]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * CFQ, or complete fairness queueing, disk scheduler. | |
3 | * | |
4 | * Based on ideas from a previously unfinished io | |
5 | * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli. | |
6 | * | |
7 | * Copyright (C) 2003 Jens Axboe <[email protected]> | |
8 | */ | |
9 | #include <linux/module.h> | |
10 | #include <linux/slab.h> | |
11 | #include <linux/blkdev.h> | |
12 | #include <linux/elevator.h> | |
13 | #include <linux/jiffies.h> | |
14 | #include <linux/rbtree.h> | |
15 | #include <linux/ioprio.h> | |
16 | #include <linux/blktrace_api.h> | |
17 | #include "blk.h" | |
18 | #include "blk-cgroup.h" | |
19 | ||
20 | /* | |
21 | * tunables | |
22 | */ | |
23 | /* max queue in one round of service */ | |
24 | static const int cfq_quantum = 8; | |
25 | static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 }; | |
26 | /* maximum backwards seek, in KiB */ | |
27 | static const int cfq_back_max = 16 * 1024; | |
28 | /* penalty of a backwards seek */ | |
29 | static const int cfq_back_penalty = 2; | |
30 | static const int cfq_slice_sync = HZ / 10; | |
31 | static int cfq_slice_async = HZ / 25; | |
32 | static const int cfq_slice_async_rq = 2; | |
33 | static int cfq_slice_idle = HZ / 125; | |
34 | static int cfq_group_idle = HZ / 125; | |
35 | static const int cfq_target_latency = HZ * 3/10; /* 300 ms */ | |
36 | static const int cfq_hist_divisor = 4; | |
37 | ||
38 | /* | |
39 | * offset from end of service tree | |
40 | */ | |
41 | #define CFQ_IDLE_DELAY (HZ / 5) | |
42 | ||
43 | /* | |
44 | * below this threshold, we consider thinktime immediate | |
45 | */ | |
46 | #define CFQ_MIN_TT (2) | |
47 | ||
48 | #define CFQ_SLICE_SCALE (5) | |
49 | #define CFQ_HW_QUEUE_MIN (5) | |
50 | #define CFQ_SERVICE_SHIFT 12 | |
51 | ||
52 | #define CFQQ_SEEK_THR (sector_t)(8 * 100) | |
53 | #define CFQQ_CLOSE_THR (sector_t)(8 * 1024) | |
54 | #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32) | |
55 | #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8) | |
56 | ||
57 | #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq) | |
58 | #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0]) | |
59 | #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1]) | |
60 | ||
61 | static struct kmem_cache *cfq_pool; | |
62 | ||
63 | #define CFQ_PRIO_LISTS IOPRIO_BE_NR | |
64 | #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE) | |
65 | #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT) | |
66 | ||
67 | #define sample_valid(samples) ((samples) > 80) | |
68 | #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node) | |
69 | ||
70 | struct cfq_ttime { | |
71 | unsigned long last_end_request; | |
72 | ||
73 | unsigned long ttime_total; | |
74 | unsigned long ttime_samples; | |
75 | unsigned long ttime_mean; | |
76 | }; | |
77 | ||
78 | /* | |
79 | * Most of our rbtree usage is for sorting with min extraction, so | |
80 | * if we cache the leftmost node we don't have to walk down the tree | |
81 | * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should | |
82 | * move this into the elevator for the rq sorting as well. | |
83 | */ | |
84 | struct cfq_rb_root { | |
85 | struct rb_root rb; | |
86 | struct rb_node *left; | |
87 | unsigned count; | |
88 | u64 min_vdisktime; | |
89 | struct cfq_ttime ttime; | |
90 | }; | |
91 | #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \ | |
92 | .ttime = {.last_end_request = jiffies,},} | |
93 | ||
94 | /* | |
95 | * Per process-grouping structure | |
96 | */ | |
97 | struct cfq_queue { | |
98 | /* reference count */ | |
99 | int ref; | |
100 | /* various state flags, see below */ | |
101 | unsigned int flags; | |
102 | /* parent cfq_data */ | |
103 | struct cfq_data *cfqd; | |
104 | /* service_tree member */ | |
105 | struct rb_node rb_node; | |
106 | /* service_tree key */ | |
107 | unsigned long rb_key; | |
108 | /* prio tree member */ | |
109 | struct rb_node p_node; | |
110 | /* prio tree root we belong to, if any */ | |
111 | struct rb_root *p_root; | |
112 | /* sorted list of pending requests */ | |
113 | struct rb_root sort_list; | |
114 | /* if fifo isn't expired, next request to serve */ | |
115 | struct request *next_rq; | |
116 | /* requests queued in sort_list */ | |
117 | int queued[2]; | |
118 | /* currently allocated requests */ | |
119 | int allocated[2]; | |
120 | /* fifo list of requests in sort_list */ | |
121 | struct list_head fifo; | |
122 | ||
123 | /* time when queue got scheduled in to dispatch first request. */ | |
124 | unsigned long dispatch_start; | |
125 | unsigned int allocated_slice; | |
126 | unsigned int slice_dispatch; | |
127 | /* time when first request from queue completed and slice started. */ | |
128 | unsigned long slice_start; | |
129 | unsigned long slice_end; | |
130 | long slice_resid; | |
131 | ||
132 | /* pending priority requests */ | |
133 | int prio_pending; | |
134 | /* number of requests that are on the dispatch list or inside driver */ | |
135 | int dispatched; | |
136 | ||
137 | /* io prio of this group */ | |
138 | unsigned short ioprio, org_ioprio; | |
139 | unsigned short ioprio_class; | |
140 | ||
141 | pid_t pid; | |
142 | ||
143 | u32 seek_history; | |
144 | sector_t last_request_pos; | |
145 | ||
146 | struct cfq_rb_root *service_tree; | |
147 | struct cfq_queue *new_cfqq; | |
148 | struct cfq_group *cfqg; | |
149 | /* Number of sectors dispatched from queue in single dispatch round */ | |
150 | unsigned long nr_sectors; | |
151 | }; | |
152 | ||
153 | /* | |
154 | * First index in the service_trees. | |
155 | * IDLE is handled separately, so it has negative index | |
156 | */ | |
157 | enum wl_class_t { | |
158 | BE_WORKLOAD = 0, | |
159 | RT_WORKLOAD = 1, | |
160 | IDLE_WORKLOAD = 2, | |
161 | CFQ_PRIO_NR, | |
162 | }; | |
163 | ||
164 | /* | |
165 | * Second index in the service_trees. | |
166 | */ | |
167 | enum wl_type_t { | |
168 | ASYNC_WORKLOAD = 0, | |
169 | SYNC_NOIDLE_WORKLOAD = 1, | |
170 | SYNC_WORKLOAD = 2 | |
171 | }; | |
172 | ||
173 | struct cfqg_stats { | |
174 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | |
175 | /* total bytes transferred */ | |
176 | struct blkg_rwstat service_bytes; | |
177 | /* total IOs serviced, post merge */ | |
178 | struct blkg_rwstat serviced; | |
179 | /* number of ios merged */ | |
180 | struct blkg_rwstat merged; | |
181 | /* total time spent on device in ns, may not be accurate w/ queueing */ | |
182 | struct blkg_rwstat service_time; | |
183 | /* total time spent waiting in scheduler queue in ns */ | |
184 | struct blkg_rwstat wait_time; | |
185 | /* number of IOs queued up */ | |
186 | struct blkg_rwstat queued; | |
187 | /* total sectors transferred */ | |
188 | struct blkg_stat sectors; | |
189 | /* total disk time and nr sectors dispatched by this group */ | |
190 | struct blkg_stat time; | |
191 | #ifdef CONFIG_DEBUG_BLK_CGROUP | |
192 | /* time not charged to this cgroup */ | |
193 | struct blkg_stat unaccounted_time; | |
194 | /* sum of number of ios queued across all samples */ | |
195 | struct blkg_stat avg_queue_size_sum; | |
196 | /* count of samples taken for average */ | |
197 | struct blkg_stat avg_queue_size_samples; | |
198 | /* how many times this group has been removed from service tree */ | |
199 | struct blkg_stat dequeue; | |
200 | /* total time spent waiting for it to be assigned a timeslice. */ | |
201 | struct blkg_stat group_wait_time; | |
202 | /* time spent idling for this blkcg_gq */ | |
203 | struct blkg_stat idle_time; | |
204 | /* total time with empty current active q with other requests queued */ | |
205 | struct blkg_stat empty_time; | |
206 | /* fields after this shouldn't be cleared on stat reset */ | |
207 | uint64_t start_group_wait_time; | |
208 | uint64_t start_idle_time; | |
209 | uint64_t start_empty_time; | |
210 | uint16_t flags; | |
