 struct extent_buffer *cur;
1552 u64 search_start = *last_ret;
1562 int progress_passed = 0;
1563 struct btrfs_disk_key disk_key;
1565 parent_level = btrfs_header_level(parent);
1567 WARN_ON(trans->transaction != fs_info->running_transaction);
1568 WARN_ON(trans->transid != fs_info->generation);
1570 parent_nritems = btrfs_header_nritems(parent);
1571 blocksize = fs_info->nodesize;
1572 end_slot = parent_nritems - 1;
1574 if (parent_nritems <= 1)
1577 btrfs_set_lock_blocking_write(parent);
1579 for (i = start_slot; i <= end_slot; i++) {
1580 struct btrfs_key first_key;
1583 btrfs_node_key(parent, &disk_key, i);
1584 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1587 progress_passed = 1;
1588 blocknr = btrfs_node_blockptr(parent, i);
1589 gen = btrfs_node_ptr_generation(parent, i);
1590 btrfs_node_key_to_cpu(parent, &first_key, i);
1591 if (last_block == 0)
1592 last_block = blocknr;
1595 other = btrfs_node_blockptr(parent, i - 1);
1596 close = close_blocks(blocknr, other, blocksize);
1598 if (!close && i < end_slot) {
1599 other = btrfs_node_blockptr(parent, i + 1);
1600 close = close_blocks(blocknr, other, blocksize);
1603 last_block = blocknr;
1607 cur = find_extent_buffer(fs_info, blocknr);
1609 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1612 if (!cur || !uptodate) {
1614 cur = read_tree_block(fs_info, blocknr, gen,
1618 return PTR_ERR(cur);
1619 } else if (!extent_buffer_uptodate(cur)) {
1620 free_extent_buffer(cur);
1623 } else if (!uptodate) {
1624 err = btrfs_read_buffer(cur, gen,
1625 parent_level - 1,&first_key);
1627 free_extent_buffer(cur);
1632 if (search_start == 0)
1633 search_start = last_block;
1635 btrfs_tree_lock(cur);
1636 btrfs_set_lock_blocking_write(cur);
1637 err = __btrfs_cow_block(trans, root, cur, parent, i,
1640 (end_slot - i) * blocksize));
1642 btrfs_tree_unlock(cur);
1643 free_extent_buffer(cur);
1646 search_start = cur->start;
1647 last_block = cur->start;
1648 *last_ret = search_start;
1649 btrfs_tree_unlock(cur);
1650 free_extent_buffer(cur);
1656 * search for key in the extent_buffer. The items start at offset p,
1657 * and they are item_size apart. There are 'max' items in p.
1659 * the slot in the array is returned via slot, and it points to
1660 * the place where you would insert key if it is not found in
1663 * slot may point to max if the key is bigger than all of the keys
1665 static noinline int generic_bin_search(struct extent_buffer *eb,
1666 unsigned long p, int item_size,
1667 const struct btrfs_key *key,
1674 struct btrfs_disk_key *tmp = NULL;
1675 struct btrfs_disk_key unaligned;
1676 unsigned long offset;
1678 unsigned long map_start = 0;
1679 unsigned long map_len = 0;
1683 btrfs_err(eb->fs_info,
1684 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1685 __func__, low, high, eb->start,
1686 btrfs_header_owner(eb), btrfs_header_level(eb));
1690 while (low < high) {
1691 mid = (low + high) / 2;
1692 offset = p + mid * item_size;
1694 if (!kaddr || offset < map_start ||
1695 (offset + sizeof(struct btrfs_disk_key)) >
1696 map_start + map_len) {
1698 err = map_private_extent_buffer(eb, offset,
1699 sizeof(struct btrfs_disk_key),
1700 &kaddr, &map_start, &map_len);
1703 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1705 } else if (err == 1) {
1706 read_extent_buffer(eb, &unaligned,
1707 offset, sizeof(unaligned));
1714 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1717 ret = comp_keys(tmp, key);
1733 * simple bin_search frontend that does the right thing for
1736 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1737 int level, int *slot)
1740 return generic_bin_search(eb,
1741 offsetof(struct btrfs_leaf, items),
1742 sizeof(struct btrfs_item),
1743 key, btrfs_header_nritems(eb),
1746 return generic_bin_search(eb,
1747 offsetof(struct btrfs_node, ptrs),
1748 sizeof(struct btrfs_key_ptr),
1749 key, btrfs_header_nritems(eb),
1753 static void root_add_used(struct btrfs_root *root, u32 size)
1755 spin_lock(&root->accounting_lock);
1756 btrfs_set_root_used(&root->root_item,
1757 btrfs_root_used(&root->root_item) + size);
1758 spin_unlock(&root->accounting_lock);
1761 static void root_sub_used(struct btrfs_root *root, u32 size)
1763 spin_lock(&root->accounting_lock);
1764 btrfs_set_root_used(&root->root_item,
1765 btrfs_root_used(&root->root_item) - size);
1766 spin_unlock(&root->accounting_lock);
1769 /* given a node and slot number, this reads the blocks it points to. The
1770 * extent buffer is returned with a reference taken (but unlocked).
1772 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1775 int level = btrfs_header_level(parent);
1776 struct extent_buffer *eb;
1777 struct btrfs_key first_key;
1779 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1780 return ERR_PTR(-ENOENT);
1784 btrfs_node_key_to_cpu(parent, &first_key, slot);
1785 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1786 btrfs_node_ptr_generation(parent, slot),
1787 level - 1, &first_key);
1788 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1789 free_extent_buffer(eb);
1797 * node level balancing, used to make sure nodes are in proper order for
1798 * item deletion. We balance from the top down, so we have to make sure
1799 * that a deletion won't leave an node completely empty later on.
1801 static noinline int balance_level(struct btrfs_trans_handle *trans,
1802 struct btrfs_root *root,
1803 struct btrfs_path *path, int level)
1805 struct btrfs_fs_info *fs_info = root->fs_info;
1806 struct extent_buffer *right = NULL;
1807 struct extent_buffer *mid;
1808 struct extent_buffer *left = NULL;
1809 struct extent_buffer *parent = NULL;
1813 int orig_slot = path->slots[level];
1818 mid = path->nodes[level];
1820 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1821 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1822 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1824 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1826 if (level < BTRFS_MAX_LEVEL - 1) {
1827 parent = path->nodes[level + 1];
1828 pslot = path->slots[level + 1];
1832 * deal with the case where there is only one pointer in the root
1833 * by promoting the node below to a root
1836 struct extent_buffer *child;
1838 if (btrfs_header_nritems(mid) != 1)
1841 /* promote the child to a root */
1842 child = btrfs_read_node_slot(mid, 0);
1843 if (IS_ERR(child)) {
1844 ret = PTR_ERR(child);
1845 btrfs_handle_fs_error(fs_info, ret, NULL);
1849 btrfs_tree_lock(child);
1850 btrfs_set_lock_blocking_write(child);
1851 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1853 btrfs_tree_unlock(child);
1854 free_extent_buffer(child);
1858 ret = tree_mod_log_insert_root(root->node, child, 1);
1860 rcu_assign_pointer(root->node, child);
1862 add_root_to_dirty_list(root);
1863 btrfs_tree_unlock(child);
1865 path->locks[level] = 0;
1866 path->nodes[level] = NULL;
1867 btrfs_clean_tree_block(mid);
1868 btrfs_tree_unlock(mid);
1869 /* once for the path */
1870 free_extent_buffer(mid);
1872 root_sub_used(root, mid->len);
1873 btrfs_free_tree_block(trans, root, mid, 0, 1);
1874 /* once for the root ptr */
1875 free_extent_buffer_stale(mid);
1878 if (btrfs_header_nritems(mid) >
1879 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1882 left = btrfs_read_node_slot(parent, pslot - 1);
1887 btrfs_tree_lock(left);
1888 btrfs_set_lock_blocking_write(left);
1889 wret = btrfs_cow_block(trans, root, left,
1890 parent, pslot - 1, &left);
1897 right = btrfs_read_node_slot(parent, pslot + 1);
1902 btrfs_tree_lock(right);
1903 btrfs_set_lock_blocking_write(right);
1904 wret = btrfs_cow_block(trans, root, right,
1905 parent, pslot + 1, &right);
1912 /* first, try to make some room in the middle buffer */
1914 orig_slot += btrfs_header_nritems(left);
1915 wret = push_node_left(trans, left, mid, 1);
1921 * then try to empty the right most buffer into the middle
1924 wret = push_node_left(trans, mid, right, 1);
1925 if (wret < 0 && wret != -ENOSPC)
1927 if (btrfs_header_nritems(right) == 0) {
1928 btrfs_clean_tree_block(right);
1929 btrfs_tree_unlock(right);
1930 del_ptr(root, path, level + 1, pslot + 1);
1931 root_sub_used(root, right->len);
1932 btrfs_free_tree_block(trans, root, right, 0, 1);
1933 free_extent_buffer_stale(right);
1936 struct btrfs_disk_key right_key;
1937 btrfs_node_key(right, &right_key, 0);
1938 ret = tree_mod_log_insert_key(parent, pslot + 1,
1939 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1941 btrfs_set_node_key(parent, &right_key, pslot + 1);
1942 btrfs_mark_buffer_dirty(parent);
1945 if (btrfs_header_nritems(mid) == 1) {
1947 * we're not allowed to leave a node with one item in the
1948 * tree during a delete. A deletion from lower in the tree
1949 * could try to delete the only pointer in this node.
1950 * So, pull some keys from the left.
1951 * There has to be a left pointer at this point because
1952 * otherwise we would have pulled some pointers from the
1957 btrfs_handle_fs_error(fs_info, ret, NULL);
1960 wret = balance_node_right(trans, mid, left);
1966 wret = push_node_left(trans, left, mid, 1);
1972 if (btrfs_header_nritems(mid) == 0) {
1973 btrfs_clean_tree_block(mid);
1974 btrfs_tree_unlock(mid);
1975 del_ptr(root, path, level + 1, pslot);
1976 root_sub_used(root, mid->len);
1977 btrfs_free_tree_block(trans, root, mid, 0, 1);
1978 free_extent_buffer_stale(mid);
1981 /* update the parent key to reflect our changes */
1982 struct btrfs_disk_key mid_key;
1983 btrfs_node_key(mid, &mid_key, 0);
1984 ret = tree_mod_log_insert_key(parent, pslot,
1985 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1987 btrfs_set_node_key(parent, &mid_key, pslot);
1988 btrfs_mark_buffer_dirty(parent);
1991 /* update the path */
1993 if (btrfs_header_nritems(left) > orig_slot) {
1994 atomic_inc(&left->refs);
1995 /* left was locked after cow */
1996 path->nodes[level] = left;
1997 path->slots[level + 1] -= 1;
1998 path->slots[level] = orig_slot;
2000 btrfs_tree_unlock(mid);
2001 free_extent_buffer(mid);
2004 orig_slot -= btrfs_header_nritems(left);
2005 path->slots[level] = orig_slot;
2008 /* double check we haven't messed things up */
2010 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2014 btrfs_tree_unlock(right);
2015 free_extent_buffer(right);
2018 if (path->nodes[level] != left)
2019 btrfs_tree_unlock(left);
2020 free_extent_buffer(left);
2025 /* Node balancing for insertion. Here we only split or push nodes around
2026 * when they are completely full. This is also done top down, so we
2027 * have to be pessimistic.
