1 // SPDX-License-Identifier: GPL-2.0
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
7 * Interactivity improvements by Mike Galbraith
10 * Various enhancements by Dmitry Adamushko.
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
17 * Scaled math optimizations by Thomas Gleixner
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
25 #include <trace/events/sched.h>
28 * Targeted preemption latency for CPU-bound tasks:
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 unsigned int sysctl_sched_latency = 6000000ULL;
41 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
44 * The initial- and re-scaling of tunables is configurable
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
57 * Minimal preemption granularity for CPU-bound tasks:
59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
61 unsigned int sysctl_sched_min_granularity = 750000ULL;
62 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
67 static unsigned int sched_nr_latency = 8;
70 * After fork, child runs first. If set to 0 (default) then
71 * parent will (try to) run first.
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
76 * SCHED_OTHER wake-up granularity.
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91 * For asym packing, by default the lower numbered CPU has higher priority.
93 int __weak arch_asym_cpu_priority(int cpu)
99 #ifdef CONFIG_CFS_BANDWIDTH
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
108 * (default: 5 msec, units: microseconds)
110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 * The margin used when comparing utilization with CPU capacity:
115 * util * margin < capacity * 1024
119 unsigned int capacity_margin = 1280;
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
146 * This idea comes from the SD scheduler of Con Kolivas:
148 static unsigned int get_update_sysctl_factor(void)
150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
157 case SCHED_TUNABLESCALING_LINEAR:
160 case SCHED_TUNABLESCALING_LOG:
162 factor = 1 + ilog2(cpus);
169 static void update_sysctl(void)
171 unsigned int factor = get_update_sysctl_factor();
173 #define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
181 void sched_init_granularity(void)
186 #define WMULT_CONST (~0U)
187 #define WMULT_SHIFT 32
189 static void __update_inv_weight(struct load_weight *lw)
193 if (likely(lw->inv_weight))
196 w = scale_load_down(lw->weight);
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
203 lw->inv_weight = WMULT_CONST / w;
207 * delta_exec * weight / lw.weight
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
223 __update_inv_weight(lw);
225 if (unlikely(fact >> 32)) {
232 /* hint to use a 32x32->64 mul */
233 fact = (u64)(u32)fact * lw->inv_weight;
240 return mul_u64_u32_shr(delta_exec, fact, shift);
244 const struct sched_class fair_sched_class;
246 /**************************************************************
247 * CFS operations on generic schedulable entities:
250 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* cpu runqueue to which this cfs_rq is attached */
253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
258 static inline struct task_struct *task_of(struct sched_entity *se)
260 SCHED_WARN_ON(!entity_is_task(se));
261 return container_of(se, struct task_struct, se);
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
285 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 if (!cfs_rq->on_list) {
288 struct rq *rq = rq_of(cfs_rq);
289 int cpu = cpu_of(rq);
291 * Ensure we either appear before our parent (if already
292 * enqueued) or force our parent to appear after us when it is
293 * enqueued. The fact that we always enqueue bottom-up
294 * reduces this to two cases and a special case for the root
295 * cfs_rq. Furthermore, it also means that we will always reset
296 * tmp_alone_branch either when the branch is connected
297 * to a tree or when we reach the beg of the tree
299 if (cfs_rq->tg->parent &&
300 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
302 * If parent is already on the list, we add the child
303 * just before. Thanks to circular linked property of
304 * the list, this means to put the child at the tail
305 * of the list that starts by parent.
307 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
308 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
310 * The branch is now connected to its tree so we can
311 * reset tmp_alone_branch to the beginning of the
314 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
315 } else if (!cfs_rq->tg->parent) {
317 * cfs rq without parent should be put
318 * at the tail of the list.
320 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
321 &rq->leaf_cfs_rq_list);
323 * We have reach the beg of a tree so we can reset
324 * tmp_alone_branch to the beginning of the list.
326 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
329 * The parent has not already been added so we want to
330 * make sure that it will be put after us.
331 * tmp_alone_branch points to the beg of the branch
332 * where we will add parent.
334 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
335 rq->tmp_alone_branch);
337 * update tmp_alone_branch to points to the new beg
340 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
347 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
349 if (cfs_rq->on_list) {
350 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
355 /* Iterate thr' all leaf cfs_rq's on a runqueue */
356 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
357 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
360 /* Do the two (enqueued) entities belong to the same group ? */
361 static inline struct cfs_rq *
362 is_same_group(struct sched_entity *se, struct sched_entity *pse)
364 if (se->cfs_rq == pse->cfs_rq)
370 static inline struct sched_entity *parent_entity(struct sched_entity *se)
376 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
378 int se_depth, pse_depth;
381 * preemption test can be made between sibling entities who are in the
382 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
383 * both tasks until we find their ancestors who are siblings of common
387 /* First walk up until both entities are at same depth */
388 se_depth = (*se)->depth;
389 pse_depth = (*pse)->depth;
391 while (se_depth > pse_depth) {
393 *se = parent_entity(*se);
396 while (pse_depth > se_depth) {
398 *pse = parent_entity(*pse);
401 while (!is_same_group(*se, *pse)) {
402 *se = parent_entity(*se);
403 *pse = parent_entity(*pse);
407 #else /* !CONFIG_FAIR_GROUP_SCHED */
409 static inline struct task_struct *task_of(struct sched_entity *se)
411 return container_of(se, struct task_struct, se);
414 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
416 return container_of(cfs_rq, struct rq, cfs);
420 #define for_each_sched_entity(se) \
421 for (; se; se = NULL)
423 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
425 return &task_rq(p)->cfs;
428 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
430 struct task_struct *p = task_of(se);
431 struct rq *rq = task_rq(p);
436 /* runqueue "owned" by this group */
437 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
442 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
446 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
450 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
451 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
453 static inline struct sched_entity *parent_entity(struct sched_entity *se)
459 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
463 #endif /* CONFIG_FAIR_GROUP_SCHED */
465 static __always_inline
466 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
468 /**************************************************************
469 * Scheduling class tree data structure manipulation methods:
472 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
474 s64 delta = (s64)(vruntime - max_vruntime);
476 max_vruntime = vruntime;
481 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
483 s64 delta = (s64)(vruntime - min_vruntime);
485 min_vruntime = vruntime;
490 static inline int entity_before(struct sched_entity *a,
491 struct sched_entity *b)
493 return (s64)(a->vruntime - b->vruntime) < 0;
496 static void update_min_vruntime(struct cfs_rq *cfs_rq)
498 struct sched_entity *curr = cfs_rq->curr;
499 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
501 u64 vruntime = cfs_rq->min_vruntime;
505 vruntime = curr->vruntime;
510 if (leftmost) { /* non-empty tree */
511 struct sched_entity *se;
512 se = rb_entry(leftmost, struct sched_entity, run_node);
515 vruntime = se->vruntime;
517 vruntime = min_vruntime(vruntime, se->vruntime);
520 /* ensure we never gain time by being placed backwards. */
521 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
524 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
529 * Enqueue an entity into the rb-tree:
531 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
533 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
534 struct rb_node *parent = NULL;
535 struct sched_entity *entry;
536 bool leftmost = true;
539 * Find the right place in the rbtree:
543 entry = rb_entry(parent, struct sched_entity, run_node);
545 * We dont care about collisions. Nodes with
546 * the same key stay together.
548 if (entity_before(se, entry)) {
549 link = &parent->rb_left;
551 link = &parent->rb_right;
556 rb_link_node(&se->run_node, parent, link);
557 rb_insert_color_cached(&se->run_node,
558 &cfs_rq->tasks_timeline, leftmost);
561 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
563 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
566 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
568 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
573 return rb_entry(left, struct sched_entity, run_node);
576 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
578 struct rb_node *next = rb_next(&se->run_node);
583 return rb_entry(next, struct sched_entity, run_node);
586 #ifdef CONFIG_SCHED_DEBUG
587 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
589 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
594 return rb_entry(last, struct sched_entity, run_node);
597 /**************************************************************
598 * Scheduling class statistics methods:
601 int sched_proc_update_handler(struct ctl_table *table, int write,
602 void __user *buffer, size_t *lenp,
605 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
606 unsigned int factor = get_update_sysctl_factor();
611 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
612 sysctl_sched_min_granularity);
614 #define WRT_SYSCTL(name) \
615 (normalized_sysctl_##name = sysctl_##name / (factor))
616 WRT_SYSCTL(sched_min_granularity);
617 WRT_SYSCTL(sched_latency);
618 WRT_SYSCTL(sched_wakeup_granularity);
628 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
630 if (unlikely(se->load.weight != NICE_0_LOAD))
631 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
637 * The idea is to set a period in which each task runs once.
639 * When there are too many tasks (sched_nr_latency) we have to stretch
640 * this period because otherwise the slices get too small.
642 * p = (nr <= nl) ? l : l*nr/nl
644 static u64 __sched_period(unsigned long nr_running)
646 if (unlikely(nr_running > sched_nr_latency))
647 return nr_running * sysctl_sched_min_granularity;
649 return sysctl_sched_latency;
653 * We calculate the wall-time slice from the period by taking a part
654 * proportional to the weight.
658 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
660 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
662 for_each_sched_entity(se) {
663 struct load_weight *load;
664 struct load_weight lw;
666 cfs_rq = cfs_rq_of(se);
667 load = &cfs_rq->load;
669 if (unlikely(!se->on_rq)) {
672 update_load_add(&lw, se->load.weight);
675 slice = __calc_delta(slice, se->load.weight, load);
681 * We calculate the vruntime slice of a to-be-inserted task.
685 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
687 return calc_delta_fair(sched_slice(cfs_rq, se), se);
692 #include "sched-pelt.h"
694 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
695 static unsigned long task_h_load(struct task_struct *p);
696 static unsigned long capacity_of(int cpu);
698 /* Give new sched_entity start runnable values to heavy its load in infant time */
699 void init_entity_runnable_average(struct sched_entity *se)
701 struct sched_avg *sa = &se->avg;
703 memset(sa, 0, sizeof(*sa));
706 * Tasks are intialized with full load to be seen as heavy tasks until
707 * they get a chance to stabilize to their real load level.
708 * Group entities are intialized with zero load to reflect the fact that
709 * nothing has been attached to the task group yet.
711 if (entity_is_task(se))
712 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
714 se->runnable_weight = se->load.weight;
716 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
719 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
720 static void attach_entity_cfs_rq(struct sched_entity *se);
723 * With new tasks being created, their initial util_avgs are extrapolated
724 * based on the cfs_rq's current util_avg:
726 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
728 * However, in many cases, the above util_avg does not give a desired
729 * value. Moreover, the sum of the util_avgs may be divergent, such
730 * as when the series is a harmonic series.
732 * To solve this problem, we also cap the util_avg of successive tasks to
733 * only 1/2 of the left utilization budget:
735 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
737 * where n denotes the nth task and cpu_scale the CPU capacity.
739 * For example, for a CPU with 1024 of capacity, a simplest series from
740 * the beginning would be like:
742 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
743 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
745 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
746 * if util_avg > util_avg_cap.
748 void post_init_entity_util_avg(struct sched_entity *se)
750 struct cfs_rq *cfs_rq = cfs_rq_of(se);
751 struct sched_avg *sa = &se->avg;
752 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
753 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
756 if (cfs_rq->avg.util_avg != 0) {
757 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
758 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
760 if (sa->util_avg > cap)
767 if (entity_is_task(se)) {
768 struct task_struct *p = task_of(se);
769 if (p->sched_class != &fair_sched_class) {
771 * For !fair tasks do:
773 update_cfs_rq_load_avg(now, cfs_rq);
774 attach_entity_load_avg(cfs_rq, se, 0);
775 switched_from_fair(rq, p);
777 * such that the next switched_to_fair() has the
780 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
785 attach_entity_cfs_rq(se);
788 #else /* !CONFIG_SMP */
789 void init_entity_runnable_average(struct sched_entity *se)
792 void post_init_entity_util_avg(struct sched_entity *se)
795 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
798 #endif /* CONFIG_SMP */
801 * Update the current task's runtime statistics.
803 static void update_curr(struct cfs_rq *cfs_rq)
805 struct sched_entity *curr = cfs_rq->curr;
806 u64 now = rq_clock_task(rq_of(cfs_rq));
812 delta_exec = now - curr->exec_start;
813 if (unlikely((s64)delta_exec <= 0))
816 curr->exec_start = now;
818 schedstat_set(curr->statistics.exec_max,
819 max(delta_exec, curr->statistics.exec_max));
821 curr->sum_exec_runtime += delta_exec;
822 schedstat_add(cfs_rq->exec_clock, delta_exec);
824 curr->vruntime += calc_delta_fair(delta_exec, curr);
825 update_min_vruntime(cfs_rq);
827 if (entity_is_task(curr)) {
828 struct task_struct *curtask = task_of(curr);
830 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
831 cgroup_account_cputime(curtask, delta_exec);
832 account_group_exec_runtime(curtask, delta_exec);
835 account_cfs_rq_runtime(cfs_rq, delta_exec);
838 static void update_curr_fair(struct rq *rq)
840 update_curr(cfs_rq_of(&rq->curr->se));
844 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
846 u64 wait_start, prev_wait_start;
848 if (!schedstat_enabled())
851 wait_start = rq_clock(rq_of(cfs_rq));
852 prev_wait_start = schedstat_val(se->statistics.wait_start);
854 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
855 likely(wait_start > prev_wait_start))
856 wait_start -= prev_wait_start;
858 __schedstat_set(se->statistics.wait_start, wait_start);
862 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
864 struct task_struct *p;
867 if (!schedstat_enabled())
870 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
872 if (entity_is_task(se)) {
874 if (task_on_rq_migrating(p)) {
876 * Preserve migrating task's wait time so wait_start
877 * time stamp can be adjusted to accumulate wait time
878 * prior to migration.
880 __schedstat_set(se->statistics.wait_start, delta);
883 trace_sched_stat_wait(p, delta);
886 __schedstat_set(se->statistics.wait_max,
887 max(schedstat_val(se->statistics.wait_max), delta));
888 __schedstat_inc(se->statistics.wait_count);
889 __schedstat_add(se->statistics.wait_sum, delta);
890 __schedstat_set(se->statistics.wait_start, 0);
894 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
896 struct task_struct *tsk = NULL;
897 u64 sleep_start, block_start;
899 if (!schedstat_enabled())
902 sleep_start = schedstat_val(se->statistics.sleep_start);
903 block_start = schedstat_val(se->statistics.block_start);
905 if (entity_is_task(se))
909 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
914 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
915 __schedstat_set(se->statistics.sleep_max, delta);
917 __schedstat_set(se->statistics.sleep_start, 0);
918 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
921 account_scheduler_latency(tsk, delta >> 10, 1);
922 trace_sched_stat_sleep(tsk, delta);
926 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
931 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
932 __schedstat_set(se->statistics.block_max, delta);
934 __schedstat_set(se->statistics.block_start, 0);
935 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
938 if (tsk->in_iowait) {
939 __schedstat_add(se->statistics.iowait_sum, delta);
940 __schedstat_inc(se->statistics.iowait_count);
941 trace_sched_stat_iowait(tsk, delta);
944 trace_sched_stat_blocked(tsk, delta);
947 * Blocking time is in units of nanosecs, so shift by
948 * 20 to get a milliseconds-range estimation of the
949 * amount of time that the task spent sleeping:
951 if (unlikely(prof_on == SLEEP_PROFILING)) {
952 profile_hits(SLEEP_PROFILING,
953 (void *)get_wchan(tsk),
956 account_scheduler_latency(tsk, delta >> 10, 0);
962 * Task is being enqueued - update stats:
965 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
967 if (!schedstat_enabled())
971 * Are we enqueueing a waiting task? (for current tasks
972 * a dequeue/enqueue event is a NOP)
974 if (se != cfs_rq->curr)
975 update_stats_wait_start(cfs_rq, se);
977 if (flags & ENQUEUE_WAKEUP)
978 update_stats_enqueue_sleeper(cfs_rq, se);
982 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
985 if (!schedstat_enabled())
989 * Mark the end of the wait period if dequeueing a
992 if (se != cfs_rq->curr)
993 update_stats_wait_end(cfs_rq, se);
995 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
996 struct task_struct *tsk = task_of(se);
998 if (tsk->state & TASK_INTERRUPTIBLE)
999 __schedstat_set(se->statistics.sleep_start,
1000 rq_clock(rq_of(cfs_rq)));
1001 if (tsk->state & TASK_UNINTERRUPTIBLE)
1002 __schedstat_set(se->statistics.block_start,
1003 rq_clock(rq_of(cfs_rq)));
1008 * We are picking a new current task - update its stats:
1011 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1014 * We are starting a new run period:
1016 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1019 /**************************************************
1020 * Scheduling class queueing methods:
1023 #ifdef CONFIG_NUMA_BALANCING
1025 * Approximate time to scan a full NUMA task in ms. The task scan period is
1026 * calculated based on the tasks virtual memory size and
1027 * numa_balancing_scan_size.
1029 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1030 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1032 /* Portion of address space to scan in MB */
1033 unsigned int sysctl_numa_balancing_scan_size = 256;
1035 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1036 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1041 spinlock_t lock; /* nr_tasks, tasks */
1046 struct rcu_head rcu;
1047 unsigned long total_faults;
1048 unsigned long max_faults_cpu;
1050 * Faults_cpu is used to decide whether memory should move
1051 * towards the CPU. As a consequence, these stats are weighted
1052 * more by CPU use than by memory faults.
1054 unsigned long *faults_cpu;
1055 unsigned long faults[0];
1058 static inline unsigned long group_faults_priv(struct numa_group *ng);
1059 static inline unsigned long group_faults_shared(struct numa_group *ng);
1061 static unsigned int task_nr_scan_windows(struct task_struct *p)
1063 unsigned long rss = 0;
1064 unsigned long nr_scan_pages;
1067 * Calculations based on RSS as non-present and empty pages are skipped
1068 * by the PTE scanner and NUMA hinting faults should be trapped based
1071 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1072 rss = get_mm_rss(p->mm);
1074 rss = nr_scan_pages;
1076 rss = round_up(rss, nr_scan_pages);
1077 return rss / nr_scan_pages;
1080 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1081 #define MAX_SCAN_WINDOW 2560
1083 static unsigned int task_scan_min(struct task_struct *p)
1085 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1086 unsigned int scan, floor;
1087 unsigned int windows = 1;
1089 if (scan_size < MAX_SCAN_WINDOW)
1090 windows = MAX_SCAN_WINDOW / scan_size;
1091 floor = 1000 / windows;
1093 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1094 return max_t(unsigned int, floor, scan);
1097 static unsigned int task_scan_start(struct task_struct *p)
1099 unsigned long smin = task_scan_min(p);
1100 unsigned long period = smin;
1102 /* Scale the maximum scan period with the amount of shared memory. */
1103 if (p->numa_group) {
1104 struct numa_group *ng = p->numa_group;
1105 unsigned long shared = group_faults_shared(ng);
1106 unsigned long private = group_faults_priv(ng);
1108 period *= atomic_read(&ng->refcount);
1109 period *= shared + 1;
1110 period /= private + shared + 1;
1113 return max(smin, period);
1116 static unsigned int task_scan_max(struct task_struct *p)
1118 unsigned long smin = task_scan_min(p);
1121 /* Watch for min being lower than max due to floor calculations */
1122 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1124 /* Scale the maximum scan period with the amount of shared memory. */
1125 if (p->numa_group) {
1126 struct numa_group *ng = p->numa_group;
1127 unsigned long shared = group_faults_shared(ng);
1128 unsigned long private = group_faults_priv(ng);
1129 unsigned long period = smax;
1131 period *= atomic_read(&ng->refcount);
1132 period *= shared + 1;
1133 period /= private + shared + 1;
1135 smax = max(smax, period);
1138 return max(smin, smax);
1141 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1144 struct mm_struct *mm = p->mm;
1147 mm_users = atomic_read(&mm->mm_users);
1148 if (mm_users == 1) {
1149 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1150 mm->numa_scan_seq = 0;
1154 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
1155 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1156 p->numa_work.next = &p->numa_work;
1157 p->numa_faults = NULL;
1158 p->numa_group = NULL;
1159 p->last_task_numa_placement = 0;
1160 p->last_sum_exec_runtime = 0;
1162 /* New address space, reset the preferred nid */
1163 if (!(clone_flags & CLONE_VM)) {
1164 p->numa_preferred_nid = -1;
1169 * New thread, keep existing numa_preferred_nid which should be copied
1170 * already by arch_dup_task_struct but stagger when scans start.
1175 delay = min_t(unsigned int, task_scan_max(current),
1176 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1177 delay += 2 * TICK_NSEC;
1178 p->node_stamp = delay;
1182 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1184 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1185 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1188 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1190 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1191 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1194 /* Shared or private faults. */
1195 #define NR_NUMA_HINT_FAULT_TYPES 2
1197 /* Memory and CPU locality */
1198 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1200 /* Averaged statistics, and temporary buffers. */
1201 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1203 pid_t task_numa_group_id(struct task_struct *p)
1205 return p->numa_group ? p->numa_group->gid : 0;
1209 * The averaged statistics, shared & private, memory & CPU,
1210 * occupy the first half of the array. The second half of the
1211 * array is for current counters, which are averaged into the
1212 * first set by task_numa_placement.
1214 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1216 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1219 static inline unsigned long task_faults(struct task_struct *p, int nid)
1221 if (!p->numa_faults)
1224 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1225 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1228 static inline unsigned long group_faults(struct task_struct *p, int nid)
1233 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1234 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1237 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1239 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1240 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1243 static inline unsigned long group_faults_priv(struct numa_group *ng)
1245 unsigned long faults = 0;
1248 for_each_online_node(node) {
1249 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1255 static inline unsigned long group_faults_shared(struct numa_group *ng)
1257 unsigned long faults = 0;
1260 for_each_online_node(node) {
1261 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1268 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1269 * considered part of a numa group's pseudo-interleaving set. Migrations
1270 * between these nodes are slowed down, to allow things to settle down.
1272 #define ACTIVE_NODE_FRACTION 3
1274 static bool numa_is_active_node(int nid, struct numa_group *ng)
1276 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1279 /* Handle placement on systems where not all nodes are directly connected. */
1280 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1281 int maxdist, bool task)
1283 unsigned long score = 0;
1287 * All nodes are directly connected, and the same distance
1288 * from each other. No need for fancy placement algorithms.
1290 if (sched_numa_topology_type == NUMA_DIRECT)
1294 * This code is called for each node, introducing N^2 complexity,
1295 * which should be ok given the number of nodes rarely exceeds 8.
1297 for_each_online_node(node) {
1298 unsigned long faults;
1299 int dist = node_distance(nid, node);
1302 * The furthest away nodes in the system are not interesting
1303 * for placement; nid was already counted.
1305 if (dist == sched_max_numa_distance || node == nid)
1309 * On systems with a backplane NUMA topology, compare groups
1310 * of nodes, and move tasks towards the group with the most
1311 * memory accesses. When comparing two nodes at distance
1312 * "hoplimit", only nodes closer by than "hoplimit" are part
1313 * of each group. Skip other nodes.
1315 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1319 /* Add up the faults from nearby nodes. */
1321 faults = task_faults(p, node);
1323 faults = group_faults(p, node);
1326 * On systems with a glueless mesh NUMA topology, there are
1327 * no fixed "groups of nodes". Instead, nodes that are not
1328 * directly connected bounce traffic through intermediate
1329 * nodes; a numa_group can occupy any set of nodes.
1330 * The further away a node is, the less the faults count.
1331 * This seems to result in good task placement.
1333 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1334 faults *= (sched_max_numa_distance - dist);
1335 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1345 * These return the fraction of accesses done by a particular task, or
1346 * task group, on a particular numa node. The group weight is given a
1347 * larger multiplier, in order to group tasks together that are almost
1348 * evenly spread out between numa nodes.
1350 static inline unsigned long task_weight(struct task_struct *p, int nid,
1353 unsigned long faults, total_faults;
1355 if (!p->numa_faults)
1358 total_faults = p->total_numa_faults;
1363 faults = task_faults(p, nid);
1364 faults += score_nearby_nodes(p, nid, dist, true);
1366 return 1000 * faults / total_faults;
1369 static inline unsigned long group_weight(struct task_struct *p, int nid,
1372 unsigned long faults, total_faults;
1377 total_faults = p->numa_group->total_faults;
1382 faults = group_faults(p, nid);
1383 faults += score_nearby_nodes(p, nid, dist, false);
1385 return 1000 * faults / total_faults;
1388 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1389 int src_nid, int dst_cpu)
1391 struct numa_group *ng = p->numa_group;
1392 int dst_nid = cpu_to_node(dst_cpu);
1393 int last_cpupid, this_cpupid;
1395 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1396 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1399 * Allow first faults or private faults to migrate immediately early in
1400 * the lifetime of a task. The magic number 4 is based on waiting for
1401 * two full passes of the "multi-stage node selection" test that is
1404 if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) &&
1405 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1409 * Multi-stage node selection is used in conjunction with a periodic
1410 * migration fault to build a temporal task<->page relation. By using
1411 * a two-stage filter we remove short/unlikely relations.
1413 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1414 * a task's usage of a particular page (n_p) per total usage of this
1415 * page (n_t) (in a given time-span) to a probability.
1417 * Our periodic faults will sample this probability and getting the
1418 * same result twice in a row, given these samples are fully
1419 * independent, is then given by P(n)^2, provided our sample period
1420 * is sufficiently short compared to the usage pattern.
1422 * This quadric squishes small probabilities, making it less likely we
1423 * act on an unlikely task<->page relation.
1425 if (!cpupid_pid_unset(last_cpupid) &&
1426 cpupid_to_nid(last_cpupid) != dst_nid)
1429 /* Always allow migrate on private faults */
1430 if (cpupid_match_pid(p, last_cpupid))
1433 /* A shared fault, but p->numa_group has not been set up yet. */
1438 * Destination node is much more heavily used than the source
1439 * node? Allow migration.
1441 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1442 ACTIVE_NODE_FRACTION)
1446 * Distribute memory according to CPU & memory use on each node,
1447 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1449 * faults_cpu(dst) 3 faults_cpu(src)
1450 * --------------- * - > ---------------
1451 * faults_mem(dst) 4 faults_mem(src)
1453 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1454 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1457 static unsigned long weighted_cpuload(struct rq *rq);
1458 static unsigned long source_load(int cpu, int type);
1459 static unsigned long target_load(int cpu, int type);
1461 /* Cached statistics for all CPUs within a node */
1465 /* Total compute capacity of CPUs on a node */
1466 unsigned long compute_capacity;
1470 * XXX borrowed from update_sg_lb_stats
1472 static void update_numa_stats(struct numa_stats *ns, int nid)
1476 memset(ns, 0, sizeof(*ns));
1477 for_each_cpu(cpu, cpumask_of_node(nid)) {
1478 struct rq *rq = cpu_rq(cpu);
1480 ns->load += weighted_cpuload(rq);
1481 ns->compute_capacity += capacity_of(cpu);
1486 struct task_numa_env {
1487 struct task_struct *p;
1489 int src_cpu, src_nid;
1490 int dst_cpu, dst_nid;
1492 struct numa_stats src_stats, dst_stats;
1497 struct task_struct *best_task;
1502 static void task_numa_assign(struct task_numa_env *env,
1503 struct task_struct *p, long imp)
1505 struct rq *rq = cpu_rq(env->dst_cpu);
1507 /* Bail out if run-queue part of active NUMA balance. */
1508 if (xchg(&rq->numa_migrate_on, 1))
1512 * Clear previous best_cpu/rq numa-migrate flag, since task now
1513 * found a better CPU to move/swap.
1515 if (env->best_cpu != -1) {
1516 rq = cpu_rq(env->best_cpu);
1517 WRITE_ONCE(rq->numa_migrate_on, 0);
1521 put_task_struct(env->best_task);
1526 env->best_imp = imp;
1527 env->best_cpu = env->dst_cpu;
1530 static bool load_too_imbalanced(long src_load, long dst_load,
1531 struct task_numa_env *env)
1534 long orig_src_load, orig_dst_load;
1535 long src_capacity, dst_capacity;
1538 * The load is corrected for the CPU capacity available on each node.
1541 * ------------ vs ---------
1542 * src_capacity dst_capacity
1544 src_capacity = env->src_stats.compute_capacity;
1545 dst_capacity = env->dst_stats.compute_capacity;
1547 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1549 orig_src_load = env->src_stats.load;
1550 orig_dst_load = env->dst_stats.load;
1552 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1554 /* Would this change make things worse? */
1555 return (imb > old_imb);
1559 * Maximum NUMA importance can be 1998 (2*999);
1560 * SMALLIMP @ 30 would be close to 1998/64.