211 | #endif /* CONFIG_DEBUG_BLK_CGROUP */ | |
212 | #endif /* CONFIG_CFQ_GROUP_IOSCHED */ | |
213 | }; | |
214 | ||
215 | /* This is per cgroup per device grouping structure */ | |
216 | struct cfq_group { | |
217 | /* must be the first member */ | |
218 | struct blkg_policy_data pd; | |
219 | ||
220 | /* group service_tree member */ | |
221 | struct rb_node rb_node; | |
222 | ||
223 | /* group service_tree key */ | |
224 | u64 vdisktime; | |
225 | ||
226 | /* | |
227 | * The number of active cfqgs and sum of their weights under this | |
228 | * cfqg. This covers this cfqg's leaf_weight and all children's | |
229 | * weights, but does not cover weights of further descendants. | |
230 | * | |
231 | * If a cfqg is on the service tree, it's active. An active cfqg | |
232 | * also activates its parent and contributes to the children_weight | |
233 | * of the parent. | |
234 | */ | |
235 | int nr_active; | |
236 | unsigned int children_weight; | |
237 | ||
238 | /* | |
239 | * vfraction is the fraction of vdisktime that the tasks in this | |
240 | * cfqg are entitled to. This is determined by compounding the | |
241 | * ratios walking up from this cfqg to the root. | |
242 | * | |
243 | * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all | |
244 | * vfractions on a service tree is approximately 1. The sum may | |
245 | * deviate a bit due to rounding errors and fluctuations caused by | |
246 | * cfqgs entering and leaving the service tree. | |
247 | */ | |
248 | unsigned int vfraction; | |
249 | ||
250 | /* | |
251 | * There are two weights - (internal) weight is the weight of this | |
252 | * cfqg against the sibling cfqgs. leaf_weight is the wight of | |
253 | * this cfqg against the child cfqgs. For the root cfqg, both | |
254 | * weights are kept in sync for backward compatibility. | |
255 | */ | |
256 | unsigned int weight; | |
257 | unsigned int new_weight; | |
258 | unsigned int dev_weight; | |
259 | ||
260 | unsigned int leaf_weight; | |
261 | unsigned int new_leaf_weight; | |
262 | unsigned int dev_leaf_weight; | |
263 | ||
264 | /* number of cfqq currently on this group */ | |
265 | int nr_cfqq; | |
266 | ||
267 | /* | |
268 | * Per group busy queues average. Useful for workload slice calc. We | |
269 | * create the array for each prio class but at run time it is used | |
270 | * only for RT and BE class and slot for IDLE class remains unused. | |
271 | * This is primarily done to avoid confusion and a gcc warning. | |
272 | */ | |
273 | unsigned int busy_queues_avg[CFQ_PRIO_NR]; | |
274 | /* | |
275 | * rr lists of queues with requests. We maintain service trees for | |
276 | * RT and BE classes. These trees are subdivided in subclasses | |
277 | * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE | |
278 | * class there is no subclassification and all the cfq queues go on | |
279 | * a single tree service_tree_idle. | |
280 | * Counts are embedded in the cfq_rb_root | |
281 | */ | |
282 | struct cfq_rb_root service_trees[2][3]; | |
283 | struct cfq_rb_root service_tree_idle; | |
284 | ||
285 | unsigned long saved_wl_slice; | |
286 | enum wl_type_t saved_wl_type; | |
287 | enum wl_class_t saved_wl_class; | |
288 | ||
289 | /* number of requests that are on the dispatch list or inside driver */ | |
290 | int dispatched; | |
291 | struct cfq_ttime ttime; | |
292 | struct cfqg_stats stats; /* stats for this cfqg */ | |
293 | struct cfqg_stats dead_stats; /* stats pushed from dead children */ | |
294 | }; | |
295 | ||
296 | struct cfq_io_cq { | |
297 | struct io_cq icq; /* must be the first member */ | |
298 | struct cfq_queue *cfqq[2]; | |
299 | struct cfq_ttime ttime; | |
300 | int ioprio; /* the current ioprio */ | |
301 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | |
302 | uint64_t blkcg_id; /* the current blkcg ID */ | |
303 | #endif | |
304 | }; | |
305 | ||
306 | /* | |
307 | * Per block device queue structure | |
308 | */ | |
309 | struct cfq_data { | |
310 | struct request_queue *queue; | |
311 | /* Root service tree for cfq_groups */ | |
312 | struct cfq_rb_root grp_service_tree; | |
313 | struct cfq_group *root_group; | |
314 | ||
315 | /* | |
316 | * The priority currently being served | |
317 | */ | |
318 | enum wl_class_t serving_wl_class; | |
319 | enum wl_type_t serving_wl_type; | |
320 | unsigned long workload_expires; | |
321 | struct cfq_group *serving_group; | |
322 | ||
323 | /* | |
324 | * Each priority tree is sorted by next_request position. These | |
325 | * trees are used when determining if two or more queues are | |
326 | * interleaving requests (see cfq_close_cooperator). | |
327 | */ | |
328 | struct rb_root prio_trees[CFQ_PRIO_LISTS]; | |
329 | ||
330 | unsigned int busy_queues; | |
331 | unsigned int busy_sync_queues; | |
332 | ||
333 | int rq_in_driver; | |
334 | int rq_in_flight[2]; | |
335 | ||
336 | /* | |
337 | * queue-depth detection | |
338 | */ | |
339 | int rq_queued; | |
340 | int hw_tag; | |
341 | /* | |
342 | * hw_tag can be | |
343 | * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection) | |
344 | * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth) | |
345 | * 0 => no NCQ | |
346 | */ | |
347 | int hw_tag_est_depth; | |
348 | unsigned int hw_tag_samples; | |
349 | ||
350 | /* | |
351 | * idle window management | |
352 | */ | |
353 | struct timer_list idle_slice_timer; | |
354 | struct work_struct unplug_work; | |
355 | ||
356 | struct cfq_queue *active_queue; | |
357 | struct cfq_io_cq *active_cic; | |
358 | ||
359 | /* | |
360 | * async queue for each priority case | |
361 | */ | |
362 | struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR]; | |
363 | struct cfq_queue *async_idle_cfqq; | |
364 | ||
365 | sector_t last_position; | |
366 | ||
367 | /* | |
368 | * tunables, see top of file | |
369 | */ | |
370 | unsigned int cfq_quantum; | |
371 | unsigned int cfq_fifo_expire[2]; | |
372 | unsigned int cfq_back_penalty; | |
373 | unsigned int cfq_back_max; | |
374 | unsigned int cfq_slice[2]; | |
375 | unsigned int cfq_slice_async_rq; | |
376 | unsigned int cfq_slice_idle; | |
377 | unsigned int cfq_group_idle; | |
378 | unsigned int cfq_latency; | |
379 | unsigned int cfq_target_latency; | |
380 | ||
381 | /* | |
382 | * Fallback dummy cfqq for extreme OOM conditions | |
383 | */ | |
384 | struct cfq_queue oom_cfqq; | |
385 | ||
386 | unsigned long last_delayed_sync; | |
387 | }; | |
388 | ||
389 | static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd); | |
390 | ||
391 | static struct cfq_rb_root *st_for(struct cfq_group *cfqg, | |
392 | enum wl_class_t class, | |
393 | enum wl_type_t type) | |
394 | { | |
395 | if (!cfqg) | |
396 | return NULL; | |
397 | ||
398 | if (class == IDLE_WORKLOAD) | |
399 | return &cfqg->service_tree_idle; | |
400 | ||
401 | return &cfqg->service_trees[class][type]; | |
402 | } | |
403 | ||
404 | enum cfqq_state_flags { | |
405 | CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */ | |
406 | CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */ | |
407 | CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */ | |
408 | CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */ | |
409 | CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */ | |
410 | CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */ | |
411 | CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */ | |
412 | CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */ | |
413 | CFQ_CFQQ_FLAG_sync, /* synchronous queue */ | |
414 | CFQ_CFQQ_FLAG_coop, /* cfqq is shared */ | |
415 | CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */ | |
416 | CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */ | |
417 | CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */ | |
418 | }; | |
419 | ||
420 | #define CFQ_CFQQ_FNS(name) \ | |
421 | static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \ | |
422 | { \ | |
