]> Git Repo - linux.git/blame_incremental - net/sctp/socket.c
ipv6: protocol for address routes
[linux.git] / net / sctp / socket.c
... / ...
CommitLineData
1/* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
34 *
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <[email protected]>
38 *
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
41 *
42 * Written or modified by:
43 * La Monte H.P. Yarroll <[email protected]>
44 * Narasimha Budihal <[email protected]>
45 * Karl Knutson <[email protected]>
46 * Jon Grimm <[email protected]>
47 * Xingang Guo <[email protected]>
48 * Daisy Chang <[email protected]>
49 * Sridhar Samudrala <[email protected]>
50 * Inaky Perez-Gonzalez <[email protected]>
51 * Ardelle Fan <[email protected]>
52 * Ryan Layer <[email protected]>
53 * Anup Pemmaiah <[email protected]>
54 * Kevin Gao <[email protected]>
55 *
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
58 */
59
60#include <linux/types.h>
61#include <linux/kernel.h>
62#include <linux/wait.h>
63#include <linux/time.h>
64#include <linux/ip.h>
65#include <linux/capability.h>
66#include <linux/fcntl.h>
67#include <linux/poll.h>
68#include <linux/init.h>
69#include <linux/crypto.h>
70
71#include <net/ip.h>
72#include <net/icmp.h>
73#include <net/route.h>
74#include <net/ipv6.h>
75#include <net/inet_common.h>
76
77#include <linux/socket.h> /* for sa_family_t */
78#include <net/sock.h>
79#include <net/sctp/sctp.h>
80#include <net/sctp/sm.h>
81
82/* WARNING: Please do not remove the SCTP_STATIC attribute to
83 * any of the functions below as they are used to export functions
84 * used by a project regression testsuite.
85 */
86
87/* Forward declarations for internal helper functions. */
88static int sctp_writeable(struct sock *sk);
89static void sctp_wfree(struct sk_buff *skb);
90static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 size_t msg_len);
92static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94static int sctp_wait_for_accept(struct sock *sk, long timeo);
95static void sctp_wait_for_close(struct sock *sk, long timeo);
96static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 union sctp_addr *addr, int len);
98static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102static int sctp_send_asconf(struct sctp_association *asoc,
103 struct sctp_chunk *chunk);
104static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105static int sctp_autobind(struct sock *sk);
106static void sctp_sock_migrate(struct sock *, struct sock *,
107 struct sctp_association *, sctp_socket_type_t);
108static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109
110extern struct kmem_cache *sctp_bucket_cachep;
111extern int sysctl_sctp_mem[3];
112extern int sysctl_sctp_rmem[3];
113extern int sysctl_sctp_wmem[3];
114
115static int sctp_memory_pressure;
116static atomic_t sctp_memory_allocated;
117static atomic_t sctp_sockets_allocated;
118
119static void sctp_enter_memory_pressure(struct sock *sk)
120{
121 sctp_memory_pressure = 1;
122}
123
124
125/* Get the sndbuf space available at the time on the association. */
126static inline int sctp_wspace(struct sctp_association *asoc)
127{
128 int amt;
129
130 if (asoc->ep->sndbuf_policy)
131 amt = asoc->sndbuf_used;
132 else
133 amt = atomic_read(&asoc->base.sk->sk_wmem_alloc);
134
135 if (amt >= asoc->base.sk->sk_sndbuf) {
136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
137 amt = 0;
138 else {
139 amt = sk_stream_wspace(asoc->base.sk);
140 if (amt < 0)
141 amt = 0;
142 }
143 } else {
144 amt = asoc->base.sk->sk_sndbuf - amt;
145 }
146 return amt;
147}
148
149/* Increment the used sndbuf space count of the corresponding association by
150 * the size of the outgoing data chunk.
151 * Also, set the skb destructor for sndbuf accounting later.
152 *
153 * Since it is always 1-1 between chunk and skb, and also a new skb is always
154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
155 * destructor in the data chunk skb for the purpose of the sndbuf space
156 * tracking.
157 */
158static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
159{
160 struct sctp_association *asoc = chunk->asoc;
161 struct sock *sk = asoc->base.sk;
162
163 /* The sndbuf space is tracked per association. */
164 sctp_association_hold(asoc);
165
166 skb_set_owner_w(chunk->skb, sk);
167
168 chunk->skb->destructor = sctp_wfree;
169 /* Save the chunk pointer in skb for sctp_wfree to use later. */
170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
171
172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
173 sizeof(struct sk_buff) +
174 sizeof(struct sctp_chunk);
175
176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
177 sk->sk_wmem_queued += chunk->skb->truesize;
178 sk_mem_charge(sk, chunk->skb->truesize);
179}
180
181/* Verify that this is a valid address. */
182static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
183 int len)
184{
185 struct sctp_af *af;
186
187 /* Verify basic sockaddr. */
188 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
189 if (!af)
190 return -EINVAL;
191
192 /* Is this a valid SCTP address? */
193 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
194 return -EINVAL;
195
196 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
197 return -EINVAL;
198
199 return 0;
200}
201
202/* Look up the association by its id. If this is not a UDP-style
203 * socket, the ID field is always ignored.
204 */
205struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
206{
207 struct sctp_association *asoc = NULL;
208
209 /* If this is not a UDP-style socket, assoc id should be ignored. */
210 if (!sctp_style(sk, UDP)) {
211 /* Return NULL if the socket state is not ESTABLISHED. It
212 * could be a TCP-style listening socket or a socket which
213 * hasn't yet called connect() to establish an association.
214 */
215 if (!sctp_sstate(sk, ESTABLISHED))
216 return NULL;
217
218 /* Get the first and the only association from the list. */
219 if (!list_empty(&sctp_sk(sk)->ep->asocs))
220 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
221 struct sctp_association, asocs);
222 return asoc;
223 }
224
225 /* Otherwise this is a UDP-style socket. */
226 if (!id || (id == (sctp_assoc_t)-1))
227 return NULL;
228
229 spin_lock_bh(&sctp_assocs_id_lock);
230 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
231 spin_unlock_bh(&sctp_assocs_id_lock);
232
233 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
234 return NULL;
235
236 return asoc;
237}
238
239/* Look up the transport from an address and an assoc id. If both address and
240 * id are specified, the associations matching the address and the id should be
241 * the same.
242 */
243static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
244 struct sockaddr_storage *addr,
245 sctp_assoc_t id)
246{
247 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
248 struct sctp_transport *transport;
249 union sctp_addr *laddr = (union sctp_addr *)addr;
250
251 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
252 laddr,
253 &transport);
254
255 if (!addr_asoc)
256 return NULL;
257
258 id_asoc = sctp_id2assoc(sk, id);
259 if (id_asoc && (id_asoc != addr_asoc))
260 return NULL;
261
262 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
263 (union sctp_addr *)addr);
264
265 return transport;
266}
267
268/* API 3.1.2 bind() - UDP Style Syntax
269 * The syntax of bind() is,
270 *
271 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
272 *
273 * sd - the socket descriptor returned by socket().
274 * addr - the address structure (struct sockaddr_in or struct
275 * sockaddr_in6 [RFC 2553]),
276 * addr_len - the size of the address structure.
277 */
278SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
279{
280 int retval = 0;
281
282 sctp_lock_sock(sk);
283
284 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
285 sk, addr, addr_len);
286
287 /* Disallow binding twice. */
288 if (!sctp_sk(sk)->ep->base.bind_addr.port)
289 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
290 addr_len);
291 else
292 retval = -EINVAL;
293
294 sctp_release_sock(sk);
295
296 return retval;
297}
298
299static long sctp_get_port_local(struct sock *, union sctp_addr *);
300
301/* Verify this is a valid sockaddr. */
302static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
303 union sctp_addr *addr, int len)
304{
305 struct sctp_af *af;
306
307 /* Check minimum size. */
308 if (len < sizeof (struct sockaddr))
309 return NULL;
310
311 /* V4 mapped address are really of AF_INET family */
312 if (addr->sa.sa_family == AF_INET6 &&
313 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
314 if (!opt->pf->af_supported(AF_INET, opt))
315 return NULL;
316 } else {
317 /* Does this PF support this AF? */
318 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
319 return NULL;
320 }
321
322 /* If we get this far, af is valid. */
323 af = sctp_get_af_specific(addr->sa.sa_family);
324
325 if (len < af->sockaddr_len)
326 return NULL;
327
328 return af;
329}
330
331/* Bind a local address either to an endpoint or to an association. */
332SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
333{
334 struct sctp_sock *sp = sctp_sk(sk);
335 struct sctp_endpoint *ep = sp->ep;
336 struct sctp_bind_addr *bp = &ep->base.bind_addr;
337 struct sctp_af *af;
338 unsigned short snum;
339 int ret = 0;
340
341 /* Common sockaddr verification. */
342 af = sctp_sockaddr_af(sp, addr, len);
343 if (!af) {
344 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
345 sk, addr, len);
346 return -EINVAL;
347 }
348
349 snum = ntohs(addr->v4.sin_port);
350
351 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
352 ", port: %d, new port: %d, len: %d)\n",
353 sk,
354 addr,
355 bp->port, snum,
356 len);
357
358 /* PF specific bind() address verification. */
359 if (!sp->pf->bind_verify(sp, addr))
360 return -EADDRNOTAVAIL;
361
362 /* We must either be unbound, or bind to the same port.
363 * It's OK to allow 0 ports if we are already bound.
364 * We'll just inhert an already bound port in this case
365 */
366 if (bp->port) {
367 if (!snum)
368 snum = bp->port;
369 else if (snum != bp->port) {
370 SCTP_DEBUG_PRINTK("sctp_do_bind:"
371 " New port %d does not match existing port "
372 "%d.\n", snum, bp->port);
373 return -EINVAL;
374 }
375 }
376
377 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
378 return -EACCES;
379
380 /* See if the address matches any of the addresses we may have
381 * already bound before checking against other endpoints.
382 */
383 if (sctp_bind_addr_match(bp, addr, sp))
384 return -EINVAL;
385
386 /* Make sure we are allowed to bind here.
387 * The function sctp_get_port_local() does duplicate address
388 * detection.
389 */
390 addr->v4.sin_port = htons(snum);
391 if ((ret = sctp_get_port_local(sk, addr))) {
392 return -EADDRINUSE;
393 }
394
395 /* Refresh ephemeral port. */
396 if (!bp->port)
397 bp->port = inet_sk(sk)->num;
398
399 /* Add the address to the bind address list.
400 * Use GFP_ATOMIC since BHs will be disabled.
401 */
402 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
403
404 /* Copy back into socket for getsockname() use. */
405 if (!ret) {
406 inet_sk(sk)->sport = htons(inet_sk(sk)->num);
407 af->to_sk_saddr(addr, sk);
408 }
409
410 return ret;
411}
412
413 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
414 *
415 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
416 * at any one time. If a sender, after sending an ASCONF chunk, decides
417 * it needs to transfer another ASCONF Chunk, it MUST wait until the
418 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
419 * subsequent ASCONF. Note this restriction binds each side, so at any
420 * time two ASCONF may be in-transit on any given association (one sent
421 * from each endpoint).
422 */
423static int sctp_send_asconf(struct sctp_association *asoc,
424 struct sctp_chunk *chunk)
425{
426 int retval = 0;
427
428 /* If there is an outstanding ASCONF chunk, queue it for later
429 * transmission.
430 */
431 if (asoc->addip_last_asconf) {
432 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
433 goto out;
434 }
435
436 /* Hold the chunk until an ASCONF_ACK is received. */
437 sctp_chunk_hold(chunk);
438 retval = sctp_primitive_ASCONF(asoc, chunk);
439 if (retval)
440 sctp_chunk_free(chunk);
441 else
442 asoc->addip_last_asconf = chunk;
443
444out:
445 return retval;
446}
447
448/* Add a list of addresses as bind addresses to local endpoint or
449 * association.
450 *
451 * Basically run through each address specified in the addrs/addrcnt
452 * array/length pair, determine if it is IPv6 or IPv4 and call
453 * sctp_do_bind() on it.
454 *
455 * If any of them fails, then the operation will be reversed and the
456 * ones that were added will be removed.
457 *
458 * Only sctp_setsockopt_bindx() is supposed to call this function.
459 */
460static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
461{
462 int cnt;
463 int retval = 0;
464 void *addr_buf;
465 struct sockaddr *sa_addr;
466 struct sctp_af *af;
467
468 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
469 sk, addrs, addrcnt);
470
471 addr_buf = addrs;
472 for (cnt = 0; cnt < addrcnt; cnt++) {
473 /* The list may contain either IPv4 or IPv6 address;
474 * determine the address length for walking thru the list.
475 */
476 sa_addr = (struct sockaddr *)addr_buf;
477 af = sctp_get_af_specific(sa_addr->sa_family);
478 if (!af) {
479 retval = -EINVAL;
480 goto err_bindx_add;
481 }
482
483 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
484 af->sockaddr_len);
485
486 addr_buf += af->sockaddr_len;
487
488err_bindx_add:
489 if (retval < 0) {
490 /* Failed. Cleanup the ones that have been added */
491 if (cnt > 0)
492 sctp_bindx_rem(sk, addrs, cnt);
493 return retval;
494 }
495 }
496
497 return retval;
498}
499
500/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
501 * associations that are part of the endpoint indicating that a list of local
502 * addresses are added to the endpoint.
503 *
504 * If any of the addresses is already in the bind address list of the
505 * association, we do not send the chunk for that association. But it will not
506 * affect other associations.
507 *
508 * Only sctp_setsockopt_bindx() is supposed to call this function.
509 */
510static int sctp_send_asconf_add_ip(struct sock *sk,
511 struct sockaddr *addrs,
512 int addrcnt)
513{
514 struct sctp_sock *sp;
515 struct sctp_endpoint *ep;
516 struct sctp_association *asoc;
517 struct sctp_bind_addr *bp;
518 struct sctp_chunk *chunk;
519 struct sctp_sockaddr_entry *laddr;
520 union sctp_addr *addr;
521 union sctp_addr saveaddr;
522 void *addr_buf;
523 struct sctp_af *af;
524 struct list_head *p;
525 int i;
526 int retval = 0;
527
528 if (!sctp_addip_enable)
529 return retval;
530
531 sp = sctp_sk(sk);
532 ep = sp->ep;
533
534 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
535 __func__, sk, addrs, addrcnt);
536
537 list_for_each_entry(asoc, &ep->asocs, asocs) {
538
539 if (!asoc->peer.asconf_capable)
540 continue;
541
542 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
543 continue;
544
545 if (!sctp_state(asoc, ESTABLISHED))
546 continue;
547
548 /* Check if any address in the packed array of addresses is
549 * in the bind address list of the association. If so,
550 * do not send the asconf chunk to its peer, but continue with
551 * other associations.
552 */
553 addr_buf = addrs;
554 for (i = 0; i < addrcnt; i++) {
555 addr = (union sctp_addr *)addr_buf;
556 af = sctp_get_af_specific(addr->v4.sin_family);
557 if (!af) {
558 retval = -EINVAL;
559 goto out;
560 }
561
562 if (sctp_assoc_lookup_laddr(asoc, addr))
563 break;
564
565 addr_buf += af->sockaddr_len;
566 }
567 if (i < addrcnt)
568 continue;
569
570 /* Use the first valid address in bind addr list of
571 * association as Address Parameter of ASCONF CHUNK.
572 */
573 bp = &asoc->base.bind_addr;
574 p = bp->address_list.next;
575 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
576 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
577 addrcnt, SCTP_PARAM_ADD_IP);
578 if (!chunk) {
579 retval = -ENOMEM;
580 goto out;
581 }
582
583 retval = sctp_send_asconf(asoc, chunk);
584 if (retval)
585 goto out;
586
587 /* Add the new addresses to the bind address list with
588 * use_as_src set to 0.
589 */
590 addr_buf = addrs;
591 for (i = 0; i < addrcnt; i++) {
592 addr = (union sctp_addr *)addr_buf;
593 af = sctp_get_af_specific(addr->v4.sin_family);
594 memcpy(&saveaddr, addr, af->sockaddr_len);
595 retval = sctp_add_bind_addr(bp, &saveaddr,
596 SCTP_ADDR_NEW, GFP_ATOMIC);
597 addr_buf += af->sockaddr_len;
598 }
599 }
600
601out:
602 return retval;
603}
604
605/* Remove a list of addresses from bind addresses list. Do not remove the
606 * last address.
607 *
608 * Basically run through each address specified in the addrs/addrcnt
609 * array/length pair, determine if it is IPv6 or IPv4 and call
610 * sctp_del_bind() on it.
611 *
612 * If any of them fails, then the operation will be reversed and the
613 * ones that were removed will be added back.
614 *
615 * At least one address has to be left; if only one address is
616 * available, the operation will return -EBUSY.
617 *
618 * Only sctp_setsockopt_bindx() is supposed to call this function.
619 */
620static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
621{
622 struct sctp_sock *sp = sctp_sk(sk);
623 struct sctp_endpoint *ep = sp->ep;
624 int cnt;
625 struct sctp_bind_addr *bp = &ep->base.bind_addr;
626 int retval = 0;
627 void *addr_buf;
628 union sctp_addr *sa_addr;
629 struct sctp_af *af;
630
631 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
632 sk, addrs, addrcnt);
633
634 addr_buf = addrs;
635 for (cnt = 0; cnt < addrcnt; cnt++) {
636 /* If the bind address list is empty or if there is only one
637 * bind address, there is nothing more to be removed (we need
638 * at least one address here).
639 */
640 if (list_empty(&bp->address_list) ||
641 (sctp_list_single_entry(&bp->address_list))) {
642 retval = -EBUSY;
643 goto err_bindx_rem;
644 }
645
646 sa_addr = (union sctp_addr *)addr_buf;
647 af = sctp_get_af_specific(sa_addr->sa.sa_family);
648 if (!af) {
649 retval = -EINVAL;
650 goto err_bindx_rem;
651 }
652
653 if (!af->addr_valid(sa_addr, sp, NULL)) {
654 retval = -EADDRNOTAVAIL;
655 goto err_bindx_rem;
656 }
657
658 if (sa_addr->v4.sin_port != htons(bp->port)) {
659 retval = -EINVAL;
660 goto err_bindx_rem;
661 }
662
663 /* FIXME - There is probably a need to check if sk->sk_saddr and
664 * sk->sk_rcv_addr are currently set to one of the addresses to
665 * be removed. This is something which needs to be looked into
666 * when we are fixing the outstanding issues with multi-homing
667 * socket routing and failover schemes. Refer to comments in
668 * sctp_do_bind(). -daisy
669 */
670 retval = sctp_del_bind_addr(bp, sa_addr);
671
672 addr_buf += af->sockaddr_len;
673err_bindx_rem:
674 if (retval < 0) {
675 /* Failed. Add the ones that has been removed back */
676 if (cnt > 0)
677 sctp_bindx_add(sk, addrs, cnt);
678 return retval;
679 }
680 }
681
682 return retval;
683}
684
685/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
686 * the associations that are part of the endpoint indicating that a list of
687 * local addresses are removed from the endpoint.
688 *
689 * If any of the addresses is already in the bind address list of the
690 * association, we do not send the chunk for that association. But it will not
691 * affect other associations.
692 *
693 * Only sctp_setsockopt_bindx() is supposed to call this function.
694 */
695static int sctp_send_asconf_del_ip(struct sock *sk,
696 struct sockaddr *addrs,
697 int addrcnt)
698{
699 struct sctp_sock *sp;
700 struct sctp_endpoint *ep;
701 struct sctp_association *asoc;
702 struct sctp_transport *transport;
703 struct sctp_bind_addr *bp;
704 struct sctp_chunk *chunk;
705 union sctp_addr *laddr;
706 void *addr_buf;
707 struct sctp_af *af;
708 struct sctp_sockaddr_entry *saddr;
709 int i;
710 int retval = 0;
711
712 if (!sctp_addip_enable)
713 return retval;
714
715 sp = sctp_sk(sk);
716 ep = sp->ep;
717
718 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
719 __func__, sk, addrs, addrcnt);
720
721 list_for_each_entry(asoc, &ep->asocs, asocs) {
722
723 if (!asoc->peer.asconf_capable)
724 continue;
725
726 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
727 continue;
728
729 if (!sctp_state(asoc, ESTABLISHED))
730 continue;
731
732 /* Check if any address in the packed array of addresses is
733 * not present in the bind address list of the association.
734 * If so, do not send the asconf chunk to its peer, but
735 * continue with other associations.
736 */
737 addr_buf = addrs;
738 for (i = 0; i < addrcnt; i++) {
739 laddr = (union sctp_addr *)addr_buf;
740 af = sctp_get_af_specific(laddr->v4.sin_family);
741 if (!af) {
742 retval = -EINVAL;
743 goto out;
744 }
745
746 if (!sctp_assoc_lookup_laddr(asoc, laddr))
747 break;
748
749 addr_buf += af->sockaddr_len;
750 }
751 if (i < addrcnt)
752 continue;
753
754 /* Find one address in the association's bind address list
755 * that is not in the packed array of addresses. This is to
756 * make sure that we do not delete all the addresses in the
757 * association.
758 */
759 bp = &asoc->base.bind_addr;
760 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
761 addrcnt, sp);
762 if (!laddr)
763 continue;
764
765 /* We do not need RCU protection throughout this loop
766 * because this is done under a socket lock from the
767 * setsockopt call.
768 */
769 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
770 SCTP_PARAM_DEL_IP);
771 if (!chunk) {
772 retval = -ENOMEM;
773 goto out;
774 }
775
776 /* Reset use_as_src flag for the addresses in the bind address
777 * list that are to be deleted.
778 */
779 addr_buf = addrs;
780 for (i = 0; i < addrcnt; i++) {
781 laddr = (union sctp_addr *)addr_buf;
782 af = sctp_get_af_specific(laddr->v4.sin_family);
783 list_for_each_entry(saddr, &bp->address_list, list) {
784 if (sctp_cmp_addr_exact(&saddr->a, laddr))
785 saddr->state = SCTP_ADDR_DEL;
786 }
787 addr_buf += af->sockaddr_len;
788 }
789
790 /* Update the route and saddr entries for all the transports
791 * as some of the addresses in the bind address list are
792 * about to be deleted and cannot be used as source addresses.
793 */
794 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
795 transports) {
796 dst_release(transport->dst);
797 sctp_transport_route(transport, NULL,
798 sctp_sk(asoc->base.sk));
799 }
800
801 retval = sctp_send_asconf(asoc, chunk);
802 }
803out:
804 return retval;
805}
806
807/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
808 *
809 * API 8.1
810 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
811 * int flags);
812 *
813 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
814 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
815 * or IPv6 addresses.
816 *
817 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
818 * Section 3.1.2 for this usage.
819 *
820 * addrs is a pointer to an array of one or more socket addresses. Each
821 * address is contained in its appropriate structure (i.e. struct
822 * sockaddr_in or struct sockaddr_in6) the family of the address type
823 * must be used to distinguish the address length (note that this
824 * representation is termed a "packed array" of addresses). The caller
825 * specifies the number of addresses in the array with addrcnt.
826 *
827 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
828 * -1, and sets errno to the appropriate error code.
829 *
830 * For SCTP, the port given in each socket address must be the same, or
831 * sctp_bindx() will fail, setting errno to EINVAL.
832 *
833 * The flags parameter is formed from the bitwise OR of zero or more of
834 * the following currently defined flags:
835 *
836 * SCTP_BINDX_ADD_ADDR
837 *
838 * SCTP_BINDX_REM_ADDR
839 *
840 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
841 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
842 * addresses from the association. The two flags are mutually exclusive;
843 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
844 * not remove all addresses from an association; sctp_bindx() will
845 * reject such an attempt with EINVAL.
846 *
847 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
848 * additional addresses with an endpoint after calling bind(). Or use
849 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
850 * socket is associated with so that no new association accepted will be
851 * associated with those addresses. If the endpoint supports dynamic
852 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
853 * endpoint to send the appropriate message to the peer to change the
854 * peers address lists.
855 *
856 * Adding and removing addresses from a connected association is
857 * optional functionality. Implementations that do not support this
858 * functionality should return EOPNOTSUPP.
859 *
860 * Basically do nothing but copying the addresses from user to kernel
861 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
862 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
863 * from userspace.
864 *
865 * We don't use copy_from_user() for optimization: we first do the
866 * sanity checks (buffer size -fast- and access check-healthy
867 * pointer); if all of those succeed, then we can alloc the memory
868 * (expensive operation) needed to copy the data to kernel. Then we do
869 * the copying without checking the user space area
870 * (__copy_from_user()).
871 *
872 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
873 * it.
874 *
875 * sk The sk of the socket
876 * addrs The pointer to the addresses in user land
877 * addrssize Size of the addrs buffer
878 * op Operation to perform (add or remove, see the flags of
879 * sctp_bindx)
880 *
881 * Returns 0 if ok, <0 errno code on error.
882 */
883SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
884 struct sockaddr __user *addrs,
885 int addrs_size, int op)
886{
887 struct sockaddr *kaddrs;
888 int err;
889 int addrcnt = 0;
890 int walk_size = 0;
891 struct sockaddr *sa_addr;
892 void *addr_buf;
893 struct sctp_af *af;
894
895 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
896 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
897
898 if (unlikely(addrs_size <= 0))
899 return -EINVAL;
900
901 /* Check the user passed a healthy pointer. */
902 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
903 return -EFAULT;
904
905 /* Alloc space for the address array in kernel memory. */
906 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
907 if (unlikely(!kaddrs))
908 return -ENOMEM;
909
910 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
911 kfree(kaddrs);
912 return -EFAULT;
913 }
914
915 /* Walk through the addrs buffer and count the number of addresses. */
916 addr_buf = kaddrs;
917 while (walk_size < addrs_size) {
918 sa_addr = (struct sockaddr *)addr_buf;
919 af = sctp_get_af_specific(sa_addr->sa_family);
920
921 /* If the address family is not supported or if this address
922 * causes the address buffer to overflow return EINVAL.
