2 * Copyright (C) 2010 Red Hat, Inc.
3 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #include <linux/module.h>
15 #include <linux/compiler.h>
17 #include <linux/iomap.h>
18 #include <linux/uaccess.h>
19 #include <linux/gfp.h>
20 #include <linux/migrate.h>
22 #include <linux/mm_inline.h>
23 #include <linux/swap.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/backing-dev.h>
29 #include <linux/buffer_head.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/dax.h>
32 #include <linux/sched/signal.h>
37 * Execute a iomap write on a segment of the mapping that spans a
38 * contiguous range of pages that have identical block mapping state.
40 * This avoids the need to map pages individually, do individual allocations
41 * for each page and most importantly avoid the need for filesystem specific
42 * locking per page. Instead, all the operations are amortised over the entire
43 * range of pages. It is assumed that the filesystems will lock whatever
44 * resources they require in the iomap_begin call, and release them in the
48 iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags,
49 const struct iomap_ops *ops, void *data, iomap_actor_t actor)
51 struct iomap iomap = { 0 };
52 loff_t written = 0, ret;
55 * Need to map a range from start position for length bytes. This can
56 * span multiple pages - it is only guaranteed to return a range of a
57 * single type of pages (e.g. all into a hole, all mapped or all
58 * unwritten). Failure at this point has nothing to undo.
60 * If allocation is required for this range, reserve the space now so
61 * that the allocation is guaranteed to succeed later on. Once we copy
62 * the data into the page cache pages, then we cannot fail otherwise we
63 * expose transient stale data. If the reserve fails, we can safely
64 * back out at this point as there is nothing to undo.
66 ret = ops->iomap_begin(inode, pos, length, flags, &iomap);
69 if (WARN_ON(iomap.offset > pos))
71 if (WARN_ON(iomap.length == 0))
75 * Cut down the length to the one actually provided by the filesystem,
76 * as it might not be able to give us the whole size that we requested.
78 if (iomap.offset + iomap.length < pos + length)
79 length = iomap.offset + iomap.length - pos;
82 * Now that we have guaranteed that the space allocation will succeed.
83 * we can do the copy-in page by page without having to worry about
84 * failures exposing transient data.
86 written = actor(inode, pos, length, data, &iomap);
89 * Now the data has been copied, commit the range we've copied. This
90 * should not fail unless the filesystem has had a fatal error.
93 ret = ops->iomap_end(inode, pos, length,
94 written > 0 ? written : 0,
98 return written ? written : ret;
102 iomap_sector(struct iomap *iomap, loff_t pos)
104 return (iomap->addr + pos - iomap->offset) >> SECTOR_SHIFT;
107 static struct iomap_page *
108 iomap_page_create(struct inode *inode, struct page *page)
110 struct iomap_page *iop = to_iomap_page(page);
112 if (iop || i_blocksize(inode) == PAGE_SIZE)
115 iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
116 atomic_set(&iop->read_count, 0);
117 atomic_set(&iop->write_count, 0);
118 bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
119 set_page_private(page, (unsigned long)iop);
120 SetPagePrivate(page);
125 iomap_page_release(struct page *page)
127 struct iomap_page *iop = to_iomap_page(page);
131 WARN_ON_ONCE(atomic_read(&iop->read_count));
132 WARN_ON_ONCE(atomic_read(&iop->write_count));
133 ClearPagePrivate(page);
134 set_page_private(page, 0);
139 * Calculate the range inside the page that we actually need to read.
142 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
143 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
145 loff_t orig_pos = *pos;
146 loff_t isize = i_size_read(inode);
147 unsigned block_bits = inode->i_blkbits;
148 unsigned block_size = (1 << block_bits);
149 unsigned poff = offset_in_page(*pos);
150 unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
151 unsigned first = poff >> block_bits;
152 unsigned last = (poff + plen - 1) >> block_bits;
155 * If the block size is smaller than the page size we need to check the
156 * per-block uptodate status and adjust the offset and length if needed
157 * to avoid reading in already uptodate ranges.
162 /* move forward for each leading block marked uptodate */
163 for (i = first; i <= last; i++) {
164 if (!test_bit(i, iop->uptodate))
172 /* truncate len if we find any trailing uptodate block(s) */
173 for ( ; i <= last; i++) {
174 if (test_bit(i, iop->uptodate)) {
175 plen -= (last - i + 1) * block_size;
183 * If the extent spans the block that contains the i_size we need to
184 * handle both halves separately so that we properly zero data in the
185 * page cache for blocks that are entirely outside of i_size.
187 if (orig_pos <= isize && orig_pos + length > isize) {
188 unsigned end = offset_in_page(isize - 1) >> block_bits;
190 if (first <= end && last > end)
191 plen -= (last - end) * block_size;
199 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
201 struct iomap_page *iop = to_iomap_page(page);
202 struct inode *inode = page->mapping->host;
203 unsigned first = off >> inode->i_blkbits;
204 unsigned last = (off + len - 1) >> inode->i_blkbits;
206 bool uptodate = true;
209 for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
210 if (i >= first && i <= last)
211 set_bit(i, iop->uptodate);
212 else if (!test_bit(i, iop->uptodate))
217 if (uptodate && !PageError(page))
218 SetPageUptodate(page);
222 iomap_read_finish(struct iomap_page *iop, struct page *page)
224 if (!iop || atomic_dec_and_test(&iop->read_count))
229 iomap_read_page_end_io(struct bio_vec *bvec, int error)
231 struct page *page = bvec->bv_page;
232 struct iomap_page *iop = to_iomap_page(page);
234 if (unlikely(error)) {
235 ClearPageUptodate(page);
238 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
241 iomap_read_finish(iop, page);
245 iomap_read_inline_data(struct inode *inode, struct page *page,
248 size_t size = i_size_read(inode);
251 if (PageUptodate(page))
255 BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
257 addr = kmap_atomic(page);
258 memcpy(addr, iomap->inline_data, size);
259 memset(addr + size, 0, PAGE_SIZE - size);
261 SetPageUptodate(page);
265 iomap_read_end_io(struct bio *bio)
267 int error = blk_status_to_errno(bio->bi_status);
268 struct bio_vec *bvec;
271 bio_for_each_segment_all(bvec, bio, i)
272 iomap_read_page_end_io(bvec, error);
276 struct iomap_readpage_ctx {
277 struct page *cur_page;
278 bool cur_page_in_bio;
281 struct list_head *pages;
285 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
288 struct iomap_readpage_ctx *ctx = data;
289 struct page *page = ctx->cur_page;
290 struct iomap_page *iop = iomap_page_create(inode, page);
291 bool is_contig = false;
292 loff_t orig_pos = pos;
296 if (iomap->type == IOMAP_INLINE) {
298 iomap_read_inline_data(inode, page, iomap);
302 /* zero post-eof blocks as the page may be mapped */
303 iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
307 if (iomap->type != IOMAP_MAPPED || pos >= i_size_read(inode)) {
308 zero_user(page, poff, plen);
309 iomap_set_range_uptodate(page, poff, plen);
313 ctx->cur_page_in_bio = true;
316 * Try to merge into a previous segment if we can.
