1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
106 #include "internal.h"
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
115 /* Highest zone. An specific allocation for a zone below that is not
117 enum zone_type policy_zone = 0;
120 * run-time system-wide default policy => local allocation
122 static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
130 struct mempolicy *get_task_policy(struct task_struct *p)
132 struct mempolicy *pol = p->mempolicy;
138 node = numa_node_id();
139 if (node != NUMA_NO_NODE) {
140 pol = &preferred_node_policy[node];
141 /* preferred_node_policy is not initialised early in boot */
146 return &default_policy;
149 static const struct mempolicy_operations {
150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152 } mpol_ops[MPOL_MAX];
154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
156 return pol->flags & MPOL_MODE_FLAGS;
159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 const nodemask_t *rel)
163 nodes_fold(tmp, *orig, nodes_weight(*rel));
164 nodes_onto(*ret, tmp, *rel);
167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
169 if (nodes_empty(*nodes))
171 pol->v.nodes = *nodes;
175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
178 pol->flags |= MPOL_F_LOCAL; /* local allocation */
179 else if (nodes_empty(*nodes))
180 return -EINVAL; /* no allowed nodes */
182 pol->v.preferred_node = first_node(*nodes);
186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
188 if (nodes_empty(*nodes))
190 pol->v.nodes = *nodes;
195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196 * any, for the new policy. mpol_new() has already validated the nodes
197 * parameter with respect to the policy mode and flags. But, we need to
198 * handle an empty nodemask with MPOL_PREFERRED here.
200 * Must be called holding task's alloc_lock to protect task's mems_allowed
201 * and mempolicy. May also be called holding the mmap_semaphore for write.
203 static int mpol_set_nodemask(struct mempolicy *pol,
204 const nodemask_t *nodes, struct nodemask_scratch *nsc)
208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
212 nodes_and(nsc->mask1,
213 cpuset_current_mems_allowed, node_states[N_MEMORY]);
216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 nodes = NULL; /* explicit local allocation */
219 if (pol->flags & MPOL_F_RELATIVE_NODES)
220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
222 nodes_and(nsc->mask2, *nodes, nsc->mask1);
224 if (mpol_store_user_nodemask(pol))
225 pol->w.user_nodemask = *nodes;
227 pol->w.cpuset_mems_allowed =
228 cpuset_current_mems_allowed;
232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
234 ret = mpol_ops[pol->mode].create(pol, NULL);
239 * This function just creates a new policy, does some check and simple
240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
245 struct mempolicy *policy;
247 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
250 if (mode == MPOL_DEFAULT) {
251 if (nodes && !nodes_empty(*nodes))
252 return ERR_PTR(-EINVAL);
258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 * All other modes require a valid pointer to a non-empty nodemask.
262 if (mode == MPOL_PREFERRED) {
263 if (nodes_empty(*nodes)) {
264 if (((flags & MPOL_F_STATIC_NODES) ||
265 (flags & MPOL_F_RELATIVE_NODES)))
266 return ERR_PTR(-EINVAL);
268 } else if (mode == MPOL_LOCAL) {
269 if (!nodes_empty(*nodes) ||
270 (flags & MPOL_F_STATIC_NODES) ||
271 (flags & MPOL_F_RELATIVE_NODES))
272 return ERR_PTR(-EINVAL);
273 mode = MPOL_PREFERRED;
274 } else if (nodes_empty(*nodes))
275 return ERR_PTR(-EINVAL);
276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
278 return ERR_PTR(-ENOMEM);
279 atomic_set(&policy->refcnt, 1);
281 policy->flags = flags;
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy *p)
289 if (!atomic_dec_and_test(&p->refcnt))
291 kmem_cache_free(policy_cache, p);
294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
302 if (pol->flags & MPOL_F_STATIC_NODES)
303 nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
309 pol->w.cpuset_mems_allowed = *nodes;
312 if (nodes_empty(tmp))
318 static void mpol_rebind_preferred(struct mempolicy *pol,
319 const nodemask_t *nodes)
323 if (pol->flags & MPOL_F_STATIC_NODES) {
324 int node = first_node(pol->w.user_nodemask);
326 if (node_isset(node, *nodes)) {
327 pol->v.preferred_node = node;
328 pol->flags &= ~MPOL_F_LOCAL;
330 pol->flags |= MPOL_F_LOCAL;
331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 pol->v.preferred_node = first_node(tmp);
334 } else if (!(pol->flags & MPOL_F_LOCAL)) {
335 pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 pol->w.cpuset_mems_allowed,
338 pol->w.cpuset_mems_allowed = *nodes;
343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
346 * policies are protected by task->mems_allowed_seq to prevent a premature
347 * OOM/allocation failure due to parallel nodemask modification.
349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
353 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
357 mpol_ops[pol->mode].rebind(pol, newmask);
361 * Wrapper for mpol_rebind_policy() that just requires task
362 * pointer, and updates task mempolicy.
364 * Called with task's alloc_lock held.
367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
369 mpol_rebind_policy(tsk->mempolicy, new);
373 * Rebind each vma in mm to new nodemask.
375 * Call holding a reference to mm. Takes mm->mmap_sem during call.
378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
380 struct vm_area_struct *vma;
382 down_write(&mm->mmap_sem);
383 for (vma = mm->mmap; vma; vma = vma->vm_next)
384 mpol_rebind_policy(vma->vm_policy, new);
385 up_write(&mm->mmap_sem);
388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
390 .rebind = mpol_rebind_default,
392 [MPOL_INTERLEAVE] = {
393 .create = mpol_new_interleave,
394 .rebind = mpol_rebind_nodemask,
397 .create = mpol_new_preferred,
398 .rebind = mpol_rebind_preferred,
401 .create = mpol_new_bind,
402 .rebind = mpol_rebind_nodemask,
406 static int migrate_page_add(struct page *page, struct list_head *pagelist,
407 unsigned long flags);
410 struct list_head *pagelist;
415 struct vm_area_struct *first;
419 * Check if the page's nid is in qp->nmask.
421 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
422 * in the invert of qp->nmask.
424 static inline bool queue_pages_required(struct page *page,
425 struct queue_pages *qp)
427 int nid = page_to_nid(page);
428 unsigned long flags = qp->flags;
430 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
434 * queue_pages_pmd() has four possible return values:
435 * 0 - pages are placed on the right node or queued successfully.
436 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
439 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
440 * existing page was already on a node that does not follow the
443 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
444 unsigned long end, struct mm_walk *walk)
448 struct queue_pages *qp = walk->private;
451 if (unlikely(is_pmd_migration_entry(*pmd))) {
455 page = pmd_page(*pmd);
456 if (is_huge_zero_page(page)) {
458 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
462 if (!queue_pages_required(page, qp))
466 /* go to thp migration */
467 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
468 if (!vma_migratable(walk->vma) ||
469 migrate_page_add(page, qp->pagelist, flags)) {
482 * Scan through pages checking if pages follow certain conditions,
483 * and move them to the pagelist if they do.
485 * queue_pages_pte_range() has three possible return values:
486 * 0 - pages are placed on the right node or queued successfully.
487 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
489 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
490 * on a node that does not follow the policy.
