2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3 * Copyright (C) 2013, Intel Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/bitops.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/ioport.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/platform_device.h>
27 #include <linux/spi/pxa2xx_spi.h>
28 #include <linux/spi/spi.h>
29 #include <linux/delay.h>
30 #include <linux/gpio.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/slab.h>
33 #include <linux/clk.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/acpi.h>
36 #include <linux/of_device.h>
38 #include "spi-pxa2xx.h"
40 MODULE_AUTHOR("Stephen Street");
41 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
42 MODULE_LICENSE("GPL");
43 MODULE_ALIAS("platform:pxa2xx-spi");
45 #define TIMOUT_DFLT 1000
48 * for testing SSCR1 changes that require SSP restart, basically
49 * everything except the service and interrupt enables, the pxa270 developer
50 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
51 * list, but the PXA255 dev man says all bits without really meaning the
52 * service and interrupt enables
54 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
55 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
56 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
57 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
58 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
59 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
61 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
62 | QUARK_X1000_SSCR1_EFWR \
63 | QUARK_X1000_SSCR1_RFT \
64 | QUARK_X1000_SSCR1_TFT \
65 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
67 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
68 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
69 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
70 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
71 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
72 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
74 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
75 #define LPSS_CS_CONTROL_SW_MODE BIT(0)
76 #define LPSS_CS_CONTROL_CS_HIGH BIT(1)
77 #define LPSS_CAPS_CS_EN_SHIFT 9
78 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
81 /* LPSS offset from drv_data->ioaddr */
83 /* Register offsets from drv_data->lpss_base or -1 */
92 /* Chip select control */
93 unsigned cs_sel_shift;
98 /* Keep these sorted with enum pxa_ssp_type */
99 static const struct lpss_config lpss_platforms[] = {
105 .reg_capabilities = -1,
107 .tx_threshold_lo = 160,
108 .tx_threshold_hi = 224,
115 .reg_capabilities = -1,
117 .tx_threshold_lo = 160,
118 .tx_threshold_hi = 224,
125 .reg_capabilities = -1,
127 .tx_threshold_lo = 160,
128 .tx_threshold_hi = 224,
130 .cs_sel_mask = 1 << 2,
138 .reg_capabilities = -1,
140 .tx_threshold_lo = 32,
141 .tx_threshold_hi = 56,
148 .reg_capabilities = 0xfc,
150 .tx_threshold_lo = 16,
151 .tx_threshold_hi = 48,
153 .cs_sel_mask = 3 << 8,
160 .reg_capabilities = 0xfc,
162 .tx_threshold_lo = 32,
163 .tx_threshold_hi = 56,
165 .cs_sel_mask = 3 << 8,
169 static inline const struct lpss_config
170 *lpss_get_config(const struct driver_data *drv_data)
172 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
175 static bool is_lpss_ssp(const struct driver_data *drv_data)
177 switch (drv_data->ssp_type) {
190 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
192 return drv_data->ssp_type == QUARK_X1000_SSP;
195 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
197 switch (drv_data->ssp_type) {
198 case QUARK_X1000_SSP:
199 return QUARK_X1000_SSCR1_CHANGE_MASK;
201 return CE4100_SSCR1_CHANGE_MASK;
203 return SSCR1_CHANGE_MASK;
208 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
210 switch (drv_data->ssp_type) {
211 case QUARK_X1000_SSP:
212 return RX_THRESH_QUARK_X1000_DFLT;
214 return RX_THRESH_CE4100_DFLT;
216 return RX_THRESH_DFLT;
220 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
224 switch (drv_data->ssp_type) {
225 case QUARK_X1000_SSP:
226 mask = QUARK_X1000_SSSR_TFL_MASK;
229 mask = CE4100_SSSR_TFL_MASK;
232 mask = SSSR_TFL_MASK;
236 return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
239 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
244 switch (drv_data->ssp_type) {
245 case QUARK_X1000_SSP:
246 mask = QUARK_X1000_SSCR1_RFT;
249 mask = CE4100_SSCR1_RFT;
258 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
259 u32 *sccr1_reg, u32 threshold)
261 switch (drv_data->ssp_type) {
262 case QUARK_X1000_SSP:
263 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
266 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
269 *sccr1_reg |= SSCR1_RxTresh(threshold);
274 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
275 u32 clk_div, u8 bits)
277 switch (drv_data->ssp_type) {
278 case QUARK_X1000_SSP:
280 | QUARK_X1000_SSCR0_Motorola
281 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
286 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
288 | (bits > 16 ? SSCR0_EDSS : 0);
293 * Read and write LPSS SSP private registers. Caller must first check that
294 * is_lpss_ssp() returns true before these can be called.
296 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
298 WARN_ON(!drv_data->lpss_base);
299 return readl(drv_data->lpss_base + offset);
302 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
303 unsigned offset, u32 value)
305 WARN_ON(!drv_data->lpss_base);
306 writel(value, drv_data->lpss_base + offset);
310 * lpss_ssp_setup - perform LPSS SSP specific setup
311 * @drv_data: pointer to the driver private data
313 * Perform LPSS SSP specific setup. This function must be called first if
314 * one is going to use LPSS SSP private registers.