2029 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2030 struct btrfs_root *root,
2031 struct btrfs_path *path, int level)
2033 struct btrfs_fs_info *fs_info = root->fs_info;
2034 struct extent_buffer *right = NULL;
2035 struct extent_buffer *mid;
2036 struct extent_buffer *left = NULL;
2037 struct extent_buffer *parent = NULL;
2041 int orig_slot = path->slots[level];
2046 mid = path->nodes[level];
2047 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2049 if (level < BTRFS_MAX_LEVEL - 1) {
2050 parent = path->nodes[level + 1];
2051 pslot = path->slots[level + 1];
2057 left = btrfs_read_node_slot(parent, pslot - 1);
2061 /* first, try to make some room in the middle buffer */
2065 btrfs_tree_lock(left);
2066 btrfs_set_lock_blocking_write(left);
2068 left_nr = btrfs_header_nritems(left);
2069 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2072 ret = btrfs_cow_block(trans, root, left, parent,
2077 wret = push_node_left(trans, left, mid, 0);
2083 struct btrfs_disk_key disk_key;
2084 orig_slot += left_nr;
2085 btrfs_node_key(mid, &disk_key, 0);
2086 ret = tree_mod_log_insert_key(parent, pslot,
2087 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2089 btrfs_set_node_key(parent, &disk_key, pslot);
2090 btrfs_mark_buffer_dirty(parent);
2091 if (btrfs_header_nritems(left) > orig_slot) {
2092 path->nodes[level] = left;
2093 path->slots[level + 1] -= 1;
2094 path->slots[level] = orig_slot;
2095 btrfs_tree_unlock(mid);
2096 free_extent_buffer(mid);
2099 btrfs_header_nritems(left);
2100 path->slots[level] = orig_slot;
2101 btrfs_tree_unlock(left);
2102 free_extent_buffer(left);
2106 btrfs_tree_unlock(left);
2107 free_extent_buffer(left);
2109 right = btrfs_read_node_slot(parent, pslot + 1);
2114 * then try to empty the right most buffer into the middle
2119 btrfs_tree_lock(right);
2120 btrfs_set_lock_blocking_write(right);
2122 right_nr = btrfs_header_nritems(right);
2123 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2126 ret = btrfs_cow_block(trans, root, right,
2132 wret = balance_node_right(trans, right, mid);
2138 struct btrfs_disk_key disk_key;
2140 btrfs_node_key(right, &disk_key, 0);
2141 ret = tree_mod_log_insert_key(parent, pslot + 1,
2142 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2144 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2145 btrfs_mark_buffer_dirty(parent);
2147 if (btrfs_header_nritems(mid) <= orig_slot) {
2148 path->nodes[level] = right;
2149 path->slots[level + 1] += 1;
2150 path->slots[level] = orig_slot -
2151 btrfs_header_nritems(mid);
2152 btrfs_tree_unlock(mid);
2153 free_extent_buffer(mid);
2155 btrfs_tree_unlock(right);
2156 free_extent_buffer(right);
2160 btrfs_tree_unlock(right);
2161 free_extent_buffer(right);
2167 * readahead one full node of leaves, finding things that are close
2168 * to the block in 'slot', and triggering ra on them.
2170 static void reada_for_search(struct btrfs_fs_info *fs_info,
2171 struct btrfs_path *path,
2172 int level, int slot, u64 objectid)
2174 struct extent_buffer *node;
2175 struct btrfs_disk_key disk_key;
2180 struct extent_buffer *eb;
2188 if (!path->nodes[level])
2191 node = path->nodes[level];
2193 search = btrfs_node_blockptr(node, slot);
2194 blocksize = fs_info->nodesize;
2195 eb = find_extent_buffer(fs_info, search);
2197 free_extent_buffer(eb);
2203 nritems = btrfs_header_nritems(node);
2207 if (path->reada == READA_BACK) {
2211 } else if (path->reada == READA_FORWARD) {
2216 if (path->reada == READA_BACK && objectid) {
2217 btrfs_node_key(node, &disk_key, nr);
2218 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2221 search = btrfs_node_blockptr(node, nr);
2222 if ((search <= target && target - search <= 65536) ||
2223 (search > target && search - target <= 65536)) {
2224 readahead_tree_block(fs_info, search);
2228 if ((nread > 65536 || nscan > 32))
2233 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2234 struct btrfs_path *path, int level)
2238 struct extent_buffer *parent;
2239 struct extent_buffer *eb;
2244 parent = path->nodes[level + 1];
2248 nritems = btrfs_header_nritems(parent);
2249 slot = path->slots[level + 1];
2252 block1 = btrfs_node_blockptr(parent, slot - 1);
2253 gen = btrfs_node_ptr_generation(parent, slot - 1);
2254 eb = find_extent_buffer(fs_info, block1);
2256 * if we get -eagain from btrfs_buffer_uptodate, we
2257 * don't want to return eagain here. That will loop
2260 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2262 free_extent_buffer(eb);
2264 if (slot + 1 < nritems) {
2265 block2 = btrfs_node_blockptr(parent, slot + 1);
2266 gen = btrfs_node_ptr_generation(parent, slot + 1);
2267 eb = find_extent_buffer(fs_info, block2);
2268 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2270 free_extent_buffer(eb);
2274 readahead_tree_block(fs_info, block1);
2276 readahead_tree_block(fs_info, block2);
2281 * when we walk down the tree, it is usually safe to unlock the higher layers
2282 * in the tree. The exceptions are when our path goes through slot 0, because
2283 * operations on the tree might require changing key pointers higher up in the
2286 * callers might also have set path->keep_locks, which tells this code to keep
2287 * the lock if the path points to the last slot in the block. This is part of
2288 * walking through the tree, and selecting the next slot in the higher block.
2290 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2291 * if lowest_unlock is 1, level 0 won't be unlocked
2293 static noinline void unlock_up(struct btrfs_path *path, int level,
2294 int lowest_unlock, int min_write_lock_level,
2295 int *write_lock_level)
2298 int skip_level = level;
2300 struct extent_buffer *t;
2302 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2303 if (!path->nodes[i])
2305 if (!path->locks[i])
2307 if (!no_skips && path->slots[i] == 0) {
2311 if (!no_skips && path->keep_locks) {
2314 nritems = btrfs_header_nritems(t);
2315 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2320 if (skip_level < i && i >= lowest_unlock)
2324 if (i >= lowest_unlock && i > skip_level) {
2325 btrfs_tree_unlock_rw(t, path->locks[i]);
2327 if (write_lock_level &&
2328 i > min_write_lock_level &&
2329 i <= *write_lock_level) {
2330 *write_lock_level = i - 1;
2337 * helper function for btrfs_search_slot. The goal is to find a block
2338 * in cache without setting the path to blocking. If we find the block
2339 * we return zero and the path is unchanged.
2341 * If we can't find the block, we set the path blocking and do some
2342 * reada. -EAGAIN is returned and the search must be repeated.
2345 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2346 struct extent_buffer **eb_ret, int level, int slot,
2347 const struct btrfs_key *key)
2349 struct btrfs_fs_info *fs_info = root->fs_info;
2352 struct extent_buffer *b = *eb_ret;
2353 struct extent_buffer *tmp;
2354 struct btrfs_key first_key;
2358 blocknr = btrfs_node_blockptr(b, slot);
2359 gen = btrfs_node_ptr_generation(b, slot);
2360 parent_level = btrfs_header_level(b);
2361 btrfs_node_key_to_cpu(b, &first_key, slot);
2363 tmp = find_extent_buffer(fs_info, blocknr);
2365 /* first we do an atomic uptodate check */
2366 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2368 * Do extra check for first_key, eb can be stale due to
2369 * being cached, read from scrub, or have multiple
2370 * parents (shared tree blocks).
2372 if (btrfs_verify_level_key(tmp,
2373 parent_level - 1, &first_key, gen)) {
2374 free_extent_buffer(tmp);
2381 /* the pages were up to date, but we failed
2382 * the generation number check. Do a full
2383 * read for the generation number that is correct.
2384 * We must do this without dropping locks so
2385 * we can trust our generation number
2387 btrfs_set_path_blocking(p);
2389 /* now we're allowed to do a blocking uptodate check */
2390 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2395 free_extent_buffer(tmp);
2396 btrfs_release_path(p);
2401 * reduce lock contention at high levels
2402 * of the btree by dropping locks before
2403 * we read. Don't release the lock on the current
2404 * level because we need to walk this node to figure
2405 * out which blocks to read.
2407 btrfs_unlock_up_safe(p, level + 1);
2408 btrfs_set_path_blocking(p);
2410 if (p->reada != READA_NONE)
2411 reada_for_search(fs_info, p, level, slot, key->objectid);
2414 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2418 * If the read above didn't mark this buffer up to date,
2419 * it will never end up being up to date. Set ret to EIO now
2420 * and give up so that our caller doesn't loop forever
2423 if (!extent_buffer_uptodate(tmp))
2425 free_extent_buffer(tmp);
2430 btrfs_release_path(p);
2435 * helper function for btrfs_search_slot. This does all of the checks
2436 * for node-level blocks and does any balancing required based on
2439 * If no extra work was required, zero is returned. If we had to
2440 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2444 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2445 struct btrfs_root *root, struct btrfs_path *p,
2446 struct extent_buffer *b, int level, int ins_len,
2447 int *write_lock_level)
2449 struct btrfs_fs_info *fs_info = root->fs_info;
2452 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2453 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2456 if (*write_lock_level < level + 1) {
2457 *write_lock_level = level + 1;
2458 btrfs_release_path(p);
2462 btrfs_set_path_blocking(p);
2463 reada_for_balance(fs_info, p, level);
2464 sret = split_node(trans, root, p, level);
2471 b = p->nodes[level];
2472 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2473 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2476 if (*write_lock_level < level + 1) {
2477 *write_lock_level = level + 1;
2478 btrfs_release_path(p);
2482 btrfs_set_path_blocking(p);
2483 reada_for_balance(fs_info, p, level);
2484 sret = balance_level(trans, root, p, level);
2490 b = p->nodes[level];
2492 btrfs_release_path(p);
2495 BUG_ON(btrfs_header_nritems(b) == 1);
2505 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2506 int level, int *prev_cmp, int *slot)
2508 if (*prev_cmp != 0) {
2509 *prev_cmp = btrfs_bin_search(b, key, level, slot);
2518 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2519 u64 iobjectid, u64 ioff, u8 key_type,
2520 struct btrfs_key *found_key)
2523 struct btrfs_key key;
2524 struct extent_buffer *eb;
2529 key.type = key_type;
2530 key.objectid = iobjectid;
2533 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2537 eb = path->nodes[0];
2538 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2539 ret = btrfs_next_leaf(fs_root, path);
2542 eb = path->nodes[0];
2545 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2546 if (found_key->type != key.type ||
2547 found_key->objectid != key.objectid)
2553 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2554 struct btrfs_path *p,
2555 int write_lock_level)
2557 struct btrfs_fs_info *fs_info = root->fs_info;
2558 struct extent_buffer *b;
2562 /* We try very hard to do read locks on the root */
2563 root_lock = BTRFS_READ_LOCK;
2565 if (p->search_commit_root) {
2567 * The commit roots are read only so we always do read locks,
2568 * and we always must hold the commit_root_sem when doing
2569 * searches on them, the only exception is send where we don't
2570 * want to block transaction commits for a long time, so
2571 * we need to clone the commit root in order to avoid races
2572 * with transaction commits that create a snapshot of one of
2573 * the roots used by a send operation.