492 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
493 unsigned long end, struct mm_walk *walk)
495 struct vm_area_struct *vma = walk->vma;
497 struct queue_pages *qp = walk->private;
498 unsigned long flags = qp->flags;
500 bool has_unmovable = false;
504 ptl = pmd_trans_huge_lock(pmd, vma);
506 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
510 /* THP was split, fall through to pte walk */
512 if (pmd_trans_unstable(pmd))
515 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
516 for (; addr != end; pte++, addr += PAGE_SIZE) {
517 if (!pte_present(*pte))
519 page = vm_normal_page(vma, addr, *pte);
523 * vm_normal_page() filters out zero pages, but there might
524 * still be PageReserved pages to skip, perhaps in a VDSO.
526 if (PageReserved(page))
528 if (!queue_pages_required(page, qp))
530 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
531 /* MPOL_MF_STRICT must be specified if we get here */
532 if (!vma_migratable(vma)) {
533 has_unmovable = true;
538 * Do not abort immediately since there may be
539 * temporary off LRU pages in the range. Still
540 * need migrate other LRU pages.
542 if (migrate_page_add(page, qp->pagelist, flags))
543 has_unmovable = true;
547 pte_unmap_unlock(pte - 1, ptl);
553 return addr != end ? -EIO : 0;
556 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
557 unsigned long addr, unsigned long end,
558 struct mm_walk *walk)
561 #ifdef CONFIG_HUGETLB_PAGE
562 struct queue_pages *qp = walk->private;
563 unsigned long flags = (qp->flags & MPOL_MF_VALID);
568 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
569 entry = huge_ptep_get(pte);
570 if (!pte_present(entry))
572 page = pte_page(entry);
573 if (!queue_pages_required(page, qp))
576 if (flags == MPOL_MF_STRICT) {
578 * STRICT alone means only detecting misplaced page and no
579 * need to further check other vma.
585 if (!vma_migratable(walk->vma)) {
587 * Must be STRICT with MOVE*, otherwise .test_walk() have
588 * stopped walking current vma.
589 * Detecting misplaced page but allow migrating pages which
596 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
597 if (flags & (MPOL_MF_MOVE_ALL) ||
598 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
599 if (!isolate_huge_page(page, qp->pagelist) &&
600 (flags & MPOL_MF_STRICT))
602 * Failed to isolate page but allow migrating pages
603 * which have been queued.
615 #ifdef CONFIG_NUMA_BALANCING
617 * This is used to mark a range of virtual addresses to be inaccessible.
618 * These are later cleared by a NUMA hinting fault. Depending on these
619 * faults, pages may be migrated for better NUMA placement.
621 * This is assuming that NUMA faults are handled using PROT_NONE. If
622 * an architecture makes a different choice, it will need further
623 * changes to the core.
625 unsigned long change_prot_numa(struct vm_area_struct *vma,
626 unsigned long addr, unsigned long end)
630 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
632 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
637 static unsigned long change_prot_numa(struct vm_area_struct *vma,
638 unsigned long addr, unsigned long end)
642 #endif /* CONFIG_NUMA_BALANCING */
644 static int queue_pages_test_walk(unsigned long start, unsigned long end,
645 struct mm_walk *walk)
647 struct vm_area_struct *vma = walk->vma;
648 struct queue_pages *qp = walk->private;
649 unsigned long endvma = vma->vm_end;
650 unsigned long flags = qp->flags;
652 /* range check first */
653 VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma);
657 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
658 (qp->start < vma->vm_start))
659 /* hole at head side of range */
662 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
663 ((vma->vm_end < qp->end) &&
664 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
665 /* hole at middle or tail of range */
669 * Need check MPOL_MF_STRICT to return -EIO if possible
670 * regardless of vma_migratable
672 if (!vma_migratable(vma) &&
673 !(flags & MPOL_MF_STRICT))
679 if (flags & MPOL_MF_LAZY) {
680 /* Similar to task_numa_work, skip inaccessible VMAs */
681 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
682 !(vma->vm_flags & VM_MIXEDMAP))
683 change_prot_numa(vma, start, endvma);
687 /* queue pages from current vma */
688 if (flags & MPOL_MF_VALID)
693 static const struct mm_walk_ops queue_pages_walk_ops = {
694 .hugetlb_entry = queue_pages_hugetlb,
695 .pmd_entry = queue_pages_pte_range,
696 .test_walk = queue_pages_test_walk,
700 * Walk through page tables and collect pages to be migrated.
702 * If pages found in a given range are on a set of nodes (determined by
703 * @nodes and @flags,) it's isolated and queued to the pagelist which is
704 * passed via @private.
706 * queue_pages_range() has three possible return values:
707 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
709 * 0 - queue pages successfully or no misplaced page.
710 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
711 * memory range specified by nodemask and maxnode points outside
712 * your accessible address space (-EFAULT)
715 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
716 nodemask_t *nodes, unsigned long flags,
717 struct list_head *pagelist)
720 struct queue_pages qp = {
721 .pagelist = pagelist,
729 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
732 /* whole range in hole */
739 * Apply policy to a single VMA
740 * This must be called with the mmap_sem held for writing.
742 static int vma_replace_policy(struct vm_area_struct *vma,
743 struct mempolicy *pol)
746 struct mempolicy *old;
747 struct mempolicy *new;
749 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
750 vma->vm_start, vma->vm_end, vma->vm_pgoff,
751 vma->vm_ops, vma->vm_file,
752 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
758 if (vma->vm_ops && vma->vm_ops->set_policy) {
759 err = vma->vm_ops->set_policy(vma, new);
764 old = vma->vm_policy;
765 vma->vm_policy = new; /* protected by mmap_sem */
774 /* Step 2: apply policy to a range and do splits. */
775 static int mbind_range(struct mm_struct *mm, unsigned long start,
776 unsigned long end, struct mempolicy *new_pol)
778 struct vm_area_struct *next;
779 struct vm_area_struct *prev;
780 struct vm_area_struct *vma;
783 unsigned long vmstart;
786 vma = find_vma(mm, start);
790 if (start > vma->vm_start)
793 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
795 vmstart = max(start, vma->vm_start);
796 vmend = min(end, vma->vm_end);
798 if (mpol_equal(vma_policy(vma), new_pol))
801 pgoff = vma->vm_pgoff +
802 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
803 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
804 vma->anon_vma, vma->vm_file, pgoff,
805 new_pol, vma->vm_userfaultfd_ctx);
809 if (mpol_equal(vma_policy(vma), new_pol))
811 /* vma_merge() joined vma && vma->next, case 8 */
814 if (vma->vm_start != vmstart) {
815 err = split_vma(vma->vm_mm, vma, vmstart, 1);
819 if (vma->vm_end != vmend) {
820 err = split_vma(vma->vm_mm, vma, vmend, 0);
825 err = vma_replace_policy(vma, new_pol);
834 /* Set the process memory policy */
835 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
838 struct mempolicy *new, *old;
839 NODEMASK_SCRATCH(scratch);
845 new = mpol_new(mode, flags, nodes);
852 ret = mpol_set_nodemask(new, nodes, scratch);
854 task_unlock(current);
858 old = current->mempolicy;
859 current->mempolicy = new;
860 if (new && new->mode == MPOL_INTERLEAVE)
861 current->il_prev = MAX_NUMNODES-1;
862 task_unlock(current);
866 NODEMASK_SCRATCH_FREE(scratch);
871 * Return nodemask for policy for get_mempolicy() query
873 * Called with task's alloc_lock held
875 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
878 if (p == &default_policy)
884 case MPOL_INTERLEAVE:
888 if (!(p->flags & MPOL_F_LOCAL))
889 node_set(p->v.preferred_node, *nodes);
890 /* else return empty node mask for local allocation */
897 static int lookup_node(struct mm_struct *mm, unsigned long addr)
903 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
905 err = page_to_nid(p);
909 up_read(&mm->mmap_sem);
913 /* Retrieve NUMA policy */
914 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
915 unsigned long addr, unsigned long flags)
918 struct mm_struct *mm = current->mm;
919 struct vm_area_struct *vma = NULL;
920 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
923 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
926 if (flags & MPOL_F_MEMS_ALLOWED) {
927 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
929 *policy = 0; /* just so it's initialized */
931 *nmask = cpuset_current_mems_allowed;
932 task_unlock(current);
936 if (flags & MPOL_F_ADDR) {
938 * Do NOT fall back to task policy if the
939 * vma/shared policy at addr is NULL. We
940 * want to return MPOL_DEFAULT in this case.