316 static void lpss_ssp_setup(struct driver_data *drv_data)
318 const struct lpss_config *config;
321 config = lpss_get_config(drv_data);
322 drv_data->lpss_base = drv_data->ioaddr + config->offset;
324 /* Enable software chip select control */
325 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
326 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
327 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
328 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
330 /* Enable multiblock DMA transfers */
331 if (drv_data->master_info->enable_dma) {
332 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
334 if (config->reg_general >= 0) {
335 value = __lpss_ssp_read_priv(drv_data,
336 config->reg_general);
337 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
338 __lpss_ssp_write_priv(drv_data,
339 config->reg_general, value);
344 static void lpss_ssp_select_cs(struct spi_device *spi,
345 const struct lpss_config *config)
347 struct driver_data *drv_data =
348 spi_controller_get_devdata(spi->controller);
351 if (!config->cs_sel_mask)
354 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
356 cs = spi->chip_select;
357 cs <<= config->cs_sel_shift;
358 if (cs != (value & config->cs_sel_mask)) {
360 * When switching another chip select output active the
361 * output must be selected first and wait 2 ssp_clk cycles
362 * before changing state to active. Otherwise a short
363 * glitch will occur on the previous chip select since
364 * output select is latched but state control is not.
366 value &= ~config->cs_sel_mask;
368 __lpss_ssp_write_priv(drv_data,
369 config->reg_cs_ctrl, value);
371 (drv_data->master->max_speed_hz / 2));
375 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
377 struct driver_data *drv_data =
378 spi_controller_get_devdata(spi->controller);
379 const struct lpss_config *config;
382 config = lpss_get_config(drv_data);
385 lpss_ssp_select_cs(spi, config);
387 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
389 value &= ~LPSS_CS_CONTROL_CS_HIGH;
391 value |= LPSS_CS_CONTROL_CS_HIGH;
392 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
395 static void cs_assert(struct spi_device *spi)
397 struct chip_data *chip = spi_get_ctldata(spi);
398 struct driver_data *drv_data =
399 spi_controller_get_devdata(spi->controller);
401 if (drv_data->ssp_type == CE4100_SSP) {
402 pxa2xx_spi_write(drv_data, SSSR, chip->frm);
406 if (chip->cs_control) {
407 chip->cs_control(PXA2XX_CS_ASSERT);
411 if (chip->gpiod_cs) {
412 gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
416 if (is_lpss_ssp(drv_data))
417 lpss_ssp_cs_control(spi, true);
420 static void cs_deassert(struct spi_device *spi)
422 struct chip_data *chip = spi_get_ctldata(spi);
423 struct driver_data *drv_data =
424 spi_controller_get_devdata(spi->controller);
425 unsigned long timeout;
427 if (drv_data->ssp_type == CE4100_SSP)
430 /* Wait until SSP becomes idle before deasserting the CS */
431 timeout = jiffies + msecs_to_jiffies(10);
432 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
433 !time_after(jiffies, timeout))
436 if (chip->cs_control) {
437 chip->cs_control(PXA2XX_CS_DEASSERT);
441 if (chip->gpiod_cs) {
442 gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
446 if (is_lpss_ssp(drv_data))
447 lpss_ssp_cs_control(spi, false);
450 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
458 int pxa2xx_spi_flush(struct driver_data *drv_data)
460 unsigned long limit = loops_per_jiffy << 1;
463 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
464 pxa2xx_spi_read(drv_data, SSDR);
465 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
466 write_SSSR_CS(drv_data, SSSR_ROR);
471 static int null_writer(struct driver_data *drv_data)
473 u8 n_bytes = drv_data->n_bytes;
475 if (pxa2xx_spi_txfifo_full(drv_data)
476 || (drv_data->tx == drv_data->tx_end))
479 pxa2xx_spi_write(drv_data, SSDR, 0);
480 drv_data->tx += n_bytes;
485 static int null_reader(struct driver_data *drv_data)
487 u8 n_bytes = drv_data->n_bytes;
489 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
490 && (drv_data->rx < drv_data->rx_end)) {
491 pxa2xx_spi_read(drv_data, SSDR);
492 drv_data->rx += n_bytes;
495 return drv_data->rx == drv_data->rx_end;
498 static int u8_writer(struct driver_data *drv_data)
500 if (pxa2xx_spi_txfifo_full(drv_data)
501 || (drv_data->tx == drv_data->tx_end))
504 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
510 static int u8_reader(struct driver_data *drv_data)
512 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
513 && (drv_data->rx < drv_data->rx_end)) {
514 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
518 return drv_data->rx == drv_data->rx_end;
521 static int u16_writer(struct driver_data *drv_data)
523 if (pxa2xx_spi_txfifo_full(drv_data)
524 || (drv_data->tx == drv_data->tx_end))
527 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
533 static int u16_reader(struct driver_data *drv_data)
535 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
536 && (drv_data->rx < drv_data->rx_end)) {
537 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
541 return drv_data->rx == drv_data->rx_end;
544 static int u32_writer(struct driver_data *drv_data)
546 if (pxa2xx_spi_txfifo_full(drv_data)
547 || (drv_data->tx == drv_data->tx_end))
550 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
556 static int u32_reader(struct driver_data *drv_data)
558 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
559 && (drv_data->rx < drv_data->rx_end)) {
