]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * linux/kernel/timer.c | |
3 | * | |
4 | * Kernel internal timers, kernel timekeeping, basic process system calls | |
5 | * | |
6 | * Copyright (C) 1991, 1992 Linus Torvalds | |
7 | * | |
8 | * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. | |
9 | * | |
10 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 | |
11 | * "A Kernel Model for Precision Timekeeping" by Dave Mills | |
12 | * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to | |
13 | * serialize accesses to xtime/lost_ticks). | |
14 | * Copyright (C) 1998 Andrea Arcangeli | |
15 | * 1999-03-10 Improved NTP compatibility by Ulrich Windl | |
16 | * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love | |
17 | * 2000-10-05 Implemented scalable SMP per-CPU timer handling. | |
18 | * Copyright (C) 2000, 2001, 2002 Ingo Molnar | |
19 | * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar | |
20 | */ | |
21 | ||
22 | #include <linux/kernel_stat.h> | |
23 | #include <linux/module.h> | |
24 | #include <linux/interrupt.h> | |
25 | #include <linux/percpu.h> | |
26 | #include <linux/init.h> | |
27 | #include <linux/mm.h> | |
28 | #include <linux/swap.h> | |
29 | #include <linux/notifier.h> | |
30 | #include <linux/thread_info.h> | |
31 | #include <linux/time.h> | |
32 | #include <linux/jiffies.h> | |
33 | #include <linux/posix-timers.h> | |
34 | #include <linux/cpu.h> | |
35 | #include <linux/syscalls.h> | |
36 | #include <linux/delay.h> | |
37 | ||
38 | #include <asm/uaccess.h> | |
39 | #include <asm/unistd.h> | |
40 | #include <asm/div64.h> | |
41 | #include <asm/timex.h> | |
42 | #include <asm/io.h> | |
43 | ||
44 | #ifdef CONFIG_TIME_INTERPOLATION | |
45 | static void time_interpolator_update(long delta_nsec); | |
46 | #else | |
47 | #define time_interpolator_update(x) | |
48 | #endif | |
49 | ||
50 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; | |
51 | ||
52 | EXPORT_SYMBOL(jiffies_64); | |
53 | ||
54 | /* | |
55 | * per-CPU timer vector definitions: | |
56 | */ | |
57 | ||
58 | #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) | |
59 | #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) | |
60 | #define TVN_SIZE (1 << TVN_BITS) | |
61 | #define TVR_SIZE (1 << TVR_BITS) | |
62 | #define TVN_MASK (TVN_SIZE - 1) | |
63 | #define TVR_MASK (TVR_SIZE - 1) | |
64 | ||
65 | struct timer_base_s { | |
66 | spinlock_t lock; | |
67 | struct timer_list *running_timer; | |
68 | }; | |
69 | ||
70 | typedef struct tvec_s { | |
71 | struct list_head vec[TVN_SIZE]; | |
72 | } tvec_t; | |
73 | ||
74 | typedef struct tvec_root_s { | |
75 | struct list_head vec[TVR_SIZE]; | |
76 | } tvec_root_t; | |
77 | ||
78 | struct tvec_t_base_s { | |
79 | struct timer_base_s t_base; | |
80 | unsigned long timer_jiffies; | |
81 | tvec_root_t tv1; | |
82 | tvec_t tv2; | |
83 | tvec_t tv3; | |
84 | tvec_t tv4; | |
85 | tvec_t tv5; | |
86 | } ____cacheline_aligned_in_smp; | |
87 | ||
88 | typedef struct tvec_t_base_s tvec_base_t; | |
89 | static DEFINE_PER_CPU(tvec_base_t, tvec_bases); | |
90 | ||
91 | static inline void set_running_timer(tvec_base_t *base, | |
92 | struct timer_list *timer) | |
93 | { | |
94 | #ifdef CONFIG_SMP | |
95 | base->t_base.running_timer = timer; | |
96 | #endif | |
97 | } | |
98 | ||
99 | static void internal_add_timer(tvec_base_t *base, struct timer_list *timer) | |
100 | { | |
101 | unsigned long expires = timer->expires; | |
102 | unsigned long idx = expires - base->timer_jiffies; | |
103 | struct list_head *vec; | |
104 | ||
105 | if (idx < TVR_SIZE) { | |
106 | int i = expires & TVR_MASK; | |
107 | vec = base->tv1.vec + i; | |
108 | } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { | |
109 | int i = (expires >> TVR_BITS) & TVN_MASK; | |
110 | vec = base->tv2.vec + i; | |
111 | } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { | |
112 | int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; | |
113 | vec = base->tv3.vec + i; | |
114 | } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { | |
115 | int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; | |
116 | vec = base->tv4.vec + i; | |
117 | } else if ((signed long) idx < 0) { | |
118 | /* | |
119 | * Can happen if you add a timer with expires == jiffies, | |
120 | * or you set a timer to go off in the past | |
121 | */ | |
122 | vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); | |
123 | } else { | |
124 | int i; | |
125 | /* If the timeout is larger than 0xffffffff on 64-bit | |
126 | * architectures then we use the maximum timeout: | |
127 | */ | |
128 | if (idx > 0xffffffffUL) { | |
129 | idx = 0xffffffffUL; | |
130 | expires = idx + base->timer_jiffies; | |
131 | } | |
132 | i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; | |
133 | vec = base->tv5.vec + i; | |
134 | } | |
135 | /* | |
136 | * Timers are FIFO: | |
137 | */ | |
138 | list_add_tail(&timer->entry, vec); | |
139 | } | |
140 | ||
141 | typedef struct timer_base_s timer_base_t; | |
142 | /* | |
143 | * Used by TIMER_INITIALIZER, we can't use per_cpu(tvec_bases) | |
144 | * at compile time, and we need timer->base to lock the timer. | |
145 | */ | |
146 | timer_base_t __init_timer_base | |
147 | ____cacheline_aligned_in_smp = { .lock = SPIN_LOCK_UNLOCKED }; | |
148 | EXPORT_SYMBOL(__init_timer_base); | |
149 | ||
150 | /*** | |
151 | * init_timer - initialize a timer. | |
152 | * @timer: the timer to be initialized | |
153 | * | |
154 | * init_timer() must be done to a timer prior calling *any* of the | |
155 | * other timer functions. | |
156 | */ | |
157 | void fastcall init_timer(struct timer_list *timer) | |
158 | { | |
159 | timer->entry.next = NULL; | |
160 | timer->base = &per_cpu(tvec_bases, raw_smp_processor_id()).t_base; | |
161 | } | |
162 | EXPORT_SYMBOL(init_timer); | |
163 | ||
164 | static inline void detach_timer(struct timer_list *timer, | |
165 | int clear_pending) | |
166 | { | |
167 | struct list_head *entry = &timer->entry; | |
168 | ||
169 | __list_del(entry->prev, entry->next); | |
170 | if (clear_pending) | |
171 | entry->next = NULL; | |
172 | entry->prev = LIST_POISON2; | |
173 | } | |
174 | ||
175 | /* | |
176 | * We are using hashed locking: holding per_cpu(tvec_bases).t_base.lock | |
177 | * means that all timers which are tied to this base via timer->base are | |
178 | * locked, and the base itself is locked too. | |
179 | * | |
180 | * So __run_timers/migrate_timers can safely modify all timers which could | |
181 | * be found on ->tvX lists. | |
182 | * | |
183 | * When the timer's base is locked, and the timer removed from list, it is | |
184 | * possible to set timer->base = NULL and drop the lock: the timer remains | |
185 | * locked. | |
186 | */ | |
187 | static timer_base_t *lock_timer_base(struct timer_list *timer, | |
188 | unsigned long *flags) | |
189 | { | |
190 | timer_base_t *base; | |
191 | ||
192 | for (;;) { | |
193 | base = timer->base; | |