923 */
924 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
925 kfree(kaddrs);
926 return -EINVAL;
927 }
928 addrcnt++;
929 addr_buf += af->sockaddr_len;
930 walk_size += af->sockaddr_len;
931 }
932
933 /* Do the work. */
934 switch (op) {
935 case SCTP_BINDX_ADD_ADDR:
936 err = sctp_bindx_add(sk, kaddrs, addrcnt);
937 if (err)
938 goto out;
939 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
940 break;
941
942 case SCTP_BINDX_REM_ADDR:
943 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
944 if (err)
945 goto out;
946 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
947 break;
948
949 default:
950 err = -EINVAL;
951 break;
952 }
953
954out:
955 kfree(kaddrs);
956
957 return err;
958}
959
960/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
961 *
962 * Common routine for handling connect() and sctp_connectx().
963 * Connect will come in with just a single address.
964 */
965static int __sctp_connect(struct sock* sk,
966 struct sockaddr *kaddrs,
967 int addrs_size,
968 sctp_assoc_t *assoc_id)
969{
970 struct sctp_sock *sp;
971 struct sctp_endpoint *ep;
972 struct sctp_association *asoc = NULL;
973 struct sctp_association *asoc2;
974 struct sctp_transport *transport;
975 union sctp_addr to;
976 struct sctp_af *af;
977 sctp_scope_t scope;
978 long timeo;
979 int err = 0;
980 int addrcnt = 0;
981 int walk_size = 0;
982 union sctp_addr *sa_addr = NULL;
983 void *addr_buf;
984 unsigned short port;
985 unsigned int f_flags = 0;
986
987 sp = sctp_sk(sk);
988 ep = sp->ep;
989
990 /* connect() cannot be done on a socket that is already in ESTABLISHED
991 * state - UDP-style peeled off socket or a TCP-style socket that
992 * is already connected.
993 * It cannot be done even on a TCP-style listening socket.
994 */
995 if (sctp_sstate(sk, ESTABLISHED) ||
996 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
997 err = -EISCONN;
998 goto out_free;
999 }
1000
1001 /* Walk through the addrs buffer and count the number of addresses. */
1002 addr_buf = kaddrs;
1003 while (walk_size < addrs_size) {
1004 sa_addr = (union sctp_addr *)addr_buf;
1005 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1006 port = ntohs(sa_addr->v4.sin_port);
1007
1008 /* If the address family is not supported or if this address
1009 * causes the address buffer to overflow return EINVAL.
1010 */
1011 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1012 err = -EINVAL;
1013 goto out_free;
1014 }
1015
1016 /* Save current address so we can work with it */
1017 memcpy(&to, sa_addr, af->sockaddr_len);
1018
1019 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1020 if (err)
1021 goto out_free;
1022
1023 /* Make sure the destination port is correctly set
1024 * in all addresses.
1025 */
1026 if (asoc && asoc->peer.port && asoc->peer.port != port)
1027 goto out_free;
1028
1029
1030 /* Check if there already is a matching association on the
1031 * endpoint (other than the one created here).
1032 */
1033 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1034 if (asoc2 && asoc2 != asoc) {
1035 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1036 err = -EISCONN;
1037 else
1038 err = -EALREADY;
1039 goto out_free;
1040 }
1041
1042 /* If we could not find a matching association on the endpoint,
1043 * make sure that there is no peeled-off association matching
1044 * the peer address even on another socket.
1045 */
1046 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1047 err = -EADDRNOTAVAIL;
1048 goto out_free;
1049 }
1050
1051 if (!asoc) {
1052 /* If a bind() or sctp_bindx() is not called prior to
1053 * an sctp_connectx() call, the system picks an
1054 * ephemeral port and will choose an address set
1055 * equivalent to binding with a wildcard address.
1056 */
1057 if (!ep->base.bind_addr.port) {
1058 if (sctp_autobind(sk)) {
1059 err = -EAGAIN;
1060 goto out_free;
1061 }
1062 } else {
1063 /*
1064 * If an unprivileged user inherits a 1-many
1065 * style socket with open associations on a
1066 * privileged port, it MAY be permitted to
1067 * accept new associations, but it SHOULD NOT
1068 * be permitted to open new associations.
1069 */
1070 if (ep->base.bind_addr.port < PROT_SOCK &&
1071 !capable(CAP_NET_BIND_SERVICE)) {
1072 err = -EACCES;
1073 goto out_free;
1074 }
1075 }
1076
1077 scope = sctp_scope(&to);
1078 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1079 if (!asoc) {
1080 err = -ENOMEM;
1081 goto out_free;
1082 }
1083 }
1084
1085 /* Prime the peer's transport structures. */
1086 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1087 SCTP_UNKNOWN);
1088 if (!transport) {
1089 err = -ENOMEM;
1090 goto out_free;
1091 }
1092
1093 addrcnt++;
1094 addr_buf += af->sockaddr_len;
1095 walk_size += af->sockaddr_len;
1096 }
1097
1098 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1099 if (err < 0) {
1100 goto out_free;
1101 }
1102
1103 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1104 if (err < 0) {
1105 goto out_free;
1106 }
1107
1108 /* Initialize sk's dport and daddr for getpeername() */
1109 inet_sk(sk)->dport = htons(asoc->peer.port);
1110 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1111 af->to_sk_daddr(sa_addr, sk);
1112 sk->sk_err = 0;
1113
1114 /* in-kernel sockets don't generally have a file allocated to them
1115 * if all they do is call sock_create_kern().
1116 */
1117 if (sk->sk_socket->file)
1118 f_flags = sk->sk_socket->file->f_flags;
1119
1120 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1121
1122 err = sctp_wait_for_connect(asoc, &timeo);
1123 if (!err && assoc_id)
1124 *assoc_id = asoc->assoc_id;
1125
1126 /* Don't free association on exit. */
1127 asoc = NULL;
1128
1129out_free:
1130
1131 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1132 " kaddrs: %p err: %d\n",
1133 asoc, kaddrs, err);
1134 if (asoc)
1135 sctp_association_free(asoc);
1136 return err;
1137}
1138
1139/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1140 *
1141 * API 8.9
1142 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1143 * sctp_assoc_t *asoc);
1144 *
1145 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1146 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1147 * or IPv6 addresses.
1148 *
1149 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1150 * Section 3.1.2 for this usage.
1151 *
1152 * addrs is a pointer to an array of one or more socket addresses. Each
1153 * address is contained in its appropriate structure (i.e. struct
1154 * sockaddr_in or struct sockaddr_in6) the family of the address type
1155 * must be used to distengish the address length (note that this
1156 * representation is termed a "packed array" of addresses). The caller
1157 * specifies the number of addresses in the array with addrcnt.
1158 *
1159 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1160 * the association id of the new association. On failure, sctp_connectx()
1161 * returns -1, and sets errno to the appropriate error code. The assoc_id
1162 * is not touched by the kernel.
1163 *
1164 * For SCTP, the port given in each socket address must be the same, or
1165 * sctp_connectx() will fail, setting errno to EINVAL.
1166 *
1167 * An application can use sctp_connectx to initiate an association with
1168 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1169 * allows a caller to specify multiple addresses at which a peer can be
1170 * reached. The way the SCTP stack uses the list of addresses to set up
1171 * the association is implementation dependant. This function only
1172 * specifies that the stack will try to make use of all the addresses in
1173 * the list when needed.
1174 *
1175 * Note that the list of addresses passed in is only used for setting up
1176 * the association. It does not necessarily equal the set of addresses
1177 * the peer uses for the resulting association. If the caller wants to
1178 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1179 * retrieve them after the association has been set up.
1180 *
1181 * Basically do nothing but copying the addresses from user to kernel
1182 * land and invoking either sctp_connectx(). This is used for tunneling
1183 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1184 *
1185 * We don't use copy_from_user() for optimization: we first do the
1186 * sanity checks (buffer size -fast- and access check-healthy
1187 * pointer); if all of those succeed, then we can alloc the memory
1188 * (expensive operation) needed to copy the data to kernel. Then we do
1189 * the copying without checking the user space area
1190 * (__copy_from_user()).
1191 *
1192 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1193 * it.
1194 *
1195 * sk The sk of the socket
1196 * addrs The pointer to the addresses in user land
1197 * addrssize Size of the addrs buffer
1198 *
1199 * Returns >=0 if ok, <0 errno code on error.
1200 */
1201SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1202 struct sockaddr __user *addrs,
1203 int addrs_size,
1204 sctp_assoc_t *assoc_id)
1205{
1206 int err = 0;
1207 struct sockaddr *kaddrs;
1208
1209 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1210 __func__, sk, addrs, addrs_size);
1211
1212 if (unlikely(addrs_size <= 0))
1213 return -EINVAL;
1214
1215 /* Check the user passed a healthy pointer. */
1216 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1217 return -EFAULT;
1218
1219 /* Alloc space for the address array in kernel memory. */
1220 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1221 if (unlikely(!kaddrs))
1222 return -ENOMEM;
1223
1224 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1225 err = -EFAULT;
1226 } else {
1227 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1228 }
1229
1230 kfree(kaddrs);
1231
1232 return err;
1233}
1234
1235/*
1236 * This is an older interface. It's kept for backward compatibility
1237 * to the option that doesn't provide association id.
1238 */
1239SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1240 struct sockaddr __user *addrs,
1241 int addrs_size)
1242{
1243 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1244}
1245
1246/*
1247 * New interface for the API. The since the API is done with a socket
1248 * option, to make it simple we feed back the association id is as a return
1249 * indication to the call. Error is always negative and association id is
1250 * always positive.
1251 */
1252SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1253 struct sockaddr __user *addrs,
1254 int addrs_size)
1255{
1256 sctp_assoc_t assoc_id = 0;
1257 int err = 0;
1258
1259 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1260
1261 if (err)
1262 return err;
1263 else
1264 return assoc_id;
1265}
1266
1267/* API 3.1.4 close() - UDP Style Syntax
1268 * Applications use close() to perform graceful shutdown (as described in
1269 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1270 * by a UDP-style socket.
1271 *
1272 * The syntax is
1273 *
1274 * ret = close(int sd);
1275 *
1276 * sd - the socket descriptor of the associations to be closed.
1277 *
1278 * To gracefully shutdown a specific association represented by the
1279 * UDP-style socket, an application should use the sendmsg() call,
1280 * passing no user data, but including the appropriate flag in the
1281 * ancillary data (see Section xxxx).
1282 *
1283 * If sd in the close() call is a branched-off socket representing only
1284 * one association, the shutdown is performed on that association only.
1285 *
1286 * 4.1.6 close() - TCP Style Syntax
1287 *
1288 * Applications use close() to gracefully close down an association.
1289 *
1290 * The syntax is:
1291 *
1292 * int close(int sd);
1293 *
1294 * sd - the socket descriptor of the association to be closed.
1295 *
1296 * After an application calls close() on a socket descriptor, no further
1297 * socket operations will succeed on that descriptor.
1298 *
1299 * API 7.1.4 SO_LINGER
1300 *
1301 * An application using the TCP-style socket can use this option to
1302 * perform the SCTP ABORT primitive. The linger option structure is:
1303 *
1304 * struct linger {
1305 * int l_onoff; // option on/off
1306 * int l_linger; // linger time
1307 * };
1308 *
1309 * To enable the option, set l_onoff to 1. If the l_linger value is set
1310 * to 0, calling close() is the same as the ABORT primitive. If the
1311 * value is set to a negative value, the setsockopt() call will return
1312 * an error. If the value is set to a positive value linger_time, the
1313 * close() can be blocked for at most linger_time ms. If the graceful
1314 * shutdown phase does not finish during this period, close() will
1315 * return but the graceful shutdown phase continues in the system.
1316 */
1317SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1318{
1319 struct sctp_endpoint *ep;
1320 struct sctp_association *asoc;
1321 struct list_head *pos, *temp;
1322
1323 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1324
1325 sctp_lock_sock(sk);
1326 sk->sk_shutdown = SHUTDOWN_MASK;
1327
1328 ep = sctp_sk(sk)->ep;
1329
1330 /* Walk all associations on an endpoint. */
1331 list_for_each_safe(pos, temp, &ep->asocs) {
1332 asoc = list_entry(pos, struct sctp_association, asocs);
1333
1334 if (sctp_style(sk, TCP)) {
1335 /* A closed association can still be in the list if
1336 * it belongs to a TCP-style listening socket that is
1337 * not yet accepted. If so, free it. If not, send an
1338 * ABORT or SHUTDOWN based on the linger options.
1339 */
1340 if (sctp_state(asoc, CLOSED)) {
1341 sctp_unhash_established(asoc);
1342 sctp_association_free(asoc);
1343 continue;
1344 }
1345 }
1346
1347 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1348 struct sctp_chunk *chunk;
1349
1350 chunk = sctp_make_abort_user(asoc, NULL, 0);
1351 if (chunk)
1352 sctp_primitive_ABORT(asoc, chunk);
1353 } else
1354 sctp_primitive_SHUTDOWN(asoc, NULL);
1355 }
1356
1357 /* Clean up any skbs sitting on the receive queue. */
1358 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1359 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1360
1361 /* On a TCP-style socket, block for at most linger_time if set. */
1362 if (sctp_style(sk, TCP) && timeout)
1363 sctp_wait_for_close(sk, timeout);
1364
1365 /* This will run the backlog queue. */
1366 sctp_release_sock(sk);
1367
1368 /* Supposedly, no process has access to the socket, but
1369 * the net layers still may.
1370 */
1371 sctp_local_bh_disable();
1372 sctp_bh_lock_sock(sk);
1373
1374 /* Hold the sock, since sk_common_release() will put sock_put()
1375 * and we have just a little more cleanup.
1376 */
1377 sock_hold(sk);
1378 sk_common_release(sk);
1379
1380 sctp_bh_unlock_sock(sk);
1381 sctp_local_bh_enable();
1382
1383 sock_put(sk);
1384
1385 SCTP_DBG_OBJCNT_DEC(sock);
1386}
1387
1388/* Handle EPIPE error. */
1389static int sctp_error(struct sock *sk, int flags, int err)
1390{
1391 if (err == -EPIPE)
1392 err = sock_error(sk) ? : -EPIPE;
1393 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1394 send_sig(SIGPIPE, current, 0);
1395 return err;
1396}
1397
1398/* API 3.1.3 sendmsg() - UDP Style Syntax
1399 *
1400 * An application uses sendmsg() and recvmsg() calls to transmit data to
1401 * and receive data from its peer.
1402 *
1403 * ssize_t sendmsg(int socket, const struct msghdr *message,
1404 * int flags);
1405 *
1406 * socket - the socket descriptor of the endpoint.
1407 * message - pointer to the msghdr structure which contains a single
1408 * user message and possibly some ancillary data.
1409 *
1410 * See Section 5 for complete description of the data
1411 * structures.
1412 *
1413 * flags - flags sent or received with the user message, see Section
1414 * 5 for complete description of the flags.
1415 *
1416 * Note: This function could use a rewrite especially when explicit
1417 * connect support comes in.
1418 */
1419/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1420
1421SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1422
1423SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1424 struct msghdr *msg, size_t msg_len)
1425{
1426 struct sctp_sock *sp;
1427 struct sctp_endpoint *ep;
1428 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1429 struct sctp_transport *transport, *chunk_tp;
1430 struct sctp_chunk *chunk;
1431 union sctp_addr to;
1432 struct sockaddr *msg_name = NULL;
1433 struct sctp_sndrcvinfo default_sinfo = { 0 };
1434 struct sctp_sndrcvinfo *sinfo;
1435 struct sctp_initmsg *sinit;
1436 sctp_assoc_t associd = 0;
1437 sctp_cmsgs_t cmsgs = { NULL };
1438 int err;
1439 sctp_scope_t scope;
1440 long timeo;
1441 __u16 sinfo_flags = 0;
1442 struct sctp_datamsg *datamsg;
1443 int msg_flags = msg->msg_flags;
1444
1445 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1446 sk, msg, msg_len);
1447
1448 err = 0;
1449 sp = sctp_sk(sk);
1450 ep = sp->ep;
1451
1452 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1453
1454 /* We cannot send a message over a TCP-style listening socket. */
1455 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1456 err = -EPIPE;
1457 goto out_nounlock;
1458 }
1459
1460 /* Parse out the SCTP CMSGs. */
1461 err = sctp_msghdr_parse(msg, &cmsgs);
1462
1463 if (err) {
1464 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1465 goto out_nounlock;
1466 }
1467
1468 /* Fetch the destination address for this packet. This
1469 * address only selects the association--it is not necessarily
1470 * the address we will send to.
1471 * For a peeled-off socket, msg_name is ignored.
1472 */
1473 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1474 int msg_namelen = msg->msg_namelen;
1475
1476 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1477 msg_namelen);
1478 if (err)
1479 return err;
1480
1481 if (msg_namelen > sizeof(to))
1482 msg_namelen = sizeof(to);
1483 memcpy(&to, msg->msg_name, msg_namelen);
1484 msg_name = msg->msg_name;
1485 }
1486
1487 sinfo = cmsgs.info;
1488 sinit = cmsgs.init;
1489
1490 /* Did the user specify SNDRCVINFO? */
1491 if (sinfo) {
1492 sinfo_flags = sinfo->sinfo_flags;
1493 associd = sinfo->sinfo_assoc_id;
1494 }
1495
1496 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1497 msg_len, sinfo_flags);
1498
1499 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1500 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1501 err = -EINVAL;
1502 goto out_nounlock;
1503 }
1504
1505 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1506 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1507 * If SCTP_ABORT is set, the message length could be non zero with
1508 * the msg_iov set to the user abort reason.
1509 */
1510 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1511 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1512 err = -EINVAL;
1513 goto out_nounlock;
1514 }
1515
1516 /* If SCTP_ADDR_OVER is set, there must be an address
1517 * specified in msg_name.
1518 */
1519 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1520 err = -EINVAL;
1521 goto out_nounlock;
1522 }
1523
1524 transport = NULL;
1525
1526 SCTP_DEBUG_PRINTK("About to look up association.\n");
1527
1528 sctp_lock_sock(sk);
1529
1530 /* If a msg_name has been specified, assume this is to be used. */
1531 if (msg_name) {
1532 /* Look for a matching association on the endpoint. */
1533 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1534 if (!asoc) {
1535 /* If we could not find a matching association on the
1536 * endpoint, make sure that it is not a TCP-style
1537 * socket that already has an association or there is
1538 * no peeled-off association on another socket.
1539 */
1540 if ((sctp_style(sk, TCP) &&
1541 sctp_sstate(sk, ESTABLISHED)) ||
1542 sctp_endpoint_is_peeled_off(ep, &to)) {
1543 err = -EADDRNOTAVAIL;
1544 goto out_unlock;
1545 }
1546 }
1547 } else {
1548 asoc = sctp_id2assoc(sk, associd);
1549 if (!asoc) {
1550 err = -EPIPE;
1551 goto out_unlock;
1552 }
1553 }
1554
1555 if (asoc) {
1556 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1557
1558 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1559 * socket that has an association in CLOSED state. This can
1560 * happen when an accepted socket has an association that is
1561 * already CLOSED.
1562 */
1563 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1564 err = -EPIPE;
1565 goto out_unlock;
1566 }
1567
1568 if (sinfo_flags & SCTP_EOF) {
1569 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1570 asoc);
1571 sctp_primitive_SHUTDOWN(asoc, NULL);
1572 err = 0;
1573 goto out_unlock;
1574 }
1575 if (sinfo_flags & SCTP_ABORT) {
1576
1577 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1578 if (!chunk) {
1579 err = -ENOMEM;
1580 goto out_unlock;
1581 }
1582
1583 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1584 sctp_primitive_ABORT(asoc, chunk);
1585 err = 0;
1586 goto out_unlock;
1587 }
1588 }
1589
1590 /* Do we need to create the association? */
1591 if (!asoc) {
1592 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1593
1594 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1595 err = -EINVAL;
1596 goto out_unlock;
1597 }
1598
1599 /* Check for invalid stream against the stream counts,
1600 * either the default or the user specified stream counts.
1601 */
1602 if (sinfo) {
1603 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1604 /* Check against the defaults. */
1605 if (sinfo->sinfo_stream >=
1606 sp->initmsg.sinit_num_ostreams) {
1607 err = -EINVAL;
1608 goto out_unlock;
1609 }
1610 } else {
1611 /* Check against the requested. */
1612 if (sinfo->sinfo_stream >=
1613 sinit->sinit_num_ostreams) {
1614 err = -EINVAL;
1615 goto out_unlock;
1616 }
1617 }
1618 }
1619
1620 /*
1621 * API 3.1.2 bind() - UDP Style Syntax
1622 * If a bind() or sctp_bindx() is not called prior to a
1623 * sendmsg() call that initiates a new association, the
1624 * system picks an ephemeral port and will choose an address
1625 * set equivalent to binding with a wildcard address.
1626 */
1627 if (!ep->base.bind_addr.port) {
1628 if (sctp_autobind(sk)) {
1629 err = -EAGAIN;
1630 goto out_unlock;
1631 }
1632 } else {
1633 /*
1634 * If an unprivileged user inherits a one-to-many
1635 * style socket with open associations on a privileged
1636 * port, it MAY be permitted to accept new associations,
1637 * but it SHOULD NOT be permitted to open new
1638 * associations.
1639 */
1640 if (ep->base.bind_addr.port < PROT_SOCK &&
1641 !capable(CAP_NET_BIND_SERVICE)) {
1642 err = -EACCES;
1643 goto out_unlock;
1644 }
1645 }
1646
1647 scope = sctp_scope(&to);
1648 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1649 if (!new_asoc) {
1650 err = -ENOMEM;
1651 goto out_unlock;
1652 }
1653 asoc = new_asoc;
1654
1655 /* If the SCTP_INIT ancillary data is specified, set all
1656 * the association init values accordingly.
1657 */
1658 if (sinit) {
1659 if (sinit->sinit_num_ostreams) {
1660 asoc->c.sinit_num_ostreams =
1661 sinit->sinit_num_ostreams;
1662 }
1663 if (sinit->sinit_max_instreams) {
1664 asoc->c.sinit_max_instreams =
1665 sinit->sinit_max_instreams;
1666 }
1667 if (sinit->sinit_max_attempts) {
1668 asoc->max_init_attempts
1669 = sinit->sinit_max_attempts;
1670 }
1671 if (sinit->sinit_max_init_timeo) {
1672 asoc->max_init_timeo =
1673 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1674 }
1675 }
1676
1677 /* Prime the peer's transport structures. */
1678 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1679 if (!transport) {
1680 err = -ENOMEM;
1681 goto out_free;
1682 }
1683 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1684 if (err < 0) {
1685 err = -ENOMEM;
1686 goto out_free;
1687 }
1688 }
1689
1690 /* ASSERT: we have a valid association at this point. */
1691 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1692
1693 if (!sinfo) {
1694 /* If the user didn't specify SNDRCVINFO, make up one with
1695 * some defaults.
1696 */
1697 default_sinfo.sinfo_stream = asoc->default_stream;
1698 default_sinfo.sinfo_flags = asoc->default_flags;
1699 default_sinfo.sinfo_ppid = asoc->default_ppid;
1700 default_sinfo.sinfo_context = asoc->default_context;
1701 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1702 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1703 sinfo = &default_sinfo;
1704 }
1705
1706 /* API 7.1.7, the sndbuf size per association bounds the
1707 * maximum size of data that can be sent in a single send call.
1708 */
1709 if (msg_len > sk->sk_sndbuf) {
1710 err = -EMSGSIZE;
1711 goto out_free;
1712 }
1713
1714 if (asoc->pmtu_pending)
1715 sctp_assoc_pending_pmtu(asoc);
1716
1717 /* If fragmentation is disabled and the message length exceeds the
1718 * association fragmentation point, return EMSGSIZE. The I-D
1719 * does not specify what this error is, but this looks like
1720 * a great fit.
1721 */
1722 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1723 err = -EMSGSIZE;
1724 goto out_free;
1725 }
1726
1727 if (sinfo) {
1728 /* Check for invalid stream. */
1729 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1730 err = -EINVAL;
1731 goto out_free;
1732 }
1733 }
1734
1735 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1736 if (!sctp_wspace(asoc)) {
1737 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1738 if (err)
1739 goto out_free;
1740 }
1741
1742 /* If an address is passed with the sendto/sendmsg call, it is used
1743 * to override the primary destination address in the TCP model, or
1744 * when SCTP_ADDR_OVER flag is set in the UDP model.