423 | (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \ | |
424 | } \ | |
425 | static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \ | |
426 | { \ | |
427 | (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \ | |
428 | } \ | |
429 | static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \ | |
430 | { \ | |
431 | return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \ | |
432 | } | |
433 | ||
434 | CFQ_CFQQ_FNS(on_rr); | |
435 | CFQ_CFQQ_FNS(wait_request); | |
436 | CFQ_CFQQ_FNS(must_dispatch); | |
437 | CFQ_CFQQ_FNS(must_alloc_slice); | |
438 | CFQ_CFQQ_FNS(fifo_expire); | |
439 | CFQ_CFQQ_FNS(idle_window); | |
440 | CFQ_CFQQ_FNS(prio_changed); | |
441 | CFQ_CFQQ_FNS(slice_new); | |
442 | CFQ_CFQQ_FNS(sync); | |
443 | CFQ_CFQQ_FNS(coop); | |
444 | CFQ_CFQQ_FNS(split_coop); | |
445 | CFQ_CFQQ_FNS(deep); | |
446 | CFQ_CFQQ_FNS(wait_busy); | |
447 | #undef CFQ_CFQQ_FNS | |
448 | ||
449 | static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd) | |
450 | { | |
451 | return pd ? container_of(pd, struct cfq_group, pd) : NULL; | |
452 | } | |
453 | ||
454 | static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg) | |
455 | { | |
456 | return pd_to_blkg(&cfqg->pd); | |
457 | } | |
458 | ||
459 | #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP) | |
460 | ||
461 | /* cfqg stats flags */ | |
462 | enum cfqg_stats_flags { | |
463 | CFQG_stats_waiting = 0, | |
464 | CFQG_stats_idling, | |
465 | CFQG_stats_empty, | |
466 | }; | |
467 | ||
468 | #define CFQG_FLAG_FNS(name) \ | |
469 | static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \ | |
470 | { \ | |
471 | stats->flags |= (1 << CFQG_stats_##name); \ | |
472 | } \ | |
473 | static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \ | |
474 | { \ | |
475 | stats->flags &= ~(1 << CFQG_stats_##name); \ | |
476 | } \ | |
477 | static inline int cfqg_stats_##name(struct cfqg_stats *stats) \ | |
478 | { \ | |
479 | return (stats->flags & (1 << CFQG_stats_##name)) != 0; \ | |
480 | } \ | |
481 | ||
482 | CFQG_FLAG_FNS(waiting) | |
483 | CFQG_FLAG_FNS(idling) | |
484 | CFQG_FLAG_FNS(empty) | |
485 | #undef CFQG_FLAG_FNS | |
486 | ||
487 | /* This should be called with the queue_lock held. */ | |
488 | static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats) | |
489 | { | |
490 | unsigned long long now; | |
491 | ||
492 | if (!cfqg_stats_waiting(stats)) | |
493 | return; | |
494 | ||
495 | now = sched_clock(); | |
496 | if (time_after64(now, stats->start_group_wait_time)) | |
497 | blkg_stat_add(&stats->group_wait_time, | |
498 | now - stats->start_group_wait_time); | |
499 | cfqg_stats_clear_waiting(stats); | |
500 | } | |
501 | ||
502 | /* This should be called with the queue_lock held. */ | |
503 | static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, | |
504 | struct cfq_group *curr_cfqg) | |
505 | { | |
506 | struct cfqg_stats *stats = &cfqg->stats; | |
507 | ||
508 | if (cfqg_stats_waiting(stats)) | |
509 | return; | |
510 | if (cfqg == curr_cfqg) | |
511 | return; | |
512 | stats->start_group_wait_time = sched_clock(); | |
513 | cfqg_stats_mark_waiting(stats); | |
514 | } | |
515 | ||
516 | /* This should be called with the queue_lock held. */ | |
517 | static void cfqg_stats_end_empty_time(struct cfqg_stats *stats) | |
518 | { | |
519 | unsigned long long now; | |
520 | ||
521 | if (!cfqg_stats_empty(stats)) | |
522 | return; | |
523 | ||
524 | now = sched_clock(); | |
525 | if (time_after64(now, stats->start_empty_time)) | |
526 | blkg_stat_add(&stats->empty_time, | |
527 | now - stats->start_empty_time); | |
528 | cfqg_stats_clear_empty(stats); | |
529 | } | |
530 | ||
531 | static void cfqg_stats_update_dequeue(struct cfq_group *cfqg) | |
532 | { | |
533 | blkg_stat_add(&cfqg->stats.dequeue, 1); | |
534 | } | |
535 | ||
536 | static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) | |
537 | { | |
538 | struct cfqg_stats *stats = &cfqg->stats; | |
539 | ||
540 | if (blkg_rwstat_total(&stats->queued)) | |
541 | return; | |
542 | ||
543 | /* | |
544 | * group is already marked empty. This can happen if cfqq got new | |
545 | * request in parent group and moved to this group while being added | |
546 | * to service tree. Just ignore the event and move on. | |
547 | */ | |
548 | if (cfqg_stats_empty(stats)) | |
549 | return; | |
550 | ||
551 | stats->start_empty_time = sched_clock(); | |
552 | cfqg_stats_mark_empty(stats); | |
553 | } | |
554 | ||
555 | static void cfqg_stats_update_idle_time(struct cfq_group *cfqg) | |
556 | { | |
557 | struct cfqg_stats *stats = &cfqg->stats; | |
558 | ||
559 | if (cfqg_stats_idling(stats)) { | |
560 | unsigned long long now = sched_clock(); | |
561 | ||
562 | if (time_after64(now, stats->start_idle_time)) | |
563 | blkg_stat_add(&stats->idle_time, | |
564 | now - stats->start_idle_time); | |
565 | cfqg_stats_clear_idling(stats); | |
566 | } | |
567 | } | |
568 | ||
569 | static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) | |
570 | { | |
571 | struct cfqg_stats *stats = &cfqg->stats; | |
572 | ||
573 | BUG_ON(cfqg_stats_idling(stats)); | |
574 | ||
575 | stats->start_idle_time = sched_clock(); | |
576 | cfqg_stats_mark_idling(stats); | |
577 | } | |
578 | ||
579 | static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) | |
580 | { | |
581 | struct cfqg_stats *stats = &cfqg->stats; | |
582 | ||
583 | blkg_stat_add(&stats->avg_queue_size_sum, | |
584 | blkg_rwstat_total(&stats->queued)); | |
585 | blkg_stat_add(&stats->avg_queue_size_samples, 1); | |
586 | cfqg_stats_update_group_wait_time(stats); | |
587 | } | |
588 | ||
589 | #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */ | |
590 | ||
591 | static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { } | |
592 | static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { } | |
593 | static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { } | |
594 | static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { } | |
595 | static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { } | |
596 | static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { } | |
597 | static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { } | |
598 | ||
599 | #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */ | |
600 | ||
601 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | |
602 | ||
603 | static struct blkcg_policy blkcg_policy_cfq; | |
604 | ||
605 | static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg) | |
606 | { | |
607 | return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq)); | |
608 | } | |
609 | ||
610 | static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) | |
611 | { | |
612 | struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent; | |
613 | ||
614 | return pblkg ? blkg_to_cfqg(pblkg) : NULL; | |
615 | } | |
616 | ||
617 | static inline void cfqg_get(struct cfq_group *cfqg) | |
618 | { | |
619 | return blkg_get(cfqg_to_blkg(cfqg)); | |
620 | } | |
621 | ||
622 | static inline void cfqg_put(struct cfq_group *cfqg) | |
623 | { | |
624 | return blkg_put(cfqg_to_blkg(cfqg)); | |
625 | } | |
626 | ||
627 | #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \ | |
628 | char __pbuf[128]; \ | |
629 | \ | |
630 | blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \ | |
631 | blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \ | |
632 | cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \ | |
633 | cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\ | |
634 | __pbuf, ##args); \ | |
635 | } while (0) | |
636 | ||
637 | #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \ | |
638 | char __pbuf[128]; \ | |
639 | \ | |
640 | blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \ | |
641 | blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \ | |
642 | } while (0) | |
643 | ||
644 | static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg, | |