560 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
564 return drv_data->rx == drv_data->rx_end;
567 static void reset_sccr1(struct driver_data *drv_data)
569 struct chip_data *chip =
570 spi_get_ctldata(drv_data->master->cur_msg->spi);
573 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
574 switch (drv_data->ssp_type) {
575 case QUARK_X1000_SSP:
576 sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
579 sccr1_reg &= ~CE4100_SSCR1_RFT;
582 sccr1_reg &= ~SSCR1_RFT;
585 sccr1_reg |= chip->threshold;
586 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
589 static void int_error_stop(struct driver_data *drv_data, const char* msg)
591 /* Stop and reset SSP */
592 write_SSSR_CS(drv_data, drv_data->clear_sr);
593 reset_sccr1(drv_data);
594 if (!pxa25x_ssp_comp(drv_data))
595 pxa2xx_spi_write(drv_data, SSTO, 0);
596 pxa2xx_spi_flush(drv_data);
597 pxa2xx_spi_write(drv_data, SSCR0,
598 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
600 dev_err(&drv_data->pdev->dev, "%s\n", msg);
602 drv_data->master->cur_msg->status = -EIO;
603 spi_finalize_current_transfer(drv_data->master);
606 static void int_transfer_complete(struct driver_data *drv_data)
608 /* Clear and disable interrupts */
609 write_SSSR_CS(drv_data, drv_data->clear_sr);
610 reset_sccr1(drv_data);
611 if (!pxa25x_ssp_comp(drv_data))
612 pxa2xx_spi_write(drv_data, SSTO, 0);
614 spi_finalize_current_transfer(drv_data->master);
617 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
619 u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
620 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
622 u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
624 if (irq_status & SSSR_ROR) {
625 int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
629 if (irq_status & SSSR_TINT) {
630 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
631 if (drv_data->read(drv_data)) {
632 int_transfer_complete(drv_data);
637 /* Drain rx fifo, Fill tx fifo and prevent overruns */
639 if (drv_data->read(drv_data)) {
640 int_transfer_complete(drv_data);
643 } while (drv_data->write(drv_data));
645 if (drv_data->read(drv_data)) {
646 int_transfer_complete(drv_data);
650 if (drv_data->tx == drv_data->tx_end) {
654 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
655 sccr1_reg &= ~SSCR1_TIE;
658 * PXA25x_SSP has no timeout, set up rx threshould for the
659 * remaining RX bytes.
661 if (pxa25x_ssp_comp(drv_data)) {
664 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
666 bytes_left = drv_data->rx_end - drv_data->rx;
667 switch (drv_data->n_bytes) {
676 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
677 if (rx_thre > bytes_left)
678 rx_thre = bytes_left;
680 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
682 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
685 /* We did something */
689 static void handle_bad_msg(struct driver_data *drv_data)
691 pxa2xx_spi_write(drv_data, SSCR0,
692 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
693 pxa2xx_spi_write(drv_data, SSCR1,
694 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
695 if (!pxa25x_ssp_comp(drv_data))
696 pxa2xx_spi_write(drv_data, SSTO, 0);
697 write_SSSR_CS(drv_data, drv_data->clear_sr);
699 dev_err(&drv_data->pdev->dev,
700 "bad message state in interrupt handler\n");
703 static irqreturn_t ssp_int(int irq, void *dev_id)
705 struct driver_data *drv_data = dev_id;
707 u32 mask = drv_data->mask_sr;
711 * The IRQ might be shared with other peripherals so we must first
712 * check that are we RPM suspended or not. If we are we assume that
713 * the IRQ was not for us (we shouldn't be RPM suspended when the
714 * interrupt is enabled).
716 if (pm_runtime_suspended(&drv_data->pdev->dev))
720 * If the device is not yet in RPM suspended state and we get an
721 * interrupt that is meant for another device, check if status bits
722 * are all set to one. That means that the device is already
725 status = pxa2xx_spi_read(drv_data, SSSR);
729 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
731 /* Ignore possible writes if we don't need to write */
732 if (!(sccr1_reg & SSCR1_TIE))
735 /* Ignore RX timeout interrupt if it is disabled */
736 if (!(sccr1_reg & SSCR1_TINTE))
739 if (!(status & mask))
742 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
743 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
745 if (!drv_data->master->cur_msg) {
746 handle_bad_msg(drv_data);
751 return drv_data->transfer_handler(drv_data);
755 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
756 * input frequency by fractions of 2^24. It also has a divider by 5.
758 * There are formulas to get baud rate value for given input frequency and
759 * divider parameters, such as DDS_CLK_RATE and SCR:
763 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
764 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
766 * DDS_CLK_RATE either 2^n or 2^n / 5.
767 * SCR is in range 0 .. 255
769 * Divisor = 5^i * 2^j * 2 * k
770 * i = [0, 1] i = 1 iff j = 0 or j > 3
771 * j = [0, 23] j = 0 iff i = 1
773 * Special case: j = 0, i = 1: Divisor = 2 / 5
775 * Accordingly to the specification the recommended values for DDS_CLK_RATE
777 * Case 1: 2^n, n = [0, 23]
778 * Case 2: 2^24 * 2 / 5 (0x666666)
779 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
781 * In all cases the lowest possible value is better.
783 * The function calculates parameters for all cases and chooses the one closest
784 * to the asked baud rate.