1745 */
1746 if ((sctp_style(sk, TCP) && msg_name) ||
1747 (sinfo_flags & SCTP_ADDR_OVER)) {
1748 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1749 if (!chunk_tp) {
1750 err = -EINVAL;
1751 goto out_free;
1752 }
1753 } else
1754 chunk_tp = NULL;
1755
1756 /* Auto-connect, if we aren't connected already. */
1757 if (sctp_state(asoc, CLOSED)) {
1758 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1759 if (err < 0)
1760 goto out_free;
1761 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1762 }
1763
1764 /* Break the message into multiple chunks of maximum size. */
1765 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1766 if (!datamsg) {
1767 err = -ENOMEM;
1768 goto out_free;
1769 }
1770
1771 /* Now send the (possibly) fragmented message. */
1772 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1773 sctp_chunk_hold(chunk);
1774
1775 /* Do accounting for the write space. */
1776 sctp_set_owner_w(chunk);
1777
1778 chunk->transport = chunk_tp;
1779
1780 /* Send it to the lower layers. Note: all chunks
1781 * must either fail or succeed. The lower layer
1782 * works that way today. Keep it that way or this
1783 * breaks.
1784 */
1785 err = sctp_primitive_SEND(asoc, chunk);
1786 /* Did the lower layer accept the chunk? */
1787 if (err)
1788 sctp_chunk_free(chunk);
1789 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1790 }
1791
1792 sctp_datamsg_put(datamsg);
1793 if (err)
1794 goto out_free;
1795 else
1796 err = msg_len;
1797
1798 /* If we are already past ASSOCIATE, the lower
1799 * layers are responsible for association cleanup.
1800 */
1801 goto out_unlock;
1802
1803out_free:
1804 if (new_asoc)
1805 sctp_association_free(asoc);
1806out_unlock:
1807 sctp_release_sock(sk);
1808
1809out_nounlock:
1810 return sctp_error(sk, msg_flags, err);
1811
1812#if 0
1813do_sock_err:
1814 if (msg_len)
1815 err = msg_len;
1816 else
1817 err = sock_error(sk);
1818 goto out;
1819
1820do_interrupted:
1821 if (msg_len)
1822 err = msg_len;
1823 goto out;
1824#endif /* 0 */
1825}
1826
1827/* This is an extended version of skb_pull() that removes the data from the
1828 * start of a skb even when data is spread across the list of skb's in the
1829 * frag_list. len specifies the total amount of data that needs to be removed.
1830 * when 'len' bytes could be removed from the skb, it returns 0.
1831 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1832 * could not be removed.
1833 */
1834static int sctp_skb_pull(struct sk_buff *skb, int len)
1835{
1836 struct sk_buff *list;
1837 int skb_len = skb_headlen(skb);
1838 int rlen;
1839
1840 if (len <= skb_len) {
1841 __skb_pull(skb, len);
1842 return 0;
1843 }
1844 len -= skb_len;
1845 __skb_pull(skb, skb_len);
1846
1847 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1848 rlen = sctp_skb_pull(list, len);
1849 skb->len -= (len-rlen);
1850 skb->data_len -= (len-rlen);
1851
1852 if (!rlen)
1853 return 0;
1854
1855 len = rlen;
1856 }
1857
1858 return len;
1859}
1860
1861/* API 3.1.3 recvmsg() - UDP Style Syntax
1862 *
1863 * ssize_t recvmsg(int socket, struct msghdr *message,
1864 * int flags);
1865 *
1866 * socket - the socket descriptor of the endpoint.
1867 * message - pointer to the msghdr structure which contains a single
1868 * user message and possibly some ancillary data.
1869 *
1870 * See Section 5 for complete description of the data
1871 * structures.
1872 *
1873 * flags - flags sent or received with the user message, see Section
1874 * 5 for complete description of the flags.
1875 */
1876static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1877
1878SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1879 struct msghdr *msg, size_t len, int noblock,
1880 int flags, int *addr_len)
1881{
1882 struct sctp_ulpevent *event = NULL;
1883 struct sctp_sock *sp = sctp_sk(sk);
1884 struct sk_buff *skb;
1885 int copied;
1886 int err = 0;
1887 int skb_len;
1888
1889 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1890 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1891 "len", len, "knoblauch", noblock,
1892 "flags", flags, "addr_len", addr_len);
1893
1894 sctp_lock_sock(sk);
1895
1896 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1897 err = -ENOTCONN;
1898 goto out;
1899 }
1900
1901 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1902 if (!skb)
1903 goto out;
1904
1905 /* Get the total length of the skb including any skb's in the
1906 * frag_list.
1907 */
1908 skb_len = skb->len;
1909
1910 copied = skb_len;
1911 if (copied > len)
1912 copied = len;
1913
1914 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1915
1916 event = sctp_skb2event(skb);
1917
1918 if (err)
1919 goto out_free;
1920
1921 sock_recv_timestamp(msg, sk, skb);
1922 if (sctp_ulpevent_is_notification(event)) {
1923 msg->msg_flags |= MSG_NOTIFICATION;
1924 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1925 } else {
1926 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1927 }
1928
1929 /* Check if we allow SCTP_SNDRCVINFO. */
1930 if (sp->subscribe.sctp_data_io_event)
1931 sctp_ulpevent_read_sndrcvinfo(event, msg);
1932#if 0
1933 /* FIXME: we should be calling IP/IPv6 layers. */
1934 if (sk->sk_protinfo.af_inet.cmsg_flags)
1935 ip_cmsg_recv(msg, skb);
1936#endif
1937
1938 err = copied;
1939
1940 /* If skb's length exceeds the user's buffer, update the skb and
1941 * push it back to the receive_queue so that the next call to
1942 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1943 */
1944 if (skb_len > copied) {
1945 msg->msg_flags &= ~MSG_EOR;
1946 if (flags & MSG_PEEK)
1947 goto out_free;
1948 sctp_skb_pull(skb, copied);
1949 skb_queue_head(&sk->sk_receive_queue, skb);
1950
1951 /* When only partial message is copied to the user, increase
1952 * rwnd by that amount. If all the data in the skb is read,
1953 * rwnd is updated when the event is freed.
1954 */
1955 if (!sctp_ulpevent_is_notification(event))
1956 sctp_assoc_rwnd_increase(event->asoc, copied);
1957 goto out;
1958 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
1959 (event->msg_flags & MSG_EOR))
1960 msg->msg_flags |= MSG_EOR;
1961 else
1962 msg->msg_flags &= ~MSG_EOR;
1963
1964out_free:
1965 if (flags & MSG_PEEK) {
1966 /* Release the skb reference acquired after peeking the skb in
1967 * sctp_skb_recv_datagram().
1968 */
1969 kfree_skb(skb);
1970 } else {
1971 /* Free the event which includes releasing the reference to
1972 * the owner of the skb, freeing the skb and updating the
1973 * rwnd.
1974 */
1975 sctp_ulpevent_free(event);
1976 }
1977out:
1978 sctp_release_sock(sk);
1979 return err;
1980}
1981
1982/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1983 *
1984 * This option is a on/off flag. If enabled no SCTP message
1985 * fragmentation will be performed. Instead if a message being sent
1986 * exceeds the current PMTU size, the message will NOT be sent and
1987 * instead a error will be indicated to the user.
1988 */
1989static int sctp_setsockopt_disable_fragments(struct sock *sk,
1990 char __user *optval, int optlen)
1991{
1992 int val;
1993
1994 if (optlen < sizeof(int))
1995 return -EINVAL;
1996
1997 if (get_user(val, (int __user *)optval))
1998 return -EFAULT;
1999
2000 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2001
2002 return 0;
2003}
2004
2005static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2006 int optlen)
2007{
2008 if (optlen > sizeof(struct sctp_event_subscribe))
2009 return -EINVAL;
2010 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2011 return -EFAULT;
2012 return 0;
2013}
2014
2015/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2016 *
2017 * This socket option is applicable to the UDP-style socket only. When
2018 * set it will cause associations that are idle for more than the
2019 * specified number of seconds to automatically close. An association
2020 * being idle is defined an association that has NOT sent or received
2021 * user data. The special value of '0' indicates that no automatic
2022 * close of any associations should be performed. The option expects an
2023 * integer defining the number of seconds of idle time before an
2024 * association is closed.
2025 */
2026static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2027 int optlen)
2028{
2029 struct sctp_sock *sp = sctp_sk(sk);
2030
2031 /* Applicable to UDP-style socket only */
2032 if (sctp_style(sk, TCP))
2033 return -EOPNOTSUPP;
2034 if (optlen != sizeof(int))
2035 return -EINVAL;
2036 if (copy_from_user(&sp->autoclose, optval, optlen))
2037 return -EFAULT;
2038
2039 return 0;
2040}
2041
2042/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2043 *
2044 * Applications can enable or disable heartbeats for any peer address of
2045 * an association, modify an address's heartbeat interval, force a
2046 * heartbeat to be sent immediately, and adjust the address's maximum
2047 * number of retransmissions sent before an address is considered
2048 * unreachable. The following structure is used to access and modify an
2049 * address's parameters:
2050 *
2051 * struct sctp_paddrparams {
2052 * sctp_assoc_t spp_assoc_id;
2053 * struct sockaddr_storage spp_address;
2054 * uint32_t spp_hbinterval;
2055 * uint16_t spp_pathmaxrxt;
2056 * uint32_t spp_pathmtu;
2057 * uint32_t spp_sackdelay;
2058 * uint32_t spp_flags;
2059 * };
2060 *
2061 * spp_assoc_id - (one-to-many style socket) This is filled in the
2062 * application, and identifies the association for
2063 * this query.
2064 * spp_address - This specifies which address is of interest.
2065 * spp_hbinterval - This contains the value of the heartbeat interval,
2066 * in milliseconds. If a value of zero
2067 * is present in this field then no changes are to
2068 * be made to this parameter.
2069 * spp_pathmaxrxt - This contains the maximum number of
2070 * retransmissions before this address shall be
2071 * considered unreachable. If a value of zero
2072 * is present in this field then no changes are to
2073 * be made to this parameter.
2074 * spp_pathmtu - When Path MTU discovery is disabled the value
2075 * specified here will be the "fixed" path mtu.
2076 * Note that if the spp_address field is empty
2077 * then all associations on this address will
2078 * have this fixed path mtu set upon them.
2079 *
2080 * spp_sackdelay - When delayed sack is enabled, this value specifies
2081 * the number of milliseconds that sacks will be delayed
2082 * for. This value will apply to all addresses of an
2083 * association if the spp_address field is empty. Note
2084 * also, that if delayed sack is enabled and this
2085 * value is set to 0, no change is made to the last
2086 * recorded delayed sack timer value.
2087 *
2088 * spp_flags - These flags are used to control various features
2089 * on an association. The flag field may contain
2090 * zero or more of the following options.
2091 *
2092 * SPP_HB_ENABLE - Enable heartbeats on the
2093 * specified address. Note that if the address
2094 * field is empty all addresses for the association
2095 * have heartbeats enabled upon them.
2096 *
2097 * SPP_HB_DISABLE - Disable heartbeats on the
2098 * speicifed address. Note that if the address
2099 * field is empty all addresses for the association
2100 * will have their heartbeats disabled. Note also
2101 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2102 * mutually exclusive, only one of these two should
2103 * be specified. Enabling both fields will have
2104 * undetermined results.
2105 *
2106 * SPP_HB_DEMAND - Request a user initiated heartbeat
2107 * to be made immediately.
2108 *
2109 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2110 * heartbeat delayis to be set to the value of 0
2111 * milliseconds.
2112 *
2113 * SPP_PMTUD_ENABLE - This field will enable PMTU
2114 * discovery upon the specified address. Note that
2115 * if the address feild is empty then all addresses
2116 * on the association are effected.
2117 *
2118 * SPP_PMTUD_DISABLE - This field will disable PMTU
2119 * discovery upon the specified address. Note that
2120 * if the address feild is empty then all addresses
2121 * on the association are effected. Not also that
2122 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2123 * exclusive. Enabling both will have undetermined
2124 * results.
2125 *
2126 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2127 * on delayed sack. The time specified in spp_sackdelay
2128 * is used to specify the sack delay for this address. Note
2129 * that if spp_address is empty then all addresses will
2130 * enable delayed sack and take on the sack delay
2131 * value specified in spp_sackdelay.
2132 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2133 * off delayed sack. If the spp_address field is blank then
2134 * delayed sack is disabled for the entire association. Note
2135 * also that this field is mutually exclusive to
2136 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2137 * results.
2138 */
2139static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2140 struct sctp_transport *trans,
2141 struct sctp_association *asoc,
2142 struct sctp_sock *sp,
2143 int hb_change,
2144 int pmtud_change,
2145 int sackdelay_change)
2146{
2147 int error;
2148
2149 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2150 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2151 if (error)
2152 return error;
2153 }
2154
2155 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2156 * this field is ignored. Note also that a value of zero indicates
2157 * the current setting should be left unchanged.
2158 */
2159 if (params->spp_flags & SPP_HB_ENABLE) {
2160
2161 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2162 * set. This lets us use 0 value when this flag
2163 * is set.
2164 */
2165 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2166 params->spp_hbinterval = 0;
2167
2168 if (params->spp_hbinterval ||
2169 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2170 if (trans) {
2171 trans->hbinterval =
2172 msecs_to_jiffies(params->spp_hbinterval);
2173 } else if (asoc) {
2174 asoc->hbinterval =
2175 msecs_to_jiffies(params->spp_hbinterval);
2176 } else {
2177 sp->hbinterval = params->spp_hbinterval;
2178 }
2179 }
2180 }
2181
2182 if (hb_change) {
2183 if (trans) {
2184 trans->param_flags =
2185 (trans->param_flags & ~SPP_HB) | hb_change;
2186 } else if (asoc) {
2187 asoc->param_flags =
2188 (asoc->param_flags & ~SPP_HB) | hb_change;
2189 } else {
2190 sp->param_flags =
2191 (sp->param_flags & ~SPP_HB) | hb_change;
2192 }
2193 }
2194
2195 /* When Path MTU discovery is disabled the value specified here will
2196 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2197 * include the flag SPP_PMTUD_DISABLE for this field to have any
2198 * effect).
2199 */
2200 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2201 if (trans) {
2202 trans->pathmtu = params->spp_pathmtu;
2203 sctp_assoc_sync_pmtu(asoc);
2204 } else if (asoc) {
2205 asoc->pathmtu = params->spp_pathmtu;
2206 sctp_frag_point(sp, params->spp_pathmtu);
2207 } else {
2208 sp->pathmtu = params->spp_pathmtu;
2209 }
2210 }
2211
2212 if (pmtud_change) {
2213 if (trans) {
2214 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2215 (params->spp_flags & SPP_PMTUD_ENABLE);
2216 trans->param_flags =
2217 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2218 if (update) {
2219 sctp_transport_pmtu(trans);
2220 sctp_assoc_sync_pmtu(asoc);
2221 }
2222 } else if (asoc) {
2223 asoc->param_flags =
2224 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2225 } else {
2226 sp->param_flags =
2227 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2228 }
2229 }
2230
2231 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2232 * value of this field is ignored. Note also that a value of zero
2233 * indicates the current setting should be left unchanged.
2234 */
2235 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2236 if (trans) {
2237 trans->sackdelay =
2238 msecs_to_jiffies(params->spp_sackdelay);
2239 } else if (asoc) {
2240 asoc->sackdelay =
2241 msecs_to_jiffies(params->spp_sackdelay);
2242 } else {
2243 sp->sackdelay = params->spp_sackdelay;
2244 }
2245 }
2246
2247 if (sackdelay_change) {
2248 if (trans) {
2249 trans->param_flags =
2250 (trans->param_flags & ~SPP_SACKDELAY) |
2251 sackdelay_change;
2252 } else if (asoc) {
2253 asoc->param_flags =
2254 (asoc->param_flags & ~SPP_SACKDELAY) |
2255 sackdelay_change;
2256 } else {
2257 sp->param_flags =
2258 (sp->param_flags & ~SPP_SACKDELAY) |
2259 sackdelay_change;
2260 }
2261 }
2262
2263 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value
2264 * of this field is ignored. Note also that a value of zero
2265 * indicates the current setting should be left unchanged.
2266 */
2267 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) {
2268 if (trans) {
2269 trans->pathmaxrxt = params->spp_pathmaxrxt;
2270 } else if (asoc) {
2271 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2272 } else {
2273 sp->pathmaxrxt = params->spp_pathmaxrxt;
2274 }
2275 }
2276
2277 return 0;
2278}
2279
2280static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2281 char __user *optval, int optlen)
2282{
2283 struct sctp_paddrparams params;
2284 struct sctp_transport *trans = NULL;
2285 struct sctp_association *asoc = NULL;
2286 struct sctp_sock *sp = sctp_sk(sk);
2287 int error;
2288 int hb_change, pmtud_change, sackdelay_change;
2289
2290 if (optlen != sizeof(struct sctp_paddrparams))
2291 return - EINVAL;
2292
2293 if (copy_from_user(&params, optval, optlen))
2294 return -EFAULT;
2295
2296 /* Validate flags and value parameters. */
2297 hb_change = params.spp_flags & SPP_HB;
2298 pmtud_change = params.spp_flags & SPP_PMTUD;
2299 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2300
2301 if (hb_change == SPP_HB ||
2302 pmtud_change == SPP_PMTUD ||
2303 sackdelay_change == SPP_SACKDELAY ||
2304 params.spp_sackdelay > 500 ||
2305 (params.spp_pathmtu
2306 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2307 return -EINVAL;
2308
2309 /* If an address other than INADDR_ANY is specified, and
2310 * no transport is found, then the request is invalid.
2311 */
2312 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2313 trans = sctp_addr_id2transport(sk, &params.spp_address,
2314 params.spp_assoc_id);
2315 if (!trans)
2316 return -EINVAL;
2317 }
2318
2319 /* Get association, if assoc_id != 0 and the socket is a one
2320 * to many style socket, and an association was not found, then
2321 * the id was invalid.
2322 */
2323 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2324 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2325 return -EINVAL;
2326
2327 /* Heartbeat demand can only be sent on a transport or
2328 * association, but not a socket.
2329 */
2330 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2331 return -EINVAL;
2332
2333 /* Process parameters. */
2334 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2335 hb_change, pmtud_change,
2336 sackdelay_change);
2337
2338 if (error)
2339 return error;
2340
2341 /* If changes are for association, also apply parameters to each
2342 * transport.
2343 */
2344 if (!trans && asoc) {
2345 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2346 transports) {
2347 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2348 hb_change, pmtud_change,
2349 sackdelay_change);
2350 }
2351 }
2352
2353 return 0;
2354}
2355
2356/*
2357 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2358 *
2359 * This option will effect the way delayed acks are performed. This
2360 * option allows you to get or set the delayed ack time, in
2361 * milliseconds. It also allows changing the delayed ack frequency.
2362 * Changing the frequency to 1 disables the delayed sack algorithm. If
2363 * the assoc_id is 0, then this sets or gets the endpoints default
2364 * values. If the assoc_id field is non-zero, then the set or get
2365 * effects the specified association for the one to many model (the
2366 * assoc_id field is ignored by the one to one model). Note that if
2367 * sack_delay or sack_freq are 0 when setting this option, then the
2368 * current values will remain unchanged.
2369 *
2370 * struct sctp_sack_info {
2371 * sctp_assoc_t sack_assoc_id;
2372 * uint32_t sack_delay;
2373 * uint32_t sack_freq;
2374 * };
2375 *
2376 * sack_assoc_id - This parameter, indicates which association the user
2377 * is performing an action upon. Note that if this field's value is
2378 * zero then the endpoints default value is changed (effecting future
2379 * associations only).
2380 *
2381 * sack_delay - This parameter contains the number of milliseconds that
2382 * the user is requesting the delayed ACK timer be set to. Note that
2383 * this value is defined in the standard to be between 200 and 500
2384 * milliseconds.
2385 *
2386 * sack_freq - This parameter contains the number of packets that must
2387 * be received before a sack is sent without waiting for the delay
2388 * timer to expire. The default value for this is 2, setting this
2389 * value to 1 will disable the delayed sack algorithm.
2390 */
2391
2392static int sctp_setsockopt_delayed_ack(struct sock *sk,
2393 char __user *optval, int optlen)
2394{
2395 struct sctp_sack_info params;
2396 struct sctp_transport *trans = NULL;
2397 struct sctp_association *asoc = NULL;
2398 struct sctp_sock *sp = sctp_sk(sk);
2399
2400 if (optlen == sizeof(struct sctp_sack_info)) {
2401 if (copy_from_user(&params, optval, optlen))
2402 return -EFAULT;
2403
2404 if (params.sack_delay == 0 && params.sack_freq == 0)
2405 return 0;
2406 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2407 printk(KERN_WARNING "SCTP: Use of struct sctp_sack_info "
2408 "in delayed_ack socket option deprecated\n");
2409 printk(KERN_WARNING "SCTP: struct sctp_sack_info instead\n");
2410 if (copy_from_user(&params, optval, optlen))
2411 return -EFAULT;
2412
2413 if (params.sack_delay == 0)
2414 params.sack_freq = 1;
2415 else
2416 params.sack_freq = 0;
2417 } else
2418 return - EINVAL;
2419
2420 /* Validate value parameter. */
2421 if (params.sack_delay > 500)
2422 return -EINVAL;
2423
2424 /* Get association, if sack_assoc_id != 0 and the socket is a one
2425 * to many style socket, and an association was not found, then
2426 * the id was invalid.
2427 */
2428 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2429 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2430 return -EINVAL;
2431
2432 if (params.sack_delay) {
2433 if (asoc) {
2434 asoc->sackdelay =
2435 msecs_to_jiffies(params.sack_delay);
2436 asoc->param_flags =
2437 (asoc->param_flags & ~SPP_SACKDELAY) |
2438 SPP_SACKDELAY_ENABLE;
2439 } else {
2440 sp->sackdelay = params.sack_delay;
2441 sp->param_flags =
2442 (sp->param_flags & ~SPP_SACKDELAY) |
2443 SPP_SACKDELAY_ENABLE;
2444 }
2445 }
2446
2447 if (params.sack_freq == 1) {
2448 if (asoc) {
2449 asoc->param_flags =
2450 (asoc->param_flags & ~SPP_SACKDELAY) |
2451 SPP_SACKDELAY_DISABLE;
2452 } else {
2453 sp->param_flags =
2454 (sp->param_flags & ~SPP_SACKDELAY) |
2455 SPP_SACKDELAY_DISABLE;
2456 }
2457 } else if (params.sack_freq > 1) {
2458 if (asoc) {
2459 asoc->sackfreq = params.sack_freq;
2460 asoc->param_flags =
2461 (asoc->param_flags & ~SPP_SACKDELAY) |
2462 SPP_SACKDELAY_ENABLE;
2463 } else {
2464 sp->sackfreq = params.sack_freq;
2465 sp->param_flags =
2466 (sp->param_flags & ~SPP_SACKDELAY) |
2467 SPP_SACKDELAY_ENABLE;
2468 }
2469 }
2470
2471 /* If change is for association, also apply to each transport. */
2472 if (asoc) {
2473 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2474 transports) {
2475 if (params.sack_delay) {
2476 trans->sackdelay =
2477 msecs_to_jiffies(params.sack_delay);
2478 trans->param_flags =
2479 (trans->param_flags & ~SPP_SACKDELAY) |
2480 SPP_SACKDELAY_ENABLE;
2481 }
2482 if (params.sack_freq == 1) {
2483 trans->param_flags =
2484 (trans->param_flags & ~SPP_SACKDELAY) |
2485 SPP_SACKDELAY_DISABLE;
2486 } else if (params.sack_freq > 1) {
2487 trans->sackfreq = params.sack_freq;
2488 trans->param_flags =
2489 (trans->param_flags & ~SPP_SACKDELAY) |
2490 SPP_SACKDELAY_ENABLE;
2491 }
2492 }
2493 }
2494
2495 return 0;
2496}
2497
2498/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2499 *
2500 * Applications can specify protocol parameters for the default association
2501 * initialization. The option name argument to setsockopt() and getsockopt()
2502 * is SCTP_INITMSG.
2503 *
2504 * Setting initialization parameters is effective only on an unconnected
2505 * socket (for UDP-style sockets only future associations are effected
2506 * by the change). With TCP-style sockets, this option is inherited by
2507 * sockets derived from a listener socket.
2508 */
2509static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2510{
2511 struct sctp_initmsg sinit;
2512 struct sctp_sock *sp = sctp_sk(sk);
2513
2514 if (optlen != sizeof(struct sctp_initmsg))
2515 return -EINVAL;
2516 if (copy_from_user(&sinit, optval, optlen))
2517 return -EFAULT;
2518
2519 if (sinit.sinit_num_ostreams)
2520 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2521 if (sinit.sinit_max_instreams)
2522 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2523 if (sinit.sinit_max_attempts)
2524 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2525 if (sinit.sinit_max_init_timeo)
2526 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2527
2528 return 0;
2529}
2530
2531/*
2532 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2533 *
2534 * Applications that wish to use the sendto() system call may wish to
2535 * specify a default set of parameters that would normally be supplied
2536 * through the inclusion of ancillary data. This socket option allows
2537 * such an application to set the default sctp_sndrcvinfo structure.
2538 * The application that wishes to use this socket option simply passes
2539 * in to this call the sctp_sndrcvinfo structure defined in Section
2540 * 5.2.2) The input parameters accepted by this call include
2541 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2542 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2543 * to this call if the caller is using the UDP model.