645 | struct cfq_group *curr_cfqg, int rw) | |
646 | { | |
647 | blkg_rwstat_add(&cfqg->stats.queued, rw, 1); | |
648 | cfqg_stats_end_empty_time(&cfqg->stats); | |
649 | cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg); | |
650 | } | |
651 | ||
652 | static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg, | |
653 | unsigned long time, unsigned long unaccounted_time) | |
654 | { | |
655 | blkg_stat_add(&cfqg->stats.time, time); | |
656 | #ifdef CONFIG_DEBUG_BLK_CGROUP | |
657 | blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time); | |
658 | #endif | |
659 | } | |
660 | ||
661 | static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) | |
662 | { | |
663 | blkg_rwstat_add(&cfqg->stats.queued, rw, -1); | |
664 | } | |
665 | ||
666 | static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) | |
667 | { | |
668 | blkg_rwstat_add(&cfqg->stats.merged, rw, 1); | |
669 | } | |
670 | ||
671 | static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg, | |
672 | uint64_t bytes, int rw) | |
673 | { | |
674 | blkg_stat_add(&cfqg->stats.sectors, bytes >> 9); | |
675 | blkg_rwstat_add(&cfqg->stats.serviced, rw, 1); | |
676 | blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes); | |
677 | } | |
678 | ||
679 | static inline void cfqg_stats_update_completion(struct cfq_group *cfqg, | |
680 | uint64_t start_time, uint64_t io_start_time, int rw) | |
681 | { | |
682 | struct cfqg_stats *stats = &cfqg->stats; | |
683 | unsigned long long now = sched_clock(); | |
684 | ||
685 | if (time_after64(now, io_start_time)) | |
686 | blkg_rwstat_add(&stats->service_time, rw, now - io_start_time); | |
687 | if (time_after64(io_start_time, start_time)) | |
688 | blkg_rwstat_add(&stats->wait_time, rw, | |
689 | io_start_time - start_time); | |
690 | } | |
691 | ||
692 | /* @stats = 0 */ | |
693 | static void cfqg_stats_reset(struct cfqg_stats *stats) | |
694 | { | |
695 | /* queued stats shouldn't be cleared */ | |
696 | blkg_rwstat_reset(&stats->service_bytes); | |
697 | blkg_rwstat_reset(&stats->serviced); | |
698 | blkg_rwstat_reset(&stats->merged); | |
699 | blkg_rwstat_reset(&stats->service_time); | |
700 | blkg_rwstat_reset(&stats->wait_time); | |
701 | blkg_stat_reset(&stats->time); | |
702 | #ifdef CONFIG_DEBUG_BLK_CGROUP | |
703 | blkg_stat_reset(&stats->unaccounted_time); | |
704 | blkg_stat_reset(&stats->avg_queue_size_sum); | |
705 | blkg_stat_reset(&stats->avg_queue_size_samples); | |
706 | blkg_stat_reset(&stats->dequeue); | |
707 | blkg_stat_reset(&stats->group_wait_time); | |
708 | blkg_stat_reset(&stats->idle_time); | |
709 | blkg_stat_reset(&stats->empty_time); | |
710 | #endif | |
711 | } | |
712 | ||
713 | /* @to += @from */ | |
714 | static void cfqg_stats_merge(struct cfqg_stats *to, struct cfqg_stats *from) | |
715 | { | |
716 | /* queued stats shouldn't be cleared */ | |
717 | blkg_rwstat_merge(&to->service_bytes, &from->service_bytes); | |
718 | blkg_rwstat_merge(&to->serviced, &from->serviced); | |
719 | blkg_rwstat_merge(&to->merged, &from->merged); | |
720 | blkg_rwstat_merge(&to->service_time, &from->service_time); | |
721 | blkg_rwstat_merge(&to->wait_time, &from->wait_time); | |
722 | blkg_stat_merge(&from->time, &from->time); | |
723 | #ifdef CONFIG_DEBUG_BLK_CGROUP | |
724 | blkg_stat_merge(&to->unaccounted_time, &from->unaccounted_time); | |
725 | blkg_stat_merge(&to->avg_queue_size_sum, &from->avg_queue_size_sum); | |
726 | blkg_stat_merge(&to->avg_queue_size_samples, &from->avg_queue_size_samples); | |
727 | blkg_stat_merge(&to->dequeue, &from->dequeue); | |
728 | blkg_stat_merge(&to->group_wait_time, &from->group_wait_time); | |
729 | blkg_stat_merge(&to->idle_time, &from->idle_time); | |
730 | blkg_stat_merge(&to->empty_time, &from->empty_time); | |
731 | #endif | |
732 | } | |
733 | ||
734 | /* | |
735 | * Transfer @cfqg's stats to its parent's dead_stats so that the ancestors' | |
736 | * recursive stats can still account for the amount used by this cfqg after | |
737 | * it's gone. | |
738 | */ | |
739 | static void cfqg_stats_xfer_dead(struct cfq_group *cfqg) | |
740 | { | |
741 | struct cfq_group *parent = cfqg_parent(cfqg); | |
742 | ||
743 | lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock); | |
744 | ||
745 | if (unlikely(!parent)) | |
746 | return; | |
747 | ||
748 | cfqg_stats_merge(&parent->dead_stats, &cfqg->stats); | |
749 | cfqg_stats_merge(&parent->dead_stats, &cfqg->dead_stats); | |
750 | cfqg_stats_reset(&cfqg->stats); | |
751 | cfqg_stats_reset(&cfqg->dead_stats); | |
752 | } | |
753 | ||
754 | #else /* CONFIG_CFQ_GROUP_IOSCHED */ | |
755 | ||
756 | static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; } | |
757 | static inline void cfqg_get(struct cfq_group *cfqg) { } | |
758 | static inline void cfqg_put(struct cfq_group *cfqg) { } | |
759 | ||
760 | #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \ | |
761 | blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \ | |
762 | cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \ | |
763 | cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\ | |
764 | ##args) | |
765 | #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0) | |
766 | ||
767 | static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg, | |
768 | struct cfq_group *curr_cfqg, int rw) { } | |
769 | static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg, | |
770 | unsigned long time, unsigned long unaccounted_time) { } | |
771 | static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { } | |
772 | static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { } | |
773 | static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg, | |
774 | uint64_t bytes, int rw) { } | |
775 | static inline void cfqg_stats_update_completion(struct cfq_group *cfqg, | |
776 | uint64_t start_time, uint64_t io_start_time, int rw) { } | |
777 | ||
778 | #endif /* CONFIG_CFQ_GROUP_IOSCHED */ | |
779 | ||
780 | #define cfq_log(cfqd, fmt, args...) \ | |
781 | blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args) | |
782 | ||
783 | /* Traverses through cfq group service trees */ | |
784 | #define for_each_cfqg_st(cfqg, i, j, st) \ | |
785 | for (i = 0; i <= IDLE_WORKLOAD; i++) \ | |
786 | for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\ | |
787 | : &cfqg->service_tree_idle; \ | |
788 | (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \ | |
789 | (i == IDLE_WORKLOAD && j == 0); \ | |
790 | j++, st = i < IDLE_WORKLOAD ? \ | |
791 | &cfqg->service_trees[i][j]: NULL) \ | |
792 | ||
793 | static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd, | |
794 | struct cfq_ttime *ttime, bool group_idle) | |
795 | { | |
796 | unsigned long slice; | |
797 | if (!sample_valid(ttime->ttime_samples)) | |
798 | return false; | |
799 | if (group_idle) | |
800 | slice = cfqd->cfq_group_idle; | |
801 | else | |
802 | slice = cfqd->cfq_slice_idle; | |
803 | return ttime->ttime_mean > slice; | |
804 | } | |
805 | ||
806 | static inline bool iops_mode(struct cfq_data *cfqd) | |
807 | { | |
808 | /* | |
809 | * If we are not idling on queues and it is a NCQ drive, parallel | |
810 | * execution of requests is on and measuring time is not possible | |
811 | * in most of the cases until and unless we drive shallower queue | |
812 | * depths and that becomes a performance bottleneck. In such cases | |
813 | * switch to start providing fairness in terms of number of IOs. | |
814 | */ | |
815 | if (!cfqd->cfq_slice_idle && cfqd->hw_tag) | |
816 | return true; | |
817 | else | |
818 | return false; | |
819 | } | |
820 | ||
821 | static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq) | |
822 | { | |
823 | if (cfq_class_idle(cfqq)) | |
824 | return IDLE_WORKLOAD; | |
825 | if (cfq_class_rt(cfqq)) | |
826 | return RT_WORKLOAD; | |
827 | return BE_WORKLOAD; | |
828 | } | |
829 | ||
830 | ||
