4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
34 #include <trace/events/f2fs.h>
36 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
38 struct inode *inode = file_inode(vmf->vma->vm_file);
41 down_read(&F2FS_I(inode)->i_mmap_sem);
42 ret = filemap_fault(vmf);
43 up_read(&F2FS_I(inode)->i_mmap_sem);
48 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
50 struct page *page = vmf->page;
51 struct inode *inode = file_inode(vmf->vma->vm_file);
52 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
53 struct dnode_of_data dn;
56 if (unlikely(f2fs_cp_error(sbi))) {
61 sb_start_pagefault(inode->i_sb);
63 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
65 /* block allocation */
67 set_new_dnode(&dn, inode, NULL, NULL, 0);
68 err = f2fs_reserve_block(&dn, page->index);
76 f2fs_balance_fs(sbi, dn.node_changed);
78 file_update_time(vmf->vma->vm_file);
79 down_read(&F2FS_I(inode)->i_mmap_sem);
81 if (unlikely(page->mapping != inode->i_mapping ||
82 page_offset(page) > i_size_read(inode) ||
83 !PageUptodate(page))) {
90 * check to see if the page is mapped already (no holes)
92 if (PageMappedToDisk(page))
95 /* page is wholly or partially inside EOF */
96 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
100 offset = i_size_read(inode) & ~PAGE_MASK;
101 zero_user_segment(page, offset, PAGE_SIZE);
103 set_page_dirty(page);
104 if (!PageUptodate(page))
105 SetPageUptodate(page);
107 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
109 trace_f2fs_vm_page_mkwrite(page, DATA);
112 f2fs_wait_on_page_writeback(page, DATA, false);
114 /* wait for GCed page writeback via META_MAPPING */
115 if (f2fs_post_read_required(inode))
116 f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr);
119 up_read(&F2FS_I(inode)->i_mmap_sem);
121 sb_end_pagefault(inode->i_sb);
122 f2fs_update_time(sbi, REQ_TIME);
124 return block_page_mkwrite_return(err);
127 static const struct vm_operations_struct f2fs_file_vm_ops = {
128 .fault = f2fs_filemap_fault,
129 .map_pages = filemap_map_pages,
130 .page_mkwrite = f2fs_vm_page_mkwrite,
133 static int get_parent_ino(struct inode *inode, nid_t *pino)
135 struct dentry *dentry;
137 inode = igrab(inode);
138 dentry = d_find_any_alias(inode);
143 *pino = parent_ino(dentry);
148 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
150 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
151 enum cp_reason_type cp_reason = CP_NO_NEEDED;
153 if (!S_ISREG(inode->i_mode))
154 cp_reason = CP_NON_REGULAR;
155 else if (inode->i_nlink != 1)
156 cp_reason = CP_HARDLINK;
157 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
158 cp_reason = CP_SB_NEED_CP;
159 else if (file_wrong_pino(inode))
160 cp_reason = CP_WRONG_PINO;
161 else if (!f2fs_space_for_roll_forward(sbi))
162 cp_reason = CP_NO_SPC_ROLL;
163 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
164 cp_reason = CP_NODE_NEED_CP;
165 else if (test_opt(sbi, FASTBOOT))
166 cp_reason = CP_FASTBOOT_MODE;
167 else if (F2FS_OPTION(sbi).active_logs == 2)
168 cp_reason = CP_SPEC_LOG_NUM;
169 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
170 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
171 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
173 cp_reason = CP_RECOVER_DIR;
178 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
180 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
182 /* But we need to avoid that there are some inode updates */
183 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
189 static void try_to_fix_pino(struct inode *inode)
191 struct f2fs_inode_info *fi = F2FS_I(inode);
194 down_write(&fi->i_sem);
195 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
196 get_parent_ino(inode, &pino)) {
197 f2fs_i_pino_write(inode, pino);
198 file_got_pino(inode);
200 up_write(&fi->i_sem);
203 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
204 int datasync, bool atomic)
206 struct inode *inode = file->f_mapping->host;
207 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
208 nid_t ino = inode->i_ino;
210 enum cp_reason_type cp_reason = 0;
211 struct writeback_control wbc = {
212 .sync_mode = WB_SYNC_ALL,
213 .nr_to_write = LONG_MAX,
217 if (unlikely(f2fs_readonly(inode->i_sb)))
220 trace_f2fs_sync_file_enter(inode);
222 /* if fdatasync is triggered, let's do in-place-update */
223 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
224 set_inode_flag(inode, FI_NEED_IPU);
225 ret = file_write_and_wait_range(file, start, end);
226 clear_inode_flag(inode, FI_NEED_IPU);
229 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
233 /* if the inode is dirty, let's recover all the time */
234 if (!f2fs_skip_inode_update(inode, datasync)) {
235 f2fs_write_inode(inode, NULL);
240 * if there is no written data, don't waste time to write recovery info.
242 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
243 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
245 /* it may call write_inode just prior to fsync */
246 if (need_inode_page_update(sbi, ino))
249 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
250 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
256 * Both of fdatasync() and fsync() are able to be recovered from
259 down_read(&F2FS_I(inode)->i_sem);
260 cp_reason = need_do_checkpoint(inode);
261 up_read(&F2FS_I(inode)->i_sem);
264 /* all the dirty node pages should be flushed for POR */
265 ret = f2fs_sync_fs(inode->i_sb, 1);
268 * We've secured consistency through sync_fs. Following pino
269 * will be used only for fsynced inodes after checkpoint.
271 try_to_fix_pino(inode);
272 clear_inode_flag(inode, FI_APPEND_WRITE);
273 clear_inode_flag(inode, FI_UPDATE_WRITE);
277 atomic_inc(&sbi->wb_sync_req[NODE]);
278 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic);
279 atomic_dec(&sbi->wb_sync_req[NODE]);
283 /* if cp_error was enabled, we should avoid infinite loop */
284 if (unlikely(f2fs_cp_error(sbi))) {
289 if (f2fs_need_inode_block_update(sbi, ino)) {
290 f2fs_mark_inode_dirty_sync(inode, true);
291 f2fs_write_inode(inode, NULL);
296 * If it's atomic_write, it's just fine to keep write ordering. So
297 * here we don't need to wait for node write completion, since we use
298 * node chain which serializes node blocks. If one of node writes are
299 * reordered, we can see simply broken chain, resulting in stopping
300 * roll-forward recovery. It means we'll recover all or none node blocks
304 ret = f2fs_wait_on_node_pages_writeback(sbi, ino);
309 /* once recovery info is written, don't need to tack this */
310 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
311 clear_inode_flag(inode, FI_APPEND_WRITE);
313 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
314 ret = f2fs_issue_flush(sbi, inode->i_ino);
316 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
317 clear_inode_flag(inode, FI_UPDATE_WRITE);
318 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
320 f2fs_update_time(sbi, REQ_TIME);
322 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
323 f2fs_trace_ios(NULL, 1);
327 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
329 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
331 return f2fs_do_sync_file(file, start, end, datasync, false);
334 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
335 pgoff_t pgofs, int whence)
340 if (whence != SEEK_DATA)
343 /* find first dirty page index */
344 nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
353 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
358 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
359 is_valid_blkaddr(blkaddr))
363 if (blkaddr == NULL_ADDR)
370 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
372 struct inode *inode = file->f_mapping->host;
373 loff_t maxbytes = inode->i_sb->s_maxbytes;
374 struct dnode_of_data dn;
375 pgoff_t pgofs, end_offset, dirty;
376 loff_t data_ofs = offset;
382 isize = i_size_read(inode);
386 /* handle inline data case */
387 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
388 if (whence == SEEK_HOLE)
393 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
395 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
397 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
398 set_new_dnode(&dn, inode, NULL, NULL, 0);
399 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
400 if (err && err != -ENOENT) {
402 } else if (err == -ENOENT) {
403 /* direct node does not exists */
404 if (whence == SEEK_DATA) {
405 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
412 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
414 /* find data/hole in dnode block */
415 for (; dn.ofs_in_node < end_offset;
416 dn.ofs_in_node++, pgofs++,
417 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
420 blkaddr = datablock_addr(dn.inode,
421 dn.node_page, dn.ofs_in_node);
423 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
431 if (whence == SEEK_DATA)
434 if (whence == SEEK_HOLE && data_ofs > isize)
437 return vfs_setpos(file, data_ofs, maxbytes);
443 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
445 struct inode *inode = file->f_mapping->host;
446 loff_t maxbytes = inode->i_sb->s_maxbytes;
452 return generic_file_llseek_size(file, offset, whence,
453 maxbytes, i_size_read(inode));
458 return f2fs_seek_block(file, offset, whence);
464 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
466 struct inode *inode = file_inode(file);
469 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
472 /* we don't need to use inline_data strictly */
473 err = f2fs_convert_inline_inode(inode);
478 vma->vm_ops = &f2fs_file_vm_ops;
482 static int f2fs_file_open(struct inode *inode, struct file *filp)
484 int err = fscrypt_file_open(inode, filp);
489 filp->f_mode |= FMODE_NOWAIT;
491 return dquot_file_open(inode, filp);
494 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
496 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
497 struct f2fs_node *raw_node;
498 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
502 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
503 base = get_extra_isize(dn->inode);
505 raw_node = F2FS_NODE(dn->node_page);
506 addr = blkaddr_in_node(raw_node) + base + ofs;
508 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
509 block_t blkaddr = le32_to_cpu(*addr);
511 if (blkaddr == NULL_ADDR)
514 dn->data_blkaddr = NULL_ADDR;
515 f2fs_set_data_blkaddr(dn);
516 f2fs_invalidate_blocks(sbi, blkaddr);
517 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
518 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
525 * once we invalidate valid blkaddr in range [ofs, ofs + count],
526 * we will invalidate all blkaddr in the whole range.