2575 if (p->need_commit_sem) {
2576 down_read(&fs_info->commit_root_sem);
2577 b = btrfs_clone_extent_buffer(root->commit_root);
2578 up_read(&fs_info->commit_root_sem);
2580 return ERR_PTR(-ENOMEM);
2583 b = root->commit_root;
2584 atomic_inc(&b->refs);
2586 level = btrfs_header_level(b);
2588 * Ensure that all callers have set skip_locking when
2589 * p->search_commit_root = 1.
2591 ASSERT(p->skip_locking == 1);
2596 if (p->skip_locking) {
2597 b = btrfs_root_node(root);
2598 level = btrfs_header_level(b);
2603 * If the level is set to maximum, we can skip trying to get the read
2606 if (write_lock_level < BTRFS_MAX_LEVEL) {
2608 * We don't know the level of the root node until we actually
2609 * have it read locked
2611 b = btrfs_read_lock_root_node(root);
2612 level = btrfs_header_level(b);
2613 if (level > write_lock_level)
2616 /* Whoops, must trade for write lock */
2617 btrfs_tree_read_unlock(b);
2618 free_extent_buffer(b);
2621 b = btrfs_lock_root_node(root);
2622 root_lock = BTRFS_WRITE_LOCK;
2624 /* The level might have changed, check again */
2625 level = btrfs_header_level(b);
2628 p->nodes[level] = b;
2629 if (!p->skip_locking)
2630 p->locks[level] = root_lock;
2632 * Callers are responsible for dropping b's references.
2639 * btrfs_search_slot - look for a key in a tree and perform necessary
2640 * modifications to preserve tree invariants.
2642 * @trans: Handle of transaction, used when modifying the tree
2643 * @p: Holds all btree nodes along the search path
2644 * @root: The root node of the tree
2645 * @key: The key we are looking for
2646 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2647 * deletions it's -1. 0 for plain searches
2648 * @cow: boolean should CoW operations be performed. Must always be 1
2649 * when modifying the tree.
2651 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2652 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2654 * If @key is found, 0 is returned and you can find the item in the leaf level
2655 * of the path (level 0)
2657 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2658 * points to the slot where it should be inserted
2660 * If an error is encountered while searching the tree a negative error number
2663 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2664 const struct btrfs_key *key, struct btrfs_path *p,
2665 int ins_len, int cow)
2667 struct extent_buffer *b;
2672 int lowest_unlock = 1;
2673 /* everything at write_lock_level or lower must be write locked */
2674 int write_lock_level = 0;
2675 u8 lowest_level = 0;
2676 int min_write_lock_level;
2679 lowest_level = p->lowest_level;
2680 WARN_ON(lowest_level && ins_len > 0);
2681 WARN_ON(p->nodes[0] != NULL);
2682 BUG_ON(!cow && ins_len);
2687 /* when we are removing items, we might have to go up to level
2688 * two as we update tree pointers Make sure we keep write
2689 * for those levels as well
2691 write_lock_level = 2;
2692 } else if (ins_len > 0) {
2694 * for inserting items, make sure we have a write lock on
2695 * level 1 so we can update keys
2697 write_lock_level = 1;
2701 write_lock_level = -1;
2703 if (cow && (p->keep_locks || p->lowest_level))
2704 write_lock_level = BTRFS_MAX_LEVEL;
2706 min_write_lock_level = write_lock_level;
2710 b = btrfs_search_slot_get_root(root, p, write_lock_level);
2719 level = btrfs_header_level(b);
2722 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2725 * if we don't really need to cow this block
2726 * then we don't want to set the path blocking,
2727 * so we test it here
2729 if (!should_cow_block(trans, root, b)) {
2730 trans->dirty = true;
2735 * must have write locks on this node and the
2738 if (level > write_lock_level ||
2739 (level + 1 > write_lock_level &&
2740 level + 1 < BTRFS_MAX_LEVEL &&
2741 p->nodes[level + 1])) {
2742 write_lock_level = level + 1;
2743 btrfs_release_path(p);
2747 btrfs_set_path_blocking(p);
2749 err = btrfs_cow_block(trans, root, b, NULL, 0,
2752 err = btrfs_cow_block(trans, root, b,
2753 p->nodes[level + 1],
2754 p->slots[level + 1], &b);
2761 p->nodes[level] = b;
2763 * Leave path with blocking locks to avoid massive
2764 * lock context switch, this is made on purpose.
2768 * we have a lock on b and as long as we aren't changing
2769 * the tree, there is no way to for the items in b to change.
2770 * It is safe to drop the lock on our parent before we
2771 * go through the expensive btree search on b.
2773 * If we're inserting or deleting (ins_len != 0), then we might
2774 * be changing slot zero, which may require changing the parent.
2775 * So, we can't drop the lock until after we know which slot
2776 * we're operating on.
2778 if (!ins_len && !p->keep_locks) {
2781 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2782 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2787 ret = key_search(b, key, level, &prev_cmp, &slot);
2792 p->slots[level] = slot;
2794 btrfs_leaf_free_space(b) < ins_len) {
2795 if (write_lock_level < 1) {
2796 write_lock_level = 1;
2797 btrfs_release_path(p);
2801 btrfs_set_path_blocking(p);
2802 err = split_leaf(trans, root, key,
2803 p, ins_len, ret == 0);
2811 if (!p->search_for_split)
2812 unlock_up(p, level, lowest_unlock,
2813 min_write_lock_level, NULL);
2816 if (ret && slot > 0) {
2820 p->slots[level] = slot;
2821 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2829 b = p->nodes[level];
2830 slot = p->slots[level];
2833 * Slot 0 is special, if we change the key we have to update
2834 * the parent pointer which means we must have a write lock on
2837 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2838 write_lock_level = level + 1;
2839 btrfs_release_path(p);
2843 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2846 if (level == lowest_level) {
2852 err = read_block_for_search(root, p, &b, level, slot, key);
2860 if (!p->skip_locking) {
2861 level = btrfs_header_level(b);
2862 if (level <= write_lock_level) {
2863 if (!btrfs_try_tree_write_lock(b)) {
2864 btrfs_set_path_blocking(p);
2867 p->locks[level] = BTRFS_WRITE_LOCK;
2869 if (!btrfs_tree_read_lock_atomic(b)) {
2870 btrfs_set_path_blocking(p);
2871 btrfs_tree_read_lock(b);
2873 p->locks[level] = BTRFS_READ_LOCK;
2875 p->nodes[level] = b;
2881 * we don't really know what they plan on doing with the path
2882 * from here on, so for now just mark it as blocking
2884 if (!p->leave_spinning)
2885 btrfs_set_path_blocking(p);
2886 if (ret < 0 && !p->skip_release_on_error)
2887 btrfs_release_path(p);
2892 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2893 * current state of the tree together with the operations recorded in the tree
2894 * modification log to search for the key in a previous version of this tree, as
2895 * denoted by the time_seq parameter.
2897 * Naturally, there is no support for insert, delete or cow operations.
2899 * The resulting path and return value will be set up as if we called
2900 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2902 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2903 struct btrfs_path *p, u64 time_seq)
2905 struct btrfs_fs_info *fs_info = root->fs_info;
2906 struct extent_buffer *b;
2911 int lowest_unlock = 1;
2912 u8 lowest_level = 0;
2915 lowest_level = p->lowest_level;
2916 WARN_ON(p->nodes[0] != NULL);
2918 if (p->search_commit_root) {
2920 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2924 b = get_old_root(root, time_seq);
2929 level = btrfs_header_level(b);
2930 p->locks[level] = BTRFS_READ_LOCK;
2935 level = btrfs_header_level(b);
2936 p->nodes[level] = b;
2939 * we have a lock on b and as long as we aren't changing
2940 * the tree, there is no way to for the items in b to change.
2941 * It is safe to drop the lock on our parent before we
2942 * go through the expensive btree search on b.
2944 btrfs_unlock_up_safe(p, level + 1);
2947 * Since we can unwind ebs we want to do a real search every
2951 ret = key_search(b, key, level, &prev_cmp, &slot);
2956 p->slots[level] = slot;
2957 unlock_up(p, level, lowest_unlock, 0, NULL);
2961 if (ret && slot > 0) {
2965 p->slots[level] = slot;
2966 unlock_up(p, level, lowest_unlock, 0, NULL);
2968 if (level == lowest_level) {
2974 err = read_block_for_search(root, p, &b, level, slot, key);
2982 level = btrfs_header_level(b);
2983 if (!btrfs_tree_read_lock_atomic(b)) {
2984 btrfs_set_path_blocking(p);
2985 btrfs_tree_read_lock(b);
2987 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
2992 p->locks[level] = BTRFS_READ_LOCK;
2993 p->nodes[level] = b;
2997 if (!p->leave_spinning)
2998 btrfs_set_path_blocking(p);
3000 btrfs_release_path(p);
3006 * helper to use instead of search slot if no exact match is needed but
3007 * instead the next or previous item should be returned.
3008 * When find_higher is true, the next higher item is returned, the next lower
3010 * When return_any and find_higher are both true, and no higher item is found,
3011 * return the next lower instead.
3012 * When return_any is true and find_higher is false, and no lower item is found,
3013 * return the next higher instead.
3014 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3017 int btrfs_search_slot_for_read(struct btrfs_root *root,
3018 const struct btrfs_key *key,
3019 struct btrfs_path *p, int find_higher,
3023 struct extent_buffer *leaf;
3026 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3030 * a return value of 1 means the path is at the position where the
3031 * item should be inserted. Normally this is the next bigger item,
3032 * but in case the previous item is the last in a leaf, path points
3033 * to the first free slot in the previous leaf, i.e. at an invalid
3039 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3040 ret = btrfs_next_leaf(root, p);
3046 * no higher item found, return the next
3051 btrfs_release_path(p);
3055 if (p->slots[0] == 0) {
3056 ret = btrfs_prev_leaf(root, p);
3061 if (p->slots[0] == btrfs_header_nritems(leaf))
3068 * no lower item found, return the next
3073 btrfs_release_path(p);
3083 * adjust the pointers going up the tree, starting at level
3084 * making sure the right key of each node is points to 'key'.