1561 * Used to deter task migration.
1566 * This checks if the overall compute and NUMA accesses of the system would
1567 * be improved if the source tasks was migrated to the target dst_cpu taking
1568 * into account that it might be best if task running on the dst_cpu should
1569 * be exchanged with the source task
1571 static void task_numa_compare(struct task_numa_env *env,
1572 long taskimp, long groupimp, bool maymove)
1574 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1575 struct task_struct *cur;
1576 long src_load, dst_load;
1578 long imp = env->p->numa_group ? groupimp : taskimp;
1580 int dist = env->dist;
1582 if (READ_ONCE(dst_rq->numa_migrate_on))
1586 cur = task_rcu_dereference(&dst_rq->curr);
1587 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1591 * Because we have preemption enabled we can get migrated around and
1592 * end try selecting ourselves (current == env->p) as a swap candidate.
1598 if (maymove && moveimp >= env->best_imp)
1605 * "imp" is the fault differential for the source task between the
1606 * source and destination node. Calculate the total differential for
1607 * the source task and potential destination task. The more negative
1608 * the value is, the more remote accesses that would be expected to
1609 * be incurred if the tasks were swapped.
1611 /* Skip this swap candidate if cannot move to the source cpu */
1612 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1616 * If dst and source tasks are in the same NUMA group, or not
1617 * in any group then look only at task weights.
1619 if (cur->numa_group == env->p->numa_group) {
1620 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1621 task_weight(cur, env->dst_nid, dist);
1623 * Add some hysteresis to prevent swapping the
1624 * tasks within a group over tiny differences.
1626 if (cur->numa_group)
1630 * Compare the group weights. If a task is all by itself
1631 * (not part of a group), use the task weight instead.
1633 if (cur->numa_group && env->p->numa_group)
1634 imp += group_weight(cur, env->src_nid, dist) -
1635 group_weight(cur, env->dst_nid, dist);
1637 imp += task_weight(cur, env->src_nid, dist) -
1638 task_weight(cur, env->dst_nid, dist);
1641 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1648 * If the NUMA importance is less than SMALLIMP,
1649 * task migration might only result in ping pong
1650 * of tasks and also hurt performance due to cache
1653 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1657 * In the overloaded case, try and keep the load balanced.
1659 load = task_h_load(env->p) - task_h_load(cur);
1663 dst_load = env->dst_stats.load + load;
1664 src_load = env->src_stats.load - load;
1666 if (load_too_imbalanced(src_load, dst_load, env))
1671 * One idle CPU per node is evaluated for a task numa move.
1672 * Call select_idle_sibling to maybe find a better one.
1676 * select_idle_siblings() uses an per-CPU cpumask that
1677 * can be used from IRQ context.
1679 local_irq_disable();
1680 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1685 task_numa_assign(env, cur, imp);
1690 static void task_numa_find_cpu(struct task_numa_env *env,
1691 long taskimp, long groupimp)
1693 long src_load, dst_load, load;
1694 bool maymove = false;
1697 load = task_h_load(env->p);
1698 dst_load = env->dst_stats.load + load;
1699 src_load = env->src_stats.load - load;
1702 * If the improvement from just moving env->p direction is better
1703 * than swapping tasks around, check if a move is possible.
1705 maymove = !load_too_imbalanced(src_load, dst_load, env);
1707 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1708 /* Skip this CPU if the source task cannot migrate */
1709 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1713 task_numa_compare(env, taskimp, groupimp, maymove);
1717 static int task_numa_migrate(struct task_struct *p)
1719 struct task_numa_env env = {
1722 .src_cpu = task_cpu(p),
1723 .src_nid = task_node(p),
1725 .imbalance_pct = 112,
1731 struct sched_domain *sd;
1733 unsigned long taskweight, groupweight;
1735 long taskimp, groupimp;
1738 * Pick the lowest SD_NUMA domain, as that would have the smallest
1739 * imbalance and would be the first to start moving tasks about.
1741 * And we want to avoid any moving of tasks about, as that would create
1742 * random movement of tasks -- counter the numa conditions we're trying
1746 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1748 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1752 * Cpusets can break the scheduler domain tree into smaller
1753 * balance domains, some of which do not cross NUMA boundaries.
1754 * Tasks that are "trapped" in such domains cannot be migrated
1755 * elsewhere, so there is no point in (re)trying.
1757 if (unlikely(!sd)) {
1758 sched_setnuma(p, task_node(p));
1762 env.dst_nid = p->numa_preferred_nid;
1763 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1764 taskweight = task_weight(p, env.src_nid, dist);
1765 groupweight = group_weight(p, env.src_nid, dist);
1766 update_numa_stats(&env.src_stats, env.src_nid);
1767 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1768 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1769 update_numa_stats(&env.dst_stats, env.dst_nid);
1771 /* Try to find a spot on the preferred nid. */
1772 task_numa_find_cpu(&env, taskimp, groupimp);
1775 * Look at other nodes in these cases:
1776 * - there is no space available on the preferred_nid
1777 * - the task is part of a numa_group that is interleaved across
1778 * multiple NUMA nodes; in order to better consolidate the group,
1779 * we need to check other locations.
1781 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1782 for_each_online_node(nid) {
1783 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1786 dist = node_distance(env.src_nid, env.dst_nid);
1787 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1789 taskweight = task_weight(p, env.src_nid, dist);
1790 groupweight = group_weight(p, env.src_nid, dist);
1793 /* Only consider nodes where both task and groups benefit */
1794 taskimp = task_weight(p, nid, dist) - taskweight;
1795 groupimp = group_weight(p, nid, dist) - groupweight;
1796 if (taskimp < 0 && groupimp < 0)
1801 update_numa_stats(&env.dst_stats, env.dst_nid);
1802 task_numa_find_cpu(&env, taskimp, groupimp);
1807 * If the task is part of a workload that spans multiple NUMA nodes,
1808 * and is migrating into one of the workload's active nodes, remember
1809 * this node as the task's preferred numa node, so the workload can
1811 * A task that migrated to a second choice node will be better off
1812 * trying for a better one later. Do not set the preferred node here.
1814 if (p->numa_group) {
1815 if (env.best_cpu == -1)
1818 nid = cpu_to_node(env.best_cpu);
1820 if (nid != p->numa_preferred_nid)
1821 sched_setnuma(p, nid);
1824 /* No better CPU than the current one was found. */
1825 if (env.best_cpu == -1)
1828 best_rq = cpu_rq(env.best_cpu);
1829 if (env.best_task == NULL) {
1830 ret = migrate_task_to(p, env.best_cpu);
1831 WRITE_ONCE(best_rq->numa_migrate_on, 0);
1833 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1837 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1838 WRITE_ONCE(best_rq->numa_migrate_on, 0);
1841 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1842 put_task_struct(env.best_task);
1846 /* Attempt to migrate a task to a CPU on the preferred node. */
1847 static void numa_migrate_preferred(struct task_struct *p)
1849 unsigned long interval = HZ;
1851 /* This task has no NUMA fault statistics yet */
1852 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1855 /* Periodically retry migrating the task to the preferred node */
1856 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1857 p->numa_migrate_retry = jiffies + interval;
1859 /* Success if task is already running on preferred CPU */
1860 if (task_node(p) == p->numa_preferred_nid)
1863 /* Otherwise, try migrate to a CPU on the preferred node */
1864 task_numa_migrate(p);
1868 * Find out how many nodes on the workload is actively running on. Do this by
1869 * tracking the nodes from which NUMA hinting faults are triggered. This can
1870 * be different from the set of nodes where the workload's memory is currently
1873 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1875 unsigned long faults, max_faults = 0;
1876 int nid, active_nodes = 0;
1878 for_each_online_node(nid) {
1879 faults = group_faults_cpu(numa_group, nid);
1880 if (faults > max_faults)
1881 max_faults = faults;
1884 for_each_online_node(nid) {
1885 faults = group_faults_cpu(numa_group, nid);
1886 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1890 numa_group->max_faults_cpu = max_faults;
1891 numa_group->active_nodes = active_nodes;
1895 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1896 * increments. The more local the fault statistics are, the higher the scan
1897 * period will be for the next scan window. If local/(local+remote) ratio is
1898 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1899 * the scan period will decrease. Aim for 70% local accesses.
1901 #define NUMA_PERIOD_SLOTS 10
1902 #define NUMA_PERIOD_THRESHOLD 7
1905 * Increase the scan period (slow down scanning) if the majority of
1906 * our memory is already on our local node, or if the majority of
1907 * the page accesses are shared with other processes.
1908 * Otherwise, decrease the scan period.
1910 static void update_task_scan_period(struct task_struct *p,
1911 unsigned long shared, unsigned long private)
1913 unsigned int period_slot;
1914 int lr_ratio, ps_ratio;
1917 unsigned long remote = p->numa_faults_locality[0];
1918 unsigned long local = p->numa_faults_locality[1];
1921 * If there were no record hinting faults then either the task is
1922 * completely idle or all activity is areas that are not of interest
1923 * to automatic numa balancing. Related to that, if there were failed
1924 * migration then it implies we are migrating too quickly or the local
1925 * node is overloaded. In either case, scan slower
1927 if (local + shared == 0 || p->numa_faults_locality[2]) {
1928 p->numa_scan_period = min(p->numa_scan_period_max,
1929 p->numa_scan_period << 1);
1931 p->mm->numa_next_scan = jiffies +
1932 msecs_to_jiffies(p->numa_scan_period);
1938 * Prepare to scale scan period relative to the current period.
1939 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1940 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1941 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1943 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1944 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1945 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1947 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1949 * Most memory accesses are local. There is no need to
1950 * do fast NUMA scanning, since memory is already local.
1952 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1955 diff = slot * period_slot;
1956 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1958 * Most memory accesses are shared with other tasks.
1959 * There is no point in continuing fast NUMA scanning,
1960 * since other tasks may just move the memory elsewhere.
1962 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1965 diff = slot * period_slot;
1968 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1969 * yet they are not on the local NUMA node. Speed up
1970 * NUMA scanning to get the memory moved over.
1972 int ratio = max(lr_ratio, ps_ratio);
1973 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1976 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1977 task_scan_min(p), task_scan_max(p));
1978 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1982 * Get the fraction of time the task has been running since the last
1983 * NUMA placement cycle. The scheduler keeps similar statistics, but
1984 * decays those on a 32ms period, which is orders of magnitude off
1985 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1986 * stats only if the task is so new there are no NUMA statistics yet.
1988 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1990 u64 runtime, delta, now;
1991 /* Use the start of this time slice to avoid calculations. */
1992 now = p->se.exec_start;
1993 runtime = p->se.sum_exec_runtime;
1995 if (p->last_task_numa_placement) {
1996 delta = runtime - p->last_sum_exec_runtime;
1997 *period = now - p->last_task_numa_placement;
1999 delta = p->se.avg.load_sum;
2000 *period = LOAD_AVG_MAX;
2003 p->last_sum_exec_runtime = runtime;
2004 p->last_task_numa_placement = now;
2010 * Determine the preferred nid for a task in a numa_group. This needs to
2011 * be done in a way that produces consistent results with group_weight,
2012 * otherwise workloads might not converge.
2014 static int preferred_group_nid(struct task_struct *p, int nid)
2019 /* Direct connections between all NUMA nodes. */
2020 if (sched_numa_topology_type == NUMA_DIRECT)
2024 * On a system with glueless mesh NUMA topology, group_weight
2025 * scores nodes according to the number of NUMA hinting faults on
2026 * both the node itself, and on nearby nodes.
2028 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2029 unsigned long score, max_score = 0;
2030 int node, max_node = nid;
2032 dist = sched_max_numa_distance;
2034 for_each_online_node(node) {
2035 score = group_weight(p, node, dist);
2036 if (score > max_score) {
2045 * Finding the preferred nid in a system with NUMA backplane
2046 * interconnect topology is more involved. The goal is to locate
2047 * tasks from numa_groups near each other in the system, and
2048 * untangle workloads from different sides of the system. This requires
2049 * searching down the hierarchy of node groups, recursively searching
2050 * inside the highest scoring group of nodes. The nodemask tricks
2051 * keep the complexity of the search down.
2053 nodes = node_online_map;
2054 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2055 unsigned long max_faults = 0;
2056 nodemask_t max_group = NODE_MASK_NONE;
2059 /* Are there nodes at this distance from each other? */
2060 if (!find_numa_distance(dist))
2063 for_each_node_mask(a, nodes) {
2064 unsigned long faults = 0;
2065 nodemask_t this_group;
2066 nodes_clear(this_group);
2068 /* Sum group's NUMA faults; includes a==b case. */
2069 for_each_node_mask(b, nodes) {
2070 if (node_distance(a, b) < dist) {
2071 faults += group_faults(p, b);
2072 node_set(b, this_group);
2073 node_clear(b, nodes);
2077 /* Remember the top group. */
2078 if (faults > max_faults) {
2079 max_faults = faults;
2080 max_group = this_group;
2082 * subtle: at the smallest distance there is
2083 * just one node left in each "group", the
2084 * winner is the preferred nid.
2089 /* Next round, evaluate the nodes within max_group. */
2097 static void task_numa_placement(struct task_struct *p)
2099 int seq, nid, max_nid = -1;
2100 unsigned long max_faults = 0;
2101 unsigned long fault_types[2] = { 0, 0 };
2102 unsigned long total_faults;
2103 u64 runtime, period;
2104 spinlock_t *group_lock = NULL;
2107 * The p->mm->numa_scan_seq field gets updated without
2108 * exclusive access. Use READ_ONCE() here to ensure
2109 * that the field is read in a single access:
2111 seq = READ_ONCE(p->mm->numa_scan_seq);
2112 if (p->numa_scan_seq == seq)
2114 p->numa_scan_seq = seq;
2115 p->numa_scan_period_max = task_scan_max(p);
2117 total_faults = p->numa_faults_locality[0] +
2118 p->numa_faults_locality[1];
2119 runtime = numa_get_avg_runtime(p, &period);
2121 /* If the task is part of a group prevent parallel updates to group stats */
2122 if (p->numa_group) {
2123 group_lock = &p->numa_group->lock;
2124 spin_lock_irq(group_lock);
2127 /* Find the node with the highest number of faults */
2128 for_each_online_node(nid) {
2129 /* Keep track of the offsets in numa_faults array */
2130 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2131 unsigned long faults = 0, group_faults = 0;
2134 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2135 long diff, f_diff, f_weight;
2137 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2138 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2139 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2140 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2142 /* Decay existing window, copy faults since last scan */
2143 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2144 fault_types[priv] += p->numa_faults[membuf_idx];
2145 p->numa_faults[membuf_idx] = 0;
2148 * Normalize the faults_from, so all tasks in a group
2149 * count according to CPU use, instead of by the raw
2150 * number of faults. Tasks with little runtime have
2151 * little over-all impact on throughput, and thus their
2152 * faults are less important.
2154 f_weight = div64_u64(runtime << 16, period + 1);
2155 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2157 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2158 p->numa_faults[cpubuf_idx] = 0;
2160 p->numa_faults[mem_idx] += diff;
2161 p->numa_faults[cpu_idx] += f_diff;
2162 faults += p->numa_faults[mem_idx];
2163 p->total_numa_faults += diff;
2164 if (p->numa_group) {
2166 * safe because we can only change our own group
2168 * mem_idx represents the offset for a given
2169 * nid and priv in a specific region because it
2170 * is at the beginning of the numa_faults array.
2172 p->numa_group->faults[mem_idx] += diff;
2173 p->numa_group->faults_cpu[mem_idx] += f_diff;
2174 p->numa_group->total_faults += diff;
2175 group_faults += p->numa_group->faults[mem_idx];
2179 if (!p->numa_group) {
2180 if (faults > max_faults) {
2181 max_faults = faults;
2184 } else if (group_faults > max_faults) {
2185 max_faults = group_faults;
2190 if (p->numa_group) {
2191 numa_group_count_active_nodes(p->numa_group);
2192 spin_unlock_irq(group_lock);
2193 max_nid = preferred_group_nid(p, max_nid);
2197 /* Set the new preferred node */
2198 if (max_nid != p->numa_preferred_nid)
2199 sched_setnuma(p, max_nid);
2202 update_task_scan_period(p, fault_types[0], fault_types[1]);
2205 static inline int get_numa_group(struct numa_group *grp)
2207 return atomic_inc_not_zero(&grp->refcount);
2210 static inline void put_numa_group(struct numa_group *grp)
2212 if (atomic_dec_and_test(&grp->refcount))
2213 kfree_rcu(grp, rcu);
2216 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2219 struct numa_group *grp, *my_grp;
2220 struct task_struct *tsk;
2222 int cpu = cpupid_to_cpu(cpupid);
2225 if (unlikely(!p->numa_group)) {
2226 unsigned int size = sizeof(struct numa_group) +
2227 4*nr_node_ids*sizeof(unsigned long);
2229 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2233 atomic_set(&grp->refcount, 1);
2234 grp->active_nodes = 1;
2235 grp->max_faults_cpu = 0;
2236 spin_lock_init(&grp->lock);
2238 /* Second half of the array tracks nids where faults happen */
2239 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2242 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2243 grp->faults[i] = p->numa_faults[i];
2245 grp->total_faults = p->total_numa_faults;
2248 rcu_assign_pointer(p->numa_group, grp);
2252 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2254 if (!cpupid_match_pid(tsk, cpupid))
2257 grp = rcu_dereference(tsk->numa_group);
2261 my_grp = p->numa_group;
2266 * Only join the other group if its bigger; if we're the bigger group,
2267 * the other task will join us.
2269 if (my_grp->nr_tasks > grp->nr_tasks)
2273 * Tie-break on the grp address.
2275 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2278 /* Always join threads in the same process. */
2279 if (tsk->mm == current->mm)
2282 /* Simple filter to avoid false positives due to PID collisions */
2283 if (flags & TNF_SHARED)
2286 /* Update priv based on whether false sharing was detected */
2289 if (join && !get_numa_group(grp))
2297 BUG_ON(irqs_disabled());
2298 double_lock_irq(&my_grp->lock, &grp->lock);
2300 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2301 my_grp->faults[i] -= p->numa_faults[i];
2302 grp->faults[i] += p->numa_faults[i];
2304 my_grp->total_faults -= p->total_numa_faults;
2305 grp->total_faults += p->total_numa_faults;
2310 spin_unlock(&my_grp->lock);
2311 spin_unlock_irq(&grp->lock);
2313 rcu_assign_pointer(p->numa_group, grp);
2315 put_numa_group(my_grp);
2323 void task_numa_free(struct task_struct *p)
2325 struct numa_group *grp = p->numa_group;
2326 void *numa_faults = p->numa_faults;
2327 unsigned long flags;
2331 spin_lock_irqsave(&grp->lock, flags);
2332 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2333 grp->faults[i] -= p->numa_faults[i];
2334 grp->total_faults -= p->total_numa_faults;
2337 spin_unlock_irqrestore(&grp->lock, flags);
2338 RCU_INIT_POINTER(p->numa_group, NULL);
2339 put_numa_group(grp);
2342 p->numa_faults = NULL;
2347 * Got a PROT_NONE fault for a page on @node.
2349 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2351 struct task_struct *p = current;
2352 bool migrated = flags & TNF_MIGRATED;
2353 int cpu_node = task_node(current);
2354 int local = !!(flags & TNF_FAULT_LOCAL);
2355 struct numa_group *ng;
2358 if (!static_branch_likely(&sched_numa_balancing))
2361 /* for example, ksmd faulting in a user's mm */
2365 /* Allocate buffer to track faults on a per-node basis */
2366 if (unlikely(!p->numa_faults)) {
2367 int size = sizeof(*p->numa_faults) *
2368 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2370 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2371 if (!p->numa_faults)
2374 p->total_numa_faults = 0;
2375 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2379 * First accesses are treated as private, otherwise consider accesses
2380 * to be private if the accessing pid has not changed
2382 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2385 priv = cpupid_match_pid(p, last_cpupid);
2386 if (!priv && !(flags & TNF_NO_GROUP))
2387 task_numa_group(p, last_cpupid, flags, &priv);
2391 * If a workload spans multiple NUMA nodes, a shared fault that
2392 * occurs wholly within the set of nodes that the workload is
2393 * actively using should be counted as local. This allows the
2394 * scan rate to slow down when a workload has settled down.
2397 if (!priv && !local && ng && ng->active_nodes > 1 &&
2398 numa_is_active_node(cpu_node, ng) &&
2399 numa_is_active_node(mem_node, ng))
2403 * Retry to migrate task to preferred node periodically, in case it
2404 * previously failed, or the scheduler moved us.
2406 if (time_after(jiffies, p->numa_migrate_retry)) {
2407 task_numa_placement(p);
2408 numa_migrate_preferred(p);
2412 p->numa_pages_migrated += pages;
2413 if (flags & TNF_MIGRATE_FAIL)
2414 p->numa_faults_locality[2] += pages;
2416 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2417 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2418 p->numa_faults_locality[local] += pages;
2421 static void reset_ptenuma_scan(struct task_struct *p)
2424 * We only did a read acquisition of the mmap sem, so
2425 * p->mm->numa_scan_seq is written to without exclusive access
2426 * and the update is not guaranteed to be atomic. That's not
2427 * much of an issue though, since this is just used for
2428 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2429 * expensive, to avoid any form of compiler optimizations:
2431 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2432 p->mm->numa_scan_offset = 0;
2436 * The expensive part of numa migration is done from task_work context.
2437 * Triggered from task_tick_numa().
2439 void task_numa_work(struct callback_head *work)
2441 unsigned long migrate, next_scan, now = jiffies;
2442 struct task_struct *p = current;
2443 struct mm_struct *mm = p->mm;
2444 u64 runtime = p->se.sum_exec_runtime;
2445 struct vm_area_struct *vma;
2446 unsigned long start, end;
2447 unsigned long nr_pte_updates = 0;
2448 long pages, virtpages;
2450 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2452 work->next = work; /* protect against double add */
2454 * Who cares about NUMA placement when they're dying.
2456 * NOTE: make sure not to dereference p->mm before this check,
2457 * exit_task_work() happens _after_ exit_mm() so we could be called
2458 * without p->mm even though we still had it when we enqueued this
2461 if (p->flags & PF_EXITING)
2464 if (!mm->numa_next_scan) {
2465 mm->numa_next_scan = now +
2466 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2470 * Enforce maximal scan/migration frequency..
2472 migrate = mm->numa_next_scan;
2473 if (time_before(now, migrate))
2476 if (p->numa_scan_period == 0) {
2477 p->numa_scan_period_max = task_scan_max(p);
2478 p->numa_scan_period = task_scan_start(p);
2481 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2482 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2486 * Delay this task enough that another task of this mm will likely win
2487 * the next time around.
2489 p->node_stamp += 2 * TICK_NSEC;
2491 start = mm->numa_scan_offset;
2492 pages = sysctl_numa_balancing_scan_size;
2493 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2494 virtpages = pages * 8; /* Scan up to this much virtual space */
2499 if (!down_read_trylock(&mm->mmap_sem))
2501 vma = find_vma(mm, start);
2503 reset_ptenuma_scan(p);
2507 for (; vma; vma = vma->vm_next) {
2508 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2509 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2514 * Shared library pages mapped by multiple processes are not
2515 * migrated as it is expected they are cache replicated. Avoid
2516 * hinting faults in read-only file-backed mappings or the vdso
2517 * as migrating the pages will be of marginal benefit.
2520 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2524 * Skip inaccessible VMAs to avoid any confusion between
2525 * PROT_NONE and NUMA hinting ptes
2527 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2531 start = max(start, vma->vm_start);
2532 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2533 end = min(end, vma->vm_end);
2534 nr_pte_updates = change_prot_numa(vma, start, end);
2537 * Try to scan sysctl_numa_balancing_size worth of
2538 * hpages that have at least one present PTE that
2539 * is not already pte-numa. If the VMA contains
2540 * areas that are unused or already full of prot_numa
2541 * PTEs, scan up to virtpages, to skip through those
2545 pages -= (end - start) >> PAGE_SHIFT;
2546 virtpages -= (end - start) >> PAGE_SHIFT;
2549 if (pages <= 0 || virtpages <= 0)
2553 } while (end != vma->vm_end);
2558 * It is possible to reach the end of the VMA list but the last few
2559 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2560 * would find the !migratable VMA on the next scan but not reset the
2561 * scanner to the start so check it now.
2564 mm->numa_scan_offset = start;
2566 reset_ptenuma_scan(p);
2567 up_read(&mm->mmap_sem);
2570 * Make sure tasks use at least 32x as much time to run other code
2571 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2572 * Usually update_task_scan_period slows down scanning enough; on an
2573 * overloaded system we need to limit overhead on a per task basis.
2575 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2576 u64 diff = p->se.sum_exec_runtime - runtime;
2577 p->node_stamp += 32 * diff;
2582 * Drive the periodic memory faults..
2584 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2586 struct callback_head *work = &curr->numa_work;
2590 * We don't care about NUMA placement if we don't have memory.
2592 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2596 * Using runtime rather than walltime has the dual advantage that
2597 * we (mostly) drive the selection from busy threads and that the
2598 * task needs to have done some actual work before we bother with
2601 now = curr->se.sum_exec_runtime;
2602 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2604 if (now > curr->node_stamp + period) {
2605 if (!curr->node_stamp)
2606 curr->numa_scan_period = task_scan_start(curr);
2607 curr->node_stamp += period;
2609 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2610 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2611 task_work_add(curr, work, true);
2616 static void update_scan_period(struct task_struct *p, int new_cpu)
2618 int src_nid = cpu_to_node(task_cpu(p));
2619 int dst_nid = cpu_to_node(new_cpu);
2621 if (!static_branch_likely(&sched_numa_balancing))
2624 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2627 if (src_nid == dst_nid)
2631 * Allow resets if faults have been trapped before one scan
2632 * has completed. This is most likely due to a new task that
2633 * is pulled cross-node due to wakeups or load balancing.
2635 if (p->numa_scan_seq) {
2637 * Avoid scan adjustments if moving to the preferred
2638 * node or if the task was not previously running on
2639 * the preferred node.
2641 if (dst_nid == p->numa_preferred_nid ||
2642 (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid))
2646 p->numa_scan_period = task_scan_start(p);
2650 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2654 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2658 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2662 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2666 #endif /* CONFIG_NUMA_BALANCING */
2669 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2671 update_load_add(&cfs_rq->load, se->load.weight);
2672 if (!parent_entity(se))
2673 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2675 if (entity_is_task(se)) {
2676 struct rq *rq = rq_of(cfs_rq);
2678 account_numa_enqueue(rq, task_of(se));
2679 list_add(&se->group_node, &rq->cfs_tasks);
2682 cfs_rq->nr_running++;
2686 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2688 update_load_sub(&cfs_rq->load, se->load.weight);
2689 if (!parent_entity(se))
2690 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2692 if (entity_is_task(se)) {
2693 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2694 list_del_init(&se->group_node);
2697 cfs_rq->nr_running--;
2701 * Signed add and clamp on underflow.
2703 * Explicitly do a load-store to ensure the intermediate value never hits
2704 * memory. This allows lockless observations without ever seeing the negative
2707 #define add_positive(_ptr, _val) do { \
2708 typeof(_ptr) ptr = (_ptr); \
2709 typeof(_val) val = (_val); \
2710 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2714 if (val < 0 && res > var) \
2717 WRITE_ONCE(*ptr, res); \
2721 * Unsigned subtract and clamp on underflow.
2723 * Explicitly do a load-store to ensure the intermediate value never hits
2724 * memory. This allows lockless observations without ever seeing the negative
2727 #define sub_positive(_ptr, _val) do { \
2728 typeof(_ptr) ptr = (_ptr); \
2729 typeof(*ptr) val = (_val); \
2730 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2734 WRITE_ONCE(*ptr, res); \
2739 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2741 cfs_rq->runnable_weight += se->runnable_weight;
2743 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2744 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2748 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2750 cfs_rq->runnable_weight -= se->runnable_weight;
2752 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2753 sub_positive(&cfs_rq->avg.runnable_load_sum,
2754 se_runnable(se) * se->avg.runnable_load_sum);
2758 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2760 cfs_rq->avg.load_avg += se->avg.load_avg;
2761 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2765 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2767 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2768 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2772 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2774 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2776 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2778 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2781 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2782 unsigned long weight, unsigned long runnable)
2785 /* commit outstanding execution time */
2786 if (cfs_rq->curr == se)
2787 update_curr(cfs_rq);
2788 account_entity_dequeue(cfs_rq, se);
2789 dequeue_runnable_load_avg(cfs_rq, se);
2791 dequeue_load_avg(cfs_rq, se);
2793 se->runnable_weight = runnable;
2794 update_load_set(&se->load, weight);
2798 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2800 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2801 se->avg.runnable_load_avg =
2802 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2806 enqueue_load_avg(cfs_rq, se);
2808 account_entity_enqueue(cfs_rq, se);
2809 enqueue_runnable_load_avg(cfs_rq, se);
2813 void reweight_task(struct task_struct *p, int prio)
2815 struct sched_entity *se = &p->se;
2816 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2817 struct load_weight *load = &se->load;
2818 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2820 reweight_entity(cfs_rq, se, weight, weight);
2821 load->inv_weight = sched_prio_to_wmult[prio];
2824 #ifdef CONFIG_FAIR_GROUP_SCHED
2827 * All this does is approximate the hierarchical proportion which includes that
2828 * global sum we all love to hate.