528 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
530 f2fs_update_extent_cache_range(dn, fofs, 0, len);
531 dec_valid_block_count(sbi, dn->inode, nr_free);
533 dn->ofs_in_node = ofs;
535 f2fs_update_time(sbi, REQ_TIME);
536 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
537 dn->ofs_in_node, nr_free);
540 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
542 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
545 static int truncate_partial_data_page(struct inode *inode, u64 from,
548 loff_t offset = from & (PAGE_SIZE - 1);
549 pgoff_t index = from >> PAGE_SHIFT;
550 struct address_space *mapping = inode->i_mapping;
553 if (!offset && !cache_only)
557 page = find_lock_page(mapping, index);
558 if (page && PageUptodate(page))
560 f2fs_put_page(page, 1);
564 page = f2fs_get_lock_data_page(inode, index, true);
566 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
568 f2fs_wait_on_page_writeback(page, DATA, true);
569 zero_user(page, offset, PAGE_SIZE - offset);
571 /* An encrypted inode should have a key and truncate the last page. */
572 f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
574 set_page_dirty(page);
575 f2fs_put_page(page, 1);
579 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
581 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
582 struct dnode_of_data dn;
584 int count = 0, err = 0;
586 bool truncate_page = false;
588 trace_f2fs_truncate_blocks_enter(inode, from);
590 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
592 if (free_from >= sbi->max_file_blocks)
598 ipage = f2fs_get_node_page(sbi, inode->i_ino);
600 err = PTR_ERR(ipage);
604 if (f2fs_has_inline_data(inode)) {
605 f2fs_truncate_inline_inode(inode, ipage, from);
606 f2fs_put_page(ipage, 1);
607 truncate_page = true;
611 set_new_dnode(&dn, inode, ipage, NULL, 0);
612 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
619 count = ADDRS_PER_PAGE(dn.node_page, inode);
621 count -= dn.ofs_in_node;
622 f2fs_bug_on(sbi, count < 0);
624 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
625 f2fs_truncate_data_blocks_range(&dn, count);
631 err = f2fs_truncate_inode_blocks(inode, free_from);
636 /* lastly zero out the first data page */
638 err = truncate_partial_data_page(inode, from, truncate_page);
640 trace_f2fs_truncate_blocks_exit(inode, err);
644 int f2fs_truncate(struct inode *inode)
648 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
651 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
652 S_ISLNK(inode->i_mode)))
655 trace_f2fs_truncate(inode);
657 #ifdef CONFIG_F2FS_FAULT_INJECTION
658 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
659 f2fs_show_injection_info(FAULT_TRUNCATE);
663 /* we should check inline_data size */
664 if (!f2fs_may_inline_data(inode)) {
665 err = f2fs_convert_inline_inode(inode);
670 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
674 inode->i_mtime = inode->i_ctime = current_time(inode);
675 f2fs_mark_inode_dirty_sync(inode, false);
679 int f2fs_getattr(const struct path *path, struct kstat *stat,
680 u32 request_mask, unsigned int query_flags)
682 struct inode *inode = d_inode(path->dentry);
683 struct f2fs_inode_info *fi = F2FS_I(inode);
684 struct f2fs_inode *ri;
687 if (f2fs_has_extra_attr(inode) &&
688 f2fs_sb_has_inode_crtime(inode->i_sb) &&
689 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
690 stat->result_mask |= STATX_BTIME;
691 stat->btime.tv_sec = fi->i_crtime.tv_sec;
692 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
695 flags = fi->i_flags & F2FS_FL_USER_VISIBLE;
696 if (flags & F2FS_APPEND_FL)
697 stat->attributes |= STATX_ATTR_APPEND;
698 if (flags & F2FS_COMPR_FL)
699 stat->attributes |= STATX_ATTR_COMPRESSED;
700 if (f2fs_encrypted_inode(inode))
701 stat->attributes |= STATX_ATTR_ENCRYPTED;
702 if (flags & F2FS_IMMUTABLE_FL)
703 stat->attributes |= STATX_ATTR_IMMUTABLE;
704 if (flags & F2FS_NODUMP_FL)
705 stat->attributes |= STATX_ATTR_NODUMP;
707 stat->attributes_mask |= (STATX_ATTR_APPEND |
708 STATX_ATTR_COMPRESSED |
709 STATX_ATTR_ENCRYPTED |
710 STATX_ATTR_IMMUTABLE |
713 generic_fillattr(inode, stat);
715 /* we need to show initial sectors used for inline_data/dentries */
716 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
717 f2fs_has_inline_dentry(inode))
718 stat->blocks += (stat->size + 511) >> 9;
723 #ifdef CONFIG_F2FS_FS_POSIX_ACL
724 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
726 unsigned int ia_valid = attr->ia_valid;
728 if (ia_valid & ATTR_UID)
729 inode->i_uid = attr->ia_uid;
730 if (ia_valid & ATTR_GID)
731 inode->i_gid = attr->ia_gid;
732 if (ia_valid & ATTR_ATIME)
733 inode->i_atime = timespec_trunc(attr->ia_atime,
734 inode->i_sb->s_time_gran);
735 if (ia_valid & ATTR_MTIME)
736 inode->i_mtime = timespec_trunc(attr->ia_mtime,
737 inode->i_sb->s_time_gran);
738 if (ia_valid & ATTR_CTIME)
739 inode->i_ctime = timespec_trunc(attr->ia_ctime,
740 inode->i_sb->s_time_gran);
741 if (ia_valid & ATTR_MODE) {
742 umode_t mode = attr->ia_mode;
744 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
746 set_acl_inode(inode, mode);
750 #define __setattr_copy setattr_copy
753 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
755 struct inode *inode = d_inode(dentry);
757 bool size_changed = false;
759 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
762 err = setattr_prepare(dentry, attr);
766 err = fscrypt_prepare_setattr(dentry, attr);
770 if (is_quota_modification(inode, attr)) {
771 err = dquot_initialize(inode);
775 if ((attr->ia_valid & ATTR_UID &&
776 !uid_eq(attr->ia_uid, inode->i_uid)) ||
777 (attr->ia_valid & ATTR_GID &&
778 !gid_eq(attr->ia_gid, inode->i_gid))) {
779 err = dquot_transfer(inode, attr);
784 if (attr->ia_valid & ATTR_SIZE) {
785 if (attr->ia_size <= i_size_read(inode)) {
786 down_write(&F2FS_I(inode)->i_mmap_sem);
787 truncate_setsize(inode, attr->ia_size);
788 err = f2fs_truncate(inode);
789 up_write(&F2FS_I(inode)->i_mmap_sem);
794 * do not trim all blocks after i_size if target size is
795 * larger than i_size.