942 down_read(&mm->mmap_sem);
943 vma = find_vma_intersection(mm, addr, addr+1);
945 up_read(&mm->mmap_sem);
948 if (vma->vm_ops && vma->vm_ops->get_policy)
949 pol = vma->vm_ops->get_policy(vma, addr);
951 pol = vma->vm_policy;
956 pol = &default_policy; /* indicates default behavior */
958 if (flags & MPOL_F_NODE) {
959 if (flags & MPOL_F_ADDR) {
961 * Take a refcount on the mpol, lookup_node()
962 * wil drop the mmap_sem, so after calling
963 * lookup_node() only "pol" remains valid, "vma"
969 err = lookup_node(mm, addr);
973 } else if (pol == current->mempolicy &&
974 pol->mode == MPOL_INTERLEAVE) {
975 *policy = next_node_in(current->il_prev, pol->v.nodes);
981 *policy = pol == &default_policy ? MPOL_DEFAULT :
984 * Internal mempolicy flags must be masked off before exposing
985 * the policy to userspace.
987 *policy |= (pol->flags & MPOL_MODE_FLAGS);
992 if (mpol_store_user_nodemask(pol)) {
993 *nmask = pol->w.user_nodemask;
996 get_policy_nodemask(pol, nmask);
997 task_unlock(current);
1004 up_read(&mm->mmap_sem);
1006 mpol_put(pol_refcount);
1010 #ifdef CONFIG_MIGRATION
1012 * page migration, thp tail pages can be passed.
1014 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1015 unsigned long flags)
1017 struct page *head = compound_head(page);
1019 * Avoid migrating a page that is shared with others.
1021 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1022 if (!isolate_lru_page(head)) {
1023 list_add_tail(&head->lru, pagelist);
1024 mod_node_page_state(page_pgdat(head),
1025 NR_ISOLATED_ANON + page_is_file_lru(head),
1026 hpage_nr_pages(head));
1027 } else if (flags & MPOL_MF_STRICT) {
1029 * Non-movable page may reach here. And, there may be
1030 * temporary off LRU pages or non-LRU movable pages.
1031 * Treat them as unmovable pages since they can't be
1032 * isolated, so they can't be moved at the moment. It
1033 * should return -EIO for this case too.
1042 /* page allocation callback for NUMA node migration */
1043 struct page *alloc_new_node_page(struct page *page, unsigned long node)
1046 return alloc_huge_page_node(page_hstate(compound_head(page)),
1048 else if (PageTransHuge(page)) {
1051 thp = alloc_pages_node(node,
1052 (GFP_TRANSHUGE | __GFP_THISNODE),
1056 prep_transhuge_page(thp);
1059 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
1064 * Migrate pages from one node to a target node.
1065 * Returns error or the number of pages not migrated.
1067 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1071 LIST_HEAD(pagelist);
1075 node_set(source, nmask);
1078 * This does not "check" the range but isolates all pages that
1079 * need migration. Between passing in the full user address
1080 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1082 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1083 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1084 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1086 if (!list_empty(&pagelist)) {
1087 err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
1088 MIGRATE_SYNC, MR_SYSCALL);
1090 putback_movable_pages(&pagelist);
1097 * Move pages between the two nodesets so as to preserve the physical
1098 * layout as much as possible.
1100 * Returns the number of page that could not be moved.
1102 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1103 const nodemask_t *to, int flags)
1109 err = migrate_prep();
1113 down_read(&mm->mmap_sem);
1116 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1117 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1118 * bit in 'tmp', and return that <source, dest> pair for migration.
1119 * The pair of nodemasks 'to' and 'from' define the map.
1121 * If no pair of bits is found that way, fallback to picking some
1122 * pair of 'source' and 'dest' bits that are not the same. If the
1123 * 'source' and 'dest' bits are the same, this represents a node
1124 * that will be migrating to itself, so no pages need move.
1126 * If no bits are left in 'tmp', or if all remaining bits left
1127 * in 'tmp' correspond to the same bit in 'to', return false
1128 * (nothing left to migrate).
1130 * This lets us pick a pair of nodes to migrate between, such that
1131 * if possible the dest node is not already occupied by some other
1132 * source node, minimizing the risk of overloading the memory on a
1133 * node that would happen if we migrated incoming memory to a node
1134 * before migrating outgoing memory source that same node.
1136 * A single scan of tmp is sufficient. As we go, we remember the
1137 * most recent <s, d> pair that moved (s != d). If we find a pair
1138 * that not only moved, but what's better, moved to an empty slot
1139 * (d is not set in tmp), then we break out then, with that pair.
1140 * Otherwise when we finish scanning from_tmp, we at least have the
1141 * most recent <s, d> pair that moved. If we get all the way through
1142 * the scan of tmp without finding any node that moved, much less
1143 * moved to an empty node, then there is nothing left worth migrating.
1147 while (!nodes_empty(tmp)) {
1149 int source = NUMA_NO_NODE;
1152 for_each_node_mask(s, tmp) {
1155 * do_migrate_pages() tries to maintain the relative
1156 * node relationship of the pages established between
1157 * threads and memory areas.
1159 * However if the number of source nodes is not equal to
1160 * the number of destination nodes we can not preserve
1161 * this node relative relationship. In that case, skip
1162 * copying memory from a node that is in the destination
1165 * Example: [2,3,4] -> [3,4,5] moves everything.
1166 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1169 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1170 (node_isset(s, *to)))
1173 d = node_remap(s, *from, *to);
1177 source = s; /* Node moved. Memorize */
1180 /* dest not in remaining from nodes? */
1181 if (!node_isset(dest, tmp))
1184 if (source == NUMA_NO_NODE)
1187 node_clear(source, tmp);
1188 err = migrate_to_node(mm, source, dest, flags);
1194 up_read(&mm->mmap_sem);
1202 * Allocate a new page for page migration based on vma policy.
1203 * Start by assuming the page is mapped by the same vma as contains @start.
1204 * Search forward from there, if not. N.B., this assumes that the
1205 * list of pages handed to migrate_pages()--which is how we get here--
1206 * is in virtual address order.