2830 * That is, the weight of a group entity, is the proportional share of the
2831 * group weight based on the group runqueue weights. That is:
2833 * tg->weight * grq->load.weight
2834 * ge->load.weight = ----------------------------- (1)
2835 * \Sum grq->load.weight
2837 * Now, because computing that sum is prohibitively expensive to compute (been
2838 * there, done that) we approximate it with this average stuff. The average
2839 * moves slower and therefore the approximation is cheaper and more stable.
2841 * So instead of the above, we substitute:
2843 * grq->load.weight -> grq->avg.load_avg (2)
2845 * which yields the following:
2847 * tg->weight * grq->avg.load_avg
2848 * ge->load.weight = ------------------------------ (3)
2851 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2853 * That is shares_avg, and it is right (given the approximation (2)).
2855 * The problem with it is that because the average is slow -- it was designed
2856 * to be exactly that of course -- this leads to transients in boundary
2857 * conditions. In specific, the case where the group was idle and we start the
2858 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2859 * yielding bad latency etc..
2861 * Now, in that special case (1) reduces to:
2863 * tg->weight * grq->load.weight
2864 * ge->load.weight = ----------------------------- = tg->weight (4)
2867 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2869 * So what we do is modify our approximation (3) to approach (4) in the (near)
2874 * tg->weight * grq->load.weight
2875 * --------------------------------------------------- (5)
2876 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2878 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2879 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2882 * tg->weight * grq->load.weight
2883 * ge->load.weight = ----------------------------- (6)
2888 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2889 * max(grq->load.weight, grq->avg.load_avg)
2891 * And that is shares_weight and is icky. In the (near) UP case it approaches
2892 * (4) while in the normal case it approaches (3). It consistently
2893 * overestimates the ge->load.weight and therefore:
2895 * \Sum ge->load.weight >= tg->weight
2899 static long calc_group_shares(struct cfs_rq *cfs_rq)
2901 long tg_weight, tg_shares, load, shares;
2902 struct task_group *tg = cfs_rq->tg;
2904 tg_shares = READ_ONCE(tg->shares);
2906 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2908 tg_weight = atomic_long_read(&tg->load_avg);
2910 /* Ensure tg_weight >= load */
2911 tg_weight -= cfs_rq->tg_load_avg_contrib;
2914 shares = (tg_shares * load);
2916 shares /= tg_weight;
2919 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2920 * of a group with small tg->shares value. It is a floor value which is
2921 * assigned as a minimum load.weight to the sched_entity representing
2922 * the group on a CPU.
2924 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2925 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2926 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2927 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2930 return clamp_t(long, shares, MIN_SHARES, tg_shares);
2934 * This calculates the effective runnable weight for a group entity based on
2935 * the group entity weight calculated above.
2937 * Because of the above approximation (2), our group entity weight is
2938 * an load_avg based ratio (3). This means that it includes blocked load and
2939 * does not represent the runnable weight.
2941 * Approximate the group entity's runnable weight per ratio from the group
2944 * grq->avg.runnable_load_avg
2945 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
2948 * However, analogous to above, since the avg numbers are slow, this leads to
2949 * transients in the from-idle case. Instead we use:
2951 * ge->runnable_weight = ge->load.weight *
2953 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
2954 * ----------------------------------------------------- (8)
2955 * max(grq->avg.load_avg, grq->load.weight)
2957 * Where these max() serve both to use the 'instant' values to fix the slow
2958 * from-idle and avoid the /0 on to-idle, similar to (6).
2960 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2962 long runnable, load_avg;
2964 load_avg = max(cfs_rq->avg.load_avg,
2965 scale_load_down(cfs_rq->load.weight));
2967 runnable = max(cfs_rq->avg.runnable_load_avg,
2968 scale_load_down(cfs_rq->runnable_weight));
2972 runnable /= load_avg;
2974 return clamp_t(long, runnable, MIN_SHARES, shares);
2976 #endif /* CONFIG_SMP */
2978 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2981 * Recomputes the group entity based on the current state of its group
2984 static void update_cfs_group(struct sched_entity *se)
2986 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
2987 long shares, runnable;
2992 if (throttled_hierarchy(gcfs_rq))
2996 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
2998 if (likely(se->load.weight == shares))
3001 shares = calc_group_shares(gcfs_rq);
3002 runnable = calc_group_runnable(gcfs_rq, shares);
3005 reweight_entity(cfs_rq_of(se), se, shares, runnable);
3008 #else /* CONFIG_FAIR_GROUP_SCHED */
3009 static inline void update_cfs_group(struct sched_entity *se)
3012 #endif /* CONFIG_FAIR_GROUP_SCHED */
3014 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3016 struct rq *rq = rq_of(cfs_rq);
3018 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3020 * There are a few boundary cases this might miss but it should
3021 * get called often enough that that should (hopefully) not be
3024 * It will not get called when we go idle, because the idle
3025 * thread is a different class (!fair), nor will the utilization
3026 * number include things like RT tasks.
3028 * As is, the util number is not freq-invariant (we'd have to
3029 * implement arch_scale_freq_capacity() for that).
3033 cpufreq_update_util(rq, flags);
3038 #ifdef CONFIG_FAIR_GROUP_SCHED
3040 * update_tg_load_avg - update the tg's load avg
3041 * @cfs_rq: the cfs_rq whose avg changed
3042 * @force: update regardless of how small the difference
3044 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3045 * However, because tg->load_avg is a global value there are performance
3048 * In order to avoid having to look at the other cfs_rq's, we use a
3049 * differential update where we store the last value we propagated. This in
3050 * turn allows skipping updates if the differential is 'small'.
3052 * Updating tg's load_avg is necessary before update_cfs_share().
3054 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3056 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3059 * No need to update load_avg for root_task_group as it is not used.
3061 if (cfs_rq->tg == &root_task_group)
3064 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3065 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3066 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3071 * Called within set_task_rq() right before setting a task's CPU. The
3072 * caller only guarantees p->pi_lock is held; no other assumptions,
3073 * including the state of rq->lock, should be made.
3075 void set_task_rq_fair(struct sched_entity *se,
3076 struct cfs_rq *prev, struct cfs_rq *next)
3078 u64 p_last_update_time;
3079 u64 n_last_update_time;
3081 if (!sched_feat(ATTACH_AGE_LOAD))
3085 * We are supposed to update the task to "current" time, then its up to
3086 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3087 * getting what current time is, so simply throw away the out-of-date
3088 * time. This will result in the wakee task is less decayed, but giving
3089 * the wakee more load sounds not bad.
3091 if (!(se->avg.last_update_time && prev))
3094 #ifndef CONFIG_64BIT
3096 u64 p_last_update_time_copy;
3097 u64 n_last_update_time_copy;
3100 p_last_update_time_copy = prev->load_last_update_time_copy;
3101 n_last_update_time_copy = next->load_last_update_time_copy;
3105 p_last_update_time = prev->avg.last_update_time;
3106 n_last_update_time = next->avg.last_update_time;
3108 } while (p_last_update_time != p_last_update_time_copy ||
3109 n_last_update_time != n_last_update_time_copy);
3112 p_last_update_time = prev->avg.last_update_time;
3113 n_last_update_time = next->avg.last_update_time;
3115 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3116 se->avg.last_update_time = n_last_update_time;
3121 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3122 * propagate its contribution. The key to this propagation is the invariant
3123 * that for each group:
3125 * ge->avg == grq->avg (1)
3127 * _IFF_ we look at the pure running and runnable sums. Because they
3128 * represent the very same entity, just at different points in the hierarchy.
3130 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3131 * sum over (but still wrong, because the group entity and group rq do not have
3132 * their PELT windows aligned).
3134 * However, update_tg_cfs_runnable() is more complex. So we have:
3136 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3138 * And since, like util, the runnable part should be directly transferable,
3139 * the following would _appear_ to be the straight forward approach:
3141 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3143 * And per (1) we have:
3145 * ge->avg.runnable_avg == grq->avg.runnable_avg
3149 * ge->load.weight * grq->avg.load_avg
3150 * ge->avg.load_avg = ----------------------------------- (4)
3153 * Except that is wrong!
3155 * Because while for entities historical weight is not important and we
3156 * really only care about our future and therefore can consider a pure
3157 * runnable sum, runqueues can NOT do this.
3159 * We specifically want runqueues to have a load_avg that includes
3160 * historical weights. Those represent the blocked load, the load we expect
3161 * to (shortly) return to us. This only works by keeping the weights as
3162 * integral part of the sum. We therefore cannot decompose as per (3).
3164 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3165 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3166 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3167 * runnable section of these tasks overlap (or not). If they were to perfectly
3168 * align the rq as a whole would be runnable 2/3 of the time. If however we
3169 * always have at least 1 runnable task, the rq as a whole is always runnable.
3171 * So we'll have to approximate.. :/
3173 * Given the constraint:
3175 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3177 * We can construct a rule that adds runnable to a rq by assuming minimal
3180 * On removal, we'll assume each task is equally runnable; which yields:
3182 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3184 * XXX: only do this for the part of runnable > running ?
3189 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3191 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3193 /* Nothing to update */
3198 * The relation between sum and avg is:
3200 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3202 * however, the PELT windows are not aligned between grq and gse.
3205 /* Set new sched_entity's utilization */
3206 se->avg.util_avg = gcfs_rq->avg.util_avg;
3207 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3209 /* Update parent cfs_rq utilization */
3210 add_positive(&cfs_rq->avg.util_avg, delta);
3211 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3215 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3217 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3218 unsigned long runnable_load_avg, load_avg;
3219 u64 runnable_load_sum, load_sum = 0;
3225 gcfs_rq->prop_runnable_sum = 0;
3227 if (runnable_sum >= 0) {
3229 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3230 * the CPU is saturated running == runnable.
3232 runnable_sum += se->avg.load_sum;
3233 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3236 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3237 * assuming all tasks are equally runnable.
3239 if (scale_load_down(gcfs_rq->load.weight)) {
3240 load_sum = div_s64(gcfs_rq->avg.load_sum,
3241 scale_load_down(gcfs_rq->load.weight));
3244 /* But make sure to not inflate se's runnable */
3245 runnable_sum = min(se->avg.load_sum, load_sum);
3249 * runnable_sum can't be lower than running_sum
3250 * As running sum is scale with CPU capacity wehreas the runnable sum
3251 * is not we rescale running_sum 1st
3253 running_sum = se->avg.util_sum /
3254 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3255 runnable_sum = max(runnable_sum, running_sum);
3257 load_sum = (s64)se_weight(se) * runnable_sum;
3258 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3260 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3261 delta_avg = load_avg - se->avg.load_avg;
3263 se->avg.load_sum = runnable_sum;
3264 se->avg.load_avg = load_avg;
3265 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3266 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3268 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3269 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3270 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3271 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3273 se->avg.runnable_load_sum = runnable_sum;
3274 se->avg.runnable_load_avg = runnable_load_avg;
3277 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3278 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3282 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3284 cfs_rq->propagate = 1;
3285 cfs_rq->prop_runnable_sum += runnable_sum;
3288 /* Update task and its cfs_rq load average */
3289 static inline int propagate_entity_load_avg(struct sched_entity *se)
3291 struct cfs_rq *cfs_rq, *gcfs_rq;
3293 if (entity_is_task(se))
3296 gcfs_rq = group_cfs_rq(se);
3297 if (!gcfs_rq->propagate)
3300 gcfs_rq->propagate = 0;
3302 cfs_rq = cfs_rq_of(se);
3304 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3306 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3307 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3313 * Check if we need to update the load and the utilization of a blocked
3316 static inline bool skip_blocked_update(struct sched_entity *se)
3318 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3321 * If sched_entity still have not zero load or utilization, we have to
3324 if (se->avg.load_avg || se->avg.util_avg)
3328 * If there is a pending propagation, we have to update the load and
3329 * the utilization of the sched_entity:
3331 if (gcfs_rq->propagate)
3335 * Otherwise, the load and the utilization of the sched_entity is
3336 * already zero and there is no pending propagation, so it will be a
3337 * waste of time to try to decay it:
3342 #else /* CONFIG_FAIR_GROUP_SCHED */
3344 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3346 static inline int propagate_entity_load_avg(struct sched_entity *se)
3351 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3353 #endif /* CONFIG_FAIR_GROUP_SCHED */
3356 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3357 * @now: current time, as per cfs_rq_clock_task()
3358 * @cfs_rq: cfs_rq to update
3360 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3361 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3362 * post_init_entity_util_avg().
3364 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3366 * Returns true if the load decayed or we removed load.
3368 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3369 * call update_tg_load_avg() when this function returns true.
3372 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3374 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3375 struct sched_avg *sa = &cfs_rq->avg;
3378 if (cfs_rq->removed.nr) {
3380 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3382 raw_spin_lock(&cfs_rq->removed.lock);
3383 swap(cfs_rq->removed.util_avg, removed_util);
3384 swap(cfs_rq->removed.load_avg, removed_load);
3385 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3386 cfs_rq->removed.nr = 0;
3387 raw_spin_unlock(&cfs_rq->removed.lock);
3390 sub_positive(&sa->load_avg, r);
3391 sub_positive(&sa->load_sum, r * divider);
3394 sub_positive(&sa->util_avg, r);
3395 sub_positive(&sa->util_sum, r * divider);
3397 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3402 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3404 #ifndef CONFIG_64BIT
3406 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3410 cfs_rq_util_change(cfs_rq, 0);
3416 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3417 * @cfs_rq: cfs_rq to attach to
3418 * @se: sched_entity to attach
3419 * @flags: migration hints
3421 * Must call update_cfs_rq_load_avg() before this, since we rely on
3422 * cfs_rq->avg.last_update_time being current.
3424 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3426 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3429 * When we attach the @se to the @cfs_rq, we must align the decay
3430 * window because without that, really weird and wonderful things can
3435 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3436 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3439 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3440 * period_contrib. This isn't strictly correct, but since we're
3441 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3444 se->avg.util_sum = se->avg.util_avg * divider;
3446 se->avg.load_sum = divider;
3447 if (se_weight(se)) {
3449 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3452 se->avg.runnable_load_sum = se->avg.load_sum;
3454 enqueue_load_avg(cfs_rq, se);
3455 cfs_rq->avg.util_avg += se->avg.util_avg;
3456 cfs_rq->avg.util_sum += se->avg.util_sum;
3458 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3460 cfs_rq_util_change(cfs_rq, flags);
3464 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3465 * @cfs_rq: cfs_rq to detach from
3466 * @se: sched_entity to detach
3468 * Must call update_cfs_rq_load_avg() before this, since we rely on
3469 * cfs_rq->avg.last_update_time being current.
3471 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3473 dequeue_load_avg(cfs_rq, se);
3474 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3475 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3477 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3479 cfs_rq_util_change(cfs_rq, 0);
3483 * Optional action to be done while updating the load average
3485 #define UPDATE_TG 0x1
3486 #define SKIP_AGE_LOAD 0x2
3487 #define DO_ATTACH 0x4
3489 /* Update task and its cfs_rq load average */
3490 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3492 u64 now = cfs_rq_clock_task(cfs_rq);
3493 struct rq *rq = rq_of(cfs_rq);
3494 int cpu = cpu_of(rq);
3498 * Track task load average for carrying it to new CPU after migrated, and
3499 * track group sched_entity load average for task_h_load calc in migration
3501 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3502 __update_load_avg_se(now, cpu, cfs_rq, se);
3504 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3505 decayed |= propagate_entity_load_avg(se);
3507 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3510 * DO_ATTACH means we're here from enqueue_entity().
3511 * !last_update_time means we've passed through
3512 * migrate_task_rq_fair() indicating we migrated.
3514 * IOW we're enqueueing a task on a new CPU.
3516 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3517 update_tg_load_avg(cfs_rq, 0);
3519 } else if (decayed && (flags & UPDATE_TG))
3520 update_tg_load_avg(cfs_rq, 0);
3523 #ifndef CONFIG_64BIT
3524 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3526 u64 last_update_time_copy;
3527 u64 last_update_time;
3530 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3532 last_update_time = cfs_rq->avg.last_update_time;
3533 } while (last_update_time != last_update_time_copy);
3535 return last_update_time;
3538 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3540 return cfs_rq->avg.last_update_time;
3545 * Synchronize entity load avg of dequeued entity without locking
3548 void sync_entity_load_avg(struct sched_entity *se)
3550 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3551 u64 last_update_time;
3553 last_update_time = cfs_rq_last_update_time(cfs_rq);
3554 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3558 * Task first catches up with cfs_rq, and then subtract
3559 * itself from the cfs_rq (task must be off the queue now).
3561 void remove_entity_load_avg(struct sched_entity *se)
3563 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3564 unsigned long flags;
3567 * tasks cannot exit without having gone through wake_up_new_task() ->
3568 * post_init_entity_util_avg() which will have added things to the
3569 * cfs_rq, so we can remove unconditionally.
3571 * Similarly for groups, they will have passed through
3572 * post_init_entity_util_avg() before unregister_sched_fair_group()
3576 sync_entity_load_avg(se);
3578 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3579 ++cfs_rq->removed.nr;
3580 cfs_rq->removed.util_avg += se->avg.util_avg;
3581 cfs_rq->removed.load_avg += se->avg.load_avg;
3582 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
3583 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3586 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3588 return cfs_rq->avg.runnable_load_avg;
3591 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3593 return cfs_rq->avg.load_avg;
3596 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3598 static inline unsigned long task_util(struct task_struct *p)
3600 return READ_ONCE(p->se.avg.util_avg);
3603 static inline unsigned long _task_util_est(struct task_struct *p)
3605 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3607 return max(ue.ewma, ue.enqueued);
3610 static inline unsigned long task_util_est(struct task_struct *p)
3612 return max(task_util(p), _task_util_est(p));
3615 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3616 struct task_struct *p)
3618 unsigned int enqueued;
3620 if (!sched_feat(UTIL_EST))
3623 /* Update root cfs_rq's estimated utilization */
3624 enqueued = cfs_rq->avg.util_est.enqueued;
3625 enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3626 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3630 * Check if a (signed) value is within a specified (unsigned) margin,
3631 * based on the observation that:
3633 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3635 * NOTE: this only works when value + maring < INT_MAX.
3637 static inline bool within_margin(int value, int margin)
3639 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3643 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3645 long last_ewma_diff;
3648 if (!sched_feat(UTIL_EST))
3651 /* Update root cfs_rq's estimated utilization */
3652 ue.enqueued = cfs_rq->avg.util_est.enqueued;
3653 ue.enqueued -= min_t(unsigned int, ue.enqueued,
3654 (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3655 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3658 * Skip update of task's estimated utilization when the task has not
3659 * yet completed an activation, e.g. being migrated.
3665 * If the PELT values haven't changed since enqueue time,
3666 * skip the util_est update.
3668 ue = p->se.avg.util_est;
3669 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3673 * Skip update of task's estimated utilization when its EWMA is
3674 * already ~1% close to its last activation value.
3676 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3677 last_ewma_diff = ue.enqueued - ue.ewma;
3678 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3682 * Update Task's estimated utilization
3684 * When *p completes an activation we can consolidate another sample
3685 * of the task size. This is done by storing the current PELT value
3686 * as ue.enqueued and by using this value to update the Exponential
3687 * Weighted Moving Average (EWMA):
3689 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3690 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3691 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3692 * = w * ( last_ewma_diff ) + ewma(t-1)
3693 * = w * (last_ewma_diff + ewma(t-1) / w)
3695 * Where 'w' is the weight of new samples, which is configured to be
3696 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3698 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3699 ue.ewma += last_ewma_diff;
3700 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3701 WRITE_ONCE(p->se.avg.util_est, ue);
3704 static inline int task_fits_capacity(struct task_struct *p, long capacity)
3706 return capacity * 1024 > task_util_est(p) * capacity_margin;
3709 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3711 if (!static_branch_unlikely(&sched_asym_cpucapacity))
3715 rq->misfit_task_load = 0;
3719 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3720 rq->misfit_task_load = 0;
3724 rq->misfit_task_load = task_h_load(p);
3727 #else /* CONFIG_SMP */
3729 #define UPDATE_TG 0x0
3730 #define SKIP_AGE_LOAD 0x0
3731 #define DO_ATTACH 0x0
3733 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3735 cfs_rq_util_change(cfs_rq, 0);
3738 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3741 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3743 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3745 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3751 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3754 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3756 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
3758 #endif /* CONFIG_SMP */
3760 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3762 #ifdef CONFIG_SCHED_DEBUG
3763 s64 d = se->vruntime - cfs_rq->min_vruntime;
3768 if (d > 3*sysctl_sched_latency)
3769 schedstat_inc(cfs_rq->nr_spread_over);
3774 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3776 u64 vruntime = cfs_rq->min_vruntime;
3779 * The 'current' period is already promised to the current tasks,
3780 * however the extra weight of the new task will slow them down a
3781 * little, place the new task so that it fits in the slot that
3782 * stays open at the end.
3784 if (initial && sched_feat(START_DEBIT))
3785 vruntime += sched_vslice(cfs_rq, se);
3787 /* sleeps up to a single latency don't count. */
3789 unsigned long thresh = sysctl_sched_latency;
3792 * Halve their sleep time's effect, to allow
3793 * for a gentler effect of sleepers:
3795 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3801 /* ensure we never gain time by being placed backwards. */
3802 se->vruntime = max_vruntime(se->vruntime, vruntime);
3805 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3807 static inline void check_schedstat_required(void)
3809 #ifdef CONFIG_SCHEDSTATS
3810 if (schedstat_enabled())
3813 /* Force schedstat enabled if a dependent tracepoint is active */
3814 if (trace_sched_stat_wait_enabled() ||
3815 trace_sched_stat_sleep_enabled() ||
3816 trace_sched_stat_iowait_enabled() ||
3817 trace_sched_stat_blocked_enabled() ||
3818 trace_sched_stat_runtime_enabled()) {
3819 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3820 "stat_blocked and stat_runtime require the "
3821 "kernel parameter schedstats=enable or "
3822 "kernel.sched_schedstats=1\n");
3833 * update_min_vruntime()
3834 * vruntime -= min_vruntime
3838 * update_min_vruntime()
3839 * vruntime += min_vruntime
3841 * this way the vruntime transition between RQs is done when both
3842 * min_vruntime are up-to-date.
3846 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3847 * vruntime -= min_vruntime
3851 * update_min_vruntime()
3852 * vruntime += min_vruntime
3854 * this way we don't have the most up-to-date min_vruntime on the originating
3855 * CPU and an up-to-date min_vruntime on the destination CPU.
3859 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3861 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3862 bool curr = cfs_rq->curr == se;
3865 * If we're the current task, we must renormalise before calling
3869 se->vruntime += cfs_rq->min_vruntime;
3871 update_curr(cfs_rq);
3874 * Otherwise, renormalise after, such that we're placed at the current
3875 * moment in time, instead of some random moment in the past. Being
3876 * placed in the past could significantly boost this task to the
3877 * fairness detriment of existing tasks.
3879 if (renorm && !curr)
3880 se->vruntime += cfs_rq->min_vruntime;
3883 * When enqueuing a sched_entity, we must:
3884 * - Update loads to have both entity and cfs_rq synced with now.
3885 * - Add its load to cfs_rq->runnable_avg
3886 * - For group_entity, update its weight to reflect the new share of
3888 * - Add its new weight to cfs_rq->load.weight
3890 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3891 update_cfs_group(se);
3892 enqueue_runnable_load_avg(cfs_rq, se);
3893 account_entity_enqueue(cfs_rq, se);
3895 if (flags & ENQUEUE_WAKEUP)
3896 place_entity(cfs_rq, se, 0);
3898 check_schedstat_required();
3899 update_stats_enqueue(cfs_rq, se, flags);
3900 check_spread(cfs_rq, se);
3902 __enqueue_entity(cfs_rq, se);
3905 if (cfs_rq->nr_running == 1) {
3906 list_add_leaf_cfs_rq(cfs_rq);
3907 check_enqueue_throttle(cfs_rq);
3911 static void __clear_buddies_last(struct sched_entity *se)
3913 for_each_sched_entity(se) {
3914 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3915 if (cfs_rq->last != se)
3918 cfs_rq->last = NULL;
3922 static void __clear_buddies_next(struct sched_entity *se)
3924 for_each_sched_entity(se) {
3925 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3926 if (cfs_rq->next != se)
3929 cfs_rq->next = NULL;
3933 static void __clear_buddies_skip(struct sched_entity *se)
3935 for_each_sched_entity(se) {
3936 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3937 if (cfs_rq->skip != se)
3940 cfs_rq->skip = NULL;
3944 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3946 if (cfs_rq->last == se)
3947 __clear_buddies_last(se);
3949 if (cfs_rq->next == se)
3950 __clear_buddies_next(se);
3952 if (cfs_rq->skip == se)
3953 __clear_buddies_skip(se);
3956 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3959 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3962 * Update run-time statistics of the 'current'.
3964 update_curr(cfs_rq);
3967 * When dequeuing a sched_entity, we must:
3968 * - Update loads to have both entity and cfs_rq synced with now.
3969 * - Substract its load from the cfs_rq->runnable_avg.
3970 * - Substract its previous weight from cfs_rq->load.weight.
3971 * - For group entity, update its weight to reflect the new share
3972 * of its group cfs_rq.
3974 update_load_avg(cfs_rq, se, UPDATE_TG);
3975 dequeue_runnable_load_avg(cfs_rq, se);
3977 update_stats_dequeue(cfs_rq, se, flags);
3979 clear_buddies(cfs_rq, se);
3981 if (se != cfs_rq->curr)
3982 __dequeue_entity(cfs_rq, se);
3984 account_entity_dequeue(cfs_rq, se);
3987 * Normalize after update_curr(); which will also have moved
3988 * min_vruntime if @se is the one holding it back. But before doing
3989 * update_min_vruntime() again, which will discount @se's position and
3990 * can move min_vruntime forward still more.
3992 if (!(flags & DEQUEUE_SLEEP))
3993 se->vruntime -= cfs_rq->min_vruntime;
3995 /* return excess runtime on last dequeue */
3996 return_cfs_rq_runtime(cfs_rq);
3998 update_cfs_group(se);
4001 * Now advance min_vruntime if @se was the entity holding it back,
4002 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4003 * put back on, and if we advance min_vruntime, we'll be placed back
4004 * further than we started -- ie. we'll be penalized.
4006 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4007 update_min_vruntime(cfs_rq);
4011 * Preempt the current task with a newly woken task if needed:
4014 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4016 unsigned long ideal_runtime, delta_exec;
4017 struct sched_entity *se;
4020 ideal_runtime = sched_slice(cfs_rq, curr);
4021 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4022 if (delta_exec > ideal_runtime) {
4023 resched_curr(rq_of(cfs_rq));
4025 * The current task ran long enough, ensure it doesn't get
4026 * re-elected due to buddy favours.
4028 clear_buddies(cfs_rq, curr);
4033 * Ensure that a task that missed wakeup preemption by a
4034 * narrow margin doesn't have to wait for a full slice.
4035 * This also mitigates buddy induced latencies under load.