318 sector = iomap_sector(iomap, pos);
319 if (ctx->bio && bio_end_sector(ctx->bio) == sector) {
320 if (__bio_try_merge_page(ctx->bio, page, plen, poff))
326 * If we start a new segment we need to increase the read count, and we
327 * need to do so before submitting any previous full bio to make sure
328 * that we don't prematurely unlock the page.
331 atomic_inc(&iop->read_count);
333 if (!ctx->bio || !is_contig || bio_full(ctx->bio)) {
334 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
335 int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
338 submit_bio(ctx->bio);
340 if (ctx->is_readahead) /* same as readahead_gfp_mask */
341 gfp |= __GFP_NORETRY | __GFP_NOWARN;
342 ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
343 ctx->bio->bi_opf = REQ_OP_READ;
344 if (ctx->is_readahead)
345 ctx->bio->bi_opf |= REQ_RAHEAD;
346 ctx->bio->bi_iter.bi_sector = sector;
347 bio_set_dev(ctx->bio, iomap->bdev);
348 ctx->bio->bi_end_io = iomap_read_end_io;
351 __bio_add_page(ctx->bio, page, plen, poff);
354 * Move the caller beyond our range so that it keeps making progress.
355 * For that we have to include any leading non-uptodate ranges, but
356 * we can skip trailing ones as they will be handled in the next
359 return pos - orig_pos + plen;
363 iomap_readpage(struct page *page, const struct iomap_ops *ops)
365 struct iomap_readpage_ctx ctx = { .cur_page = page };
366 struct inode *inode = page->mapping->host;
370 for (poff = 0; poff < PAGE_SIZE; poff += ret) {
371 ret = iomap_apply(inode, page_offset(page) + poff,
372 PAGE_SIZE - poff, 0, ops, &ctx,
373 iomap_readpage_actor);
375 WARN_ON_ONCE(ret == 0);
383 WARN_ON_ONCE(!ctx.cur_page_in_bio);
385 WARN_ON_ONCE(ctx.cur_page_in_bio);
390 * Just like mpage_readpages and block_read_full_page we always
391 * return 0 and just mark the page as PageError on errors. This
392 * should be cleaned up all through the stack eventually.
396 EXPORT_SYMBOL_GPL(iomap_readpage);
399 iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
400 loff_t length, loff_t *done)
402 while (!list_empty(pages)) {
403 struct page *page = lru_to_page(pages);
405 if (page_offset(page) >= (u64)pos + length)
408 list_del(&page->lru);
409 if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
414 * If we already have a page in the page cache at index we are
415 * done. Upper layers don't care if it is uptodate after the
416 * readpages call itself as every page gets checked again once
427 iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
428 void *data, struct iomap *iomap)
430 struct iomap_readpage_ctx *ctx = data;
433 for (done = 0; done < length; done += ret) {
434 if (ctx->cur_page && offset_in_page(pos + done) == 0) {
435 if (!ctx->cur_page_in_bio)
436 unlock_page(ctx->cur_page);
437 put_page(ctx->cur_page);
438 ctx->cur_page = NULL;
440 if (!ctx->cur_page) {
441 ctx->cur_page = iomap_next_page(inode, ctx->pages,
445 ctx->cur_page_in_bio = false;
447 ret = iomap_readpage_actor(inode, pos + done, length - done,
455 iomap_readpages(struct address_space *mapping, struct list_head *pages,
456 unsigned nr_pages, const struct iomap_ops *ops)
458 struct iomap_readpage_ctx ctx = {
460 .is_readahead = true,
462 loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
463 loff_t last = page_offset(list_entry(pages->next, struct page, lru));
464 loff_t length = last - pos + PAGE_SIZE, ret = 0;
467 ret = iomap_apply(mapping->host, pos, length, 0, ops,
468 &ctx, iomap_readpages_actor);
470 WARN_ON_ONCE(ret == 0);
481 if (!ctx.cur_page_in_bio)
482 unlock_page(ctx.cur_page);
483 put_page(ctx.cur_page);
487 * Check that we didn't lose a page due to the arcance calling
490 WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
493 EXPORT_SYMBOL_GPL(iomap_readpages);
496 iomap_is_partially_uptodate(struct page *page, unsigned long from,
499 struct iomap_page *iop = to_iomap_page(page);
500 struct inode *inode = page->mapping->host;
501 unsigned first = from >> inode->i_blkbits;
502 unsigned last = (from + count - 1) >> inode->i_blkbits;
506 for (i = first; i <= last; i++)
507 if (!test_bit(i, iop->uptodate))
514 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
517 iomap_releasepage(struct page *page, gfp_t gfp_mask)
520 * mm accommodates an old ext3 case where clean pages might not have had
521 * the dirty bit cleared. Thus, it can send actual dirty pages to
522 * ->releasepage() via shrink_active_list(), skip those here.
524 if (PageDirty(page) || PageWriteback(page))
526 iomap_page_release(page);
529 EXPORT_SYMBOL_GPL(iomap_releasepage);
532 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
535 * If we are invalidating the entire page, clear the dirty state from it
536 * and release it to avoid unnecessary buildup of the LRU.