797 down_write(&F2FS_I(inode)->i_mmap_sem);
798 truncate_setsize(inode, attr->ia_size);
799 up_write(&F2FS_I(inode)->i_mmap_sem);
801 /* should convert inline inode here */
802 if (!f2fs_may_inline_data(inode)) {
803 err = f2fs_convert_inline_inode(inode);
807 inode->i_mtime = inode->i_ctime = current_time(inode);
810 down_write(&F2FS_I(inode)->i_sem);
811 F2FS_I(inode)->last_disk_size = i_size_read(inode);
812 up_write(&F2FS_I(inode)->i_sem);
817 __setattr_copy(inode, attr);
819 if (attr->ia_valid & ATTR_MODE) {
820 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
821 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
822 inode->i_mode = F2FS_I(inode)->i_acl_mode;
823 clear_inode_flag(inode, FI_ACL_MODE);
827 /* file size may changed here */
828 f2fs_mark_inode_dirty_sync(inode, size_changed);
830 /* inode change will produce dirty node pages flushed by checkpoint */
831 f2fs_balance_fs(F2FS_I_SB(inode), true);
836 const struct inode_operations f2fs_file_inode_operations = {
837 .getattr = f2fs_getattr,
838 .setattr = f2fs_setattr,
839 .get_acl = f2fs_get_acl,
840 .set_acl = f2fs_set_acl,
841 #ifdef CONFIG_F2FS_FS_XATTR
842 .listxattr = f2fs_listxattr,
844 .fiemap = f2fs_fiemap,
847 static int fill_zero(struct inode *inode, pgoff_t index,
848 loff_t start, loff_t len)
850 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
856 f2fs_balance_fs(sbi, true);
859 page = f2fs_get_new_data_page(inode, NULL, index, false);
863 return PTR_ERR(page);
865 f2fs_wait_on_page_writeback(page, DATA, true);
866 zero_user(page, start, len);
867 set_page_dirty(page);
868 f2fs_put_page(page, 1);
872 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
876 while (pg_start < pg_end) {
877 struct dnode_of_data dn;
878 pgoff_t end_offset, count;
880 set_new_dnode(&dn, inode, NULL, NULL, 0);
881 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
883 if (err == -ENOENT) {
884 pg_start = f2fs_get_next_page_offset(&dn,
891 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
892 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
894 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
896 f2fs_truncate_data_blocks_range(&dn, count);
904 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
906 pgoff_t pg_start, pg_end;
907 loff_t off_start, off_end;
910 ret = f2fs_convert_inline_inode(inode);
914 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
915 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
917 off_start = offset & (PAGE_SIZE - 1);
918 off_end = (offset + len) & (PAGE_SIZE - 1);
920 if (pg_start == pg_end) {
921 ret = fill_zero(inode, pg_start, off_start,
922 off_end - off_start);
927 ret = fill_zero(inode, pg_start++, off_start,
928 PAGE_SIZE - off_start);
933 ret = fill_zero(inode, pg_end, 0, off_end);
938 if (pg_start < pg_end) {
939 struct address_space *mapping = inode->i_mapping;
940 loff_t blk_start, blk_end;
941 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
943 f2fs_balance_fs(sbi, true);
945 blk_start = (loff_t)pg_start << PAGE_SHIFT;
946 blk_end = (loff_t)pg_end << PAGE_SHIFT;
947 down_write(&F2FS_I(inode)->i_mmap_sem);
948 truncate_inode_pages_range(mapping, blk_start,
952 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
954 up_write(&F2FS_I(inode)->i_mmap_sem);
961 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
962 int *do_replace, pgoff_t off, pgoff_t len)
964 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
965 struct dnode_of_data dn;
969 set_new_dnode(&dn, inode, NULL, NULL, 0);
970 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
971 if (ret && ret != -ENOENT) {
973 } else if (ret == -ENOENT) {
974 if (dn.max_level == 0)
976 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
982 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
983 dn.ofs_in_node, len);
984 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
985 *blkaddr = datablock_addr(dn.inode,
986 dn.node_page, dn.ofs_in_node);
987 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
989 if (test_opt(sbi, LFS)) {
994 /* do not invalidate this block address */
995 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1008 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1009 int *do_replace, pgoff_t off, int len)
1011 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1012 struct dnode_of_data dn;
1015 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1016 if (*do_replace == 0)
1019 set_new_dnode(&dn, inode, NULL, NULL, 0);
1020 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1022 dec_valid_block_count(sbi, inode, 1);
1023 f2fs_invalidate_blocks(sbi, *blkaddr);
1025 f2fs_update_data_blkaddr(&dn, *blkaddr);
1027 f2fs_put_dnode(&dn);
1032 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1033 block_t *blkaddr, int *do_replace,
1034 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1036 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1041 if (blkaddr[i] == NULL_ADDR && !full) {
1046 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1047 struct dnode_of_data dn;
1048 struct node_info ni;
1052 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1053 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1057 f2fs_get_node_info(sbi, dn.nid, &ni);
1058 ilen = min((pgoff_t)
1059 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1060 dn.ofs_in_node, len - i);
1062 dn.data_blkaddr = datablock_addr(dn.inode,
1063 dn.node_page, dn.ofs_in_node);
1064 f2fs_truncate_data_blocks_range(&dn, 1);
1066 if (do_replace[i]) {
1067 f2fs_i_blocks_write(src_inode,
1069 f2fs_i_blocks_write(dst_inode,
1071 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1072 blkaddr[i], ni.version, true, false);
1078 new_size = (dst + i) << PAGE_SHIFT;
1079 if (dst_inode->i_size < new_size)
1080 f2fs_i_size_write(dst_inode, new_size);
1081 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1083 f2fs_put_dnode(&dn);
1085 struct page *psrc, *pdst;
1087 psrc = f2fs_get_lock_data_page(src_inode,
1090 return PTR_ERR(psrc);
1091 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1094 f2fs_put_page(psrc, 1);
1095 return PTR_ERR(pdst);
1097 f2fs_copy_page(psrc, pdst);
1098 set_page_dirty(pdst);
1099 f2fs_put_page(pdst, 1);
1100 f2fs_put_page(psrc, 1);
1102 ret = f2fs_truncate_hole(src_inode,
1103 src + i, src + i + 1);
1112 static int __exchange_data_block(struct inode *src_inode,
1113 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1114 pgoff_t len, bool full)
1116 block_t *src_blkaddr;
1122 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1124 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1125 sizeof(block_t) * olen, GFP_KERNEL);
1129 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1130 sizeof(int) * olen, GFP_KERNEL);
1132 kvfree(src_blkaddr);
1136 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1137 do_replace, src, olen);
1141 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1142 do_replace, src, dst, olen, full);
1150 kvfree(src_blkaddr);
1156 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1157 kvfree(src_blkaddr);
1162 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1164 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1165 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1168 f2fs_balance_fs(sbi, true);
1171 f2fs_drop_extent_tree(inode);
1173 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1174 f2fs_unlock_op(sbi);
1178 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1180 pgoff_t pg_start, pg_end;
1184 if (offset + len >= i_size_read(inode))
1187 /* collapse range should be aligned to block size of f2fs. */
1188 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1191 ret = f2fs_convert_inline_inode(inode);
1195 pg_start = offset >> PAGE_SHIFT;
1196 pg_end = (offset + len) >> PAGE_SHIFT;
1198 /* avoid gc operation during block exchange */