194 | if (likely(base != NULL)) { | |
195 | spin_lock_irqsave(&base->lock, *flags); | |
196 | if (likely(base == timer->base)) | |
197 | return base; | |
198 | /* The timer has migrated to another CPU */ | |
199 | spin_unlock_irqrestore(&base->lock, *flags); | |
200 | } | |
201 | cpu_relax(); | |
202 | } | |
203 | } | |
204 | ||
205 | int __mod_timer(struct timer_list *timer, unsigned long expires) | |
206 | { | |
207 | timer_base_t *base; | |
208 | tvec_base_t *new_base; | |
209 | unsigned long flags; | |
210 | int ret = 0; | |
211 | ||
212 | BUG_ON(!timer->function); | |
213 | ||
214 | base = lock_timer_base(timer, &flags); | |
215 | ||
216 | if (timer_pending(timer)) { | |
217 | detach_timer(timer, 0); | |
218 | ret = 1; | |
219 | } | |
220 | ||
221 | new_base = &__get_cpu_var(tvec_bases); | |
222 | ||
223 | if (base != &new_base->t_base) { | |
224 | /* | |
225 | * We are trying to schedule the timer on the local CPU. | |
226 | * However we can't change timer's base while it is running, | |
227 | * otherwise del_timer_sync() can't detect that the timer's | |
228 | * handler yet has not finished. This also guarantees that | |
229 | * the timer is serialized wrt itself. | |
230 | */ | |
231 | if (unlikely(base->running_timer == timer)) { | |
232 | /* The timer remains on a former base */ | |
233 | new_base = container_of(base, tvec_base_t, t_base); | |
234 | } else { | |
235 | /* See the comment in lock_timer_base() */ | |
236 | timer->base = NULL; | |
237 | spin_unlock(&base->lock); | |
238 | spin_lock(&new_base->t_base.lock); | |
239 | timer->base = &new_base->t_base; | |
240 | } | |
241 | } | |
242 | ||
243 | timer->expires = expires; | |
244 | internal_add_timer(new_base, timer); | |
245 | spin_unlock_irqrestore(&new_base->t_base.lock, flags); | |
246 | ||
247 | return ret; | |
248 | } | |
249 | ||
250 | EXPORT_SYMBOL(__mod_timer); | |
251 | ||
252 | /*** | |
253 | * add_timer_on - start a timer on a particular CPU | |
254 | * @timer: the timer to be added | |
255 | * @cpu: the CPU to start it on | |
256 | * | |
257 | * This is not very scalable on SMP. Double adds are not possible. | |
258 | */ | |
259 | void add_timer_on(struct timer_list *timer, int cpu) | |
260 | { | |
261 | tvec_base_t *base = &per_cpu(tvec_bases, cpu); | |
262 | unsigned long flags; | |
263 | ||
264 | BUG_ON(timer_pending(timer) || !timer->function); | |
265 | spin_lock_irqsave(&base->t_base.lock, flags); | |
266 | timer->base = &base->t_base; | |
267 | internal_add_timer(base, timer); | |
268 | spin_unlock_irqrestore(&base->t_base.lock, flags); | |
269 | } | |
270 | ||
271 | ||
272 | /*** | |
273 | * mod_timer - modify a timer's timeout | |
274 | * @timer: the timer to be modified | |
275 | * | |
276 | * mod_timer is a more efficient way to update the expire field of an | |
277 | * active timer (if the timer is inactive it will be activated) | |
278 | * | |
279 | * mod_timer(timer, expires) is equivalent to: | |
280 | * | |
281 | * del_timer(timer); timer->expires = expires; add_timer(timer); | |
282 | * | |
283 | * Note that if there are multiple unserialized concurrent users of the | |
284 | * same timer, then mod_timer() is the only safe way to modify the timeout, | |
285 | * since add_timer() cannot modify an already running timer. | |
286 | * | |
287 | * The function returns whether it has modified a pending timer or not. | |
288 | * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an | |
289 | * active timer returns 1.) | |
290 | */ | |
291 | int mod_timer(struct timer_list *timer, unsigned long expires) | |
292 | { | |
293 | BUG_ON(!timer->function); | |
294 | ||
295 | /* | |
296 | * This is a common optimization triggered by the | |
297 | * networking code - if the timer is re-modified | |
298 | * to be the same thing then just return: | |
299 | */ | |
300 | if (timer->expires == expires && timer_pending(timer)) | |
301 | return 1; | |
302 | ||
303 | return __mod_timer(timer, expires); | |
304 | } | |
305 | ||
306 | EXPORT_SYMBOL(mod_timer); | |
307 | ||
308 | /*** | |
309 | * del_timer - deactive a timer. | |
310 | * @timer: the timer to be deactivated | |
311 | * | |
312 | * del_timer() deactivates a timer - this works on both active and inactive | |
313 | * timers. | |
314 | * | |
315 | * The function returns whether it has deactivated a pending timer or not. | |
316 | * (ie. del_timer() of an inactive timer returns 0, del_timer() of an | |
317 | * active timer returns 1.) | |
318 | */ | |
319 | int del_timer(struct timer_list *timer) | |
320 | { | |
321 | timer_base_t *base; | |
322 | unsigned long flags; | |
323 | int ret = 0; | |
324 | ||
325 | if (timer_pending(timer)) { | |
326 | base = lock_timer_base(timer, &flags); | |
327 | if (timer_pending(timer)) { | |
328 | detach_timer(timer, 1); | |
329 | ret = 1; | |
330 | } | |
331 | spin_unlock_irqrestore(&base->lock, flags); | |
332 | } | |
333 | ||
334 | return ret; | |
335 | } | |
336 | ||
337 | EXPORT_SYMBOL(del_timer); | |
338 | ||
339 | #ifdef CONFIG_SMP | |
340 | /* | |
341 | * This function tries to deactivate a timer. Upon successful (ret >= 0) | |
342 | * exit the timer is not queued and the handler is not running on any CPU. | |
343 | * | |
344 | * It must not be called from interrupt contexts. | |
345 | */ | |
346 | int try_to_del_timer_sync(struct timer_list *timer) | |
347 | { | |
348 | timer_base_t *base; | |
349 | unsigned long flags; | |
350 | int ret = -1; | |
351 | ||
352 | base = lock_timer_base(timer, &flags); | |
353 | ||
354 | if (base->running_timer == timer) | |
355 | goto out; | |
356 | ||
357 | ret = 0; | |
358 | if (timer_pending(timer)) { | |
359 | detach_timer(timer, 1); | |
360 | ret = 1; | |
361 | } | |
362 | out: | |
363 | spin_unlock_irqrestore(&base->lock, flags); | |
364 | ||
365 | return ret; | |
366 | } | |
367 | ||
368 | /*** | |
369 | * del_timer_sync - deactivate a timer and wait for the handler to finish. | |
370 | * @timer: the timer to be deactivated | |
371 | * | |
372 | * This function only differs from del_timer() on SMP: besides deactivating | |
373 | * the timer it also makes sure the handler has finished executing on other | |
374 | * CPUs. | |
375 | * | |
376 | * Synchronization rules: callers must prevent restarting of the timer, | |
377 | * otherwise this function is meaningless. It must not be called from | |
378 | * interrupt contexts. The caller must not hold locks which would prevent | |
379 | * completion of the timer's handler. The timer's handler must not call | |
380 | * add_timer_on(). Upon exit the timer is not queued and the handler is | |
381 | * not running on any CPU. | |
382 | * | |
383 | * The function returns whether it has deactivated a pending timer or not. | |
384 | */ | |
385 | int del_timer_sync(struct timer_list *timer) | |
386 | { | |
387 | for (;;) { | |
388 | int ret = try_to_del_timer_sync(timer); | |
389 | if (ret >= 0) | |
390 | return ret; | |
391 | } | |
392 | } | |