786 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
788 unsigned long xtal = 200000000;
789 unsigned long fref = xtal / 2; /* mandatory division by 2,
792 unsigned long fref1 = fref / 2; /* case 1 */
793 unsigned long fref2 = fref * 2 / 5; /* case 2 */
795 unsigned long q, q1, q2;
801 /* Set initial value for DDS_CLK_RATE */
802 mul = (1 << 24) >> 1;
804 /* Calculate initial quot */
805 q1 = DIV_ROUND_UP(fref1, rate);
807 /* Scale q1 if it's too big */
809 /* Scale q1 to range [1, 512] */
810 scale = fls_long(q1 - 1);
816 /* Round the result if we have a remainder */
820 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
825 /* Get the remainder */
826 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
830 q2 = DIV_ROUND_UP(fref2, rate);
831 r2 = abs(fref2 / q2 - rate);
834 * Choose the best between two: less remainder we have the better. We
835 * can't go case 2 if q2 is greater than 256 since SCR register can
836 * hold only values 0 .. 255.
838 if (r2 >= r1 || q2 > 256) {
839 /* case 1 is better */
843 /* case 2 is better */
846 mul = (1 << 24) * 2 / 5;
849 /* Check case 3 only if the divisor is big enough */
850 if (fref / rate >= 80) {
854 /* Calculate initial quot */
855 q1 = DIV_ROUND_UP(fref, rate);
858 /* Get the remainder */
859 fssp = (u64)fref * m;
860 do_div(fssp, 1 << 24);
861 r1 = abs(fssp - rate);
863 /* Choose this one if it suits better */
865 /* case 3 is better */
875 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
877 unsigned long ssp_clk = drv_data->master->max_speed_hz;
878 const struct ssp_device *ssp = drv_data->ssp;
880 rate = min_t(int, ssp_clk, rate);
882 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
883 return (ssp_clk / (2 * rate) - 1) & 0xff;
885 return (ssp_clk / rate - 1) & 0xfff;
888 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
891 struct chip_data *chip =
892 spi_get_ctldata(drv_data->master->cur_msg->spi);
893 unsigned int clk_div;
895 switch (drv_data->ssp_type) {
896 case QUARK_X1000_SSP:
897 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
900 clk_div = ssp_get_clk_div(drv_data, rate);
906 static bool pxa2xx_spi_can_dma(struct spi_controller *master,
907 struct spi_device *spi,
908 struct spi_transfer *xfer)
910 struct chip_data *chip = spi_get_ctldata(spi);
912 return chip->enable_dma &&
913 xfer->len <= MAX_DMA_LEN &&
914 xfer->len >= chip->dma_burst_size;
917 static int pxa2xx_spi_transfer_one(struct spi_controller *master,
918 struct spi_device *spi,
919 struct spi_transfer *transfer)
921 struct driver_data *drv_data = spi_controller_get_devdata(master);
922 struct spi_message *message = master->cur_msg;
923 struct chip_data *chip = spi_get_ctldata(message->spi);
924 u32 dma_thresh = chip->dma_threshold;
925 u32 dma_burst = chip->dma_burst_size;
926 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
935 /* Check if we can DMA this transfer */
936 if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
938 /* reject already-mapped transfers; PIO won't always work */
939 if (message->is_dma_mapped
940 || transfer->rx_dma || transfer->tx_dma) {
941 dev_err(&drv_data->pdev->dev,
942 "Mapped transfer length of %u is greater than %d\n",
943 transfer->len, MAX_DMA_LEN);
947 /* warn ... we force this to PIO mode */
948 dev_warn_ratelimited(&message->spi->dev,
949 "DMA disabled for transfer length %ld greater than %d\n",
950 (long)transfer->len, MAX_DMA_LEN);
953 /* Setup the transfer state based on the type of transfer */
954 if (pxa2xx_spi_flush(drv_data) == 0) {
955 dev_err(&drv_data->pdev->dev, "Flush failed\n");
958 drv_data->n_bytes = chip->n_bytes;
959 drv_data->tx = (void *)transfer->tx_buf;
960 drv_data->tx_end = drv_data->tx + transfer->len;
961 drv_data->rx = transfer->rx_buf;
962 drv_data->rx_end = drv_data->rx + transfer->len;
963 drv_data->write = drv_data->tx ? chip->write : null_writer;
964 drv_data->read = drv_data->rx ? chip->read : null_reader;
966 /* Change speed and bit per word on a per transfer */
967 bits = transfer->bits_per_word;
968 speed = transfer->speed_hz;
970 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
973 drv_data->n_bytes = 1;
974 drv_data->read = drv_data->read != null_reader ?
975 u8_reader : null_reader;
976 drv_data->write = drv_data->write != null_writer ?
977 u8_writer : null_writer;
978 } else if (bits <= 16) {
979 drv_data->n_bytes = 2;
980 drv_data->read = drv_data->read != null_reader ?
981 u16_reader : null_reader;
982 drv_data->write = drv_data->write != null_writer ?
983 u16_writer : null_writer;
984 } else if (bits <= 32) {
985 drv_data->n_bytes = 4;
986 drv_data->read = drv_data->read != null_reader ?
987 u32_reader : null_reader;
988 drv_data->write = drv_data->write != null_writer ?