1199 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1201 down_write(&F2FS_I(inode)->i_mmap_sem);
1202 /* write out all dirty pages from offset */
1203 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1207 truncate_pagecache(inode, offset);
1209 ret = f2fs_do_collapse(inode, pg_start, pg_end);
1213 /* write out all moved pages, if possible */
1214 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1215 truncate_pagecache(inode, offset);
1217 new_size = i_size_read(inode) - len;
1218 truncate_pagecache(inode, new_size);
1220 ret = f2fs_truncate_blocks(inode, new_size, true);
1222 f2fs_i_size_write(inode, new_size);
1224 up_write(&F2FS_I(inode)->i_mmap_sem);
1225 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1229 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1232 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1233 pgoff_t index = start;
1234 unsigned int ofs_in_node = dn->ofs_in_node;
1238 for (; index < end; index++, dn->ofs_in_node++) {
1239 if (datablock_addr(dn->inode, dn->node_page,
1240 dn->ofs_in_node) == NULL_ADDR)
1244 dn->ofs_in_node = ofs_in_node;
1245 ret = f2fs_reserve_new_blocks(dn, count);
1249 dn->ofs_in_node = ofs_in_node;
1250 for (index = start; index < end; index++, dn->ofs_in_node++) {
1251 dn->data_blkaddr = datablock_addr(dn->inode,
1252 dn->node_page, dn->ofs_in_node);
1254 * f2fs_reserve_new_blocks will not guarantee entire block
1257 if (dn->data_blkaddr == NULL_ADDR) {
1261 if (dn->data_blkaddr != NEW_ADDR) {
1262 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1263 dn->data_blkaddr = NEW_ADDR;
1264 f2fs_set_data_blkaddr(dn);
1268 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1273 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1276 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1277 struct address_space *mapping = inode->i_mapping;
1278 pgoff_t index, pg_start, pg_end;
1279 loff_t new_size = i_size_read(inode);
1280 loff_t off_start, off_end;
1283 ret = inode_newsize_ok(inode, (len + offset));
1287 ret = f2fs_convert_inline_inode(inode);
1291 down_write(&F2FS_I(inode)->i_mmap_sem);
1292 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1296 truncate_pagecache_range(inode, offset, offset + len - 1);
1298 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1299 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1301 off_start = offset & (PAGE_SIZE - 1);
1302 off_end = (offset + len) & (PAGE_SIZE - 1);
1304 if (pg_start == pg_end) {
1305 ret = fill_zero(inode, pg_start, off_start,
1306 off_end - off_start);
1310 new_size = max_t(loff_t, new_size, offset + len);
1313 ret = fill_zero(inode, pg_start++, off_start,
1314 PAGE_SIZE - off_start);
1318 new_size = max_t(loff_t, new_size,
1319 (loff_t)pg_start << PAGE_SHIFT);
1322 for (index = pg_start; index < pg_end;) {
1323 struct dnode_of_data dn;
1324 unsigned int end_offset;
1329 set_new_dnode(&dn, inode, NULL, NULL, 0);
1330 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1332 f2fs_unlock_op(sbi);
1336 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1337 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1339 ret = f2fs_do_zero_range(&dn, index, end);
1340 f2fs_put_dnode(&dn);
1341 f2fs_unlock_op(sbi);
1343 f2fs_balance_fs(sbi, dn.node_changed);
1349 new_size = max_t(loff_t, new_size,
1350 (loff_t)index << PAGE_SHIFT);
1354 ret = fill_zero(inode, pg_end, 0, off_end);
1358 new_size = max_t(loff_t, new_size, offset + len);
1363 if (new_size > i_size_read(inode)) {
1364 if (mode & FALLOC_FL_KEEP_SIZE)
1365 file_set_keep_isize(inode);
1367 f2fs_i_size_write(inode, new_size);
1370 up_write(&F2FS_I(inode)->i_mmap_sem);
1375 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1377 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1378 pgoff_t nr, pg_start, pg_end, delta, idx;
1382 new_size = i_size_read(inode) + len;
1383 ret = inode_newsize_ok(inode, new_size);
1387 if (offset >= i_size_read(inode))
1390 /* insert range should be aligned to block size of f2fs. */
1391 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1394 ret = f2fs_convert_inline_inode(inode);
1398 f2fs_balance_fs(sbi, true);
1400 /* avoid gc operation during block exchange */
1401 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1403 down_write(&F2FS_I(inode)->i_mmap_sem);
1404 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1408 /* write out all dirty pages from offset */
1409 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1413 truncate_pagecache(inode, offset);
1415 pg_start = offset >> PAGE_SHIFT;
1416 pg_end = (offset + len) >> PAGE_SHIFT;
1417 delta = pg_end - pg_start;
1418 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1420 while (!ret && idx > pg_start) {
1421 nr = idx - pg_start;
1427 f2fs_drop_extent_tree(inode);
1429 ret = __exchange_data_block(inode, inode, idx,
1430 idx + delta, nr, false);
1431 f2fs_unlock_op(sbi);
1434 /* write out all moved pages, if possible */
1435 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1436 truncate_pagecache(inode, offset);
1439 f2fs_i_size_write(inode, new_size);
1441 up_write(&F2FS_I(inode)->i_mmap_sem);
1442 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1446 static int expand_inode_data(struct inode *inode, loff_t offset,
1447 loff_t len, int mode)
1449 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1450 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1451 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE };
1453 loff_t new_size = i_size_read(inode);
1457 err = inode_newsize_ok(inode, (len + offset));
1461 err = f2fs_convert_inline_inode(inode);
1465 f2fs_balance_fs(sbi, true);
1467 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1468 off_end = (offset + len) & (PAGE_SIZE - 1);
1470 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1471 map.m_len = pg_end - map.m_lblk;
1475 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1482 last_off = map.m_lblk + map.m_len - 1;
1484 /* update new size to the failed position */
1485 new_size = (last_off == pg_end) ? offset + len :
1486 (loff_t)(last_off + 1) << PAGE_SHIFT;
1488 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1491 if (new_size > i_size_read(inode)) {
1492 if (mode & FALLOC_FL_KEEP_SIZE)
1493 file_set_keep_isize(inode);
1495 f2fs_i_size_write(inode, new_size);
1501 static long f2fs_fallocate(struct file *file, int mode,
1502 loff_t offset, loff_t len)
1504 struct inode *inode = file_inode(file);
1507 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1510 /* f2fs only support ->fallocate for regular file */
1511 if (!S_ISREG(inode->i_mode))
1514 if (f2fs_encrypted_inode(inode) &&
1515 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1518 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1519 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1520 FALLOC_FL_INSERT_RANGE))
1525 if (mode & FALLOC_FL_PUNCH_HOLE) {
1526 if (offset >= inode->i_size)
1529 ret = punch_hole(inode, offset, len);
1530 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1531 ret = f2fs_collapse_range(inode, offset, len);
1532 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1533 ret = f2fs_zero_range(inode, offset, len, mode);
1534 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1535 ret = f2fs_insert_range(inode, offset, len);
1537 ret = expand_inode_data(inode, offset, len, mode);
1541 inode->i_mtime = inode->i_ctime = current_time(inode);
1542 f2fs_mark_inode_dirty_sync(inode, false);
1543 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1547 inode_unlock(inode);
1549 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1553 static int f2fs_release_file(struct inode *inode, struct file *filp)
1556 * f2fs_relase_file is called at every close calls. So we should
1557 * not drop any inmemory pages by close called by other process.