393 | ||
394 | EXPORT_SYMBOL(del_timer_sync); | |
395 | #endif | |
396 | ||
397 | static int cascade(tvec_base_t *base, tvec_t *tv, int index) | |
398 | { | |
399 | /* cascade all the timers from tv up one level */ | |
400 | struct list_head *head, *curr; | |
401 | ||
402 | head = tv->vec + index; | |
403 | curr = head->next; | |
404 | /* | |
405 | * We are removing _all_ timers from the list, so we don't have to | |
406 | * detach them individually, just clear the list afterwards. | |
407 | */ | |
408 | while (curr != head) { | |
409 | struct timer_list *tmp; | |
410 | ||
411 | tmp = list_entry(curr, struct timer_list, entry); | |
412 | BUG_ON(tmp->base != &base->t_base); | |
413 | curr = curr->next; | |
414 | internal_add_timer(base, tmp); | |
415 | } | |
416 | INIT_LIST_HEAD(head); | |
417 | ||
418 | return index; | |
419 | } | |
420 | ||
421 | /*** | |
422 | * __run_timers - run all expired timers (if any) on this CPU. | |
423 | * @base: the timer vector to be processed. | |
424 | * | |
425 | * This function cascades all vectors and executes all expired timer | |
426 | * vectors. | |
427 | */ | |
428 | #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK | |
429 | ||
430 | static inline void __run_timers(tvec_base_t *base) | |
431 | { | |
432 | struct timer_list *timer; | |
433 | ||
434 | spin_lock_irq(&base->t_base.lock); | |
435 | while (time_after_eq(jiffies, base->timer_jiffies)) { | |
436 | struct list_head work_list = LIST_HEAD_INIT(work_list); | |
437 | struct list_head *head = &work_list; | |
438 | int index = base->timer_jiffies & TVR_MASK; | |
439 | ||
440 | /* | |
441 | * Cascade timers: | |
442 | */ | |
443 | if (!index && | |
444 | (!cascade(base, &base->tv2, INDEX(0))) && | |
445 | (!cascade(base, &base->tv3, INDEX(1))) && | |
446 | !cascade(base, &base->tv4, INDEX(2))) | |
447 | cascade(base, &base->tv5, INDEX(3)); | |
448 | ++base->timer_jiffies; | |
449 | list_splice_init(base->tv1.vec + index, &work_list); | |
450 | while (!list_empty(head)) { | |
451 | void (*fn)(unsigned long); | |
452 | unsigned long data; | |
453 | ||
454 | timer = list_entry(head->next,struct timer_list,entry); | |
455 | fn = timer->function; | |
456 | data = timer->data; | |
457 | ||
458 | set_running_timer(base, timer); | |
459 | detach_timer(timer, 1); | |
460 | spin_unlock_irq(&base->t_base.lock); | |
461 | { | |
462 | int preempt_count = preempt_count(); | |
463 | fn(data); | |
464 | if (preempt_count != preempt_count()) { | |
465 | printk(KERN_WARNING "huh, entered %p " | |
466 | "with preempt_count %08x, exited" | |
467 | " with %08x?\n", | |
468 | fn, preempt_count, | |
469 | preempt_count()); | |
470 | BUG(); | |
471 | } | |
472 | } | |
473 | spin_lock_irq(&base->t_base.lock); | |
474 | } | |
475 | } | |
476 | set_running_timer(base, NULL); | |
477 | spin_unlock_irq(&base->t_base.lock); | |
478 | } | |
479 | ||
480 | #ifdef CONFIG_NO_IDLE_HZ | |
481 | /* | |
482 | * Find out when the next timer event is due to happen. This | |
483 | * is used on S/390 to stop all activity when a cpus is idle. | |
484 | * This functions needs to be called disabled. | |
485 | */ | |
486 | unsigned long next_timer_interrupt(void) | |
487 | { | |
488 | tvec_base_t *base; | |
489 | struct list_head *list; | |
490 | struct timer_list *nte; | |
491 | unsigned long expires; | |
492 | tvec_t *varray[4]; | |
493 | int i, j; | |
494 | ||
495 | base = &__get_cpu_var(tvec_bases); | |
496 | spin_lock(&base->t_base.lock); | |
497 | expires = base->timer_jiffies + (LONG_MAX >> 1); | |
498 | list = NULL; | |
499 | ||
500 | /* Look for timer events in tv1. */ | |
501 | j = base->timer_jiffies & TVR_MASK; | |
502 | do { | |
503 | list_for_each_entry(nte, base->tv1.vec + j, entry) { | |
504 | expires = nte->expires; | |
505 | if (j < (base->timer_jiffies & TVR_MASK)) | |
506 | list = base->tv2.vec + (INDEX(0)); | |
507 | goto found; | |
508 | } | |
509 | j = (j + 1) & TVR_MASK; | |
510 | } while (j != (base->timer_jiffies & TVR_MASK)); | |
511 | ||
512 | /* Check tv2-tv5. */ | |
513 | varray[0] = &base->tv2; | |
514 | varray[1] = &base->tv3; | |
515 | varray[2] = &base->tv4; | |
516 | varray[3] = &base->tv5; | |
517 | for (i = 0; i < 4; i++) { | |
518 | j = INDEX(i); | |
519 | do { | |
520 | if (list_empty(varray[i]->vec + j)) { | |
521 | j = (j + 1) & TVN_MASK; | |
522 | continue; | |
523 | } | |
524 | list_for_each_entry(nte, varray[i]->vec + j, entry) | |
525 | if (time_before(nte->expires, expires)) | |
526 | expires = nte->expires; | |
527 | if (j < (INDEX(i)) && i < 3) | |
528 | list = varray[i + 1]->vec + (INDEX(i + 1)); | |
529 | goto found; | |
530 | } while (j != (INDEX(i))); | |
531 | } | |
532 | found: | |
533 | if (list) { | |
534 | /* | |
535 | * The search wrapped. We need to look at the next list | |
536 | * from next tv element that would cascade into tv element | |
537 | * where we found the timer element. | |
538 | */ | |
539 | list_for_each_entry(nte, list, entry) { | |
540 | if (time_before(nte->expires, expires)) | |
541 | expires = nte->expires; | |
542 | } | |
543 | } | |
544 | spin_unlock(&base->t_base.lock); | |
545 | return expires; | |
546 | } | |
547 | #endif | |
548 | ||
549 | /******************************************************************/ | |
550 | ||
551 | /* | |
552 | * Timekeeping variables | |
553 | */ | |
554 | unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */ | |
555 | unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */ | |
556 | ||
557 | /* | |
558 | * The current time | |
559 | * wall_to_monotonic is what we need to add to xtime (or xtime corrected | |
560 | * for sub jiffie times) to get to monotonic time. Monotonic is pegged | |
561 | * at zero at system boot time, so wall_to_monotonic will be negative, | |
562 | * however, we will ALWAYS keep the tv_nsec part positive so we can use | |
563 | * the usual normalization. | |
564 | */ | |
565 | struct timespec xtime __attribute__ ((aligned (16))); | |
566 | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); | |
567 | ||
568 | EXPORT_SYMBOL(xtime); | |
569 | ||
570 | /* Don't completely fail for HZ > 500. */ | |
571 | int tickadj = 500/HZ ? : 1; /* microsecs */ | |
572 | ||
573 | ||
574 | /* | |
575 | * phase-lock loop variables | |
576 | */ | |
577 | /* TIME_ERROR prevents overwriting the CMOS clock */ | |
578 | int time_state = TIME_OK; /* clock synchronization status */ | |
579 | int time_status = STA_UNSYNC; /* clock status bits */ | |
580 | long time_offset; /* time adjustment (us) */ | |
581 | long time_constant = 2; /* pll time constant */ | |
582 | long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */ | |
583 | long time_precision = 1; /* clock precision (us) */ | |
584 | long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ | |
585 | long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ | |
586 | static long time_phase; /* phase offset (scaled us) */ | |