4037 if (delta_exec < sysctl_sched_min_granularity)
4040 se = __pick_first_entity(cfs_rq);
4041 delta = curr->vruntime - se->vruntime;
4046 if (delta > ideal_runtime)
4047 resched_curr(rq_of(cfs_rq));
4051 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4053 /* 'current' is not kept within the tree. */
4056 * Any task has to be enqueued before it get to execute on
4057 * a CPU. So account for the time it spent waiting on the
4060 update_stats_wait_end(cfs_rq, se);
4061 __dequeue_entity(cfs_rq, se);
4062 update_load_avg(cfs_rq, se, UPDATE_TG);
4065 update_stats_curr_start(cfs_rq, se);
4069 * Track our maximum slice length, if the CPU's load is at
4070 * least twice that of our own weight (i.e. dont track it
4071 * when there are only lesser-weight tasks around):
4073 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4074 schedstat_set(se->statistics.slice_max,
4075 max((u64)schedstat_val(se->statistics.slice_max),
4076 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4079 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4083 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4086 * Pick the next process, keeping these things in mind, in this order:
4087 * 1) keep things fair between processes/task groups
4088 * 2) pick the "next" process, since someone really wants that to run
4089 * 3) pick the "last" process, for cache locality
4090 * 4) do not run the "skip" process, if something else is available
4092 static struct sched_entity *
4093 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4095 struct sched_entity *left = __pick_first_entity(cfs_rq);
4096 struct sched_entity *se;
4099 * If curr is set we have to see if its left of the leftmost entity
4100 * still in the tree, provided there was anything in the tree at all.
4102 if (!left || (curr && entity_before(curr, left)))
4105 se = left; /* ideally we run the leftmost entity */
4108 * Avoid running the skip buddy, if running something else can
4109 * be done without getting too unfair.
4111 if (cfs_rq->skip == se) {
4112 struct sched_entity *second;
4115 second = __pick_first_entity(cfs_rq);
4117 second = __pick_next_entity(se);
4118 if (!second || (curr && entity_before(curr, second)))
4122 if (second && wakeup_preempt_entity(second, left) < 1)
4127 * Prefer last buddy, try to return the CPU to a preempted task.
4129 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4133 * Someone really wants this to run. If it's not unfair, run it.
4135 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4138 clear_buddies(cfs_rq, se);
4143 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4145 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4148 * If still on the runqueue then deactivate_task()
4149 * was not called and update_curr() has to be done:
4152 update_curr(cfs_rq);
4154 /* throttle cfs_rqs exceeding runtime */
4155 check_cfs_rq_runtime(cfs_rq);
4157 check_spread(cfs_rq, prev);
4160 update_stats_wait_start(cfs_rq, prev);
4161 /* Put 'current' back into the tree. */
4162 __enqueue_entity(cfs_rq, prev);
4163 /* in !on_rq case, update occurred at dequeue */
4164 update_load_avg(cfs_rq, prev, 0);
4166 cfs_rq->curr = NULL;
4170 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4173 * Update run-time statistics of the 'current'.
4175 update_curr(cfs_rq);
4178 * Ensure that runnable average is periodically updated.
4180 update_load_avg(cfs_rq, curr, UPDATE_TG);
4181 update_cfs_group(curr);
4183 #ifdef CONFIG_SCHED_HRTICK
4185 * queued ticks are scheduled to match the slice, so don't bother
4186 * validating it and just reschedule.
4189 resched_curr(rq_of(cfs_rq));
4193 * don't let the period tick interfere with the hrtick preemption
4195 if (!sched_feat(DOUBLE_TICK) &&
4196 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4200 if (cfs_rq->nr_running > 1)
4201 check_preempt_tick(cfs_rq, curr);
4205 /**************************************************
4206 * CFS bandwidth control machinery
4209 #ifdef CONFIG_CFS_BANDWIDTH
4211 #ifdef HAVE_JUMP_LABEL
4212 static struct static_key __cfs_bandwidth_used;
4214 static inline bool cfs_bandwidth_used(void)
4216 return static_key_false(&__cfs_bandwidth_used);
4219 void cfs_bandwidth_usage_inc(void)
4221 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4224 void cfs_bandwidth_usage_dec(void)
4226 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4228 #else /* HAVE_JUMP_LABEL */
4229 static bool cfs_bandwidth_used(void)
4234 void cfs_bandwidth_usage_inc(void) {}
4235 void cfs_bandwidth_usage_dec(void) {}
4236 #endif /* HAVE_JUMP_LABEL */
4239 * default period for cfs group bandwidth.
4240 * default: 0.1s, units: nanoseconds
4242 static inline u64 default_cfs_period(void)
4244 return 100000000ULL;
4247 static inline u64 sched_cfs_bandwidth_slice(void)
4249 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4253 * Replenish runtime according to assigned quota and update expiration time.
4254 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4255 * additional synchronization around rq->lock.
4257 * requires cfs_b->lock
4259 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4263 if (cfs_b->quota == RUNTIME_INF)
4266 now = sched_clock_cpu(smp_processor_id());
4267 cfs_b->runtime = cfs_b->quota;
4268 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4269 cfs_b->expires_seq++;
4272 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4274 return &tg->cfs_bandwidth;
4277 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4278 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4280 if (unlikely(cfs_rq->throttle_count))
4281 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4283 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4286 /* returns 0 on failure to allocate runtime */
4287 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4289 struct task_group *tg = cfs_rq->tg;
4290 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4291 u64 amount = 0, min_amount, expires;
4294 /* note: this is a positive sum as runtime_remaining <= 0 */
4295 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4297 raw_spin_lock(&cfs_b->lock);
4298 if (cfs_b->quota == RUNTIME_INF)
4299 amount = min_amount;
4301 start_cfs_bandwidth(cfs_b);
4303 if (cfs_b->runtime > 0) {
4304 amount = min(cfs_b->runtime, min_amount);
4305 cfs_b->runtime -= amount;
4309 expires_seq = cfs_b->expires_seq;
4310 expires = cfs_b->runtime_expires;
4311 raw_spin_unlock(&cfs_b->lock);
4313 cfs_rq->runtime_remaining += amount;
4315 * we may have advanced our local expiration to account for allowed
4316 * spread between our sched_clock and the one on which runtime was
4319 if (cfs_rq->expires_seq != expires_seq) {
4320 cfs_rq->expires_seq = expires_seq;
4321 cfs_rq->runtime_expires = expires;
4324 return cfs_rq->runtime_remaining > 0;
4328 * Note: This depends on the synchronization provided by sched_clock and the
4329 * fact that rq->clock snapshots this value.
4331 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4333 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4335 /* if the deadline is ahead of our clock, nothing to do */
4336 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4339 if (cfs_rq->runtime_remaining < 0)
4343 * If the local deadline has passed we have to consider the
4344 * possibility that our sched_clock is 'fast' and the global deadline
4345 * has not truly expired.
4347 * Fortunately we can check determine whether this the case by checking
4348 * whether the global deadline(cfs_b->expires_seq) has advanced.
4350 if (cfs_rq->expires_seq == cfs_b->expires_seq) {
4351 /* extend local deadline, drift is bounded above by 2 ticks */
4352 cfs_rq->runtime_expires += TICK_NSEC;
4354 /* global deadline is ahead, expiration has passed */
4355 cfs_rq->runtime_remaining = 0;
4359 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4361 /* dock delta_exec before expiring quota (as it could span periods) */
4362 cfs_rq->runtime_remaining -= delta_exec;
4363 expire_cfs_rq_runtime(cfs_rq);
4365 if (likely(cfs_rq->runtime_remaining > 0))
4369 * if we're unable to extend our runtime we resched so that the active
4370 * hierarchy can be throttled
4372 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4373 resched_curr(rq_of(cfs_rq));
4376 static __always_inline
4377 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4379 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4382 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4385 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4387 return cfs_bandwidth_used() && cfs_rq->throttled;
4390 /* check whether cfs_rq, or any parent, is throttled */
4391 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4393 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4397 * Ensure that neither of the group entities corresponding to src_cpu or
4398 * dest_cpu are members of a throttled hierarchy when performing group
4399 * load-balance operations.
4401 static inline int throttled_lb_pair(struct task_group *tg,
4402 int src_cpu, int dest_cpu)
4404 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4406 src_cfs_rq = tg->cfs_rq[src_cpu];
4407 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4409 return throttled_hierarchy(src_cfs_rq) ||
4410 throttled_hierarchy(dest_cfs_rq);
4413 static int tg_unthrottle_up(struct task_group *tg, void *data)
4415 struct rq *rq = data;
4416 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4418 cfs_rq->throttle_count--;
4419 if (!cfs_rq->throttle_count) {
4420 /* adjust cfs_rq_clock_task() */
4421 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4422 cfs_rq->throttled_clock_task;
4428 static int tg_throttle_down(struct task_group *tg, void *data)
4430 struct rq *rq = data;
4431 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4433 /* group is entering throttled state, stop time */
4434 if (!cfs_rq->throttle_count)
4435 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4436 cfs_rq->throttle_count++;
4441 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4443 struct rq *rq = rq_of(cfs_rq);
4444 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4445 struct sched_entity *se;
4446 long task_delta, dequeue = 1;
4449 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4451 /* freeze hierarchy runnable averages while throttled */
4453 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4456 task_delta = cfs_rq->h_nr_running;
4457 for_each_sched_entity(se) {
4458 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4459 /* throttled entity or throttle-on-deactivate */
4464 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4465 qcfs_rq->h_nr_running -= task_delta;
4467 if (qcfs_rq->load.weight)
4472 sub_nr_running(rq, task_delta);
4474 cfs_rq->throttled = 1;
4475 cfs_rq->throttled_clock = rq_clock(rq);
4476 raw_spin_lock(&cfs_b->lock);
4477 empty = list_empty(&cfs_b->throttled_cfs_rq);
4480 * Add to the _head_ of the list, so that an already-started
4481 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4482 * not running add to the tail so that later runqueues don't get starved.
4484 if (cfs_b->distribute_running)
4485 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4487 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4490 * If we're the first throttled task, make sure the bandwidth
4494 start_cfs_bandwidth(cfs_b);
4496 raw_spin_unlock(&cfs_b->lock);
4499 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4501 struct rq *rq = rq_of(cfs_rq);
4502 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4503 struct sched_entity *se;
4507 se = cfs_rq->tg->se[cpu_of(rq)];
4509 cfs_rq->throttled = 0;
4511 update_rq_clock(rq);
4513 raw_spin_lock(&cfs_b->lock);
4514 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4515 list_del_rcu(&cfs_rq->throttled_list);
4516 raw_spin_unlock(&cfs_b->lock);
4518 /* update hierarchical throttle state */
4519 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4521 if (!cfs_rq->load.weight)
4524 task_delta = cfs_rq->h_nr_running;
4525 for_each_sched_entity(se) {
4529 cfs_rq = cfs_rq_of(se);
4531 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4532 cfs_rq->h_nr_running += task_delta;
4534 if (cfs_rq_throttled(cfs_rq))
4539 add_nr_running(rq, task_delta);
4541 /* Determine whether we need to wake up potentially idle CPU: */
4542 if (rq->curr == rq->idle && rq->cfs.nr_running)
4546 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4547 u64 remaining, u64 expires)
4549 struct cfs_rq *cfs_rq;
4551 u64 starting_runtime = remaining;
4554 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4556 struct rq *rq = rq_of(cfs_rq);
4560 if (!cfs_rq_throttled(cfs_rq))
4563 runtime = -cfs_rq->runtime_remaining + 1;
4564 if (runtime > remaining)
4565 runtime = remaining;
4566 remaining -= runtime;
4568 cfs_rq->runtime_remaining += runtime;
4569 cfs_rq->runtime_expires = expires;
4571 /* we check whether we're throttled above */
4572 if (cfs_rq->runtime_remaining > 0)
4573 unthrottle_cfs_rq(cfs_rq);
4583 return starting_runtime - remaining;
4587 * Responsible for refilling a task_group's bandwidth and unthrottling its
4588 * cfs_rqs as appropriate. If there has been no activity within the last
4589 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4590 * used to track this state.
4592 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4594 u64 runtime, runtime_expires;
4597 /* no need to continue the timer with no bandwidth constraint */
4598 if (cfs_b->quota == RUNTIME_INF)
4599 goto out_deactivate;
4601 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4602 cfs_b->nr_periods += overrun;
4605 * idle depends on !throttled (for the case of a large deficit), and if
4606 * we're going inactive then everything else can be deferred
4608 if (cfs_b->idle && !throttled)
4609 goto out_deactivate;
4611 __refill_cfs_bandwidth_runtime(cfs_b);
4614 /* mark as potentially idle for the upcoming period */
4619 /* account preceding periods in which throttling occurred */
4620 cfs_b->nr_throttled += overrun;
4622 runtime_expires = cfs_b->runtime_expires;
4625 * This check is repeated as we are holding onto the new bandwidth while
4626 * we unthrottle. This can potentially race with an unthrottled group
4627 * trying to acquire new bandwidth from the global pool. This can result
4628 * in us over-using our runtime if it is all used during this loop, but
4629 * only by limited amounts in that extreme case.
4631 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4632 runtime = cfs_b->runtime;
4633 cfs_b->distribute_running = 1;
4634 raw_spin_unlock(&cfs_b->lock);
4635 /* we can't nest cfs_b->lock while distributing bandwidth */
4636 runtime = distribute_cfs_runtime(cfs_b, runtime,
4638 raw_spin_lock(&cfs_b->lock);
4640 cfs_b->distribute_running = 0;
4641 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4643 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4647 * While we are ensured activity in the period following an
4648 * unthrottle, this also covers the case in which the new bandwidth is
4649 * insufficient to cover the existing bandwidth deficit. (Forcing the
4650 * timer to remain active while there are any throttled entities.)
4660 /* a cfs_rq won't donate quota below this amount */
4661 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4662 /* minimum remaining period time to redistribute slack quota */
4663 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4664 /* how long we wait to gather additional slack before distributing */
4665 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4668 * Are we near the end of the current quota period?
4670 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4671 * hrtimer base being cleared by hrtimer_start. In the case of
4672 * migrate_hrtimers, base is never cleared, so we are fine.
4674 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4676 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4679 /* if the call-back is running a quota refresh is already occurring */
4680 if (hrtimer_callback_running(refresh_timer))
4683 /* is a quota refresh about to occur? */
4684 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4685 if (remaining < min_expire)
4691 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4693 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4695 /* if there's a quota refresh soon don't bother with slack */
4696 if (runtime_refresh_within(cfs_b, min_left))
4699 hrtimer_start(&cfs_b->slack_timer,
4700 ns_to_ktime(cfs_bandwidth_slack_period),
4704 /* we know any runtime found here is valid as update_curr() precedes return */
4705 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4707 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4708 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4710 if (slack_runtime <= 0)
4713 raw_spin_lock(&cfs_b->lock);
4714 if (cfs_b->quota != RUNTIME_INF &&
4715 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4716 cfs_b->runtime += slack_runtime;
4718 /* we are under rq->lock, defer unthrottling using a timer */
4719 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4720 !list_empty(&cfs_b->throttled_cfs_rq))
4721 start_cfs_slack_bandwidth(cfs_b);
4723 raw_spin_unlock(&cfs_b->lock);
4725 /* even if it's not valid for return we don't want to try again */
4726 cfs_rq->runtime_remaining -= slack_runtime;
4729 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4731 if (!cfs_bandwidth_used())
4734 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4737 __return_cfs_rq_runtime(cfs_rq);
4741 * This is done with a timer (instead of inline with bandwidth return) since
4742 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4744 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4746 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4749 /* confirm we're still not at a refresh boundary */
4750 raw_spin_lock(&cfs_b->lock);
4751 if (cfs_b->distribute_running) {
4752 raw_spin_unlock(&cfs_b->lock);
4756 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4757 raw_spin_unlock(&cfs_b->lock);
4761 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4762 runtime = cfs_b->runtime;
4764 expires = cfs_b->runtime_expires;
4766 cfs_b->distribute_running = 1;
4768 raw_spin_unlock(&cfs_b->lock);
4773 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4775 raw_spin_lock(&cfs_b->lock);
4776 if (expires == cfs_b->runtime_expires)
4777 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4778 cfs_b->distribute_running = 0;
4779 raw_spin_unlock(&cfs_b->lock);
4783 * When a group wakes up we want to make sure that its quota is not already
4784 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4785 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4787 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4789 if (!cfs_bandwidth_used())
4792 /* an active group must be handled by the update_curr()->put() path */
4793 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4796 /* ensure the group is not already throttled */
4797 if (cfs_rq_throttled(cfs_rq))
4800 /* update runtime allocation */
4801 account_cfs_rq_runtime(cfs_rq, 0);
4802 if (cfs_rq->runtime_remaining <= 0)
4803 throttle_cfs_rq(cfs_rq);
4806 static void sync_throttle(struct task_group *tg, int cpu)
4808 struct cfs_rq *pcfs_rq, *cfs_rq;
4810 if (!cfs_bandwidth_used())
4816 cfs_rq = tg->cfs_rq[cpu];
4817 pcfs_rq = tg->parent->cfs_rq[cpu];
4819 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4820 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4823 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4824 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4826 if (!cfs_bandwidth_used())
4829 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4833 * it's possible for a throttled entity to be forced into a running
4834 * state (e.g. set_curr_task), in this case we're finished.
4836 if (cfs_rq_throttled(cfs_rq))
4839 throttle_cfs_rq(cfs_rq);
4843 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4845 struct cfs_bandwidth *cfs_b =
4846 container_of(timer, struct cfs_bandwidth, slack_timer);
4848 do_sched_cfs_slack_timer(cfs_b);
4850 return HRTIMER_NORESTART;
4853 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4855 struct cfs_bandwidth *cfs_b =
4856 container_of(timer, struct cfs_bandwidth, period_timer);
4860 raw_spin_lock(&cfs_b->lock);
4862 overrun = hrtimer_forward_now(timer, cfs_b->period);
4866 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4869 cfs_b->period_active = 0;
4870 raw_spin_unlock(&cfs_b->lock);
4872 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4875 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4877 raw_spin_lock_init(&cfs_b->lock);
4879 cfs_b->quota = RUNTIME_INF;
4880 cfs_b->period = ns_to_ktime(default_cfs_period());
4882 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4883 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4884 cfs_b->period_timer.function = sched_cfs_period_timer;
4885 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4886 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4887 cfs_b->distribute_running = 0;
4890 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4892 cfs_rq->runtime_enabled = 0;
4893 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4896 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4900 lockdep_assert_held(&cfs_b->lock);
4902 if (cfs_b->period_active)
4905 cfs_b->period_active = 1;
4906 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4907 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4908 cfs_b->expires_seq++;
4909 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4912 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4914 /* init_cfs_bandwidth() was not called */
4915 if (!cfs_b->throttled_cfs_rq.next)
4918 hrtimer_cancel(&cfs_b->period_timer);
4919 hrtimer_cancel(&cfs_b->slack_timer);
4923 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4925 * The race is harmless, since modifying bandwidth settings of unhooked group
4926 * bits doesn't do much.
4929 /* cpu online calback */
4930 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4932 struct task_group *tg;
4934 lockdep_assert_held(&rq->lock);
4937 list_for_each_entry_rcu(tg, &task_groups, list) {
4938 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4939 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4941 raw_spin_lock(&cfs_b->lock);
4942 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4943 raw_spin_unlock(&cfs_b->lock);
4948 /* cpu offline callback */
4949 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4951 struct task_group *tg;
4953 lockdep_assert_held(&rq->lock);
4956 list_for_each_entry_rcu(tg, &task_groups, list) {
4957 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4959 if (!cfs_rq->runtime_enabled)
4963 * clock_task is not advancing so we just need to make sure
4964 * there's some valid quota amount
4966 cfs_rq->runtime_remaining = 1;
4968 * Offline rq is schedulable till CPU is completely disabled
4969 * in take_cpu_down(), so we prevent new cfs throttling here.
4971 cfs_rq->runtime_enabled = 0;
4973 if (cfs_rq_throttled(cfs_rq))
4974 unthrottle_cfs_rq(cfs_rq);
4979 #else /* CONFIG_CFS_BANDWIDTH */
4980 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4982 return rq_clock_task(rq_of(cfs_rq));
4985 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4986 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4987 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4988 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4989 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4991 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4996 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5001 static inline int throttled_lb_pair(struct task_group *tg,
5002 int src_cpu, int dest_cpu)
5007 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5009 #ifdef CONFIG_FAIR_GROUP_SCHED
5010 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5013 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5017 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5018 static inline void update_runtime_enabled(struct rq *rq) {}
5019 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5021 #endif /* CONFIG_CFS_BANDWIDTH */
5023 /**************************************************
5024 * CFS operations on tasks:
5027 #ifdef CONFIG_SCHED_HRTICK
5028 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5030 struct sched_entity *se = &p->se;
5031 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5033 SCHED_WARN_ON(task_rq(p) != rq);
5035 if (rq->cfs.h_nr_running > 1) {
5036 u64 slice = sched_slice(cfs_rq, se);
5037 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5038 s64 delta = slice - ran;
5045 hrtick_start(rq, delta);
5050 * called from enqueue/dequeue and updates the hrtick when the
5051 * current task is from our class and nr_running is low enough
5054 static void hrtick_update(struct rq *rq)
5056 struct task_struct *curr = rq->curr;
5058 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5061 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5062 hrtick_start_fair(rq, curr);
5064 #else /* !CONFIG_SCHED_HRTICK */
5066 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5070 static inline void hrtick_update(struct rq *rq)
5076 * The enqueue_task method is called before nr_running is
5077 * increased. Here we update the fair scheduling stats and
5078 * then put the task into the rbtree:
5081 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5083 struct cfs_rq *cfs_rq;
5084 struct sched_entity *se = &p->se;
5087 * The code below (indirectly) updates schedutil which looks at
5088 * the cfs_rq utilization to select a frequency.
5089 * Let's add the task's estimated utilization to the cfs_rq's
5090 * estimated utilization, before we update schedutil.
5092 util_est_enqueue(&rq->cfs, p);
5095 * If in_iowait is set, the code below may not trigger any cpufreq
5096 * utilization updates, so do it here explicitly with the IOWAIT flag
5100 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5102 for_each_sched_entity(se) {
5105 cfs_rq = cfs_rq_of(se);
5106 enqueue_entity(cfs_rq, se, flags);
5109 * end evaluation on encountering a throttled cfs_rq
5111 * note: in the case of encountering a throttled cfs_rq we will
5112 * post the final h_nr_running increment below.
5114 if (cfs_rq_throttled(cfs_rq))
5116 cfs_rq->h_nr_running++;
5118 flags = ENQUEUE_WAKEUP;
5121 for_each_sched_entity(se) {
5122 cfs_rq = cfs_rq_of(se);
5123 cfs_rq->h_nr_running++;
5125 if (cfs_rq_throttled(cfs_rq))
5128 update_load_avg(cfs_rq, se, UPDATE_TG);
5129 update_cfs_group(se);
5133 add_nr_running(rq, 1);
5138 static void set_next_buddy(struct sched_entity *se);
5141 * The dequeue_task method is called before nr_running is
5142 * decreased. We remove the task from the rbtree and
5143 * update the fair scheduling stats:
5145 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5147 struct cfs_rq *cfs_rq;
5148 struct sched_entity *se = &p->se;
5149 int task_sleep = flags & DEQUEUE_SLEEP;
5151 for_each_sched_entity(se) {
5152 cfs_rq = cfs_rq_of(se);
5153 dequeue_entity(cfs_rq, se, flags);
5156 * end evaluation on encountering a throttled cfs_rq
5158 * note: in the case of encountering a throttled cfs_rq we will
5159 * post the final h_nr_running decrement below.
5161 if (cfs_rq_throttled(cfs_rq))
5163 cfs_rq->h_nr_running--;
5165 /* Don't dequeue parent if it has other entities besides us */
5166 if (cfs_rq->load.weight) {
5167 /* Avoid re-evaluating load for this entity: */
5168 se = parent_entity(se);
5170 * Bias pick_next to pick a task from this cfs_rq, as
5171 * p is sleeping when it is within its sched_slice.
5173 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5177 flags |= DEQUEUE_SLEEP;
5180 for_each_sched_entity(se) {
5181 cfs_rq = cfs_rq_of(se);
5182 cfs_rq->h_nr_running--;
5184 if (cfs_rq_throttled(cfs_rq))
5187 update_load_avg(cfs_rq, se, UPDATE_TG);
5188 update_cfs_group(se);
5192 sub_nr_running(rq, 1);
5194 util_est_dequeue(&rq->cfs, p, task_sleep);
5200 /* Working cpumask for: load_balance, load_balance_newidle. */
5201 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5202 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5204 #ifdef CONFIG_NO_HZ_COMMON
5206 * per rq 'load' arrray crap; XXX kill this.
5210 * The exact cpuload calculated at every tick would be:
5212 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5214 * If a CPU misses updates for n ticks (as it was idle) and update gets
5215 * called on the n+1-th tick when CPU may be busy, then we have:
5217 * load_n = (1 - 1/2^i)^n * load_0
5218 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
5220 * decay_load_missed() below does efficient calculation of
5222 * load' = (1 - 1/2^i)^n * load
5224 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5225 * This allows us to precompute the above in said factors, thereby allowing the
5226 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5227 * fixed_power_int())
5229 * The calculation is approximated on a 128 point scale.
5231 #define DEGRADE_SHIFT 7
5233 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5234 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5235 { 0, 0, 0, 0, 0, 0, 0, 0 },
5236 { 64, 32, 8, 0, 0, 0, 0, 0 },
5237 { 96, 72, 40, 12, 1, 0, 0, 0 },
5238 { 112, 98, 75, 43, 15, 1, 0, 0 },
5239 { 120, 112, 98, 76, 45, 16, 2, 0 }
5243 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5244 * would be when CPU is idle and so we just decay the old load without
5245 * adding any new load.
5247 static unsigned long
5248 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5252 if (!missed_updates)
5255 if (missed_updates >= degrade_zero_ticks[idx])
5259 return load >> missed_updates;
5261 while (missed_updates) {
5262 if (missed_updates % 2)
5263 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5265 missed_updates >>= 1;
5272 cpumask_var_t idle_cpus_mask;
5274 int has_blocked; /* Idle CPUS has blocked load */
5275 unsigned long next_balance; /* in jiffy units */
5276 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5277 } nohz ____cacheline_aligned;
5279 #endif /* CONFIG_NO_HZ_COMMON */
5282 * __cpu_load_update - update the rq->cpu_load[] statistics
5283 * @this_rq: The rq to update statistics for
5284 * @this_load: The current load
5285 * @pending_updates: The number of missed updates
5287 * Update rq->cpu_load[] statistics. This function is usually called every
5288 * scheduler tick (TICK_NSEC).
5290 * This function computes a decaying average:
5292 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5294 * Because of NOHZ it might not get called on every tick which gives need for
5295 * the @pending_updates argument.
5297 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5298 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5299 * = A * (A * load[i]_n-2 + B) + B
5300 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5301 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5302 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5303 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5304 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5306 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5307 * any change in load would have resulted in the tick being turned back on.
5309 * For regular NOHZ, this reduces to:
5311 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5313 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5316 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5317 unsigned long pending_updates)
5319 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5322 this_rq->nr_load_updates++;
5324 /* Update our load: */
5325 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5326 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5327 unsigned long old_load, new_load;
5329 /* scale is effectively 1 << i now, and >> i divides by scale */
5331 old_load = this_rq->cpu_load[i];
5332 #ifdef CONFIG_NO_HZ_COMMON
5333 old_load = decay_load_missed(old_load, pending_updates - 1, i);
5334 if (tickless_load) {
5335 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5337 * old_load can never be a negative value because a
5338 * decayed tickless_load cannot be greater than the
5339 * original tickless_load.
5341 old_load += tickless_load;
5344 new_load = this_load;
5346 * Round up the averaging division if load is increasing. This
5347 * prevents us from getting stuck on 9 if the load is 10, for
5350 if (new_load > old_load)
5351 new_load += scale - 1;
5353 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5357 /* Used instead of source_load when we know the type == 0 */
5358 static unsigned long weighted_cpuload(struct rq *rq)
5360 return cfs_rq_runnable_load_avg(&rq->cfs);
5363 #ifdef CONFIG_NO_HZ_COMMON
5365 * There is no sane way to deal with nohz on smp when using jiffies because the
5366 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5367 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5369 * Therefore we need to avoid the delta approach from the regular tick when
5370 * possible since that would seriously skew the load calculation. This is why we
5371 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5372 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5373 * loop exit, nohz_idle_balance, nohz full exit...)
5375 * This means we might still be one tick off for nohz periods.
5378 static void cpu_load_update_nohz(struct rq *this_rq,
5379 unsigned long curr_jiffies,
5382 unsigned long pending_updates;
5384 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5385 if (pending_updates) {
5386 this_rq->last_load_update_tick = curr_jiffies;
5388 * In the regular NOHZ case, we were idle, this means load 0.
5389 * In the NOHZ_FULL case, we were non-idle, we should consider
5390 * its weighted load.
5392 cpu_load_update(this_rq, load, pending_updates);
5397 * Called from nohz_idle_balance() to update the load ratings before doing the
5400 static void cpu_load_update_idle(struct rq *this_rq)
5403 * bail if there's load or we're actually up-to-date.