3085 * This is used after shifting pointers to the left, so it stops
3086 * fixing up pointers when a given leaf/node is not in slot 0 of the
3090 static void fixup_low_keys(struct btrfs_path *path,
3091 struct btrfs_disk_key *key, int level)
3094 struct extent_buffer *t;
3097 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3098 int tslot = path->slots[i];
3100 if (!path->nodes[i])
3103 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3106 btrfs_set_node_key(t, key, tslot);
3107 btrfs_mark_buffer_dirty(path->nodes[i]);
3116 * This function isn't completely safe. It's the caller's responsibility
3117 * that the new key won't break the order
3119 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3120 struct btrfs_path *path,
3121 const struct btrfs_key *new_key)
3123 struct btrfs_disk_key disk_key;
3124 struct extent_buffer *eb;
3127 eb = path->nodes[0];
3128 slot = path->slots[0];
3130 btrfs_item_key(eb, &disk_key, slot - 1);
3131 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3133 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3134 slot, btrfs_disk_key_objectid(&disk_key),
3135 btrfs_disk_key_type(&disk_key),
3136 btrfs_disk_key_offset(&disk_key),
3137 new_key->objectid, new_key->type,
3139 btrfs_print_leaf(eb);
3143 if (slot < btrfs_header_nritems(eb) - 1) {
3144 btrfs_item_key(eb, &disk_key, slot + 1);
3145 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3147 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3148 slot, btrfs_disk_key_objectid(&disk_key),
3149 btrfs_disk_key_type(&disk_key),
3150 btrfs_disk_key_offset(&disk_key),
3151 new_key->objectid, new_key->type,
3153 btrfs_print_leaf(eb);
3158 btrfs_cpu_key_to_disk(&disk_key, new_key);
3159 btrfs_set_item_key(eb, &disk_key, slot);
3160 btrfs_mark_buffer_dirty(eb);
3162 fixup_low_keys(path, &disk_key, 1);
3166 * try to push data from one node into the next node left in the
3169 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3170 * error, and > 0 if there was no room in the left hand block.
3172 static int push_node_left(struct btrfs_trans_handle *trans,
3173 struct extent_buffer *dst,
3174 struct extent_buffer *src, int empty)
3176 struct btrfs_fs_info *fs_info = trans->fs_info;
3182 src_nritems = btrfs_header_nritems(src);
3183 dst_nritems = btrfs_header_nritems(dst);
3184 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3185 WARN_ON(btrfs_header_generation(src) != trans->transid);
3186 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3188 if (!empty && src_nritems <= 8)
3191 if (push_items <= 0)
3195 push_items = min(src_nritems, push_items);
3196 if (push_items < src_nritems) {
3197 /* leave at least 8 pointers in the node if
3198 * we aren't going to empty it
3200 if (src_nritems - push_items < 8) {
3201 if (push_items <= 8)
3207 push_items = min(src_nritems - 8, push_items);
3209 ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3211 btrfs_abort_transaction(trans, ret);
3214 copy_extent_buffer(dst, src,
3215 btrfs_node_key_ptr_offset(dst_nritems),
3216 btrfs_node_key_ptr_offset(0),
3217 push_items * sizeof(struct btrfs_key_ptr));
3219 if (push_items < src_nritems) {
3221 * Don't call tree_mod_log_insert_move here, key removal was
3222 * already fully logged by tree_mod_log_eb_copy above.
3224 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3225 btrfs_node_key_ptr_offset(push_items),
3226 (src_nritems - push_items) *
3227 sizeof(struct btrfs_key_ptr));
3229 btrfs_set_header_nritems(src, src_nritems - push_items);
3230 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3231 btrfs_mark_buffer_dirty(src);
3232 btrfs_mark_buffer_dirty(dst);
3238 * try to push data from one node into the next node right in the
3241 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3242 * error, and > 0 if there was no room in the right hand block.
3244 * this will only push up to 1/2 the contents of the left node over
3246 static int balance_node_right(struct btrfs_trans_handle *trans,
3247 struct extent_buffer *dst,
3248 struct extent_buffer *src)
3250 struct btrfs_fs_info *fs_info = trans->fs_info;
3257 WARN_ON(btrfs_header_generation(src) != trans->transid);
3258 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3260 src_nritems = btrfs_header_nritems(src);
3261 dst_nritems = btrfs_header_nritems(dst);
3262 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3263 if (push_items <= 0)
3266 if (src_nritems < 4)
3269 max_push = src_nritems / 2 + 1;
3270 /* don't try to empty the node */
3271 if (max_push >= src_nritems)
3274 if (max_push < push_items)
3275 push_items = max_push;
3277 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3279 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3280 btrfs_node_key_ptr_offset(0),
3282 sizeof(struct btrfs_key_ptr));
3284 ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3287 btrfs_abort_transaction(trans, ret);
3290 copy_extent_buffer(dst, src,
3291 btrfs_node_key_ptr_offset(0),
3292 btrfs_node_key_ptr_offset(src_nritems - push_items),
3293 push_items * sizeof(struct btrfs_key_ptr));
3295 btrfs_set_header_nritems(src, src_nritems - push_items);
3296 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3298 btrfs_mark_buffer_dirty(src);
3299 btrfs_mark_buffer_dirty(dst);
3305 * helper function to insert a new root level in the tree.
3306 * A new node is allocated, and a single item is inserted to
3307 * point to the existing root
3309 * returns zero on success or < 0 on failure.
3311 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3312 struct btrfs_root *root,
3313 struct btrfs_path *path, int level)
3315 struct btrfs_fs_info *fs_info = root->fs_info;
3317 struct extent_buffer *lower;
3318 struct extent_buffer *c;
3319 struct extent_buffer *old;
3320 struct btrfs_disk_key lower_key;
3323 BUG_ON(path->nodes[level]);
3324 BUG_ON(path->nodes[level-1] != root->node);
3326 lower = path->nodes[level-1];
3328 btrfs_item_key(lower, &lower_key, 0);
3330 btrfs_node_key(lower, &lower_key, 0);
3332 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3333 root->node->start, 0);
3337 root_add_used(root, fs_info->nodesize);
3339 btrfs_set_header_nritems(c, 1);
3340 btrfs_set_node_key(c, &lower_key, 0);
3341 btrfs_set_node_blockptr(c, 0, lower->start);
3342 lower_gen = btrfs_header_generation(lower);
3343 WARN_ON(lower_gen != trans->transid);
3345 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3347 btrfs_mark_buffer_dirty(c);
3350 ret = tree_mod_log_insert_root(root->node, c, 0);
3352 rcu_assign_pointer(root->node, c);
3354 /* the super has an extra ref to root->node */
3355 free_extent_buffer(old);
3357 add_root_to_dirty_list(root);
3358 atomic_inc(&c->refs);
3359 path->nodes[level] = c;
3360 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3361 path->slots[level] = 0;
3366 * worker function to insert a single pointer in a node.
3367 * the node should have enough room for the pointer already
3369 * slot and level indicate where you want the key to go, and
3370 * blocknr is the block the key points to.
3372 static void insert_ptr(struct btrfs_trans_handle *trans,
3373 struct btrfs_path *path,
3374 struct btrfs_disk_key *key, u64 bytenr,
3375 int slot, int level)
3377 struct extent_buffer *lower;
3381 BUG_ON(!path->nodes[level]);
3382 btrfs_assert_tree_locked(path->nodes[level]);
3383 lower = path->nodes[level];
3384 nritems = btrfs_header_nritems(lower);
3385 BUG_ON(slot > nritems);
3386 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3387 if (slot != nritems) {
3389 ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3393 memmove_extent_buffer(lower,
3394 btrfs_node_key_ptr_offset(slot + 1),
3395 btrfs_node_key_ptr_offset(slot),
3396 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3399 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3403 btrfs_set_node_key(lower, key, slot);
3404 btrfs_set_node_blockptr(lower, slot, bytenr);
3405 WARN_ON(trans->transid == 0);
3406 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3407 btrfs_set_header_nritems(lower, nritems + 1);
3408 btrfs_mark_buffer_dirty(lower);
3412 * split the node at the specified level in path in two.
3413 * The path is corrected to point to the appropriate node after the split
3415 * Before splitting this tries to make some room in the node by pushing
3416 * left and right, if either one works, it returns right away.
3418 * returns 0 on success and < 0 on failure
3420 static noinline int split_node(struct btrfs_trans_handle *trans,
3421 struct btrfs_root *root,
3422 struct btrfs_path *path, int level)
3424 struct btrfs_fs_info *fs_info = root->fs_info;
3425 struct extent_buffer *c;
3426 struct extent_buffer *split;
3427 struct btrfs_disk_key disk_key;
3432 c = path->nodes[level];
3433 WARN_ON(btrfs_header_generation(c) != trans->transid);
3434 if (c == root->node) {
3436 * trying to split the root, lets make a new one
3438 * tree mod log: We don't log_removal old root in
3439 * insert_new_root, because that root buffer will be kept as a
3440 * normal node. We are going to log removal of half of the
3441 * elements below with tree_mod_log_eb_copy. We're holding a
3442 * tree lock on the buffer, which is why we cannot race with
3443 * other tree_mod_log users.