538 if (offset == 0 && len == PAGE_SIZE) {
539 WARN_ON_ONCE(PageWriteback(page));
540 cancel_dirty_page(page);
541 iomap_page_release(page);
544 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
546 #ifdef CONFIG_MIGRATION
548 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
549 struct page *page, enum migrate_mode mode)
553 ret = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
554 if (ret != MIGRATEPAGE_SUCCESS)
557 if (page_has_private(page)) {
558 ClearPagePrivate(page);
559 set_page_private(newpage, page_private(page));
560 set_page_private(page, 0);
561 SetPagePrivate(newpage);
564 if (mode != MIGRATE_SYNC_NO_COPY)
565 migrate_page_copy(newpage, page);
567 migrate_page_states(newpage, page);
568 return MIGRATEPAGE_SUCCESS;
570 EXPORT_SYMBOL_GPL(iomap_migrate_page);
571 #endif /* CONFIG_MIGRATION */
574 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
576 loff_t i_size = i_size_read(inode);
579 * Only truncate newly allocated pages beyoned EOF, even if the
580 * write started inside the existing inode size.
582 if (pos + len > i_size)
583 truncate_pagecache_range(inode, max(pos, i_size), pos + len);
587 iomap_read_page_sync(struct inode *inode, loff_t block_start, struct page *page,
588 unsigned poff, unsigned plen, unsigned from, unsigned to,
594 if (iomap->type != IOMAP_MAPPED || block_start >= i_size_read(inode)) {
595 zero_user_segments(page, poff, from, to, poff + plen);
596 iomap_set_range_uptodate(page, poff, plen);
600 bio_init(&bio, &bvec, 1);
601 bio.bi_opf = REQ_OP_READ;
602 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
603 bio_set_dev(&bio, iomap->bdev);
604 __bio_add_page(&bio, page, plen, poff);
605 return submit_bio_wait(&bio);
609 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len,
610 struct page *page, struct iomap *iomap)
612 struct iomap_page *iop = iomap_page_create(inode, page);
613 loff_t block_size = i_blocksize(inode);
614 loff_t block_start = pos & ~(block_size - 1);
615 loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
616 unsigned from = offset_in_page(pos), to = from + len, poff, plen;
619 if (PageUptodate(page))
623 iomap_adjust_read_range(inode, iop, &block_start,
624 block_end - block_start, &poff, &plen);
628 if ((from > poff && from < poff + plen) ||
629 (to > poff && to < poff + plen)) {
630 status = iomap_read_page_sync(inode, block_start, page,
631 poff, plen, from, to, iomap);
636 } while ((block_start += plen) < block_end);
642 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
643 struct page **pagep, struct iomap *iomap)
645 pgoff_t index = pos >> PAGE_SHIFT;
649 BUG_ON(pos + len > iomap->offset + iomap->length);
651 if (fatal_signal_pending(current))
654 page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
658 if (iomap->type == IOMAP_INLINE)
659 iomap_read_inline_data(inode, page, iomap);
660 else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
661 status = __block_write_begin_int(page, pos, len, NULL, iomap);
663 status = __iomap_write_begin(inode, pos, len, page, iomap);
664 if (unlikely(status)) {
669 iomap_write_failed(inode, pos, len);
677 iomap_set_page_dirty(struct page *page)
679 struct address_space *mapping = page_mapping(page);
682 if (unlikely(!mapping))
683 return !TestSetPageDirty(page);
686 * Lock out page->mem_cgroup migration to keep PageDirty
687 * synchronized with per-memcg dirty page counters.
689 lock_page_memcg(page);
690 newly_dirty = !TestSetPageDirty(page);
692 __set_page_dirty(page, mapping, 0);
693 unlock_page_memcg(page);
696 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
699 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
702 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
703 unsigned copied, struct page *page, struct iomap *iomap)
705 flush_dcache_page(page);
708 * The blocks that were entirely written will now be uptodate, so we
709 * don't have to worry about a readpage reading them and overwriting a
710 * partial write. However if we have encountered a short write and only
711 * partially written into a block, it will not be marked uptodate, so a
712 * readpage might come in and destroy our partial write.
714 * Do the simplest thing, and just treat any short write to a non
715 * uptodate page as a zero-length write, and force the caller to redo
718 if (unlikely(copied < len && !PageUptodate(page))) {
721 iomap_set_range_uptodate(page, offset_in_page(pos), len);
722 iomap_set_page_dirty(page);
724 return __generic_write_end(inode, pos, copied, page);
728 iomap_write_end_inline(struct inode *inode, struct page *page,
729 struct iomap *iomap, loff_t pos, unsigned copied)
733 WARN_ON_ONCE(!PageUptodate(page));
734 BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
736 addr = kmap_atomic(page);
737 memcpy(iomap->inline_data + pos, addr + pos, copied);
740 mark_inode_dirty(inode);
741 __generic_write_end(inode, pos, copied, page);
746 iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
747 unsigned copied, struct page *page, struct iomap *iomap)
751 if (iomap->type == IOMAP_INLINE) {
752 ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
753 } else if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
754 ret = generic_write_end(NULL, inode->i_mapping, pos, len,
757 ret = __iomap_write_end(inode, pos, len, copied, page, iomap);
760 if (iomap->page_done)
761 iomap->page_done(inode, pos, copied, page, iomap);
764 iomap_write_failed(inode, pos, len);
769 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
772 struct iov_iter *i = data;
775 unsigned int flags = AOP_FLAG_NOFS;
779 unsigned long offset; /* Offset into pagecache page */
780 unsigned long bytes; /* Bytes to write to page */
781 size_t copied; /* Bytes copied from user */
783 offset = offset_in_page(pos);
784 bytes = min_t(unsigned long, PAGE_SIZE - offset,
791 * Bring in the user page that we will copy from _first_.
792 * Otherwise there's a nasty deadlock on copying from the
793 * same page as we're writing to, without it being marked
796 * Not only is this an optimisation, but it is also required
797 * to check that the address is actually valid, when atomic
798 * usercopies are used, below.