5405 if (weighted_cpuload(this_rq))
5408 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5412 * Record CPU load on nohz entry so we know the tickless load to account
5413 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5414 * than other cpu_load[idx] but it should be fine as cpu_load readers
5415 * shouldn't rely into synchronized cpu_load[*] updates.
5417 void cpu_load_update_nohz_start(void)
5419 struct rq *this_rq = this_rq();
5422 * This is all lockless but should be fine. If weighted_cpuload changes
5423 * concurrently we'll exit nohz. And cpu_load write can race with
5424 * cpu_load_update_idle() but both updater would be writing the same.
5426 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5430 * Account the tickless load in the end of a nohz frame.
5432 void cpu_load_update_nohz_stop(void)
5434 unsigned long curr_jiffies = READ_ONCE(jiffies);
5435 struct rq *this_rq = this_rq();
5439 if (curr_jiffies == this_rq->last_load_update_tick)
5442 load = weighted_cpuload(this_rq);
5443 rq_lock(this_rq, &rf);
5444 update_rq_clock(this_rq);
5445 cpu_load_update_nohz(this_rq, curr_jiffies, load);
5446 rq_unlock(this_rq, &rf);
5448 #else /* !CONFIG_NO_HZ_COMMON */
5449 static inline void cpu_load_update_nohz(struct rq *this_rq,
5450 unsigned long curr_jiffies,
5451 unsigned long load) { }
5452 #endif /* CONFIG_NO_HZ_COMMON */
5454 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5456 #ifdef CONFIG_NO_HZ_COMMON
5457 /* See the mess around cpu_load_update_nohz(). */
5458 this_rq->last_load_update_tick = READ_ONCE(jiffies);
5460 cpu_load_update(this_rq, load, 1);
5464 * Called from scheduler_tick()
5466 void cpu_load_update_active(struct rq *this_rq)
5468 unsigned long load = weighted_cpuload(this_rq);
5470 if (tick_nohz_tick_stopped())
5471 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5473 cpu_load_update_periodic(this_rq, load);
5477 * Return a low guess at the load of a migration-source CPU weighted
5478 * according to the scheduling class and "nice" value.
5480 * We want to under-estimate the load of migration sources, to
5481 * balance conservatively.
5483 static unsigned long source_load(int cpu, int type)
5485 struct rq *rq = cpu_rq(cpu);
5486 unsigned long total = weighted_cpuload(rq);
5488 if (type == 0 || !sched_feat(LB_BIAS))
5491 return min(rq->cpu_load[type-1], total);
5495 * Return a high guess at the load of a migration-target CPU weighted
5496 * according to the scheduling class and "nice" value.
5498 static unsigned long target_load(int cpu, int type)
5500 struct rq *rq = cpu_rq(cpu);
5501 unsigned long total = weighted_cpuload(rq);
5503 if (type == 0 || !sched_feat(LB_BIAS))
5506 return max(rq->cpu_load[type-1], total);
5509 static unsigned long capacity_of(int cpu)
5511 return cpu_rq(cpu)->cpu_capacity;
5514 static unsigned long capacity_orig_of(int cpu)
5516 return cpu_rq(cpu)->cpu_capacity_orig;
5519 static unsigned long cpu_avg_load_per_task(int cpu)
5521 struct rq *rq = cpu_rq(cpu);
5522 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5523 unsigned long load_avg = weighted_cpuload(rq);
5526 return load_avg / nr_running;
5531 static void record_wakee(struct task_struct *p)
5534 * Only decay a single time; tasks that have less then 1 wakeup per
5535 * jiffy will not have built up many flips.
5537 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5538 current->wakee_flips >>= 1;
5539 current->wakee_flip_decay_ts = jiffies;
5542 if (current->last_wakee != p) {
5543 current->last_wakee = p;
5544 current->wakee_flips++;
5549 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5551 * A waker of many should wake a different task than the one last awakened
5552 * at a frequency roughly N times higher than one of its wakees.
5554 * In order to determine whether we should let the load spread vs consolidating
5555 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5556 * partner, and a factor of lls_size higher frequency in the other.
5558 * With both conditions met, we can be relatively sure that the relationship is
5559 * non-monogamous, with partner count exceeding socket size.
5561 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5562 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5565 static int wake_wide(struct task_struct *p)
5567 unsigned int master = current->wakee_flips;
5568 unsigned int slave = p->wakee_flips;
5569 int factor = this_cpu_read(sd_llc_size);
5572 swap(master, slave);
5573 if (slave < factor || master < slave * factor)
5579 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5580 * soonest. For the purpose of speed we only consider the waking and previous
5583 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5584 * cache-affine and is (or will be) idle.
5586 * wake_affine_weight() - considers the weight to reflect the average
5587 * scheduling latency of the CPUs. This seems to work
5588 * for the overloaded case.
5591 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5594 * If this_cpu is idle, it implies the wakeup is from interrupt
5595 * context. Only allow the move if cache is shared. Otherwise an
5596 * interrupt intensive workload could force all tasks onto one
5597 * node depending on the IO topology or IRQ affinity settings.
5599 * If the prev_cpu is idle and cache affine then avoid a migration.
5600 * There is no guarantee that the cache hot data from an interrupt
5601 * is more important than cache hot data on the prev_cpu and from
5602 * a cpufreq perspective, it's better to have higher utilisation
5605 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5606 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5608 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5611 return nr_cpumask_bits;
5615 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5616 int this_cpu, int prev_cpu, int sync)
5618 s64 this_eff_load, prev_eff_load;
5619 unsigned long task_load;
5621 this_eff_load = target_load(this_cpu, sd->wake_idx);
5624 unsigned long current_load = task_h_load(current);
5626 if (current_load > this_eff_load)
5629 this_eff_load -= current_load;
5632 task_load = task_h_load(p);
5634 this_eff_load += task_load;
5635 if (sched_feat(WA_BIAS))
5636 this_eff_load *= 100;
5637 this_eff_load *= capacity_of(prev_cpu);
5639 prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5640 prev_eff_load -= task_load;
5641 if (sched_feat(WA_BIAS))
5642 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5643 prev_eff_load *= capacity_of(this_cpu);
5646 * If sync, adjust the weight of prev_eff_load such that if
5647 * prev_eff == this_eff that select_idle_sibling() will consider
5648 * stacking the wakee on top of the waker if no other CPU is
5654 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5657 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5658 int this_cpu, int prev_cpu, int sync)
5660 int target = nr_cpumask_bits;
5662 if (sched_feat(WA_IDLE))
5663 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5665 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5666 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5668 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5669 if (target == nr_cpumask_bits)
5672 schedstat_inc(sd->ttwu_move_affine);
5673 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5677 static unsigned long cpu_util_without(int cpu, struct task_struct *p);
5679 static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
5681 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
5685 * find_idlest_group finds and returns the least busy CPU group within the
5688 * Assumes p is allowed on at least one CPU in sd.
5690 static struct sched_group *
5691 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5692 int this_cpu, int sd_flag)
5694 struct sched_group *idlest = NULL, *group = sd->groups;
5695 struct sched_group *most_spare_sg = NULL;
5696 unsigned long min_runnable_load = ULONG_MAX;
5697 unsigned long this_runnable_load = ULONG_MAX;
5698 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5699 unsigned long most_spare = 0, this_spare = 0;
5700 int load_idx = sd->forkexec_idx;
5701 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5702 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5703 (sd->imbalance_pct-100) / 100;
5705 if (sd_flag & SD_BALANCE_WAKE)
5706 load_idx = sd->wake_idx;
5709 unsigned long load, avg_load, runnable_load;
5710 unsigned long spare_cap, max_spare_cap;
5714 /* Skip over this group if it has no CPUs allowed */
5715 if (!cpumask_intersects(sched_group_span(group),
5719 local_group = cpumask_test_cpu(this_cpu,
5720 sched_group_span(group));
5723 * Tally up the load of all CPUs in the group and find
5724 * the group containing the CPU with most spare capacity.
5730 for_each_cpu(i, sched_group_span(group)) {
5731 /* Bias balancing toward CPUs of our domain */
5733 load = source_load(i, load_idx);
5735 load = target_load(i, load_idx);
5737 runnable_load += load;
5739 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5741 spare_cap = capacity_spare_without(i, p);
5743 if (spare_cap > max_spare_cap)
5744 max_spare_cap = spare_cap;
5747 /* Adjust by relative CPU capacity of the group */
5748 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5749 group->sgc->capacity;
5750 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5751 group->sgc->capacity;
5754 this_runnable_load = runnable_load;
5755 this_avg_load = avg_load;
5756 this_spare = max_spare_cap;
5758 if (min_runnable_load > (runnable_load + imbalance)) {
5760 * The runnable load is significantly smaller
5761 * so we can pick this new CPU:
5763 min_runnable_load = runnable_load;
5764 min_avg_load = avg_load;
5766 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5767 (100*min_avg_load > imbalance_scale*avg_load)) {
5769 * The runnable loads are close so take the
5770 * blocked load into account through avg_load:
5772 min_avg_load = avg_load;
5776 if (most_spare < max_spare_cap) {
5777 most_spare = max_spare_cap;
5778 most_spare_sg = group;
5781 } while (group = group->next, group != sd->groups);
5784 * The cross-over point between using spare capacity or least load
5785 * is too conservative for high utilization tasks on partially
5786 * utilized systems if we require spare_capacity > task_util(p),
5787 * so we allow for some task stuffing by using
5788 * spare_capacity > task_util(p)/2.
5790 * Spare capacity can't be used for fork because the utilization has
5791 * not been set yet, we must first select a rq to compute the initial
5794 if (sd_flag & SD_BALANCE_FORK)
5797 if (this_spare > task_util(p) / 2 &&
5798 imbalance_scale*this_spare > 100*most_spare)
5801 if (most_spare > task_util(p) / 2)
5802 return most_spare_sg;
5809 * When comparing groups across NUMA domains, it's possible for the
5810 * local domain to be very lightly loaded relative to the remote
5811 * domains but "imbalance" skews the comparison making remote CPUs
5812 * look much more favourable. When considering cross-domain, add
5813 * imbalance to the runnable load on the remote node and consider
5816 if ((sd->flags & SD_NUMA) &&
5817 min_runnable_load + imbalance >= this_runnable_load)
5820 if (min_runnable_load > (this_runnable_load + imbalance))
5823 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5824 (100*this_avg_load < imbalance_scale*min_avg_load))
5831 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5834 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5836 unsigned long load, min_load = ULONG_MAX;
5837 unsigned int min_exit_latency = UINT_MAX;
5838 u64 latest_idle_timestamp = 0;
5839 int least_loaded_cpu = this_cpu;
5840 int shallowest_idle_cpu = -1;
5843 /* Check if we have any choice: */
5844 if (group->group_weight == 1)
5845 return cpumask_first(sched_group_span(group));
5847 /* Traverse only the allowed CPUs */
5848 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5849 if (available_idle_cpu(i)) {
5850 struct rq *rq = cpu_rq(i);
5851 struct cpuidle_state *idle = idle_get_state(rq);
5852 if (idle && idle->exit_latency < min_exit_latency) {
5854 * We give priority to a CPU whose idle state
5855 * has the smallest exit latency irrespective
5856 * of any idle timestamp.
5858 min_exit_latency = idle->exit_latency;
5859 latest_idle_timestamp = rq->idle_stamp;
5860 shallowest_idle_cpu = i;
5861 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5862 rq->idle_stamp > latest_idle_timestamp) {
5864 * If equal or no active idle state, then
5865 * the most recently idled CPU might have
5868 latest_idle_timestamp = rq->idle_stamp;
5869 shallowest_idle_cpu = i;
5871 } else if (shallowest_idle_cpu == -1) {
5872 load = weighted_cpuload(cpu_rq(i));
5873 if (load < min_load) {
5875 least_loaded_cpu = i;
5880 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5883 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5884 int cpu, int prev_cpu, int sd_flag)
5888 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5892 * We need task's util for capacity_spare_without, sync it up to
5893 * prev_cpu's last_update_time.
5895 if (!(sd_flag & SD_BALANCE_FORK))
5896 sync_entity_load_avg(&p->se);
5899 struct sched_group *group;
5900 struct sched_domain *tmp;
5903 if (!(sd->flags & sd_flag)) {
5908 group = find_idlest_group(sd, p, cpu, sd_flag);
5914 new_cpu = find_idlest_group_cpu(group, p, cpu);
5915 if (new_cpu == cpu) {
5916 /* Now try balancing at a lower domain level of 'cpu': */
5921 /* Now try balancing at a lower domain level of 'new_cpu': */
5923 weight = sd->span_weight;
5925 for_each_domain(cpu, tmp) {
5926 if (weight <= tmp->span_weight)
5928 if (tmp->flags & sd_flag)
5936 #ifdef CONFIG_SCHED_SMT
5937 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5939 static inline void set_idle_cores(int cpu, int val)
5941 struct sched_domain_shared *sds;
5943 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5945 WRITE_ONCE(sds->has_idle_cores, val);
5948 static inline bool test_idle_cores(int cpu, bool def)
5950 struct sched_domain_shared *sds;
5952 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5954 return READ_ONCE(sds->has_idle_cores);
5960 * Scans the local SMT mask to see if the entire core is idle, and records this
5961 * information in sd_llc_shared->has_idle_cores.
5963 * Since SMT siblings share all cache levels, inspecting this limited remote
5964 * state should be fairly cheap.
5966 void __update_idle_core(struct rq *rq)
5968 int core = cpu_of(rq);
5972 if (test_idle_cores(core, true))
5975 for_each_cpu(cpu, cpu_smt_mask(core)) {
5979 if (!available_idle_cpu(cpu))
5983 set_idle_cores(core, 1);
5989 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5990 * there are no idle cores left in the system; tracked through
5991 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5993 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5995 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5998 if (!static_branch_likely(&sched_smt_present))
6001 if (!test_idle_cores(target, false))
6004 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6006 for_each_cpu_wrap(core, cpus, target) {
6009 for_each_cpu(cpu, cpu_smt_mask(core)) {
6010 cpumask_clear_cpu(cpu, cpus);
6011 if (!available_idle_cpu(cpu))
6020 * Failed to find an idle core; stop looking for one.
6022 set_idle_cores(target, 0);
6028 * Scan the local SMT mask for idle CPUs.
6030 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6034 if (!static_branch_likely(&sched_smt_present))
6037 for_each_cpu(cpu, cpu_smt_mask(target)) {
6038 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6040 if (available_idle_cpu(cpu))
6047 #else /* CONFIG_SCHED_SMT */
6049 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6054 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6059 #endif /* CONFIG_SCHED_SMT */
6062 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6063 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6064 * average idle time for this rq (as found in rq->avg_idle).
6066 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6068 struct sched_domain *this_sd;
6069 u64 avg_cost, avg_idle;
6072 int cpu, nr = INT_MAX;
6074 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6079 * Due to large variance we need a large fuzz factor; hackbench in
6080 * particularly is sensitive here.
6082 avg_idle = this_rq()->avg_idle / 512;
6083 avg_cost = this_sd->avg_scan_cost + 1;
6085 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6088 if (sched_feat(SIS_PROP)) {
6089 u64 span_avg = sd->span_weight * avg_idle;
6090 if (span_avg > 4*avg_cost)
6091 nr = div_u64(span_avg, avg_cost);
6096 time = local_clock();
6098 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6101 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6103 if (available_idle_cpu(cpu))
6107 time = local_clock() - time;
6108 cost = this_sd->avg_scan_cost;
6109 delta = (s64)(time - cost) / 8;
6110 this_sd->avg_scan_cost += delta;
6116 * Try and locate an idle core/thread in the LLC cache domain.
6118 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6120 struct sched_domain *sd;
6121 int i, recent_used_cpu;
6123 if (available_idle_cpu(target))
6127 * If the previous CPU is cache affine and idle, don't be stupid:
6129 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6132 /* Check a recently used CPU as a potential idle candidate: */
6133 recent_used_cpu = p->recent_used_cpu;
6134 if (recent_used_cpu != prev &&
6135 recent_used_cpu != target &&
6136 cpus_share_cache(recent_used_cpu, target) &&
6137 available_idle_cpu(recent_used_cpu) &&
6138 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6140 * Replace recent_used_cpu with prev as it is a potential
6141 * candidate for the next wake:
6143 p->recent_used_cpu = prev;
6144 return recent_used_cpu;
6147 sd = rcu_dereference(per_cpu(sd_llc, target));
6151 i = select_idle_core(p, sd, target);
6152 if ((unsigned)i < nr_cpumask_bits)
6155 i = select_idle_cpu(p, sd, target);
6156 if ((unsigned)i < nr_cpumask_bits)
6159 i = select_idle_smt(p, sd, target);
6160 if ((unsigned)i < nr_cpumask_bits)
6167 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6168 * @cpu: the CPU to get the utilization of
6170 * The unit of the return value must be the one of capacity so we can compare
6171 * the utilization with the capacity of the CPU that is available for CFS task
6172 * (ie cpu_capacity).
6174 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6175 * recent utilization of currently non-runnable tasks on a CPU. It represents
6176 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6177 * capacity_orig is the cpu_capacity available at the highest frequency
6178 * (arch_scale_freq_capacity()).
6179 * The utilization of a CPU converges towards a sum equal to or less than the
6180 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6181 * the running time on this CPU scaled by capacity_curr.
6183 * The estimated utilization of a CPU is defined to be the maximum between its
6184 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6185 * currently RUNNABLE on that CPU.
6186 * This allows to properly represent the expected utilization of a CPU which
6187 * has just got a big task running since a long sleep period. At the same time
6188 * however it preserves the benefits of the "blocked utilization" in
6189 * describing the potential for other tasks waking up on the same CPU.
6191 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6192 * higher than capacity_orig because of unfortunate rounding in
6193 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6194 * the average stabilizes with the new running time. We need to check that the
6195 * utilization stays within the range of [0..capacity_orig] and cap it if
6196 * necessary. Without utilization capping, a group could be seen as overloaded
6197 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6198 * available capacity. We allow utilization to overshoot capacity_curr (but not
6199 * capacity_orig) as it useful for predicting the capacity required after task
6200 * migrations (scheduler-driven DVFS).
6202 * Return: the (estimated) utilization for the specified CPU
6204 static inline unsigned long cpu_util(int cpu)
6206 struct cfs_rq *cfs_rq;
6209 cfs_rq = &cpu_rq(cpu)->cfs;
6210 util = READ_ONCE(cfs_rq->avg.util_avg);
6212 if (sched_feat(UTIL_EST))
6213 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6215 return min_t(unsigned long, util, capacity_orig_of(cpu));
6219 * cpu_util_without: compute cpu utilization without any contributions from *p
6220 * @cpu: the CPU which utilization is requested
6221 * @p: the task which utilization should be discounted
6223 * The utilization of a CPU is defined by the utilization of tasks currently
6224 * enqueued on that CPU as well as tasks which are currently sleeping after an
6225 * execution on that CPU.
6227 * This method returns the utilization of the specified CPU by discounting the
6228 * utilization of the specified task, whenever the task is currently
6229 * contributing to the CPU utilization.
6231 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6233 struct cfs_rq *cfs_rq;
6236 /* Task has no contribution or is new */
6237 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6238 return cpu_util(cpu);
6240 cfs_rq = &cpu_rq(cpu)->cfs;
6241 util = READ_ONCE(cfs_rq->avg.util_avg);
6243 /* Discount task's util from CPU's util */
6244 util -= min_t(unsigned int, util, task_util(p));
6249 * a) if *p is the only task sleeping on this CPU, then:
6250 * cpu_util (== task_util) > util_est (== 0)
6251 * and thus we return:
6252 * cpu_util_without = (cpu_util - task_util) = 0
6254 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6256 * cpu_util >= task_util
6257 * cpu_util > util_est (== 0)
6258 * and thus we discount *p's blocked utilization to return:
6259 * cpu_util_without = (cpu_util - task_util) >= 0
6261 * c) if other tasks are RUNNABLE on that CPU and
6262 * util_est > cpu_util
6263 * then we use util_est since it returns a more restrictive
6264 * estimation of the spare capacity on that CPU, by just
6265 * considering the expected utilization of tasks already
6266 * runnable on that CPU.
6268 * Cases a) and b) are covered by the above code, while case c) is
6269 * covered by the following code when estimated utilization is
6272 if (sched_feat(UTIL_EST)) {
6273 unsigned int estimated =
6274 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6277 * Despite the following checks we still have a small window
6278 * for a possible race, when an execl's select_task_rq_fair()
6279 * races with LB's detach_task():
6282 * p->on_rq = TASK_ON_RQ_MIGRATING;
6283 * ---------------------------------- A
6284 * deactivate_task() \
6285 * dequeue_task() + RaceTime
6286 * util_est_dequeue() /
6287 * ---------------------------------- B
6289 * The additional check on "current == p" it's required to
6290 * properly fix the execl regression and it helps in further
6291 * reducing the chances for the above race.
6293 if (unlikely(task_on_rq_queued(p) || current == p)) {
6294 estimated -= min_t(unsigned int, estimated,
6295 (_task_util_est(p) | UTIL_AVG_UNCHANGED));
6297 util = max(util, estimated);
6301 * Utilization (estimated) can exceed the CPU capacity, thus let's
6302 * clamp to the maximum CPU capacity to ensure consistency with
6303 * the cpu_util call.
6305 return min_t(unsigned long, util, capacity_orig_of(cpu));
6309 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6310 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6312 * In that case WAKE_AFFINE doesn't make sense and we'll let
6313 * BALANCE_WAKE sort things out.
6315 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6317 long min_cap, max_cap;
6319 if (!static_branch_unlikely(&sched_asym_cpucapacity))
6322 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6323 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6325 /* Minimum capacity is close to max, no need to abort wake_affine */
6326 if (max_cap - min_cap < max_cap >> 3)
6329 /* Bring task utilization in sync with prev_cpu */
6330 sync_entity_load_avg(&p->se);
6332 return !task_fits_capacity(p, min_cap);
6336 * select_task_rq_fair: Select target runqueue for the waking task in domains
6337 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6338 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6340 * Balances load by selecting the idlest CPU in the idlest group, or under
6341 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6343 * Returns the target CPU number.
6345 * preempt must be disabled.
6348 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6350 struct sched_domain *tmp, *sd = NULL;
6351 int cpu = smp_processor_id();
6352 int new_cpu = prev_cpu;
6353 int want_affine = 0;
6354 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6356 if (sd_flag & SD_BALANCE_WAKE) {
6358 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6359 && cpumask_test_cpu(cpu, &p->cpus_allowed);
6363 for_each_domain(cpu, tmp) {
6364 if (!(tmp->flags & SD_LOAD_BALANCE))
6368 * If both 'cpu' and 'prev_cpu' are part of this domain,
6369 * cpu is a valid SD_WAKE_AFFINE target.
6371 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6372 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6373 if (cpu != prev_cpu)
6374 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6376 sd = NULL; /* Prefer wake_affine over balance flags */
6380 if (tmp->flags & sd_flag)
6382 else if (!want_affine)
6388 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6389 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6392 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6395 current->recent_used_cpu = cpu;
6402 static void detach_entity_cfs_rq(struct sched_entity *se);
6405 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6406 * cfs_rq_of(p) references at time of call are still valid and identify the
6407 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6409 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6412 * As blocked tasks retain absolute vruntime the migration needs to
6413 * deal with this by subtracting the old and adding the new
6414 * min_vruntime -- the latter is done by enqueue_entity() when placing
6415 * the task on the new runqueue.
6417 if (p->state == TASK_WAKING) {
6418 struct sched_entity *se = &p->se;
6419 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6422 #ifndef CONFIG_64BIT
6423 u64 min_vruntime_copy;
6426 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6428 min_vruntime = cfs_rq->min_vruntime;
6429 } while (min_vruntime != min_vruntime_copy);
6431 min_vruntime = cfs_rq->min_vruntime;
6434 se->vruntime -= min_vruntime;
6437 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6439 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6440 * rq->lock and can modify state directly.
6442 lockdep_assert_held(&task_rq(p)->lock);
6443 detach_entity_cfs_rq(&p->se);
6447 * We are supposed to update the task to "current" time, then
6448 * its up to date and ready to go to new CPU/cfs_rq. But we
6449 * have difficulty in getting what current time is, so simply
6450 * throw away the out-of-date time. This will result in the
6451 * wakee task is less decayed, but giving the wakee more load
6454 remove_entity_load_avg(&p->se);
6457 /* Tell new CPU we are migrated */
6458 p->se.avg.last_update_time = 0;
6460 /* We have migrated, no longer consider this task hot */
6461 p->se.exec_start = 0;
6463 update_scan_period(p, new_cpu);
6466 static void task_dead_fair(struct task_struct *p)
6468 remove_entity_load_avg(&p->se);
6470 #endif /* CONFIG_SMP */
6472 static unsigned long wakeup_gran(struct sched_entity *se)
6474 unsigned long gran = sysctl_sched_wakeup_granularity;
6477 * Since its curr running now, convert the gran from real-time
6478 * to virtual-time in his units.
6480 * By using 'se' instead of 'curr' we penalize light tasks, so
6481 * they get preempted easier. That is, if 'se' < 'curr' then
6482 * the resulting gran will be larger, therefore penalizing the
6483 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6484 * be smaller, again penalizing the lighter task.
6486 * This is especially important for buddies when the leftmost
6487 * task is higher priority than the buddy.
6489 return calc_delta_fair(gran, se);
6493 * Should 'se' preempt 'curr'.
6507 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6509 s64 gran, vdiff = curr->vruntime - se->vruntime;
6514 gran = wakeup_gran(se);
6521 static void set_last_buddy(struct sched_entity *se)
6523 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6526 for_each_sched_entity(se) {
6527 if (SCHED_WARN_ON(!se->on_rq))
6529 cfs_rq_of(se)->last = se;
6533 static void set_next_buddy(struct sched_entity *se)
6535 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6538 for_each_sched_entity(se) {
6539 if (SCHED_WARN_ON(!se->on_rq))
6541 cfs_rq_of(se)->next = se;
6545 static void set_skip_buddy(struct sched_entity *se)
6547 for_each_sched_entity(se)
6548 cfs_rq_of(se)->skip = se;
6552 * Preempt the current task with a newly woken task if needed:
6554 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6556 struct task_struct *curr = rq->curr;
6557 struct sched_entity *se = &curr->se, *pse = &p->se;
6558 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6559 int scale = cfs_rq->nr_running >= sched_nr_latency;
6560 int next_buddy_marked = 0;
6562 if (unlikely(se == pse))
6566 * This is possible from callers such as attach_tasks(), in which we
6567 * unconditionally check_prempt_curr() after an enqueue (which may have
6568 * lead to a throttle). This both saves work and prevents false
6569 * next-buddy nomination below.
6571 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6574 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6575 set_next_buddy(pse);
6576 next_buddy_marked = 1;
6580 * We can come here with TIF_NEED_RESCHED already set from new task
6583 * Note: this also catches the edge-case of curr being in a throttled
6584 * group (e.g. via set_curr_task), since update_curr() (in the
6585 * enqueue of curr) will have resulted in resched being set. This
6586 * prevents us from potentially nominating it as a false LAST_BUDDY
6589 if (test_tsk_need_resched(curr))
6592 /* Idle tasks are by definition preempted by non-idle tasks. */
6593 if (unlikely(curr->policy == SCHED_IDLE) &&
6594 likely(p->policy != SCHED_IDLE))
6598 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6599 * is driven by the tick):
6601 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6604 find_matching_se(&se, &pse);
6605 update_curr(cfs_rq_of(se));
6607 if (wakeup_preempt_entity(se, pse) == 1) {
6609 * Bias pick_next to pick the sched entity that is
6610 * triggering this preemption.
6612 if (!next_buddy_marked)
6613 set_next_buddy(pse);
6622 * Only set the backward buddy when the current task is still
6623 * on the rq. This can happen when a wakeup gets interleaved
6624 * with schedule on the ->pre_schedule() or idle_balance()
6625 * point, either of which can * drop the rq lock.
6627 * Also, during early boot the idle thread is in the fair class,
6628 * for obvious reasons its a bad idea to schedule back to it.
6630 if (unlikely(!se->on_rq || curr == rq->idle))
6633 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6637 static struct task_struct *
6638 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6640 struct cfs_rq *cfs_rq = &rq->cfs;
6641 struct sched_entity *se;
6642 struct task_struct *p;
6646 if (!cfs_rq->nr_running)
6649 #ifdef CONFIG_FAIR_GROUP_SCHED
6650 if (prev->sched_class != &fair_sched_class)
6654 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6655 * likely that a next task is from the same cgroup as the current.