1559 if (!(filp->f_mode & FMODE_WRITE) ||
1560 atomic_read(&inode->i_writecount) != 1)
1563 /* some remained atomic pages should discarded */
1564 if (f2fs_is_atomic_file(inode))
1565 f2fs_drop_inmem_pages(inode);
1566 if (f2fs_is_volatile_file(inode)) {
1567 set_inode_flag(inode, FI_DROP_CACHE);
1568 filemap_fdatawrite(inode->i_mapping);
1569 clear_inode_flag(inode, FI_DROP_CACHE);
1570 clear_inode_flag(inode, FI_VOLATILE_FILE);
1571 stat_dec_volatile_write(inode);
1576 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1578 struct inode *inode = file_inode(file);
1581 * If the process doing a transaction is crashed, we should do
1582 * roll-back. Otherwise, other reader/write can see corrupted database
1583 * until all the writers close its file. Since this should be done
1584 * before dropping file lock, it needs to do in ->flush.
1586 if (f2fs_is_atomic_file(inode) &&
1587 F2FS_I(inode)->inmem_task == current)
1588 f2fs_drop_inmem_pages(inode);
1592 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1594 struct inode *inode = file_inode(filp);
1595 struct f2fs_inode_info *fi = F2FS_I(inode);
1596 unsigned int flags = fi->i_flags;
1598 if (file_is_encrypt(inode))
1599 flags |= F2FS_ENCRYPT_FL;
1600 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1601 flags |= F2FS_INLINE_DATA_FL;
1603 flags &= F2FS_FL_USER_VISIBLE;
1605 return put_user(flags, (int __user *)arg);
1608 static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
1610 struct f2fs_inode_info *fi = F2FS_I(inode);
1611 unsigned int oldflags;
1613 /* Is it quota file? Do not allow user to mess with it */
1614 if (IS_NOQUOTA(inode))
1617 flags = f2fs_mask_flags(inode->i_mode, flags);
1619 oldflags = fi->i_flags;
1621 if ((flags ^ oldflags) & (F2FS_APPEND_FL | F2FS_IMMUTABLE_FL))
1622 if (!capable(CAP_LINUX_IMMUTABLE))
1625 flags = flags & F2FS_FL_USER_MODIFIABLE;
1626 flags |= oldflags & ~F2FS_FL_USER_MODIFIABLE;
1627 fi->i_flags = flags;
1629 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1630 set_inode_flag(inode, FI_PROJ_INHERIT);
1632 clear_inode_flag(inode, FI_PROJ_INHERIT);
1634 inode->i_ctime = current_time(inode);
1635 f2fs_set_inode_flags(inode);
1636 f2fs_mark_inode_dirty_sync(inode, false);
1640 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1642 struct inode *inode = file_inode(filp);
1646 if (!inode_owner_or_capable(inode))
1649 if (get_user(flags, (int __user *)arg))
1652 ret = mnt_want_write_file(filp);
1658 ret = __f2fs_ioc_setflags(inode, flags);
1660 inode_unlock(inode);
1661 mnt_drop_write_file(filp);
1665 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1667 struct inode *inode = file_inode(filp);
1669 return put_user(inode->i_generation, (int __user *)arg);
1672 static int f2fs_ioc_start_atomic_write(struct file *filp)
1674 struct inode *inode = file_inode(filp);
1677 if (!inode_owner_or_capable(inode))
1680 if (!S_ISREG(inode->i_mode))
1683 ret = mnt_want_write_file(filp);
1689 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1691 if (f2fs_is_atomic_file(inode))
1694 ret = f2fs_convert_inline_inode(inode);
1698 if (!get_dirty_pages(inode))
1701 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1702 "Unexpected flush for atomic writes: ino=%lu, npages=%u",
1703 inode->i_ino, get_dirty_pages(inode));
1704 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1708 set_inode_flag(inode, FI_ATOMIC_FILE);
1709 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1710 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1712 F2FS_I(inode)->inmem_task = current;
1713 stat_inc_atomic_write(inode);
1714 stat_update_max_atomic_write(inode);
1716 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1717 inode_unlock(inode);
1718 mnt_drop_write_file(filp);
1722 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1724 struct inode *inode = file_inode(filp);
1727 if (!inode_owner_or_capable(inode))
1730 ret = mnt_want_write_file(filp);
1736 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1738 if (f2fs_is_volatile_file(inode)) {
1743 if (f2fs_is_atomic_file(inode)) {
1744 ret = f2fs_commit_inmem_pages(inode);
1748 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1750 clear_inode_flag(inode, FI_ATOMIC_FILE);
1751 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
1752 stat_dec_atomic_write(inode);
1755 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1758 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
1759 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1762 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1763 inode_unlock(inode);
1764 mnt_drop_write_file(filp);
1768 static int f2fs_ioc_start_volatile_write(struct file *filp)
1770 struct inode *inode = file_inode(filp);
1773 if (!inode_owner_or_capable(inode))
1776 if (!S_ISREG(inode->i_mode))
1779 ret = mnt_want_write_file(filp);
1785 if (f2fs_is_volatile_file(inode))
1788 ret = f2fs_convert_inline_inode(inode);
1792 stat_inc_volatile_write(inode);
1793 stat_update_max_volatile_write(inode);
1795 set_inode_flag(inode, FI_VOLATILE_FILE);
1796 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1798 inode_unlock(inode);
1799 mnt_drop_write_file(filp);
1803 static int f2fs_ioc_release_volatile_write(struct file *filp)
1805 struct inode *inode = file_inode(filp);
1808 if (!inode_owner_or_capable(inode))
1811 ret = mnt_want_write_file(filp);
1817 if (!f2fs_is_volatile_file(inode))
1820 if (!f2fs_is_first_block_written(inode)) {
1821 ret = truncate_partial_data_page(inode, 0, true);
1825 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1827 inode_unlock(inode);
1828 mnt_drop_write_file(filp);
1832 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1834 struct inode *inode = file_inode(filp);
1837 if (!inode_owner_or_capable(inode))
1840 ret = mnt_want_write_file(filp);
1846 if (f2fs_is_atomic_file(inode))
1847 f2fs_drop_inmem_pages(inode);
1848 if (f2fs_is_volatile_file(inode)) {
1849 clear_inode_flag(inode, FI_VOLATILE_FILE);
1850 stat_dec_volatile_write(inode);
1851 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1854 inode_unlock(inode);
1856 mnt_drop_write_file(filp);
1857 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1861 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1863 struct inode *inode = file_inode(filp);
1864 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1865 struct super_block *sb = sbi->sb;
1869 if (!capable(CAP_SYS_ADMIN))
1872 if (get_user(in, (__u32 __user *)arg))
1875 if (in != F2FS_GOING_DOWN_FULLSYNC) {
1876 ret = mnt_want_write_file(filp);
1882 case F2FS_GOING_DOWN_FULLSYNC:
1883 sb = freeze_bdev(sb->s_bdev);
1889 f2fs_stop_checkpoint(sbi, false);
1890 thaw_bdev(sb->s_bdev, sb);
1893 case F2FS_GOING_DOWN_METASYNC:
1894 /* do checkpoint only */
1895 ret = f2fs_sync_fs(sb, 1);
1898 f2fs_stop_checkpoint(sbi, false);
1900 case F2FS_GOING_DOWN_NOSYNC:
1901 f2fs_stop_checkpoint(sbi, false);
1903 case F2FS_GOING_DOWN_METAFLUSH:
1904 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
1905 f2fs_stop_checkpoint(sbi, false);
1912 f2fs_stop_gc_thread(sbi);
1913 f2fs_stop_discard_thread(sbi);
1915 f2fs_drop_discard_cmd(sbi);
1916 clear_opt(sbi, DISCARD);
1918 f2fs_update_time(sbi, REQ_TIME);
1920 if (in != F2FS_GOING_DOWN_FULLSYNC)
1921 mnt_drop_write_file(filp);
1925 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1927 struct inode *inode = file_inode(filp);
1928 struct super_block *sb = inode->i_sb;
1929 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1930 struct fstrim_range range;
1933 if (!capable(CAP_SYS_ADMIN))
1936 if (!blk_queue_discard(q))