587 | long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC; | |
588 | /* frequency offset (scaled ppm)*/ | |
589 | static long time_adj; /* tick adjust (scaled 1 / HZ) */ | |
590 | long time_reftime; /* time at last adjustment (s) */ | |
591 | long time_adjust; | |
592 | long time_next_adjust; | |
593 | ||
594 | /* | |
595 | * this routine handles the overflow of the microsecond field | |
596 | * | |
597 | * The tricky bits of code to handle the accurate clock support | |
598 | * were provided by Dave Mills ([email protected]) of NTP fame. | |
599 | * They were originally developed for SUN and DEC kernels. | |
600 | * All the kudos should go to Dave for this stuff. | |
601 | * | |
602 | */ | |
603 | static void second_overflow(void) | |
604 | { | |
605 | long ltemp; | |
606 | ||
607 | /* Bump the maxerror field */ | |
608 | time_maxerror += time_tolerance >> SHIFT_USEC; | |
609 | if (time_maxerror > NTP_PHASE_LIMIT) { | |
610 | time_maxerror = NTP_PHASE_LIMIT; | |
611 | time_status |= STA_UNSYNC; | |
612 | } | |
613 | ||
614 | /* | |
615 | * Leap second processing. If in leap-insert state at the end of the | |
616 | * day, the system clock is set back one second; if in leap-delete | |
617 | * state, the system clock is set ahead one second. The microtime() | |
618 | * routine or external clock driver will insure that reported time is | |
619 | * always monotonic. The ugly divides should be replaced. | |
620 | */ | |
621 | switch (time_state) { | |
622 | case TIME_OK: | |
623 | if (time_status & STA_INS) | |
624 | time_state = TIME_INS; | |
625 | else if (time_status & STA_DEL) | |
626 | time_state = TIME_DEL; | |
627 | break; | |
628 | case TIME_INS: | |
629 | if (xtime.tv_sec % 86400 == 0) { | |
630 | xtime.tv_sec--; | |
631 | wall_to_monotonic.tv_sec++; | |
632 | /* | |
633 | * The timer interpolator will make time change | |
634 | * gradually instead of an immediate jump by one second | |
635 | */ | |
636 | time_interpolator_update(-NSEC_PER_SEC); | |
637 | time_state = TIME_OOP; | |
638 | clock_was_set(); | |
639 | printk(KERN_NOTICE "Clock: inserting leap second " | |
640 | "23:59:60 UTC\n"); | |
641 | } | |
642 | break; | |
643 | case TIME_DEL: | |
644 | if ((xtime.tv_sec + 1) % 86400 == 0) { | |
645 | xtime.tv_sec++; | |
646 | wall_to_monotonic.tv_sec--; | |
647 | /* | |
648 | * Use of time interpolator for a gradual change of | |
649 | * time | |
650 | */ | |
651 | time_interpolator_update(NSEC_PER_SEC); | |
652 | time_state = TIME_WAIT; | |
653 | clock_was_set(); | |
654 | printk(KERN_NOTICE "Clock: deleting leap second " | |
655 | "23:59:59 UTC\n"); | |
656 | } | |
657 | break; | |
658 | case TIME_OOP: | |
659 | time_state = TIME_WAIT; | |
660 | break; | |
661 | case TIME_WAIT: | |
662 | if (!(time_status & (STA_INS | STA_DEL))) | |
663 | time_state = TIME_OK; | |
664 | } | |
665 | ||
666 | /* | |
667 | * Compute the phase adjustment for the next second. In PLL mode, the | |
668 | * offset is reduced by a fixed factor times the time constant. In FLL | |
669 | * mode the offset is used directly. In either mode, the maximum phase | |
670 | * adjustment for each second is clamped so as to spread the adjustment | |
671 | * over not more than the number of seconds between updates. | |
672 | */ | |
673 | ltemp = time_offset; | |
674 | if (!(time_status & STA_FLL)) | |
675 | ltemp = shift_right(ltemp, SHIFT_KG + time_constant); | |
676 | ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE); | |
677 | ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE); | |
678 | time_offset -= ltemp; | |
679 | time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); | |
680 | ||
681 | /* | |
682 | * Compute the frequency estimate and additional phase adjustment due | |
683 | * to frequency error for the next second. When the PPS signal is | |
684 | * engaged, gnaw on the watchdog counter and update the frequency | |
685 | * computed by the pll and the PPS signal. | |
686 | */ | |
687 | pps_valid++; | |
688 | if (pps_valid == PPS_VALID) { /* PPS signal lost */ | |
689 | pps_jitter = MAXTIME; | |
690 | pps_stabil = MAXFREQ; | |
691 | time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | | |
692 | STA_PPSWANDER | STA_PPSERROR); | |
693 | } | |
694 | ltemp = time_freq + pps_freq; | |
695 | time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE)); | |
696 | ||
697 | #if HZ == 100 | |
698 | /* | |
699 | * Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to | |
700 | * get 128.125; => only 0.125% error (p. 14) | |
701 | */ | |
702 | time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5); | |
703 | #endif | |
704 | #if HZ == 250 | |
705 | /* | |
706 | * Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and | |
707 | * 0.78125% to get 255.85938; => only 0.05% error (p. 14) | |
708 | */ | |
709 | time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7); | |
710 | #endif | |
711 | #if HZ == 1000 | |
712 | /* | |
713 | * Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and | |
714 | * 0.78125% to get 1023.4375; => only 0.05% error (p. 14) | |
715 | */ | |
716 | time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7); | |
717 | #endif | |
718 | } | |
719 | ||
720 | /* | |
721 | * Returns how many microseconds we need to add to xtime this tick | |
722 | * in doing an adjustment requested with adjtime. | |
723 | */ | |
724 | static long adjtime_adjustment(void) | |
725 | { | |
726 | long time_adjust_step; | |
727 | ||
728 | time_adjust_step = time_adjust; | |
729 | if (time_adjust_step) { | |
730 | /* | |
731 | * We are doing an adjtime thing. Prepare time_adjust_step to | |
732 | * be within bounds. Note that a positive time_adjust means we | |
733 | * want the clock to run faster. | |
734 | * | |
735 | * Limit the amount of the step to be in the range | |
736 | * -tickadj .. +tickadj | |
737 | */ | |
738 | time_adjust_step = min(time_adjust_step, (long)tickadj); | |
739 | time_adjust_step = max(time_adjust_step, (long)-tickadj); | |
740 | } | |
741 | return time_adjust_step; | |
742 | } | |
743 | ||
744 | /* in the NTP reference this is called "hardclock()" */ | |
745 | static void update_wall_time_one_tick(void) | |
746 | { | |
747 | long time_adjust_step, delta_nsec; | |
748 | ||
749 | time_adjust_step = adjtime_adjustment(); | |
750 | if (time_adjust_step) | |
751 | /* Reduce by this step the amount of time left */ | |
752 | time_adjust -= time_adjust_step; | |
753 | delta_nsec = tick_nsec + time_adjust_step * 1000; | |
754 | /* | |
755 | * Advance the phase, once it gets to one microsecond, then | |
756 | * advance the tick more. | |
757 | */ | |
758 | time_phase += time_adj; | |
759 | if ((time_phase >= FINENSEC) || (time_phase <= -FINENSEC)) { | |
760 | long ltemp = shift_right(time_phase, (SHIFT_SCALE - 10)); | |
761 | time_phase -= ltemp << (SHIFT_SCALE - 10); | |
762 | delta_nsec += ltemp; | |
763 | } | |
764 | xtime.tv_nsec += delta_nsec; | |
765 | time_interpolator_update(delta_nsec); | |