2544 */
2545static int sctp_setsockopt_default_send_param(struct sock *sk,
2546 char __user *optval, int optlen)
2547{
2548 struct sctp_sndrcvinfo info;
2549 struct sctp_association *asoc;
2550 struct sctp_sock *sp = sctp_sk(sk);
2551
2552 if (optlen != sizeof(struct sctp_sndrcvinfo))
2553 return -EINVAL;
2554 if (copy_from_user(&info, optval, optlen))
2555 return -EFAULT;
2556
2557 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2558 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2559 return -EINVAL;
2560
2561 if (asoc) {
2562 asoc->default_stream = info.sinfo_stream;
2563 asoc->default_flags = info.sinfo_flags;
2564 asoc->default_ppid = info.sinfo_ppid;
2565 asoc->default_context = info.sinfo_context;
2566 asoc->default_timetolive = info.sinfo_timetolive;
2567 } else {
2568 sp->default_stream = info.sinfo_stream;
2569 sp->default_flags = info.sinfo_flags;
2570 sp->default_ppid = info.sinfo_ppid;
2571 sp->default_context = info.sinfo_context;
2572 sp->default_timetolive = info.sinfo_timetolive;
2573 }
2574
2575 return 0;
2576}
2577
2578/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2579 *
2580 * Requests that the local SCTP stack use the enclosed peer address as
2581 * the association primary. The enclosed address must be one of the
2582 * association peer's addresses.
2583 */
2584static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2585 int optlen)
2586{
2587 struct sctp_prim prim;
2588 struct sctp_transport *trans;
2589
2590 if (optlen != sizeof(struct sctp_prim))
2591 return -EINVAL;
2592
2593 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2594 return -EFAULT;
2595
2596 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2597 if (!trans)
2598 return -EINVAL;
2599
2600 sctp_assoc_set_primary(trans->asoc, trans);
2601
2602 return 0;
2603}
2604
2605/*
2606 * 7.1.5 SCTP_NODELAY
2607 *
2608 * Turn on/off any Nagle-like algorithm. This means that packets are
2609 * generally sent as soon as possible and no unnecessary delays are
2610 * introduced, at the cost of more packets in the network. Expects an
2611 * integer boolean flag.
2612 */
2613static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2614 int optlen)
2615{
2616 int val;
2617
2618 if (optlen < sizeof(int))
2619 return -EINVAL;
2620 if (get_user(val, (int __user *)optval))
2621 return -EFAULT;
2622
2623 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2624 return 0;
2625}
2626
2627/*
2628 *
2629 * 7.1.1 SCTP_RTOINFO
2630 *
2631 * The protocol parameters used to initialize and bound retransmission
2632 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2633 * and modify these parameters.
2634 * All parameters are time values, in milliseconds. A value of 0, when
2635 * modifying the parameters, indicates that the current value should not
2636 * be changed.
2637 *
2638 */
2639static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2640 struct sctp_rtoinfo rtoinfo;
2641 struct sctp_association *asoc;
2642
2643 if (optlen != sizeof (struct sctp_rtoinfo))
2644 return -EINVAL;
2645
2646 if (copy_from_user(&rtoinfo, optval, optlen))
2647 return -EFAULT;
2648
2649 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2650
2651 /* Set the values to the specific association */
2652 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2653 return -EINVAL;
2654
2655 if (asoc) {
2656 if (rtoinfo.srto_initial != 0)
2657 asoc->rto_initial =
2658 msecs_to_jiffies(rtoinfo.srto_initial);
2659 if (rtoinfo.srto_max != 0)
2660 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2661 if (rtoinfo.srto_min != 0)
2662 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2663 } else {
2664 /* If there is no association or the association-id = 0
2665 * set the values to the endpoint.
2666 */
2667 struct sctp_sock *sp = sctp_sk(sk);
2668
2669 if (rtoinfo.srto_initial != 0)
2670 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2671 if (rtoinfo.srto_max != 0)
2672 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2673 if (rtoinfo.srto_min != 0)
2674 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2675 }
2676
2677 return 0;
2678}
2679
2680/*
2681 *
2682 * 7.1.2 SCTP_ASSOCINFO
2683 *
2684 * This option is used to tune the maximum retransmission attempts
2685 * of the association.
2686 * Returns an error if the new association retransmission value is
2687 * greater than the sum of the retransmission value of the peer.
2688 * See [SCTP] for more information.
2689 *
2690 */
2691static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2692{
2693
2694 struct sctp_assocparams assocparams;
2695 struct sctp_association *asoc;
2696
2697 if (optlen != sizeof(struct sctp_assocparams))
2698 return -EINVAL;
2699 if (copy_from_user(&assocparams, optval, optlen))
2700 return -EFAULT;
2701
2702 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2703
2704 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2705 return -EINVAL;
2706
2707 /* Set the values to the specific association */
2708 if (asoc) {
2709 if (assocparams.sasoc_asocmaxrxt != 0) {
2710 __u32 path_sum = 0;
2711 int paths = 0;
2712 struct sctp_transport *peer_addr;
2713
2714 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2715 transports) {
2716 path_sum += peer_addr->pathmaxrxt;
2717 paths++;
2718 }
2719
2720 /* Only validate asocmaxrxt if we have more then
2721 * one path/transport. We do this because path
2722 * retransmissions are only counted when we have more
2723 * then one path.
2724 */
2725 if (paths > 1 &&
2726 assocparams.sasoc_asocmaxrxt > path_sum)
2727 return -EINVAL;
2728
2729 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2730 }
2731
2732 if (assocparams.sasoc_cookie_life != 0) {
2733 asoc->cookie_life.tv_sec =
2734 assocparams.sasoc_cookie_life / 1000;
2735 asoc->cookie_life.tv_usec =
2736 (assocparams.sasoc_cookie_life % 1000)
2737 * 1000;
2738 }
2739 } else {
2740 /* Set the values to the endpoint */
2741 struct sctp_sock *sp = sctp_sk(sk);
2742
2743 if (assocparams.sasoc_asocmaxrxt != 0)
2744 sp->assocparams.sasoc_asocmaxrxt =
2745 assocparams.sasoc_asocmaxrxt;
2746 if (assocparams.sasoc_cookie_life != 0)
2747 sp->assocparams.sasoc_cookie_life =
2748 assocparams.sasoc_cookie_life;
2749 }
2750 return 0;
2751}
2752
2753/*
2754 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2755 *
2756 * This socket option is a boolean flag which turns on or off mapped V4
2757 * addresses. If this option is turned on and the socket is type
2758 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2759 * If this option is turned off, then no mapping will be done of V4
2760 * addresses and a user will receive both PF_INET6 and PF_INET type
2761 * addresses on the socket.
2762 */
2763static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2764{
2765 int val;
2766 struct sctp_sock *sp = sctp_sk(sk);
2767
2768 if (optlen < sizeof(int))
2769 return -EINVAL;
2770 if (get_user(val, (int __user *)optval))
2771 return -EFAULT;
2772 if (val)
2773 sp->v4mapped = 1;
2774 else
2775 sp->v4mapped = 0;
2776
2777 return 0;
2778}
2779
2780/*
2781 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2782 *
2783 * This socket option specifies the maximum size to put in any outgoing
2784 * SCTP chunk. If a message is larger than this size it will be
2785 * fragmented by SCTP into the specified size. Note that the underlying
2786 * SCTP implementation may fragment into smaller sized chunks when the
2787 * PMTU of the underlying association is smaller than the value set by
2788 * the user.
2789 */
2790static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2791{
2792 struct sctp_association *asoc;
2793 struct sctp_sock *sp = sctp_sk(sk);
2794 int val;
2795
2796 if (optlen < sizeof(int))
2797 return -EINVAL;
2798 if (get_user(val, (int __user *)optval))
2799 return -EFAULT;
2800 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2801 return -EINVAL;
2802 sp->user_frag = val;
2803
2804 /* Update the frag_point of the existing associations. */
2805 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
2806 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2807 }
2808
2809 return 0;
2810}
2811
2812
2813/*
2814 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2815 *
2816 * Requests that the peer mark the enclosed address as the association
2817 * primary. The enclosed address must be one of the association's
2818 * locally bound addresses. The following structure is used to make a
2819 * set primary request:
2820 */
2821static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2822 int optlen)
2823{
2824 struct sctp_sock *sp;
2825 struct sctp_endpoint *ep;
2826 struct sctp_association *asoc = NULL;
2827 struct sctp_setpeerprim prim;
2828 struct sctp_chunk *chunk;
2829 int err;
2830
2831 sp = sctp_sk(sk);
2832 ep = sp->ep;
2833
2834 if (!sctp_addip_enable)
2835 return -EPERM;
2836
2837 if (optlen != sizeof(struct sctp_setpeerprim))
2838 return -EINVAL;
2839
2840 if (copy_from_user(&prim, optval, optlen))
2841 return -EFAULT;
2842
2843 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2844 if (!asoc)
2845 return -EINVAL;
2846
2847 if (!asoc->peer.asconf_capable)
2848 return -EPERM;
2849
2850 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2851 return -EPERM;
2852
2853 if (!sctp_state(asoc, ESTABLISHED))
2854 return -ENOTCONN;
2855
2856 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2857 return -EADDRNOTAVAIL;
2858
2859 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2860 chunk = sctp_make_asconf_set_prim(asoc,
2861 (union sctp_addr *)&prim.sspp_addr);
2862 if (!chunk)
2863 return -ENOMEM;
2864
2865 err = sctp_send_asconf(asoc, chunk);
2866
2867 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2868
2869 return err;
2870}
2871
2872static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2873 int optlen)
2874{
2875 struct sctp_setadaptation adaptation;
2876
2877 if (optlen != sizeof(struct sctp_setadaptation))
2878 return -EINVAL;
2879 if (copy_from_user(&adaptation, optval, optlen))
2880 return -EFAULT;
2881
2882 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2883
2884 return 0;
2885}
2886
2887/*
2888 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
2889 *
2890 * The context field in the sctp_sndrcvinfo structure is normally only
2891 * used when a failed message is retrieved holding the value that was
2892 * sent down on the actual send call. This option allows the setting of
2893 * a default context on an association basis that will be received on
2894 * reading messages from the peer. This is especially helpful in the
2895 * one-2-many model for an application to keep some reference to an
2896 * internal state machine that is processing messages on the
2897 * association. Note that the setting of this value only effects
2898 * received messages from the peer and does not effect the value that is
2899 * saved with outbound messages.
2900 */
2901static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2902 int optlen)
2903{
2904 struct sctp_assoc_value params;
2905 struct sctp_sock *sp;
2906 struct sctp_association *asoc;
2907
2908 if (optlen != sizeof(struct sctp_assoc_value))
2909 return -EINVAL;
2910 if (copy_from_user(&params, optval, optlen))
2911 return -EFAULT;
2912
2913 sp = sctp_sk(sk);
2914
2915 if (params.assoc_id != 0) {
2916 asoc = sctp_id2assoc(sk, params.assoc_id);
2917 if (!asoc)
2918 return -EINVAL;
2919 asoc->default_rcv_context = params.assoc_value;
2920 } else {
2921 sp->default_rcv_context = params.assoc_value;
2922 }
2923
2924 return 0;
2925}
2926
2927/*
2928 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
2929 *
2930 * This options will at a minimum specify if the implementation is doing
2931 * fragmented interleave. Fragmented interleave, for a one to many
2932 * socket, is when subsequent calls to receive a message may return
2933 * parts of messages from different associations. Some implementations
2934 * may allow you to turn this value on or off. If so, when turned off,
2935 * no fragment interleave will occur (which will cause a head of line
2936 * blocking amongst multiple associations sharing the same one to many
2937 * socket). When this option is turned on, then each receive call may
2938 * come from a different association (thus the user must receive data
2939 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
2940 * association each receive belongs to.
2941 *
2942 * This option takes a boolean value. A non-zero value indicates that
2943 * fragmented interleave is on. A value of zero indicates that
2944 * fragmented interleave is off.
2945 *
2946 * Note that it is important that an implementation that allows this
2947 * option to be turned on, have it off by default. Otherwise an unaware
2948 * application using the one to many model may become confused and act
2949 * incorrectly.
2950 */
2951static int sctp_setsockopt_fragment_interleave(struct sock *sk,
2952 char __user *optval,
2953 int optlen)
2954{
2955 int val;
2956
2957 if (optlen != sizeof(int))
2958 return -EINVAL;
2959 if (get_user(val, (int __user *)optval))
2960 return -EFAULT;
2961
2962 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
2963
2964 return 0;
2965}
2966
2967/*
2968 * 7.1.25. Set or Get the sctp partial delivery point
2969 * (SCTP_PARTIAL_DELIVERY_POINT)
2970 * This option will set or get the SCTP partial delivery point. This
2971 * point is the size of a message where the partial delivery API will be
2972 * invoked to help free up rwnd space for the peer. Setting this to a
2973 * lower value will cause partial delivery's to happen more often. The
2974 * calls argument is an integer that sets or gets the partial delivery
2975 * point.
2976 */
2977static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
2978 char __user *optval,
2979 int optlen)
2980{
2981 u32 val;
2982
2983 if (optlen != sizeof(u32))
2984 return -EINVAL;
2985 if (get_user(val, (int __user *)optval))
2986 return -EFAULT;
2987
2988 sctp_sk(sk)->pd_point = val;
2989
2990 return 0; /* is this the right error code? */
2991}
2992
2993/*
2994 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
2995 *
2996 * This option will allow a user to change the maximum burst of packets
2997 * that can be emitted by this association. Note that the default value
2998 * is 4, and some implementations may restrict this setting so that it
2999 * can only be lowered.
3000 *
3001 * NOTE: This text doesn't seem right. Do this on a socket basis with
3002 * future associations inheriting the socket value.
3003 */
3004static int sctp_setsockopt_maxburst(struct sock *sk,
3005 char __user *optval,
3006 int optlen)
3007{
3008 struct sctp_assoc_value params;
3009 struct sctp_sock *sp;
3010 struct sctp_association *asoc;
3011 int val;
3012 int assoc_id = 0;
3013
3014 if (optlen < sizeof(int))
3015 return -EINVAL;
3016
3017 if (optlen == sizeof(int)) {
3018 printk(KERN_WARNING
3019 "SCTP: Use of int in max_burst socket option deprecated\n");
3020 printk(KERN_WARNING
3021 "SCTP: Use struct sctp_assoc_value instead\n");
3022 if (copy_from_user(&val, optval, optlen))
3023 return -EFAULT;
3024 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3025 if (copy_from_user(&params, optval, optlen))
3026 return -EFAULT;
3027 val = params.assoc_value;
3028 assoc_id = params.assoc_id;
3029 } else
3030 return -EINVAL;
3031
3032 sp = sctp_sk(sk);
3033
3034 if (assoc_id != 0) {
3035 asoc = sctp_id2assoc(sk, assoc_id);
3036 if (!asoc)
3037 return -EINVAL;
3038 asoc->max_burst = val;
3039 } else
3040 sp->max_burst = val;
3041
3042 return 0;
3043}
3044
3045/*
3046 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3047 *
3048 * This set option adds a chunk type that the user is requesting to be
3049 * received only in an authenticated way. Changes to the list of chunks
3050 * will only effect future associations on the socket.
3051 */
3052static int sctp_setsockopt_auth_chunk(struct sock *sk,
3053 char __user *optval,
3054 int optlen)
3055{
3056 struct sctp_authchunk val;
3057
3058 if (!sctp_auth_enable)
3059 return -EACCES;
3060
3061 if (optlen != sizeof(struct sctp_authchunk))
3062 return -EINVAL;
3063 if (copy_from_user(&val, optval, optlen))
3064 return -EFAULT;
3065
3066 switch (val.sauth_chunk) {
3067 case SCTP_CID_INIT:
3068 case SCTP_CID_INIT_ACK:
3069 case SCTP_CID_SHUTDOWN_COMPLETE:
3070 case SCTP_CID_AUTH:
3071 return -EINVAL;
3072 }
3073
3074 /* add this chunk id to the endpoint */
3075 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3076}
3077
3078/*
3079 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3080 *
3081 * This option gets or sets the list of HMAC algorithms that the local
3082 * endpoint requires the peer to use.
3083 */
3084static int sctp_setsockopt_hmac_ident(struct sock *sk,
3085 char __user *optval,
3086 int optlen)
3087{
3088 struct sctp_hmacalgo *hmacs;
3089 int err;
3090
3091 if (!sctp_auth_enable)
3092 return -EACCES;
3093
3094 if (optlen < sizeof(struct sctp_hmacalgo))
3095 return -EINVAL;
3096
3097 hmacs = kmalloc(optlen, GFP_KERNEL);
3098 if (!hmacs)
3099 return -ENOMEM;
3100
3101 if (copy_from_user(hmacs, optval, optlen)) {
3102 err = -EFAULT;
3103 goto out;
3104 }
3105
3106 if (hmacs->shmac_num_idents == 0 ||
3107 hmacs->shmac_num_idents > SCTP_AUTH_NUM_HMACS) {
3108 err = -EINVAL;
3109 goto out;
3110 }
3111
3112 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3113out:
3114 kfree(hmacs);
3115 return err;
3116}
3117
3118/*
3119 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3120 *
3121 * This option will set a shared secret key which is used to build an
3122 * association shared key.
3123 */
3124static int sctp_setsockopt_auth_key(struct sock *sk,
3125 char __user *optval,
3126 int optlen)
3127{
3128 struct sctp_authkey *authkey;
3129 struct sctp_association *asoc;
3130 int ret;
3131
3132 if (!sctp_auth_enable)
3133 return -EACCES;
3134
3135 if (optlen <= sizeof(struct sctp_authkey))
3136 return -EINVAL;
3137
3138 authkey = kmalloc(optlen, GFP_KERNEL);
3139 if (!authkey)
3140 return -ENOMEM;
3141
3142 if (copy_from_user(authkey, optval, optlen)) {
3143 ret = -EFAULT;
3144 goto out;
3145 }
3146
3147 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3148 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3149 ret = -EINVAL;
3150 goto out;
3151 }
3152
3153 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3154out:
3155 kfree(authkey);
3156 return ret;
3157}
3158
3159/*
3160 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3161 *
3162 * This option will get or set the active shared key to be used to build
3163 * the association shared key.
3164 */
3165static int sctp_setsockopt_active_key(struct sock *sk,
3166 char __user *optval,
3167 int optlen)
3168{
3169 struct sctp_authkeyid val;
3170 struct sctp_association *asoc;
3171
3172 if (!sctp_auth_enable)
3173 return -EACCES;
3174
3175 if (optlen != sizeof(struct sctp_authkeyid))
3176 return -EINVAL;
3177 if (copy_from_user(&val, optval, optlen))
3178 return -EFAULT;
3179
3180 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3181 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3182 return -EINVAL;
3183
3184 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3185 val.scact_keynumber);
3186}
3187
3188/*
3189 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3190 *
3191 * This set option will delete a shared secret key from use.
3192 */
3193static int sctp_setsockopt_del_key(struct sock *sk,
3194 char __user *optval,
3195 int optlen)
3196{
3197 struct sctp_authkeyid val;
3198 struct sctp_association *asoc;
3199
3200 if (!sctp_auth_enable)
3201 return -EACCES;
3202
3203 if (optlen != sizeof(struct sctp_authkeyid))
3204 return -EINVAL;
3205 if (copy_from_user(&val, optval, optlen))
3206 return -EFAULT;
3207
3208 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3209 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3210 return -EINVAL;
3211
3212 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3213 val.scact_keynumber);
3214
3215}
3216
3217
3218/* API 6.2 setsockopt(), getsockopt()
3219 *
3220 * Applications use setsockopt() and getsockopt() to set or retrieve
3221 * socket options. Socket options are used to change the default
3222 * behavior of sockets calls. They are described in Section 7.
3223 *
3224 * The syntax is:
3225 *
3226 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3227 * int __user *optlen);
3228 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3229 * int optlen);
3230 *
3231 * sd - the socket descript.
3232 * level - set to IPPROTO_SCTP for all SCTP options.
3233 * optname - the option name.
3234 * optval - the buffer to store the value of the option.
3235 * optlen - the size of the buffer.
3236 */
3237SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3238 char __user *optval, int optlen)
3239{
3240 int retval = 0;
3241
3242 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3243 sk, optname);
3244
3245 /* I can hardly begin to describe how wrong this is. This is
3246 * so broken as to be worse than useless. The API draft
3247 * REALLY is NOT helpful here... I am not convinced that the
3248 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3249 * are at all well-founded.
3250 */
3251 if (level != SOL_SCTP) {
3252 struct sctp_af *af = sctp_sk(sk)->pf->af;
3253 retval = af->setsockopt(sk, level, optname, optval, optlen);
3254 goto out_nounlock;
3255 }
3256
3257 sctp_lock_sock(sk);
3258
3259 switch (optname) {
3260 case SCTP_SOCKOPT_BINDX_ADD:
3261 /* 'optlen' is the size of the addresses buffer. */
3262 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3263 optlen, SCTP_BINDX_ADD_ADDR);
3264 break;
3265
3266 case SCTP_SOCKOPT_BINDX_REM:
3267 /* 'optlen' is the size of the addresses buffer. */
3268 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3269 optlen, SCTP_BINDX_REM_ADDR);
3270 break;
3271
3272 case SCTP_SOCKOPT_CONNECTX_OLD:
3273 /* 'optlen' is the size of the addresses buffer. */
3274 retval = sctp_setsockopt_connectx_old(sk,
3275 (struct sockaddr __user *)optval,
3276 optlen);
3277 break;
3278
3279 case SCTP_SOCKOPT_CONNECTX:
3280 /* 'optlen' is the size of the addresses buffer. */
3281 retval = sctp_setsockopt_connectx(sk,
3282 (struct sockaddr __user *)optval,
3283 optlen);
3284 break;
3285
3286 case SCTP_DISABLE_FRAGMENTS:
3287 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3288 break;
3289
3290 case SCTP_EVENTS:
3291 retval = sctp_setsockopt_events(sk, optval, optlen);
3292 break;
3293
3294 case SCTP_AUTOCLOSE:
3295 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3296 break;
3297
3298 case SCTP_PEER_ADDR_PARAMS:
3299 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3300 break;
3301
3302 case SCTP_DELAYED_ACK:
3303 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3304 break;
3305 case SCTP_PARTIAL_DELIVERY_POINT:
3306 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3307 break;
3308
3309 case SCTP_INITMSG:
3310 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3311 break;
3312 case SCTP_DEFAULT_SEND_PARAM:
3313 retval = sctp_setsockopt_default_send_param(sk, optval,
3314 optlen);
3315 break;
3316 case SCTP_PRIMARY_ADDR:
3317 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3318 break;
3319 case SCTP_SET_PEER_PRIMARY_ADDR:
3320 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3321 break;
3322 case SCTP_NODELAY:
3323 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3324 break;
3325 case SCTP_RTOINFO:
3326 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3327 break;
3328 case SCTP_ASSOCINFO:
3329 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3330 break;
3331 case SCTP_I_WANT_MAPPED_V4_ADDR:
3332 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3333 break;
3334 case SCTP_MAXSEG:
3335 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3336 break;
3337 case SCTP_ADAPTATION_LAYER:
3338 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3339 break;
3340 case SCTP_CONTEXT:
3341 retval = sctp_setsockopt_context(sk, optval, optlen);
3342 break;
3343 case SCTP_FRAGMENT_INTERLEAVE:
3344 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3345 break;
3346 case SCTP_MAX_BURST:
3347 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3348 break;
3349 case SCTP_AUTH_CHUNK:
3350 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3351 break;
3352 case SCTP_HMAC_IDENT:
3353 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3354 break;
3355 case SCTP_AUTH_KEY:
3356 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3357 break;
3358 case SCTP_AUTH_ACTIVE_KEY:
3359 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3360 break;
3361 case SCTP_AUTH_DELETE_KEY:
3362 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3363 break;
3364 default:
3365 retval = -ENOPROTOOPT;
3366 break;
3367 }
3368
3369 sctp_release_sock(sk);
3370
3371out_nounlock:
3372 return retval;
3373}
3374
3375/* API 3.1.6 connect() - UDP Style Syntax
3376 *
3377 * An application may use the connect() call in the UDP model to initiate an
3378 * association without sending data.
3379 *
3380 * The syntax is:
3381 *
3382 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3383 *
3384 * sd: the socket descriptor to have a new association added to.
3385 *
3386 * nam: the address structure (either struct sockaddr_in or struct
3387 * sockaddr_in6 defined in RFC2553 [7]).
3388 *
3389 * len: the size of the address.
3390 */
3391SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3392 int addr_len)
3393{
3394 int err = 0;
3395 struct sctp_af *af;
3396
3397 sctp_lock_sock(sk);
3398
3399 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3400 __func__, sk, addr, addr_len);
3401
3402 /* Validate addr_len before calling common connect/connectx routine. */
3403 af = sctp_get_af_specific(addr->sa_family);
3404 if (!af || addr_len < af->sockaddr_len) {
3405 err = -EINVAL;
3406 } else {
3407 /* Pass correct addr len to common routine (so it knows there
3408 * is only one address being passed.
3409 */
3410 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3411 }
3412
3413 sctp_release_sock(sk);
3414 return err;
3415}
3416
3417/* FIXME: Write comments. */
3418SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3419{
3420 return -EOPNOTSUPP; /* STUB */
3421}
3422
3423/* 4.1.4 accept() - TCP Style Syntax
3424 *
3425 * Applications use accept() call to remove an established SCTP
3426 * association from the accept queue of the endpoint. A new socket
3427 * descriptor will be returned from accept() to represent the newly
3428 * formed association.