1208 static struct page *new_page(struct page *page, unsigned long start)
1210 struct vm_area_struct *vma;
1211 unsigned long uninitialized_var(address);
1213 vma = find_vma(current->mm, start);
1215 address = page_address_in_vma(page, vma);
1216 if (address != -EFAULT)
1221 if (PageHuge(page)) {
1222 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1224 } else if (PageTransHuge(page)) {
1227 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1231 prep_transhuge_page(thp);
1235 * if !vma, alloc_page_vma() will use task or system default policy
1237 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1242 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1243 unsigned long flags)
1248 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1249 const nodemask_t *to, int flags)
1254 static struct page *new_page(struct page *page, unsigned long start)
1260 static long do_mbind(unsigned long start, unsigned long len,
1261 unsigned short mode, unsigned short mode_flags,
1262 nodemask_t *nmask, unsigned long flags)
1264 struct mm_struct *mm = current->mm;
1265 struct mempolicy *new;
1269 LIST_HEAD(pagelist);
1271 if (flags & ~(unsigned long)MPOL_MF_VALID)
1273 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1276 if (start & ~PAGE_MASK)
1279 if (mode == MPOL_DEFAULT)
1280 flags &= ~MPOL_MF_STRICT;
1282 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1290 new = mpol_new(mode, mode_flags, nmask);
1292 return PTR_ERR(new);
1294 if (flags & MPOL_MF_LAZY)
1295 new->flags |= MPOL_F_MOF;
1298 * If we are using the default policy then operation
1299 * on discontinuous address spaces is okay after all
1302 flags |= MPOL_MF_DISCONTIG_OK;
1304 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1305 start, start + len, mode, mode_flags,
1306 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1308 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1310 err = migrate_prep();
1315 NODEMASK_SCRATCH(scratch);
1317 down_write(&mm->mmap_sem);
1319 err = mpol_set_nodemask(new, nmask, scratch);
1320 task_unlock(current);
1322 up_write(&mm->mmap_sem);
1325 NODEMASK_SCRATCH_FREE(scratch);
1330 ret = queue_pages_range(mm, start, end, nmask,
1331 flags | MPOL_MF_INVERT, &pagelist);
1338 err = mbind_range(mm, start, end, new);
1343 if (!list_empty(&pagelist)) {
1344 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1345 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1346 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1348 putback_movable_pages(&pagelist);
1351 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1355 if (!list_empty(&pagelist))
1356 putback_movable_pages(&pagelist);
1359 up_write(&mm->mmap_sem);
1366 * User space interface with variable sized bitmaps for nodelists.
1369 /* Copy a node mask from user space. */
1370 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1371 unsigned long maxnode)
1375 unsigned long nlongs;
1376 unsigned long endmask;
1379 nodes_clear(*nodes);
1380 if (maxnode == 0 || !nmask)
1382 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1385 nlongs = BITS_TO_LONGS(maxnode);
1386 if ((maxnode % BITS_PER_LONG) == 0)
1389 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1392 * When the user specified more nodes than supported just check
1393 * if the non supported part is all zero.
1395 * If maxnode have more longs than MAX_NUMNODES, check
1396 * the bits in that area first. And then go through to
1397 * check the rest bits which equal or bigger than MAX_NUMNODES.
1398 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1400 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1401 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1402 if (get_user(t, nmask + k))
1404 if (k == nlongs - 1) {
1410 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1414 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1415 unsigned long valid_mask = endmask;
1417 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1418 if (get_user(t, nmask + nlongs - 1))
1424 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1426 nodes_addr(*nodes)[nlongs-1] &= endmask;
1430 /* Copy a kernel node mask to user space */
1431 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1434 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1435 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1437 if (copy > nbytes) {
1438 if (copy > PAGE_SIZE)
1440 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1444 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1447 static long kernel_mbind(unsigned long start, unsigned long len,
1448 unsigned long mode, const unsigned long __user *nmask,
1449 unsigned long maxnode, unsigned int flags)
1453 unsigned short mode_flags;
1455 start = untagged_addr(start);
1456 mode_flags = mode & MPOL_MODE_FLAGS;
1457 mode &= ~MPOL_MODE_FLAGS;
1458 if (mode >= MPOL_MAX)
1460 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1461 (mode_flags & MPOL_F_RELATIVE_NODES))
1463 err = get_nodes(&nodes, nmask, maxnode);
1466 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1469 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1470 unsigned long, mode, const unsigned long __user *, nmask,
1471 unsigned long, maxnode, unsigned int, flags)
1473 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1476 /* Set the process memory policy */
1477 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1478 unsigned long maxnode)
1482 unsigned short flags;
1484 flags = mode & MPOL_MODE_FLAGS;
1485 mode &= ~MPOL_MODE_FLAGS;
1486 if ((unsigned int)mode >= MPOL_MAX)
1488 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1490 err = get_nodes(&nodes, nmask, maxnode);
1493 return do_set_mempolicy(mode, flags, &nodes);
1496 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1497 unsigned long, maxnode)
1499 return kernel_set_mempolicy(mode, nmask, maxnode);
1502 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1503 const unsigned long __user *old_nodes,
1504 const unsigned long __user *new_nodes)
1506 struct mm_struct *mm = NULL;
1507 struct task_struct *task;
1508 nodemask_t task_nodes;
1512 NODEMASK_SCRATCH(scratch);
1517 old = &scratch->mask1;
1518 new = &scratch->mask2;
1520 err = get_nodes(old, old_nodes, maxnode);
1524 err = get_nodes(new, new_nodes, maxnode);
1528 /* Find the mm_struct */
1530 task = pid ? find_task_by_vpid(pid) : current;
1536 get_task_struct(task);
1541 * Check if this process has the right to modify the specified process.
1542 * Use the regular "ptrace_may_access()" checks.