766 | ||
767 | /* Changes by adjtime() do not take effect till next tick. */ | |
768 | if (time_next_adjust != 0) { | |
769 | time_adjust = time_next_adjust; | |
770 | time_next_adjust = 0; | |
771 | } | |
772 | } | |
773 | ||
774 | /* | |
775 | * Return how long ticks are at the moment, that is, how much time | |
776 | * update_wall_time_one_tick will add to xtime next time we call it | |
777 | * (assuming no calls to do_adjtimex in the meantime). | |
778 | * The return value is in fixed-point nanoseconds with SHIFT_SCALE-10 | |
779 | * bits to the right of the binary point. | |
780 | * This function has no side-effects. | |
781 | */ | |
782 | u64 current_tick_length(void) | |
783 | { | |
784 | long delta_nsec; | |
785 | ||
786 | delta_nsec = tick_nsec + adjtime_adjustment() * 1000; | |
787 | return ((u64) delta_nsec << (SHIFT_SCALE - 10)) + time_adj; | |
788 | } | |
789 | ||
790 | /* | |
791 | * Using a loop looks inefficient, but "ticks" is | |
792 | * usually just one (we shouldn't be losing ticks, | |
793 | * we're doing this this way mainly for interrupt | |
794 | * latency reasons, not because we think we'll | |
795 | * have lots of lost timer ticks | |
796 | */ | |
797 | static void update_wall_time(unsigned long ticks) | |
798 | { | |
799 | do { | |
800 | ticks--; | |
801 | update_wall_time_one_tick(); | |
802 | if (xtime.tv_nsec >= 1000000000) { | |
803 | xtime.tv_nsec -= 1000000000; | |
804 | xtime.tv_sec++; | |
805 | second_overflow(); | |
806 | } | |
807 | } while (ticks); | |
808 | } | |
809 | ||
810 | /* | |
811 | * Called from the timer interrupt handler to charge one tick to the current | |
812 | * process. user_tick is 1 if the tick is user time, 0 for system. | |
813 | */ | |
814 | void update_process_times(int user_tick) | |
815 | { | |
816 | struct task_struct *p = current; | |
817 | int cpu = smp_processor_id(); | |
818 | ||
819 | /* Note: this timer irq context must be accounted for as well. */ | |
820 | if (user_tick) | |
821 | account_user_time(p, jiffies_to_cputime(1)); | |
822 | else | |
823 | account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1)); | |
824 | run_local_timers(); | |
825 | if (rcu_pending(cpu)) | |
826 | rcu_check_callbacks(cpu, user_tick); | |
827 | scheduler_tick(); | |
828 | run_posix_cpu_timers(p); | |
829 | } | |
830 | ||
831 | /* | |
832 | * Nr of active tasks - counted in fixed-point numbers | |
833 | */ | |
834 | static unsigned long count_active_tasks(void) | |
835 | { | |
836 | return (nr_running() + nr_uninterruptible()) * FIXED_1; | |
837 | } | |
838 | ||
839 | /* | |
840 | * Hmm.. Changed this, as the GNU make sources (load.c) seems to | |
841 | * imply that avenrun[] is the standard name for this kind of thing. | |
842 | * Nothing else seems to be standardized: the fractional size etc | |
843 | * all seem to differ on different machines. | |
844 | * | |
845 | * Requires xtime_lock to access. | |
846 | */ | |
847 | unsigned long avenrun[3]; | |
848 | ||
849 | EXPORT_SYMBOL(avenrun); | |
850 | ||
851 | /* | |
852 | * calc_load - given tick count, update the avenrun load estimates. | |
853 | * This is called while holding a write_lock on xtime_lock. | |
854 | */ | |
855 | static inline void calc_load(unsigned long ticks) | |
856 | { | |
857 | unsigned long active_tasks; /* fixed-point */ | |
858 | static int count = LOAD_FREQ; | |
859 | ||
860 | count -= ticks; | |
861 | if (count < 0) { | |
862 | count += LOAD_FREQ; | |
863 | active_tasks = count_active_tasks(); | |
864 | CALC_LOAD(avenrun[0], EXP_1, active_tasks); | |
865 | CALC_LOAD(avenrun[1], EXP_5, active_tasks); | |
866 | CALC_LOAD(avenrun[2], EXP_15, active_tasks); | |
867 | } | |
868 | } | |
869 | ||
870 | /* jiffies at the most recent update of wall time */ | |
871 | unsigned long wall_jiffies = INITIAL_JIFFIES; | |
872 | ||
873 | /* | |
874 | * This read-write spinlock protects us from races in SMP while | |
875 | * playing with xtime and avenrun. | |
876 | */ | |
877 | #ifndef ARCH_HAVE_XTIME_LOCK | |
878 | seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED; | |
879 | ||
880 | EXPORT_SYMBOL(xtime_lock); | |
881 | #endif | |
882 | ||
883 | /* | |
884 | * This function runs timers and the timer-tq in bottom half context. | |
885 | */ | |
886 | static void run_timer_softirq(struct softirq_action *h) | |
887 | { | |
888 | tvec_base_t *base = &__get_cpu_var(tvec_bases); | |
889 | ||
890 | hrtimer_run_queues(); | |
891 | if (time_after_eq(jiffies, base->timer_jiffies)) | |
892 | __run_timers(base); | |
893 | } | |
894 | ||
895 | /* | |
896 | * Called by the local, per-CPU timer interrupt on SMP. | |
897 | */ | |
898 | void run_local_timers(void) | |
899 | { | |
900 | raise_softirq(TIMER_SOFTIRQ); | |
901 | } | |
902 | ||
903 | /* | |
904 | * Called by the timer interrupt. xtime_lock must already be taken | |
905 | * by the timer IRQ! | |
906 | */ | |
907 | static inline void update_times(void) | |
908 | { | |
909 | unsigned long ticks; | |
910 | ||
911 | ticks = jiffies - wall_jiffies; | |
912 | if (ticks) { | |
913 | wall_jiffies += ticks; | |
914 | update_wall_time(ticks); | |
915 | } | |
916 | calc_load(ticks); | |
917 | } | |
918 | ||
919 | /* | |
920 | * The 64-bit jiffies value is not atomic - you MUST NOT read it | |
921 | * without sampling the sequence number in xtime_lock. | |
922 | * jiffies is defined in the linker script... | |
923 | */ | |
924 | ||
925 | void do_timer(struct pt_regs *regs) | |
926 | { | |
927 | jiffies_64++; | |
928 | update_times(); | |
929 | softlockup_tick(regs); | |
930 | } | |
931 | ||
932 | #ifdef __ARCH_WANT_SYS_ALARM | |
933 | ||
934 | /* | |
935 | * For backwards compatibility? This can be done in libc so Alpha | |
936 | * and all newer ports shouldn't need it. | |
937 | */ | |
938 | asmlinkage unsigned long sys_alarm(unsigned int seconds) | |
939 | { | |
940 | struct itimerval it_new, it_old; | |
941 | unsigned int oldalarm; | |
942 | ||
943 | it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0; | |
944 | it_new.it_value.tv_sec = seconds; | |
945 | it_new.it_value.tv_usec = 0; | |
946 | do_setitimer(ITIMER_REAL, &it_new, &it_old); | |
947 | oldalarm = it_old.it_value.tv_sec; | |
948 | /* ehhh.. We can't return 0 if we have an alarm pending.. */ | |
949 | /* And we'd better return too much than too little anyway */ | |
950 | if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000) | |
951 | oldalarm++; | |
952 | return oldalarm; | |
953 | } | |
954 | ||
955 | #endif | |
956 | ||
957 | #ifndef __alpha__ | |
958 | ||
959 | /* | |
960 | * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this | |
961 | * should be moved into arch/i386 instead? | |
962 | */ | |
963 | ||
964 | /** | |
965 | * sys_getpid - return the thread group id of the current process | |
966 | * | |
967 | * Note, despite the name, this returns the tgid not the pid. The tgid and | |
968 | * the pid are identical unless CLONE_THREAD was specified on clone() in | |