800 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
805 status = iomap_write_begin(inode, pos, bytes, flags, &page,
807 if (unlikely(status))
810 if (mapping_writably_mapped(inode->i_mapping))
811 flush_dcache_page(page);
813 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
815 flush_dcache_page(page);
817 status = iomap_write_end(inode, pos, bytes, copied, page,
819 if (unlikely(status < 0))
825 iov_iter_advance(i, copied);
826 if (unlikely(copied == 0)) {
828 * If we were unable to copy any data at all, we must
829 * fall back to a single segment length write.
831 * If we didn't fallback here, we could livelock
832 * because not all segments in the iov can be copied at
833 * once without a pagefault.
835 bytes = min_t(unsigned long, PAGE_SIZE - offset,
836 iov_iter_single_seg_count(i));
843 balance_dirty_pages_ratelimited(inode->i_mapping);
844 } while (iov_iter_count(i) && length);
846 return written ? written : status;
850 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
851 const struct iomap_ops *ops)
853 struct inode *inode = iocb->ki_filp->f_mapping->host;
854 loff_t pos = iocb->ki_pos, ret = 0, written = 0;
856 while (iov_iter_count(iter)) {
857 ret = iomap_apply(inode, pos, iov_iter_count(iter),
858 IOMAP_WRITE, ops, iter, iomap_write_actor);
865 return written ? written : ret;
867 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
870 __iomap_read_page(struct inode *inode, loff_t offset)
872 struct address_space *mapping = inode->i_mapping;
875 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
878 if (!PageUptodate(page)) {
880 return ERR_PTR(-EIO);
886 iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
893 struct page *page, *rpage;
894 unsigned long offset; /* Offset into pagecache page */
895 unsigned long bytes; /* Bytes to write to page */
897 offset = offset_in_page(pos);
898 bytes = min_t(loff_t, PAGE_SIZE - offset, length);
900 rpage = __iomap_read_page(inode, pos);
902 return PTR_ERR(rpage);
904 status = iomap_write_begin(inode, pos, bytes,
905 AOP_FLAG_NOFS, &page, iomap);
907 if (unlikely(status))
910 WARN_ON_ONCE(!PageUptodate(page));
912 status = iomap_write_end(inode, pos, bytes, bytes, page, iomap);
913 if (unlikely(status <= 0)) {
914 if (WARN_ON_ONCE(status == 0))
925 balance_dirty_pages_ratelimited(inode->i_mapping);
932 iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
933 const struct iomap_ops *ops)
938 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
948 EXPORT_SYMBOL_GPL(iomap_file_dirty);
950 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
951 unsigned bytes, struct iomap *iomap)
956 status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page,
961 zero_user(page, offset, bytes);
962 mark_page_accessed(page);
964 return iomap_write_end(inode, pos, bytes, bytes, page, iomap);
967 static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
970 return __dax_zero_page_range(iomap->bdev, iomap->dax_dev,
971 iomap_sector(iomap, pos & PAGE_MASK), offset, bytes);
975 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
976 void *data, struct iomap *iomap)
978 bool *did_zero = data;
982 /* already zeroed? we're done. */
983 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
987 unsigned offset, bytes;
989 offset = offset_in_page(pos);
990 bytes = min_t(loff_t, PAGE_SIZE - offset, count);
993 status = iomap_dax_zero(pos, offset, bytes, iomap);
995 status = iomap_zero(inode, pos, offset, bytes, iomap);
1004 } while (count > 0);
1010 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1011 const struct iomap_ops *ops)
1016 ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
1017 ops, did_zero, iomap_zero_range_actor);
1027 EXPORT_SYMBOL_GPL(iomap_zero_range);
1030 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1031 const struct iomap_ops *ops)
1033 unsigned int blocksize = i_blocksize(inode);
1034 unsigned int off = pos & (blocksize - 1);
1036 /* Block boundary? Nothing to do */
1039 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1041 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1044 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1045 void *data, struct iomap *iomap)
1047 struct page *page = data;
1050 if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1051 ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1054 block_commit_write(page, 0, length);
1056 WARN_ON_ONCE(!PageUptodate(page));
1057 iomap_page_create(inode, page);
1058 set_page_dirty(page);
1064 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1066 struct page *page = vmf->page;
1067 struct inode *inode = file_inode(vmf->vma->vm_file);
1068 unsigned long length;
1069 loff_t offset, size;
1073 size = i_size_read(inode);
1074 if ((page->mapping != inode->i_mapping) ||
1075 (page_offset(page) > size)) {
1076 /* We overload EFAULT to mean page got truncated */
1081 /* page is wholly or partially inside EOF */
1082 if (((page->index + 1) << PAGE_SHIFT) > size)
1083 length = offset_in_page(size);
1087 offset = page_offset(page);
1088 while (length > 0) {
1089 ret = iomap_apply(inode, offset, length,
1090 IOMAP_WRITE | IOMAP_FAULT, ops, page,
1091 iomap_page_mkwrite_actor);
1092 if (unlikely(ret <= 0))
1098 wait_for_stable_page(page);
1099 return VM_FAULT_LOCKED;
1102 return block_page_mkwrite_return(ret);
1104 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1107 struct fiemap_extent_info *fi;
1111 static int iomap_to_fiemap(struct fiemap_extent_info *fi,
1112 struct iomap *iomap, u32 flags)
1114 switch (iomap->type) {
1118 case IOMAP_DELALLOC:
1119 flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN;
1123 case IOMAP_UNWRITTEN:
1124 flags |= FIEMAP_EXTENT_UNWRITTEN;
1127 flags |= FIEMAP_EXTENT_DATA_INLINE;
1131 if (iomap->flags & IOMAP_F_MERGED)
1132 flags |= FIEMAP_EXTENT_MERGED;
1133 if (iomap->flags & IOMAP_F_SHARED)
1134 flags |= FIEMAP_EXTENT_SHARED;
1136 return fiemap_fill_next_extent(fi, iomap->offset,
1137 iomap->addr != IOMAP_NULL_ADDR ? iomap->addr : 0,
1138 iomap->length, flags);
1142 iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1143 struct iomap *iomap)
1145 struct fiemap_ctx *ctx = data;
1146 loff_t ret = length;
1148 if (iomap->type == IOMAP_HOLE)
1151 ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0);
1154 case 0: /* success */
1156 case 1: /* extent array full */
1163 int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi,
1164 loff_t start, loff_t len, const struct iomap_ops *ops)
1166 struct fiemap_ctx ctx;
1169 memset(&ctx, 0, sizeof(ctx));
1171 ctx.prev.type = IOMAP_HOLE;
1173 ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC);
1177 if (fi->fi_flags & FIEMAP_FLAG_SYNC) {
1178 ret = filemap_write_and_wait(inode->i_mapping);
1184 ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx,
1185 iomap_fiemap_actor);
1186 /* inode with no (attribute) mapping will give ENOENT */
1198 if (ctx.prev.type != IOMAP_HOLE) {
1199 ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST);
1206 EXPORT_SYMBOL_GPL(iomap_fiemap);
1209 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
1210 * Returns true if found and updates @lastoff to the offset in file.