3429 */
3430SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3431{
3432 struct sctp_sock *sp;
3433 struct sctp_endpoint *ep;
3434 struct sock *newsk = NULL;
3435 struct sctp_association *asoc;
3436 long timeo;
3437 int error = 0;
3438
3439 sctp_lock_sock(sk);
3440
3441 sp = sctp_sk(sk);
3442 ep = sp->ep;
3443
3444 if (!sctp_style(sk, TCP)) {
3445 error = -EOPNOTSUPP;
3446 goto out;
3447 }
3448
3449 if (!sctp_sstate(sk, LISTENING)) {
3450 error = -EINVAL;
3451 goto out;
3452 }
3453
3454 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3455
3456 error = sctp_wait_for_accept(sk, timeo);
3457 if (error)
3458 goto out;
3459
3460 /* We treat the list of associations on the endpoint as the accept
3461 * queue and pick the first association on the list.
3462 */
3463 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3464
3465 newsk = sp->pf->create_accept_sk(sk, asoc);
3466 if (!newsk) {
3467 error = -ENOMEM;
3468 goto out;
3469 }
3470
3471 /* Populate the fields of the newsk from the oldsk and migrate the
3472 * asoc to the newsk.
3473 */
3474 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3475
3476out:
3477 sctp_release_sock(sk);
3478 *err = error;
3479 return newsk;
3480}
3481
3482/* The SCTP ioctl handler. */
3483SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3484{
3485 return -ENOIOCTLCMD;
3486}
3487
3488/* This is the function which gets called during socket creation to
3489 * initialized the SCTP-specific portion of the sock.
3490 * The sock structure should already be zero-filled memory.
3491 */
3492SCTP_STATIC int sctp_init_sock(struct sock *sk)
3493{
3494 struct sctp_endpoint *ep;
3495 struct sctp_sock *sp;
3496
3497 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3498
3499 sp = sctp_sk(sk);
3500
3501 /* Initialize the SCTP per socket area. */
3502 switch (sk->sk_type) {
3503 case SOCK_SEQPACKET:
3504 sp->type = SCTP_SOCKET_UDP;
3505 break;
3506 case SOCK_STREAM:
3507 sp->type = SCTP_SOCKET_TCP;
3508 break;
3509 default:
3510 return -ESOCKTNOSUPPORT;
3511 }
3512
3513 /* Initialize default send parameters. These parameters can be
3514 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3515 */
3516 sp->default_stream = 0;
3517 sp->default_ppid = 0;
3518 sp->default_flags = 0;
3519 sp->default_context = 0;
3520 sp->default_timetolive = 0;
3521
3522 sp->default_rcv_context = 0;
3523 sp->max_burst = sctp_max_burst;
3524
3525 /* Initialize default setup parameters. These parameters
3526 * can be modified with the SCTP_INITMSG socket option or
3527 * overridden by the SCTP_INIT CMSG.
3528 */
3529 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3530 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3531 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3532 sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3533
3534 /* Initialize default RTO related parameters. These parameters can
3535 * be modified for with the SCTP_RTOINFO socket option.
3536 */
3537 sp->rtoinfo.srto_initial = sctp_rto_initial;
3538 sp->rtoinfo.srto_max = sctp_rto_max;
3539 sp->rtoinfo.srto_min = sctp_rto_min;
3540
3541 /* Initialize default association related parameters. These parameters
3542 * can be modified with the SCTP_ASSOCINFO socket option.
3543 */
3544 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3545 sp->assocparams.sasoc_number_peer_destinations = 0;
3546 sp->assocparams.sasoc_peer_rwnd = 0;
3547 sp->assocparams.sasoc_local_rwnd = 0;
3548 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3549
3550 /* Initialize default event subscriptions. By default, all the
3551 * options are off.
3552 */
3553 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3554
3555 /* Default Peer Address Parameters. These defaults can
3556 * be modified via SCTP_PEER_ADDR_PARAMS
3557 */
3558 sp->hbinterval = sctp_hb_interval;
3559 sp->pathmaxrxt = sctp_max_retrans_path;
3560 sp->pathmtu = 0; // allow default discovery
3561 sp->sackdelay = sctp_sack_timeout;
3562 sp->sackfreq = 2;
3563 sp->param_flags = SPP_HB_ENABLE |
3564 SPP_PMTUD_ENABLE |
3565 SPP_SACKDELAY_ENABLE;
3566
3567 /* If enabled no SCTP message fragmentation will be performed.
3568 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3569 */
3570 sp->disable_fragments = 0;
3571
3572 /* Enable Nagle algorithm by default. */
3573 sp->nodelay = 0;
3574
3575 /* Enable by default. */
3576 sp->v4mapped = 1;
3577
3578 /* Auto-close idle associations after the configured
3579 * number of seconds. A value of 0 disables this
3580 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3581 * for UDP-style sockets only.
3582 */
3583 sp->autoclose = 0;
3584
3585 /* User specified fragmentation limit. */
3586 sp->user_frag = 0;
3587
3588 sp->adaptation_ind = 0;
3589
3590 sp->pf = sctp_get_pf_specific(sk->sk_family);
3591
3592 /* Control variables for partial data delivery. */
3593 atomic_set(&sp->pd_mode, 0);
3594 skb_queue_head_init(&sp->pd_lobby);
3595 sp->frag_interleave = 0;
3596
3597 /* Create a per socket endpoint structure. Even if we
3598 * change the data structure relationships, this may still
3599 * be useful for storing pre-connect address information.
3600 */
3601 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3602 if (!ep)
3603 return -ENOMEM;
3604
3605 sp->ep = ep;
3606 sp->hmac = NULL;
3607
3608 SCTP_DBG_OBJCNT_INC(sock);
3609 atomic_inc(&sctp_sockets_allocated);
3610 return 0;
3611}
3612
3613/* Cleanup any SCTP per socket resources. */
3614SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3615{
3616 struct sctp_endpoint *ep;
3617
3618 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3619
3620 /* Release our hold on the endpoint. */
3621 ep = sctp_sk(sk)->ep;
3622 sctp_endpoint_free(ep);
3623 atomic_dec(&sctp_sockets_allocated);
3624}
3625
3626/* API 4.1.7 shutdown() - TCP Style Syntax
3627 * int shutdown(int socket, int how);
3628 *
3629 * sd - the socket descriptor of the association to be closed.
3630 * how - Specifies the type of shutdown. The values are
3631 * as follows:
3632 * SHUT_RD
3633 * Disables further receive operations. No SCTP
3634 * protocol action is taken.
3635 * SHUT_WR
3636 * Disables further send operations, and initiates
3637 * the SCTP shutdown sequence.
3638 * SHUT_RDWR
3639 * Disables further send and receive operations
3640 * and initiates the SCTP shutdown sequence.
3641 */
3642SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3643{
3644 struct sctp_endpoint *ep;
3645 struct sctp_association *asoc;
3646
3647 if (!sctp_style(sk, TCP))
3648 return;
3649
3650 if (how & SEND_SHUTDOWN) {
3651 ep = sctp_sk(sk)->ep;
3652 if (!list_empty(&ep->asocs)) {
3653 asoc = list_entry(ep->asocs.next,
3654 struct sctp_association, asocs);
3655 sctp_primitive_SHUTDOWN(asoc, NULL);
3656 }
3657 }
3658}
3659
3660/* 7.2.1 Association Status (SCTP_STATUS)
3661
3662 * Applications can retrieve current status information about an
3663 * association, including association state, peer receiver window size,
3664 * number of unacked data chunks, and number of data chunks pending
3665 * receipt. This information is read-only.
3666 */
3667static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3668 char __user *optval,
3669 int __user *optlen)
3670{
3671 struct sctp_status status;
3672 struct sctp_association *asoc = NULL;
3673 struct sctp_transport *transport;
3674 sctp_assoc_t associd;
3675 int retval = 0;
3676
3677 if (len < sizeof(status)) {
3678 retval = -EINVAL;
3679 goto out;
3680 }
3681
3682 len = sizeof(status);
3683 if (copy_from_user(&status, optval, len)) {
3684 retval = -EFAULT;
3685 goto out;
3686 }
3687
3688 associd = status.sstat_assoc_id;
3689 asoc = sctp_id2assoc(sk, associd);
3690 if (!asoc) {
3691 retval = -EINVAL;
3692 goto out;
3693 }
3694
3695 transport = asoc->peer.primary_path;
3696
3697 status.sstat_assoc_id = sctp_assoc2id(asoc);
3698 status.sstat_state = asoc->state;
3699 status.sstat_rwnd = asoc->peer.rwnd;
3700 status.sstat_unackdata = asoc->unack_data;
3701
3702 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3703 status.sstat_instrms = asoc->c.sinit_max_instreams;
3704 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3705 status.sstat_fragmentation_point = asoc->frag_point;
3706 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3707 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3708 transport->af_specific->sockaddr_len);
3709 /* Map ipv4 address into v4-mapped-on-v6 address. */
3710 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3711 (union sctp_addr *)&status.sstat_primary.spinfo_address);
3712 status.sstat_primary.spinfo_state = transport->state;
3713 status.sstat_primary.spinfo_cwnd = transport->cwnd;
3714 status.sstat_primary.spinfo_srtt = transport->srtt;
3715 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3716 status.sstat_primary.spinfo_mtu = transport->pathmtu;
3717
3718 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3719 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3720
3721 if (put_user(len, optlen)) {
3722 retval = -EFAULT;
3723 goto out;
3724 }
3725
3726 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3727 len, status.sstat_state, status.sstat_rwnd,
3728 status.sstat_assoc_id);
3729
3730 if (copy_to_user(optval, &status, len)) {
3731 retval = -EFAULT;
3732 goto out;
3733 }
3734
3735out:
3736 return (retval);
3737}
3738
3739
3740/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3741 *
3742 * Applications can retrieve information about a specific peer address
3743 * of an association, including its reachability state, congestion
3744 * window, and retransmission timer values. This information is
3745 * read-only.
3746 */
3747static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3748 char __user *optval,
3749 int __user *optlen)
3750{
3751 struct sctp_paddrinfo pinfo;
3752 struct sctp_transport *transport;
3753 int retval = 0;
3754
3755 if (len < sizeof(pinfo)) {
3756 retval = -EINVAL;
3757 goto out;
3758 }
3759
3760 len = sizeof(pinfo);
3761 if (copy_from_user(&pinfo, optval, len)) {
3762 retval = -EFAULT;
3763 goto out;
3764 }
3765
3766 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3767 pinfo.spinfo_assoc_id);
3768 if (!transport)
3769 return -EINVAL;
3770
3771 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3772 pinfo.spinfo_state = transport->state;
3773 pinfo.spinfo_cwnd = transport->cwnd;
3774 pinfo.spinfo_srtt = transport->srtt;
3775 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3776 pinfo.spinfo_mtu = transport->pathmtu;
3777
3778 if (pinfo.spinfo_state == SCTP_UNKNOWN)
3779 pinfo.spinfo_state = SCTP_ACTIVE;
3780
3781 if (put_user(len, optlen)) {
3782 retval = -EFAULT;
3783 goto out;
3784 }
3785
3786 if (copy_to_user(optval, &pinfo, len)) {
3787 retval = -EFAULT;
3788 goto out;
3789 }
3790
3791out:
3792 return (retval);
3793}
3794
3795/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3796 *
3797 * This option is a on/off flag. If enabled no SCTP message
3798 * fragmentation will be performed. Instead if a message being sent
3799 * exceeds the current PMTU size, the message will NOT be sent and
3800 * instead a error will be indicated to the user.
3801 */
3802static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3803 char __user *optval, int __user *optlen)
3804{
3805 int val;
3806
3807 if (len < sizeof(int))
3808 return -EINVAL;
3809
3810 len = sizeof(int);
3811 val = (sctp_sk(sk)->disable_fragments == 1);
3812 if (put_user(len, optlen))
3813 return -EFAULT;
3814 if (copy_to_user(optval, &val, len))
3815 return -EFAULT;
3816 return 0;
3817}
3818
3819/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3820 *
3821 * This socket option is used to specify various notifications and
3822 * ancillary data the user wishes to receive.
3823 */
3824static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3825 int __user *optlen)
3826{
3827 if (len < sizeof(struct sctp_event_subscribe))
3828 return -EINVAL;
3829 len = sizeof(struct sctp_event_subscribe);
3830 if (put_user(len, optlen))
3831 return -EFAULT;
3832 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3833 return -EFAULT;
3834 return 0;
3835}
3836
3837/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3838 *
3839 * This socket option is applicable to the UDP-style socket only. When
3840 * set it will cause associations that are idle for more than the
3841 * specified number of seconds to automatically close. An association
3842 * being idle is defined an association that has NOT sent or received
3843 * user data. The special value of '0' indicates that no automatic
3844 * close of any associations should be performed. The option expects an
3845 * integer defining the number of seconds of idle time before an
3846 * association is closed.
3847 */
3848static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3849{
3850 /* Applicable to UDP-style socket only */
3851 if (sctp_style(sk, TCP))
3852 return -EOPNOTSUPP;
3853 if (len < sizeof(int))
3854 return -EINVAL;
3855 len = sizeof(int);
3856 if (put_user(len, optlen))
3857 return -EFAULT;
3858 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
3859 return -EFAULT;
3860 return 0;
3861}
3862
3863/* Helper routine to branch off an association to a new socket. */
3864SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3865 struct socket **sockp)
3866{
3867 struct sock *sk = asoc->base.sk;
3868 struct socket *sock;
3869 struct inet_sock *inetsk;
3870 struct sctp_af *af;
3871 int err = 0;
3872
3873 /* An association cannot be branched off from an already peeled-off
3874 * socket, nor is this supported for tcp style sockets.
3875 */
3876 if (!sctp_style(sk, UDP))
3877 return -EINVAL;
3878
3879 /* Create a new socket. */
3880 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3881 if (err < 0)
3882 return err;
3883
3884 /* Populate the fields of the newsk from the oldsk and migrate the
3885 * asoc to the newsk.
3886 */
3887 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3888
3889 /* Make peeled-off sockets more like 1-1 accepted sockets.
3890 * Set the daddr and initialize id to something more random
3891 */
3892 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
3893 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
3894 inetsk = inet_sk(sock->sk);
3895 inetsk->id = asoc->next_tsn ^ jiffies;
3896
3897 *sockp = sock;
3898
3899 return err;
3900}
3901
3902static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3903{
3904 sctp_peeloff_arg_t peeloff;
3905 struct socket *newsock;
3906 int retval = 0;
3907 struct sctp_association *asoc;
3908
3909 if (len < sizeof(sctp_peeloff_arg_t))
3910 return -EINVAL;
3911 len = sizeof(sctp_peeloff_arg_t);
3912 if (copy_from_user(&peeloff, optval, len))
3913 return -EFAULT;
3914
3915 asoc = sctp_id2assoc(sk, peeloff.associd);
3916 if (!asoc) {
3917 retval = -EINVAL;
3918 goto out;
3919 }
3920
3921 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
3922
3923 retval = sctp_do_peeloff(asoc, &newsock);
3924 if (retval < 0)
3925 goto out;
3926
3927 /* Map the socket to an unused fd that can be returned to the user. */
3928 retval = sock_map_fd(newsock, 0);
3929 if (retval < 0) {
3930 sock_release(newsock);
3931 goto out;
3932 }
3933
3934 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3935 __func__, sk, asoc, newsock->sk, retval);
3936
3937 /* Return the fd mapped to the new socket. */
3938 peeloff.sd = retval;
3939 if (put_user(len, optlen))
3940 return -EFAULT;
3941 if (copy_to_user(optval, &peeloff, len))
3942 retval = -EFAULT;
3943
3944out:
3945 return retval;
3946}
3947
3948/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3949 *
3950 * Applications can enable or disable heartbeats for any peer address of
3951 * an association, modify an address's heartbeat interval, force a
3952 * heartbeat to be sent immediately, and adjust the address's maximum
3953 * number of retransmissions sent before an address is considered
3954 * unreachable. The following structure is used to access and modify an
3955 * address's parameters:
3956 *
3957 * struct sctp_paddrparams {
3958 * sctp_assoc_t spp_assoc_id;
3959 * struct sockaddr_storage spp_address;
3960 * uint32_t spp_hbinterval;
3961 * uint16_t spp_pathmaxrxt;
3962 * uint32_t spp_pathmtu;
3963 * uint32_t spp_sackdelay;
3964 * uint32_t spp_flags;
3965 * };
3966 *
3967 * spp_assoc_id - (one-to-many style socket) This is filled in the
3968 * application, and identifies the association for
3969 * this query.
3970 * spp_address - This specifies which address is of interest.
3971 * spp_hbinterval - This contains the value of the heartbeat interval,
3972 * in milliseconds. If a value of zero
3973 * is present in this field then no changes are to
3974 * be made to this parameter.
3975 * spp_pathmaxrxt - This contains the maximum number of
3976 * retransmissions before this address shall be
3977 * considered unreachable. If a value of zero
3978 * is present in this field then no changes are to
3979 * be made to this parameter.
3980 * spp_pathmtu - When Path MTU discovery is disabled the value
3981 * specified here will be the "fixed" path mtu.
3982 * Note that if the spp_address field is empty
3983 * then all associations on this address will
3984 * have this fixed path mtu set upon them.
3985 *
3986 * spp_sackdelay - When delayed sack is enabled, this value specifies
3987 * the number of milliseconds that sacks will be delayed
3988 * for. This value will apply to all addresses of an
3989 * association if the spp_address field is empty. Note
3990 * also, that if delayed sack is enabled and this
3991 * value is set to 0, no change is made to the last
3992 * recorded delayed sack timer value.
3993 *
3994 * spp_flags - These flags are used to control various features
3995 * on an association. The flag field may contain
3996 * zero or more of the following options.
3997 *
3998 * SPP_HB_ENABLE - Enable heartbeats on the
3999 * specified address. Note that if the address
4000 * field is empty all addresses for the association
4001 * have heartbeats enabled upon them.
4002 *
4003 * SPP_HB_DISABLE - Disable heartbeats on the
4004 * speicifed address. Note that if the address
4005 * field is empty all addresses for the association
4006 * will have their heartbeats disabled. Note also
4007 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4008 * mutually exclusive, only one of these two should
4009 * be specified. Enabling both fields will have
4010 * undetermined results.
4011 *
4012 * SPP_HB_DEMAND - Request a user initiated heartbeat
4013 * to be made immediately.
4014 *
4015 * SPP_PMTUD_ENABLE - This field will enable PMTU
4016 * discovery upon the specified address. Note that
4017 * if the address feild is empty then all addresses
4018 * on the association are effected.
4019 *
4020 * SPP_PMTUD_DISABLE - This field will disable PMTU
4021 * discovery upon the specified address. Note that
4022 * if the address feild is empty then all addresses
4023 * on the association are effected. Not also that
4024 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4025 * exclusive. Enabling both will have undetermined
4026 * results.
4027 *
4028 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4029 * on delayed sack. The time specified in spp_sackdelay
4030 * is used to specify the sack delay for this address. Note
4031 * that if spp_address is empty then all addresses will
4032 * enable delayed sack and take on the sack delay
4033 * value specified in spp_sackdelay.
4034 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4035 * off delayed sack. If the spp_address field is blank then
4036 * delayed sack is disabled for the entire association. Note
4037 * also that this field is mutually exclusive to
4038 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4039 * results.
4040 */
4041static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4042 char __user *optval, int __user *optlen)
4043{
4044 struct sctp_paddrparams params;
4045 struct sctp_transport *trans = NULL;
4046 struct sctp_association *asoc = NULL;
4047 struct sctp_sock *sp = sctp_sk(sk);
4048
4049 if (len < sizeof(struct sctp_paddrparams))
4050 return -EINVAL;
4051 len = sizeof(struct sctp_paddrparams);
4052 if (copy_from_user(&params, optval, len))
4053 return -EFAULT;
4054
4055 /* If an address other than INADDR_ANY is specified, and
4056 * no transport is found, then the request is invalid.
4057 */
4058 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
4059 trans = sctp_addr_id2transport(sk, &params.spp_address,
4060 params.spp_assoc_id);
4061 if (!trans) {
4062 SCTP_DEBUG_PRINTK("Failed no transport\n");
4063 return -EINVAL;
4064 }
4065 }
4066
4067 /* Get association, if assoc_id != 0 and the socket is a one
4068 * to many style socket, and an association was not found, then
4069 * the id was invalid.
4070 */
4071 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4072 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4073 SCTP_DEBUG_PRINTK("Failed no association\n");
4074 return -EINVAL;
4075 }
4076
4077 if (trans) {
4078 /* Fetch transport values. */
4079 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4080 params.spp_pathmtu = trans->pathmtu;
4081 params.spp_pathmaxrxt = trans->pathmaxrxt;
4082 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4083
4084 /*draft-11 doesn't say what to return in spp_flags*/
4085 params.spp_flags = trans->param_flags;
4086 } else if (asoc) {
4087 /* Fetch association values. */
4088 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4089 params.spp_pathmtu = asoc->pathmtu;
4090 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4091 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4092
4093 /*draft-11 doesn't say what to return in spp_flags*/
4094 params.spp_flags = asoc->param_flags;
4095 } else {
4096 /* Fetch socket values. */
4097 params.spp_hbinterval = sp->hbinterval;
4098 params.spp_pathmtu = sp->pathmtu;
4099 params.spp_sackdelay = sp->sackdelay;
4100 params.spp_pathmaxrxt = sp->pathmaxrxt;
4101
4102 /*draft-11 doesn't say what to return in spp_flags*/
4103 params.spp_flags = sp->param_flags;
4104 }
4105
4106 if (copy_to_user(optval, &params, len))
4107 return -EFAULT;
4108
4109 if (put_user(len, optlen))
4110 return -EFAULT;
4111
4112 return 0;
4113}
4114
4115/*
4116 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4117 *
4118 * This option will effect the way delayed acks are performed. This
4119 * option allows you to get or set the delayed ack time, in
4120 * milliseconds. It also allows changing the delayed ack frequency.
4121 * Changing the frequency to 1 disables the delayed sack algorithm. If
4122 * the assoc_id is 0, then this sets or gets the endpoints default
4123 * values. If the assoc_id field is non-zero, then the set or get
4124 * effects the specified association for the one to many model (the
4125 * assoc_id field is ignored by the one to one model). Note that if
4126 * sack_delay or sack_freq are 0 when setting this option, then the
4127 * current values will remain unchanged.
4128 *
4129 * struct sctp_sack_info {
4130 * sctp_assoc_t sack_assoc_id;
4131 * uint32_t sack_delay;
4132 * uint32_t sack_freq;
4133 * };
4134 *
4135 * sack_assoc_id - This parameter, indicates which association the user
4136 * is performing an action upon. Note that if this field's value is
4137 * zero then the endpoints default value is changed (effecting future
4138 * associations only).
4139 *
4140 * sack_delay - This parameter contains the number of milliseconds that
4141 * the user is requesting the delayed ACK timer be set to. Note that
4142 * this value is defined in the standard to be between 200 and 500
4143 * milliseconds.
4144 *
4145 * sack_freq - This parameter contains the number of packets that must
4146 * be received before a sack is sent without waiting for the delay
4147 * timer to expire. The default value for this is 2, setting this
4148 * value to 1 will disable the delayed sack algorithm.
4149 */
4150static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4151 char __user *optval,
4152 int __user *optlen)
4153{
4154 struct sctp_sack_info params;
4155 struct sctp_association *asoc = NULL;
4156 struct sctp_sock *sp = sctp_sk(sk);
4157
4158 if (len >= sizeof(struct sctp_sack_info)) {
4159 len = sizeof(struct sctp_sack_info);
4160
4161 if (copy_from_user(&params, optval, len))
4162 return -EFAULT;
4163 } else if (len == sizeof(struct sctp_assoc_value)) {
4164 printk(KERN_WARNING "SCTP: Use of struct sctp_sack_info "
4165 "in delayed_ack socket option deprecated\n");
4166 printk(KERN_WARNING "SCTP: struct sctp_sack_info instead\n");
4167 if (copy_from_user(&params, optval, len))
4168 return -EFAULT;
4169 } else
4170 return - EINVAL;
4171
4172 /* Get association, if sack_assoc_id != 0 and the socket is a one
4173 * to many style socket, and an association was not found, then
4174 * the id was invalid.
4175 */
4176 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4177 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4178 return -EINVAL;
4179
4180 if (asoc) {
4181 /* Fetch association values. */
4182 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4183 params.sack_delay = jiffies_to_msecs(
4184 asoc->sackdelay);
4185 params.sack_freq = asoc->sackfreq;
4186
4187 } else {
4188 params.sack_delay = 0;
4189 params.sack_freq = 1;
4190 }
4191 } else {
4192 /* Fetch socket values. */
4193 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4194 params.sack_delay = sp->sackdelay;
4195 params.sack_freq = sp->sackfreq;
4196 } else {
4197 params.sack_delay = 0;
4198 params.sack_freq = 1;
4199 }
4200 }
4201
4202 if (copy_to_user(optval, &params, len))
4203 return -EFAULT;
4204
4205 if (put_user(len, optlen))
4206 return -EFAULT;
4207
4208 return 0;
4209}
4210
4211/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4212 *
4213 * Applications can specify protocol parameters for the default association
4214 * initialization. The option name argument to setsockopt() and getsockopt()
4215 * is SCTP_INITMSG.
4216 *
4217 * Setting initialization parameters is effective only on an unconnected
4218 * socket (for UDP-style sockets only future associations are effected
4219 * by the change). With TCP-style sockets, this option is inherited by
4220 * sockets derived from a listener socket.