6657 * Therefore attempt to avoid putting and setting the entire cgroup
6658 * hierarchy, only change the part that actually changes.
6662 struct sched_entity *curr = cfs_rq->curr;
6665 * Since we got here without doing put_prev_entity() we also
6666 * have to consider cfs_rq->curr. If it is still a runnable
6667 * entity, update_curr() will update its vruntime, otherwise
6668 * forget we've ever seen it.
6672 update_curr(cfs_rq);
6677 * This call to check_cfs_rq_runtime() will do the
6678 * throttle and dequeue its entity in the parent(s).
6679 * Therefore the nr_running test will indeed
6682 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6685 if (!cfs_rq->nr_running)
6692 se = pick_next_entity(cfs_rq, curr);
6693 cfs_rq = group_cfs_rq(se);
6699 * Since we haven't yet done put_prev_entity and if the selected task
6700 * is a different task than we started out with, try and touch the
6701 * least amount of cfs_rqs.
6704 struct sched_entity *pse = &prev->se;
6706 while (!(cfs_rq = is_same_group(se, pse))) {
6707 int se_depth = se->depth;
6708 int pse_depth = pse->depth;
6710 if (se_depth <= pse_depth) {
6711 put_prev_entity(cfs_rq_of(pse), pse);
6712 pse = parent_entity(pse);
6714 if (se_depth >= pse_depth) {
6715 set_next_entity(cfs_rq_of(se), se);
6716 se = parent_entity(se);
6720 put_prev_entity(cfs_rq, pse);
6721 set_next_entity(cfs_rq, se);
6728 put_prev_task(rq, prev);
6731 se = pick_next_entity(cfs_rq, NULL);
6732 set_next_entity(cfs_rq, se);
6733 cfs_rq = group_cfs_rq(se);
6738 done: __maybe_unused;
6741 * Move the next running task to the front of
6742 * the list, so our cfs_tasks list becomes MRU
6745 list_move(&p->se.group_node, &rq->cfs_tasks);
6748 if (hrtick_enabled(rq))
6749 hrtick_start_fair(rq, p);
6751 update_misfit_status(p, rq);
6756 update_misfit_status(NULL, rq);
6757 new_tasks = idle_balance(rq, rf);
6760 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6761 * possible for any higher priority task to appear. In that case we
6762 * must re-start the pick_next_entity() loop.
6774 * Account for a descheduled task:
6776 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6778 struct sched_entity *se = &prev->se;
6779 struct cfs_rq *cfs_rq;
6781 for_each_sched_entity(se) {
6782 cfs_rq = cfs_rq_of(se);
6783 put_prev_entity(cfs_rq, se);
6788 * sched_yield() is very simple
6790 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6792 static void yield_task_fair(struct rq *rq)
6794 struct task_struct *curr = rq->curr;
6795 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6796 struct sched_entity *se = &curr->se;
6799 * Are we the only task in the tree?
6801 if (unlikely(rq->nr_running == 1))
6804 clear_buddies(cfs_rq, se);
6806 if (curr->policy != SCHED_BATCH) {
6807 update_rq_clock(rq);
6809 * Update run-time statistics of the 'current'.
6811 update_curr(cfs_rq);
6813 * Tell update_rq_clock() that we've just updated,
6814 * so we don't do microscopic update in schedule()
6815 * and double the fastpath cost.
6817 rq_clock_skip_update(rq);
6823 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6825 struct sched_entity *se = &p->se;
6827 /* throttled hierarchies are not runnable */
6828 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6831 /* Tell the scheduler that we'd really like pse to run next. */
6834 yield_task_fair(rq);
6840 /**************************************************
6841 * Fair scheduling class load-balancing methods.
6845 * The purpose of load-balancing is to achieve the same basic fairness the
6846 * per-CPU scheduler provides, namely provide a proportional amount of compute
6847 * time to each task. This is expressed in the following equation:
6849 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6851 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
6852 * W_i,0 is defined as:
6854 * W_i,0 = \Sum_j w_i,j (2)
6856 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6857 * is derived from the nice value as per sched_prio_to_weight[].
6859 * The weight average is an exponential decay average of the instantaneous
6862 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6864 * C_i is the compute capacity of CPU i, typically it is the
6865 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6866 * can also include other factors [XXX].
6868 * To achieve this balance we define a measure of imbalance which follows
6869 * directly from (1):
6871 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
6873 * We them move tasks around to minimize the imbalance. In the continuous
6874 * function space it is obvious this converges, in the discrete case we get
6875 * a few fun cases generally called infeasible weight scenarios.
6878 * - infeasible weights;
6879 * - local vs global optima in the discrete case. ]
6884 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6885 * for all i,j solution, we create a tree of CPUs that follows the hardware
6886 * topology where each level pairs two lower groups (or better). This results
6887 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
6888 * tree to only the first of the previous level and we decrease the frequency
6889 * of load-balance at each level inv. proportional to the number of CPUs in
6895 * \Sum { --- * --- * 2^i } = O(n) (5)
6897 * `- size of each group
6898 * | | `- number of CPUs doing load-balance
6900 * `- sum over all levels
6902 * Coupled with a limit on how many tasks we can migrate every balance pass,
6903 * this makes (5) the runtime complexity of the balancer.
6905 * An important property here is that each CPU is still (indirectly) connected
6906 * to every other CPU in at most O(log n) steps:
6908 * The adjacency matrix of the resulting graph is given by:
6911 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6914 * And you'll find that:
6916 * A^(log_2 n)_i,j != 0 for all i,j (7)
6918 * Showing there's indeed a path between every CPU in at most O(log n) steps.
6919 * The task movement gives a factor of O(m), giving a convergence complexity
6922 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6927 * In order to avoid CPUs going idle while there's still work to do, new idle
6928 * balancing is more aggressive and has the newly idle CPU iterate up the domain
6929 * tree itself instead of relying on other CPUs to bring it work.
6931 * This adds some complexity to both (5) and (8) but it reduces the total idle
6939 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6942 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6947 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6949 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
6951 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6954 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6955 * rewrite all of this once again.]
6958 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6960 enum fbq_type { regular, remote, all };
6969 #define LBF_ALL_PINNED 0x01
6970 #define LBF_NEED_BREAK 0x02
6971 #define LBF_DST_PINNED 0x04
6972 #define LBF_SOME_PINNED 0x08
6973 #define LBF_NOHZ_STATS 0x10
6974 #define LBF_NOHZ_AGAIN 0x20
6977 struct sched_domain *sd;
6985 struct cpumask *dst_grpmask;
6987 enum cpu_idle_type idle;
6989 /* The set of CPUs under consideration for load-balancing */
6990 struct cpumask *cpus;
6995 unsigned int loop_break;
6996 unsigned int loop_max;
6998 enum fbq_type fbq_type;
6999 enum group_type src_grp_type;
7000 struct list_head tasks;
7004 * Is this task likely cache-hot:
7006 static int task_hot(struct task_struct *p, struct lb_env *env)
7010 lockdep_assert_held(&env->src_rq->lock);
7012 if (p->sched_class != &fair_sched_class)
7015 if (unlikely(p->policy == SCHED_IDLE))
7019 * Buddy candidates are cache hot:
7021 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7022 (&p->se == cfs_rq_of(&p->se)->next ||
7023 &p->se == cfs_rq_of(&p->se)->last))
7026 if (sysctl_sched_migration_cost == -1)
7028 if (sysctl_sched_migration_cost == 0)
7031 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7033 return delta < (s64)sysctl_sched_migration_cost;
7036 #ifdef CONFIG_NUMA_BALANCING
7038 * Returns 1, if task migration degrades locality
7039 * Returns 0, if task migration improves locality i.e migration preferred.
7040 * Returns -1, if task migration is not affected by locality.
7042 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7044 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7045 unsigned long src_weight, dst_weight;
7046 int src_nid, dst_nid, dist;
7048 if (!static_branch_likely(&sched_numa_balancing))
7051 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7054 src_nid = cpu_to_node(env->src_cpu);
7055 dst_nid = cpu_to_node(env->dst_cpu);
7057 if (src_nid == dst_nid)
7060 /* Migrating away from the preferred node is always bad. */
7061 if (src_nid == p->numa_preferred_nid) {
7062 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7068 /* Encourage migration to the preferred node. */
7069 if (dst_nid == p->numa_preferred_nid)
7072 /* Leaving a core idle is often worse than degrading locality. */
7073 if (env->idle == CPU_IDLE)
7076 dist = node_distance(src_nid, dst_nid);
7078 src_weight = group_weight(p, src_nid, dist);
7079 dst_weight = group_weight(p, dst_nid, dist);
7081 src_weight = task_weight(p, src_nid, dist);
7082 dst_weight = task_weight(p, dst_nid, dist);
7085 return dst_weight < src_weight;
7089 static inline int migrate_degrades_locality(struct task_struct *p,
7097 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7100 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7104 lockdep_assert_held(&env->src_rq->lock);
7107 * We do not migrate tasks that are:
7108 * 1) throttled_lb_pair, or
7109 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7110 * 3) running (obviously), or
7111 * 4) are cache-hot on their current CPU.
7113 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7116 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7119 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7121 env->flags |= LBF_SOME_PINNED;
7124 * Remember if this task can be migrated to any other CPU in
7125 * our sched_group. We may want to revisit it if we couldn't
7126 * meet load balance goals by pulling other tasks on src_cpu.
7128 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7129 * already computed one in current iteration.
7131 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7134 /* Prevent to re-select dst_cpu via env's CPUs: */
7135 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7136 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7137 env->flags |= LBF_DST_PINNED;
7138 env->new_dst_cpu = cpu;
7146 /* Record that we found atleast one task that could run on dst_cpu */
7147 env->flags &= ~LBF_ALL_PINNED;
7149 if (task_running(env->src_rq, p)) {
7150 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7155 * Aggressive migration if:
7156 * 1) destination numa is preferred
7157 * 2) task is cache cold, or
7158 * 3) too many balance attempts have failed.
7160 tsk_cache_hot = migrate_degrades_locality(p, env);
7161 if (tsk_cache_hot == -1)
7162 tsk_cache_hot = task_hot(p, env);
7164 if (tsk_cache_hot <= 0 ||
7165 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7166 if (tsk_cache_hot == 1) {
7167 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7168 schedstat_inc(p->se.statistics.nr_forced_migrations);
7173 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7178 * detach_task() -- detach the task for the migration specified in env
7180 static void detach_task(struct task_struct *p, struct lb_env *env)
7182 lockdep_assert_held(&env->src_rq->lock);
7184 p->on_rq = TASK_ON_RQ_MIGRATING;
7185 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7186 set_task_cpu(p, env->dst_cpu);
7190 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7191 * part of active balancing operations within "domain".
7193 * Returns a task if successful and NULL otherwise.
7195 static struct task_struct *detach_one_task(struct lb_env *env)
7197 struct task_struct *p;
7199 lockdep_assert_held(&env->src_rq->lock);
7201 list_for_each_entry_reverse(p,
7202 &env->src_rq->cfs_tasks, se.group_node) {
7203 if (!can_migrate_task(p, env))
7206 detach_task(p, env);
7209 * Right now, this is only the second place where
7210 * lb_gained[env->idle] is updated (other is detach_tasks)
7211 * so we can safely collect stats here rather than
7212 * inside detach_tasks().
7214 schedstat_inc(env->sd->lb_gained[env->idle]);
7220 static const unsigned int sched_nr_migrate_break = 32;
7223 * detach_tasks() -- tries to detach up to imbalance weighted load from
7224 * busiest_rq, as part of a balancing operation within domain "sd".
7226 * Returns number of detached tasks if successful and 0 otherwise.
7228 static int detach_tasks(struct lb_env *env)
7230 struct list_head *tasks = &env->src_rq->cfs_tasks;
7231 struct task_struct *p;
7235 lockdep_assert_held(&env->src_rq->lock);
7237 if (env->imbalance <= 0)
7240 while (!list_empty(tasks)) {
7242 * We don't want to steal all, otherwise we may be treated likewise,
7243 * which could at worst lead to a livelock crash.
7245 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7248 p = list_last_entry(tasks, struct task_struct, se.group_node);
7251 /* We've more or less seen every task there is, call it quits */
7252 if (env->loop > env->loop_max)
7255 /* take a breather every nr_migrate tasks */
7256 if (env->loop > env->loop_break) {
7257 env->loop_break += sched_nr_migrate_break;
7258 env->flags |= LBF_NEED_BREAK;
7262 if (!can_migrate_task(p, env))
7265 load = task_h_load(p);
7267 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7270 if ((load / 2) > env->imbalance)
7273 detach_task(p, env);
7274 list_add(&p->se.group_node, &env->tasks);
7277 env->imbalance -= load;
7279 #ifdef CONFIG_PREEMPT
7281 * NEWIDLE balancing is a source of latency, so preemptible
7282 * kernels will stop after the first task is detached to minimize
7283 * the critical section.
7285 if (env->idle == CPU_NEWLY_IDLE)
7290 * We only want to steal up to the prescribed amount of
7293 if (env->imbalance <= 0)
7298 list_move(&p->se.group_node, tasks);
7302 * Right now, this is one of only two places we collect this stat
7303 * so we can safely collect detach_one_task() stats here rather
7304 * than inside detach_one_task().
7306 schedstat_add(env->sd->lb_gained[env->idle], detached);
7312 * attach_task() -- attach the task detached by detach_task() to its new rq.
7314 static void attach_task(struct rq *rq, struct task_struct *p)
7316 lockdep_assert_held(&rq->lock);
7318 BUG_ON(task_rq(p) != rq);
7319 activate_task(rq, p, ENQUEUE_NOCLOCK);
7320 p->on_rq = TASK_ON_RQ_QUEUED;
7321 check_preempt_curr(rq, p, 0);
7325 * attach_one_task() -- attaches the task returned from detach_one_task() to
7328 static void attach_one_task(struct rq *rq, struct task_struct *p)
7333 update_rq_clock(rq);
7339 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7342 static void attach_tasks(struct lb_env *env)
7344 struct list_head *tasks = &env->tasks;
7345 struct task_struct *p;
7348 rq_lock(env->dst_rq, &rf);
7349 update_rq_clock(env->dst_rq);
7351 while (!list_empty(tasks)) {
7352 p = list_first_entry(tasks, struct task_struct, se.group_node);
7353 list_del_init(&p->se.group_node);
7355 attach_task(env->dst_rq, p);
7358 rq_unlock(env->dst_rq, &rf);
7361 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7363 if (cfs_rq->avg.load_avg)
7366 if (cfs_rq->avg.util_avg)
7372 static inline bool others_have_blocked(struct rq *rq)
7374 if (READ_ONCE(rq->avg_rt.util_avg))
7377 if (READ_ONCE(rq->avg_dl.util_avg))
7380 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7381 if (READ_ONCE(rq->avg_irq.util_avg))
7388 #ifdef CONFIG_FAIR_GROUP_SCHED
7390 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7392 if (cfs_rq->load.weight)
7395 if (cfs_rq->avg.load_sum)
7398 if (cfs_rq->avg.util_sum)
7401 if (cfs_rq->avg.runnable_load_sum)
7407 static void update_blocked_averages(int cpu)
7409 struct rq *rq = cpu_rq(cpu);
7410 struct cfs_rq *cfs_rq, *pos;
7411 const struct sched_class *curr_class;
7415 rq_lock_irqsave(rq, &rf);
7416 update_rq_clock(rq);
7419 * Iterates the task_group tree in a bottom up fashion, see
7420 * list_add_leaf_cfs_rq() for details.
7422 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7423 struct sched_entity *se;
7425 /* throttled entities do not contribute to load */
7426 if (throttled_hierarchy(cfs_rq))
7429 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7430 update_tg_load_avg(cfs_rq, 0);
7432 /* Propagate pending load changes to the parent, if any: */
7433 se = cfs_rq->tg->se[cpu];
7434 if (se && !skip_blocked_update(se))
7435 update_load_avg(cfs_rq_of(se), se, 0);
7438 * There can be a lot of idle CPU cgroups. Don't let fully
7439 * decayed cfs_rqs linger on the list.
7441 if (cfs_rq_is_decayed(cfs_rq))
7442 list_del_leaf_cfs_rq(cfs_rq);
7444 /* Don't need periodic decay once load/util_avg are null */
7445 if (cfs_rq_has_blocked(cfs_rq))
7449 curr_class = rq->curr->sched_class;
7450 update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7451 update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7452 update_irq_load_avg(rq, 0);
7453 /* Don't need periodic decay once load/util_avg are null */
7454 if (others_have_blocked(rq))
7457 #ifdef CONFIG_NO_HZ_COMMON
7458 rq->last_blocked_load_update_tick = jiffies;
7460 rq->has_blocked_load = 0;
7462 rq_unlock_irqrestore(rq, &rf);
7466 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7467 * This needs to be done in a top-down fashion because the load of a child
7468 * group is a fraction of its parents load.
7470 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7472 struct rq *rq = rq_of(cfs_rq);
7473 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7474 unsigned long now = jiffies;
7477 if (cfs_rq->last_h_load_update == now)
7480 cfs_rq->h_load_next = NULL;
7481 for_each_sched_entity(se) {
7482 cfs_rq = cfs_rq_of(se);
7483 cfs_rq->h_load_next = se;
7484 if (cfs_rq->last_h_load_update == now)
7489 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7490 cfs_rq->last_h_load_update = now;
7493 while ((se = cfs_rq->h_load_next) != NULL) {
7494 load = cfs_rq->h_load;
7495 load = div64_ul(load * se->avg.load_avg,
7496 cfs_rq_load_avg(cfs_rq) + 1);
7497 cfs_rq = group_cfs_rq(se);
7498 cfs_rq->h_load = load;
7499 cfs_rq->last_h_load_update = now;
7503 static unsigned long task_h_load(struct task_struct *p)
7505 struct cfs_rq *cfs_rq = task_cfs_rq(p);
7507 update_cfs_rq_h_load(cfs_rq);
7508 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7509 cfs_rq_load_avg(cfs_rq) + 1);
7512 static inline void update_blocked_averages(int cpu)
7514 struct rq *rq = cpu_rq(cpu);
7515 struct cfs_rq *cfs_rq = &rq->cfs;
7516 const struct sched_class *curr_class;
7519 rq_lock_irqsave(rq, &rf);
7520 update_rq_clock(rq);
7521 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7523 curr_class = rq->curr->sched_class;
7524 update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7525 update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7526 update_irq_load_avg(rq, 0);
7527 #ifdef CONFIG_NO_HZ_COMMON
7528 rq->last_blocked_load_update_tick = jiffies;
7529 if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7530 rq->has_blocked_load = 0;
7532 rq_unlock_irqrestore(rq, &rf);
7535 static unsigned long task_h_load(struct task_struct *p)
7537 return p->se.avg.load_avg;
7541 /********** Helpers for find_busiest_group ************************/
7544 * sg_lb_stats - stats of a sched_group required for load_balancing
7546 struct sg_lb_stats {
7547 unsigned long avg_load; /*Avg load across the CPUs of the group */
7548 unsigned long group_load; /* Total load over the CPUs of the group */
7549 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7550 unsigned long load_per_task;
7551 unsigned long group_capacity;
7552 unsigned long group_util; /* Total utilization of the group */
7553 unsigned int sum_nr_running; /* Nr tasks running in the group */
7554 unsigned int idle_cpus;
7555 unsigned int group_weight;
7556 enum group_type group_type;
7557 int group_no_capacity;
7558 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7559 #ifdef CONFIG_NUMA_BALANCING
7560 unsigned int nr_numa_running;
7561 unsigned int nr_preferred_running;
7566 * sd_lb_stats - Structure to store the statistics of a sched_domain
7567 * during load balancing.
7569 struct sd_lb_stats {
7570 struct sched_group *busiest; /* Busiest group in this sd */
7571 struct sched_group *local; /* Local group in this sd */
7572 unsigned long total_running;
7573 unsigned long total_load; /* Total load of all groups in sd */
7574 unsigned long total_capacity; /* Total capacity of all groups in sd */
7575 unsigned long avg_load; /* Average load across all groups in sd */
7577 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7578 struct sg_lb_stats local_stat; /* Statistics of the local group */
7581 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7584 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7585 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7586 * We must however clear busiest_stat::avg_load because
7587 * update_sd_pick_busiest() reads this before assignment.
7589 *sds = (struct sd_lb_stats){
7592 .total_running = 0UL,
7594 .total_capacity = 0UL,
7597 .sum_nr_running = 0,
7598 .group_type = group_other,
7604 * get_sd_load_idx - Obtain the load index for a given sched domain.
7605 * @sd: The sched_domain whose load_idx is to be obtained.
7606 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7608 * Return: The load index.
7610 static inline int get_sd_load_idx(struct sched_domain *sd,
7611 enum cpu_idle_type idle)
7617 load_idx = sd->busy_idx;
7620 case CPU_NEWLY_IDLE:
7621 load_idx = sd->newidle_idx;
7624 load_idx = sd->idle_idx;
7631 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7633 struct rq *rq = cpu_rq(cpu);
7634 unsigned long max = arch_scale_cpu_capacity(sd, cpu);
7635 unsigned long used, free;
7638 irq = cpu_util_irq(rq);
7640 if (unlikely(irq >= max))
7643 used = READ_ONCE(rq->avg_rt.util_avg);
7644 used += READ_ONCE(rq->avg_dl.util_avg);
7646 if (unlikely(used >= max))
7651 return scale_irq_capacity(free, irq, max);
7654 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7656 unsigned long capacity = scale_rt_capacity(sd, cpu);
7657 struct sched_group *sdg = sd->groups;
7659 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7664 cpu_rq(cpu)->cpu_capacity = capacity;
7665 sdg->sgc->capacity = capacity;
7666 sdg->sgc->min_capacity = capacity;
7667 sdg->sgc->max_capacity = capacity;
7670 void update_group_capacity(struct sched_domain *sd, int cpu)
7672 struct sched_domain *child = sd->child;
7673 struct sched_group *group, *sdg = sd->groups;
7674 unsigned long capacity, min_capacity, max_capacity;
7675 unsigned long interval;
7677 interval = msecs_to_jiffies(sd->balance_interval);
7678 interval = clamp(interval, 1UL, max_load_balance_interval);
7679 sdg->sgc->next_update = jiffies + interval;
7682 update_cpu_capacity(sd, cpu);
7687 min_capacity = ULONG_MAX;
7690 if (child->flags & SD_OVERLAP) {
7692 * SD_OVERLAP domains cannot assume that child groups
7693 * span the current group.
7696 for_each_cpu(cpu, sched_group_span(sdg)) {
7697 struct sched_group_capacity *sgc;
7698 struct rq *rq = cpu_rq(cpu);
7701 * build_sched_domains() -> init_sched_groups_capacity()
7702 * gets here before we've attached the domains to the
7705 * Use capacity_of(), which is set irrespective of domains
7706 * in update_cpu_capacity().
7708 * This avoids capacity from being 0 and
7709 * causing divide-by-zero issues on boot.
7711 if (unlikely(!rq->sd)) {
7712 capacity += capacity_of(cpu);
7714 sgc = rq->sd->groups->sgc;
7715 capacity += sgc->capacity;
7718 min_capacity = min(capacity, min_capacity);
7719 max_capacity = max(capacity, max_capacity);
7723 * !SD_OVERLAP domains can assume that child groups
7724 * span the current group.
7727 group = child->groups;
7729 struct sched_group_capacity *sgc = group->sgc;
7731 capacity += sgc->capacity;
7732 min_capacity = min(sgc->min_capacity, min_capacity);
7733 max_capacity = max(sgc->max_capacity, max_capacity);
7734 group = group->next;
7735 } while (group != child->groups);
7738 sdg->sgc->capacity = capacity;
7739 sdg->sgc->min_capacity = min_capacity;
7740 sdg->sgc->max_capacity = max_capacity;
7744 * Check whether the capacity of the rq has been noticeably reduced by side
7745 * activity. The imbalance_pct is used for the threshold.
7746 * Return true is the capacity is reduced
7749 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7751 return ((rq->cpu_capacity * sd->imbalance_pct) <
7752 (rq->cpu_capacity_orig * 100));
7756 * Group imbalance indicates (and tries to solve) the problem where balancing
7757 * groups is inadequate due to ->cpus_allowed constraints.
7759 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7760 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7763 * { 0 1 2 3 } { 4 5 6 7 }
7766 * If we were to balance group-wise we'd place two tasks in the first group and
7767 * two tasks in the second group. Clearly this is undesired as it will overload
7768 * cpu 3 and leave one of the CPUs in the second group unused.
7770 * The current solution to this issue is detecting the skew in the first group
7771 * by noticing the lower domain failed to reach balance and had difficulty
7772 * moving tasks due to affinity constraints.
7774 * When this is so detected; this group becomes a candidate for busiest; see
7775 * update_sd_pick_busiest(). And calculate_imbalance() and
7776 * find_busiest_group() avoid some of the usual balance conditions to allow it
7777 * to create an effective group imbalance.
7779 * This is a somewhat tricky proposition since the next run might not find the
7780 * group imbalance and decide the groups need to be balanced again. A most
7781 * subtle and fragile situation.
7784 static inline int sg_imbalanced(struct sched_group *group)
7786 return group->sgc->imbalance;
7790 * group_has_capacity returns true if the group has spare capacity that could
7791 * be used by some tasks.
7792 * We consider that a group has spare capacity if the * number of task is
7793 * smaller than the number of CPUs or if the utilization is lower than the
7794 * available capacity for CFS tasks.
7795 * For the latter, we use a threshold to stabilize the state, to take into
7796 * account the variance of the tasks' load and to return true if the available
7797 * capacity in meaningful for the load balancer.
7798 * As an example, an available capacity of 1% can appear but it doesn't make
7799 * any benefit for the load balance.
7802 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7804 if (sgs->sum_nr_running < sgs->group_weight)
7807 if ((sgs->group_capacity * 100) >
7808 (sgs->group_util * env->sd->imbalance_pct))
7815 * group_is_overloaded returns true if the group has more tasks than it can
7817 * group_is_overloaded is not equals to !group_has_capacity because a group
7818 * with the exact right number of tasks, has no more spare capacity but is not
7819 * overloaded so both group_has_capacity and group_is_overloaded return
7823 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7825 if (sgs->sum_nr_running <= sgs->group_weight)
7828 if ((sgs->group_capacity * 100) <
7829 (sgs->group_util * env->sd->imbalance_pct))
7836 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
7837 * per-CPU capacity than sched_group ref.
7840 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7842 return sg->sgc->min_capacity * capacity_margin <
7843 ref->sgc->min_capacity * 1024;
7847 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
7848 * per-CPU capacity_orig than sched_group ref.
7851 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7853 return sg->sgc->max_capacity * capacity_margin <
7854 ref->sgc->max_capacity * 1024;
7858 group_type group_classify(struct sched_group *group,
7859 struct sg_lb_stats *sgs)
7861 if (sgs->group_no_capacity)
7862 return group_overloaded;
7864 if (sg_imbalanced(group))
7865 return group_imbalanced;
7867 if (sgs->group_misfit_task_load)
7868 return group_misfit_task;
7873 static bool update_nohz_stats(struct rq *rq, bool force)
7875 #ifdef CONFIG_NO_HZ_COMMON
7876 unsigned int cpu = rq->cpu;
7878 if (!rq->has_blocked_load)
7881 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7884 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7887 update_blocked_averages(cpu);
7889 return rq->has_blocked_load;
7896 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7897 * @env: The load balancing environment.
7898 * @group: sched_group whose statistics are to be updated.
7899 * @load_idx: Load index of sched_domain of this_cpu for load calc.
7900 * @local_group: Does group contain this_cpu.
7901 * @sgs: variable to hold the statistics for this group.
7902 * @overload: Indicate pullable load (e.g. >1 runnable task).