1213 page_seek_hole_data(struct inode *inode, struct page *page, loff_t *lastoff,
1216 const struct address_space_operations *ops = inode->i_mapping->a_ops;
1217 unsigned int bsize = i_blocksize(inode), off;
1218 bool seek_data = whence == SEEK_DATA;
1219 loff_t poff = page_offset(page);
1221 if (WARN_ON_ONCE(*lastoff >= poff + PAGE_SIZE))
1224 if (*lastoff < poff) {
1226 * Last offset smaller than the start of the page means we found
1229 if (whence == SEEK_HOLE)
1235 * Just check the page unless we can and should check block ranges:
1237 if (bsize == PAGE_SIZE || !ops->is_partially_uptodate)
1238 return PageUptodate(page) == seek_data;
1241 if (unlikely(page->mapping != inode->i_mapping))
1242 goto out_unlock_not_found;
1244 for (off = 0; off < PAGE_SIZE; off += bsize) {
1245 if (offset_in_page(*lastoff) >= off + bsize)
1247 if (ops->is_partially_uptodate(page, off, bsize) == seek_data) {
1251 *lastoff = poff + off + bsize;
1254 out_unlock_not_found:
1260 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
1262 * Within unwritten extents, the page cache determines which parts are holes
1263 * and which are data: uptodate buffer heads count as data; everything else
1266 * Returns the resulting offset on successs, and -ENOENT otherwise.
1269 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
1272 pgoff_t index = offset >> PAGE_SHIFT;
1273 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1274 loff_t lastoff = offset;
1275 struct pagevec pvec;
1280 pagevec_init(&pvec);
1283 unsigned nr_pages, i;
1285 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
1290 for (i = 0; i < nr_pages; i++) {
1291 struct page *page = pvec.pages[i];
1293 if (page_seek_hole_data(inode, page, &lastoff, whence))
1295 lastoff = page_offset(page) + PAGE_SIZE;
1297 pagevec_release(&pvec);
1298 } while (index < end);
1300 /* When no page at lastoff and we are not done, we found a hole. */
1301 if (whence != SEEK_HOLE)
1305 if (lastoff < offset + length)
1310 pagevec_release(&pvec);
1316 iomap_seek_hole_actor(struct inode *inode, loff_t offset, loff_t length,
1317 void *data, struct iomap *iomap)
1319 switch (iomap->type) {
1320 case IOMAP_UNWRITTEN:
1321 offset = page_cache_seek_hole_data(inode, offset, length,
1327 *(loff_t *)data = offset;
1335 iomap_seek_hole(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1337 loff_t size = i_size_read(inode);
1338 loff_t length = size - offset;
1341 /* Nothing to be found before or beyond the end of the file. */
1342 if (offset < 0 || offset >= size)
1345 while (length > 0) {
1346 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1347 &offset, iomap_seek_hole_actor);
1359 EXPORT_SYMBOL_GPL(iomap_seek_hole);
1362 iomap_seek_data_actor(struct inode *inode, loff_t offset, loff_t length,
1363 void *data, struct iomap *iomap)
1365 switch (iomap->type) {
1368 case IOMAP_UNWRITTEN:
1369 offset = page_cache_seek_hole_data(inode, offset, length,
1375 *(loff_t *)data = offset;
1381 iomap_seek_data(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1383 loff_t size = i_size_read(inode);
1384 loff_t length = size - offset;
1387 /* Nothing to be found before or beyond the end of the file. */
1388 if (offset < 0 || offset >= size)
1391 while (length > 0) {
1392 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1393 &offset, iomap_seek_data_actor);
1407 EXPORT_SYMBOL_GPL(iomap_seek_data);
1410 * Private flags for iomap_dio, must not overlap with the public ones in
1413 #define IOMAP_DIO_WRITE_FUA (1 << 28)
1414 #define IOMAP_DIO_NEED_SYNC (1 << 29)
1415 #define IOMAP_DIO_WRITE (1 << 30)
1416 #define IOMAP_DIO_DIRTY (1 << 31)
1420 iomap_dio_end_io_t *end_io;
1426 bool wait_for_completion;
1429 /* used during submission and for synchronous completion: */
1431 struct iov_iter *iter;
1432 struct task_struct *waiter;
1433 struct request_queue *last_queue;
1437 /* used for aio completion: */
1439 struct work_struct work;
1444 static ssize_t iomap_dio_complete(struct iomap_dio *dio)
1446 struct kiocb *iocb = dio->iocb;
1447 struct inode *inode = file_inode(iocb->ki_filp);
1448 loff_t offset = iocb->ki_pos;
1452 ret = dio->end_io(iocb,
1453 dio->error ? dio->error : dio->size,
1461 /* check for short read */
1462 if (offset + ret > dio->i_size &&
1463 !(dio->flags & IOMAP_DIO_WRITE))
1464 ret = dio->i_size - offset;
1465 iocb->ki_pos += ret;
1469 * Try again to invalidate clean pages which might have been cached by
1470 * non-direct readahead, or faulted in by get_user_pages() if the source
1471 * of the write was an mmap'ed region of the file we're writing. Either
1472 * one is a pretty crazy thing to do, so we don't support it 100%. If
1473 * this invalidation fails, tough, the write still worked...