1544 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1551 task_nodes = cpuset_mems_allowed(task);
1552 /* Is the user allowed to access the target nodes? */
1553 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1558 task_nodes = cpuset_mems_allowed(current);
1559 nodes_and(*new, *new, task_nodes);
1560 if (nodes_empty(*new))
1563 err = security_task_movememory(task);
1567 mm = get_task_mm(task);
1568 put_task_struct(task);
1575 err = do_migrate_pages(mm, old, new,
1576 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1580 NODEMASK_SCRATCH_FREE(scratch);
1585 put_task_struct(task);
1590 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1591 const unsigned long __user *, old_nodes,
1592 const unsigned long __user *, new_nodes)
1594 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1598 /* Retrieve NUMA policy */
1599 static int kernel_get_mempolicy(int __user *policy,
1600 unsigned long __user *nmask,
1601 unsigned long maxnode,
1603 unsigned long flags)
1606 int uninitialized_var(pval);
1609 addr = untagged_addr(addr);
1611 if (nmask != NULL && maxnode < nr_node_ids)
1614 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1619 if (policy && put_user(pval, policy))
1623 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1628 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1629 unsigned long __user *, nmask, unsigned long, maxnode,
1630 unsigned long, addr, unsigned long, flags)
1632 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1635 #ifdef CONFIG_COMPAT
1637 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1638 compat_ulong_t __user *, nmask,
1639 compat_ulong_t, maxnode,
1640 compat_ulong_t, addr, compat_ulong_t, flags)
1643 unsigned long __user *nm = NULL;
1644 unsigned long nr_bits, alloc_size;
1645 DECLARE_BITMAP(bm, MAX_NUMNODES);
1647 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1648 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1651 nm = compat_alloc_user_space(alloc_size);
1653 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1655 if (!err && nmask) {
1656 unsigned long copy_size;
1657 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1658 err = copy_from_user(bm, nm, copy_size);
1659 /* ensure entire bitmap is zeroed */
1660 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1661 err |= compat_put_bitmap(nmask, bm, nr_bits);
1667 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1668 compat_ulong_t, maxnode)
1670 unsigned long __user *nm = NULL;
1671 unsigned long nr_bits, alloc_size;
1672 DECLARE_BITMAP(bm, MAX_NUMNODES);
1674 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1675 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1678 if (compat_get_bitmap(bm, nmask, nr_bits))
1680 nm = compat_alloc_user_space(alloc_size);
1681 if (copy_to_user(nm, bm, alloc_size))
1685 return kernel_set_mempolicy(mode, nm, nr_bits+1);
1688 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1689 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1690 compat_ulong_t, maxnode, compat_ulong_t, flags)
1692 unsigned long __user *nm = NULL;
1693 unsigned long nr_bits, alloc_size;
1696 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1697 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1700 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1702 nm = compat_alloc_user_space(alloc_size);
1703 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1707 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1710 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1711 compat_ulong_t, maxnode,
1712 const compat_ulong_t __user *, old_nodes,
1713 const compat_ulong_t __user *, new_nodes)
1715 unsigned long __user *old = NULL;
1716 unsigned long __user *new = NULL;
1717 nodemask_t tmp_mask;
1718 unsigned long nr_bits;
1721 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1722 size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1724 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1726 old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1728 new = old + size / sizeof(unsigned long);
1729 if (copy_to_user(old, nodes_addr(tmp_mask), size))
1733 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1736 new = compat_alloc_user_space(size);
1737 if (copy_to_user(new, nodes_addr(tmp_mask), size))
1740 return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1743 #endif /* CONFIG_COMPAT */
1745 bool vma_migratable(struct vm_area_struct *vma)
1747 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1751 * DAX device mappings require predictable access latency, so avoid
1752 * incurring periodic faults.
1754 if (vma_is_dax(vma))
1757 if (is_vm_hugetlb_page(vma) &&
1758 !hugepage_migration_supported(hstate_vma(vma)))
1762 * Migration allocates pages in the highest zone. If we cannot
1763 * do so then migration (at least from node to node) is not
1767 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1773 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1776 struct mempolicy *pol = NULL;
1779 if (vma->vm_ops && vma->vm_ops->get_policy) {
1780 pol = vma->vm_ops->get_policy(vma, addr);
1781 } else if (vma->vm_policy) {
1782 pol = vma->vm_policy;
1785 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1786 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1787 * count on these policies which will be dropped by
1788 * mpol_cond_put() later
1790 if (mpol_needs_cond_ref(pol))
1799 * get_vma_policy(@vma, @addr)
1800 * @vma: virtual memory area whose policy is sought
1801 * @addr: address in @vma for shared policy lookup
1803 * Returns effective policy for a VMA at specified address.
1804 * Falls back to current->mempolicy or system default policy, as necessary.
1805 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1806 * count--added by the get_policy() vm_op, as appropriate--to protect against
1807 * freeing by another task. It is the caller's responsibility to free the
1808 * extra reference for shared policies.
1810 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1813 struct mempolicy *pol = __get_vma_policy(vma, addr);
1816 pol = get_task_policy(current);
1821 bool vma_policy_mof(struct vm_area_struct *vma)
1823 struct mempolicy *pol;
1825 if (vma->vm_ops && vma->vm_ops->get_policy) {
1828 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1829 if (pol && (pol->flags & MPOL_F_MOF))
1836 pol = vma->vm_policy;
1838 pol = get_task_policy(current);
1840 return pol->flags & MPOL_F_MOF;
1843 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1845 enum zone_type dynamic_policy_zone = policy_zone;
1847 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1850 * if policy->v.nodes has movable memory only,
1851 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1853 * policy->v.nodes is intersect with node_states[N_MEMORY].
1854 * so if the following test faile, it implies
1855 * policy->v.nodes has movable memory only.
1857 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1858 dynamic_policy_zone = ZONE_MOVABLE;
1860 return zone >= dynamic_policy_zone;
1864 * Return a nodemask representing a mempolicy for filtering nodes for
1867 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1869 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1870 if (unlikely(policy->mode == MPOL_BIND) &&
1871 apply_policy_zone(policy, gfp_zone(gfp)) &&
1872 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1873 return &policy->v.nodes;
1878 /* Return the node id preferred by the given mempolicy, or the given id */
1879 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1882 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1883 nd = policy->v.preferred_node;
1886 * __GFP_THISNODE shouldn't even be used with the bind policy
1887 * because we might easily break the expectation to stay on the
1888 * requested node and not break the policy.
1890 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1896 /* Do dynamic interleaving for a process */
1897 static unsigned interleave_nodes(struct mempolicy *policy)
1900 struct task_struct *me = current;
1902 next = next_node_in(me->il_prev, policy->v.nodes);
1903 if (next < MAX_NUMNODES)
1909 * Depending on the memory policy provide a node from which to allocate the
1912 unsigned int mempolicy_slab_node(void)
1914 struct mempolicy *policy;
1915 int node = numa_mem_id();
1920 policy = current->mempolicy;
1921 if (!policy || policy->flags & MPOL_F_LOCAL)
1924 switch (policy->mode) {
1925 case MPOL_PREFERRED:
1927 * handled MPOL_F_LOCAL above
1929 return policy->v.preferred_node;
1931 case MPOL_INTERLEAVE:
1932 return interleave_nodes(policy);
1938 * Follow bind policy behavior and start allocation at the
1941 struct zonelist *zonelist;
1942 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1943 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1944 z = first_zones_zonelist(zonelist, highest_zoneidx,
1946 return z->zone ? zone_to_nid(z->zone) : node;
1955 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1956 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1957 * number of present nodes.
1959 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1961 unsigned nnodes = nodes_weight(pol->v.nodes);
1967 return numa_node_id();
1968 target = (unsigned int)n % nnodes;
1969 nid = first_node(pol->v.nodes);
1970 for (i = 0; i < target; i++)
1971 nid = next_node(nid, pol->v.nodes);
1975 /* Determine a node number for interleave */
1976 static inline unsigned interleave_nid(struct mempolicy *pol,
1977 struct vm_area_struct *vma, unsigned long addr, int shift)
1983 * for small pages, there is no difference between
1984 * shift and PAGE_SHIFT, so the bit-shift is safe.
1985 * for huge pages, since vm_pgoff is in units of small
1986 * pages, we need to shift off the always 0 bits to get
1989 BUG_ON(shift < PAGE_SHIFT);
1990 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1991 off += (addr - vma->vm_start) >> shift;
1992 return offset_il_node(pol, off);
1994 return interleave_nodes(pol);
1997 #ifdef CONFIG_HUGETLBFS
1999 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2000 * @vma: virtual memory area whose policy is sought
2001 * @addr: address in @vma for shared policy lookup and interleave policy
2002 * @gfp_flags: for requested zone
2003 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2004 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2006 * Returns a nid suitable for a huge page allocation and a pointer
2007 * to the struct mempolicy for conditional unref after allocation.
2008 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2009 * @nodemask for filtering the zonelist.