1939 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1943 ret = mnt_want_write_file(filp);
1947 range.minlen = max((unsigned int)range.minlen,
1948 q->limits.discard_granularity);
1949 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1950 mnt_drop_write_file(filp);
1954 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1957 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1961 static bool uuid_is_nonzero(__u8 u[16])
1965 for (i = 0; i < 16; i++)
1971 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1973 struct inode *inode = file_inode(filp);
1975 if (!f2fs_sb_has_encrypt(inode->i_sb))
1978 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1980 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1983 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1985 if (!f2fs_sb_has_encrypt(file_inode(filp)->i_sb))
1987 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1990 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1992 struct inode *inode = file_inode(filp);
1993 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1996 if (!f2fs_sb_has_encrypt(inode->i_sb))
1999 err = mnt_want_write_file(filp);
2003 down_write(&sbi->sb_lock);
2005 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2008 /* update superblock with uuid */
2009 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2011 err = f2fs_commit_super(sbi, false);
2014 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2018 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2022 up_write(&sbi->sb_lock);
2023 mnt_drop_write_file(filp);
2027 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2029 struct inode *inode = file_inode(filp);
2030 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2034 if (!capable(CAP_SYS_ADMIN))
2037 if (get_user(sync, (__u32 __user *)arg))
2040 if (f2fs_readonly(sbi->sb))
2043 ret = mnt_want_write_file(filp);
2048 if (!mutex_trylock(&sbi->gc_mutex)) {
2053 mutex_lock(&sbi->gc_mutex);
2056 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2058 mnt_drop_write_file(filp);
2062 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2064 struct inode *inode = file_inode(filp);
2065 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2066 struct f2fs_gc_range range;
2070 if (!capable(CAP_SYS_ADMIN))
2073 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2077 if (f2fs_readonly(sbi->sb))
2080 end = range.start + range.len;
2081 if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) {
2085 ret = mnt_want_write_file(filp);
2091 if (!mutex_trylock(&sbi->gc_mutex)) {
2096 mutex_lock(&sbi->gc_mutex);
2099 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2100 range.start += sbi->blocks_per_seg;
2101 if (range.start <= end)
2104 mnt_drop_write_file(filp);
2108 static int f2fs_ioc_f2fs_write_checkpoint(struct file *filp, unsigned long arg)
2110 struct inode *inode = file_inode(filp);
2111 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2114 if (!capable(CAP_SYS_ADMIN))
2117 if (f2fs_readonly(sbi->sb))
2120 ret = mnt_want_write_file(filp);
2124 ret = f2fs_sync_fs(sbi->sb, 1);
2126 mnt_drop_write_file(filp);
2130 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2132 struct f2fs_defragment *range)
2134 struct inode *inode = file_inode(filp);
2135 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2136 .m_seg_type = NO_CHECK_TYPE };
2137 struct extent_info ei = {0, 0, 0};
2138 pgoff_t pg_start, pg_end, next_pgofs;
2139 unsigned int blk_per_seg = sbi->blocks_per_seg;
2140 unsigned int total = 0, sec_num;
2141 block_t blk_end = 0;
2142 bool fragmented = false;
2145 /* if in-place-update policy is enabled, don't waste time here */
2146 if (f2fs_should_update_inplace(inode, NULL))
2149 pg_start = range->start >> PAGE_SHIFT;
2150 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2152 f2fs_balance_fs(sbi, true);
2156 /* writeback all dirty pages in the range */
2157 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2158 range->start + range->len - 1);
2163 * lookup mapping info in extent cache, skip defragmenting if physical
2164 * block addresses are continuous.
2166 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2167 if (ei.fofs + ei.len >= pg_end)
2171 map.m_lblk = pg_start;
2172 map.m_next_pgofs = &next_pgofs;
2175 * lookup mapping info in dnode page cache, skip defragmenting if all
2176 * physical block addresses are continuous even if there are hole(s)
2177 * in logical blocks.
2179 while (map.m_lblk < pg_end) {
2180 map.m_len = pg_end - map.m_lblk;
2181 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2185 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2186 map.m_lblk = next_pgofs;
2190 if (blk_end && blk_end != map.m_pblk)
2193 /* record total count of block that we're going to move */
2196 blk_end = map.m_pblk + map.m_len;
2198 map.m_lblk += map.m_len;
2204 sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2207 * make sure there are enough free section for LFS allocation, this can
2208 * avoid defragment running in SSR mode when free section are allocated
2211 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2216 map.m_lblk = pg_start;
2217 map.m_len = pg_end - pg_start;
2220 while (map.m_lblk < pg_end) {
2225 map.m_len = pg_end - map.m_lblk;
2226 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2230 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2231 map.m_lblk = next_pgofs;
2235 set_inode_flag(inode, FI_DO_DEFRAG);
2238 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2241 page = f2fs_get_lock_data_page(inode, idx, true);
2243 err = PTR_ERR(page);
2247 set_page_dirty(page);
2248 f2fs_put_page(page, 1);
2257 if (idx < pg_end && cnt < blk_per_seg)
2260 clear_inode_flag(inode, FI_DO_DEFRAG);
2262 err = filemap_fdatawrite(inode->i_mapping);
2267 clear_inode_flag(inode, FI_DO_DEFRAG);
2269 inode_unlock(inode);
2271 range->len = (u64)total << PAGE_SHIFT;
2275 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2277 struct inode *inode = file_inode(filp);
2278 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2279 struct f2fs_defragment range;
2282 if (!capable(CAP_SYS_ADMIN))
2285 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2288 if (f2fs_readonly(sbi->sb))
2291 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2295 /* verify alignment of offset & size */
2296 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2299 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2300 sbi->max_file_blocks))
2303 err = mnt_want_write_file(filp);
2307 err = f2fs_defragment_range(sbi, filp, &range);
2308 mnt_drop_write_file(filp);
2310 f2fs_update_time(sbi, REQ_TIME);
2314 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2321 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2322 struct file *file_out, loff_t pos_out, size_t len)
2324 struct inode *src = file_inode(file_in);
2325 struct inode *dst = file_inode(file_out);
2326 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2327 size_t olen = len, dst_max_i_size = 0;
2331 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2332 src->i_sb != dst->i_sb)
2335 if (unlikely(f2fs_readonly(src->i_sb)))
2338 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2341 if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2345 if (pos_in == pos_out)
2347 if (pos_out > pos_in && pos_out < pos_in + len)
2352 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2355 if (!inode_trylock(dst))
2357 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) {
2364 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2367 olen = len = src->i_size - pos_in;
2368 if (pos_in + len == src->i_size)