989 u32_writer : null_writer;
992 * if bits/word is changed in dma mode, then must check the
993 * thresholds and burst also
995 if (chip->enable_dma) {
996 if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1000 dev_warn_ratelimited(&message->spi->dev,
1001 "DMA burst size reduced to match bits_per_word\n");
1004 dma_mapped = master->can_dma &&
1005 master->can_dma(master, message->spi, transfer) &&
1006 master->cur_msg_mapped;
1009 /* Ensure we have the correct interrupt handler */
1010 drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1012 err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1016 /* Clear status and start DMA engine */
1017 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1018 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1020 pxa2xx_spi_dma_start(drv_data);
1022 /* Ensure we have the correct interrupt handler */
1023 drv_data->transfer_handler = interrupt_transfer;
1026 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1027 write_SSSR_CS(drv_data, drv_data->clear_sr);
1030 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1031 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1032 if (!pxa25x_ssp_comp(drv_data))
1033 dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1034 master->max_speed_hz
1035 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1036 dma_mapped ? "DMA" : "PIO");
1038 dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1039 master->max_speed_hz / 2
1040 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1041 dma_mapped ? "DMA" : "PIO");
1043 if (is_lpss_ssp(drv_data)) {
1044 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1045 != chip->lpss_rx_threshold)
1046 pxa2xx_spi_write(drv_data, SSIRF,
1047 chip->lpss_rx_threshold);
1048 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1049 != chip->lpss_tx_threshold)
1050 pxa2xx_spi_write(drv_data, SSITF,
1051 chip->lpss_tx_threshold);
1054 if (is_quark_x1000_ssp(drv_data) &&
1055 (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1056 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1058 /* see if we need to reload the config registers */
1059 if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1060 || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1061 != (cr1 & change_mask)) {
1062 /* stop the SSP, and update the other bits */
1063 pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1064 if (!pxa25x_ssp_comp(drv_data))
1065 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1066 /* first set CR1 without interrupt and service enables */
1067 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1068 /* restart the SSP */
1069 pxa2xx_spi_write(drv_data, SSCR0, cr0);
1072 if (!pxa25x_ssp_comp(drv_data))
1073 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1077 * Release the data by enabling service requests and interrupts,
1078 * without changing any mode bits
1080 pxa2xx_spi_write(drv_data, SSCR1, cr1);
1085 static void pxa2xx_spi_handle_err(struct spi_controller *master,
1086 struct spi_message *msg)
1088 struct driver_data *drv_data = spi_controller_get_devdata(master);
1090 /* Disable the SSP */
1091 pxa2xx_spi_write(drv_data, SSCR0,
1092 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1093 /* Clear and disable interrupts and service requests */
1094 write_SSSR_CS(drv_data, drv_data->clear_sr);
1095 pxa2xx_spi_write(drv_data, SSCR1,
1096 pxa2xx_spi_read(drv_data, SSCR1)
1097 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1098 if (!pxa25x_ssp_comp(drv_data))
1099 pxa2xx_spi_write(drv_data, SSTO, 0);
1102 * Stop the DMA if running. Note DMA callback handler may have unset
1103 * the dma_running already, which is fine as stopping is not needed
1104 * then but we shouldn't rely this flag for anything else than
1105 * stopping. For instance to differentiate between PIO and DMA
1108 if (atomic_read(&drv_data->dma_running))
1109 pxa2xx_spi_dma_stop(drv_data);
1112 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *master)
1114 struct driver_data *drv_data = spi_controller_get_devdata(master);
1116 /* Disable the SSP now */
1117 pxa2xx_spi_write(drv_data, SSCR0,
1118 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1123 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1124 struct pxa2xx_spi_chip *chip_info)
1126 struct driver_data *drv_data =
1127 spi_controller_get_devdata(spi->controller);
1128 struct gpio_desc *gpiod;
1134 if (drv_data->cs_gpiods) {
1135 gpiod = drv_data->cs_gpiods[spi->chip_select];
1137 chip->gpiod_cs = gpiod;
1138 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1139 gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1145 if (chip_info == NULL)
1148 /* NOTE: setup() can be called multiple times, possibly with
1149 * different chip_info, release previously requested GPIO
1151 if (chip->gpiod_cs) {
1152 gpiod_put(chip->gpiod_cs);
1153 chip->gpiod_cs = NULL;
1156 /* If (*cs_control) is provided, ignore GPIO chip select */
1157 if (chip_info->cs_control) {
1158 chip->cs_control = chip_info->cs_control;
1162 if (gpio_is_valid(chip_info->gpio_cs)) {
1163 err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1165 dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1166 chip_info->gpio_cs);
1170 gpiod = gpio_to_desc(chip_info->gpio_cs);
1171 chip->gpiod_cs = gpiod;
1172 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1174 err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1180 static int setup(struct spi_device *spi)
1182 struct pxa2xx_spi_chip *chip_info;
1183 struct chip_data *chip;
1184 const struct lpss_config *config;
1185 struct driver_data *drv_data =
1186 spi_controller_get_devdata(spi->controller);
1187 uint tx_thres, tx_hi_thres, rx_thres;
1189 switch (drv_data->ssp_type) {
1190 case QUARK_X1000_SSP:
1191 tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1193 rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1196 tx_thres = TX_THRESH_CE4100_DFLT;
1198 rx_thres = RX_THRESH_CE4100_DFLT;
1206 config = lpss_get_config(drv_data);
1207 tx_thres = config->tx_threshold_lo;
1208 tx_hi_thres = config->tx_threshold_hi;
1209 rx_thres = config->rx_threshold;
1212 tx_thres = TX_THRESH_DFLT;
1214 rx_thres = RX_THRESH_DFLT;
1218 /* Only alloc on first setup */
1219 chip = spi_get_ctldata(spi);
1221 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1225 if (drv_data->ssp_type == CE4100_SSP) {
1226 if (spi->chip_select > 4) {
1228 "failed setup: cs number must not be > 4.\n");
1233 chip->frm = spi->chip_select;
1235 chip->enable_dma = drv_data->master_info->enable_dma;
1236 chip->timeout = TIMOUT_DFLT;
1239 /* protocol drivers may change the chip settings, so...