3445 ret = insert_new_root(trans, root, path, level + 1);
3449 ret = push_nodes_for_insert(trans, root, path, level);
3450 c = path->nodes[level];
3451 if (!ret && btrfs_header_nritems(c) <
3452 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3458 c_nritems = btrfs_header_nritems(c);
3459 mid = (c_nritems + 1) / 2;
3460 btrfs_node_key(c, &disk_key, mid);
3462 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3465 return PTR_ERR(split);
3467 root_add_used(root, fs_info->nodesize);
3468 ASSERT(btrfs_header_level(c) == level);
3470 ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3472 btrfs_abort_transaction(trans, ret);
3475 copy_extent_buffer(split, c,
3476 btrfs_node_key_ptr_offset(0),
3477 btrfs_node_key_ptr_offset(mid),
3478 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3479 btrfs_set_header_nritems(split, c_nritems - mid);
3480 btrfs_set_header_nritems(c, mid);
3483 btrfs_mark_buffer_dirty(c);
3484 btrfs_mark_buffer_dirty(split);
3486 insert_ptr(trans, path, &disk_key, split->start,
3487 path->slots[level + 1] + 1, level + 1);
3489 if (path->slots[level] >= mid) {
3490 path->slots[level] -= mid;
3491 btrfs_tree_unlock(c);
3492 free_extent_buffer(c);
3493 path->nodes[level] = split;
3494 path->slots[level + 1] += 1;
3496 btrfs_tree_unlock(split);
3497 free_extent_buffer(split);
3503 * how many bytes are required to store the items in a leaf. start
3504 * and nr indicate which items in the leaf to check. This totals up the
3505 * space used both by the item structs and the item data
3507 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3509 struct btrfs_item *start_item;
3510 struct btrfs_item *end_item;
3511 struct btrfs_map_token token;
3513 int nritems = btrfs_header_nritems(l);
3514 int end = min(nritems, start + nr) - 1;
3518 btrfs_init_map_token(&token, l);
3519 start_item = btrfs_item_nr(start);
3520 end_item = btrfs_item_nr(end);
3521 data_len = btrfs_token_item_offset(l, start_item, &token) +
3522 btrfs_token_item_size(l, start_item, &token);
3523 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3524 data_len += sizeof(struct btrfs_item) * nr;
3525 WARN_ON(data_len < 0);
3530 * The space between the end of the leaf items and
3531 * the start of the leaf data. IOW, how much room
3532 * the leaf has left for both items and data
3534 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3536 struct btrfs_fs_info *fs_info = leaf->fs_info;
3537 int nritems = btrfs_header_nritems(leaf);
3540 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3543 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3545 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3546 leaf_space_used(leaf, 0, nritems), nritems);
3552 * min slot controls the lowest index we're willing to push to the
3553 * right. We'll push up to and including min_slot, but no lower
3555 static noinline int __push_leaf_right(struct btrfs_path *path,
3556 int data_size, int empty,
3557 struct extent_buffer *right,
3558 int free_space, u32 left_nritems,
3561 struct btrfs_fs_info *fs_info = right->fs_info;
3562 struct extent_buffer *left = path->nodes[0];
3563 struct extent_buffer *upper = path->nodes[1];
3564 struct btrfs_map_token token;
3565 struct btrfs_disk_key disk_key;
3570 struct btrfs_item *item;
3579 nr = max_t(u32, 1, min_slot);
3581 if (path->slots[0] >= left_nritems)
3582 push_space += data_size;
3584 slot = path->slots[1];
3585 i = left_nritems - 1;
3587 item = btrfs_item_nr(i);
3589 if (!empty && push_items > 0) {
3590 if (path->slots[0] > i)
3592 if (path->slots[0] == i) {
3593 int space = btrfs_leaf_free_space(left);
3595 if (space + push_space * 2 > free_space)
3600 if (path->slots[0] == i)
3601 push_space += data_size;
3603 this_item_size = btrfs_item_size(left, item);
3604 if (this_item_size + sizeof(*item) + push_space > free_space)
3608 push_space += this_item_size + sizeof(*item);
3614 if (push_items == 0)
3617 WARN_ON(!empty && push_items == left_nritems);
3619 /* push left to right */
3620 right_nritems = btrfs_header_nritems(right);
3622 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3623 push_space -= leaf_data_end(left);
3625 /* make room in the right data area */
3626 data_end = leaf_data_end(right);
3627 memmove_extent_buffer(right,
3628 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3629 BTRFS_LEAF_DATA_OFFSET + data_end,
3630 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3632 /* copy from the left data area */
3633 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3634 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3635 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3638 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3639 btrfs_item_nr_offset(0),
3640 right_nritems * sizeof(struct btrfs_item));
3642 /* copy the items from left to right */
3643 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3644 btrfs_item_nr_offset(left_nritems - push_items),
3645 push_items * sizeof(struct btrfs_item));
3647 /* update the item pointers */
3648 btrfs_init_map_token(&token, right);
3649 right_nritems += push_items;
3650 btrfs_set_header_nritems(right, right_nritems);
3651 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3652 for (i = 0; i < right_nritems; i++) {
3653 item = btrfs_item_nr(i);
3654 push_space -= btrfs_token_item_size(right, item, &token);
3655 btrfs_set_token_item_offset(right, item, push_space, &token);
3658 left_nritems -= push_items;
3659 btrfs_set_header_nritems(left, left_nritems);
3662 btrfs_mark_buffer_dirty(left);
3664 btrfs_clean_tree_block(left);
3666 btrfs_mark_buffer_dirty(right);
3668 btrfs_item_key(right, &disk_key, 0);
3669 btrfs_set_node_key(upper, &disk_key, slot + 1);
3670 btrfs_mark_buffer_dirty(upper);
3672 /* then fixup the leaf pointer in the path */
3673 if (path->slots[0] >= left_nritems) {
3674 path->slots[0] -= left_nritems;
3675 if (btrfs_header_nritems(path->nodes[0]) == 0)
3676 btrfs_clean_tree_block(path->nodes[0]);
3677 btrfs_tree_unlock(path->nodes[0]);
3678 free_extent_buffer(path->nodes[0]);
3679 path->nodes[0] = right;
3680 path->slots[1] += 1;
3682 btrfs_tree_unlock(right);
3683 free_extent_buffer(right);
3688 btrfs_tree_unlock(right);
3689 free_extent_buffer(right);
3694 * push some data in the path leaf to the right, trying to free up at
3695 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3697 * returns 1 if the push failed because the other node didn't have enough
3698 * room, 0 if everything worked out and < 0 if there were major errors.
3700 * this will push starting from min_slot to the end of the leaf. It won't
3701 * push any slot lower than min_slot
3703 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3704 *root, struct btrfs_path *path,
3705 int min_data_size, int data_size,
3706 int empty, u32 min_slot)
3708 struct extent_buffer *left = path->nodes[0];
3709 struct extent_buffer *right;
3710 struct extent_buffer *upper;
3716 if (!path->nodes[1])
3719 slot = path->slots[1];
3720 upper = path->nodes[1];
3721 if (slot >= btrfs_header_nritems(upper) - 1)
3724 btrfs_assert_tree_locked(path->nodes[1]);
3726 right = btrfs_read_node_slot(upper, slot + 1);
3728 * slot + 1 is not valid or we fail to read the right node,
3729 * no big deal, just return.
3734 btrfs_tree_lock(right);
3735 btrfs_set_lock_blocking_write(right);
3737 free_space = btrfs_leaf_free_space(right);
3738 if (free_space < data_size)
3741 /* cow and double check */
3742 ret = btrfs_cow_block(trans, root, right, upper,
3747 free_space = btrfs_leaf_free_space(right);
3748 if (free_space < data_size)
3751 left_nritems = btrfs_header_nritems(left);
3752 if (left_nritems == 0)
3755 if (path->slots[0] == left_nritems && !empty) {
3756 /* Key greater than all keys in the leaf, right neighbor has
3757 * enough room for it and we're not emptying our leaf to delete
3758 * it, therefore use right neighbor to insert the new item and
3759 * no need to touch/dirty our left leaf. */
3760 btrfs_tree_unlock(left);
3761 free_extent_buffer(left);
3762 path->nodes[0] = right;
3768 return __push_leaf_right(path, min_data_size, empty,
3769 right, free_space, left_nritems, min_slot);
3771 btrfs_tree_unlock(right);
3772 free_extent_buffer(right);
3777 * push some data in the path leaf to the left, trying to free up at
3778 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3780 * max_slot can put a limit on how far into the leaf we'll push items. The
3781 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3784 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3785 int empty, struct extent_buffer *left,
3786 int free_space, u32 right_nritems,
3789 struct btrfs_fs_info *fs_info = left->fs_info;
3790 struct btrfs_disk_key disk_key;
3791 struct extent_buffer *right = path->nodes[0];
3795 struct btrfs_item *item;
3796 u32 old_left_nritems;
3800 u32 old_left_item_size;
3801 struct btrfs_map_token token;
3804 nr = min(right_nritems, max_slot);
3806 nr = min(right_nritems - 1, max_slot);
3808 for (i = 0; i < nr; i++) {
3809 item = btrfs_item_nr(i);
3811 if (!empty && push_items > 0) {
3812 if (path->slots[0] < i)
3814 if (path->slots[0] == i) {
3815 int space = btrfs_leaf_free_space(right);
3817 if (space + push_space * 2 > free_space)
3822 if (path->slots[0] == i)
3823 push_space += data_size;
3825 this_item_size = btrfs_item_size(right, item);
3826 if (this_item_size + sizeof(*item) + push_space > free_space)
3830 push_space += this_item_size + sizeof(*item);
3833 if (push_items == 0) {
3837 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3839 /* push data from right to left */
3840 copy_extent_buffer(left, right,
3841 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3842 btrfs_item_nr_offset(0),
3843 push_items * sizeof(struct btrfs_item));
3845 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3846 btrfs_item_offset_nr(right, push_items - 1);
3848 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3849 leaf_data_end(left) - push_space,
3850 BTRFS_LEAF_DATA_OFFSET +
3851 btrfs_item_offset_nr(right, push_items - 1),
3853 old_left_nritems = btrfs_header_nritems(left);
3854 BUG_ON(old_left_nritems <= 0);
3856 btrfs_init_map_token(&token, left);
3857 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3858 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3861 item = btrfs_item_nr(i);
3863 ioff = btrfs_token_item_offset(left, item, &token);
3864 btrfs_set_token_item_offset(left, item,
3865 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3868 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3870 /* fixup right node */
3871 if (push_items > right_nritems)
3872 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3875 if (push_items < right_nritems) {
3876 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3877 leaf_data_end(right);
3878 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3879 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3880 BTRFS_LEAF_DATA_OFFSET +
3881 leaf_data_end(right), push_space);
3883 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3884 btrfs_item_nr_offset(push_items),
3885 (btrfs_header_nritems(right) - push_items) *
3886 sizeof(struct btrfs_item));
3889 btrfs_init_map_token(&token, right);
3890 right_nritems -= push_items;
3891 btrfs_set_header_nritems(right, right_nritems);
3892 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3893 for (i = 0; i < right_nritems; i++) {
3894 item = btrfs_item_nr(i);
3896 push_space = push_space - btrfs_token_item_size(right,
3898 btrfs_set_token_item_offset(right, item, push_space, &token);
3901 btrfs_mark_buffer_dirty(left);
3903 btrfs_mark_buffer_dirty(right);
3905 btrfs_clean_tree_block(right);
3907 btrfs_item_key(right, &disk_key, 0);
3908 fixup_low_keys(path, &disk_key, 1);
3910 /* then fixup the leaf pointer in the path */
3911 if (path->slots[0] < push_items) {
3912 path->slots[0] += old_left_nritems;
3913 btrfs_tree_unlock(path->nodes[0]);
3914 free_extent_buffer(path->nodes[0]);
3915 path->nodes[0] = left;
3916 path->slots[1] -= 1;
3918 btrfs_tree_unlock(left);
3919 free_extent_buffer(left);
3920 path->slots[0] -= push_items;
3922 BUG_ON(path->slots[0] < 0);
3925 btrfs_tree_unlock(left);
3926 free_extent_buffer(left);
3931 * push some data in the path leaf to the left, trying to free up at
3932 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3934 * max_slot can put a limit on how far into the leaf we'll push items. The
3935 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3938 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3939 *root, struct btrfs_path *path, int min_data_size,
3940 int data_size, int empty, u32 max_slot)
3942 struct extent_buffer *right = path->nodes[0];
3943 struct extent_buffer *left;
3949 slot = path->slots[1];
3952 if (!path->nodes[1])
3955 right_nritems = btrfs_header_nritems(right);
3956 if (right_nritems == 0)
3959 btrfs_assert_tree_locked(path->nodes[1]);
3961 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3963 * slot - 1 is not valid or we fail to read the left node,
3964 * no big deal, just return.
3969 btrfs_tree_lock(left);
3970 btrfs_set_lock_blocking_write(left);
3972 free_space = btrfs_leaf_free_space(left);
3973 if (free_space < data_size) {
3978 /* cow and double check */
3979 ret = btrfs_cow_block(trans, root, left,
3980 path->nodes[1], slot - 1, &left);
3982 /* we hit -ENOSPC, but it isn't fatal here */
3988 free_space = btrfs_leaf_free_space(left);
3989 if (free_space < data_size) {
3994 return __push_leaf_left(path, min_data_size,
3995 empty, left, free_space, right_nritems,
3998 btrfs_tree_unlock(left);
3999 free_extent_buffer(left);
4004 * split the path's leaf in two, making sure there is at least data_size
4005 * available for the resulting leaf level of the path.