7904 static inline void update_sg_lb_stats(struct lb_env *env,
7905 struct sched_group *group, int load_idx,
7906 int local_group, struct sg_lb_stats *sgs,
7912 memset(sgs, 0, sizeof(*sgs));
7914 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7915 struct rq *rq = cpu_rq(i);
7917 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
7918 env->flags |= LBF_NOHZ_AGAIN;
7920 /* Bias balancing toward CPUs of our domain: */
7922 load = target_load(i, load_idx);
7924 load = source_load(i, load_idx);
7926 sgs->group_load += load;
7927 sgs->group_util += cpu_util(i);
7928 sgs->sum_nr_running += rq->cfs.h_nr_running;
7930 nr_running = rq->nr_running;
7934 #ifdef CONFIG_NUMA_BALANCING
7935 sgs->nr_numa_running += rq->nr_numa_running;
7936 sgs->nr_preferred_running += rq->nr_preferred_running;
7938 sgs->sum_weighted_load += weighted_cpuload(rq);
7940 * No need to call idle_cpu() if nr_running is not 0
7942 if (!nr_running && idle_cpu(i))
7945 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
7946 sgs->group_misfit_task_load < rq->misfit_task_load) {
7947 sgs->group_misfit_task_load = rq->misfit_task_load;
7952 /* Adjust by relative CPU capacity of the group */
7953 sgs->group_capacity = group->sgc->capacity;
7954 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7956 if (sgs->sum_nr_running)
7957 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7959 sgs->group_weight = group->group_weight;
7961 sgs->group_no_capacity = group_is_overloaded(env, sgs);
7962 sgs->group_type = group_classify(group, sgs);
7966 * update_sd_pick_busiest - return 1 on busiest group
7967 * @env: The load balancing environment.
7968 * @sds: sched_domain statistics
7969 * @sg: sched_group candidate to be checked for being the busiest
7970 * @sgs: sched_group statistics
7972 * Determine if @sg is a busier group than the previously selected
7975 * Return: %true if @sg is a busier group than the previously selected
7976 * busiest group. %false otherwise.
7978 static bool update_sd_pick_busiest(struct lb_env *env,
7979 struct sd_lb_stats *sds,
7980 struct sched_group *sg,
7981 struct sg_lb_stats *sgs)
7983 struct sg_lb_stats *busiest = &sds->busiest_stat;
7986 * Don't try to pull misfit tasks we can't help.
7987 * We can use max_capacity here as reduction in capacity on some
7988 * CPUs in the group should either be possible to resolve
7989 * internally or be covered by avg_load imbalance (eventually).
7991 if (sgs->group_type == group_misfit_task &&
7992 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
7993 !group_has_capacity(env, &sds->local_stat)))
7996 if (sgs->group_type > busiest->group_type)
7999 if (sgs->group_type < busiest->group_type)
8002 if (sgs->avg_load <= busiest->avg_load)
8005 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8009 * Candidate sg has no more than one task per CPU and
8010 * has higher per-CPU capacity. Migrating tasks to less
8011 * capable CPUs may harm throughput. Maximize throughput,
8012 * power/energy consequences are not considered.
8014 if (sgs->sum_nr_running <= sgs->group_weight &&
8015 group_smaller_min_cpu_capacity(sds->local, sg))
8019 * If we have more than one misfit sg go with the biggest misfit.
8021 if (sgs->group_type == group_misfit_task &&
8022 sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8026 /* This is the busiest node in its class. */
8027 if (!(env->sd->flags & SD_ASYM_PACKING))
8030 /* No ASYM_PACKING if target CPU is already busy */
8031 if (env->idle == CPU_NOT_IDLE)
8034 * ASYM_PACKING needs to move all the work to the highest
8035 * prority CPUs in the group, therefore mark all groups
8036 * of lower priority than ourself as busy.
8038 if (sgs->sum_nr_running &&
8039 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8043 /* Prefer to move from lowest priority CPU's work */
8044 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8045 sg->asym_prefer_cpu))
8052 #ifdef CONFIG_NUMA_BALANCING
8053 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8055 if (sgs->sum_nr_running > sgs->nr_numa_running)
8057 if (sgs->sum_nr_running > sgs->nr_preferred_running)
8062 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8064 if (rq->nr_running > rq->nr_numa_running)
8066 if (rq->nr_running > rq->nr_preferred_running)
8071 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8076 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8080 #endif /* CONFIG_NUMA_BALANCING */
8083 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8084 * @env: The load balancing environment.
8085 * @sds: variable to hold the statistics for this sched_domain.
8087 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8089 struct sched_domain *child = env->sd->child;
8090 struct sched_group *sg = env->sd->groups;
8091 struct sg_lb_stats *local = &sds->local_stat;
8092 struct sg_lb_stats tmp_sgs;
8094 bool overload = false;
8095 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8097 #ifdef CONFIG_NO_HZ_COMMON
8098 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8099 env->flags |= LBF_NOHZ_STATS;
8102 load_idx = get_sd_load_idx(env->sd, env->idle);
8105 struct sg_lb_stats *sgs = &tmp_sgs;
8108 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8113 if (env->idle != CPU_NEWLY_IDLE ||
8114 time_after_eq(jiffies, sg->sgc->next_update))
8115 update_group_capacity(env->sd, env->dst_cpu);
8118 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
8125 * In case the child domain prefers tasks go to siblings
8126 * first, lower the sg capacity so that we'll try
8127 * and move all the excess tasks away. We lower the capacity
8128 * of a group only if the local group has the capacity to fit
8129 * these excess tasks. The extra check prevents the case where
8130 * you always pull from the heaviest group when it is already
8131 * under-utilized (possible with a large weight task outweighs
8132 * the tasks on the system).
8134 if (prefer_sibling && sds->local &&
8135 group_has_capacity(env, local) &&
8136 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8137 sgs->group_no_capacity = 1;
8138 sgs->group_type = group_classify(sg, sgs);
8141 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8143 sds->busiest_stat = *sgs;
8147 /* Now, start updating sd_lb_stats */
8148 sds->total_running += sgs->sum_nr_running;
8149 sds->total_load += sgs->group_load;
8150 sds->total_capacity += sgs->group_capacity;
8153 } while (sg != env->sd->groups);
8155 #ifdef CONFIG_NO_HZ_COMMON
8156 if ((env->flags & LBF_NOHZ_AGAIN) &&
8157 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8159 WRITE_ONCE(nohz.next_blocked,
8160 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8164 if (env->sd->flags & SD_NUMA)
8165 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8167 if (!env->sd->parent) {
8168 /* update overload indicator if we are at root domain */
8169 if (READ_ONCE(env->dst_rq->rd->overload) != overload)
8170 WRITE_ONCE(env->dst_rq->rd->overload, overload);
8175 * check_asym_packing - Check to see if the group is packed into the
8178 * This is primarily intended to used at the sibling level. Some
8179 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8180 * case of POWER7, it can move to lower SMT modes only when higher
8181 * threads are idle. When in lower SMT modes, the threads will
8182 * perform better since they share less core resources. Hence when we
8183 * have idle threads, we want them to be the higher ones.
8185 * This packing function is run on idle threads. It checks to see if
8186 * the busiest CPU in this domain (core in the P7 case) has a higher
8187 * CPU number than the packing function is being run on. Here we are
8188 * assuming lower CPU number will be equivalent to lower a SMT thread
8191 * Return: 1 when packing is required and a task should be moved to
8192 * this CPU. The amount of the imbalance is returned in env->imbalance.
8194 * @env: The load balancing environment.
8195 * @sds: Statistics of the sched_domain which is to be packed
8197 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8201 if (!(env->sd->flags & SD_ASYM_PACKING))
8204 if (env->idle == CPU_NOT_IDLE)
8210 busiest_cpu = sds->busiest->asym_prefer_cpu;
8211 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8214 env->imbalance = DIV_ROUND_CLOSEST(
8215 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8216 SCHED_CAPACITY_SCALE);
8222 * fix_small_imbalance - Calculate the minor imbalance that exists
8223 * amongst the groups of a sched_domain, during
8225 * @env: The load balancing environment.
8226 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8229 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8231 unsigned long tmp, capa_now = 0, capa_move = 0;
8232 unsigned int imbn = 2;
8233 unsigned long scaled_busy_load_per_task;
8234 struct sg_lb_stats *local, *busiest;
8236 local = &sds->local_stat;
8237 busiest = &sds->busiest_stat;
8239 if (!local->sum_nr_running)
8240 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8241 else if (busiest->load_per_task > local->load_per_task)
8244 scaled_busy_load_per_task =
8245 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8246 busiest->group_capacity;
8248 if (busiest->avg_load + scaled_busy_load_per_task >=
8249 local->avg_load + (scaled_busy_load_per_task * imbn)) {
8250 env->imbalance = busiest->load_per_task;
8255 * OK, we don't have enough imbalance to justify moving tasks,
8256 * however we may be able to increase total CPU capacity used by
8260 capa_now += busiest->group_capacity *
8261 min(busiest->load_per_task, busiest->avg_load);
8262 capa_now += local->group_capacity *
8263 min(local->load_per_task, local->avg_load);
8264 capa_now /= SCHED_CAPACITY_SCALE;
8266 /* Amount of load we'd subtract */
8267 if (busiest->avg_load > scaled_busy_load_per_task) {
8268 capa_move += busiest->group_capacity *
8269 min(busiest->load_per_task,
8270 busiest->avg_load - scaled_busy_load_per_task);
8273 /* Amount of load we'd add */
8274 if (busiest->avg_load * busiest->group_capacity <
8275 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8276 tmp = (busiest->avg_load * busiest->group_capacity) /
8277 local->group_capacity;
8279 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8280 local->group_capacity;
8282 capa_move += local->group_capacity *
8283 min(local->load_per_task, local->avg_load + tmp);
8284 capa_move /= SCHED_CAPACITY_SCALE;
8286 /* Move if we gain throughput */
8287 if (capa_move > capa_now)
8288 env->imbalance = busiest->load_per_task;
8292 * calculate_imbalance - Calculate the amount of imbalance present within the
8293 * groups of a given sched_domain during load balance.
8294 * @env: load balance environment
8295 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8297 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8299 unsigned long max_pull, load_above_capacity = ~0UL;
8300 struct sg_lb_stats *local, *busiest;
8302 local = &sds->local_stat;
8303 busiest = &sds->busiest_stat;
8305 if (busiest->group_type == group_imbalanced) {
8307 * In the group_imb case we cannot rely on group-wide averages
8308 * to ensure CPU-load equilibrium, look at wider averages. XXX
8310 busiest->load_per_task =
8311 min(busiest->load_per_task, sds->avg_load);
8315 * Avg load of busiest sg can be less and avg load of local sg can
8316 * be greater than avg load across all sgs of sd because avg load
8317 * factors in sg capacity and sgs with smaller group_type are
8318 * skipped when updating the busiest sg:
8320 if (busiest->group_type != group_misfit_task &&
8321 (busiest->avg_load <= sds->avg_load ||
8322 local->avg_load >= sds->avg_load)) {
8324 return fix_small_imbalance(env, sds);
8328 * If there aren't any idle CPUs, avoid creating some.
8330 if (busiest->group_type == group_overloaded &&
8331 local->group_type == group_overloaded) {
8332 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8333 if (load_above_capacity > busiest->group_capacity) {
8334 load_above_capacity -= busiest->group_capacity;
8335 load_above_capacity *= scale_load_down(NICE_0_LOAD);
8336 load_above_capacity /= busiest->group_capacity;
8338 load_above_capacity = ~0UL;
8342 * We're trying to get all the CPUs to the average_load, so we don't
8343 * want to push ourselves above the average load, nor do we wish to
8344 * reduce the max loaded CPU below the average load. At the same time,
8345 * we also don't want to reduce the group load below the group
8346 * capacity. Thus we look for the minimum possible imbalance.
8348 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8350 /* How much load to actually move to equalise the imbalance */
8351 env->imbalance = min(
8352 max_pull * busiest->group_capacity,
8353 (sds->avg_load - local->avg_load) * local->group_capacity
8354 ) / SCHED_CAPACITY_SCALE;
8356 /* Boost imbalance to allow misfit task to be balanced. */
8357 if (busiest->group_type == group_misfit_task) {
8358 env->imbalance = max_t(long, env->imbalance,
8359 busiest->group_misfit_task_load);
8363 * if *imbalance is less than the average load per runnable task
8364 * there is no guarantee that any tasks will be moved so we'll have
8365 * a think about bumping its value to force at least one task to be
8368 if (env->imbalance < busiest->load_per_task)
8369 return fix_small_imbalance(env, sds);
8372 /******* find_busiest_group() helpers end here *********************/
8375 * find_busiest_group - Returns the busiest group within the sched_domain
8376 * if there is an imbalance.
8378 * Also calculates the amount of weighted load which should be moved
8379 * to restore balance.
8381 * @env: The load balancing environment.
8383 * Return: - The busiest group if imbalance exists.
8385 static struct sched_group *find_busiest_group(struct lb_env *env)
8387 struct sg_lb_stats *local, *busiest;
8388 struct sd_lb_stats sds;
8390 init_sd_lb_stats(&sds);
8393 * Compute the various statistics relavent for load balancing at
8396 update_sd_lb_stats(env, &sds);
8397 local = &sds.local_stat;
8398 busiest = &sds.busiest_stat;
8400 /* ASYM feature bypasses nice load balance check */
8401 if (check_asym_packing(env, &sds))
8404 /* There is no busy sibling group to pull tasks from */
8405 if (!sds.busiest || busiest->sum_nr_running == 0)
8408 /* XXX broken for overlapping NUMA groups */
8409 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8410 / sds.total_capacity;
8413 * If the busiest group is imbalanced the below checks don't
8414 * work because they assume all things are equal, which typically
8415 * isn't true due to cpus_allowed constraints and the like.
8417 if (busiest->group_type == group_imbalanced)
8421 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8422 * capacities from resulting in underutilization due to avg_load.
8424 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8425 busiest->group_no_capacity)
8428 /* Misfit tasks should be dealt with regardless of the avg load */
8429 if (busiest->group_type == group_misfit_task)
8433 * If the local group is busier than the selected busiest group
8434 * don't try and pull any tasks.
8436 if (local->avg_load >= busiest->avg_load)
8440 * Don't pull any tasks if this group is already above the domain
8443 if (local->avg_load >= sds.avg_load)
8446 if (env->idle == CPU_IDLE) {
8448 * This CPU is idle. If the busiest group is not overloaded
8449 * and there is no imbalance between this and busiest group
8450 * wrt idle CPUs, it is balanced. The imbalance becomes
8451 * significant if the diff is greater than 1 otherwise we
8452 * might end up to just move the imbalance on another group
8454 if ((busiest->group_type != group_overloaded) &&
8455 (local->idle_cpus <= (busiest->idle_cpus + 1)))
8459 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8460 * imbalance_pct to be conservative.
8462 if (100 * busiest->avg_load <=
8463 env->sd->imbalance_pct * local->avg_load)
8468 /* Looks like there is an imbalance. Compute it */
8469 env->src_grp_type = busiest->group_type;
8470 calculate_imbalance(env, &sds);
8471 return env->imbalance ? sds.busiest : NULL;
8479 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8481 static struct rq *find_busiest_queue(struct lb_env *env,
8482 struct sched_group *group)
8484 struct rq *busiest = NULL, *rq;
8485 unsigned long busiest_load = 0, busiest_capacity = 1;
8488 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8489 unsigned long capacity, wl;
8493 rt = fbq_classify_rq(rq);
8496 * We classify groups/runqueues into three groups:
8497 * - regular: there are !numa tasks
8498 * - remote: there are numa tasks that run on the 'wrong' node
8499 * - all: there is no distinction
8501 * In order to avoid migrating ideally placed numa tasks,
8502 * ignore those when there's better options.
8504 * If we ignore the actual busiest queue to migrate another
8505 * task, the next balance pass can still reduce the busiest
8506 * queue by moving tasks around inside the node.
8508 * If we cannot move enough load due to this classification
8509 * the next pass will adjust the group classification and
8510 * allow migration of more tasks.
8512 * Both cases only affect the total convergence complexity.
8514 if (rt > env->fbq_type)
8518 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8519 * seek the "biggest" misfit task.
8521 if (env->src_grp_type == group_misfit_task) {
8522 if (rq->misfit_task_load > busiest_load) {
8523 busiest_load = rq->misfit_task_load;
8530 capacity = capacity_of(i);
8533 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8534 * eventually lead to active_balancing high->low capacity.
8535 * Higher per-CPU capacity is considered better than balancing
8538 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8539 capacity_of(env->dst_cpu) < capacity &&
8540 rq->nr_running == 1)
8543 wl = weighted_cpuload(rq);
8546 * When comparing with imbalance, use weighted_cpuload()
8547 * which is not scaled with the CPU capacity.
8550 if (rq->nr_running == 1 && wl > env->imbalance &&
8551 !check_cpu_capacity(rq, env->sd))
8555 * For the load comparisons with the other CPU's, consider
8556 * the weighted_cpuload() scaled with the CPU capacity, so
8557 * that the load can be moved away from the CPU that is
8558 * potentially running at a lower capacity.
8560 * Thus we're looking for max(wl_i / capacity_i), crosswise
8561 * multiplication to rid ourselves of the division works out
8562 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8563 * our previous maximum.
8565 if (wl * busiest_capacity > busiest_load * capacity) {
8567 busiest_capacity = capacity;
8576 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8577 * so long as it is large enough.
8579 #define MAX_PINNED_INTERVAL 512
8581 static int need_active_balance(struct lb_env *env)
8583 struct sched_domain *sd = env->sd;
8585 if (env->idle == CPU_NEWLY_IDLE) {
8588 * ASYM_PACKING needs to force migrate tasks from busy but
8589 * lower priority CPUs in order to pack all tasks in the
8590 * highest priority CPUs.
8592 if ((sd->flags & SD_ASYM_PACKING) &&
8593 sched_asym_prefer(env->dst_cpu, env->src_cpu))
8598 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8599 * It's worth migrating the task if the src_cpu's capacity is reduced
8600 * because of other sched_class or IRQs if more capacity stays
8601 * available on dst_cpu.
8603 if ((env->idle != CPU_NOT_IDLE) &&
8604 (env->src_rq->cfs.h_nr_running == 1)) {
8605 if ((check_cpu_capacity(env->src_rq, sd)) &&
8606 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8610 if (env->src_grp_type == group_misfit_task)
8613 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8616 static int active_load_balance_cpu_stop(void *data);
8618 static int should_we_balance(struct lb_env *env)
8620 struct sched_group *sg = env->sd->groups;
8621 int cpu, balance_cpu = -1;
8624 * Ensure the balancing environment is consistent; can happen
8625 * when the softirq triggers 'during' hotplug.
8627 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8631 * In the newly idle case, we will allow all the CPUs
8632 * to do the newly idle load balance.
8634 if (env->idle == CPU_NEWLY_IDLE)
8637 /* Try to find first idle CPU */
8638 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8646 if (balance_cpu == -1)
8647 balance_cpu = group_balance_cpu(sg);
8650 * First idle CPU or the first CPU(busiest) in this sched group
8651 * is eligible for doing load balancing at this and above domains.
8653 return balance_cpu == env->dst_cpu;
8657 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8658 * tasks if there is an imbalance.
8660 static int load_balance(int this_cpu, struct rq *this_rq,
8661 struct sched_domain *sd, enum cpu_idle_type idle,
8662 int *continue_balancing)
8664 int ld_moved, cur_ld_moved, active_balance = 0;
8665 struct sched_domain *sd_parent = sd->parent;
8666 struct sched_group *group;
8669 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8671 struct lb_env env = {
8673 .dst_cpu = this_cpu,
8675 .dst_grpmask = sched_group_span(sd->groups),
8677 .loop_break = sched_nr_migrate_break,
8680 .tasks = LIST_HEAD_INIT(env.tasks),
8683 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8685 schedstat_inc(sd->lb_count[idle]);
8688 if (!should_we_balance(&env)) {
8689 *continue_balancing = 0;
8693 group = find_busiest_group(&env);
8695 schedstat_inc(sd->lb_nobusyg[idle]);
8699 busiest = find_busiest_queue(&env, group);
8701 schedstat_inc(sd->lb_nobusyq[idle]);
8705 BUG_ON(busiest == env.dst_rq);
8707 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8709 env.src_cpu = busiest->cpu;
8710 env.src_rq = busiest;
8713 if (busiest->nr_running > 1) {
8715 * Attempt to move tasks. If find_busiest_group has found
8716 * an imbalance but busiest->nr_running <= 1, the group is
8717 * still unbalanced. ld_moved simply stays zero, so it is
8718 * correctly treated as an imbalance.
8720 env.flags |= LBF_ALL_PINNED;
8721 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8724 rq_lock_irqsave(busiest, &rf);
8725 update_rq_clock(busiest);
8728 * cur_ld_moved - load moved in current iteration
8729 * ld_moved - cumulative load moved across iterations
8731 cur_ld_moved = detach_tasks(&env);
8734 * We've detached some tasks from busiest_rq. Every
8735 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8736 * unlock busiest->lock, and we are able to be sure
8737 * that nobody can manipulate the tasks in parallel.
8738 * See task_rq_lock() family for the details.
8741 rq_unlock(busiest, &rf);
8745 ld_moved += cur_ld_moved;
8748 local_irq_restore(rf.flags);
8750 if (env.flags & LBF_NEED_BREAK) {
8751 env.flags &= ~LBF_NEED_BREAK;
8756 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8757 * us and move them to an alternate dst_cpu in our sched_group
8758 * where they can run. The upper limit on how many times we
8759 * iterate on same src_cpu is dependent on number of CPUs in our
8762 * This changes load balance semantics a bit on who can move
8763 * load to a given_cpu. In addition to the given_cpu itself
8764 * (or a ilb_cpu acting on its behalf where given_cpu is
8765 * nohz-idle), we now have balance_cpu in a position to move
8766 * load to given_cpu. In rare situations, this may cause
8767 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8768 * _independently_ and at _same_ time to move some load to
8769 * given_cpu) causing exceess load to be moved to given_cpu.
8770 * This however should not happen so much in practice and
8771 * moreover subsequent load balance cycles should correct the
8772 * excess load moved.
8774 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8776 /* Prevent to re-select dst_cpu via env's CPUs */
8777 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8779 env.dst_rq = cpu_rq(env.new_dst_cpu);
8780 env.dst_cpu = env.new_dst_cpu;
8781 env.flags &= ~LBF_DST_PINNED;
8783 env.loop_break = sched_nr_migrate_break;
8786 * Go back to "more_balance" rather than "redo" since we
8787 * need to continue with same src_cpu.
8793 * We failed to reach balance because of affinity.
8796 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8798 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8799 *group_imbalance = 1;
8802 /* All tasks on this runqueue were pinned by CPU affinity */
8803 if (unlikely(env.flags & LBF_ALL_PINNED)) {
8804 cpumask_clear_cpu(cpu_of(busiest), cpus);
8806 * Attempting to continue load balancing at the current
8807 * sched_domain level only makes sense if there are
8808 * active CPUs remaining as possible busiest CPUs to
8809 * pull load from which are not contained within the
8810 * destination group that is receiving any migrated
8813 if (!cpumask_subset(cpus, env.dst_grpmask)) {
8815 env.loop_break = sched_nr_migrate_break;
8818 goto out_all_pinned;
8823 schedstat_inc(sd->lb_failed[idle]);
8825 * Increment the failure counter only on periodic balance.
8826 * We do not want newidle balance, which can be very
8827 * frequent, pollute the failure counter causing
8828 * excessive cache_hot migrations and active balances.
8830 if (idle != CPU_NEWLY_IDLE)
8831 sd->nr_balance_failed++;
8833 if (need_active_balance(&env)) {
8834 unsigned long flags;
8836 raw_spin_lock_irqsave(&busiest->lock, flags);
8839 * Don't kick the active_load_balance_cpu_stop,
8840 * if the curr task on busiest CPU can't be
8841 * moved to this_cpu:
8843 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8844 raw_spin_unlock_irqrestore(&busiest->lock,
8846 env.flags |= LBF_ALL_PINNED;
8847 goto out_one_pinned;
8851 * ->active_balance synchronizes accesses to
8852 * ->active_balance_work. Once set, it's cleared
8853 * only after active load balance is finished.
8855 if (!busiest->active_balance) {
8856 busiest->active_balance = 1;
8857 busiest->push_cpu = this_cpu;
8860 raw_spin_unlock_irqrestore(&busiest->lock, flags);
8862 if (active_balance) {
8863 stop_one_cpu_nowait(cpu_of(busiest),
8864 active_load_balance_cpu_stop, busiest,
8865 &busiest->active_balance_work);
8868 /* We've kicked active balancing, force task migration. */
8869 sd->nr_balance_failed = sd->cache_nice_tries+1;
8872 sd->nr_balance_failed = 0;
8874 if (likely(!active_balance)) {
8875 /* We were unbalanced, so reset the balancing interval */
8876 sd->balance_interval = sd->min_interval;
8879 * If we've begun active balancing, start to back off. This
8880 * case may not be covered by the all_pinned logic if there
8881 * is only 1 task on the busy runqueue (because we don't call
8884 if (sd->balance_interval < sd->max_interval)
8885 sd->balance_interval *= 2;
8892 * We reach balance although we may have faced some affinity
8893 * constraints. Clear the imbalance flag if it was set.
8896 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8898 if (*group_imbalance)
8899 *group_imbalance = 0;
8904 * We reach balance because all tasks are pinned at this level so
8905 * we can't migrate them. Let the imbalance flag set so parent level
8906 * can try to migrate them.
8908 schedstat_inc(sd->lb_balanced[idle]);
8910 sd->nr_balance_failed = 0;
8913 /* tune up the balancing interval */
8914 if (((env.flags & LBF_ALL_PINNED) &&
8915 sd->balance_interval < MAX_PINNED_INTERVAL) ||
8916 (sd->balance_interval < sd->max_interval))
8917 sd->balance_interval *= 2;
8924 static inline unsigned long
8925 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8927 unsigned long interval = sd->balance_interval;
8930 interval *= sd->busy_factor;
8932 /* scale ms to jiffies */
8933 interval = msecs_to_jiffies(interval);
8934 interval = clamp(interval, 1UL, max_load_balance_interval);
8940 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8942 unsigned long interval, next;
8944 /* used by idle balance, so cpu_busy = 0 */
8945 interval = get_sd_balance_interval(sd, 0);
8946 next = sd->last_balance + interval;
8948 if (time_after(*next_balance, next))
8949 *next_balance = next;
8953 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
8954 * running tasks off the busiest CPU onto idle CPUs. It requires at
8955 * least 1 task to be running on each physical CPU where possible, and
8956 * avoids physical / logical imbalances.
8958 static int active_load_balance_cpu_stop(void *data)
8960 struct rq *busiest_rq = data;
8961 int busiest_cpu = cpu_of(busiest_rq);
8962 int target_cpu = busiest_rq->push_cpu;
8963 struct rq *target_rq = cpu_rq(target_cpu);
8964 struct sched_domain *sd;
8965 struct task_struct *p = NULL;
8968 rq_lock_irq(busiest_rq, &rf);
8970 * Between queueing the stop-work and running it is a hole in which
8971 * CPUs can become inactive. We should not move tasks from or to
8974 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8977 /* Make sure the requested CPU hasn't gone down in the meantime: */
8978 if (unlikely(busiest_cpu != smp_processor_id() ||
8979 !busiest_rq->active_balance))
8982 /* Is there any task to move? */
8983 if (busiest_rq->nr_running <= 1)
8987 * This condition is "impossible", if it occurs
8988 * we need to fix it. Originally reported by
8989 * Bjorn Helgaas on a 128-CPU setup.
8991 BUG_ON(busiest_rq == target_rq);
8993 /* Search for an sd spanning us and the target CPU. */
8995 for_each_domain(target_cpu, sd) {
8996 if ((sd->flags & SD_LOAD_BALANCE) &&
8997 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9002 struct lb_env env = {
9004 .dst_cpu = target_cpu,
9005 .dst_rq = target_rq,
9006 .src_cpu = busiest_rq->cpu,
9007 .src_rq = busiest_rq,
9010 * can_migrate_task() doesn't need to compute new_dst_cpu
9011 * for active balancing. Since we have CPU_IDLE, but no
9012 * @dst_grpmask we need to make that test go away with lying
9015 .flags = LBF_DST_PINNED,
9018 schedstat_inc(sd->alb_count);
9019 update_rq_clock(busiest_rq);
9021 p = detach_one_task(&env);
9023 schedstat_inc(sd->alb_pushed);
9024 /* Active balancing done, reset the failure counter. */
9025 sd->nr_balance_failed = 0;
9027 schedstat_inc(sd->alb_failed);
9032 busiest_rq->active_balance = 0;
9033 rq_unlock(busiest_rq, &rf);
9036 attach_one_task(target_rq, p);
9043 static DEFINE_SPINLOCK(balancing);
9046 * Scale the max load_balance interval with the number of CPUs in the system.
9047 * This trades load-balance latency on larger machines for less cross talk.
9049 void update_max_interval(void)
9051 max_load_balance_interval = HZ*num_online_cpus()/10;
9055 * It checks each scheduling domain to see if it is due to be balanced,
9056 * and initiates a balancing operation if so.
9058 * Balancing parameters are set up in init_sched_domains.