4221 */
4222static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4223{
4224 if (len < sizeof(struct sctp_initmsg))
4225 return -EINVAL;
4226 len = sizeof(struct sctp_initmsg);
4227 if (put_user(len, optlen))
4228 return -EFAULT;
4229 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4230 return -EFAULT;
4231 return 0;
4232}
4233
4234static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
4235 char __user *optval,
4236 int __user *optlen)
4237{
4238 sctp_assoc_t id;
4239 struct sctp_association *asoc;
4240 struct list_head *pos;
4241 int cnt = 0;
4242
4243 if (len < sizeof(sctp_assoc_t))
4244 return -EINVAL;
4245
4246 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4247 return -EFAULT;
4248
4249 printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_NUM_OLD "
4250 "socket option deprecated\n");
4251 /* For UDP-style sockets, id specifies the association to query. */
4252 asoc = sctp_id2assoc(sk, id);
4253 if (!asoc)
4254 return -EINVAL;
4255
4256 list_for_each(pos, &asoc->peer.transport_addr_list) {
4257 cnt ++;
4258 }
4259
4260 return cnt;
4261}
4262
4263/*
4264 * Old API for getting list of peer addresses. Does not work for 32-bit
4265 * programs running on a 64-bit kernel
4266 */
4267static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
4268 char __user *optval,
4269 int __user *optlen)
4270{
4271 struct sctp_association *asoc;
4272 int cnt = 0;
4273 struct sctp_getaddrs_old getaddrs;
4274 struct sctp_transport *from;
4275 void __user *to;
4276 union sctp_addr temp;
4277 struct sctp_sock *sp = sctp_sk(sk);
4278 int addrlen;
4279
4280 if (len < sizeof(struct sctp_getaddrs_old))
4281 return -EINVAL;
4282
4283 len = sizeof(struct sctp_getaddrs_old);
4284
4285 if (copy_from_user(&getaddrs, optval, len))
4286 return -EFAULT;
4287
4288 if (getaddrs.addr_num <= 0) return -EINVAL;
4289
4290 printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_OLD "
4291 "socket option deprecated\n");
4292
4293 /* For UDP-style sockets, id specifies the association to query. */
4294 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4295 if (!asoc)
4296 return -EINVAL;
4297
4298 to = (void __user *)getaddrs.addrs;
4299 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4300 transports) {
4301 memcpy(&temp, &from->ipaddr, sizeof(temp));
4302 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4303 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4304 if (copy_to_user(to, &temp, addrlen))
4305 return -EFAULT;
4306 to += addrlen ;
4307 cnt ++;
4308 if (cnt >= getaddrs.addr_num) break;
4309 }
4310 getaddrs.addr_num = cnt;
4311 if (put_user(len, optlen))
4312 return -EFAULT;
4313 if (copy_to_user(optval, &getaddrs, len))
4314 return -EFAULT;
4315
4316 return 0;
4317}
4318
4319static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4320 char __user *optval, int __user *optlen)
4321{
4322 struct sctp_association *asoc;
4323 int cnt = 0;
4324 struct sctp_getaddrs getaddrs;
4325 struct sctp_transport *from;
4326 void __user *to;
4327 union sctp_addr temp;
4328 struct sctp_sock *sp = sctp_sk(sk);
4329 int addrlen;
4330 size_t space_left;
4331 int bytes_copied;
4332
4333 if (len < sizeof(struct sctp_getaddrs))
4334 return -EINVAL;
4335
4336 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4337 return -EFAULT;
4338
4339 /* For UDP-style sockets, id specifies the association to query. */
4340 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4341 if (!asoc)
4342 return -EINVAL;
4343
4344 to = optval + offsetof(struct sctp_getaddrs,addrs);
4345 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4346
4347 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4348 transports) {
4349 memcpy(&temp, &from->ipaddr, sizeof(temp));
4350 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4351 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4352 if (space_left < addrlen)
4353 return -ENOMEM;
4354 if (copy_to_user(to, &temp, addrlen))
4355 return -EFAULT;
4356 to += addrlen;
4357 cnt++;
4358 space_left -= addrlen;
4359 }
4360
4361 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4362 return -EFAULT;
4363 bytes_copied = ((char __user *)to) - optval;
4364 if (put_user(bytes_copied, optlen))
4365 return -EFAULT;
4366
4367 return 0;
4368}
4369
4370static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
4371 char __user *optval,
4372 int __user *optlen)
4373{
4374 sctp_assoc_t id;
4375 struct sctp_bind_addr *bp;
4376 struct sctp_association *asoc;
4377 struct sctp_sockaddr_entry *addr;
4378 int cnt = 0;
4379
4380 if (len < sizeof(sctp_assoc_t))
4381 return -EINVAL;
4382
4383 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4384 return -EFAULT;
4385
4386 printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_NUM_OLD "
4387 "socket option deprecated\n");
4388
4389 /*
4390 * For UDP-style sockets, id specifies the association to query.
4391 * If the id field is set to the value '0' then the locally bound
4392 * addresses are returned without regard to any particular
4393 * association.
4394 */
4395 if (0 == id) {
4396 bp = &sctp_sk(sk)->ep->base.bind_addr;
4397 } else {
4398 asoc = sctp_id2assoc(sk, id);
4399 if (!asoc)
4400 return -EINVAL;
4401 bp = &asoc->base.bind_addr;
4402 }
4403
4404 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
4405 * addresses from the global local address list.
4406 */
4407 if (sctp_list_single_entry(&bp->address_list)) {
4408 addr = list_entry(bp->address_list.next,
4409 struct sctp_sockaddr_entry, list);
4410 if (sctp_is_any(&addr->a)) {
4411 rcu_read_lock();
4412 list_for_each_entry_rcu(addr,
4413 &sctp_local_addr_list, list) {
4414 if (!addr->valid)
4415 continue;
4416
4417 if ((PF_INET == sk->sk_family) &&
4418 (AF_INET6 == addr->a.sa.sa_family))
4419 continue;
4420
4421 if ((PF_INET6 == sk->sk_family) &&
4422 inet_v6_ipv6only(sk) &&
4423 (AF_INET == addr->a.sa.sa_family))
4424 continue;
4425
4426 cnt++;
4427 }
4428 rcu_read_unlock();
4429 } else {
4430 cnt = 1;
4431 }
4432 goto done;
4433 }
4434
4435 /* Protection on the bound address list is not needed,
4436 * since in the socket option context we hold the socket lock,
4437 * so there is no way that the bound address list can change.
4438 */
4439 list_for_each_entry(addr, &bp->address_list, list) {
4440 cnt ++;
4441 }
4442done:
4443 return cnt;
4444}
4445
4446/* Helper function that copies local addresses to user and returns the number
4447 * of addresses copied.
4448 */
4449static int sctp_copy_laddrs_old(struct sock *sk, __u16 port,
4450 int max_addrs, void *to,
4451 int *bytes_copied)
4452{
4453 struct sctp_sockaddr_entry *addr;
4454 union sctp_addr temp;
4455 int cnt = 0;
4456 int addrlen;
4457
4458 rcu_read_lock();
4459 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4460 if (!addr->valid)
4461 continue;
4462
4463 if ((PF_INET == sk->sk_family) &&
4464 (AF_INET6 == addr->a.sa.sa_family))
4465 continue;
4466 if ((PF_INET6 == sk->sk_family) &&
4467 inet_v6_ipv6only(sk) &&
4468 (AF_INET == addr->a.sa.sa_family))
4469 continue;
4470 memcpy(&temp, &addr->a, sizeof(temp));
4471 if (!temp.v4.sin_port)
4472 temp.v4.sin_port = htons(port);
4473
4474 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4475 &temp);
4476 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4477 memcpy(to, &temp, addrlen);
4478
4479 to += addrlen;
4480 *bytes_copied += addrlen;
4481 cnt ++;
4482 if (cnt >= max_addrs) break;
4483 }
4484 rcu_read_unlock();
4485
4486 return cnt;
4487}
4488
4489static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4490 size_t space_left, int *bytes_copied)
4491{
4492 struct sctp_sockaddr_entry *addr;
4493 union sctp_addr temp;
4494 int cnt = 0;
4495 int addrlen;
4496
4497 rcu_read_lock();
4498 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4499 if (!addr->valid)
4500 continue;
4501
4502 if ((PF_INET == sk->sk_family) &&
4503 (AF_INET6 == addr->a.sa.sa_family))
4504 continue;
4505 if ((PF_INET6 == sk->sk_family) &&
4506 inet_v6_ipv6only(sk) &&
4507 (AF_INET == addr->a.sa.sa_family))
4508 continue;
4509 memcpy(&temp, &addr->a, sizeof(temp));
4510 if (!temp.v4.sin_port)
4511 temp.v4.sin_port = htons(port);
4512
4513 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4514 &temp);
4515 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4516 if (space_left < addrlen) {
4517 cnt = -ENOMEM;
4518 break;
4519 }
4520 memcpy(to, &temp, addrlen);
4521
4522 to += addrlen;
4523 cnt ++;
4524 space_left -= addrlen;
4525 *bytes_copied += addrlen;
4526 }
4527 rcu_read_unlock();
4528
4529 return cnt;
4530}
4531
4532/* Old API for getting list of local addresses. Does not work for 32-bit
4533 * programs running on a 64-bit kernel
4534 */
4535static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
4536 char __user *optval, int __user *optlen)
4537{
4538 struct sctp_bind_addr *bp;
4539 struct sctp_association *asoc;
4540 int cnt = 0;
4541 struct sctp_getaddrs_old getaddrs;
4542 struct sctp_sockaddr_entry *addr;
4543 void __user *to;
4544 union sctp_addr temp;
4545 struct sctp_sock *sp = sctp_sk(sk);
4546 int addrlen;
4547 int err = 0;
4548 void *addrs;
4549 void *buf;
4550 int bytes_copied = 0;
4551
4552 if (len < sizeof(struct sctp_getaddrs_old))
4553 return -EINVAL;
4554
4555 len = sizeof(struct sctp_getaddrs_old);
4556 if (copy_from_user(&getaddrs, optval, len))
4557 return -EFAULT;
4558
4559 if (getaddrs.addr_num <= 0 ||
4560 getaddrs.addr_num >= (INT_MAX / sizeof(union sctp_addr)))
4561 return -EINVAL;
4562
4563 printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_OLD "
4564 "socket option deprecated\n");
4565
4566 /*
4567 * For UDP-style sockets, id specifies the association to query.
4568 * If the id field is set to the value '0' then the locally bound
4569 * addresses are returned without regard to any particular
4570 * association.
4571 */
4572 if (0 == getaddrs.assoc_id) {
4573 bp = &sctp_sk(sk)->ep->base.bind_addr;
4574 } else {
4575 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4576 if (!asoc)
4577 return -EINVAL;
4578 bp = &asoc->base.bind_addr;
4579 }
4580
4581 to = getaddrs.addrs;
4582
4583 /* Allocate space for a local instance of packed array to hold all
4584 * the data. We store addresses here first and then put write them
4585 * to the user in one shot.
4586 */
4587 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num,
4588 GFP_KERNEL);
4589 if (!addrs)
4590 return -ENOMEM;
4591
4592 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4593 * addresses from the global local address list.
4594 */
4595 if (sctp_list_single_entry(&bp->address_list)) {
4596 addr = list_entry(bp->address_list.next,
4597 struct sctp_sockaddr_entry, list);
4598 if (sctp_is_any(&addr->a)) {
4599 cnt = sctp_copy_laddrs_old(sk, bp->port,
4600 getaddrs.addr_num,
4601 addrs, &bytes_copied);
4602 goto copy_getaddrs;
4603 }
4604 }
4605
4606 buf = addrs;
4607 /* Protection on the bound address list is not needed since
4608 * in the socket option context we hold a socket lock and
4609 * thus the bound address list can't change.
4610 */
4611 list_for_each_entry(addr, &bp->address_list, list) {
4612 memcpy(&temp, &addr->a, sizeof(temp));
4613 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4614 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4615 memcpy(buf, &temp, addrlen);
4616 buf += addrlen;
4617 bytes_copied += addrlen;
4618 cnt ++;
4619 if (cnt >= getaddrs.addr_num) break;
4620 }
4621
4622copy_getaddrs:
4623 /* copy the entire address list into the user provided space */
4624 if (copy_to_user(to, addrs, bytes_copied)) {
4625 err = -EFAULT;
4626 goto error;
4627 }
4628
4629 /* copy the leading structure back to user */
4630 getaddrs.addr_num = cnt;
4631 if (copy_to_user(optval, &getaddrs, len))
4632 err = -EFAULT;
4633
4634error:
4635 kfree(addrs);
4636 return err;
4637}
4638
4639static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4640 char __user *optval, int __user *optlen)
4641{
4642 struct sctp_bind_addr *bp;
4643 struct sctp_association *asoc;
4644 int cnt = 0;
4645 struct sctp_getaddrs getaddrs;
4646 struct sctp_sockaddr_entry *addr;
4647 void __user *to;
4648 union sctp_addr temp;
4649 struct sctp_sock *sp = sctp_sk(sk);
4650 int addrlen;
4651 int err = 0;
4652 size_t space_left;
4653 int bytes_copied = 0;
4654 void *addrs;
4655 void *buf;
4656
4657 if (len < sizeof(struct sctp_getaddrs))
4658 return -EINVAL;
4659
4660 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4661 return -EFAULT;
4662
4663 /*
4664 * For UDP-style sockets, id specifies the association to query.
4665 * If the id field is set to the value '0' then the locally bound
4666 * addresses are returned without regard to any particular
4667 * association.
4668 */
4669 if (0 == getaddrs.assoc_id) {
4670 bp = &sctp_sk(sk)->ep->base.bind_addr;
4671 } else {
4672 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4673 if (!asoc)
4674 return -EINVAL;
4675 bp = &asoc->base.bind_addr;
4676 }
4677
4678 to = optval + offsetof(struct sctp_getaddrs,addrs);
4679 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4680
4681 addrs = kmalloc(space_left, GFP_KERNEL);
4682 if (!addrs)
4683 return -ENOMEM;
4684
4685 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4686 * addresses from the global local address list.
4687 */
4688 if (sctp_list_single_entry(&bp->address_list)) {
4689 addr = list_entry(bp->address_list.next,
4690 struct sctp_sockaddr_entry, list);
4691 if (sctp_is_any(&addr->a)) {
4692 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4693 space_left, &bytes_copied);
4694 if (cnt < 0) {
4695 err = cnt;
4696 goto out;
4697 }
4698 goto copy_getaddrs;
4699 }
4700 }
4701
4702 buf = addrs;
4703 /* Protection on the bound address list is not needed since
4704 * in the socket option context we hold a socket lock and
4705 * thus the bound address list can't change.
4706 */
4707 list_for_each_entry(addr, &bp->address_list, list) {
4708 memcpy(&temp, &addr->a, sizeof(temp));
4709 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4710 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4711 if (space_left < addrlen) {
4712 err = -ENOMEM; /*fixme: right error?*/
4713 goto out;
4714 }
4715 memcpy(buf, &temp, addrlen);
4716 buf += addrlen;
4717 bytes_copied += addrlen;
4718 cnt ++;
4719 space_left -= addrlen;
4720 }
4721
4722copy_getaddrs:
4723 if (copy_to_user(to, addrs, bytes_copied)) {
4724 err = -EFAULT;
4725 goto out;
4726 }
4727 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4728 err = -EFAULT;
4729 goto out;
4730 }
4731 if (put_user(bytes_copied, optlen))
4732 err = -EFAULT;
4733out:
4734 kfree(addrs);
4735 return err;
4736}
4737
4738/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4739 *
4740 * Requests that the local SCTP stack use the enclosed peer address as
4741 * the association primary. The enclosed address must be one of the
4742 * association peer's addresses.
4743 */
4744static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4745 char __user *optval, int __user *optlen)
4746{
4747 struct sctp_prim prim;
4748 struct sctp_association *asoc;
4749 struct sctp_sock *sp = sctp_sk(sk);
4750
4751 if (len < sizeof(struct sctp_prim))
4752 return -EINVAL;
4753
4754 len = sizeof(struct sctp_prim);
4755
4756 if (copy_from_user(&prim, optval, len))
4757 return -EFAULT;
4758
4759 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4760 if (!asoc)
4761 return -EINVAL;
4762
4763 if (!asoc->peer.primary_path)
4764 return -ENOTCONN;
4765
4766 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4767 asoc->peer.primary_path->af_specific->sockaddr_len);
4768
4769 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4770 (union sctp_addr *)&prim.ssp_addr);
4771
4772 if (put_user(len, optlen))
4773 return -EFAULT;
4774 if (copy_to_user(optval, &prim, len))
4775 return -EFAULT;
4776
4777 return 0;
4778}
4779
4780/*
4781 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4782 *
4783 * Requests that the local endpoint set the specified Adaptation Layer
4784 * Indication parameter for all future INIT and INIT-ACK exchanges.
4785 */
4786static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4787 char __user *optval, int __user *optlen)
4788{
4789 struct sctp_setadaptation adaptation;
4790
4791 if (len < sizeof(struct sctp_setadaptation))
4792 return -EINVAL;
4793
4794 len = sizeof(struct sctp_setadaptation);
4795
4796 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4797
4798 if (put_user(len, optlen))
4799 return -EFAULT;
4800 if (copy_to_user(optval, &adaptation, len))
4801 return -EFAULT;
4802
4803 return 0;
4804}
4805
4806/*
4807 *
4808 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4809 *
4810 * Applications that wish to use the sendto() system call may wish to
4811 * specify a default set of parameters that would normally be supplied
4812 * through the inclusion of ancillary data. This socket option allows
4813 * such an application to set the default sctp_sndrcvinfo structure.
4814
4815
4816 * The application that wishes to use this socket option simply passes
4817 * in to this call the sctp_sndrcvinfo structure defined in Section
4818 * 5.2.2) The input parameters accepted by this call include
4819 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4820 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4821 * to this call if the caller is using the UDP model.
4822 *
4823 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4824 */
4825static int sctp_getsockopt_default_send_param(struct sock *sk,
4826 int len, char __user *optval,
4827 int __user *optlen)
4828{
4829 struct sctp_sndrcvinfo info;
4830 struct sctp_association *asoc;
4831 struct sctp_sock *sp = sctp_sk(sk);
4832
4833 if (len < sizeof(struct sctp_sndrcvinfo))
4834 return -EINVAL;
4835
4836 len = sizeof(struct sctp_sndrcvinfo);
4837
4838 if (copy_from_user(&info, optval, len))
4839 return -EFAULT;
4840
4841 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4842 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4843 return -EINVAL;
4844
4845 if (asoc) {
4846 info.sinfo_stream = asoc->default_stream;
4847 info.sinfo_flags = asoc->default_flags;
4848 info.sinfo_ppid = asoc->default_ppid;
4849 info.sinfo_context = asoc->default_context;
4850 info.sinfo_timetolive = asoc->default_timetolive;
4851 } else {
4852 info.sinfo_stream = sp->default_stream;
4853 info.sinfo_flags = sp->default_flags;
4854 info.sinfo_ppid = sp->default_ppid;
4855 info.sinfo_context = sp->default_context;
4856 info.sinfo_timetolive = sp->default_timetolive;
4857 }
4858
4859 if (put_user(len, optlen))
4860 return -EFAULT;
4861 if (copy_to_user(optval, &info, len))
4862 return -EFAULT;
4863
4864 return 0;
4865}
4866
4867/*
4868 *
4869 * 7.1.5 SCTP_NODELAY
4870 *
4871 * Turn on/off any Nagle-like algorithm. This means that packets are
4872 * generally sent as soon as possible and no unnecessary delays are
4873 * introduced, at the cost of more packets in the network. Expects an
4874 * integer boolean flag.
4875 */
4876
4877static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4878 char __user *optval, int __user *optlen)
4879{
4880 int val;
4881
4882 if (len < sizeof(int))
4883 return -EINVAL;
4884
4885 len = sizeof(int);
4886 val = (sctp_sk(sk)->nodelay == 1);
4887 if (put_user(len, optlen))
4888 return -EFAULT;
4889 if (copy_to_user(optval, &val, len))
4890 return -EFAULT;
4891 return 0;
4892}
4893
4894/*
4895 *
4896 * 7.1.1 SCTP_RTOINFO
4897 *
4898 * The protocol parameters used to initialize and bound retransmission
4899 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4900 * and modify these parameters.
4901 * All parameters are time values, in milliseconds. A value of 0, when
4902 * modifying the parameters, indicates that the current value should not
4903 * be changed.
4904 *
4905 */
4906static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4907 char __user *optval,
4908 int __user *optlen) {
4909 struct sctp_rtoinfo rtoinfo;
4910 struct sctp_association *asoc;
4911
4912 if (len < sizeof (struct sctp_rtoinfo))
4913 return -EINVAL;
4914
4915 len = sizeof(struct sctp_rtoinfo);
4916
4917 if (copy_from_user(&rtoinfo, optval, len))
4918 return -EFAULT;
4919
4920 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4921
4922 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4923 return -EINVAL;
4924
4925 /* Values corresponding to the specific association. */
4926 if (asoc) {
4927 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4928 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4929 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4930 } else {
4931 /* Values corresponding to the endpoint. */
4932 struct sctp_sock *sp = sctp_sk(sk);
4933
4934 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4935 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4936 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4937 }
4938
4939 if (put_user(len, optlen))
4940 return -EFAULT;
4941
4942 if (copy_to_user(optval, &rtoinfo, len))
4943 return -EFAULT;
4944
4945 return 0;
4946}
4947
4948/*
4949 *
4950 * 7.1.2 SCTP_ASSOCINFO
4951 *
4952 * This option is used to tune the maximum retransmission attempts
4953 * of the association.
4954 * Returns an error if the new association retransmission value is
4955 * greater than the sum of the retransmission value of the peer.
4956 * See [SCTP] for more information.
4957 *
4958 */
4959static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4960 char __user *optval,
4961 int __user *optlen)
4962{
4963
4964 struct sctp_assocparams assocparams;
4965 struct sctp_association *asoc;
4966 struct list_head *pos;
4967 int cnt = 0;
4968
4969 if (len < sizeof (struct sctp_assocparams))
4970 return -EINVAL;
4971
4972 len = sizeof(struct sctp_assocparams);
4973
4974 if (copy_from_user(&assocparams, optval, len))
4975 return -EFAULT;
4976
4977 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4978
4979 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4980 return -EINVAL;
4981
4982 /* Values correspoinding to the specific association */
4983 if (asoc) {
4984 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4985 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4986 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4987 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4988 * 1000) +
4989 (asoc->cookie_life.tv_usec
4990 / 1000);
4991
4992 list_for_each(pos, &asoc->peer.transport_addr_list) {
4993 cnt ++;
4994 }
4995
4996 assocparams.sasoc_number_peer_destinations = cnt;
4997 } else {
4998 /* Values corresponding to the endpoint */
4999 struct sctp_sock *sp = sctp_sk(sk);
5000
5001 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5002 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5003 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5004 assocparams.sasoc_cookie_life =
5005 sp->assocparams.sasoc_cookie_life;
5006 assocparams.sasoc_number_peer_destinations =
5007 sp->assocparams.
5008 sasoc_number_peer_destinations;
5009 }
5010
5011 if (put_user(len, optlen))
5012 return -EFAULT;
5013
5014 if (copy_to_user(optval, &assocparams, len))
5015 return -EFAULT;
5016
5017 return 0;
5018}
5019
5020/*
5021 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5022 *
5023 * This socket option is a boolean flag which turns on or off mapped V4
5024 * addresses. If this option is turned on and the socket is type
5025 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5026 * If this option is turned off, then no mapping will be done of V4
5027 * addresses and a user will receive both PF_INET6 and PF_INET type
5028 * addresses on the socket.
5029 */
5030static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5031 char __user *optval, int __user *optlen)
5032{
5033 int val;
5034 struct sctp_sock *sp = sctp_sk(sk);
5035
5036 if (len < sizeof(int))
5037 return -EINVAL;
5038
5039 len = sizeof(int);
5040 val = sp->v4mapped;
5041 if (put_user(len, optlen))
5042 return -EFAULT;
5043 if (copy_to_user(optval, &val, len))
5044 return -EFAULT;
5045
5046 return 0;
5047}
5048
5049/*
5050 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5051 * (chapter and verse is quoted at sctp_setsockopt_context())
5052 */
5053static int sctp_getsockopt_context(struct sock *sk, int len,
5054 char __user *optval, int __user *optlen)
5055{
5056 struct sctp_assoc_value params;
5057 struct sctp_sock *sp;
5058 struct sctp_association *asoc;
5059
5060 if (len < sizeof(struct sctp_assoc_value))
5061 return -EINVAL;
5062
5063 len = sizeof(struct sctp_assoc_value);
5064
5065 if (copy_from_user(&params, optval, len))
5066 return -EFAULT;
5067
5068 sp = sctp_sk(sk);
5069
5070 if (params.assoc_id != 0) {
5071 asoc = sctp_id2assoc(sk, params.assoc_id);
5072 if (!asoc)
5073 return -EINVAL;
5074 params.assoc_value = asoc->default_rcv_context;
5075 } else {
5076 params.assoc_value = sp->default_rcv_context;
5077 }
5078
5079 if (put_user(len, optlen))
5080 return -EFAULT;
5081 if (copy_to_user(optval, &params, len))
5082 return -EFAULT;
5083
5084 return 0;
5085}
5086
5087/*
5088 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
5089 *
5090 * This socket option specifies the maximum size to put in any outgoing
5091 * SCTP chunk. If a message is larger than this size it will be
5092 * fragmented by SCTP into the specified size. Note that the underlying
5093 * SCTP implementation may fragment into smaller sized chunks when the
5094 * PMTU of the underlying association is smaller than the value set by
5095 * the user.