2011 * Must be protected by read_mems_allowed_begin()
2013 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2014 struct mempolicy **mpol, nodemask_t **nodemask)
2018 *mpol = get_vma_policy(vma, addr);
2019 *nodemask = NULL; /* assume !MPOL_BIND */
2021 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2022 nid = interleave_nid(*mpol, vma, addr,
2023 huge_page_shift(hstate_vma(vma)));
2025 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2026 if ((*mpol)->mode == MPOL_BIND)
2027 *nodemask = &(*mpol)->v.nodes;
2033 * init_nodemask_of_mempolicy
2035 * If the current task's mempolicy is "default" [NULL], return 'false'
2036 * to indicate default policy. Otherwise, extract the policy nodemask
2037 * for 'bind' or 'interleave' policy into the argument nodemask, or
2038 * initialize the argument nodemask to contain the single node for
2039 * 'preferred' or 'local' policy and return 'true' to indicate presence
2040 * of non-default mempolicy.
2042 * We don't bother with reference counting the mempolicy [mpol_get/put]
2043 * because the current task is examining it's own mempolicy and a task's
2044 * mempolicy is only ever changed by the task itself.
2046 * N.B., it is the caller's responsibility to free a returned nodemask.
2048 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2050 struct mempolicy *mempolicy;
2053 if (!(mask && current->mempolicy))
2057 mempolicy = current->mempolicy;
2058 switch (mempolicy->mode) {
2059 case MPOL_PREFERRED:
2060 if (mempolicy->flags & MPOL_F_LOCAL)
2061 nid = numa_node_id();
2063 nid = mempolicy->v.preferred_node;
2064 init_nodemask_of_node(mask, nid);
2069 case MPOL_INTERLEAVE:
2070 *mask = mempolicy->v.nodes;
2076 task_unlock(current);
2083 * mempolicy_nodemask_intersects
2085 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2086 * policy. Otherwise, check for intersection between mask and the policy
2087 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
2088 * policy, always return true since it may allocate elsewhere on fallback.
2090 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2092 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2093 const nodemask_t *mask)
2095 struct mempolicy *mempolicy;
2101 mempolicy = tsk->mempolicy;
2105 switch (mempolicy->mode) {
2106 case MPOL_PREFERRED:
2108 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2109 * allocate from, they may fallback to other nodes when oom.
2110 * Thus, it's possible for tsk to have allocated memory from
2115 case MPOL_INTERLEAVE:
2116 ret = nodes_intersects(mempolicy->v.nodes, *mask);
2126 /* Allocate a page in interleaved policy.
2127 Own path because it needs to do special accounting. */
2128 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2133 page = __alloc_pages(gfp, order, nid);
2134 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2135 if (!static_branch_likely(&vm_numa_stat_key))
2137 if (page && page_to_nid(page) == nid) {
2139 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2146 * alloc_pages_vma - Allocate a page for a VMA.
2149 * %GFP_USER user allocation.
2150 * %GFP_KERNEL kernel allocations,
2151 * %GFP_HIGHMEM highmem/user allocations,
2152 * %GFP_FS allocation should not call back into a file system.
2153 * %GFP_ATOMIC don't sleep.
2155 * @order:Order of the GFP allocation.
2156 * @vma: Pointer to VMA or NULL if not available.
2157 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2158 * @node: Which node to prefer for allocation (modulo policy).
2159 * @hugepage: for hugepages try only the preferred node if possible
2161 * This function allocates a page from the kernel page pool and applies
2162 * a NUMA policy associated with the VMA or the current process.
2163 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2164 * mm_struct of the VMA to prevent it from going away. Should be used for
2165 * all allocations for pages that will be mapped into user space. Returns
2166 * NULL when no page can be allocated.
2169 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2170 unsigned long addr, int node, bool hugepage)
2172 struct mempolicy *pol;
2177 pol = get_vma_policy(vma, addr);
2179 if (pol->mode == MPOL_INTERLEAVE) {
2182 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2184 page = alloc_page_interleave(gfp, order, nid);
2188 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2189 int hpage_node = node;
2192 * For hugepage allocation and non-interleave policy which
2193 * allows the current node (or other explicitly preferred
2194 * node) we only try to allocate from the current/preferred
2195 * node and don't fall back to other nodes, as the cost of
2196 * remote accesses would likely offset THP benefits.
2198 * If the policy is interleave, or does not allow the current
2199 * node in its nodemask, we allocate the standard way.
2201 if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2202 hpage_node = pol->v.preferred_node;
2204 nmask = policy_nodemask(gfp, pol);
2205 if (!nmask || node_isset(hpage_node, *nmask)) {
2208 * First, try to allocate THP only on local node, but
2209 * don't reclaim unnecessarily, just compact.
2211 page = __alloc_pages_node(hpage_node,
2212 gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2215 * If hugepage allocations are configured to always
2216 * synchronous compact or the vma has been madvised
2217 * to prefer hugepage backing, retry allowing remote
2218 * memory with both reclaim and compact as well.
2220 if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2221 page = __alloc_pages_node(hpage_node,
2228 nmask = policy_nodemask(gfp, pol);
2229 preferred_nid = policy_node(gfp, pol, node);
2230 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2235 EXPORT_SYMBOL(alloc_pages_vma);
2238 * alloc_pages_current - Allocate pages.
2241 * %GFP_USER user allocation,
2242 * %GFP_KERNEL kernel allocation,
2243 * %GFP_HIGHMEM highmem allocation,
2244 * %GFP_FS don't call back into a file system.
2245 * %GFP_ATOMIC don't sleep.
2246 * @order: Power of two of allocation size in pages. 0 is a single page.
2248 * Allocate a page from the kernel page pool. When not in
2249 * interrupt context and apply the current process NUMA policy.
2250 * Returns NULL when no page can be allocated.
2252 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2254 struct mempolicy *pol = &default_policy;
2257 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2258 pol = get_task_policy(current);
2261 * No reference counting needed for current->mempolicy
2262 * nor system default_policy
2264 if (pol->mode == MPOL_INTERLEAVE)
2265 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2267 page = __alloc_pages_nodemask(gfp, order,
2268 policy_node(gfp, pol, numa_node_id()),
2269 policy_nodemask(gfp, pol));
2273 EXPORT_SYMBOL(alloc_pages_current);
2275 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2277 struct mempolicy *pol = mpol_dup(vma_policy(src));
2280 return PTR_ERR(pol);
2281 dst->vm_policy = pol;
2286 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2287 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2288 * with the mems_allowed returned by cpuset_mems_allowed(). This
2289 * keeps mempolicies cpuset relative after its cpuset moves. See
2290 * further kernel/cpuset.c update_nodemask().
2292 * current's mempolicy may be rebinded by the other task(the task that changes
2293 * cpuset's mems), so we needn't do rebind work for current task.
2296 /* Slow path of a mempolicy duplicate */
2297 struct mempolicy *__mpol_dup(struct mempolicy *old)
2299 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2302 return ERR_PTR(-ENOMEM);
2304 /* task's mempolicy is protected by alloc_lock */
2305 if (old == current->mempolicy) {
2308 task_unlock(current);
2312 if (current_cpuset_is_being_rebound()) {
2313 nodemask_t mems = cpuset_mems_allowed(current);
2314 mpol_rebind_policy(new, &mems);
2316 atomic_set(&new->refcnt, 1);
2320 /* Slow path of a mempolicy comparison */
2321 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2325 if (a->mode != b->mode)
2327 if (a->flags != b->flags)
2329 if (mpol_store_user_nodemask(a))
2330 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2336 case MPOL_INTERLEAVE:
2337 return !!nodes_equal(a->v.nodes, b->v.nodes);
2338 case MPOL_PREFERRED:
2339 /* a's ->flags is the same as b's */
2340 if (a->flags & MPOL_F_LOCAL)
2342 return a->v.preferred_node == b->v.preferred_node;
2350 * Shared memory backing store policy support.