1475 * And this page cache invalidation has to be after dio->end_io(), as
1476 * some filesystems convert unwritten extents to real allocations in
1477 * end_io() when necessary, otherwise a racing buffer read would cache
1478 * zeros from unwritten extents.
1481 (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
1483 err = invalidate_inode_pages2_range(inode->i_mapping,
1484 offset >> PAGE_SHIFT,
1485 (offset + dio->size - 1) >> PAGE_SHIFT);
1487 dio_warn_stale_pagecache(iocb->ki_filp);
1491 * If this is a DSYNC write, make sure we push it to stable storage now
1492 * that we've written data.
1494 if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
1495 ret = generic_write_sync(iocb, ret);
1497 inode_dio_end(file_inode(iocb->ki_filp));
1503 static void iomap_dio_complete_work(struct work_struct *work)
1505 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
1506 struct kiocb *iocb = dio->iocb;
1508 iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
1512 * Set an error in the dio if none is set yet. We have to use cmpxchg
1513 * as the submission context and the completion context(s) can race to
1516 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
1518 cmpxchg(&dio->error, 0, ret);
1521 static void iomap_dio_bio_end_io(struct bio *bio)
1523 struct iomap_dio *dio = bio->bi_private;
1524 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
1527 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
1529 if (atomic_dec_and_test(&dio->ref)) {
1530 if (dio->wait_for_completion) {
1531 struct task_struct *waiter = dio->submit.waiter;
1532 WRITE_ONCE(dio->submit.waiter, NULL);
1533 wake_up_process(waiter);
1534 } else if (dio->flags & IOMAP_DIO_WRITE) {
1535 struct inode *inode = file_inode(dio->iocb->ki_filp);
1537 INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
1538 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
1540 iomap_dio_complete_work(&dio->aio.work);
1545 bio_check_pages_dirty(bio);
1547 struct bio_vec *bvec;
1550 bio_for_each_segment_all(bvec, bio, i)
1551 put_page(bvec->bv_page);
1557 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
1560 struct page *page = ZERO_PAGE(0);
1563 bio = bio_alloc(GFP_KERNEL, 1);
1564 bio_set_dev(bio, iomap->bdev);
1565 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1566 bio->bi_private = dio;
1567 bio->bi_end_io = iomap_dio_bio_end_io;
1570 __bio_add_page(bio, page, len, 0);
1571 bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC | REQ_IDLE);
1573 atomic_inc(&dio->ref);
1574 return submit_bio(bio);
1578 iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length,
1579 struct iomap_dio *dio, struct iomap *iomap)
1581 unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
1582 unsigned int fs_block_size = i_blocksize(inode), pad;
1583 unsigned int align = iov_iter_alignment(dio->submit.iter);
1584 struct iov_iter iter;
1586 bool need_zeroout = false;
1587 bool use_fua = false;
1588 int nr_pages, ret = 0;
1591 if ((pos | length | align) & ((1 << blkbits) - 1))
1594 if (iomap->type == IOMAP_UNWRITTEN) {
1595 dio->flags |= IOMAP_DIO_UNWRITTEN;
1596 need_zeroout = true;
1599 if (iomap->flags & IOMAP_F_SHARED)
1600 dio->flags |= IOMAP_DIO_COW;
1602 if (iomap->flags & IOMAP_F_NEW) {
1603 need_zeroout = true;
1604 } else if (iomap->type == IOMAP_MAPPED) {
1606 * Use a FUA write if we need datasync semantics, this is a pure
1607 * data IO that doesn't require any metadata updates (including
1608 * after IO completion such as unwritten extent conversion) and
1609 * the underlying device supports FUA. This allows us to avoid
1610 * cache flushes on IO completion.
1612 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
1613 (dio->flags & IOMAP_DIO_WRITE_FUA) &&
1614 blk_queue_fua(bdev_get_queue(iomap->bdev)))
1619 * Operate on a partial iter trimmed to the extent we were called for.
1620 * We'll update the iter in the dio once we're done with this extent.
1622 iter = *dio->submit.iter;
1623 iov_iter_truncate(&iter, length);
1625 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1630 /* zero out from the start of the block to the write offset */
1631 pad = pos & (fs_block_size - 1);
1633 iomap_dio_zero(dio, iomap, pos - pad, pad);
1639 iov_iter_revert(dio->submit.iter, copied);
1643 bio = bio_alloc(GFP_KERNEL, nr_pages);
1644 bio_set_dev(bio, iomap->bdev);
1645 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1646 bio->bi_write_hint = dio->iocb->ki_hint;
1647 bio->bi_ioprio = dio->iocb->ki_ioprio;
1648 bio->bi_private = dio;
1649 bio->bi_end_io = iomap_dio_bio_end_io;
1651 ret = bio_iov_iter_get_pages(bio, &iter);
1652 if (unlikely(ret)) {
1654 * We have to stop part way through an IO. We must fall
1655 * through to the sub-block tail zeroing here, otherwise
1656 * this short IO may expose stale data in the tail of
1657 * the block we haven't written data to.
1663 n = bio->bi_iter.bi_size;
1664 if (dio->flags & IOMAP_DIO_WRITE) {
1665 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1667 bio->bi_opf |= REQ_FUA;
1669 dio->flags &= ~IOMAP_DIO_WRITE_FUA;
1670 task_io_account_write(n);
1672 bio->bi_opf = REQ_OP_READ;
1673 if (dio->flags & IOMAP_DIO_DIRTY)
1674 bio_set_pages_dirty(bio);
1677 iov_iter_advance(dio->submit.iter, n);
1683 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1685 atomic_inc(&dio->ref);
1687 dio->submit.last_queue = bdev_get_queue(iomap->bdev);
1688 dio->submit.cookie = submit_bio(bio);
1692 * We need to zeroout the tail of a sub-block write if the extent type
1693 * requires zeroing or the write extends beyond EOF. If we don't zero
1694 * the block tail in the latter case, we can expose stale data via mmap
1695 * reads of the EOF block.