4007 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4008 struct btrfs_path *path,
4009 struct extent_buffer *l,
4010 struct extent_buffer *right,
4011 int slot, int mid, int nritems)
4013 struct btrfs_fs_info *fs_info = trans->fs_info;
4017 struct btrfs_disk_key disk_key;
4018 struct btrfs_map_token token;
4020 nritems = nritems - mid;
4021 btrfs_set_header_nritems(right, nritems);
4022 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4024 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4025 btrfs_item_nr_offset(mid),
4026 nritems * sizeof(struct btrfs_item));
4028 copy_extent_buffer(right, l,
4029 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4030 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4031 leaf_data_end(l), data_copy_size);
4033 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4035 btrfs_init_map_token(&token, right);
4036 for (i = 0; i < nritems; i++) {
4037 struct btrfs_item *item = btrfs_item_nr(i);
4040 ioff = btrfs_token_item_offset(right, item, &token);
4041 btrfs_set_token_item_offset(right, item,
4042 ioff + rt_data_off, &token);
4045 btrfs_set_header_nritems(l, mid);
4046 btrfs_item_key(right, &disk_key, 0);
4047 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4049 btrfs_mark_buffer_dirty(right);
4050 btrfs_mark_buffer_dirty(l);
4051 BUG_ON(path->slots[0] != slot);
4054 btrfs_tree_unlock(path->nodes[0]);
4055 free_extent_buffer(path->nodes[0]);
4056 path->nodes[0] = right;
4057 path->slots[0] -= mid;
4058 path->slots[1] += 1;
4060 btrfs_tree_unlock(right);
4061 free_extent_buffer(right);
4064 BUG_ON(path->slots[0] < 0);
4068 * double splits happen when we need to insert a big item in the middle
4069 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4070 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4073 * We avoid this by trying to push the items on either side of our target
4074 * into the adjacent leaves. If all goes well we can avoid the double split
4077 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4078 struct btrfs_root *root,
4079 struct btrfs_path *path,
4086 int space_needed = data_size;
4088 slot = path->slots[0];
4089 if (slot < btrfs_header_nritems(path->nodes[0]))
4090 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4093 * try to push all the items after our slot into the
4096 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4103 nritems = btrfs_header_nritems(path->nodes[0]);
4105 * our goal is to get our slot at the start or end of a leaf. If
4106 * we've done so we're done
4108 if (path->slots[0] == 0 || path->slots[0] == nritems)
4111 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4114 /* try to push all the items before our slot into the next leaf */
4115 slot = path->slots[0];
4116 space_needed = data_size;
4118 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4119 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4132 * split the path's leaf in two, making sure there is at least data_size
4133 * available for the resulting leaf level of the path.
4135 * returns 0 if all went well and < 0 on failure.
4137 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4138 struct btrfs_root *root,
4139 const struct btrfs_key *ins_key,
4140 struct btrfs_path *path, int data_size,
4143 struct btrfs_disk_key disk_key;
4144 struct extent_buffer *l;
4148 struct extent_buffer *right;
4149 struct btrfs_fs_info *fs_info = root->fs_info;
4153 int num_doubles = 0;
4154 int tried_avoid_double = 0;
4157 slot = path->slots[0];
4158 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4159 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4162 /* first try to make some room by pushing left and right */
4163 if (data_size && path->nodes[1]) {
4164 int space_needed = data_size;
4166 if (slot < btrfs_header_nritems(l))
4167 space_needed -= btrfs_leaf_free_space(l);
4169 wret = push_leaf_right(trans, root, path, space_needed,
4170 space_needed, 0, 0);
4174 space_needed = data_size;
4176 space_needed -= btrfs_leaf_free_space(l);
4177 wret = push_leaf_left(trans, root, path, space_needed,
4178 space_needed, 0, (u32)-1);
4184 /* did the pushes work? */
4185 if (btrfs_leaf_free_space(l) >= data_size)
4189 if (!path->nodes[1]) {
4190 ret = insert_new_root(trans, root, path, 1);
4197 slot = path->slots[0];
4198 nritems = btrfs_header_nritems(l);
4199 mid = (nritems + 1) / 2;
4203 leaf_space_used(l, mid, nritems - mid) + data_size >
4204 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4205 if (slot >= nritems) {
4209 if (mid != nritems &&
4210 leaf_space_used(l, mid, nritems - mid) +
4211 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4212 if (data_size && !tried_avoid_double)
4213 goto push_for_double;
4219 if (leaf_space_used(l, 0, mid) + data_size >
4220 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4221 if (!extend && data_size && slot == 0) {
4223 } else if ((extend || !data_size) && slot == 0) {
4227 if (mid != nritems &&
4228 leaf_space_used(l, mid, nritems - mid) +
4229 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4230 if (data_size && !tried_avoid_double)
4231 goto push_for_double;
4239 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4241 btrfs_item_key(l, &disk_key, mid);
4243 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4246 return PTR_ERR(right);
4248 root_add_used(root, fs_info->nodesize);
4252 btrfs_set_header_nritems(right, 0);
4253 insert_ptr(trans, path, &disk_key,
4254 right->start, path->slots[1] + 1, 1);
4255 btrfs_tree_unlock(path->nodes[0]);
4256 free_extent_buffer(path->nodes[0]);
4257 path->nodes[0] = right;
4259 path->slots[1] += 1;
4261 btrfs_set_header_nritems(right, 0);
4262 insert_ptr(trans, path, &disk_key,
4263 right->start, path->slots[1], 1);
4264 btrfs_tree_unlock(path->nodes[0]);
4265 free_extent_buffer(path->nodes[0]);
4266 path->nodes[0] = right;
4268 if (path->slots[1] == 0)
4269 fixup_low_keys(path, &disk_key, 1);
4272 * We create a new leaf 'right' for the required ins_len and
4273 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4274 * the content of ins_len to 'right'.
4279 copy_for_split(trans, path, l, right, slot, mid, nritems);
4282 BUG_ON(num_doubles != 0);
4290 push_for_double_split(trans, root, path, data_size);
4291 tried_avoid_double = 1;
4292 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4297 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4298 struct btrfs_root *root,
4299 struct btrfs_path *path, int ins_len)
4301 struct btrfs_key key;
4302 struct extent_buffer *leaf;
4303 struct btrfs_file_extent_item *fi;
4308 leaf = path->nodes[0];
4309 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4311 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4312 key.type != BTRFS_EXTENT_CSUM_KEY);
4314 if (btrfs_leaf_free_space(leaf) >= ins_len)
4317 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4318 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4319 fi = btrfs_item_ptr(leaf, path->slots[0],
4320 struct btrfs_file_extent_item);
4321 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4323 btrfs_release_path(path);
4325 path->keep_locks = 1;
4326 path->search_for_split = 1;
4327 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4328 path->search_for_split = 0;
4335 leaf = path->nodes[0];
4336 /* if our item isn't there, return now */
4337 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4340 /* the leaf has changed, it now has room. return now */
4341 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4344 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4345 fi = btrfs_item_ptr(leaf, path->slots[0],
4346 struct btrfs_file_extent_item);
4347 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4351 btrfs_set_path_blocking(path);
4352 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4356 path->keep_locks = 0;
4357 btrfs_unlock_up_safe(path, 1);
4360 path->keep_locks = 0;
4364 static noinline int split_item(struct btrfs_path *path,
4365 const struct btrfs_key *new_key,
4366 unsigned long split_offset)
4368 struct extent_buffer *leaf;
4369 struct btrfs_item *item;
4370 struct btrfs_item *new_item;
4376 struct btrfs_disk_key disk_key;
4378 leaf = path->nodes[0];
4379 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4381 btrfs_set_path_blocking(path);
4383 item = btrfs_item_nr(path->slots[0]);
4384 orig_offset = btrfs_item_offset(leaf, item);
4385 item_size = btrfs_item_size(leaf, item);
4387 buf = kmalloc(item_size, GFP_NOFS);
4391 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4392 path->slots[0]), item_size);
4394 slot = path->slots[0] + 1;
4395 nritems = btrfs_header_nritems(leaf);
4396 if (slot != nritems) {
4397 /* shift the items */
4398 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4399 btrfs_item_nr_offset(slot),
4400 (nritems - slot) * sizeof(struct btrfs_item));
4403 btrfs_cpu_key_to_disk(&disk_key, new_key);
4404 btrfs_set_item_key(leaf, &disk_key, slot);
4406 new_item = btrfs_item_nr(slot);
4408 btrfs_set_item_offset(leaf, new_item, orig_offset);
4409 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4411 btrfs_set_item_offset(leaf, item,
4412 orig_offset + item_size - split_offset);
4413 btrfs_set_item_size(leaf, item, split_offset);
4415 btrfs_set_header_nritems(leaf, nritems + 1);
4417 /* write the data for the start of the original item */
4418 write_extent_buffer(leaf, buf,
4419 btrfs_item_ptr_offset(leaf, path->slots[0]),
4422 /* write the data for the new item */
4423 write_extent_buffer(leaf, buf + split_offset,
4424 btrfs_item_ptr_offset(leaf, slot),
4425 item_size - split_offset);
4426 btrfs_mark_buffer_dirty(leaf);
4428 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4434 * This function splits a single item into two items,
4435 * giving 'new_key' to the new item and splitting the
4436 * old one at split_offset (from the start of the item).
4438 * The path may be released by this operation. After
4439 * the split, the path is pointing to the old item. The
4440 * new item is going to be in the same node as the old one.
4442 * Note, the item being split must be smaller enough to live alone on
4443 * a tree block with room for one extra struct btrfs_item
4445 * This allows us to split the item in place, keeping a lock on the
4446 * leaf the entire time.
4448 int btrfs_split_item(struct btrfs_trans_handle *trans,
4449 struct btrfs_root *root,
4450 struct btrfs_path *path,
4451 const struct btrfs_key *new_key,
4452 unsigned long split_offset)
4455 ret = setup_leaf_for_split(trans, root, path,
4456 sizeof(struct btrfs_item));
4460 ret = split_item(path, new_key, split_offset);
4465 * This function duplicate a item, giving 'new_key' to the new item.
4466 * It guarantees both items live in the same tree leaf and the new item
4467 * is contiguous with the original item.
4469 * This allows us to split file extent in place, keeping a lock on the
4470 * leaf the entire time.
4472 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4473 struct btrfs_root *root,
4474 struct btrfs_path *path,
4475 const struct btrfs_key *new_key)
4477 struct extent_buffer *leaf;
4481 leaf = path->nodes[0];
4482 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4483 ret = setup_leaf_for_split(trans, root, path,
4484 item_size + sizeof(struct btrfs_item));
4489 setup_items_for_insert(root, path, new_key, &item_size,
4490 item_size, item_size +
4491 sizeof(struct btrfs_item), 1);
4492 leaf = path->nodes[0];
4493 memcpy_extent_buffer(leaf,
4494 btrfs_item_ptr_offset(leaf, path->slots[0]),
4495 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4501 * make the item pointed to by the path smaller. new_size indicates
4502 * how small to make it, and from_end tells us if we just chop bytes
4503 * off the end of the item or if we shift the item to chop bytes off
4506 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4509 struct extent_buffer *leaf;
4510 struct btrfs_item *item;
4512 unsigned int data_end;
4513 unsigned int old_data_start;
4514 unsigned int old_size;
4515 unsigned int size_diff;
4517 struct btrfs_map_token token;
4519 leaf = path->nodes[0];
4520 slot = path->slots[0];
4522 old_size = btrfs_item_size_nr(leaf, slot);
4523 if (old_size == new_size)
4526 nritems = btrfs_header_nritems(leaf);
4527 data_end = leaf_data_end(leaf);
4529 old_data_start = btrfs_item_offset_nr(leaf, slot);
4531 size_diff = old_size - new_size;
4534 BUG_ON(slot >= nritems);
4537 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4539 /* first correct the data pointers */
4540 btrfs_init_map_token(&token, leaf);
4541 for (i = slot; i < nritems; i++) {
4543 item = btrfs_item_nr(i);
4545 ioff = btrfs_token_item_offset(leaf, item, &token);
4546 btrfs_set_token_item_offset(leaf, item,
4547 ioff + size_diff, &token);
4550 /* shift the data */
4552 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4553 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4554 data_end, old_data_start + new_size - data_end);
4556 struct btrfs_disk_key disk_key;
4559 btrfs_item_key(leaf, &disk_key, slot);
4561 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4563 struct btrfs_file_extent_item *fi;
4565 fi = btrfs_item_ptr(leaf, slot,
4566 struct btrfs_file_extent_item);
4567 fi = (struct btrfs_file_extent_item *)(
4568 (unsigned long)fi - size_diff);
4570 if (btrfs_file_extent_type(leaf, fi) ==
4571 BTRFS_FILE_EXTENT_INLINE) {
4572 ptr = btrfs_item_ptr_offset(leaf, slot);
4573 memmove_extent_buffer(leaf, ptr,
4575 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4579 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4580 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4581 data_end, old_data_start - data_end);
4583 offset = btrfs_disk_key_offset(&disk_key);
4584 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4585 btrfs_set_item_key(leaf, &disk_key, slot);
4587 fixup_low_keys(path, &disk_key, 1);
4590 item = btrfs_item_nr(slot);
4591 btrfs_set_item_size(leaf, item, new_size);
4592 btrfs_mark_buffer_dirty(leaf);
4594 if (btrfs_leaf_free_space(leaf) < 0) {
4595 btrfs_print_leaf(leaf);
4601 * make the item pointed to by the path bigger, data_size is the added size.