2352 * Remember policies even when nobody has shared memory mapped.
2353 * The policies are kept in Red-Black tree linked from the inode.
2354 * They are protected by the sp->lock rwlock, which should be held
2355 * for any accesses to the tree.
2359 * lookup first element intersecting start-end. Caller holds sp->lock for
2360 * reading or for writing
2362 static struct sp_node *
2363 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2365 struct rb_node *n = sp->root.rb_node;
2368 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2370 if (start >= p->end)
2372 else if (end <= p->start)
2380 struct sp_node *w = NULL;
2381 struct rb_node *prev = rb_prev(n);
2384 w = rb_entry(prev, struct sp_node, nd);
2385 if (w->end <= start)
2389 return rb_entry(n, struct sp_node, nd);
2393 * Insert a new shared policy into the list. Caller holds sp->lock for
2396 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2398 struct rb_node **p = &sp->root.rb_node;
2399 struct rb_node *parent = NULL;
2404 nd = rb_entry(parent, struct sp_node, nd);
2405 if (new->start < nd->start)
2407 else if (new->end > nd->end)
2408 p = &(*p)->rb_right;
2412 rb_link_node(&new->nd, parent, p);
2413 rb_insert_color(&new->nd, &sp->root);
2414 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2415 new->policy ? new->policy->mode : 0);
2418 /* Find shared policy intersecting idx */
2420 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2422 struct mempolicy *pol = NULL;
2425 if (!sp->root.rb_node)
2427 read_lock(&sp->lock);
2428 sn = sp_lookup(sp, idx, idx+1);
2430 mpol_get(sn->policy);
2433 read_unlock(&sp->lock);
2437 static void sp_free(struct sp_node *n)
2439 mpol_put(n->policy);
2440 kmem_cache_free(sn_cache, n);
2444 * mpol_misplaced - check whether current page node is valid in policy
2446 * @page: page to be checked
2447 * @vma: vm area where page mapped
2448 * @addr: virtual address where page mapped
2450 * Lookup current policy node id for vma,addr and "compare to" page's
2454 * -1 - not misplaced, page is in the right node
2455 * node - node id where the page should be
2457 * Policy determination "mimics" alloc_page_vma().
2458 * Called from fault path where we know the vma and faulting address.
2460 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2462 struct mempolicy *pol;
2464 int curnid = page_to_nid(page);
2465 unsigned long pgoff;
2466 int thiscpu = raw_smp_processor_id();
2467 int thisnid = cpu_to_node(thiscpu);
2468 int polnid = NUMA_NO_NODE;
2471 pol = get_vma_policy(vma, addr);
2472 if (!(pol->flags & MPOL_F_MOF))
2475 switch (pol->mode) {
2476 case MPOL_INTERLEAVE:
2477 pgoff = vma->vm_pgoff;
2478 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2479 polnid = offset_il_node(pol, pgoff);
2482 case MPOL_PREFERRED:
2483 if (pol->flags & MPOL_F_LOCAL)
2484 polnid = numa_node_id();
2486 polnid = pol->v.preferred_node;
2492 * allows binding to multiple nodes.
2493 * use current page if in policy nodemask,
2494 * else select nearest allowed node, if any.
2495 * If no allowed nodes, use current [!misplaced].
2497 if (node_isset(curnid, pol->v.nodes))
2499 z = first_zones_zonelist(
2500 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2501 gfp_zone(GFP_HIGHUSER),
2503 polnid = zone_to_nid(z->zone);
2510 /* Migrate the page towards the node whose CPU is referencing it */
2511 if (pol->flags & MPOL_F_MORON) {
2514 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2518 if (curnid != polnid)
2527 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2528 * dropped after task->mempolicy is set to NULL so that any allocation done as
2529 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2532 void mpol_put_task_policy(struct task_struct *task)
2534 struct mempolicy *pol;
2537 pol = task->mempolicy;
2538 task->mempolicy = NULL;
2543 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2545 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2546 rb_erase(&n->nd, &sp->root);
2550 static void sp_node_init(struct sp_node *node, unsigned long start,
2551 unsigned long end, struct mempolicy *pol)
2553 node->start = start;
2558 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2559 struct mempolicy *pol)
2562 struct mempolicy *newpol;
2564 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2568 newpol = mpol_dup(pol);
2569 if (IS_ERR(newpol)) {
2570 kmem_cache_free(sn_cache, n);
2573 newpol->flags |= MPOL_F_SHARED;
2574 sp_node_init(n, start, end, newpol);
2579 /* Replace a policy range. */
2580 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2581 unsigned long end, struct sp_node *new)
2584 struct sp_node *n_new = NULL;
2585 struct mempolicy *mpol_new = NULL;
2589 write_lock(&sp->lock);
2590 n = sp_lookup(sp, start, end);
2591 /* Take care of old policies in the same range. */
2592 while (n && n->start < end) {
2593 struct rb_node *next = rb_next(&n->nd);
2594 if (n->start >= start) {
2600 /* Old policy spanning whole new range. */
2605 *mpol_new = *n->policy;
2606 atomic_set(&mpol_new->refcnt, 1);
2607 sp_node_init(n_new, end, n->end, mpol_new);
2609 sp_insert(sp, n_new);
2618 n = rb_entry(next, struct sp_node, nd);
2622 write_unlock(&sp->lock);
2629 kmem_cache_free(sn_cache, n_new);
2634 write_unlock(&sp->lock);
2636 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2639 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2646 * mpol_shared_policy_init - initialize shared policy for inode
2647 * @sp: pointer to inode shared policy
2648 * @mpol: struct mempolicy to install
2650 * Install non-NULL @mpol in inode's shared policy rb-tree.
2651 * On entry, the current task has a reference on a non-NULL @mpol.
2652 * This must be released on exit.
2653 * This is called at get_inode() calls and we can use GFP_KERNEL.