969 | * which case the tgid is the same in all threads of the same group. | |
970 | * | |
971 | * This is SMP safe as current->tgid does not change. | |
972 | */ | |
973 | asmlinkage long sys_getpid(void) | |
974 | { | |
975 | return current->tgid; | |
976 | } | |
977 | ||
978 | /* | |
979 | * Accessing ->group_leader->real_parent is not SMP-safe, it could | |
980 | * change from under us. However, rather than getting any lock | |
981 | * we can use an optimistic algorithm: get the parent | |
982 | * pid, and go back and check that the parent is still | |
983 | * the same. If it has changed (which is extremely unlikely | |
984 | * indeed), we just try again.. | |
985 | * | |
986 | * NOTE! This depends on the fact that even if we _do_ | |
987 | * get an old value of "parent", we can happily dereference | |
988 | * the pointer (it was and remains a dereferencable kernel pointer | |
989 | * no matter what): we just can't necessarily trust the result | |
990 | * until we know that the parent pointer is valid. | |
991 | * | |
992 | * NOTE2: ->group_leader never changes from under us. | |
993 | */ | |
994 | asmlinkage long sys_getppid(void) | |
995 | { | |
996 | int pid; | |
997 | struct task_struct *me = current; | |
998 | struct task_struct *parent; | |
999 | ||
1000 | parent = me->group_leader->real_parent; | |
1001 | for (;;) { | |
1002 | pid = parent->tgid; | |
1003 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | |
1004 | { | |
1005 | struct task_struct *old = parent; | |
1006 | ||
1007 | /* | |
1008 | * Make sure we read the pid before re-reading the | |
1009 | * parent pointer: | |
1010 | */ | |
1011 | smp_rmb(); | |
1012 | parent = me->group_leader->real_parent; | |
1013 | if (old != parent) | |
1014 | continue; | |
1015 | } | |
1016 | #endif | |
1017 | break; | |
1018 | } | |
1019 | return pid; | |
1020 | } | |
1021 | ||
1022 | asmlinkage long sys_getuid(void) | |
1023 | { | |
1024 | /* Only we change this so SMP safe */ | |
1025 | return current->uid; | |
1026 | } | |
1027 | ||
1028 | asmlinkage long sys_geteuid(void) | |
1029 | { | |
1030 | /* Only we change this so SMP safe */ | |
1031 | return current->euid; | |
1032 | } | |
1033 | ||
1034 | asmlinkage long sys_getgid(void) | |
1035 | { | |
1036 | /* Only we change this so SMP safe */ | |
1037 | return current->gid; | |
1038 | } | |
1039 | ||
1040 | asmlinkage long sys_getegid(void) | |
1041 | { | |
1042 | /* Only we change this so SMP safe */ | |
1043 | return current->egid; | |
1044 | } | |
1045 | ||
1046 | #endif | |
1047 | ||
1048 | static void process_timeout(unsigned long __data) | |
1049 | { | |
1050 | wake_up_process((task_t *)__data); | |
1051 | } | |
1052 | ||
1053 | /** | |
1054 | * schedule_timeout - sleep until timeout | |
1055 | * @timeout: timeout value in jiffies | |
1056 | * | |
1057 | * Make the current task sleep until @timeout jiffies have | |
1058 | * elapsed. The routine will return immediately unless | |
1059 | * the current task state has been set (see set_current_state()). | |
1060 | * | |
1061 | * You can set the task state as follows - | |
1062 | * | |
1063 | * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to | |
1064 | * pass before the routine returns. The routine will return 0 | |
1065 | * | |
1066 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | |
1067 | * delivered to the current task. In this case the remaining time | |
1068 | * in jiffies will be returned, or 0 if the timer expired in time | |
1069 | * | |
1070 | * The current task state is guaranteed to be TASK_RUNNING when this | |
1071 | * routine returns. | |
1072 | * | |
1073 | * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule | |
1074 | * the CPU away without a bound on the timeout. In this case the return | |
1075 | * value will be %MAX_SCHEDULE_TIMEOUT. | |
1076 | * | |
1077 | * In all cases the return value is guaranteed to be non-negative. | |
1078 | */ | |
1079 | fastcall signed long __sched schedule_timeout(signed long timeout) | |
1080 | { | |
1081 | struct timer_list timer; | |
1082 | unsigned long expire; | |
1083 | ||
1084 | switch (timeout) | |
1085 | { | |
1086 | case MAX_SCHEDULE_TIMEOUT: | |
1087 | /* | |
1088 | * These two special cases are useful to be comfortable | |
1089 | * in the caller. Nothing more. We could take | |
1090 | * MAX_SCHEDULE_TIMEOUT from one of the negative value | |
1091 | * but I' d like to return a valid offset (>=0) to allow | |
1092 | * the caller to do everything it want with the retval. | |
1093 | */ | |
1094 | schedule(); | |
1095 | goto out; | |
1096 | default: | |
1097 | /* | |
1098 | * Another bit of PARANOID. Note that the retval will be | |
1099 | * 0 since no piece of kernel is supposed to do a check | |
1100 | * for a negative retval of schedule_timeout() (since it | |
1101 | * should never happens anyway). You just have the printk() | |
1102 | * that will tell you if something is gone wrong and where. | |
1103 | */ | |
1104 | if (timeout < 0) | |
1105 | { | |
1106 | printk(KERN_ERR "schedule_timeout: wrong timeout " | |
1107 | "value %lx from %p\n", timeout, | |
1108 | __builtin_return_address(0)); | |
1109 | current->state = TASK_RUNNING; | |
1110 | goto out; | |
1111 | } | |
1112 | } | |
1113 | ||
1114 | expire = timeout + jiffies; | |
1115 | ||
1116 | setup_timer(&timer, process_timeout, (unsigned long)current); | |
1117 | __mod_timer(&timer, expire); | |
1118 | schedule(); | |
1119 | del_singleshot_timer_sync(&timer); | |
1120 | ||
1121 | timeout = expire - jiffies; | |
1122 | ||
1123 | out: | |
1124 | return timeout < 0 ? 0 : timeout; | |
1125 | } | |
1126 | EXPORT_SYMBOL(schedule_timeout); | |
1127 | ||
1128 | /* | |
1129 | * We can use __set_current_state() here because schedule_timeout() calls | |
1130 | * schedule() unconditionally. | |
1131 | */ | |
1132 | signed long __sched schedule_timeout_interruptible(signed long timeout) | |
1133 | { | |
1134 | __set_current_state(TASK_INTERRUPTIBLE); | |
1135 | return schedule_timeout(timeout); | |
1136 | } | |
1137 | EXPORT_SYMBOL(schedule_timeout_interruptible); | |
1138 | ||
1139 | signed long __sched schedule_timeout_uninterruptible(signed long timeout) | |
1140 | { | |
1141 | __set_current_state(TASK_UNINTERRUPTIBLE); | |
1142 | return schedule_timeout(timeout); | |
1143 | } | |
1144 | EXPORT_SYMBOL(schedule_timeout_uninterruptible); | |
1145 | ||
1146 | /* Thread ID - the internal kernel "pid" */ | |
1147 | asmlinkage long sys_gettid(void) | |
1148 | { | |
1149 | return current->pid; | |
1150 | } | |
1151 | ||
1152 | /* | |
1153 | * sys_sysinfo - fill in sysinfo struct | |
1154 | */ | |
1155 | asmlinkage long sys_sysinfo(struct sysinfo __user *info) | |
1156 | { | |
1157 | struct sysinfo val; | |
1158 | unsigned long mem_total, sav_total; | |
1159 | unsigned int mem_unit, bitcount; | |
1160 | unsigned long seq; | |
1161 | ||
1162 | memset((char *)&val, 0, sizeof(struct sysinfo)); | |