4603 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4606 struct extent_buffer *leaf;
4607 struct btrfs_item *item;
4609 unsigned int data_end;
4610 unsigned int old_data;
4611 unsigned int old_size;
4613 struct btrfs_map_token token;
4615 leaf = path->nodes[0];
4617 nritems = btrfs_header_nritems(leaf);
4618 data_end = leaf_data_end(leaf);
4620 if (btrfs_leaf_free_space(leaf) < data_size) {
4621 btrfs_print_leaf(leaf);
4624 slot = path->slots[0];
4625 old_data = btrfs_item_end_nr(leaf, slot);
4628 if (slot >= nritems) {
4629 btrfs_print_leaf(leaf);
4630 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4636 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4638 /* first correct the data pointers */
4639 btrfs_init_map_token(&token, leaf);
4640 for (i = slot; i < nritems; i++) {
4642 item = btrfs_item_nr(i);
4644 ioff = btrfs_token_item_offset(leaf, item, &token);
4645 btrfs_set_token_item_offset(leaf, item,
4646 ioff - data_size, &token);
4649 /* shift the data */
4650 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4651 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4652 data_end, old_data - data_end);
4654 data_end = old_data;
4655 old_size = btrfs_item_size_nr(leaf, slot);
4656 item = btrfs_item_nr(slot);
4657 btrfs_set_item_size(leaf, item, old_size + data_size);
4658 btrfs_mark_buffer_dirty(leaf);
4660 if (btrfs_leaf_free_space(leaf) < 0) {
4661 btrfs_print_leaf(leaf);
4667 * this is a helper for btrfs_insert_empty_items, the main goal here is
4668 * to save stack depth by doing the bulk of the work in a function
4669 * that doesn't call btrfs_search_slot
4671 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4672 const struct btrfs_key *cpu_key, u32 *data_size,
4673 u32 total_data, u32 total_size, int nr)
4675 struct btrfs_fs_info *fs_info = root->fs_info;
4676 struct btrfs_item *item;
4679 unsigned int data_end;
4680 struct btrfs_disk_key disk_key;
4681 struct extent_buffer *leaf;
4683 struct btrfs_map_token token;
4685 if (path->slots[0] == 0) {
4686 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4687 fixup_low_keys(path, &disk_key, 1);
4689 btrfs_unlock_up_safe(path, 1);
4691 leaf = path->nodes[0];
4692 slot = path->slots[0];
4694 nritems = btrfs_header_nritems(leaf);
4695 data_end = leaf_data_end(leaf);
4697 if (btrfs_leaf_free_space(leaf) < total_size) {
4698 btrfs_print_leaf(leaf);
4699 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4700 total_size, btrfs_leaf_free_space(leaf));
4704 btrfs_init_map_token(&token, leaf);
4705 if (slot != nritems) {
4706 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4708 if (old_data < data_end) {
4709 btrfs_print_leaf(leaf);
4710 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4711 slot, old_data, data_end);
4715 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4717 /* first correct the data pointers */
4718 for (i = slot; i < nritems; i++) {
4721 item = btrfs_item_nr(i);
4722 ioff = btrfs_token_item_offset(leaf, item, &token);
4723 btrfs_set_token_item_offset(leaf, item,
4724 ioff - total_data, &token);
4726 /* shift the items */
4727 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4728 btrfs_item_nr_offset(slot),
4729 (nritems - slot) * sizeof(struct btrfs_item));
4731 /* shift the data */
4732 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4733 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4734 data_end, old_data - data_end);
4735 data_end = old_data;
4738 /* setup the item for the new data */
4739 for (i = 0; i < nr; i++) {
4740 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4741 btrfs_set_item_key(leaf, &disk_key, slot + i);
4742 item = btrfs_item_nr(slot + i);
4743 btrfs_set_token_item_offset(leaf, item,
4744 data_end - data_size[i], &token);
4745 data_end -= data_size[i];
4746 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4749 btrfs_set_header_nritems(leaf, nritems + nr);
4750 btrfs_mark_buffer_dirty(leaf);
4752 if (btrfs_leaf_free_space(leaf) < 0) {
4753 btrfs_print_leaf(leaf);
4759 * Given a key and some data, insert items into the tree.
4760 * This does all the path init required, making room in the tree if needed.
4762 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4763 struct btrfs_root *root,
4764 struct btrfs_path *path,
4765 const struct btrfs_key *cpu_key, u32 *data_size,
4774 for (i = 0; i < nr; i++)
4775 total_data += data_size[i];
4777 total_size = total_data + (nr * sizeof(struct btrfs_item));
4778 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4784 slot = path->slots[0];
4787 setup_items_for_insert(root, path, cpu_key, data_size,
4788 total_data, total_size, nr);
4793 * Given a key and some data, insert an item into the tree.
4794 * This does all the path init required, making room in the tree if needed.
4796 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4797 const struct btrfs_key *cpu_key, void *data,
4801 struct btrfs_path *path;
4802 struct extent_buffer *leaf;
4805 path = btrfs_alloc_path();
4808 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4810 leaf = path->nodes[0];
4811 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4812 write_extent_buffer(leaf, data, ptr, data_size);
4813 btrfs_mark_buffer_dirty(leaf);
4815 btrfs_free_path(path);
4820 * delete the pointer from a given node.
4822 * the tree should have been previously balanced so the deletion does not
4825 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4826 int level, int slot)
4828 struct extent_buffer *parent = path->nodes[level];
4832 nritems = btrfs_header_nritems(parent);
4833 if (slot != nritems - 1) {
4835 ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4836 nritems - slot - 1);
4839 memmove_extent_buffer(parent,
4840 btrfs_node_key_ptr_offset(slot),
4841 btrfs_node_key_ptr_offset(slot + 1),
4842 sizeof(struct btrfs_key_ptr) *
4843 (nritems - slot - 1));
4845 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4851 btrfs_set_header_nritems(parent, nritems);
4852 if (nritems == 0 && parent == root->node) {
4853 BUG_ON(btrfs_header_level(root->node) != 1);
4854 /* just turn the root into a leaf and break */
4855 btrfs_set_header_level(root->node, 0);
4856 } else if (slot == 0) {
4857 struct btrfs_disk_key disk_key;
4859 btrfs_node_key(parent, &disk_key, 0);
4860 fixup_low_keys(path, &disk_key, level + 1);
4862 btrfs_mark_buffer_dirty(parent);
4866 * a helper function to delete the leaf pointed to by path->slots[1] and
4869 * This deletes the pointer in path->nodes[1] and frees the leaf
4870 * block extent. zero is returned if it all worked out, < 0 otherwise.
4872 * The path must have already been setup for deleting the leaf, including
4873 * all the proper balancing. path->nodes[1] must be locked.
4875 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4876 struct btrfs_root *root,
4877 struct btrfs_path *path,
4878 struct extent_buffer *leaf)
4880 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4881 del_ptr(root, path, 1, path->slots[1]);
4884 * btrfs_free_extent is expensive, we want to make sure we
4885 * aren't holding any locks when we call it
4887 btrfs_unlock_up_safe(path, 0);
4889 root_sub_used(root, leaf->len);
4891 atomic_inc(&leaf->refs);
4892 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4893 free_extent_buffer_stale(leaf);
4896 * delete the item at the leaf level in path. If that empties
4897 * the leaf, remove it from the tree
4899 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4900 struct btrfs_path *path, int slot, int nr)
4902 struct btrfs_fs_info *fs_info = root->fs_info;
4903 struct extent_buffer *leaf;
4904 struct btrfs_item *item;
4912 leaf = path->nodes[0];
4913 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4915 for (i = 0; i < nr; i++)
4916 dsize += btrfs_item_size_nr(leaf, slot + i);
4918 nritems = btrfs_header_nritems(leaf);
4920 if (slot + nr != nritems) {
4921 int data_end = leaf_data_end(leaf);
4922 struct btrfs_map_token token;
4924 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4926 BTRFS_LEAF_DATA_OFFSET + data_end,
4927 last_off - data_end);
4929 btrfs_init_map_token(&token, leaf);
4930 for (i = slot + nr; i < nritems; i++) {
4933 item = btrfs_item_nr(i);
4934 ioff = btrfs_token_item_offset(leaf, item, &token);
4935 btrfs_set_token_item_offset(leaf, item,
4936 ioff + dsize, &token);
4939 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4940 btrfs_item_nr_offset(slot + nr),
4941 sizeof(struct btrfs_item) *
4942 (nritems - slot - nr));
4944 btrfs_set_header_nritems(leaf, nritems - nr);
4947 /* delete the leaf if we've emptied it */
4949 if (leaf == root->node) {
4950 btrfs_set_header_level(leaf, 0);
4952 btrfs_set_path_blocking(path);
4953 btrfs_clean_tree_block(leaf);
4954 btrfs_del_leaf(trans, root, path, leaf);
4957 int used = leaf_space_used(leaf, 0, nritems);
4959 struct btrfs_disk_key disk_key;
4961 btrfs_item_key(leaf, &disk_key, 0);
4962 fixup_low_keys(path, &disk_key, 1);
4965 /* delete the leaf if it is mostly empty */
4966 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4967 /* push_leaf_left fixes the path.
4968 * make sure the path still points to our leaf
4969 * for possible call to del_ptr below
4971 slot = path->slots[1];
4972 atomic_inc(&leaf->refs);
4974 btrfs_set_path_blocking(path);
4975 wret = push_leaf_left(trans, root, path, 1, 1,
4977 if (wret < 0 && wret != -ENOSPC)
4980 if (path->nodes[0] == leaf &&
4981 btrfs_header_nritems(leaf)) {
4982 wret = push_leaf_right(trans, root, path, 1,
4984 if (wret < 0 && wret != -ENOSPC)
4988 if (btrfs_header_nritems(leaf) == 0) {
4989 path->slots[1] = slot;
4990 btrfs_del_leaf(trans, root, path, leaf);
4991 free_extent_buffer(leaf);
4994 /* if we're still in the path, make sure
4995 * we're dirty. Otherwise, one of the
4996 * push_leaf functions must have already
4997 * dirtied this buffer
4999 if (path->nodes[0] == leaf)
5000 btrfs_mark_buffer_dirty(leaf);
5001 free_extent_buffer(leaf);
5004 btrfs_mark_buffer_dirty(leaf);
5011 * search the tree again to find a leaf with lesser keys
5012 * returns 0 if it found something or 1 if there are no lesser leaves.