2655 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2659 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2660 rwlock_init(&sp->lock);
2663 struct vm_area_struct pvma;
2664 struct mempolicy *new;
2665 NODEMASK_SCRATCH(scratch);
2669 /* contextualize the tmpfs mount point mempolicy */
2670 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2672 goto free_scratch; /* no valid nodemask intersection */
2675 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2676 task_unlock(current);
2680 /* Create pseudo-vma that contains just the policy */
2681 vma_init(&pvma, NULL);
2682 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2683 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2686 mpol_put(new); /* drop initial ref */
2688 NODEMASK_SCRATCH_FREE(scratch);
2690 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2694 int mpol_set_shared_policy(struct shared_policy *info,
2695 struct vm_area_struct *vma, struct mempolicy *npol)
2698 struct sp_node *new = NULL;
2699 unsigned long sz = vma_pages(vma);
2701 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2703 sz, npol ? npol->mode : -1,
2704 npol ? npol->flags : -1,
2705 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2708 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2712 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2718 /* Free a backing policy store on inode delete. */
2719 void mpol_free_shared_policy(struct shared_policy *p)
2722 struct rb_node *next;
2724 if (!p->root.rb_node)
2726 write_lock(&p->lock);
2727 next = rb_first(&p->root);
2729 n = rb_entry(next, struct sp_node, nd);
2730 next = rb_next(&n->nd);
2733 write_unlock(&p->lock);
2736 #ifdef CONFIG_NUMA_BALANCING
2737 static int __initdata numabalancing_override;
2739 static void __init check_numabalancing_enable(void)
2741 bool numabalancing_default = false;
2743 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2744 numabalancing_default = true;
2746 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2747 if (numabalancing_override)
2748 set_numabalancing_state(numabalancing_override == 1);
2750 if (num_online_nodes() > 1 && !numabalancing_override) {
2751 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2752 numabalancing_default ? "Enabling" : "Disabling");
2753 set_numabalancing_state(numabalancing_default);
2757 static int __init setup_numabalancing(char *str)
2763 if (!strcmp(str, "enable")) {
2764 numabalancing_override = 1;
2766 } else if (!strcmp(str, "disable")) {
2767 numabalancing_override = -1;
2772 pr_warn("Unable to parse numa_balancing=\n");
2776 __setup("numa_balancing=", setup_numabalancing);
2778 static inline void __init check_numabalancing_enable(void)
2781 #endif /* CONFIG_NUMA_BALANCING */
2783 /* assumes fs == KERNEL_DS */
2784 void __init numa_policy_init(void)
2786 nodemask_t interleave_nodes;
2787 unsigned long largest = 0;
2788 int nid, prefer = 0;
2790 policy_cache = kmem_cache_create("numa_policy",
2791 sizeof(struct mempolicy),
2792 0, SLAB_PANIC, NULL);
2794 sn_cache = kmem_cache_create("shared_policy_node",
2795 sizeof(struct sp_node),
2796 0, SLAB_PANIC, NULL);
2798 for_each_node(nid) {
2799 preferred_node_policy[nid] = (struct mempolicy) {
2800 .refcnt = ATOMIC_INIT(1),
2801 .mode = MPOL_PREFERRED,
2802 .flags = MPOL_F_MOF | MPOL_F_MORON,
2803 .v = { .preferred_node = nid, },
2808 * Set interleaving policy for system init. Interleaving is only
2809 * enabled across suitably sized nodes (default is >= 16MB), or
2810 * fall back to the largest node if they're all smaller.
2812 nodes_clear(interleave_nodes);
2813 for_each_node_state(nid, N_MEMORY) {
2814 unsigned long total_pages = node_present_pages(nid);
2816 /* Preserve the largest node */
2817 if (largest < total_pages) {
2818 largest = total_pages;
2822 /* Interleave this node? */
2823 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2824 node_set(nid, interleave_nodes);
2827 /* All too small, use the largest */
2828 if (unlikely(nodes_empty(interleave_nodes)))
2829 node_set(prefer, interleave_nodes);
2831 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2832 pr_err("%s: interleaving failed\n", __func__);
2834 check_numabalancing_enable();
2837 /* Reset policy of current process to default */
2838 void numa_default_policy(void)
2840 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2844 * Parse and format mempolicy from/to strings
2848 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2850 static const char * const policy_modes[] =
2852 [MPOL_DEFAULT] = "default",
2853 [MPOL_PREFERRED] = "prefer",
2854 [MPOL_BIND] = "bind",
2855 [MPOL_INTERLEAVE] = "interleave",
2856 [MPOL_LOCAL] = "local",
2862 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2863 * @str: string containing mempolicy to parse
2864 * @mpol: pointer to struct mempolicy pointer, returned on success.
2867 * <mode>[=<flags>][:<nodelist>]
2869 * On success, returns 0, else 1
2871 int mpol_parse_str(char *str, struct mempolicy **mpol)
2873 struct mempolicy *new = NULL;
2874 unsigned short mode_flags;
2876 char *nodelist = strchr(str, ':');
2877 char *flags = strchr(str, '=');
2881 *flags++ = '\0'; /* terminate mode string */
2884 /* NUL-terminate mode or flags string */
2886 if (nodelist_parse(nodelist, nodes))
2888 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2893 mode = match_string(policy_modes, MPOL_MAX, str);
2898 case MPOL_PREFERRED:
2900 * Insist on a nodelist of one node only, although later
2901 * we use first_node(nodes) to grab a single node, so here
2902 * nodelist (or nodes) cannot be empty.
2905 char *rest = nodelist;
2906 while (isdigit(*rest))
2910 if (nodes_empty(nodes))
2914 case MPOL_INTERLEAVE:
2916 * Default to online nodes with memory if no nodelist
2919 nodes = node_states[N_MEMORY];
2923 * Don't allow a nodelist; mpol_new() checks flags
2927 mode = MPOL_PREFERRED;
2931 * Insist on a empty nodelist
2938 * Insist on a nodelist
2947 * Currently, we only support two mutually exclusive
2950 if (!strcmp(flags, "static"))
2951 mode_flags |= MPOL_F_STATIC_NODES;
2952 else if (!strcmp(flags, "relative"))
2953 mode_flags |= MPOL_F_RELATIVE_NODES;
2958 new = mpol_new(mode, mode_flags, &nodes);
2963 * Save nodes for mpol_to_str() to show the tmpfs mount options
2964 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2966 if (mode != MPOL_PREFERRED)
2967 new->v.nodes = nodes;
2969 new->v.preferred_node = first_node(nodes);
2971 new->flags |= MPOL_F_LOCAL;
2974 * Save nodes for contextualization: this will be used to "clone"
2975 * the mempolicy in a specific context [cpuset] at a later time.
2977 new->w.user_nodemask = nodes;
2982 /* Restore string for error message */
2991 #endif /* CONFIG_TMPFS */
2994 * mpol_to_str - format a mempolicy structure for printing
2995 * @buffer: to contain formatted mempolicy string
2996 * @maxlen: length of @buffer
2997 * @pol: pointer to mempolicy to be formatted
2999 * Convert @pol into a string. If @buffer is too short, truncate the string.
3000 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3001 * longest flag, "relative", and to display at least a few node ids.
3003 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3006 nodemask_t nodes = NODE_MASK_NONE;
3007 unsigned short mode = MPOL_DEFAULT;
3008 unsigned short flags = 0;
3010 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3018 case MPOL_PREFERRED:
3019 if (flags & MPOL_F_LOCAL)
3022 node_set(pol->v.preferred_node, nodes);
3025 case MPOL_INTERLEAVE:
3026 nodes = pol->v.nodes;
3030 snprintf(p, maxlen, "unknown");
3034 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3036 if (flags & MPOL_MODE_FLAGS) {
3037 p += snprintf(p, buffer + maxlen - p, "=");
3040 * Currently, the only defined flags are mutually exclusive
3042 if (flags & MPOL_F_STATIC_NODES)
3043 p += snprintf(p, buffer + maxlen - p, "static");
3044 else if (flags & MPOL_F_RELATIVE_NODES)
3045 p += snprintf(p, buffer + maxlen - p, "relative");
3048 if (!nodes_empty(nodes))
3049 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3050 nodemask_pr_args(&nodes));