1240 * if chip_info exists, use it */
1241 chip_info = spi->controller_data;
1243 /* chip_info isn't always needed */
1246 if (chip_info->timeout)
1247 chip->timeout = chip_info->timeout;
1248 if (chip_info->tx_threshold)
1249 tx_thres = chip_info->tx_threshold;
1250 if (chip_info->tx_hi_threshold)
1251 tx_hi_thres = chip_info->tx_hi_threshold;
1252 if (chip_info->rx_threshold)
1253 rx_thres = chip_info->rx_threshold;
1254 chip->dma_threshold = 0;
1255 if (chip_info->enable_loopback)
1256 chip->cr1 = SSCR1_LBM;
1259 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1260 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1261 | SSITF_TxHiThresh(tx_hi_thres);
1263 /* set dma burst and threshold outside of chip_info path so that if
1264 * chip_info goes away after setting chip->enable_dma, the
1265 * burst and threshold can still respond to changes in bits_per_word */
1266 if (chip->enable_dma) {
1267 /* set up legal burst and threshold for dma */
1268 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1270 &chip->dma_burst_size,
1271 &chip->dma_threshold)) {
1273 "in setup: DMA burst size reduced to match bits_per_word\n");
1277 switch (drv_data->ssp_type) {
1278 case QUARK_X1000_SSP:
1279 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1280 & QUARK_X1000_SSCR1_RFT)
1281 | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1282 & QUARK_X1000_SSCR1_TFT);
1285 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1286 (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1289 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1290 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1294 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1295 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1296 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1298 if (spi->mode & SPI_LOOP)
1299 chip->cr1 |= SSCR1_LBM;
1301 if (spi->bits_per_word <= 8) {
1303 chip->read = u8_reader;
1304 chip->write = u8_writer;
1305 } else if (spi->bits_per_word <= 16) {
1307 chip->read = u16_reader;
1308 chip->write = u16_writer;
1309 } else if (spi->bits_per_word <= 32) {
1311 chip->read = u32_reader;
1312 chip->write = u32_writer;
1315 spi_set_ctldata(spi, chip);
1317 if (drv_data->ssp_type == CE4100_SSP)
1320 return setup_cs(spi, chip, chip_info);
1323 static void cleanup(struct spi_device *spi)
1325 struct chip_data *chip = spi_get_ctldata(spi);
1326 struct driver_data *drv_data =
1327 spi_controller_get_devdata(spi->controller);
1332 if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1334 gpiod_put(chip->gpiod_cs);
1339 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1340 { "INT33C0", LPSS_LPT_SSP },
1341 { "INT33C1", LPSS_LPT_SSP },
1342 { "INT3430", LPSS_LPT_SSP },
1343 { "INT3431", LPSS_LPT_SSP },
1344 { "80860F0E", LPSS_BYT_SSP },
1345 { "8086228E", LPSS_BSW_SSP },
1348 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1351 * PCI IDs of compound devices that integrate both host controller and private
1352 * integrated DMA engine. Please note these are not used in module
1353 * autoloading and probing in this module but matching the LPSS SSP type.