831 | static enum wl_type_t cfqq_type(struct cfq_queue *cfqq) | |
832 | { | |
833 | if (!cfq_cfqq_sync(cfqq)) | |
834 | return ASYNC_WORKLOAD; | |
835 | if (!cfq_cfqq_idle_window(cfqq)) | |
836 | return SYNC_NOIDLE_WORKLOAD; | |
837 | return SYNC_WORKLOAD; | |
838 | } | |
839 | ||
840 | static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class, | |
841 | struct cfq_data *cfqd, | |
842 | struct cfq_group *cfqg) | |
843 | { | |
844 | if (wl_class == IDLE_WORKLOAD) | |
845 | return cfqg->service_tree_idle.count; | |
846 | ||
847 | return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count + | |
848 | cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count + | |
849 | cfqg->service_trees[wl_class][SYNC_WORKLOAD].count; | |
850 | } | |
851 | ||
852 | static inline int cfqg_busy_async_queues(struct cfq_data *cfqd, | |
853 | struct cfq_group *cfqg) | |
854 | { | |
855 | return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count + | |
856 | cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count; | |
857 | } | |
858 | ||
859 | static void cfq_dispatch_insert(struct request_queue *, struct request *); | |
860 | static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync, | |
861 | struct cfq_io_cq *cic, struct bio *bio, | |
862 | gfp_t gfp_mask); | |
863 | ||
864 | static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq) | |
865 | { | |
866 | /* cic->icq is the first member, %NULL will convert to %NULL */ | |
867 | return container_of(icq, struct cfq_io_cq, icq); | |
868 | } | |
869 | ||
870 | static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd, | |
871 | struct io_context *ioc) | |
872 | { | |
873 | if (ioc) | |
874 | return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue)); | |
875 | return NULL; | |
876 | } | |
877 | ||
878 | static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync) | |
879 | { | |
880 | return cic->cfqq[is_sync]; | |
881 | } | |
882 | ||
883 | static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq, | |
884 | bool is_sync) | |
885 | { | |
886 | cic->cfqq[is_sync] = cfqq; | |
887 | } | |
888 | ||
889 | static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic) | |
890 | { | |
891 | return cic->icq.q->elevator->elevator_data; | |
892 | } | |
893 | ||
894 | /* | |
895 | * We regard a request as SYNC, if it's either a read or has the SYNC bit | |
896 | * set (in which case it could also be direct WRITE). | |
897 | */ | |
898 | static inline bool cfq_bio_sync(struct bio *bio) | |
899 | { | |
900 | return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC); | |
901 | } | |
902 | ||
903 | /* | |
904 | * scheduler run of queue, if there are requests pending and no one in the | |
905 | * driver that will restart queueing | |
906 | */ | |
907 | static inline void cfq_schedule_dispatch(struct cfq_data *cfqd) | |
908 | { | |
909 | if (cfqd->busy_queues) { | |
910 | cfq_log(cfqd, "schedule dispatch"); | |
911 | kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work); | |
912 | } | |
913 | } | |
914 | ||
915 | /* | |
916 | * Scale schedule slice based on io priority. Use the sync time slice only | |
917 | * if a queue is marked sync and has sync io queued. A sync queue with async | |
918 | * io only, should not get full sync slice length. | |
919 | */ | |
920 | static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync, | |
921 | unsigned short prio) | |
922 | { | |
923 | const int base_slice = cfqd->cfq_slice[sync]; | |
924 | ||
925 | WARN_ON(prio >= IOPRIO_BE_NR); | |
926 | ||
927 | return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio)); | |
928 | } | |
929 | ||
930 | static inline int | |
931 | cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) | |
932 | { | |
933 | return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio); | |
934 | } | |
935 | ||
936 | /** | |
937 | * cfqg_scale_charge - scale disk time charge according to cfqg weight | |
938 | * @charge: disk time being charged | |
939 | * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT | |
940 | * | |
941 | * Scale @charge according to @vfraction, which is in range (0, 1]. The | |
942 | * scaling is inversely proportional. | |
943 | * | |
944 | * scaled = charge / vfraction | |
945 | * | |
946 | * The result is also in fixed point w/ CFQ_SERVICE_SHIFT. | |
947 | */ | |
948 | static inline u64 cfqg_scale_charge(unsigned long charge, | |
949 | unsigned int vfraction) | |
950 | { | |
951 | u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */ | |
952 | ||
953 | /* charge / vfraction */ | |
954 | c <<= CFQ_SERVICE_SHIFT; | |
955 | do_div(c, vfraction); | |
956 | return c; | |
957 | } | |
958 | ||
959 | static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime) | |
960 | { | |
961 | s64 delta = (s64)(vdisktime - min_vdisktime); | |
962 | if (delta > 0) | |
963 | min_vdisktime = vdisktime; | |
964 | ||
965 | return min_vdisktime; | |
966 | } | |
967 | ||
968 | static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime) | |
969 | { | |
970 | s64 delta = (s64)(vdisktime - min_vdisktime); | |
971 | if (delta < 0) | |
972 | min_vdisktime = vdisktime; | |
973 | ||
974 | return min_vdisktime; | |
975 | } | |
976 | ||
977 | static void update_min_vdisktime(struct cfq_rb_root *st) | |
978 | { | |
979 | struct cfq_group *cfqg; | |
980 | ||
981 | if (st->left) { | |
982 | cfqg = rb_entry_cfqg(st->left); | |
983 | st->min_vdisktime = max_vdisktime(st->min_vdisktime, | |
984 | cfqg->vdisktime); | |
985 | } | |
986 | } | |
987 | ||
988 | /* | |
989 | * get averaged number of queues of RT/BE priority. | |
990 | * average is updated, with a formula that gives more weight to higher numbers, | |
991 | * to quickly follows sudden increases and decrease slowly | |
992 | */ | |
993 | ||
994 | static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd, | |
995 | struct cfq_group *cfqg, bool rt) | |
996 | { | |
997 | unsigned min_q, max_q; | |
998 | unsigned mult = cfq_hist_divisor - 1; | |
999 | unsigned round = cfq_hist_divisor / 2; | |
1000 | unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg); | |
1001 | ||
1002 | min_q = min(cfqg->busy_queues_avg[rt], busy); | |
1003 | max_q = max(cfqg->busy_queues_avg[rt], busy); | |
1004 | cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) / | |
1005 | cfq_hist_divisor; | |
1006 | return cfqg->busy_queues_avg[rt]; | |
1007 | } | |
1008 | ||
1009 | static inline unsigned | |
1010 | cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg) | |
1011 | { | |
1012 | return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT; | |
1013 | } | |
1014 | ||
1015 | static inline unsigned | |
1016 | cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) | |
1017 | { | |
1018 | unsigned slice = cfq_prio_to_slice(cfqd, cfqq); | |
1019 | if (cfqd->cfq_latency) { | |
1020 | /* | |
1021 | * interested queues (we consider only the ones with the same | |
1022 | * priority class in the cfq group) | |
1023 | */ | |
1024 | unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg, | |
1025 | cfq_class_rt(cfqq)); | |
1026 | unsigned sync_slice = cfqd->cfq_slice[1]; | |
1027 | unsigned expect_latency = sync_slice * iq; | |
1028 | unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg); | |
1029 | ||
1030 | if (expect_latency > group_slice) { | |
1031 | unsigned base_low_slice = 2 * cfqd->cfq_slice_idle; | |
1032 | /* scale low_slice according to IO priority | |
1033 | * and sync vs async */ | |
1034 | unsigned low_slice = | |
1035 | min(slice, base_low_slice * slice / sync_slice); | |
1036 | /* the adapted slice value is scaled to fit all iqs | |
1037 | * into the target latency */ | |
1038 | slice = max(slice * group_slice / expect_latency, | |
1039 | low_slice); | |
1040 | } | |
1041 | } | |
1042 | return slice; | |
1043 | } | |
1044 | ||
1045 | static inline void | |
1046 | cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) | |
1047 | { | |