1163 | ||
1164 | do { | |
1165 | struct timespec tp; | |
1166 | seq = read_seqbegin(&xtime_lock); | |
1167 | ||
1168 | /* | |
1169 | * This is annoying. The below is the same thing | |
1170 | * posix_get_clock_monotonic() does, but it wants to | |
1171 | * take the lock which we want to cover the loads stuff | |
1172 | * too. | |
1173 | */ | |
1174 | ||
1175 | getnstimeofday(&tp); | |
1176 | tp.tv_sec += wall_to_monotonic.tv_sec; | |
1177 | tp.tv_nsec += wall_to_monotonic.tv_nsec; | |
1178 | if (tp.tv_nsec - NSEC_PER_SEC >= 0) { | |
1179 | tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC; | |
1180 | tp.tv_sec++; | |
1181 | } | |
1182 | val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); | |
1183 | ||
1184 | val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT); | |
1185 | val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT); | |
1186 | val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT); | |
1187 | ||
1188 | val.procs = nr_threads; | |
1189 | } while (read_seqretry(&xtime_lock, seq)); | |
1190 | ||
1191 | si_meminfo(&val); | |
1192 | si_swapinfo(&val); | |
1193 | ||
1194 | /* | |
1195 | * If the sum of all the available memory (i.e. ram + swap) | |
1196 | * is less than can be stored in a 32 bit unsigned long then | |
1197 | * we can be binary compatible with 2.2.x kernels. If not, | |
1198 | * well, in that case 2.2.x was broken anyways... | |
1199 | * | |
1200 | * -Erik Andersen <[email protected]> | |
1201 | */ | |
1202 | ||
1203 | mem_total = val.totalram + val.totalswap; | |
1204 | if (mem_total < val.totalram || mem_total < val.totalswap) | |
1205 | goto out; | |
1206 | bitcount = 0; | |
1207 | mem_unit = val.mem_unit; | |
1208 | while (mem_unit > 1) { | |
1209 | bitcount++; | |
1210 | mem_unit >>= 1; | |
1211 | sav_total = mem_total; | |
1212 | mem_total <<= 1; | |
1213 | if (mem_total < sav_total) | |
1214 | goto out; | |
1215 | } | |
1216 | ||
1217 | /* | |
1218 | * If mem_total did not overflow, multiply all memory values by | |
1219 | * val.mem_unit and set it to 1. This leaves things compatible | |
1220 | * with 2.2.x, and also retains compatibility with earlier 2.4.x | |
1221 | * kernels... | |
1222 | */ | |
1223 | ||
1224 | val.mem_unit = 1; | |
1225 | val.totalram <<= bitcount; | |
1226 | val.freeram <<= bitcount; | |
1227 | val.sharedram <<= bitcount; | |
1228 | val.bufferram <<= bitcount; | |
1229 | val.totalswap <<= bitcount; | |
1230 | val.freeswap <<= bitcount; | |
1231 | val.totalhigh <<= bitcount; | |
1232 | val.freehigh <<= bitcount; | |
1233 | ||
1234 | out: | |
1235 | if (copy_to_user(info, &val, sizeof(struct sysinfo))) | |
1236 | return -EFAULT; | |
1237 | ||
1238 | return 0; | |
1239 | } | |
1240 | ||
1241 | static void __devinit init_timers_cpu(int cpu) | |
1242 | { | |
1243 | int j; | |
1244 | tvec_base_t *base; | |
1245 | ||
1246 | base = &per_cpu(tvec_bases, cpu); | |
1247 | spin_lock_init(&base->t_base.lock); | |
1248 | for (j = 0; j < TVN_SIZE; j++) { | |
1249 | INIT_LIST_HEAD(base->tv5.vec + j); | |
1250 | INIT_LIST_HEAD(base->tv4.vec + j); | |
1251 | INIT_LIST_HEAD(base->tv3.vec + j); | |
1252 | INIT_LIST_HEAD(base->tv2.vec + j); | |
1253 | } | |
1254 | for (j = 0; j < TVR_SIZE; j++) | |
1255 | INIT_LIST_HEAD(base->tv1.vec + j); | |
1256 | ||
1257 | base->timer_jiffies = jiffies; | |
1258 | } | |
1259 | ||
1260 | #ifdef CONFIG_HOTPLUG_CPU | |
1261 | static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head) | |
1262 | { | |
1263 | struct timer_list *timer; | |
1264 | ||
1265 | while (!list_empty(head)) { | |
1266 | timer = list_entry(head->next, struct timer_list, entry); | |
1267 | detach_timer(timer, 0); | |
1268 | timer->base = &new_base->t_base; | |
1269 | internal_add_timer(new_base, timer); | |
1270 | } | |
1271 | } | |
1272 | ||
1273 | static void __devinit migrate_timers(int cpu) | |
1274 | { | |
1275 | tvec_base_t *old_base; | |
1276 | tvec_base_t *new_base; | |
1277 | int i; | |
1278 | ||
1279 | BUG_ON(cpu_online(cpu)); | |
1280 | old_base = &per_cpu(tvec_bases, cpu); | |
1281 | new_base = &get_cpu_var(tvec_bases); | |
1282 | ||
1283 | local_irq_disable(); | |
1284 | spin_lock(&new_base->t_base.lock); | |
1285 | spin_lock(&old_base->t_base.lock); | |
1286 | ||
1287 | if (old_base->t_base.running_timer) | |
1288 | BUG(); | |
1289 | for (i = 0; i < TVR_SIZE; i++) | |
1290 | migrate_timer_list(new_base, old_base->tv1.vec + i); | |
1291 | for (i = 0; i < TVN_SIZE; i++) { | |
1292 | migrate_timer_list(new_base, old_base->tv2.vec + i); | |
1293 | migrate_timer_list(new_base, old_base->tv3.vec + i); | |
1294 | migrate_timer_list(new_base, old_base->tv4.vec + i); | |
1295 | migrate_timer_list(new_base, old_base->tv5.vec + i); | |
1296 | } | |
1297 | ||
1298 | spin_unlock(&old_base->t_base.lock); | |
1299 | spin_unlock(&new_base->t_base.lock); | |
1300 | local_irq_enable(); | |
1301 | put_cpu_var(tvec_bases); | |
1302 | } | |
1303 | #endif /* CONFIG_HOTPLUG_CPU */ | |
1304 | ||
1305 | static int __devinit timer_cpu_notify(struct notifier_block *self, | |
1306 | unsigned long action, void *hcpu) | |
1307 | { | |
1308 | long cpu = (long)hcpu; | |
1309 | switch(action) { | |
1310 | case CPU_UP_PREPARE: | |
1311 | init_timers_cpu(cpu); | |
1312 | break; | |
1313 | #ifdef CONFIG_HOTPLUG_CPU | |
1314 | case CPU_DEAD: | |
1315 | migrate_timers(cpu); | |
1316 | break; | |
1317 | #endif | |
1318 | default: | |
1319 | break; | |
1320 | } | |
1321 | return NOTIFY_OK; | |
1322 | } | |
1323 | ||
1324 | static struct notifier_block __devinitdata timers_nb = { | |
1325 | .notifier_call = timer_cpu_notify, | |
1326 | }; | |
1327 | ||
1328 | ||
1329 | void __init init_timers(void) | |
1330 | { | |
1331 | timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, | |
1332 | (void *)(long)smp_processor_id()); | |
1333 | register_cpu_notifier(&timers_nb); | |
1334 | open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL); | |
1335 | } | |
1336 | ||
1337 | #ifdef CONFIG_TIME_INTERPOLATION | |
1338 | ||
1339 | struct time_interpolator *time_interpolator; | |
1340 | static struct time_interpolator *time_interpolator_list; | |
1341 | static DEFINE_SPINLOCK(time_interpolator_lock); | |
1342 | ||
1343 | static inline u64 time_interpolator_get_cycles(unsigned int src) | |
1344 | { | |
1345 | unsigned long (*x)(void); | |
1346 | ||
1347 | switch (src) | |
1348 | { | |
1349 | case TIME_SOURCE_FUNCTION: | |
1350 | x = time_interpolator->addr; | |
1351 | return x(); | |
1352 | ||
1353 | case TIME_SOURCE_MMIO64 : | |
1354 | return readq_relaxed((void __iomem *)time_interpolator->addr); | |
1355 | ||
1356 | case TIME_SOURCE_MMIO32 : | |
1357 | return readl_relaxed((void __iomem *)time_interpolator->addr); | |
1358 | ||
1359 | default: return get_cycles(); | |
1360 | } | |
1361 | } | |
1362 | ||
1363 | static inline u64 time_interpolator_get_counter(int writelock) | |
1364 | { | |
1365 | unsigned int src = time_interpolator->source; | |