1355 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1357 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1358 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1360 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1361 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1363 { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1364 { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1366 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1367 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1368 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1370 { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1371 { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1372 { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1374 { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1375 { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1376 { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1378 { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1379 { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1380 { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1382 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1383 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1384 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1386 { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1387 { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1388 { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1390 { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1391 { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1392 { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1396 static const struct of_device_id pxa2xx_spi_of_match[] = {
1397 { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1400 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1404 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1409 if (adev && adev->pnp.unique_id &&
1410 !kstrtouint(adev->pnp.unique_id, 0, &devid))
1415 #else /* !CONFIG_ACPI */
1417 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1422 #endif /* CONFIG_ACPI */
1427 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1429 struct device *dev = param;
1431 if (dev != chan->device->dev->parent)
1437 #endif /* CONFIG_PCI */
1439 static struct pxa2xx_spi_master *
1440 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1442 struct pxa2xx_spi_master *pdata;
1443 struct acpi_device *adev;
1444 struct ssp_device *ssp;
1445 struct resource *res;
1446 const struct acpi_device_id *adev_id = NULL;
1447 const struct pci_device_id *pcidev_id = NULL;
1448 const struct of_device_id *of_id = NULL;
1449 enum pxa_ssp_type type;
1451 adev = ACPI_COMPANION(&pdev->dev);
1453 if (pdev->dev.of_node)
1454 of_id = of_match_device(pdev->dev.driver->of_match_table,
1456 else if (dev_is_pci(pdev->dev.parent))
1457 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1458 to_pci_dev(pdev->dev.parent));
1460 adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1466 type = (enum pxa_ssp_type)adev_id->driver_data;
1468 type = (enum pxa_ssp_type)pcidev_id->driver_data;
1470 type = (enum pxa_ssp_type)of_id->data;
1474 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1478 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1484 ssp->phys_base = res->start;
1485 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1486 if (IS_ERR(ssp->mmio_base))
1491 pdata->tx_param = pdev->dev.parent;
1492 pdata->rx_param = pdev->dev.parent;
1493 pdata->dma_filter = pxa2xx_spi_idma_filter;
1497 ssp->clk = devm_clk_get(&pdev->dev, NULL);
1498 ssp->irq = platform_get_irq(pdev, 0);
1501 ssp->port_id = pxa2xx_spi_get_port_id(adev);
1503 pdata->num_chipselect = 1;
1504 pdata->enable_dma = true;
1509 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *master,
1512 struct driver_data *drv_data = spi_controller_get_devdata(master);
1514 if (has_acpi_companion(&drv_data->pdev->dev)) {
1515 switch (drv_data->ssp_type) {
1517 * For Atoms the ACPI DeviceSelection used by the Windows
1518 * driver starts from 1 instead of 0 so translate it here
1519 * to match what Linux expects.
1533 static int pxa2xx_spi_probe(struct platform_device *pdev)
1535 struct device *dev = &pdev->dev;
1536 struct pxa2xx_spi_master *platform_info;
1537 struct spi_controller *master;
1538 struct driver_data *drv_data;
1539 struct ssp_device *ssp;
1540 const struct lpss_config *config;
1544 platform_info = dev_get_platdata(dev);
1545 if (!platform_info) {
1546 platform_info = pxa2xx_spi_init_pdata(pdev);
1547 if (!platform_info) {
1548 dev_err(&pdev->dev, "missing platform data\n");
1553 ssp = pxa_ssp_request(pdev->id, pdev->name);
1555 ssp = &platform_info->ssp;
1557 if (!ssp->mmio_base) {
1558 dev_err(&pdev->dev, "failed to get ssp\n");
1562 master = spi_alloc_master(dev, sizeof(struct driver_data));
1564 dev_err(&pdev->dev, "cannot alloc spi_master\n");
1568 drv_data = spi_controller_get_devdata(master);
1569 drv_data->master = master;
1570 drv_data->master_info = platform_info;
1571 drv_data->pdev = pdev;
1572 drv_data->ssp = ssp;
1574 master->dev.of_node = pdev->dev.of_node;
1575 /* the spi->mode bits understood by this driver: */
1576 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1578 master->bus_num = ssp->port_id;
1579 master->dma_alignment = DMA_ALIGNMENT;
1580 master->cleanup = cleanup;
1581 master->setup = setup;
1582 master->set_cs = pxa2xx_spi_set_cs;
1583 master->transfer_one = pxa2xx_spi_transfer_one;
1584 master->handle_err = pxa2xx_spi_handle_err;
1585 master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1586 master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1587 master->auto_runtime_pm = true;
1588 master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1590 drv_data->ssp_type = ssp->type;
1592 drv_data->ioaddr = ssp->mmio_base;
1593 drv_data->ssdr_physical = ssp->phys_base + SSDR;
1594 if (pxa25x_ssp_comp(drv_data)) {
1595 switch (drv_data->ssp_type) {
1596 case QUARK_X1000_SSP:
1597 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1600 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1604 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1605 drv_data->dma_cr1 = 0;
1606 drv_data->clear_sr = SSSR_ROR;