1048 | unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq); | |
1049 | ||
1050 | cfqq->slice_start = jiffies; | |
1051 | cfqq->slice_end = jiffies + slice; | |
1052 | cfqq->allocated_slice = slice; | |
1053 | cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies); | |
1054 | } | |
1055 | ||
1056 | /* | |
1057 | * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end | |
1058 | * isn't valid until the first request from the dispatch is activated | |
1059 | * and the slice time set. | |
1060 | */ | |
1061 | static inline bool cfq_slice_used(struct cfq_queue *cfqq) | |
1062 | { | |
1063 | if (cfq_cfqq_slice_new(cfqq)) | |
1064 | return false; | |
1065 | if (time_before(jiffies, cfqq->slice_end)) | |
1066 | return false; | |
1067 | ||
1068 | return true; | |
1069 | } | |
1070 | ||
1071 | /* | |
1072 | * Lifted from AS - choose which of rq1 and rq2 that is best served now. | |
1073 | * We choose the request that is closest to the head right now. Distance | |
1074 | * behind the head is penalized and only allowed to a certain extent. | |
1075 | */ | |
1076 | static struct request * | |
1077 | cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last) | |
1078 | { | |
1079 | sector_t s1, s2, d1 = 0, d2 = 0; | |
1080 | unsigned long back_max; | |
1081 | #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */ | |
1082 | #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */ | |
1083 | unsigned wrap = 0; /* bit mask: requests behind the disk head? */ | |
1084 | ||
1085 | if (rq1 == NULL || rq1 == rq2) | |
1086 | return rq2; | |
1087 | if (rq2 == NULL) | |
1088 | return rq1; | |
1089 | ||
1090 | if (rq_is_sync(rq1) != rq_is_sync(rq2)) | |
1091 | return rq_is_sync(rq1) ? rq1 : rq2; | |
1092 | ||
1093 | if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO) | |
1094 | return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2; | |
1095 | ||
1096 | s1 = blk_rq_pos(rq1); | |
1097 | s2 = blk_rq_pos(rq2); | |
1098 | ||
1099 | /* | |
1100 | * by definition, 1KiB is 2 sectors | |
1101 | */ | |
1102 | back_max = cfqd->cfq_back_max * 2; | |
1103 | ||
1104 | /* | |
1105 | * Strict one way elevator _except_ in the case where we allow | |
1106 | * short backward seeks which are biased as twice the cost of a | |
1107 | * similar forward seek. | |
1108 | */ | |
1109 | if (s1 >= last) | |
1110 | d1 = s1 - last; | |
1111 | else if (s1 + back_max >= last) | |
1112 | d1 = (last - s1) * cfqd->cfq_back_penalty; | |
1113 | else | |
1114 | wrap |= CFQ_RQ1_WRAP; | |
1115 | ||
1116 | if (s2 >= last) | |
1117 | d2 = s2 - last; | |
1118 | else if (s2 + back_max >= last) | |
1119 | d2 = (last - s2) * cfqd->cfq_back_penalty; | |
1120 | else | |
1121 | wrap |= CFQ_RQ2_WRAP; | |
1122 | ||
1123 | /* Found required data */ | |
1124 | ||
1125 | /* | |
1126 | * By doing switch() on the bit mask "wrap" we avoid having to | |
1127 | * check two variables for all permutations: --> faster! | |
1128 | */ | |
1129 | switch (wrap) { | |
1130 | case 0: /* common case for CFQ: rq1 and rq2 not wrapped */ | |
1131 | if (d1 < d2) | |
1132 | return rq1; | |
1133 | else if (d2 < d1) | |
1134 | return rq2; | |
1135 | else { | |
1136 | if (s1 >= s2) | |
1137 | return rq1; | |
1138 | else | |
1139 | return rq2; | |
1140 | } | |
1141 | ||
1142 | case CFQ_RQ2_WRAP: | |
1143 | return rq1; | |
1144 | case CFQ_RQ1_WRAP: | |
1145 | return rq2; | |
1146 | case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */ | |
1147 | default: | |
1148 | /* | |
1149 | * Since both rqs are wrapped, | |
1150 | * start with the one that's further behind head | |
1151 | * (--> only *one* back seek required), | |
1152 | * since back seek takes more time than forward. | |
1153 | */ | |
1154 | if (s1 <= s2) | |
1155 | return rq1; | |
1156 | else | |
1157 | return rq2; | |
1158 | } | |
1159 | } | |
1160 | ||
1161 | /* | |
1162 | * The below is leftmost cache rbtree addon | |
1163 | */ | |
1164 | static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root) | |
1165 | { | |
1166 | /* Service tree is empty */ | |
1167 | if (!root->count) | |
1168 | return NULL; | |
1169 | ||
1170 | if (!root->left) | |
1171 | root->left = rb_first(&root->rb); | |
1172 | ||
1173 | if (root->left) | |
1174 | return rb_entry(root->left, struct cfq_queue, rb_node); | |
1175 | ||
1176 | return NULL; | |
1177 | } | |
1178 | ||
1179 | static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root) | |
1180 | { | |
1181 | if (!root->left) | |
1182 | root->left = rb_first(&root->rb); | |
1183 | ||
1184 | if (root->left) | |
1185 | return rb_entry_cfqg(root->left); | |
1186 | ||
1187 | return NULL; | |
1188 | } | |
1189 | ||
1190 | static void rb_erase_init(struct rb_node *n, struct rb_root *root) | |
1191 | { | |
1192 | rb_erase(n, root); | |
1193 | RB_CLEAR_NODE(n); | |
1194 | } | |
1195 | ||
1196 | static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root) | |
1197 | { | |
1198 | if (root->left == n) | |
1199 | root->left = NULL; | |
1200 | rb_erase_init(n, &root->rb); | |
1201 | --root->count; | |
1202 | } | |
1203 | ||
1204 | /* | |
1205 | * would be nice to take fifo expire time into account as well | |
1206 | */ | |
1207 | static struct request * | |
1208 | cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq, | |
1209 | struct request *last) | |
1210 | { | |
1211 | struct rb_node *rbnext = rb_next(&last->rb_node); | |
1212 | struct rb_node *rbprev = rb_prev(&last->rb_node); | |
1213 | struct request *next = NULL, *prev = NULL; | |
1214 | ||
1215 | BUG_ON(RB_EMPTY_NODE(&last->rb_node)); | |
1216 | ||
1217 | if (rbprev) | |
1218 | prev = rb_entry_rq(rbprev); | |
1219 | ||
1220 | if (rbnext) | |
1221 | next = rb_entry_rq(rbnext); | |
1222 | else { | |
1223 | rbnext = rb_first(&cfqq->sort_list); | |
1224 | if (rbnext && rbnext != &last->rb_node) | |
1225 | next = rb_entry_rq(rbnext); | |
1226 | } | |
1227 | ||
1228 | return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last)); | |
1229 | } | |
1230 | ||
1231 | static unsigned long cfq_slice_offset(struct cfq_data *cfqd, | |
1232 | struct cfq_queue *cfqq) | |
1233 | { | |
1234 | /* | |
1235 | * just an approximation, should be ok. | |
1236 | */ | |
1237 | return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) - | |
1238 | cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio)); | |
1239 | } | |
1240 | ||
1241 | static inline s64 | |
1242 | cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg) | |
1243 | { | |
1244 | return cfqg->vdisktime - st->min_vdisktime; | |
1245 | } | |
1246 | ||
1247 | static void | |
1248 | __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg) | |
1249 | { | |
1250 | struct rb_node **node = &st->rb.rb_node; | |
1251 | struct rb_node *parent = NULL; | |
1252 | struct cfq_group *__cfqg; | |
1253 | s64 key = cfqg_key(st, cfqg); | |
1254 | int left = 1; | |
1255 | ||
1256 | while (*node != NULL) { | |
1257 | parent = *node; | |
1258 | __cfqg = rb_entry_cfqg(parent); | |
1259 | ||
1260 | if (key < cfqg_key(st, __cfqg)) | |
1261 | node = &parent->rb_left; | |
1262 | else { | |
1263 | node = &parent->rb_right; | |
1264 | left = 0; | |
1265 | } | |
1266 | } | |
1267 | ||
1268 | if (left) | |
1269 | st->left = &cfqg->rb_node; | |
1270 | ||
1271 | rb_link_node(&cfqg->rb_node, parent, node); | |
1272 | rb_insert_color(&cfqg->rb_node, &st->rb); | |
1273 | } | |
1274 | ||
1275 | static void | |
1276 | cfq_update_group_weight(struct cfq_group *cfqg) | |
1277 | { | |
1278 | BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node)); | |
1279 | ||
1280 | if (cfqg->new_weight) { | |
1281 | cfqg->weight = cfqg->new_weight; | |
1282 | cfqg->new_weight = 0; | |
1283 | } | |
1284 | ||
1285 | if (cfqg->new_leaf_weight) { | |
1286 | cfqg->leaf_weight = cfqg->new_leaf_weight; | |
1287 | cfqg->new_leaf_weight = 0; | |
1288 | } | |
1289 | } | |
1290 | ||
1291 | static void | |
1292 | cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg) | |