1366 | ||
1367 | if (time_interpolator->jitter) | |
1368 | { | |
1369 | u64 lcycle; | |
1370 | u64 now; | |
1371 | ||
1372 | do { | |
1373 | lcycle = time_interpolator->last_cycle; | |
1374 | now = time_interpolator_get_cycles(src); | |
1375 | if (lcycle && time_after(lcycle, now)) | |
1376 | return lcycle; | |
1377 | ||
1378 | /* When holding the xtime write lock, there's no need | |
1379 | * to add the overhead of the cmpxchg. Readers are | |
1380 | * force to retry until the write lock is released. | |
1381 | */ | |
1382 | if (writelock) { | |
1383 | time_interpolator->last_cycle = now; | |
1384 | return now; | |
1385 | } | |
1386 | /* Keep track of the last timer value returned. The use of cmpxchg here | |
1387 | * will cause contention in an SMP environment. | |
1388 | */ | |
1389 | } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle)); | |
1390 | return now; | |
1391 | } | |
1392 | else | |
1393 | return time_interpolator_get_cycles(src); | |
1394 | } | |
1395 | ||
1396 | void time_interpolator_reset(void) | |
1397 | { | |
1398 | time_interpolator->offset = 0; | |
1399 | time_interpolator->last_counter = time_interpolator_get_counter(1); | |
1400 | } | |
1401 | ||
1402 | #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift) | |
1403 | ||
1404 | unsigned long time_interpolator_get_offset(void) | |
1405 | { | |
1406 | /* If we do not have a time interpolator set up then just return zero */ | |
1407 | if (!time_interpolator) | |
1408 | return 0; | |
1409 | ||
1410 | return time_interpolator->offset + | |
1411 | GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator); | |
1412 | } | |
1413 | ||
1414 | #define INTERPOLATOR_ADJUST 65536 | |
1415 | #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST | |
1416 | ||
1417 | static void time_interpolator_update(long delta_nsec) | |
1418 | { | |
1419 | u64 counter; | |
1420 | unsigned long offset; | |
1421 | ||
1422 | /* If there is no time interpolator set up then do nothing */ | |
1423 | if (!time_interpolator) | |
1424 | return; | |
1425 | ||
1426 | /* | |
1427 | * The interpolator compensates for late ticks by accumulating the late | |
1428 | * time in time_interpolator->offset. A tick earlier than expected will | |
1429 | * lead to a reset of the offset and a corresponding jump of the clock | |
1430 | * forward. Again this only works if the interpolator clock is running | |
1431 | * slightly slower than the regular clock and the tuning logic insures | |
1432 | * that. | |
1433 | */ | |
1434 | ||
1435 | counter = time_interpolator_get_counter(1); | |
1436 | offset = time_interpolator->offset + | |
1437 | GET_TI_NSECS(counter, time_interpolator); | |
1438 | ||
1439 | if (delta_nsec < 0 || (unsigned long) delta_nsec < offset) | |
1440 | time_interpolator->offset = offset - delta_nsec; | |
1441 | else { | |
1442 | time_interpolator->skips++; | |
1443 | time_interpolator->ns_skipped += delta_nsec - offset; | |
1444 | time_interpolator->offset = 0; | |
1445 | } | |
1446 | time_interpolator->last_counter = counter; | |
1447 | ||
1448 | /* Tuning logic for time interpolator invoked every minute or so. | |
1449 | * Decrease interpolator clock speed if no skips occurred and an offset is carried. | |
1450 | * Increase interpolator clock speed if we skip too much time. | |
1451 | */ | |
1452 | if (jiffies % INTERPOLATOR_ADJUST == 0) | |
1453 | { | |
1454 | if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC) | |
1455 | time_interpolator->nsec_per_cyc--; | |
1456 | if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0) | |
1457 | time_interpolator->nsec_per_cyc++; | |
1458 | time_interpolator->skips = 0; | |
1459 | time_interpolator->ns_skipped = 0; | |
1460 | } | |
1461 | } | |
1462 | ||
1463 | static inline int | |
1464 | is_better_time_interpolator(struct time_interpolator *new) | |
1465 | { | |
1466 | if (!time_interpolator) | |
1467 | return 1; | |
1468 | return new->frequency > 2*time_interpolator->frequency || | |
1469 | (unsigned long)new->drift < (unsigned long)time_interpolator->drift; | |
1470 | } | |
1471 | ||
1472 | void | |
1473 | register_time_interpolator(struct time_interpolator *ti) | |
1474 | { | |
1475 | unsigned long flags; | |
1476 | ||
1477 | /* Sanity check */ | |
1478 | if (ti->frequency == 0 || ti->mask == 0) | |
1479 | BUG(); | |
1480 | ||
1481 | ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency; | |
1482 | spin_lock(&time_interpolator_lock); | |
1483 | write_seqlock_irqsave(&xtime_lock, flags); | |
1484 | if (is_better_time_interpolator(ti)) { | |
1485 | time_interpolator = ti; | |
1486 | time_interpolator_reset(); | |
1487 | } | |
1488 | write_sequnlock_irqrestore(&xtime_lock, flags); | |
1489 | ||
1490 | ti->next = time_interpolator_list; | |
1491 | time_interpolator_list = ti; | |
1492 | spin_unlock(&time_interpolator_lock); | |
1493 | } | |
1494 | ||
1495 | void | |
1496 | unregister_time_interpolator(struct time_interpolator *ti) | |
1497 | { | |
1498 | struct time_interpolator *curr, **prev; | |
1499 | unsigned long flags; | |
1500 | ||
1501 | spin_lock(&time_interpolator_lock); | |
1502 | prev = &time_interpolator_list; | |
1503 | for (curr = *prev; curr; curr = curr->next) { | |
1504 | if (curr == ti) { | |
1505 | *prev = curr->next; | |
1506 | break; | |
1507 | } | |
1508 | prev = &curr->next; | |
1509 | } | |
1510 | ||
1511 | write_seqlock_irqsave(&xtime_lock, flags); | |
1512 | if (ti == time_interpolator) { | |
1513 | /* we lost the best time-interpolator: */ | |
1514 | time_interpolator = NULL; | |
1515 | /* find the next-best interpolator */ | |
1516 | for (curr = time_interpolator_list; curr; curr = curr->next) | |
1517 | if (is_better_time_interpolator(curr)) | |
1518 | time_interpolator = curr; | |
1519 | time_interpolator_reset(); | |
1520 | } | |
1521 | write_sequnlock_irqrestore(&xtime_lock, flags); | |
1522 | spin_unlock(&time_interpolator_lock); | |
1523 | } | |
1524 | #endif /* CONFIG_TIME_INTERPOLATION */ | |
1525 | ||
1526 | /** | |
1527 | * msleep - sleep safely even with waitqueue interruptions | |
1528 | * @msecs: Time in milliseconds to sleep for | |
1529 | */ | |
1530 | void msleep(unsigned int msecs) | |
1531 | { | |
1532 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | |
1533 | ||
1534 | while (timeout) | |
1535 | timeout = schedule_timeout_uninterruptible(timeout); | |
1536 | } | |
1537 | ||
1538 | EXPORT_SYMBOL(msleep); | |
1539 | ||
1540 | /** | |
1541 | * msleep_interruptible - sleep waiting for signals | |
1542 | * @msecs: Time in milliseconds to sleep for | |
1543 | */ | |
1544 | unsigned long msleep_interruptible(unsigned int msecs) | |
1545 | { | |
1546 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | |
1547 | ||
1548 | while (timeout && !signal_pending(current)) | |
1549 | timeout = schedule_timeout_interruptible(timeout); | |
1550 | return jiffies_to_msecs(timeout); | |
1551 | } | |
1552 | ||
1553 | EXPORT_SYMBOL(msleep_interruptible); |