1607 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1609 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1610 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1611 drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1612 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1613 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1616 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1619 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1620 goto out_error_master_alloc;
1623 /* Setup DMA if requested */
1624 if (platform_info->enable_dma) {
1625 status = pxa2xx_spi_dma_setup(drv_data);
1627 dev_dbg(dev, "no DMA channels available, using PIO\n");
1628 platform_info->enable_dma = false;
1630 master->can_dma = pxa2xx_spi_can_dma;
1634 /* Enable SOC clock */
1635 status = clk_prepare_enable(ssp->clk);
1637 goto out_error_dma_irq_alloc;
1639 master->max_speed_hz = clk_get_rate(ssp->clk);
1641 /* Load default SSP configuration */
1642 pxa2xx_spi_write(drv_data, SSCR0, 0);
1643 switch (drv_data->ssp_type) {
1644 case QUARK_X1000_SSP:
1645 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1646 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1647 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1649 /* using the Motorola SPI protocol and use 8 bit frame */
1650 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1651 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1654 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1655 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1656 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1657 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1658 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1661 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1662 SSCR1_TxTresh(TX_THRESH_DFLT);
1663 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1664 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1665 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1669 if (!pxa25x_ssp_comp(drv_data))
1670 pxa2xx_spi_write(drv_data, SSTO, 0);
1672 if (!is_quark_x1000_ssp(drv_data))
1673 pxa2xx_spi_write(drv_data, SSPSP, 0);
1675 if (is_lpss_ssp(drv_data)) {
1676 lpss_ssp_setup(drv_data);
1677 config = lpss_get_config(drv_data);
1678 if (config->reg_capabilities >= 0) {
1679 tmp = __lpss_ssp_read_priv(drv_data,
1680 config->reg_capabilities);
1681 tmp &= LPSS_CAPS_CS_EN_MASK;
1682 tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1683 platform_info->num_chipselect = ffz(tmp);
1684 } else if (config->cs_num) {
1685 platform_info->num_chipselect = config->cs_num;
1688 master->num_chipselect = platform_info->num_chipselect;
1690 count = gpiod_count(&pdev->dev, "cs");
1694 master->num_chipselect = max_t(int, count,
1695 master->num_chipselect);
1697 drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1698 master->num_chipselect, sizeof(struct gpio_desc *),
1700 if (!drv_data->cs_gpiods) {
1702 goto out_error_clock_enabled;
1705 for (i = 0; i < master->num_chipselect; i++) {
1706 struct gpio_desc *gpiod;
1708 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1709 if (IS_ERR(gpiod)) {
1710 /* Means use native chip select */
1711 if (PTR_ERR(gpiod) == -ENOENT)
1714 status = (int)PTR_ERR(gpiod);
1715 goto out_error_clock_enabled;
1717 drv_data->cs_gpiods[i] = gpiod;
1722 pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1723 pm_runtime_use_autosuspend(&pdev->dev);
1724 pm_runtime_set_active(&pdev->dev);
1725 pm_runtime_enable(&pdev->dev);
1727 /* Register with the SPI framework */
1728 platform_set_drvdata(pdev, drv_data);
1729 status = devm_spi_register_controller(&pdev->dev, master);
1731 dev_err(&pdev->dev, "problem registering spi master\n");
1732 goto out_error_clock_enabled;
1737 out_error_clock_enabled:
1738 pm_runtime_put_noidle(&pdev->dev);
1739 pm_runtime_disable(&pdev->dev);
1740 clk_disable_unprepare(ssp->clk);
1742 out_error_dma_irq_alloc:
1743 pxa2xx_spi_dma_release(drv_data);
1744 free_irq(ssp->irq, drv_data);
1746 out_error_master_alloc:
1747 spi_controller_put(master);
1752 static int pxa2xx_spi_remove(struct platform_device *pdev)
1754 struct driver_data *drv_data = platform_get_drvdata(pdev);
1755 struct ssp_device *ssp;
1759 ssp = drv_data->ssp;
1761 pm_runtime_get_sync(&pdev->dev);
1763 /* Disable the SSP at the peripheral and SOC level */
1764 pxa2xx_spi_write(drv_data, SSCR0, 0);
1765 clk_disable_unprepare(ssp->clk);
1768 if (drv_data->master_info->enable_dma)
1769 pxa2xx_spi_dma_release(drv_data);
1771 pm_runtime_put_noidle(&pdev->dev);
1772 pm_runtime_disable(&pdev->dev);
1775 free_irq(ssp->irq, drv_data);
1783 #ifdef CONFIG_PM_SLEEP
1784 static int pxa2xx_spi_suspend(struct device *dev)
1786 struct driver_data *drv_data = dev_get_drvdata(dev);
1787 struct ssp_device *ssp = drv_data->ssp;
1790 status = spi_controller_suspend(drv_data->master);
1793 pxa2xx_spi_write(drv_data, SSCR0, 0);
1795 if (!pm_runtime_suspended(dev))
1796 clk_disable_unprepare(ssp->clk);
1801 static int pxa2xx_spi_resume(struct device *dev)
1803 struct driver_data *drv_data = dev_get_drvdata(dev);
1804 struct ssp_device *ssp = drv_data->ssp;
1807 /* Enable the SSP clock */
1808 if (!pm_runtime_suspended(dev)) {
1809 status = clk_prepare_enable(ssp->clk);
1814 /* Restore LPSS private register bits */
1815 if (is_lpss_ssp(drv_data))
1816 lpss_ssp_setup(drv_data);
1818 /* Start the queue running */
1819 return spi_controller_resume(drv_data->master);
1824 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1826 struct driver_data *drv_data = dev_get_drvdata(dev);
1828 clk_disable_unprepare(drv_data->ssp->clk);
1832 static int pxa2xx_spi_runtime_resume(struct device *dev)
1834 struct driver_data *drv_data = dev_get_drvdata(dev);
1837 status = clk_prepare_enable(drv_data->ssp->clk);
1842 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1843 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1844 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1845 pxa2xx_spi_runtime_resume, NULL)
1848 static struct platform_driver driver = {
1850 .name = "pxa2xx-spi",
1851 .pm = &pxa2xx_spi_pm_ops,
1852 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1853 .of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1855 .probe = pxa2xx_spi_probe,
1856 .remove = pxa2xx_spi_remove,
1859 static int __init pxa2xx_spi_init(void)
1861 return platform_driver_register(&driver);
1863 subsys_initcall(pxa2xx_spi_init);
1865 static void __exit pxa2xx_spi_exit(void)
1867 platform_driver_unregister(&driver);
1869 module_exit(pxa2xx_spi_exit);