1293 | { | |
1294 | unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */ | |
1295 | struct cfq_group *pos = cfqg; | |
1296 | struct cfq_group *parent; | |
1297 | bool propagate; | |
1298 | ||
1299 | /* add to the service tree */ | |
1300 | BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node)); | |
1301 | ||
1302 | cfq_update_group_weight(cfqg); | |
1303 | __cfq_group_service_tree_add(st, cfqg); | |
1304 | ||
1305 | /* | |
1306 | * Activate @cfqg and calculate the portion of vfraction @cfqg is | |
1307 | * entitled to. vfraction is calculated by walking the tree | |
1308 | * towards the root calculating the fraction it has at each level. | |
1309 | * The compounded ratio is how much vfraction @cfqg owns. | |
1310 | * | |
1311 | * Start with the proportion tasks in this cfqg has against active | |
1312 | * children cfqgs - its leaf_weight against children_weight. | |
1313 | */ | |
1314 | propagate = !pos->nr_active++; | |
1315 | pos->children_weight += pos->leaf_weight; | |
1316 | vfr = vfr * pos->leaf_weight / pos->children_weight; | |
1317 | ||
1318 | /* | |
1319 | * Compound ->weight walking up the tree. Both activation and | |
1320 | * vfraction calculation are done in the same loop. Propagation | |
1321 | * stops once an already activated node is met. vfraction | |
1322 | * calculation should always continue to the root. | |
1323 | */ | |
1324 | while ((parent = cfqg_parent(pos))) { | |
1325 | if (propagate) { | |
1326 | propagate = !parent->nr_active++; | |
1327 | parent->children_weight += pos->weight; | |
1328 | } | |
1329 | vfr = vfr * pos->weight / parent->children_weight; | |
1330 | pos = parent; | |
1331 | } | |
1332 | ||
1333 | cfqg->vfraction = max_t(unsigned, vfr, 1); | |
1334 | } | |
1335 | ||
1336 | static void | |
1337 | cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg) | |
1338 | { | |
1339 | struct cfq_rb_root *st = &cfqd->grp_service_tree; | |
1340 | struct cfq_group *__cfqg; | |
1341 | struct rb_node *n; | |
1342 | ||
1343 | cfqg->nr_cfqq++; | |
1344 | if (!RB_EMPTY_NODE(&cfqg->rb_node)) | |
1345 | return; | |
1346 | ||
1347 | /* | |
1348 | * Currently put the group at the end. Later implement something | |
1349 | * so that groups get lesser vtime based on their weights, so that | |
1350 | * if group does not loose all if it was not continuously backlogged. | |
1351 | */ | |
1352 | n = rb_last(&st->rb); | |
1353 | if (n) { | |
1354 | __cfqg = rb_entry_cfqg(n); | |
1355 | cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY; | |
1356 | } else | |
1357 | cfqg->vdisktime = st->min_vdisktime; | |
1358 | cfq_group_service_tree_add(st, cfqg); | |
1359 | } | |
1360 | ||
1361 | static void | |
1362 | cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg) | |
1363 | { | |
1364 | struct cfq_group *pos = cfqg; | |
1365 | bool propagate; | |
1366 | ||
1367 | /* | |
1368 | * Undo activation from cfq_group_service_tree_add(). Deactivate | |
1369 | * @cfqg and propagate deactivation upwards. | |
1370 | */ | |
1371 | propagate = !--pos->nr_active; | |
1372 | pos->children_weight -= pos->leaf_weight; | |
1373 | ||
1374 | while (propagate) { | |
1375 | struct cfq_group *parent = cfqg_parent(pos); | |
1376 | ||
1377 | /* @pos has 0 nr_active at this point */ | |
1378 | WARN_ON_ONCE(pos->children_weight); | |
1379 | pos->vfraction = 0; | |
1380 | ||
1381 | if (!parent) | |
1382 | break; | |
1383 | ||
1384 | propagate = !--parent->nr_active; | |
1385 | parent->children_weight -= pos->weight; | |
1386 | pos = parent; | |
1387 | } | |
1388 | ||
1389 | /* remove from the service tree */ | |
1390 | if (!RB_EMPTY_NODE(&cfqg->rb_node)) | |
1391 | cfq_rb_erase(&cfqg->rb_node, st); | |
1392 | } | |
1393 | ||
1394 | static void | |
1395 | cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg) | |
1396 | { | |
1397 | struct cfq_rb_root *st = &cfqd->grp_service_tree; | |
1398 | ||
1399 | BUG_ON(cfqg->nr_cfqq < 1); | |
1400 | cfqg->nr_cfqq--; | |
1401 | ||
1402 | /* If there are other cfq queues under this group, don't delete it */ | |
1403 | if (cfqg->nr_cfqq) | |
1404 | return; | |
1405 | ||
1406 | cfq_log_cfqg(cfqd, cfqg, "del_from_rr group"); | |
1407 | cfq_group_service_tree_del(st, cfqg); | |
1408 | cfqg->saved_wl_slice = 0; | |
1409 | cfqg_stats_update_dequeue(cfqg); | |
1410 | } | |
1411 | ||
1412 | static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq, | |
1413 | unsigned int *unaccounted_time) | |
1414 | { | |
1415 | unsigned int slice_used; | |
1416 | ||
1417 | /* | |
1418 | * Queue got expired before even a single request completed or | |
1419 | * got expired immediately after first request completion. | |
1420 | */ | |
1421 | if (!cfqq->slice_start || cfqq->slice_start == jiffies) { | |
1422 | /* | |
1423 | * Also charge the seek time incurred to the group, otherwise | |
1424 | * if there are mutiple queues in the group, each can dispatch | |
1425 | * a single request on seeky media and cause lots of seek time | |
1426 | * and group will never know it. | |
1427 | */ | |
1428 | slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start), | |
1429 | 1); | |
1430 | } else { | |
1431 | slice_used = jiffies - cfqq->slice_start; | |
1432 | if (slice_used > cfqq->allocated_slice) { | |
1433 | *unaccounted_time = slice_used - cfqq->allocated_slice; | |
1434 | slice_used = cfqq->allocated_slice; | |
1435 | } | |
1436 | if (time_after(cfqq->slice_start, cfqq->dispatch_start)) | |
1437 | *unaccounted_time += cfqq->slice_start - | |
1438 | cfqq->dispatch_start; | |
1439 | } | |
1440 | ||
1441 | return slice_used; | |
1442 | } | |
1443 | ||
1444 | static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg, | |
1445 | struct cfq_queue *cfqq) | |
1446 | { | |
1447 | struct cfq_rb_root *st = &cfqd->grp_service_tree; | |
1448 | unsigned int used_sl, charge, unaccounted_sl = 0; | |
1449 | int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg) | |
1450 | - cfqg->service_tree_idle.count; | |
1451 | unsigned int vfr; | |
1452 | ||
1453 | BUG_ON(nr_sync < 0); | |
1454 | used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl); | |
1455 | ||
1456 | if (iops_mode(cfqd)) | |
1457 | charge = cfqq->slice_dispatch; | |
1458 | else if (!cfq_cfqq_sync(cfqq) && !nr_sync) | |
1459 | charge = cfqq->allocated_slice; | |
1460 | ||
1461 | /* | |
1462 | * Can't update vdisktime while on service tree and cfqg->vfraction | |
1463 | * is valid only while on it. Cache vfr, leave the service tree, | |
1464 | * update vdisktime and go back on. The re-addition to the tree | |
1465 | * will also update the weights as necessary. | |
1466 | */ | |
1467 | vfr = cfqg->vfraction; | |
1468 | cfq_group_service_tree_del(st, cfqg); | |
1469 | cfqg->vdisktime += cfqg_scale_charge(charge, vfr); | |
1470 | cfq_group_service_tree_add(st, cfqg); | |
1471 | ||
1472 | /* This group is being expired. Save the context */ | |
1473 | if (time_after(cfqd->workload_expires, jiffies)) { | |
1474 | cfqg->saved_wl_slice = cfqd->workload_expires | |
1475 | - jiffies; | |
1476 | cfqg->saved_wl_type = cfqd->serving_wl_type; | |
1477 | cfqg->saved_wl_class = cfqd->serving_wl_class; | |
1478 | } else | |
1479 | cfqg->saved_wl_slice = 0; | |
1480 | ||
1481 | cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime, | |
1482 | st->min_vdisktime); | |
1483 | cfq_log_cfqq(cfqq->cfqd, cfqq, | |
1484 | "sl_used=%u disp=%u charge=%u iops=%u sect=%lu", | |
1485 | used_sl, cfqq->slice_dispatch, charge, | |
1486 | iops_mode(cfqd), cfqq->nr_sectors); | |
1487 | cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl); | |
1488 | cfqg_stats_set_start_empty_time(cfqg); | |
1489 | } | |
1490 | ||
1491 | /** | |
1492 | * cfq_init_cfqg_base - initialize base part of a cfq_group | |
1493 | * @cfqg: cfq_group to initialize | |
1494 | * | |
1495 | * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED | |
1496 | * is enabled or not. | |