5096 */
5097static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5098 char __user *optval, int __user *optlen)
5099{
5100 int val;
5101
5102 if (len < sizeof(int))
5103 return -EINVAL;
5104
5105 len = sizeof(int);
5106
5107 val = sctp_sk(sk)->user_frag;
5108 if (put_user(len, optlen))
5109 return -EFAULT;
5110 if (copy_to_user(optval, &val, len))
5111 return -EFAULT;
5112
5113 return 0;
5114}
5115
5116/*
5117 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5118 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5119 */
5120static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5121 char __user *optval, int __user *optlen)
5122{
5123 int val;
5124
5125 if (len < sizeof(int))
5126 return -EINVAL;
5127
5128 len = sizeof(int);
5129
5130 val = sctp_sk(sk)->frag_interleave;
5131 if (put_user(len, optlen))
5132 return -EFAULT;
5133 if (copy_to_user(optval, &val, len))
5134 return -EFAULT;
5135
5136 return 0;
5137}
5138
5139/*
5140 * 7.1.25. Set or Get the sctp partial delivery point
5141 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5142 */
5143static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5144 char __user *optval,
5145 int __user *optlen)
5146{
5147 u32 val;
5148
5149 if (len < sizeof(u32))
5150 return -EINVAL;
5151
5152 len = sizeof(u32);
5153
5154 val = sctp_sk(sk)->pd_point;
5155 if (put_user(len, optlen))
5156 return -EFAULT;
5157 if (copy_to_user(optval, &val, len))
5158 return -EFAULT;
5159
5160 return -ENOTSUPP;
5161}
5162
5163/*
5164 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5165 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5166 */
5167static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5168 char __user *optval,
5169 int __user *optlen)
5170{
5171 struct sctp_assoc_value params;
5172 struct sctp_sock *sp;
5173 struct sctp_association *asoc;
5174
5175 if (len < sizeof(int))
5176 return -EINVAL;
5177
5178 if (len == sizeof(int)) {
5179 printk(KERN_WARNING
5180 "SCTP: Use of int in max_burst socket option deprecated\n");
5181 printk(KERN_WARNING
5182 "SCTP: Use struct sctp_assoc_value instead\n");
5183 params.assoc_id = 0;
5184 } else if (len == sizeof (struct sctp_assoc_value)) {
5185 if (copy_from_user(&params, optval, len))
5186 return -EFAULT;
5187 } else
5188 return -EINVAL;
5189
5190 sp = sctp_sk(sk);
5191
5192 if (params.assoc_id != 0) {
5193 asoc = sctp_id2assoc(sk, params.assoc_id);
5194 if (!asoc)
5195 return -EINVAL;
5196 params.assoc_value = asoc->max_burst;
5197 } else
5198 params.assoc_value = sp->max_burst;
5199
5200 if (len == sizeof(int)) {
5201 if (copy_to_user(optval, &params.assoc_value, len))
5202 return -EFAULT;
5203 } else {
5204 if (copy_to_user(optval, &params, len))
5205 return -EFAULT;
5206 }
5207
5208 return 0;
5209
5210}
5211
5212static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5213 char __user *optval, int __user *optlen)
5214{
5215 struct sctp_hmacalgo __user *p = (void __user *)optval;
5216 struct sctp_hmac_algo_param *hmacs;
5217 __u16 data_len = 0;
5218 u32 num_idents;
5219
5220 if (!sctp_auth_enable)
5221 return -EACCES;
5222
5223 hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5224 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5225
5226 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5227 return -EINVAL;
5228
5229 len = sizeof(struct sctp_hmacalgo) + data_len;
5230 num_idents = data_len / sizeof(u16);
5231
5232 if (put_user(len, optlen))
5233 return -EFAULT;
5234 if (put_user(num_idents, &p->shmac_num_idents))
5235 return -EFAULT;
5236 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5237 return -EFAULT;
5238 return 0;
5239}
5240
5241static int sctp_getsockopt_active_key(struct sock *sk, int len,
5242 char __user *optval, int __user *optlen)
5243{
5244 struct sctp_authkeyid val;
5245 struct sctp_association *asoc;
5246
5247 if (!sctp_auth_enable)
5248 return -EACCES;
5249
5250 if (len < sizeof(struct sctp_authkeyid))
5251 return -EINVAL;
5252 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5253 return -EFAULT;
5254
5255 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5256 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5257 return -EINVAL;
5258
5259 if (asoc)
5260 val.scact_keynumber = asoc->active_key_id;
5261 else
5262 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5263
5264 len = sizeof(struct sctp_authkeyid);
5265 if (put_user(len, optlen))
5266 return -EFAULT;
5267 if (copy_to_user(optval, &val, len))
5268 return -EFAULT;
5269
5270 return 0;
5271}
5272
5273static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5274 char __user *optval, int __user *optlen)
5275{
5276 struct sctp_authchunks __user *p = (void __user *)optval;
5277 struct sctp_authchunks val;
5278 struct sctp_association *asoc;
5279 struct sctp_chunks_param *ch;
5280 u32 num_chunks = 0;
5281 char __user *to;
5282
5283 if (!sctp_auth_enable)
5284 return -EACCES;
5285
5286 if (len < sizeof(struct sctp_authchunks))
5287 return -EINVAL;
5288
5289 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5290 return -EFAULT;
5291
5292 to = p->gauth_chunks;
5293 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5294 if (!asoc)
5295 return -EINVAL;
5296
5297 ch = asoc->peer.peer_chunks;
5298 if (!ch)
5299 goto num;
5300
5301 /* See if the user provided enough room for all the data */
5302 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5303 if (len < num_chunks)
5304 return -EINVAL;
5305
5306 if (copy_to_user(to, ch->chunks, num_chunks))
5307 return -EFAULT;
5308num:
5309 len = sizeof(struct sctp_authchunks) + num_chunks;
5310 if (put_user(len, optlen)) return -EFAULT;
5311 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5312 return -EFAULT;
5313 return 0;
5314}
5315
5316static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5317 char __user *optval, int __user *optlen)
5318{
5319 struct sctp_authchunks __user *p = (void __user *)optval;
5320 struct sctp_authchunks val;
5321 struct sctp_association *asoc;
5322 struct sctp_chunks_param *ch;
5323 u32 num_chunks = 0;
5324 char __user *to;
5325
5326 if (!sctp_auth_enable)
5327 return -EACCES;
5328
5329 if (len < sizeof(struct sctp_authchunks))
5330 return -EINVAL;
5331
5332 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5333 return -EFAULT;
5334
5335 to = p->gauth_chunks;
5336 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5337 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5338 return -EINVAL;
5339
5340 if (asoc)
5341 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5342 else
5343 ch = sctp_sk(sk)->ep->auth_chunk_list;
5344
5345 if (!ch)
5346 goto num;
5347
5348 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5349 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5350 return -EINVAL;
5351
5352 if (copy_to_user(to, ch->chunks, num_chunks))
5353 return -EFAULT;
5354num:
5355 len = sizeof(struct sctp_authchunks) + num_chunks;
5356 if (put_user(len, optlen))
5357 return -EFAULT;
5358 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5359 return -EFAULT;
5360
5361 return 0;
5362}
5363
5364SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5365 char __user *optval, int __user *optlen)
5366{
5367 int retval = 0;
5368 int len;
5369
5370 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5371 sk, optname);
5372
5373 /* I can hardly begin to describe how wrong this is. This is
5374 * so broken as to be worse than useless. The API draft
5375 * REALLY is NOT helpful here... I am not convinced that the
5376 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5377 * are at all well-founded.
5378 */
5379 if (level != SOL_SCTP) {
5380 struct sctp_af *af = sctp_sk(sk)->pf->af;
5381
5382 retval = af->getsockopt(sk, level, optname, optval, optlen);
5383 return retval;
5384 }
5385
5386 if (get_user(len, optlen))
5387 return -EFAULT;
5388
5389 sctp_lock_sock(sk);
5390
5391 switch (optname) {
5392 case SCTP_STATUS:
5393 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5394 break;
5395 case SCTP_DISABLE_FRAGMENTS:
5396 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5397 optlen);
5398 break;
5399 case SCTP_EVENTS:
5400 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5401 break;
5402 case SCTP_AUTOCLOSE:
5403 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5404 break;
5405 case SCTP_SOCKOPT_PEELOFF:
5406 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5407 break;
5408 case SCTP_PEER_ADDR_PARAMS:
5409 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5410 optlen);
5411 break;
5412 case SCTP_DELAYED_ACK:
5413 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5414 optlen);
5415 break;
5416 case SCTP_INITMSG:
5417 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5418 break;
5419 case SCTP_GET_PEER_ADDRS_NUM_OLD:
5420 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
5421 optlen);
5422 break;
5423 case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
5424 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
5425 optlen);
5426 break;
5427 case SCTP_GET_PEER_ADDRS_OLD:
5428 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
5429 optlen);
5430 break;
5431 case SCTP_GET_LOCAL_ADDRS_OLD:
5432 retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
5433 optlen);
5434 break;
5435 case SCTP_GET_PEER_ADDRS:
5436 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5437 optlen);
5438 break;
5439 case SCTP_GET_LOCAL_ADDRS:
5440 retval = sctp_getsockopt_local_addrs(sk, len, optval,
5441 optlen);
5442 break;
5443 case SCTP_DEFAULT_SEND_PARAM:
5444 retval = sctp_getsockopt_default_send_param(sk, len,
5445 optval, optlen);
5446 break;
5447 case SCTP_PRIMARY_ADDR:
5448 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5449 break;
5450 case SCTP_NODELAY:
5451 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5452 break;
5453 case SCTP_RTOINFO:
5454 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5455 break;
5456 case SCTP_ASSOCINFO:
5457 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5458 break;
5459 case SCTP_I_WANT_MAPPED_V4_ADDR:
5460 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5461 break;
5462 case SCTP_MAXSEG:
5463 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5464 break;
5465 case SCTP_GET_PEER_ADDR_INFO:
5466 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5467 optlen);
5468 break;
5469 case SCTP_ADAPTATION_LAYER:
5470 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5471 optlen);
5472 break;
5473 case SCTP_CONTEXT:
5474 retval = sctp_getsockopt_context(sk, len, optval, optlen);
5475 break;
5476 case SCTP_FRAGMENT_INTERLEAVE:
5477 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5478 optlen);
5479 break;
5480 case SCTP_PARTIAL_DELIVERY_POINT:
5481 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5482 optlen);
5483 break;
5484 case SCTP_MAX_BURST:
5485 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5486 break;
5487 case SCTP_AUTH_KEY:
5488 case SCTP_AUTH_CHUNK:
5489 case SCTP_AUTH_DELETE_KEY:
5490 retval = -EOPNOTSUPP;
5491 break;
5492 case SCTP_HMAC_IDENT:
5493 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5494 break;
5495 case SCTP_AUTH_ACTIVE_KEY:
5496 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5497 break;
5498 case SCTP_PEER_AUTH_CHUNKS:
5499 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5500 optlen);
5501 break;
5502 case SCTP_LOCAL_AUTH_CHUNKS:
5503 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5504 optlen);
5505 break;
5506 default:
5507 retval = -ENOPROTOOPT;
5508 break;
5509 }
5510
5511 sctp_release_sock(sk);
5512 return retval;
5513}
5514
5515static void sctp_hash(struct sock *sk)
5516{
5517 /* STUB */
5518}
5519
5520static void sctp_unhash(struct sock *sk)
5521{
5522 /* STUB */
5523}
5524
5525/* Check if port is acceptable. Possibly find first available port.
5526 *
5527 * The port hash table (contained in the 'global' SCTP protocol storage
5528 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5529 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5530 * list (the list number is the port number hashed out, so as you
5531 * would expect from a hash function, all the ports in a given list have
5532 * such a number that hashes out to the same list number; you were
5533 * expecting that, right?); so each list has a set of ports, with a
5534 * link to the socket (struct sock) that uses it, the port number and
5535 * a fastreuse flag (FIXME: NPI ipg).
5536 */
5537static struct sctp_bind_bucket *sctp_bucket_create(
5538 struct sctp_bind_hashbucket *head, unsigned short snum);
5539
5540static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5541{
5542 struct sctp_bind_hashbucket *head; /* hash list */
5543 struct sctp_bind_bucket *pp; /* hash list port iterator */
5544 struct hlist_node *node;
5545 unsigned short snum;
5546 int ret;
5547
5548 snum = ntohs(addr->v4.sin_port);
5549
5550 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5551 sctp_local_bh_disable();
5552
5553 if (snum == 0) {
5554 /* Search for an available port. */
5555 int low, high, remaining, index;
5556 unsigned int rover;
5557
5558 inet_get_local_port_range(&low, &high);
5559 remaining = (high - low) + 1;
5560 rover = net_random() % remaining + low;
5561
5562 do {
5563 rover++;
5564 if ((rover < low) || (rover > high))
5565 rover = low;
5566 index = sctp_phashfn(rover);
5567 head = &sctp_port_hashtable[index];
5568 sctp_spin_lock(&head->lock);
5569 sctp_for_each_hentry(pp, node, &head->chain)
5570 if (pp->port == rover)
5571 goto next;
5572 break;
5573 next:
5574 sctp_spin_unlock(&head->lock);
5575 } while (--remaining > 0);
5576
5577 /* Exhausted local port range during search? */
5578 ret = 1;
5579 if (remaining <= 0)
5580 goto fail;
5581
5582 /* OK, here is the one we will use. HEAD (the port
5583 * hash table list entry) is non-NULL and we hold it's
5584 * mutex.
5585 */
5586 snum = rover;
5587 } else {
5588 /* We are given an specific port number; we verify
5589 * that it is not being used. If it is used, we will
5590 * exahust the search in the hash list corresponding
5591 * to the port number (snum) - we detect that with the
5592 * port iterator, pp being NULL.
5593 */
5594 head = &sctp_port_hashtable[sctp_phashfn(snum)];
5595 sctp_spin_lock(&head->lock);
5596 sctp_for_each_hentry(pp, node, &head->chain) {
5597 if (pp->port == snum)
5598 goto pp_found;
5599 }
5600 }
5601 pp = NULL;
5602 goto pp_not_found;
5603pp_found:
5604 if (!hlist_empty(&pp->owner)) {
5605 /* We had a port hash table hit - there is an
5606 * available port (pp != NULL) and it is being
5607 * used by other socket (pp->owner not empty); that other
5608 * socket is going to be sk2.
5609 */
5610 int reuse = sk->sk_reuse;
5611 struct sock *sk2;
5612 struct hlist_node *node;
5613
5614 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5615 if (pp->fastreuse && sk->sk_reuse &&
5616 sk->sk_state != SCTP_SS_LISTENING)
5617 goto success;
5618
5619 /* Run through the list of sockets bound to the port
5620 * (pp->port) [via the pointers bind_next and
5621 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5622 * we get the endpoint they describe and run through
5623 * the endpoint's list of IP (v4 or v6) addresses,
5624 * comparing each of the addresses with the address of
5625 * the socket sk. If we find a match, then that means
5626 * that this port/socket (sk) combination are already
5627 * in an endpoint.
5628 */
5629 sk_for_each_bound(sk2, node, &pp->owner) {
5630 struct sctp_endpoint *ep2;
5631 ep2 = sctp_sk(sk2)->ep;
5632
5633 if (sk == sk2 ||
5634 (reuse && sk2->sk_reuse &&
5635 sk2->sk_state != SCTP_SS_LISTENING))
5636 continue;
5637
5638 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5639 sctp_sk(sk2), sctp_sk(sk))) {
5640 ret = (long)sk2;
5641 goto fail_unlock;
5642 }
5643 }
5644 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5645 }
5646pp_not_found:
5647 /* If there was a hash table miss, create a new port. */
5648 ret = 1;
5649 if (!pp && !(pp = sctp_bucket_create(head, snum)))
5650 goto fail_unlock;
5651
5652 /* In either case (hit or miss), make sure fastreuse is 1 only
5653 * if sk->sk_reuse is too (that is, if the caller requested
5654 * SO_REUSEADDR on this socket -sk-).
5655 */
5656 if (hlist_empty(&pp->owner)) {
5657 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5658 pp->fastreuse = 1;
5659 else
5660 pp->fastreuse = 0;
5661 } else if (pp->fastreuse &&
5662 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5663 pp->fastreuse = 0;
5664
5665 /* We are set, so fill up all the data in the hash table
5666 * entry, tie the socket list information with the rest of the
5667 * sockets FIXME: Blurry, NPI (ipg).
5668 */
5669success:
5670 if (!sctp_sk(sk)->bind_hash) {
5671 inet_sk(sk)->num = snum;
5672 sk_add_bind_node(sk, &pp->owner);
5673 sctp_sk(sk)->bind_hash = pp;
5674 }
5675 ret = 0;
5676
5677fail_unlock:
5678 sctp_spin_unlock(&head->lock);
5679
5680fail:
5681 sctp_local_bh_enable();
5682 return ret;
5683}
5684
5685/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
5686 * port is requested.
5687 */
5688static int sctp_get_port(struct sock *sk, unsigned short snum)
5689{
5690 long ret;
5691 union sctp_addr addr;
5692 struct sctp_af *af = sctp_sk(sk)->pf->af;
5693
5694 /* Set up a dummy address struct from the sk. */
5695 af->from_sk(&addr, sk);
5696 addr.v4.sin_port = htons(snum);
5697
5698 /* Note: sk->sk_num gets filled in if ephemeral port request. */
5699 ret = sctp_get_port_local(sk, &addr);
5700
5701 return (ret ? 1 : 0);
5702}
5703
5704/*
5705 * 3.1.3 listen() - UDP Style Syntax
5706 *
5707 * By default, new associations are not accepted for UDP style sockets.
5708 * An application uses listen() to mark a socket as being able to
5709 * accept new associations.
5710 */
5711SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
5712{
5713 struct sctp_sock *sp = sctp_sk(sk);
5714 struct sctp_endpoint *ep = sp->ep;
5715
5716 /* Only UDP style sockets that are not peeled off are allowed to
5717 * listen().
5718 */
5719 if (!sctp_style(sk, UDP))
5720 return -EINVAL;
5721
5722 /* If backlog is zero, disable listening. */
5723 if (!backlog) {
5724 if (sctp_sstate(sk, CLOSED))
5725 return 0;
5726
5727 sctp_unhash_endpoint(ep);
5728 sk->sk_state = SCTP_SS_CLOSED;
5729 return 0;
5730 }
5731
5732 /* Return if we are already listening. */
5733 if (sctp_sstate(sk, LISTENING))
5734 return 0;
5735
5736 /*
5737 * If a bind() or sctp_bindx() is not called prior to a listen()
5738 * call that allows new associations to be accepted, the system
5739 * picks an ephemeral port and will choose an address set equivalent
5740 * to binding with a wildcard address.
5741 *
5742 * This is not currently spelled out in the SCTP sockets
5743 * extensions draft, but follows the practice as seen in TCP
5744 * sockets.
5745 *
5746 * Additionally, turn off fastreuse flag since we are not listening
5747 */
5748 sk->sk_state = SCTP_SS_LISTENING;
5749 if (!ep->base.bind_addr.port) {
5750 if (sctp_autobind(sk))
5751 return -EAGAIN;
5752 } else {
5753 if (sctp_get_port(sk, inet_sk(sk)->num)) {
5754 sk->sk_state = SCTP_SS_CLOSED;
5755 return -EADDRINUSE;
5756 }
5757 sctp_sk(sk)->bind_hash->fastreuse = 0;
5758 }
5759
5760 sctp_hash_endpoint(ep);
5761 return 0;
5762}
5763
5764/*
5765 * 4.1.3 listen() - TCP Style Syntax
5766 *
5767 * Applications uses listen() to ready the SCTP endpoint for accepting
5768 * inbound associations.
5769 */
5770SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
5771{
5772 struct sctp_sock *sp = sctp_sk(sk);
5773 struct sctp_endpoint *ep = sp->ep;
5774
5775 /* If backlog is zero, disable listening. */
5776 if (!backlog) {
5777 if (sctp_sstate(sk, CLOSED))
5778 return 0;
5779
5780 sctp_unhash_endpoint(ep);
5781 sk->sk_state = SCTP_SS_CLOSED;
5782 return 0;
5783 }
5784
5785 if (sctp_sstate(sk, LISTENING))
5786 return 0;
5787
5788 /*
5789 * If a bind() or sctp_bindx() is not called prior to a listen()
5790 * call that allows new associations to be accepted, the system
5791 * picks an ephemeral port and will choose an address set equivalent
5792 * to binding with a wildcard address.
5793 *
5794 * This is not currently spelled out in the SCTP sockets
5795 * extensions draft, but follows the practice as seen in TCP
5796 * sockets.
5797 */
5798 sk->sk_state = SCTP_SS_LISTENING;
5799 if (!ep->base.bind_addr.port) {
5800 if (sctp_autobind(sk))
5801 return -EAGAIN;
5802 } else
5803 sctp_sk(sk)->bind_hash->fastreuse = 0;
5804
5805 sk->sk_max_ack_backlog = backlog;
5806 sctp_hash_endpoint(ep);
5807 return 0;
5808}
5809
5810/*
5811 * Move a socket to LISTENING state.
5812 */
5813int sctp_inet_listen(struct socket *sock, int backlog)
5814{
5815 struct sock *sk = sock->sk;
5816 struct crypto_hash *tfm = NULL;
5817 int err = -EINVAL;
5818
5819 if (unlikely(backlog < 0))
5820 goto out;
5821
5822 sctp_lock_sock(sk);
5823
5824 if (sock->state != SS_UNCONNECTED)
5825 goto out;
5826
5827 /* Allocate HMAC for generating cookie. */
5828 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5829 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5830 if (IS_ERR(tfm)) {
5831 if (net_ratelimit()) {
5832 printk(KERN_INFO
5833 "SCTP: failed to load transform for %s: %ld\n",
5834 sctp_hmac_alg, PTR_ERR(tfm));
5835 }
5836 err = -ENOSYS;
5837 goto out;
5838 }
5839 }
5840
5841 switch (sock->type) {
5842 case SOCK_SEQPACKET:
5843 err = sctp_seqpacket_listen(sk, backlog);
5844 break;
5845 case SOCK_STREAM:
5846 err = sctp_stream_listen(sk, backlog);
5847 break;
5848 default:
5849 break;
5850 }
5851
5852 if (err)
5853 goto cleanup;
5854
5855 /* Store away the transform reference. */
5856 if (!sctp_sk(sk)->hmac)
5857 sctp_sk(sk)->hmac = tfm;
5858out:
5859 sctp_release_sock(sk);
5860 return err;
5861cleanup:
5862 crypto_free_hash(tfm);
5863 goto out;
5864}
5865
5866/*
5867 * This function is done by modeling the current datagram_poll() and the
5868 * tcp_poll(). Note that, based on these implementations, we don't
5869 * lock the socket in this function, even though it seems that,
5870 * ideally, locking or some other mechanisms can be used to ensure
5871 * the integrity of the counters (sndbuf and wmem_alloc) used
5872 * in this place. We assume that we don't need locks either until proven
5873 * otherwise.
5874 *
5875 * Another thing to note is that we include the Async I/O support
5876 * here, again, by modeling the current TCP/UDP code. We don't have
5877 * a good way to test with it yet.
5878 */
5879unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5880{
5881 struct sock *sk = sock->sk;
5882 struct sctp_sock *sp = sctp_sk(sk);
5883 unsigned int mask;
5884
5885 poll_wait(file, sk->sk_sleep, wait);
5886
5887 /* A TCP-style listening socket becomes readable when the accept queue
5888 * is not empty.
5889 */
5890 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5891 return (!list_empty(&sp->ep->asocs)) ?
5892 (POLLIN | POLLRDNORM) : 0;
5893
5894 mask = 0;
5895
5896 /* Is there any exceptional events? */
5897 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5898 mask |= POLLERR;
5899 if (sk->sk_shutdown & RCV_SHUTDOWN)
5900 mask |= POLLRDHUP;
5901 if (sk->sk_shutdown == SHUTDOWN_MASK)
5902 mask |= POLLHUP;
5903
5904 /* Is it readable? Reconsider this code with TCP-style support. */
5905 if (!skb_queue_empty(&sk->sk_receive_queue) ||
5906 (sk->sk_shutdown & RCV_SHUTDOWN))
5907 mask |= POLLIN | POLLRDNORM;
5908
5909 /* The association is either gone or not ready. */
5910 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5911 return mask;
5912
5913 /* Is it writable? */
5914 if (sctp_writeable(sk)) {
5915 mask |= POLLOUT | POLLWRNORM;
5916 } else {
5917 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5918 /*
5919 * Since the socket is not locked, the buffer
5920 * might be made available after the writeable check and
5921 * before the bit is set. This could cause a lost I/O
5922 * signal. tcp_poll() has a race breaker for this race
5923 * condition. Based on their implementation, we put
5924 * in the following code to cover it as well.