5013 * returns < 0 on io errors.
5015 * This may release the path, and so you may lose any locks held at the
5018 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5020 struct btrfs_key key;
5021 struct btrfs_disk_key found_key;
5024 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5026 if (key.offset > 0) {
5028 } else if (key.type > 0) {
5030 key.offset = (u64)-1;
5031 } else if (key.objectid > 0) {
5034 key.offset = (u64)-1;
5039 btrfs_release_path(path);
5040 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5043 btrfs_item_key(path->nodes[0], &found_key, 0);
5044 ret = comp_keys(&found_key, &key);
5046 * We might have had an item with the previous key in the tree right
5047 * before we released our path. And after we released our path, that
5048 * item might have been pushed to the first slot (0) of the leaf we
5049 * were holding due to a tree balance. Alternatively, an item with the
5050 * previous key can exist as the only element of a leaf (big fat item).
5051 * Therefore account for these 2 cases, so that our callers (like
5052 * btrfs_previous_item) don't miss an existing item with a key matching
5053 * the previous key we computed above.
5061 * A helper function to walk down the tree starting at min_key, and looking
5062 * for nodes or leaves that are have a minimum transaction id.
5063 * This is used by the btree defrag code, and tree logging
5065 * This does not cow, but it does stuff the starting key it finds back
5066 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5067 * key and get a writable path.
5069 * This honors path->lowest_level to prevent descent past a given level
5072 * min_trans indicates the oldest transaction that you are interested
5073 * in walking through. Any nodes or leaves older than min_trans are
5074 * skipped over (without reading them).
5076 * returns zero if something useful was found, < 0 on error and 1 if there
5077 * was nothing in the tree that matched the search criteria.
5079 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5080 struct btrfs_path *path,
5083 struct extent_buffer *cur;
5084 struct btrfs_key found_key;
5090 int keep_locks = path->keep_locks;
5092 path->keep_locks = 1;
5094 cur = btrfs_read_lock_root_node(root);
5095 level = btrfs_header_level(cur);
5096 WARN_ON(path->nodes[level]);
5097 path->nodes[level] = cur;
5098 path->locks[level] = BTRFS_READ_LOCK;
5100 if (btrfs_header_generation(cur) < min_trans) {
5105 nritems = btrfs_header_nritems(cur);
5106 level = btrfs_header_level(cur);
5107 sret = btrfs_bin_search(cur, min_key, level, &slot);
5113 /* at the lowest level, we're done, setup the path and exit */
5114 if (level == path->lowest_level) {
5115 if (slot >= nritems)
5118 path->slots[level] = slot;
5119 btrfs_item_key_to_cpu(cur, &found_key, slot);
5122 if (sret && slot > 0)
5125 * check this node pointer against the min_trans parameters.
5126 * If it is too old, old, skip to the next one.
5128 while (slot < nritems) {
5131 gen = btrfs_node_ptr_generation(cur, slot);
5132 if (gen < min_trans) {
5140 * we didn't find a candidate key in this node, walk forward
5141 * and find another one
5143 if (slot >= nritems) {
5144 path->slots[level] = slot;
5145 btrfs_set_path_blocking(path);
5146 sret = btrfs_find_next_key(root, path, min_key, level,
5149 btrfs_release_path(path);
5155 /* save our key for returning back */
5156 btrfs_node_key_to_cpu(cur, &found_key, slot);
5157 path->slots[level] = slot;
5158 if (level == path->lowest_level) {
5162 btrfs_set_path_blocking(path);
5163 cur = btrfs_read_node_slot(cur, slot);
5169 btrfs_tree_read_lock(cur);
5171 path->locks[level - 1] = BTRFS_READ_LOCK;
5172 path->nodes[level - 1] = cur;
5173 unlock_up(path, level, 1, 0, NULL);
5176 path->keep_locks = keep_locks;
5178 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5179 btrfs_set_path_blocking(path);
5180 memcpy(min_key, &found_key, sizeof(found_key));
5186 * this is similar to btrfs_next_leaf, but does not try to preserve
5187 * and fixup the path. It looks for and returns the next key in the
5188 * tree based on the current path and the min_trans parameters.
5190 * 0 is returned if another key is found, < 0 if there are any errors
5191 * and 1 is returned if there are no higher keys in the tree
5193 * path->keep_locks should be set to 1 on the search made before
5194 * calling this function.
5196 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5197 struct btrfs_key *key, int level, u64 min_trans)
5200 struct extent_buffer *c;
5202 WARN_ON(!path->keep_locks && !path->skip_locking);
5203 while (level < BTRFS_MAX_LEVEL) {
5204 if (!path->nodes[level])
5207 slot = path->slots[level] + 1;
5208 c = path->nodes[level];
5210 if (slot >= btrfs_header_nritems(c)) {
5213 struct btrfs_key cur_key;
5214 if (level + 1 >= BTRFS_MAX_LEVEL ||
5215 !path->nodes[level + 1])
5218 if (path->locks[level + 1] || path->skip_locking) {
5223 slot = btrfs_header_nritems(c) - 1;
5225 btrfs_item_key_to_cpu(c, &cur_key, slot);
5227 btrfs_node_key_to_cpu(c, &cur_key, slot);
5229 orig_lowest = path->lowest_level;
5230 btrfs_release_path(path);
5231 path->lowest_level = level;
5232 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5234 path->lowest_level = orig_lowest;
5238 c = path->nodes[level];
5239 slot = path->slots[level];
5246 btrfs_item_key_to_cpu(c, key, slot);
5248 u64 gen = btrfs_node_ptr_generation(c, slot);
5250 if (gen < min_trans) {
5254 btrfs_node_key_to_cpu(c, key, slot);
5262 * search the tree again to find a leaf with greater keys
5263 * returns 0 if it found something or 1 if there are no greater leaves.
5264 * returns < 0 on io errors.
5266 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5268 return btrfs_next_old_leaf(root, path, 0);
5271 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5276 struct extent_buffer *c;
5277 struct extent_buffer *next;
5278 struct btrfs_key key;
5281 int old_spinning = path->leave_spinning;
5282 int next_rw_lock = 0;
5284 nritems = btrfs_header_nritems(path->nodes[0]);
5288 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5293 btrfs_release_path(path);
5295 path->keep_locks = 1;
5296 path->leave_spinning = 1;
5299 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5301 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5302 path->keep_locks = 0;
5307 nritems = btrfs_header_nritems(path->nodes[0]);
5309 * by releasing the path above we dropped all our locks. A balance
5310 * could have added more items next to the key that used to be
5311 * at the very end of the block. So, check again here and
5312 * advance the path if there are now more items available.
5314 if (nritems > 0 && path->slots[0] < nritems - 1) {
5321 * So the above check misses one case:
5322 * - after releasing the path above, someone has removed the item that
5323 * used to be at the very end of the block, and balance between leafs
5324 * gets another one with bigger key.offset to replace it.
5326 * This one should be returned as well, or we can get leaf corruption
5327 * later(esp. in __btrfs_drop_extents()).
5329 * And a bit more explanation about this check,
5330 * with ret > 0, the key isn't found, the path points to the slot
5331 * where it should be inserted, so the path->slots[0] item must be the
5334 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5339 while (level < BTRFS_MAX_LEVEL) {
5340 if (!path->nodes[level]) {
5345 slot = path->slots[level] + 1;
5346 c = path->nodes[level];
5347 if (slot >= btrfs_header_nritems(c)) {
5349 if (level == BTRFS_MAX_LEVEL) {
5357 btrfs_tree_unlock_rw(next, next_rw_lock);
5358 free_extent_buffer(next);
5362 next_rw_lock = path->locks[level];
5363 ret = read_block_for_search(root, path, &next, level,
5369 btrfs_release_path(path);
5373 if (!path->skip_locking) {
5374 ret = btrfs_try_tree_read_lock(next);
5375 if (!ret && time_seq) {
5377 * If we don't get the lock, we may be racing
5378 * with push_leaf_left, holding that lock while
5379 * itself waiting for the leaf we've currently
5380 * locked. To solve this situation, we give up
5381 * on our lock and cycle.
5383 free_extent_buffer(next);
5384 btrfs_release_path(path);
5389 btrfs_set_path_blocking(path);
5390 btrfs_tree_read_lock(next);
5392 next_rw_lock = BTRFS_READ_LOCK;
5396 path->slots[level] = slot;
5399 c = path->nodes[level];
5400 if (path->locks[level])
5401 btrfs_tree_unlock_rw(c, path->locks[level]);
5403 free_extent_buffer(c);
5404 path->nodes[level] = next;
5405 path->slots[level] = 0;
5406 if (!path->skip_locking)
5407 path->locks[level] = next_rw_lock;
5411 ret = read_block_for_search(root, path, &next, level,
5417 btrfs_release_path(path);
5421 if (!path->skip_locking) {
5422 ret = btrfs_try_tree_read_lock(next);
5424 btrfs_set_path_blocking(path);
5425 btrfs_tree_read_lock(next);
5427 next_rw_lock = BTRFS_READ_LOCK;
5432 unlock_up(path, 0, 1, 0, NULL);
5433 path->leave_spinning = old_spinning;
5435 btrfs_set_path_blocking(path);
5441 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5442 * searching until it gets past min_objectid or finds an item of 'type'
5444 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5446 int btrfs_previous_item(struct btrfs_root *root,
5447 struct btrfs_path *path, u64 min_objectid,
5450 struct btrfs_key found_key;
5451 struct extent_buffer *leaf;
5456 if (path->slots[0] == 0) {
5457 btrfs_set_path_blocking(path);
5458 ret = btrfs_prev_leaf(root, path);
5464 leaf = path->nodes[0];
5465 nritems = btrfs_header_nritems(leaf);
5468 if (path->slots[0] == nritems)
5471 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5472 if (found_key.objectid < min_objectid)
5474 if (found_key.type == type)
5476 if (found_key.objectid == min_objectid &&
5477 found_key.type < type)
5484 * search in extent tree to find a previous Metadata/Data extent item with
5487 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5489 int btrfs_previous_extent_item(struct btrfs_root *root,
5490 struct btrfs_path *path, u64 min_objectid)
5492 struct btrfs_key found_key;
5493 struct extent_buffer *leaf;
5498 if (path->slots[0] == 0) {
5499 btrfs_set_path_blocking(path);
5500 ret = btrfs_prev_leaf(root, path);
5506 leaf = path->nodes[0];
5507 nritems = btrfs_header_nritems(leaf);
5510 if (path->slots[0] == nritems)
5513 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5514 if (found_key.objectid < min_objectid)
5516 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5517 found_key.type == BTRFS_METADATA_ITEM_KEY)
5519 if (found_key.objectid == min_objectid &&
5520 found_key.type < BTRFS_EXTENT_ITEM_KEY)