1699 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
1700 /* zero out from the end of the write to the end of the block */
1701 pad = pos & (fs_block_size - 1);
1703 iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
1705 return copied ? copied : ret;
1709 iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio)
1711 length = iov_iter_zero(length, dio->submit.iter);
1712 dio->size += length;
1717 iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length,
1718 struct iomap_dio *dio, struct iomap *iomap)
1720 struct iov_iter *iter = dio->submit.iter;
1723 BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data));
1725 if (dio->flags & IOMAP_DIO_WRITE) {
1726 loff_t size = inode->i_size;
1729 memset(iomap->inline_data + size, 0, pos - size);
1730 copied = copy_from_iter(iomap->inline_data + pos, length, iter);
1732 if (pos + copied > size)
1733 i_size_write(inode, pos + copied);
1734 mark_inode_dirty(inode);
1737 copied = copy_to_iter(iomap->inline_data + pos, length, iter);
1739 dio->size += copied;
1744 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
1745 void *data, struct iomap *iomap)
1747 struct iomap_dio *dio = data;
1749 switch (iomap->type) {
1751 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
1753 return iomap_dio_hole_actor(length, dio);
1754 case IOMAP_UNWRITTEN:
1755 if (!(dio->flags & IOMAP_DIO_WRITE))
1756 return iomap_dio_hole_actor(length, dio);
1757 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1759 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1761 return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
1769 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
1770 * is being issued as AIO or not. This allows us to optimise pure data writes
1771 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
1772 * REQ_FLUSH post write. This is slightly tricky because a single request here
1773 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
1774 * may be pure data writes. In that case, we still need to do a full data sync
1778 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
1779 const struct iomap_ops *ops, iomap_dio_end_io_t end_io)
1781 struct address_space *mapping = iocb->ki_filp->f_mapping;
1782 struct inode *inode = file_inode(iocb->ki_filp);
1783 size_t count = iov_iter_count(iter);
1784 loff_t pos = iocb->ki_pos, start = pos;
1785 loff_t end = iocb->ki_pos + count - 1, ret = 0;
1786 unsigned int flags = IOMAP_DIRECT;
1787 struct blk_plug plug;
1788 struct iomap_dio *dio;
1790 lockdep_assert_held(&inode->i_rwsem);
1795 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1800 atomic_set(&dio->ref, 1);
1802 dio->i_size = i_size_read(inode);
1803 dio->end_io = end_io;
1806 dio->wait_for_completion = is_sync_kiocb(iocb);
1808 dio->submit.iter = iter;
1809 dio->submit.waiter = current;
1810 dio->submit.cookie = BLK_QC_T_NONE;
1811 dio->submit.last_queue = NULL;
1813 if (iov_iter_rw(iter) == READ) {
1814 if (pos >= dio->i_size)
1817 if (iter_is_iovec(iter) && iov_iter_rw(iter) == READ)
1818 dio->flags |= IOMAP_DIO_DIRTY;
1820 flags |= IOMAP_WRITE;
1821 dio->flags |= IOMAP_DIO_WRITE;
1823 /* for data sync or sync, we need sync completion processing */
1824 if (iocb->ki_flags & IOCB_DSYNC)
1825 dio->flags |= IOMAP_DIO_NEED_SYNC;
1828 * For datasync only writes, we optimistically try using FUA for
1829 * this IO. Any non-FUA write that occurs will clear this flag,
1830 * hence we know before completion whether a cache flush is
1833 if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
1834 dio->flags |= IOMAP_DIO_WRITE_FUA;
1837 if (iocb->ki_flags & IOCB_NOWAIT) {
1838 if (filemap_range_has_page(mapping, start, end)) {
1842 flags |= IOMAP_NOWAIT;
1845 ret = filemap_write_and_wait_range(mapping, start, end);
1850 * Try to invalidate cache pages for the range we're direct
1851 * writing. If this invalidation fails, tough, the write will
1852 * still work, but racing two incompatible write paths is a
1853 * pretty crazy thing to do, so we don't support it 100%.
1855 ret = invalidate_inode_pages2_range(mapping,
1856 start >> PAGE_SHIFT, end >> PAGE_SHIFT);
1858 dio_warn_stale_pagecache(iocb->ki_filp);
1861 if (iov_iter_rw(iter) == WRITE && !dio->wait_for_completion &&
1862 !inode->i_sb->s_dio_done_wq) {
1863 ret = sb_init_dio_done_wq(inode->i_sb);
1868 inode_dio_begin(inode);
1870 blk_start_plug(&plug);
1872 ret = iomap_apply(inode, pos, count, flags, ops, dio,
1875 /* magic error code to fall back to buffered I/O */
1876 if (ret == -ENOTBLK) {
1877 dio->wait_for_completion = true;
1882 * Splicing to pipes can fail on a full pipe. We have to
1883 * swallow this to make it look like a short IO
1884 * otherwise the higher splice layers will completely
1885 * mishandle the error and stop moving data.
1893 if (iov_iter_rw(iter) == READ && pos >= dio->i_size)
1895 } while ((count = iov_iter_count(iter)) > 0);
1896 blk_finish_plug(&plug);
1899 iomap_dio_set_error(dio, ret);
1902 * If all the writes we issued were FUA, we don't need to flush the
1903 * cache on IO completion. Clear the sync flag for this case.
1905 if (dio->flags & IOMAP_DIO_WRITE_FUA)
1906 dio->flags &= ~IOMAP_DIO_NEED_SYNC;
1908 if (!atomic_dec_and_test(&dio->ref)) {
1909 if (!dio->wait_for_completion)
1910 return -EIOCBQUEUED;
1913 set_current_state(TASK_UNINTERRUPTIBLE);
1914 if (!READ_ONCE(dio->submit.waiter))
1917 if (!(iocb->ki_flags & IOCB_HIPRI) ||
1918 !dio->submit.last_queue ||
1919 !blk_poll(dio->submit.last_queue,
1920 dio->submit.cookie))
1923 __set_current_state(TASK_RUNNING);
1926 ret = iomap_dio_complete(dio);
1934 EXPORT_SYMBOL_GPL(iomap_dio_rw);
1936 /* Swapfile activation */
1939 struct iomap_swapfile_info {
1940 struct iomap iomap; /* accumulated iomap */
1941 struct swap_info_struct *sis;
1942 uint64_t lowest_ppage; /* lowest physical addr seen (pages) */
1943 uint64_t highest_ppage; /* highest physical addr seen (pages) */
1944 unsigned long nr_pages; /* number of pages collected */
1945 int nr_extents; /* extent count */
1949 * Collect physical extents for this swap file. Physical extents reported to
1950 * the swap code must be trimmed to align to a page boundary. The logical
1951 * offset within the file is irrelevant since the swapfile code maps logical
1952 * page numbers of the swap device to the physical page-aligned extents.