2369 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2375 dst_osize = dst->i_size;
2376 if (pos_out + olen > dst->i_size)
2377 dst_max_i_size = pos_out + olen;
2379 /* verify the end result is block aligned */
2380 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2381 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2382 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2385 ret = f2fs_convert_inline_inode(src);
2389 ret = f2fs_convert_inline_inode(dst);
2393 /* write out all dirty pages from offset */
2394 ret = filemap_write_and_wait_range(src->i_mapping,
2395 pos_in, pos_in + len);
2399 ret = filemap_write_and_wait_range(dst->i_mapping,
2400 pos_out, pos_out + len);
2404 f2fs_balance_fs(sbi, true);
2406 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2407 pos_out >> F2FS_BLKSIZE_BITS,
2408 len >> F2FS_BLKSIZE_BITS, false);
2412 f2fs_i_size_write(dst, dst_max_i_size);
2413 else if (dst_osize != dst->i_size)
2414 f2fs_i_size_write(dst, dst_osize);
2416 f2fs_unlock_op(sbi);
2419 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2423 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2428 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2430 struct f2fs_move_range range;
2434 if (!(filp->f_mode & FMODE_READ) ||
2435 !(filp->f_mode & FMODE_WRITE))
2438 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2442 dst = fdget(range.dst_fd);
2446 if (!(dst.file->f_mode & FMODE_WRITE)) {
2451 err = mnt_want_write_file(filp);
2455 err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2456 range.pos_out, range.len);
2458 mnt_drop_write_file(filp);
2462 if (copy_to_user((struct f2fs_move_range __user *)arg,
2463 &range, sizeof(range)))
2470 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2472 struct inode *inode = file_inode(filp);
2473 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2474 struct sit_info *sm = SIT_I(sbi);
2475 unsigned int start_segno = 0, end_segno = 0;
2476 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2477 struct f2fs_flush_device range;
2480 if (!capable(CAP_SYS_ADMIN))
2483 if (f2fs_readonly(sbi->sb))
2486 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2490 if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2491 sbi->segs_per_sec != 1) {
2492 f2fs_msg(sbi->sb, KERN_WARNING,
2493 "Can't flush %u in %d for segs_per_sec %u != 1\n",
2494 range.dev_num, sbi->s_ndevs,
2499 ret = mnt_want_write_file(filp);
2503 if (range.dev_num != 0)
2504 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2505 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2507 start_segno = sm->last_victim[FLUSH_DEVICE];
2508 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2509 start_segno = dev_start_segno;
2510 end_segno = min(start_segno + range.segments, dev_end_segno);
2512 while (start_segno < end_segno) {
2513 if (!mutex_trylock(&sbi->gc_mutex)) {
2517 sm->last_victim[GC_CB] = end_segno + 1;
2518 sm->last_victim[GC_GREEDY] = end_segno + 1;
2519 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2520 ret = f2fs_gc(sbi, true, true, start_segno);
2528 mnt_drop_write_file(filp);
2532 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2534 struct inode *inode = file_inode(filp);
2535 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2537 /* Must validate to set it with SQLite behavior in Android. */
2538 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2540 return put_user(sb_feature, (u32 __user *)arg);
2544 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2546 struct inode *inode = file_inode(filp);
2547 struct f2fs_inode_info *fi = F2FS_I(inode);
2548 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2549 struct super_block *sb = sbi->sb;
2550 struct dquot *transfer_to[MAXQUOTAS] = {};
2555 if (!f2fs_sb_has_project_quota(sb)) {
2556 if (projid != F2FS_DEF_PROJID)
2562 if (!f2fs_has_extra_attr(inode))
2565 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2567 if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2570 err = mnt_want_write_file(filp);
2577 /* Is it quota file? Do not allow user to mess with it */
2578 if (IS_NOQUOTA(inode))
2581 ipage = f2fs_get_node_page(sbi, inode->i_ino);
2582 if (IS_ERR(ipage)) {
2583 err = PTR_ERR(ipage);
2587 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2590 f2fs_put_page(ipage, 1);
2593 f2fs_put_page(ipage, 1);
2595 err = dquot_initialize(inode);
2599 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2600 if (!IS_ERR(transfer_to[PRJQUOTA])) {
2601 err = __dquot_transfer(inode, transfer_to);
2602 dqput(transfer_to[PRJQUOTA]);
2607 F2FS_I(inode)->i_projid = kprojid;
2608 inode->i_ctime = current_time(inode);
2610 f2fs_mark_inode_dirty_sync(inode, true);
2612 inode_unlock(inode);
2613 mnt_drop_write_file(filp);
2617 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2619 if (projid != F2FS_DEF_PROJID)
2625 /* Transfer internal flags to xflags */
2626 static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
2630 if (iflags & F2FS_SYNC_FL)
2631 xflags |= FS_XFLAG_SYNC;
2632 if (iflags & F2FS_IMMUTABLE_FL)
2633 xflags |= FS_XFLAG_IMMUTABLE;
2634 if (iflags & F2FS_APPEND_FL)
2635 xflags |= FS_XFLAG_APPEND;
2636 if (iflags & F2FS_NODUMP_FL)
2637 xflags |= FS_XFLAG_NODUMP;
2638 if (iflags & F2FS_NOATIME_FL)
2639 xflags |= FS_XFLAG_NOATIME;
2640 if (iflags & F2FS_PROJINHERIT_FL)
2641 xflags |= FS_XFLAG_PROJINHERIT;
2645 #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
2646 FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
2647 FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
2649 /* Transfer xflags flags to internal */
2650 static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
2652 unsigned long iflags = 0;
2654 if (xflags & FS_XFLAG_SYNC)
2655 iflags |= F2FS_SYNC_FL;
2656 if (xflags & FS_XFLAG_IMMUTABLE)
2657 iflags |= F2FS_IMMUTABLE_FL;
2658 if (xflags & FS_XFLAG_APPEND)
2659 iflags |= F2FS_APPEND_FL;
2660 if (xflags & FS_XFLAG_NODUMP)
2661 iflags |= F2FS_NODUMP_FL;
2662 if (xflags & FS_XFLAG_NOATIME)
2663 iflags |= F2FS_NOATIME_FL;
2664 if (xflags & FS_XFLAG_PROJINHERIT)
2665 iflags |= F2FS_PROJINHERIT_FL;
2670 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2672 struct inode *inode = file_inode(filp);
2673 struct f2fs_inode_info *fi = F2FS_I(inode);
2676 memset(&fa, 0, sizeof(struct fsxattr));
2677 fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
2678 F2FS_FL_USER_VISIBLE);
2680 if (f2fs_sb_has_project_quota(inode->i_sb))
2681 fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
2684 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2689 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
2691 struct inode *inode = file_inode(filp);
2692 struct f2fs_inode_info *fi = F2FS_I(inode);
2697 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
2700 /* Make sure caller has proper permission */
2701 if (!inode_owner_or_capable(inode))
2704 if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
2707 flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
2708 if (f2fs_mask_flags(inode->i_mode, flags) != flags)
2711 err = mnt_want_write_file(filp);
2716 flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
2717 (flags & F2FS_FL_XFLAG_VISIBLE);
2718 err = __f2fs_ioc_setflags(inode, flags);
2719 inode_unlock(inode);
2720 mnt_drop_write_file(filp);
2724 err = f2fs_ioc_setproject(filp, fa.fsx_projid);
2731 int f2fs_pin_file_control(struct inode *inode, bool inc)
2733 struct f2fs_inode_info *fi = F2FS_I(inode);
2734 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2736 /* Use i_gc_failures for normal file as a risk signal. */