5925 */
5926 if (sctp_writeable(sk))
5927 mask |= POLLOUT | POLLWRNORM;
5928 }
5929 return mask;
5930}
5931
5932/********************************************************************
5933 * 2nd Level Abstractions
5934 ********************************************************************/
5935
5936static struct sctp_bind_bucket *sctp_bucket_create(
5937 struct sctp_bind_hashbucket *head, unsigned short snum)
5938{
5939 struct sctp_bind_bucket *pp;
5940
5941 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5942 if (pp) {
5943 SCTP_DBG_OBJCNT_INC(bind_bucket);
5944 pp->port = snum;
5945 pp->fastreuse = 0;
5946 INIT_HLIST_HEAD(&pp->owner);
5947 hlist_add_head(&pp->node, &head->chain);
5948 }
5949 return pp;
5950}
5951
5952/* Caller must hold hashbucket lock for this tb with local BH disabled */
5953static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5954{
5955 if (pp && hlist_empty(&pp->owner)) {
5956 __hlist_del(&pp->node);
5957 kmem_cache_free(sctp_bucket_cachep, pp);
5958 SCTP_DBG_OBJCNT_DEC(bind_bucket);
5959 }
5960}
5961
5962/* Release this socket's reference to a local port. */
5963static inline void __sctp_put_port(struct sock *sk)
5964{
5965 struct sctp_bind_hashbucket *head =
5966 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5967 struct sctp_bind_bucket *pp;
5968
5969 sctp_spin_lock(&head->lock);
5970 pp = sctp_sk(sk)->bind_hash;
5971 __sk_del_bind_node(sk);
5972 sctp_sk(sk)->bind_hash = NULL;
5973 inet_sk(sk)->num = 0;
5974 sctp_bucket_destroy(pp);
5975 sctp_spin_unlock(&head->lock);
5976}
5977
5978void sctp_put_port(struct sock *sk)
5979{
5980 sctp_local_bh_disable();
5981 __sctp_put_port(sk);
5982 sctp_local_bh_enable();
5983}
5984
5985/*
5986 * The system picks an ephemeral port and choose an address set equivalent
5987 * to binding with a wildcard address.
5988 * One of those addresses will be the primary address for the association.
5989 * This automatically enables the multihoming capability of SCTP.
5990 */
5991static int sctp_autobind(struct sock *sk)
5992{
5993 union sctp_addr autoaddr;
5994 struct sctp_af *af;
5995 __be16 port;
5996
5997 /* Initialize a local sockaddr structure to INADDR_ANY. */
5998 af = sctp_sk(sk)->pf->af;
5999
6000 port = htons(inet_sk(sk)->num);
6001 af->inaddr_any(&autoaddr, port);
6002
6003 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6004}
6005
6006/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
6007 *
6008 * From RFC 2292
6009 * 4.2 The cmsghdr Structure *
6010 *
6011 * When ancillary data is sent or received, any number of ancillary data
6012 * objects can be specified by the msg_control and msg_controllen members of
6013 * the msghdr structure, because each object is preceded by
6014 * a cmsghdr structure defining the object's length (the cmsg_len member).
6015 * Historically Berkeley-derived implementations have passed only one object
6016 * at a time, but this API allows multiple objects to be
6017 * passed in a single call to sendmsg() or recvmsg(). The following example
6018 * shows two ancillary data objects in a control buffer.
6019 *
6020 * |<--------------------------- msg_controllen -------------------------->|
6021 * | |
6022 *
6023 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
6024 *
6025 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6026 * | | |
6027 *
6028 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
6029 *
6030 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
6031 * | | | | |
6032 *
6033 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6034 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
6035 *
6036 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
6037 *
6038 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6039 * ^
6040 * |
6041 *
6042 * msg_control
6043 * points here
6044 */
6045SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6046 sctp_cmsgs_t *cmsgs)
6047{
6048 struct cmsghdr *cmsg;
6049 struct msghdr *my_msg = (struct msghdr *)msg;
6050
6051 for (cmsg = CMSG_FIRSTHDR(msg);
6052 cmsg != NULL;
6053 cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6054 if (!CMSG_OK(my_msg, cmsg))
6055 return -EINVAL;
6056
6057 /* Should we parse this header or ignore? */
6058 if (cmsg->cmsg_level != IPPROTO_SCTP)
6059 continue;
6060
6061 /* Strictly check lengths following example in SCM code. */
6062 switch (cmsg->cmsg_type) {
6063 case SCTP_INIT:
6064 /* SCTP Socket API Extension
6065 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6066 *
6067 * This cmsghdr structure provides information for
6068 * initializing new SCTP associations with sendmsg().
6069 * The SCTP_INITMSG socket option uses this same data
6070 * structure. This structure is not used for
6071 * recvmsg().
6072 *
6073 * cmsg_level cmsg_type cmsg_data[]
6074 * ------------ ------------ ----------------------
6075 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
6076 */
6077 if (cmsg->cmsg_len !=
6078 CMSG_LEN(sizeof(struct sctp_initmsg)))
6079 return -EINVAL;
6080 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6081 break;
6082
6083 case SCTP_SNDRCV:
6084 /* SCTP Socket API Extension
6085 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6086 *
6087 * This cmsghdr structure specifies SCTP options for
6088 * sendmsg() and describes SCTP header information
6089 * about a received message through recvmsg().
6090 *
6091 * cmsg_level cmsg_type cmsg_data[]
6092 * ------------ ------------ ----------------------
6093 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6094 */
6095 if (cmsg->cmsg_len !=
6096 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6097 return -EINVAL;
6098
6099 cmsgs->info =
6100 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6101
6102 /* Minimally, validate the sinfo_flags. */
6103 if (cmsgs->info->sinfo_flags &
6104 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6105 SCTP_ABORT | SCTP_EOF))
6106 return -EINVAL;
6107 break;
6108
6109 default:
6110 return -EINVAL;
6111 }
6112 }
6113 return 0;
6114}
6115
6116/*
6117 * Wait for a packet..
6118 * Note: This function is the same function as in core/datagram.c
6119 * with a few modifications to make lksctp work.
6120 */
6121static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6122{
6123 int error;
6124 DEFINE_WAIT(wait);
6125
6126 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6127
6128 /* Socket errors? */
6129 error = sock_error(sk);
6130 if (error)
6131 goto out;
6132
6133 if (!skb_queue_empty(&sk->sk_receive_queue))
6134 goto ready;
6135
6136 /* Socket shut down? */
6137 if (sk->sk_shutdown & RCV_SHUTDOWN)
6138 goto out;
6139
6140 /* Sequenced packets can come disconnected. If so we report the
6141 * problem.
6142 */
6143 error = -ENOTCONN;
6144
6145 /* Is there a good reason to think that we may receive some data? */
6146 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6147 goto out;
6148
6149 /* Handle signals. */
6150 if (signal_pending(current))
6151 goto interrupted;
6152
6153 /* Let another process have a go. Since we are going to sleep
6154 * anyway. Note: This may cause odd behaviors if the message
6155 * does not fit in the user's buffer, but this seems to be the
6156 * only way to honor MSG_DONTWAIT realistically.
6157 */
6158 sctp_release_sock(sk);
6159 *timeo_p = schedule_timeout(*timeo_p);
6160 sctp_lock_sock(sk);
6161
6162ready:
6163 finish_wait(sk->sk_sleep, &wait);
6164 return 0;
6165
6166interrupted:
6167 error = sock_intr_errno(*timeo_p);
6168
6169out:
6170 finish_wait(sk->sk_sleep, &wait);
6171 *err = error;
6172 return error;
6173}
6174
6175/* Receive a datagram.
6176 * Note: This is pretty much the same routine as in core/datagram.c
6177 * with a few changes to make lksctp work.
6178 */
6179static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6180 int noblock, int *err)
6181{
6182 int error;
6183 struct sk_buff *skb;
6184 long timeo;
6185
6186 timeo = sock_rcvtimeo(sk, noblock);
6187
6188 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6189 timeo, MAX_SCHEDULE_TIMEOUT);
6190
6191 do {
6192 /* Again only user level code calls this function,
6193 * so nothing interrupt level
6194 * will suddenly eat the receive_queue.
6195 *
6196 * Look at current nfs client by the way...
6197 * However, this function was corrent in any case. 8)
6198 */
6199 if (flags & MSG_PEEK) {
6200 spin_lock_bh(&sk->sk_receive_queue.lock);
6201 skb = skb_peek(&sk->sk_receive_queue);
6202 if (skb)
6203 atomic_inc(&skb->users);
6204 spin_unlock_bh(&sk->sk_receive_queue.lock);
6205 } else {
6206 skb = skb_dequeue(&sk->sk_receive_queue);
6207 }
6208
6209 if (skb)
6210 return skb;
6211
6212 /* Caller is allowed not to check sk->sk_err before calling. */
6213 error = sock_error(sk);
6214 if (error)
6215 goto no_packet;
6216
6217 if (sk->sk_shutdown & RCV_SHUTDOWN)
6218 break;
6219
6220 /* User doesn't want to wait. */
6221 error = -EAGAIN;
6222 if (!timeo)
6223 goto no_packet;
6224 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6225
6226 return NULL;
6227
6228no_packet:
6229 *err = error;
6230 return NULL;
6231}
6232
6233/* If sndbuf has changed, wake up per association sndbuf waiters. */
6234static void __sctp_write_space(struct sctp_association *asoc)
6235{
6236 struct sock *sk = asoc->base.sk;
6237 struct socket *sock = sk->sk_socket;
6238
6239 if ((sctp_wspace(asoc) > 0) && sock) {
6240 if (waitqueue_active(&asoc->wait))
6241 wake_up_interruptible(&asoc->wait);
6242
6243 if (sctp_writeable(sk)) {
6244 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
6245 wake_up_interruptible(sk->sk_sleep);
6246
6247 /* Note that we try to include the Async I/O support
6248 * here by modeling from the current TCP/UDP code.
6249 * We have not tested with it yet.
6250 */
6251 if (sock->fasync_list &&
6252 !(sk->sk_shutdown & SEND_SHUTDOWN))
6253 sock_wake_async(sock,
6254 SOCK_WAKE_SPACE, POLL_OUT);
6255 }
6256 }
6257}
6258
6259/* Do accounting for the sndbuf space.
6260 * Decrement the used sndbuf space of the corresponding association by the
6261 * data size which was just transmitted(freed).
6262 */
6263static void sctp_wfree(struct sk_buff *skb)
6264{
6265 struct sctp_association *asoc;
6266 struct sctp_chunk *chunk;
6267 struct sock *sk;
6268
6269 /* Get the saved chunk pointer. */
6270 chunk = *((struct sctp_chunk **)(skb->cb));
6271 asoc = chunk->asoc;
6272 sk = asoc->base.sk;
6273 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6274 sizeof(struct sk_buff) +
6275 sizeof(struct sctp_chunk);
6276
6277 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6278
6279 /*
6280 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6281 */
6282 sk->sk_wmem_queued -= skb->truesize;
6283 sk_mem_uncharge(sk, skb->truesize);
6284
6285 sock_wfree(skb);
6286 __sctp_write_space(asoc);
6287
6288 sctp_association_put(asoc);
6289}
6290
6291/* Do accounting for the receive space on the socket.
6292 * Accounting for the association is done in ulpevent.c
6293 * We set this as a destructor for the cloned data skbs so that
6294 * accounting is done at the correct time.
6295 */
6296void sctp_sock_rfree(struct sk_buff *skb)
6297{
6298 struct sock *sk = skb->sk;
6299 struct sctp_ulpevent *event = sctp_skb2event(skb);
6300
6301 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6302
6303 /*
6304 * Mimic the behavior of sock_rfree
6305 */
6306 sk_mem_uncharge(sk, event->rmem_len);
6307}
6308
6309
6310/* Helper function to wait for space in the sndbuf. */
6311static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6312 size_t msg_len)
6313{
6314 struct sock *sk = asoc->base.sk;
6315 int err = 0;
6316 long current_timeo = *timeo_p;
6317 DEFINE_WAIT(wait);
6318
6319 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6320 asoc, (long)(*timeo_p), msg_len);
6321
6322 /* Increment the association's refcnt. */
6323 sctp_association_hold(asoc);
6324
6325 /* Wait on the association specific sndbuf space. */
6326 for (;;) {
6327 prepare_to_wait_exclusive(&asoc->wait, &wait,
6328 TASK_INTERRUPTIBLE);
6329 if (!*timeo_p)
6330 goto do_nonblock;
6331 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6332 asoc->base.dead)
6333 goto do_error;
6334 if (signal_pending(current))
6335 goto do_interrupted;
6336 if (msg_len <= sctp_wspace(asoc))
6337 break;
6338
6339 /* Let another process have a go. Since we are going
6340 * to sleep anyway.
6341 */
6342 sctp_release_sock(sk);
6343 current_timeo = schedule_timeout(current_timeo);
6344 BUG_ON(sk != asoc->base.sk);
6345 sctp_lock_sock(sk);
6346
6347 *timeo_p = current_timeo;
6348 }
6349
6350out:
6351 finish_wait(&asoc->wait, &wait);
6352
6353 /* Release the association's refcnt. */
6354 sctp_association_put(asoc);
6355
6356 return err;
6357
6358do_error:
6359 err = -EPIPE;
6360 goto out;
6361
6362do_interrupted:
6363 err = sock_intr_errno(*timeo_p);
6364 goto out;
6365
6366do_nonblock:
6367 err = -EAGAIN;
6368 goto out;
6369}
6370
6371/* If socket sndbuf has changed, wake up all per association waiters. */
6372void sctp_write_space(struct sock *sk)
6373{
6374 struct sctp_association *asoc;
6375
6376 /* Wake up the tasks in each wait queue. */
6377 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6378 __sctp_write_space(asoc);
6379 }
6380}
6381
6382/* Is there any sndbuf space available on the socket?
6383 *
6384 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6385 * associations on the same socket. For a UDP-style socket with
6386 * multiple associations, it is possible for it to be "unwriteable"
6387 * prematurely. I assume that this is acceptable because
6388 * a premature "unwriteable" is better than an accidental "writeable" which
6389 * would cause an unwanted block under certain circumstances. For the 1-1
6390 * UDP-style sockets or TCP-style sockets, this code should work.
6391 * - Daisy
6392 */
6393static int sctp_writeable(struct sock *sk)
6394{
6395 int amt = 0;
6396
6397 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
6398 if (amt < 0)
6399 amt = 0;
6400 return amt;
6401}
6402
6403/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6404 * returns immediately with EINPROGRESS.
6405 */
6406static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6407{
6408 struct sock *sk = asoc->base.sk;
6409 int err = 0;
6410 long current_timeo = *timeo_p;
6411 DEFINE_WAIT(wait);
6412
6413 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6414 (long)(*timeo_p));
6415
6416 /* Increment the association's refcnt. */
6417 sctp_association_hold(asoc);
6418
6419 for (;;) {
6420 prepare_to_wait_exclusive(&asoc->wait, &wait,
6421 TASK_INTERRUPTIBLE);
6422 if (!*timeo_p)
6423 goto do_nonblock;
6424 if (sk->sk_shutdown & RCV_SHUTDOWN)
6425 break;
6426 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6427 asoc->base.dead)
6428 goto do_error;
6429 if (signal_pending(current))
6430 goto do_interrupted;
6431
6432 if (sctp_state(asoc, ESTABLISHED))
6433 break;
6434
6435 /* Let another process have a go. Since we are going
6436 * to sleep anyway.
6437 */
6438 sctp_release_sock(sk);
6439 current_timeo = schedule_timeout(current_timeo);
6440 sctp_lock_sock(sk);
6441
6442 *timeo_p = current_timeo;
6443 }
6444
6445out:
6446 finish_wait(&asoc->wait, &wait);
6447
6448 /* Release the association's refcnt. */
6449 sctp_association_put(asoc);
6450
6451 return err;
6452
6453do_error:
6454 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6455 err = -ETIMEDOUT;
6456 else
6457 err = -ECONNREFUSED;
6458 goto out;
6459
6460do_interrupted:
6461 err = sock_intr_errno(*timeo_p);
6462 goto out;
6463
6464do_nonblock:
6465 err = -EINPROGRESS;
6466 goto out;
6467}
6468
6469static int sctp_wait_for_accept(struct sock *sk, long timeo)
6470{
6471 struct sctp_endpoint *ep;
6472 int err = 0;
6473 DEFINE_WAIT(wait);
6474
6475 ep = sctp_sk(sk)->ep;
6476
6477
6478 for (;;) {
6479 prepare_to_wait_exclusive(sk->sk_sleep, &wait,
6480 TASK_INTERRUPTIBLE);
6481
6482 if (list_empty(&ep->asocs)) {
6483 sctp_release_sock(sk);
6484 timeo = schedule_timeout(timeo);
6485 sctp_lock_sock(sk);
6486 }
6487
6488 err = -EINVAL;
6489 if (!sctp_sstate(sk, LISTENING))
6490 break;
6491
6492 err = 0;
6493 if (!list_empty(&ep->asocs))
6494 break;
6495
6496 err = sock_intr_errno(timeo);
6497 if (signal_pending(current))
6498 break;
6499
6500 err = -EAGAIN;
6501 if (!timeo)
6502 break;
6503 }
6504
6505 finish_wait(sk->sk_sleep, &wait);
6506
6507 return err;
6508}
6509
6510static void sctp_wait_for_close(struct sock *sk, long timeout)
6511{
6512 DEFINE_WAIT(wait);
6513
6514 do {
6515 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6516 if (list_empty(&sctp_sk(sk)->ep->asocs))
6517 break;
6518 sctp_release_sock(sk);
6519 timeout = schedule_timeout(timeout);
6520 sctp_lock_sock(sk);
6521 } while (!signal_pending(current) && timeout);
6522
6523 finish_wait(sk->sk_sleep, &wait);
6524}
6525
6526static void sctp_sock_rfree_frag(struct sk_buff *skb)
6527{
6528 struct sk_buff *frag;
6529
6530 if (!skb->data_len)
6531 goto done;
6532
6533 /* Don't forget the fragments. */
6534 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6535 sctp_sock_rfree_frag(frag);
6536
6537done:
6538 sctp_sock_rfree(skb);
6539}
6540
6541static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6542{
6543 struct sk_buff *frag;
6544
6545 if (!skb->data_len)
6546 goto done;
6547
6548 /* Don't forget the fragments. */
6549 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6550 sctp_skb_set_owner_r_frag(frag, sk);
6551
6552done:
6553 sctp_skb_set_owner_r(skb, sk);
6554}
6555
6556/* Populate the fields of the newsk from the oldsk and migrate the assoc
6557 * and its messages to the newsk.
6558 */
6559static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6560 struct sctp_association *assoc,
6561 sctp_socket_type_t type)
6562{
6563 struct sctp_sock *oldsp = sctp_sk(oldsk);
6564 struct sctp_sock *newsp = sctp_sk(newsk);
6565 struct sctp_bind_bucket *pp; /* hash list port iterator */
6566 struct sctp_endpoint *newep = newsp->ep;
6567 struct sk_buff *skb, *tmp;
6568 struct sctp_ulpevent *event;
6569 struct sctp_bind_hashbucket *head;
6570
6571 /* Migrate socket buffer sizes and all the socket level options to the
6572 * new socket.
6573 */
6574 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6575 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6576 /* Brute force copy old sctp opt. */
6577 inet_sk_copy_descendant(newsk, oldsk);
6578
6579 /* Restore the ep value that was overwritten with the above structure
6580 * copy.
6581 */
6582 newsp->ep = newep;
6583 newsp->hmac = NULL;
6584
6585 /* Hook this new socket in to the bind_hash list. */
6586 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)];
6587 sctp_local_bh_disable();
6588 sctp_spin_lock(&head->lock);
6589 pp = sctp_sk(oldsk)->bind_hash;
6590 sk_add_bind_node(newsk, &pp->owner);
6591 sctp_sk(newsk)->bind_hash = pp;
6592 inet_sk(newsk)->num = inet_sk(oldsk)->num;
6593 sctp_spin_unlock(&head->lock);
6594 sctp_local_bh_enable();
6595
6596 /* Copy the bind_addr list from the original endpoint to the new
6597 * endpoint so that we can handle restarts properly
6598 */
6599 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6600 &oldsp->ep->base.bind_addr, GFP_KERNEL);
6601
6602 /* Move any messages in the old socket's receive queue that are for the
6603 * peeled off association to the new socket's receive queue.
6604 */
6605 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6606 event = sctp_skb2event(skb);
6607 if (event->asoc == assoc) {
6608 sctp_sock_rfree_frag(skb);
6609 __skb_unlink(skb, &oldsk->sk_receive_queue);
6610 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6611 sctp_skb_set_owner_r_frag(skb, newsk);
6612 }
6613 }
6614
6615 /* Clean up any messages pending delivery due to partial
6616 * delivery. Three cases:
6617 * 1) No partial deliver; no work.
6618 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6619 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6620 */
6621 skb_queue_head_init(&newsp->pd_lobby);
6622 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6623
6624 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6625 struct sk_buff_head *queue;
6626
6627 /* Decide which queue to move pd_lobby skbs to. */
6628 if (assoc->ulpq.pd_mode) {
6629 queue = &newsp->pd_lobby;
6630 } else
6631 queue = &newsk->sk_receive_queue;
6632
6633 /* Walk through the pd_lobby, looking for skbs that
6634 * need moved to the new socket.
6635 */
6636 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6637 event = sctp_skb2event(skb);
6638 if (event->asoc == assoc) {
6639 sctp_sock_rfree_frag(skb);
6640 __skb_unlink(skb, &oldsp->pd_lobby);
6641 __skb_queue_tail(queue, skb);
6642 sctp_skb_set_owner_r_frag(skb, newsk);
6643 }
6644 }
6645
6646 /* Clear up any skbs waiting for the partial
6647 * delivery to finish.
6648 */
6649 if (assoc->ulpq.pd_mode)
6650 sctp_clear_pd(oldsk, NULL);
6651
6652 }
6653
6654 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) {
6655 sctp_sock_rfree_frag(skb);
6656 sctp_skb_set_owner_r_frag(skb, newsk);
6657 }
6658
6659 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) {
6660 sctp_sock_rfree_frag(skb);
6661 sctp_skb_set_owner_r_frag(skb, newsk);
6662 }
6663
6664 /* Set the type of socket to indicate that it is peeled off from the
6665 * original UDP-style socket or created with the accept() call on a
6666 * TCP-style socket..
6667 */
6668 newsp->type = type;
6669
6670 /* Mark the new socket "in-use" by the user so that any packets
6671 * that may arrive on the association after we've moved it are
6672 * queued to the backlog. This prevents a potential race between
6673 * backlog processing on the old socket and new-packet processing
6674 * on the new socket.
6675 *
6676 * The caller has just allocated newsk so we can guarantee that other
6677 * paths won't try to lock it and then oldsk.
6678 */
6679 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6680 sctp_assoc_migrate(assoc, newsk);
6681
6682 /* If the association on the newsk is already closed before accept()
6683 * is called, set RCV_SHUTDOWN flag.
6684 */
6685 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6686 newsk->sk_shutdown |= RCV_SHUTDOWN;
6687
6688 newsk->sk_state = SCTP_SS_ESTABLISHED;
6689 sctp_release_sock(newsk);
6690}
6691
6692
6693/* This proto struct describes the ULP interface for SCTP. */
6694struct proto sctp_prot = {
6695 .name = "SCTP",
6696 .owner = THIS_MODULE,
6697 .close = sctp_close,
6698 .connect = sctp_connect,
6699 .disconnect = sctp_disconnect,
6700 .accept = sctp_accept,
6701 .ioctl = sctp_ioctl,
6702 .init = sctp_init_sock,
6703 .destroy = sctp_destroy_sock,
6704 .shutdown = sctp_shutdown,
6705 .setsockopt = sctp_setsockopt,
6706 .getsockopt = sctp_getsockopt,
6707 .sendmsg = sctp_sendmsg,
6708 .recvmsg = sctp_recvmsg,
6709 .bind = sctp_bind,
6710 .backlog_rcv = sctp_backlog_rcv,
6711 .hash = sctp_hash,
6712 .unhash = sctp_unhash,
6713 .get_port = sctp_get_port,
6714 .obj_size = sizeof(struct sctp_sock),
6715 .sysctl_mem = sysctl_sctp_mem,
6716 .sysctl_rmem = sysctl_sctp_rmem,
6717 .sysctl_wmem = sysctl_sctp_wmem,
6718 .memory_pressure = &sctp_memory_pressure,
6719 .enter_memory_pressure = sctp_enter_memory_pressure,
6720 .memory_allocated = &sctp_memory_allocated,
6721 .sockets_allocated = &sctp_sockets_allocated,
6722};
6723
6724#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6725
6726struct proto sctpv6_prot = {
6727 .name = "SCTPv6",
6728 .owner = THIS_MODULE,
6729 .close = sctp_close,
6730 .connect = sctp_connect,
6731 .disconnect = sctp_disconnect,
6732 .accept = sctp_accept,
6733 .ioctl = sctp_ioctl,
6734 .init = sctp_init_sock,
6735 .destroy = sctp_destroy_sock,
6736 .shutdown = sctp_shutdown,
6737 .setsockopt = sctp_setsockopt,
6738 .getsockopt = sctp_getsockopt,
6739 .sendmsg = sctp_sendmsg,
6740 .recvmsg = sctp_recvmsg,
6741 .bind = sctp_bind,
6742 .backlog_rcv = sctp_backlog_rcv,
6743 .hash = sctp_hash,
6744 .unhash = sctp_unhash,
6745 .get_port = sctp_get_port,
6746 .obj_size = sizeof(struct sctp6_sock),
6747 .sysctl_mem = sysctl_sctp_mem,
6748 .sysctl_rmem = sysctl_sctp_rmem,
6749 .sysctl_wmem = sysctl_sctp_wmem,
6750 .memory_pressure = &sctp_memory_pressure,
6751 .enter_memory_pressure = sctp_enter_memory_pressure,
6752 .memory_allocated = &sctp_memory_allocated,
6753 .sockets_allocated = &sctp_sockets_allocated,
6754};
6755#endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
This page took 0.111295 seconds and 4 git commands to generate.