1954 static int iomap_swapfile_add_extent(struct iomap_swapfile_info *isi)
1956 struct iomap *iomap = &isi->iomap;
1957 unsigned long nr_pages;
1958 uint64_t first_ppage;
1959 uint64_t first_ppage_reported;
1960 uint64_t next_ppage;
1964 * Round the start up and the end down so that the physical
1965 * extent aligns to a page boundary.
1967 first_ppage = ALIGN(iomap->addr, PAGE_SIZE) >> PAGE_SHIFT;
1968 next_ppage = ALIGN_DOWN(iomap->addr + iomap->length, PAGE_SIZE) >>
1971 /* Skip too-short physical extents. */
1972 if (first_ppage >= next_ppage)
1974 nr_pages = next_ppage - first_ppage;
1977 * Calculate how much swap space we're adding; the first page contains
1978 * the swap header and doesn't count. The mm still wants that first
1979 * page fed to add_swap_extent, however.
1981 first_ppage_reported = first_ppage;
1982 if (iomap->offset == 0)
1983 first_ppage_reported++;
1984 if (isi->lowest_ppage > first_ppage_reported)
1985 isi->lowest_ppage = first_ppage_reported;
1986 if (isi->highest_ppage < (next_ppage - 1))
1987 isi->highest_ppage = next_ppage - 1;
1989 /* Add extent, set up for the next call. */
1990 error = add_swap_extent(isi->sis, isi->nr_pages, nr_pages, first_ppage);
1993 isi->nr_extents += error;
1994 isi->nr_pages += nr_pages;
1999 * Accumulate iomaps for this swap file. We have to accumulate iomaps because
2000 * swap only cares about contiguous page-aligned physical extents and makes no
2001 * distinction between written and unwritten extents.
2003 static loff_t iomap_swapfile_activate_actor(struct inode *inode, loff_t pos,
2004 loff_t count, void *data, struct iomap *iomap)
2006 struct iomap_swapfile_info *isi = data;
2009 switch (iomap->type) {
2011 case IOMAP_UNWRITTEN:
2012 /* Only real or unwritten extents. */
2015 /* No inline data. */
2016 pr_err("swapon: file is inline\n");
2019 pr_err("swapon: file has unallocated extents\n");
2023 /* No uncommitted metadata or shared blocks. */
2024 if (iomap->flags & IOMAP_F_DIRTY) {
2025 pr_err("swapon: file is not committed\n");
2028 if (iomap->flags & IOMAP_F_SHARED) {
2029 pr_err("swapon: file has shared extents\n");
2033 /* Only one bdev per swap file. */
2034 if (iomap->bdev != isi->sis->bdev) {
2035 pr_err("swapon: file is on multiple devices\n");
2039 if (isi->iomap.length == 0) {
2040 /* No accumulated extent, so just store it. */
2041 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2042 } else if (isi->iomap.addr + isi->iomap.length == iomap->addr) {
2043 /* Append this to the accumulated extent. */
2044 isi->iomap.length += iomap->length;
2046 /* Otherwise, add the retained iomap and store this one. */
2047 error = iomap_swapfile_add_extent(isi);
2050 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2056 * Iterate a swap file's iomaps to construct physical extents that can be
2057 * passed to the swapfile subsystem.
2059 int iomap_swapfile_activate(struct swap_info_struct *sis,
2060 struct file *swap_file, sector_t *pagespan,
2061 const struct iomap_ops *ops)
2063 struct iomap_swapfile_info isi = {
2065 .lowest_ppage = (sector_t)-1ULL,
2067 struct address_space *mapping = swap_file->f_mapping;
2068 struct inode *inode = mapping->host;
2070 loff_t len = ALIGN_DOWN(i_size_read(inode), PAGE_SIZE);
2074 * Persist all file mapping metadata so that we won't have any
2075 * IOMAP_F_DIRTY iomaps.
2077 ret = vfs_fsync(swap_file, 1);
2082 ret = iomap_apply(inode, pos, len, IOMAP_REPORT,
2083 ops, &isi, iomap_swapfile_activate_actor);
2091 if (isi.iomap.length) {
2092 ret = iomap_swapfile_add_extent(&isi);
2097 *pagespan = 1 + isi.highest_ppage - isi.lowest_ppage;
2098 sis->max = isi.nr_pages;
2099 sis->pages = isi.nr_pages - 1;
2100 sis->highest_bit = isi.nr_pages - 1;
2101 return isi.nr_extents;
2103 EXPORT_SYMBOL_GPL(iomap_swapfile_activate);
2104 #endif /* CONFIG_SWAP */
2107 iomap_bmap_actor(struct inode *inode, loff_t pos, loff_t length,
2108 void *data, struct iomap *iomap)
2110 sector_t *bno = data, addr;
2112 if (iomap->type == IOMAP_MAPPED) {
2113 addr = (pos - iomap->offset + iomap->addr) >> inode->i_blkbits;
2115 WARN(1, "would truncate bmap result\n");
2122 /* legacy ->bmap interface. 0 is the error return (!) */
2124 iomap_bmap(struct address_space *mapping, sector_t bno,
2125 const struct iomap_ops *ops)
2127 struct inode *inode = mapping->host;
2128 loff_t pos = bno << inode->i_blkbits;
2129 unsigned blocksize = i_blocksize(inode);
2131 if (filemap_write_and_wait(mapping))
2135 iomap_apply(inode, pos, blocksize, 0, ops, &bno, iomap_bmap_actor);
2138 EXPORT_SYMBOL_GPL(iomap_bmap);