2738 f2fs_i_gc_failures_write(inode,
2739 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
2741 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
2742 f2fs_msg(sbi->sb, KERN_WARNING,
2743 "%s: Enable GC = ino %lx after %x GC trials\n",
2744 __func__, inode->i_ino,
2745 fi->i_gc_failures[GC_FAILURE_PIN]);
2746 clear_inode_flag(inode, FI_PIN_FILE);
2752 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
2754 struct inode *inode = file_inode(filp);
2758 if (!inode_owner_or_capable(inode))
2761 if (get_user(pin, (__u32 __user *)arg))
2764 if (!S_ISREG(inode->i_mode))
2767 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
2770 ret = mnt_want_write_file(filp);
2776 if (f2fs_should_update_outplace(inode, NULL)) {
2782 clear_inode_flag(inode, FI_PIN_FILE);
2783 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = 1;
2787 if (f2fs_pin_file_control(inode, false)) {
2791 ret = f2fs_convert_inline_inode(inode);
2795 set_inode_flag(inode, FI_PIN_FILE);
2796 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
2798 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2800 inode_unlock(inode);
2801 mnt_drop_write_file(filp);
2805 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
2807 struct inode *inode = file_inode(filp);
2810 if (is_inode_flag_set(inode, FI_PIN_FILE))
2811 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
2812 return put_user(pin, (u32 __user *)arg);
2815 int f2fs_precache_extents(struct inode *inode)
2817 struct f2fs_inode_info *fi = F2FS_I(inode);
2818 struct f2fs_map_blocks map;
2819 pgoff_t m_next_extent;
2823 if (is_inode_flag_set(inode, FI_NO_EXTENT))
2827 map.m_next_pgofs = NULL;
2828 map.m_next_extent = &m_next_extent;
2829 map.m_seg_type = NO_CHECK_TYPE;
2830 end = F2FS_I_SB(inode)->max_file_blocks;
2832 while (map.m_lblk < end) {
2833 map.m_len = end - map.m_lblk;
2835 down_write(&fi->i_gc_rwsem[WRITE]);
2836 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
2837 up_write(&fi->i_gc_rwsem[WRITE]);
2841 map.m_lblk = m_next_extent;
2847 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
2849 return f2fs_precache_extents(file_inode(filp));
2852 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2854 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
2858 case F2FS_IOC_GETFLAGS:
2859 return f2fs_ioc_getflags(filp, arg);
2860 case F2FS_IOC_SETFLAGS:
2861 return f2fs_ioc_setflags(filp, arg);
2862 case F2FS_IOC_GETVERSION:
2863 return f2fs_ioc_getversion(filp, arg);
2864 case F2FS_IOC_START_ATOMIC_WRITE:
2865 return f2fs_ioc_start_atomic_write(filp);
2866 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2867 return f2fs_ioc_commit_atomic_write(filp);
2868 case F2FS_IOC_START_VOLATILE_WRITE:
2869 return f2fs_ioc_start_volatile_write(filp);
2870 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2871 return f2fs_ioc_release_volatile_write(filp);
2872 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2873 return f2fs_ioc_abort_volatile_write(filp);
2874 case F2FS_IOC_SHUTDOWN:
2875 return f2fs_ioc_shutdown(filp, arg);
2877 return f2fs_ioc_fitrim(filp, arg);
2878 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2879 return f2fs_ioc_set_encryption_policy(filp, arg);
2880 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2881 return f2fs_ioc_get_encryption_policy(filp, arg);
2882 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2883 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2884 case F2FS_IOC_GARBAGE_COLLECT:
2885 return f2fs_ioc_gc(filp, arg);
2886 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2887 return f2fs_ioc_gc_range(filp, arg);
2888 case F2FS_IOC_WRITE_CHECKPOINT:
2889 return f2fs_ioc_f2fs_write_checkpoint(filp, arg);
2890 case F2FS_IOC_DEFRAGMENT:
2891 return f2fs_ioc_defragment(filp, arg);
2892 case F2FS_IOC_MOVE_RANGE:
2893 return f2fs_ioc_move_range(filp, arg);
2894 case F2FS_IOC_FLUSH_DEVICE:
2895 return f2fs_ioc_flush_device(filp, arg);
2896 case F2FS_IOC_GET_FEATURES:
2897 return f2fs_ioc_get_features(filp, arg);
2898 case F2FS_IOC_FSGETXATTR:
2899 return f2fs_ioc_fsgetxattr(filp, arg);
2900 case F2FS_IOC_FSSETXATTR:
2901 return f2fs_ioc_fssetxattr(filp, arg);
2902 case F2FS_IOC_GET_PIN_FILE:
2903 return f2fs_ioc_get_pin_file(filp, arg);
2904 case F2FS_IOC_SET_PIN_FILE:
2905 return f2fs_ioc_set_pin_file(filp, arg);
2906 case F2FS_IOC_PRECACHE_EXTENTS:
2907 return f2fs_ioc_precache_extents(filp, arg);
2913 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2915 struct file *file = iocb->ki_filp;
2916 struct inode *inode = file_inode(file);
2919 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2922 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2925 if (!inode_trylock(inode)) {
2926 if (iocb->ki_flags & IOCB_NOWAIT)
2931 ret = generic_write_checks(iocb, from);
2933 bool preallocated = false;
2934 size_t target_size = 0;
2937 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2938 set_inode_flag(inode, FI_NO_PREALLOC);
2940 if ((iocb->ki_flags & IOCB_NOWAIT) &&
2941 (iocb->ki_flags & IOCB_DIRECT)) {
2942 if (!f2fs_overwrite_io(inode, iocb->ki_pos,
2943 iov_iter_count(from)) ||
2944 f2fs_has_inline_data(inode) ||
2945 f2fs_force_buffered_io(inode, WRITE)) {
2946 clear_inode_flag(inode,
2948 inode_unlock(inode);
2953 preallocated = true;
2954 target_size = iocb->ki_pos + iov_iter_count(from);
2956 err = f2fs_preallocate_blocks(iocb, from);
2958 clear_inode_flag(inode, FI_NO_PREALLOC);
2959 inode_unlock(inode);
2963 ret = __generic_file_write_iter(iocb, from);
2964 clear_inode_flag(inode, FI_NO_PREALLOC);
2966 /* if we couldn't write data, we should deallocate blocks. */
2967 if (preallocated && i_size_read(inode) < target_size)
2968 f2fs_truncate(inode);
2971 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
2973 inode_unlock(inode);
2976 ret = generic_write_sync(iocb, ret);
2980 #ifdef CONFIG_COMPAT
2981 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2984 case F2FS_IOC32_GETFLAGS:
2985 cmd = F2FS_IOC_GETFLAGS;
2987 case F2FS_IOC32_SETFLAGS:
2988 cmd = F2FS_IOC_SETFLAGS;
2990 case F2FS_IOC32_GETVERSION:
2991 cmd = F2FS_IOC_GETVERSION;
2993 case F2FS_IOC_START_ATOMIC_WRITE:
2994 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2995 case F2FS_IOC_START_VOLATILE_WRITE:
2996 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2997 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2998 case F2FS_IOC_SHUTDOWN:
2999 case F2FS_IOC_SET_ENCRYPTION_POLICY:
3000 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3001 case F2FS_IOC_GET_ENCRYPTION_POLICY:
3002 case F2FS_IOC_GARBAGE_COLLECT:
3003 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3004 case F2FS_IOC_WRITE_CHECKPOINT:
3005 case F2FS_IOC_DEFRAGMENT:
3006 case F2FS_IOC_MOVE_RANGE:
3007 case F2FS_IOC_FLUSH_DEVICE:
3008 case F2FS_IOC_GET_FEATURES:
3009 case F2FS_IOC_FSGETXATTR:
3010 case F2FS_IOC_FSSETXATTR:
3011 case F2FS_IOC_GET_PIN_FILE:
3012 case F2FS_IOC_SET_PIN_FILE:
3013 case F2FS_IOC_PRECACHE_EXTENTS:
3016 return -ENOIOCTLCMD;
3018 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
3022 const struct file_operations f2fs_file_operations = {
3023 .llseek = f2fs_llseek,
3024 .read_iter = generic_file_read_iter,
3025 .write_iter = f2fs_file_write_iter,
3026 .open = f2fs_file_open,
3027 .release = f2fs_release_file,
3028 .mmap = f2fs_file_mmap,
3029 .flush = f2fs_file_flush,
3030 .fsync = f2fs_sync_file,
3031 .fallocate = f2fs_fallocate,
3032 .unlocked_ioctl = f2fs_ioctl,
3033 #ifdef CONFIG_COMPAT
3034 .compat_ioctl = f2fs_compat_ioctl,
3036 .splice_read = generic_file_splice_read,
3037 .splice_write = iter_file_splice_write,