9060 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9062 int continue_balancing = 1;
9064 unsigned long interval;
9065 struct sched_domain *sd;
9066 /* Earliest time when we have to do rebalance again */
9067 unsigned long next_balance = jiffies + 60*HZ;
9068 int update_next_balance = 0;
9069 int need_serialize, need_decay = 0;
9073 for_each_domain(cpu, sd) {
9075 * Decay the newidle max times here because this is a regular
9076 * visit to all the domains. Decay ~1% per second.
9078 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9079 sd->max_newidle_lb_cost =
9080 (sd->max_newidle_lb_cost * 253) / 256;
9081 sd->next_decay_max_lb_cost = jiffies + HZ;
9084 max_cost += sd->max_newidle_lb_cost;
9086 if (!(sd->flags & SD_LOAD_BALANCE))
9090 * Stop the load balance at this level. There is another
9091 * CPU in our sched group which is doing load balancing more
9094 if (!continue_balancing) {
9100 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9102 need_serialize = sd->flags & SD_SERIALIZE;
9103 if (need_serialize) {
9104 if (!spin_trylock(&balancing))
9108 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9109 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9111 * The LBF_DST_PINNED logic could have changed
9112 * env->dst_cpu, so we can't know our idle
9113 * state even if we migrated tasks. Update it.
9115 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9117 sd->last_balance = jiffies;
9118 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9121 spin_unlock(&balancing);
9123 if (time_after(next_balance, sd->last_balance + interval)) {
9124 next_balance = sd->last_balance + interval;
9125 update_next_balance = 1;
9130 * Ensure the rq-wide value also decays but keep it at a
9131 * reasonable floor to avoid funnies with rq->avg_idle.
9133 rq->max_idle_balance_cost =
9134 max((u64)sysctl_sched_migration_cost, max_cost);
9139 * next_balance will be updated only when there is a need.
9140 * When the cpu is attached to null domain for ex, it will not be
9143 if (likely(update_next_balance)) {
9144 rq->next_balance = next_balance;
9146 #ifdef CONFIG_NO_HZ_COMMON
9148 * If this CPU has been elected to perform the nohz idle
9149 * balance. Other idle CPUs have already rebalanced with
9150 * nohz_idle_balance() and nohz.next_balance has been
9151 * updated accordingly. This CPU is now running the idle load
9152 * balance for itself and we need to update the
9153 * nohz.next_balance accordingly.
9155 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9156 nohz.next_balance = rq->next_balance;
9161 static inline int on_null_domain(struct rq *rq)
9163 return unlikely(!rcu_dereference_sched(rq->sd));
9166 #ifdef CONFIG_NO_HZ_COMMON
9168 * idle load balancing details
9169 * - When one of the busy CPUs notice that there may be an idle rebalancing
9170 * needed, they will kick the idle load balancer, which then does idle
9171 * load balancing for all the idle CPUs.
9174 static inline int find_new_ilb(void)
9176 int ilb = cpumask_first(nohz.idle_cpus_mask);
9178 if (ilb < nr_cpu_ids && idle_cpu(ilb))
9185 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9186 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9187 * CPU (if there is one).
9189 static void kick_ilb(unsigned int flags)
9193 nohz.next_balance++;
9195 ilb_cpu = find_new_ilb();
9197 if (ilb_cpu >= nr_cpu_ids)
9200 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9201 if (flags & NOHZ_KICK_MASK)
9205 * Use smp_send_reschedule() instead of resched_cpu().
9206 * This way we generate a sched IPI on the target CPU which
9207 * is idle. And the softirq performing nohz idle load balance
9208 * will be run before returning from the IPI.
9210 smp_send_reschedule(ilb_cpu);
9214 * Current heuristic for kicking the idle load balancer in the presence
9215 * of an idle cpu in the system.
9216 * - This rq has more than one task.
9217 * - This rq has at least one CFS task and the capacity of the CPU is
9218 * significantly reduced because of RT tasks or IRQs.
9219 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
9220 * multiple busy cpu.
9221 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9222 * domain span are idle.
9224 static void nohz_balancer_kick(struct rq *rq)
9226 unsigned long now = jiffies;
9227 struct sched_domain_shared *sds;
9228 struct sched_domain *sd;
9229 int nr_busy, i, cpu = rq->cpu;
9230 unsigned int flags = 0;
9232 if (unlikely(rq->idle_balance))
9236 * We may be recently in ticked or tickless idle mode. At the first
9237 * busy tick after returning from idle, we will update the busy stats.
9239 nohz_balance_exit_idle(rq);
9242 * None are in tickless mode and hence no need for NOHZ idle load
9245 if (likely(!atomic_read(&nohz.nr_cpus)))
9248 if (READ_ONCE(nohz.has_blocked) &&
9249 time_after(now, READ_ONCE(nohz.next_blocked)))
9250 flags = NOHZ_STATS_KICK;
9252 if (time_before(now, nohz.next_balance))
9255 if (rq->nr_running >= 2 || rq->misfit_task_load) {
9256 flags = NOHZ_KICK_MASK;
9261 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9264 * XXX: write a coherent comment on why we do this.
9267 nr_busy = atomic_read(&sds->nr_busy_cpus);
9269 flags = NOHZ_KICK_MASK;
9275 sd = rcu_dereference(rq->sd);
9277 if ((rq->cfs.h_nr_running >= 1) &&
9278 check_cpu_capacity(rq, sd)) {
9279 flags = NOHZ_KICK_MASK;
9284 sd = rcu_dereference(per_cpu(sd_asym, cpu));
9286 for_each_cpu(i, sched_domain_span(sd)) {
9288 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9291 if (sched_asym_prefer(i, cpu)) {
9292 flags = NOHZ_KICK_MASK;
9304 static void set_cpu_sd_state_busy(int cpu)
9306 struct sched_domain *sd;
9309 sd = rcu_dereference(per_cpu(sd_llc, cpu));
9311 if (!sd || !sd->nohz_idle)
9315 atomic_inc(&sd->shared->nr_busy_cpus);
9320 void nohz_balance_exit_idle(struct rq *rq)
9322 SCHED_WARN_ON(rq != this_rq());
9324 if (likely(!rq->nohz_tick_stopped))
9327 rq->nohz_tick_stopped = 0;
9328 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9329 atomic_dec(&nohz.nr_cpus);
9331 set_cpu_sd_state_busy(rq->cpu);
9334 static void set_cpu_sd_state_idle(int cpu)
9336 struct sched_domain *sd;
9339 sd = rcu_dereference(per_cpu(sd_llc, cpu));
9341 if (!sd || sd->nohz_idle)
9345 atomic_dec(&sd->shared->nr_busy_cpus);
9351 * This routine will record that the CPU is going idle with tick stopped.
9352 * This info will be used in performing idle load balancing in the future.
9354 void nohz_balance_enter_idle(int cpu)
9356 struct rq *rq = cpu_rq(cpu);
9358 SCHED_WARN_ON(cpu != smp_processor_id());
9360 /* If this CPU is going down, then nothing needs to be done: */
9361 if (!cpu_active(cpu))
9364 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
9365 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9369 * Can be set safely without rq->lock held
9370 * If a clear happens, it will have evaluated last additions because
9371 * rq->lock is held during the check and the clear
9373 rq->has_blocked_load = 1;
9376 * The tick is still stopped but load could have been added in the
9377 * meantime. We set the nohz.has_blocked flag to trig a check of the
9378 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9379 * of nohz.has_blocked can only happen after checking the new load
9381 if (rq->nohz_tick_stopped)
9384 /* If we're a completely isolated CPU, we don't play: */
9385 if (on_null_domain(rq))
9388 rq->nohz_tick_stopped = 1;
9390 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9391 atomic_inc(&nohz.nr_cpus);
9394 * Ensures that if nohz_idle_balance() fails to observe our
9395 * @idle_cpus_mask store, it must observe the @has_blocked
9398 smp_mb__after_atomic();
9400 set_cpu_sd_state_idle(cpu);
9404 * Each time a cpu enter idle, we assume that it has blocked load and
9405 * enable the periodic update of the load of idle cpus
9407 WRITE_ONCE(nohz.has_blocked, 1);
9411 * Internal function that runs load balance for all idle cpus. The load balance
9412 * can be a simple update of blocked load or a complete load balance with
9413 * tasks movement depending of flags.
9414 * The function returns false if the loop has stopped before running
9415 * through all idle CPUs.
9417 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9418 enum cpu_idle_type idle)
9420 /* Earliest time when we have to do rebalance again */
9421 unsigned long now = jiffies;
9422 unsigned long next_balance = now + 60*HZ;
9423 bool has_blocked_load = false;
9424 int update_next_balance = 0;
9425 int this_cpu = this_rq->cpu;
9430 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9433 * We assume there will be no idle load after this update and clear
9434 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9435 * set the has_blocked flag and trig another update of idle load.
9436 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9437 * setting the flag, we are sure to not clear the state and not
9438 * check the load of an idle cpu.
9440 WRITE_ONCE(nohz.has_blocked, 0);
9443 * Ensures that if we miss the CPU, we must see the has_blocked
9444 * store from nohz_balance_enter_idle().
9448 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9449 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9453 * If this CPU gets work to do, stop the load balancing
9454 * work being done for other CPUs. Next load
9455 * balancing owner will pick it up.
9457 if (need_resched()) {
9458 has_blocked_load = true;
9462 rq = cpu_rq(balance_cpu);
9464 has_blocked_load |= update_nohz_stats(rq, true);
9467 * If time for next balance is due,
9470 if (time_after_eq(jiffies, rq->next_balance)) {
9473 rq_lock_irqsave(rq, &rf);
9474 update_rq_clock(rq);
9475 cpu_load_update_idle(rq);
9476 rq_unlock_irqrestore(rq, &rf);
9478 if (flags & NOHZ_BALANCE_KICK)
9479 rebalance_domains(rq, CPU_IDLE);
9482 if (time_after(next_balance, rq->next_balance)) {
9483 next_balance = rq->next_balance;
9484 update_next_balance = 1;
9488 /* Newly idle CPU doesn't need an update */
9489 if (idle != CPU_NEWLY_IDLE) {
9490 update_blocked_averages(this_cpu);
9491 has_blocked_load |= this_rq->has_blocked_load;
9494 if (flags & NOHZ_BALANCE_KICK)
9495 rebalance_domains(this_rq, CPU_IDLE);
9497 WRITE_ONCE(nohz.next_blocked,
9498 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9500 /* The full idle balance loop has been done */
9504 /* There is still blocked load, enable periodic update */
9505 if (has_blocked_load)
9506 WRITE_ONCE(nohz.has_blocked, 1);
9509 * next_balance will be updated only when there is a need.
9510 * When the CPU is attached to null domain for ex, it will not be
9513 if (likely(update_next_balance))
9514 nohz.next_balance = next_balance;
9520 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9521 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9523 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9525 int this_cpu = this_rq->cpu;
9528 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9531 if (idle != CPU_IDLE) {
9532 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9537 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
9539 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9540 if (!(flags & NOHZ_KICK_MASK))
9543 _nohz_idle_balance(this_rq, flags, idle);
9548 static void nohz_newidle_balance(struct rq *this_rq)
9550 int this_cpu = this_rq->cpu;
9553 * This CPU doesn't want to be disturbed by scheduler
9556 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9559 /* Will wake up very soon. No time for doing anything else*/
9560 if (this_rq->avg_idle < sysctl_sched_migration_cost)
9563 /* Don't need to update blocked load of idle CPUs*/
9564 if (!READ_ONCE(nohz.has_blocked) ||
9565 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9568 raw_spin_unlock(&this_rq->lock);
9570 * This CPU is going to be idle and blocked load of idle CPUs
9571 * need to be updated. Run the ilb locally as it is a good
9572 * candidate for ilb instead of waking up another idle CPU.
9573 * Kick an normal ilb if we failed to do the update.
9575 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9576 kick_ilb(NOHZ_STATS_KICK);
9577 raw_spin_lock(&this_rq->lock);
9580 #else /* !CONFIG_NO_HZ_COMMON */
9581 static inline void nohz_balancer_kick(struct rq *rq) { }
9583 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9588 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9589 #endif /* CONFIG_NO_HZ_COMMON */
9592 * idle_balance is called by schedule() if this_cpu is about to become
9593 * idle. Attempts to pull tasks from other CPUs.
9595 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9597 unsigned long next_balance = jiffies + HZ;
9598 int this_cpu = this_rq->cpu;
9599 struct sched_domain *sd;
9600 int pulled_task = 0;
9604 * We must set idle_stamp _before_ calling idle_balance(), such that we
9605 * measure the duration of idle_balance() as idle time.
9607 this_rq->idle_stamp = rq_clock(this_rq);
9610 * Do not pull tasks towards !active CPUs...
9612 if (!cpu_active(this_cpu))
9616 * This is OK, because current is on_cpu, which avoids it being picked
9617 * for load-balance and preemption/IRQs are still disabled avoiding
9618 * further scheduler activity on it and we're being very careful to
9619 * re-start the picking loop.
9621 rq_unpin_lock(this_rq, rf);
9623 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9624 !READ_ONCE(this_rq->rd->overload)) {
9627 sd = rcu_dereference_check_sched_domain(this_rq->sd);
9629 update_next_balance(sd, &next_balance);
9632 nohz_newidle_balance(this_rq);
9637 raw_spin_unlock(&this_rq->lock);
9639 update_blocked_averages(this_cpu);
9641 for_each_domain(this_cpu, sd) {
9642 int continue_balancing = 1;
9643 u64 t0, domain_cost;
9645 if (!(sd->flags & SD_LOAD_BALANCE))
9648 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9649 update_next_balance(sd, &next_balance);
9653 if (sd->flags & SD_BALANCE_NEWIDLE) {
9654 t0 = sched_clock_cpu(this_cpu);
9656 pulled_task = load_balance(this_cpu, this_rq,
9658 &continue_balancing);
9660 domain_cost = sched_clock_cpu(this_cpu) - t0;
9661 if (domain_cost > sd->max_newidle_lb_cost)
9662 sd->max_newidle_lb_cost = domain_cost;
9664 curr_cost += domain_cost;
9667 update_next_balance(sd, &next_balance);
9670 * Stop searching for tasks to pull if there are
9671 * now runnable tasks on this rq.
9673 if (pulled_task || this_rq->nr_running > 0)
9678 raw_spin_lock(&this_rq->lock);
9680 if (curr_cost > this_rq->max_idle_balance_cost)
9681 this_rq->max_idle_balance_cost = curr_cost;
9685 * While browsing the domains, we released the rq lock, a task could
9686 * have been enqueued in the meantime. Since we're not going idle,
9687 * pretend we pulled a task.
9689 if (this_rq->cfs.h_nr_running && !pulled_task)
9692 /* Move the next balance forward */
9693 if (time_after(this_rq->next_balance, next_balance))
9694 this_rq->next_balance = next_balance;
9696 /* Is there a task of a high priority class? */
9697 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9701 this_rq->idle_stamp = 0;
9703 rq_repin_lock(this_rq, rf);
9709 * run_rebalance_domains is triggered when needed from the scheduler tick.
9710 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9712 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9714 struct rq *this_rq = this_rq();
9715 enum cpu_idle_type idle = this_rq->idle_balance ?
9716 CPU_IDLE : CPU_NOT_IDLE;
9719 * If this CPU has a pending nohz_balance_kick, then do the
9720 * balancing on behalf of the other idle CPUs whose ticks are
9721 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9722 * give the idle CPUs a chance to load balance. Else we may
9723 * load balance only within the local sched_domain hierarchy
9724 * and abort nohz_idle_balance altogether if we pull some load.
9726 if (nohz_idle_balance(this_rq, idle))
9729 /* normal load balance */
9730 update_blocked_averages(this_rq->cpu);
9731 rebalance_domains(this_rq, idle);
9735 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9737 void trigger_load_balance(struct rq *rq)
9739 /* Don't need to rebalance while attached to NULL domain */
9740 if (unlikely(on_null_domain(rq)))
9743 if (time_after_eq(jiffies, rq->next_balance))
9744 raise_softirq(SCHED_SOFTIRQ);
9746 nohz_balancer_kick(rq);
9749 static void rq_online_fair(struct rq *rq)
9753 update_runtime_enabled(rq);
9756 static void rq_offline_fair(struct rq *rq)
9760 /* Ensure any throttled groups are reachable by pick_next_task */
9761 unthrottle_offline_cfs_rqs(rq);
9764 #endif /* CONFIG_SMP */
9767 * scheduler tick hitting a task of our scheduling class.
9769 * NOTE: This function can be called remotely by the tick offload that
9770 * goes along full dynticks. Therefore no local assumption can be made
9771 * and everything must be accessed through the @rq and @curr passed in
9774 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9776 struct cfs_rq *cfs_rq;
9777 struct sched_entity *se = &curr->se;
9779 for_each_sched_entity(se) {
9780 cfs_rq = cfs_rq_of(se);
9781 entity_tick(cfs_rq, se, queued);
9784 if (static_branch_unlikely(&sched_numa_balancing))
9785 task_tick_numa(rq, curr);
9787 update_misfit_status(curr, rq);
9791 * called on fork with the child task as argument from the parent's context
9792 * - child not yet on the tasklist
9793 * - preemption disabled
9795 static void task_fork_fair(struct task_struct *p)
9797 struct cfs_rq *cfs_rq;
9798 struct sched_entity *se = &p->se, *curr;
9799 struct rq *rq = this_rq();
9803 update_rq_clock(rq);
9805 cfs_rq = task_cfs_rq(current);
9806 curr = cfs_rq->curr;
9808 update_curr(cfs_rq);
9809 se->vruntime = curr->vruntime;
9811 place_entity(cfs_rq, se, 1);
9813 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9815 * Upon rescheduling, sched_class::put_prev_task() will place
9816 * 'current' within the tree based on its new key value.
9818 swap(curr->vruntime, se->vruntime);
9822 se->vruntime -= cfs_rq->min_vruntime;
9827 * Priority of the task has changed. Check to see if we preempt
9831 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9833 if (!task_on_rq_queued(p))
9837 * Reschedule if we are currently running on this runqueue and
9838 * our priority decreased, or if we are not currently running on
9839 * this runqueue and our priority is higher than the current's
9841 if (rq->curr == p) {
9842 if (p->prio > oldprio)
9845 check_preempt_curr(rq, p, 0);
9848 static inline bool vruntime_normalized(struct task_struct *p)
9850 struct sched_entity *se = &p->se;
9853 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9854 * the dequeue_entity(.flags=0) will already have normalized the
9861 * When !on_rq, vruntime of the task has usually NOT been normalized.
9862 * But there are some cases where it has already been normalized:
9864 * - A forked child which is waiting for being woken up by
9865 * wake_up_new_task().
9866 * - A task which has been woken up by try_to_wake_up() and
9867 * waiting for actually being woken up by sched_ttwu_pending().
9869 if (!se->sum_exec_runtime ||
9870 (p->state == TASK_WAKING && p->sched_remote_wakeup))
9876 #ifdef CONFIG_FAIR_GROUP_SCHED
9878 * Propagate the changes of the sched_entity across the tg tree to make it
9879 * visible to the root
9881 static void propagate_entity_cfs_rq(struct sched_entity *se)
9883 struct cfs_rq *cfs_rq;
9885 /* Start to propagate at parent */
9888 for_each_sched_entity(se) {
9889 cfs_rq = cfs_rq_of(se);
9891 if (cfs_rq_throttled(cfs_rq))
9894 update_load_avg(cfs_rq, se, UPDATE_TG);
9898 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9901 static void detach_entity_cfs_rq(struct sched_entity *se)
9903 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9905 /* Catch up with the cfs_rq and remove our load when we leave */
9906 update_load_avg(cfs_rq, se, 0);
9907 detach_entity_load_avg(cfs_rq, se);
9908 update_tg_load_avg(cfs_rq, false);
9909 propagate_entity_cfs_rq(se);
9912 static void attach_entity_cfs_rq(struct sched_entity *se)
9914 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9916 #ifdef CONFIG_FAIR_GROUP_SCHED
9918 * Since the real-depth could have been changed (only FAIR
9919 * class maintain depth value), reset depth properly.
9921 se->depth = se->parent ? se->parent->depth + 1 : 0;
9924 /* Synchronize entity with its cfs_rq */
9925 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9926 attach_entity_load_avg(cfs_rq, se, 0);
9927 update_tg_load_avg(cfs_rq, false);
9928 propagate_entity_cfs_rq(se);
9931 static void detach_task_cfs_rq(struct task_struct *p)
9933 struct sched_entity *se = &p->se;
9934 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9936 if (!vruntime_normalized(p)) {
9938 * Fix up our vruntime so that the current sleep doesn't
9939 * cause 'unlimited' sleep bonus.
9941 place_entity(cfs_rq, se, 0);
9942 se->vruntime -= cfs_rq->min_vruntime;
9945 detach_entity_cfs_rq(se);
9948 static void attach_task_cfs_rq(struct task_struct *p)
9950 struct sched_entity *se = &p->se;
9951 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9953 attach_entity_cfs_rq(se);
9955 if (!vruntime_normalized(p))
9956 se->vruntime += cfs_rq->min_vruntime;
9959 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9961 detach_task_cfs_rq(p);
9964 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9966 attach_task_cfs_rq(p);
9968 if (task_on_rq_queued(p)) {
9970 * We were most likely switched from sched_rt, so
9971 * kick off the schedule if running, otherwise just see
9972 * if we can still preempt the current task.
9977 check_preempt_curr(rq, p, 0);
9981 /* Account for a task changing its policy or group.
9983 * This routine is mostly called to set cfs_rq->curr field when a task
9984 * migrates between groups/classes.
9986 static void set_curr_task_fair(struct rq *rq)
9988 struct sched_entity *se = &rq->curr->se;
9990 for_each_sched_entity(se) {
9991 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9993 set_next_entity(cfs_rq, se);
9994 /* ensure bandwidth has been allocated on our new cfs_rq */
9995 account_cfs_rq_runtime(cfs_rq, 0);
9999 void init_cfs_rq(struct cfs_rq *cfs_rq)
10001 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10002 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10003 #ifndef CONFIG_64BIT
10004 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10007 raw_spin_lock_init(&cfs_rq->removed.lock);
10011 #ifdef CONFIG_FAIR_GROUP_SCHED
10012 static void task_set_group_fair(struct task_struct *p)
10014 struct sched_entity *se = &p->se;
10016 set_task_rq(p, task_cpu(p));
10017 se->depth = se->parent ? se->parent->depth + 1 : 0;
10020 static void task_move_group_fair(struct task_struct *p)
10022 detach_task_cfs_rq(p);
10023 set_task_rq(p, task_cpu(p));
10026 /* Tell se's cfs_rq has been changed -- migrated */
10027 p->se.avg.last_update_time = 0;
10029 attach_task_cfs_rq(p);
10032 static void task_change_group_fair(struct task_struct *p, int type)
10035 case TASK_SET_GROUP:
10036 task_set_group_fair(p);
10039 case TASK_MOVE_GROUP:
10040 task_move_group_fair(p);
10045 void free_fair_sched_group(struct task_group *tg)
10049 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10051 for_each_possible_cpu(i) {
10053 kfree(tg->cfs_rq[i]);
10062 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10064 struct sched_entity *se;
10065 struct cfs_rq *cfs_rq;
10068 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10071 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10075 tg->shares = NICE_0_LOAD;
10077 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10079 for_each_possible_cpu(i) {
10080 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10081 GFP_KERNEL, cpu_to_node(i));
10085 se = kzalloc_node(sizeof(struct sched_entity),
10086 GFP_KERNEL, cpu_to_node(i));
10090 init_cfs_rq(cfs_rq);
10091 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10092 init_entity_runnable_average(se);
10103 void online_fair_sched_group(struct task_group *tg)
10105 struct sched_entity *se;
10109 for_each_possible_cpu(i) {
10113 raw_spin_lock_irq(&rq->lock);
10114 update_rq_clock(rq);
10115 attach_entity_cfs_rq(se);
10116 sync_throttle(tg, i);
10117 raw_spin_unlock_irq(&rq->lock);
10121 void unregister_fair_sched_group(struct task_group *tg)
10123 unsigned long flags;
10127 for_each_possible_cpu(cpu) {
10129 remove_entity_load_avg(tg->se[cpu]);
10132 * Only empty task groups can be destroyed; so we can speculatively
10133 * check on_list without danger of it being re-added.
10135 if (!tg->cfs_rq[cpu]->on_list)
10140 raw_spin_lock_irqsave(&rq->lock, flags);
10141 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10142 raw_spin_unlock_irqrestore(&rq->lock, flags);
10146 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10147 struct sched_entity *se, int cpu,
10148 struct sched_entity *parent)
10150 struct rq *rq = cpu_rq(cpu);
10154 init_cfs_rq_runtime(cfs_rq);
10156 tg->cfs_rq[cpu] = cfs_rq;
10159 /* se could be NULL for root_task_group */
10164 se->cfs_rq = &rq->cfs;
10167 se->cfs_rq = parent->my_q;
10168 se->depth = parent->depth + 1;
10172 /* guarantee group entities always have weight */
10173 update_load_set(&se->load, NICE_0_LOAD);
10174 se->parent = parent;
10177 static DEFINE_MUTEX(shares_mutex);
10179 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10184 * We can't change the weight of the root cgroup.
10189 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10191 mutex_lock(&shares_mutex);
10192 if (tg->shares == shares)
10195 tg->shares = shares;
10196 for_each_possible_cpu(i) {
10197 struct rq *rq = cpu_rq(i);
10198 struct sched_entity *se = tg->se[i];
10199 struct rq_flags rf;
10201 /* Propagate contribution to hierarchy */
10202 rq_lock_irqsave(rq, &rf);
10203 update_rq_clock(rq);
10204 for_each_sched_entity(se) {
10205 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10206 update_cfs_group(se);
10208 rq_unlock_irqrestore(rq, &rf);
10212 mutex_unlock(&shares_mutex);
10215 #else /* CONFIG_FAIR_GROUP_SCHED */
10217 void free_fair_sched_group(struct task_group *tg) { }
10219 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10224 void online_fair_sched_group(struct task_group *tg) { }
10226 void unregister_fair_sched_group(struct task_group *tg) { }
10228 #endif /* CONFIG_FAIR_GROUP_SCHED */
10231 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10233 struct sched_entity *se = &task->se;
10234 unsigned int rr_interval = 0;
10237 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10240 if (rq->cfs.load.weight)
10241 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10243 return rr_interval;
10247 * All the scheduling class methods:
10249 const struct sched_class fair_sched_class = {
10250 .next = &idle_sched_class,
10251 .enqueue_task = enqueue_task_fair,
10252 .dequeue_task = dequeue_task_fair,
10253 .yield_task = yield_task_fair,
10254 .yield_to_task = yield_to_task_fair,
10256 .check_preempt_curr = check_preempt_wakeup,
10258 .pick_next_task = pick_next_task_fair,
10259 .put_prev_task = put_prev_task_fair,
10262 .select_task_rq = select_task_rq_fair,
10263 .migrate_task_rq = migrate_task_rq_fair,
10265 .rq_online = rq_online_fair,
10266 .rq_offline = rq_offline_fair,
10268 .task_dead = task_dead_fair,
10269 .set_cpus_allowed = set_cpus_allowed_common,
10272 .set_curr_task = set_curr_task_fair,
10273 .task_tick = task_tick_fair,
10274 .task_fork = task_fork_fair,
10276 .prio_changed = prio_changed_fair,
10277 .switched_from = switched_from_fair,
10278 .switched_to = switched_to_fair,
10280 .get_rr_interval = get_rr_interval_fair,
10282 .update_curr = update_curr_fair,
10284 #ifdef CONFIG_FAIR_GROUP_SCHED
10285 .task_change_group = task_change_group_fair,
10289 #ifdef CONFIG_SCHED_DEBUG
10290 void print_cfs_stats(struct seq_file *m, int cpu)
10292 struct cfs_rq *cfs_rq, *pos;
10295 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10296 print_cfs_rq(m, cpu, cfs_rq);
10300 #ifdef CONFIG_NUMA_BALANCING
10301 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10304 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10306 for_each_online_node(node) {
10307 if (p->numa_faults) {
10308 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10309 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10311 if (p->numa_group) {
10312 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10313 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10315 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10318 #endif /* CONFIG_NUMA_BALANCING */
10319 #endif /* CONFIG_SCHED_DEBUG */
10321 __init void init_sched_fair_class(void)
10324 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10326 #ifdef CONFIG_NO_HZ_COMMON
10327 nohz.next_balance = jiffies;
10328 nohz.next_blocked = jiffies;
10329 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);