1497 | */ | |
1498 | static void cfq_init_cfqg_base(struct cfq_group *cfqg) | |
1499 | { | |
1500 | struct cfq_rb_root *st; | |
1501 | int i, j; | |
1502 | ||
1503 | for_each_cfqg_st(cfqg, i, j, st) | |
1504 | *st = CFQ_RB_ROOT; | |
1505 | RB_CLEAR_NODE(&cfqg->rb_node); | |
1506 | ||
1507 | cfqg->ttime.last_end_request = jiffies; | |
1508 | } | |
1509 | ||
1510 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | |
1511 | static void cfqg_stats_init(struct cfqg_stats *stats) | |
1512 | { | |
1513 | blkg_rwstat_init(&stats->service_bytes); | |
1514 | blkg_rwstat_init(&stats->serviced); | |
1515 | blkg_rwstat_init(&stats->merged); | |
1516 | blkg_rwstat_init(&stats->service_time); | |
1517 | blkg_rwstat_init(&stats->wait_time); | |
1518 | blkg_rwstat_init(&stats->queued); | |
1519 | ||
1520 | blkg_stat_init(&stats->sectors); | |
1521 | blkg_stat_init(&stats->time); | |
1522 | ||
1523 | #ifdef CONFIG_DEBUG_BLK_CGROUP | |
1524 | blkg_stat_init(&stats->unaccounted_time); | |
1525 | blkg_stat_init(&stats->avg_queue_size_sum); | |
1526 | blkg_stat_init(&stats->avg_queue_size_samples); | |
1527 | blkg_stat_init(&stats->dequeue); | |
1528 | blkg_stat_init(&stats->group_wait_time); | |
1529 | blkg_stat_init(&stats->idle_time); | |
1530 | blkg_stat_init(&stats->empty_time); | |
1531 | #endif | |
1532 | } | |
1533 | ||
1534 | static void cfq_pd_init(struct blkcg_gq *blkg) | |
1535 | { | |
1536 | struct cfq_group *cfqg = blkg_to_cfqg(blkg); | |
1537 | ||
1538 | cfq_init_cfqg_base(cfqg); | |
1539 | cfqg->weight = blkg->blkcg->cfq_weight; | |
1540 | cfqg->leaf_weight = blkg->blkcg->cfq_leaf_weight; | |
1541 | cfqg_stats_init(&cfqg->stats); | |
1542 | cfqg_stats_init(&cfqg->dead_stats); | |
1543 | } | |
1544 | ||
1545 | static void cfq_pd_offline(struct blkcg_gq *blkg) | |
1546 | { | |
1547 | /* | |
1548 | * @blkg is going offline and will be ignored by | |
1549 | * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so | |
1550 | * that they don't get lost. If IOs complete after this point, the | |
1551 | * stats for them will be lost. Oh well... | |
1552 | */ | |
1553 | cfqg_stats_xfer_dead(blkg_to_cfqg(blkg)); | |
1554 | } | |
1555 | ||
1556 | /* offset delta from cfqg->stats to cfqg->dead_stats */ | |
1557 | static const int dead_stats_off_delta = offsetof(struct cfq_group, dead_stats) - | |
1558 | offsetof(struct cfq_group, stats); | |
1559 | ||
1560 | /* to be used by recursive prfill, sums live and dead stats recursively */ | |
1561 | static u64 cfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off) | |
1562 | { | |
1563 | u64 sum = 0; | |
1564 | ||
1565 | sum += blkg_stat_recursive_sum(pd, off); | |
1566 | sum += blkg_stat_recursive_sum(pd, off + dead_stats_off_delta); | |
1567 | return sum; | |
1568 | } | |
1569 | ||
1570 | /* to be used by recursive prfill, sums live and dead rwstats recursively */ | |
1571 | static struct blkg_rwstat cfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd, | |
1572 | int off) | |
1573 | { | |
1574 | struct blkg_rwstat a, b; | |
1575 | ||
1576 | a = blkg_rwstat_recursive_sum(pd, off); | |
1577 | b = blkg_rwstat_recursive_sum(pd, off + dead_stats_off_delta); | |
1578 | blkg_rwstat_merge(&a, &b); | |
1579 | return a; | |
1580 | } | |
1581 | ||
1582 | static void cfq_pd_reset_stats(struct blkcg_gq *blkg) | |
1583 | { | |
1584 | struct cfq_group *cfqg = blkg_to_cfqg(blkg); | |
1585 | ||
1586 | cfqg_stats_reset(&cfqg->stats); | |
1587 | cfqg_stats_reset(&cfqg->dead_stats); | |
1588 | } | |
1589 | ||
1590 | /* | |
1591 | * Search for the cfq group current task belongs to. request_queue lock must | |
1592 | * be held. | |
1593 | */ | |
1594 | static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd, | |
1595 | struct blkcg *blkcg) | |
1596 | { | |
1597 | struct request_queue *q = cfqd->queue; | |
1598 | struct cfq_group *cfqg = NULL; | |
1599 | ||
1600 | /* avoid lookup for the common case where there's no blkcg */ | |
1601 | if (blkcg == &blkcg_root) { | |
1602 | cfqg = cfqd->root_group; | |
1603 | } else { | |
1604 | struct blkcg_gq *blkg; | |
1605 | ||
1606 | blkg = blkg_lookup_create(blkcg, q); | |
1607 | if (!IS_ERR(blkg)) | |
1608 | cfqg = blkg_to_cfqg(blkg); | |
1609 | } | |
1610 | ||
1611 | return cfqg; | |
1612 | } | |
1613 | ||
1614 | static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) | |
1615 | { | |
1616 | /* Currently, all async queues are mapped to root group */ | |
1617 | if (!cfq_cfqq_sync(cfqq)) | |
1618 | cfqg = cfqq->cfqd->root_group; | |
1619 | ||
1620 | cfqq->cfqg = cfqg; | |
1621 | /* cfqq reference on cfqg */ | |
1622 | cfqg_get(cfqg); | |
1623 | } | |
1624 | ||
1625 | static u64 cfqg_prfill_weight_device(struct seq_file *sf, | |
1626 | struct blkg_policy_data *pd, int off) | |
1627 | { | |
1628 | struct cfq_group *cfqg = pd_to_cfqg(pd); | |
1629 | ||
1630 | if (!cfqg->dev_weight) | |
1631 | return 0; | |
1632 | return __blkg_prfill_u64(sf, pd, cfqg->dev_weight); | |
1633 | } | |
1634 | ||
1635 | static int cfqg_print_weight_device(struct seq_file *sf, void *v) | |
1636 | { | |
1637 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | |
1638 | cfqg_prfill_weight_device, &blkcg_policy_cfq, | |
1639 | 0, false); | |
1640 | return 0; | |
1641 | } | |
1642 | ||
1643 | static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf, | |
1644 | struct blkg_policy_data *pd, int off) | |
1645 | { | |
1646 | struct cfq_group *cfqg = pd_to_cfqg(pd); | |
1647 | ||
1648 | if (!cfqg->dev_leaf_weight) | |
1649 | return 0; | |
1650 | return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight); | |
1651 | } | |
1652 | ||
1653 | static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v) | |
1654 | { | |
1655 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | |
1656 | cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq, | |
1657 | 0, false); | |
1658 | return 0; | |
1659 | } | |
1660 | ||
1661 | static int cfq_print_weight(struct seq_file *sf, void *v) | |
1662 | { | |
1663 | seq_printf(sf, "%u\n", css_to_blkcg(seq_css(sf))->cfq_weight); | |
1664 | return 0; | |
1665 | } | |
1666 | ||
1667 | static int cfq_print_leaf_weight(struct seq_file *sf, void *v) | |
1668 | { | |
1669 | seq_printf(sf, "%u\n", css_to_blkcg(seq_css(sf))->cfq_leaf_weight); | |
1670 | return 0; | |
1671 | } | |
1672 | ||
1673 | static int __cfqg_set_weight_device(struct cgroup_subsys_state *css, | |
1674 | struct cftype *cft, const char *buf, | |
1675 | bool is_leaf_weight) | |
1676 | { | |
1677 | struct blkcg *blkcg = css_to_blkcg(css); | |
1678 | struct blkg_conf_ctx ctx; | |
1679 | struct cfq_group *cfqg; | |
1680 | int ret; | |
1681 | ||
1682 | ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx); | |
1683 | if (ret) | |
1684 | return ret; | |
1685 | ||
1686 | ret = -EINVAL; | |
1687 | cfqg = blkg_to_cfqg(ctx.blkg); | |
1688 | if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) { | |
1689 | if (!is_leaf_weight) { | |
1690 | cfqg->dev_weight = ctx.v; | |
1691 | cfqg->new_weight = ctx.v ?: blkcg->cfq_weight; | |
1692 | } else { | |
1693 | cfqg->dev_leaf_weight = ctx.v; | |
1694 | cfqg->new_leaf_weight = ctx.v ?: blkcg->cfq_leaf_weight; | |
1695 | } | |
1696 | ret = 0; | |
1697 | } | |
1698 | ||
1699 | blkg_conf_finish(&ctx); | |
1700 | return ret; | |
1701 | } | |
1702 | ||
1703 | static int cfqg_set_weight_device(struct cgroup_subsys_state *css, | |
1704 | struct cftype *cft, const char *buf) | |
1705 | { | |
1706 | return __cfqg_set_weight_device(css, cft, buf, false); | |
1707 | } | |
1708 | ||
1709 | static int cfqg_set_leaf_weight_device(struct cgroup_subsys_state *css, | |
1710 | struct cftype *cft, const char *buf) | |
1711 | { | |
1712 | return __cfqg_set_weight_device(css, cft, buf, true); | |
1713 | } | |
1714 | ||
1715 | static int __cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft, | |
1716 | u64 val, bool is_leaf_weight) | |
1717 | { | |
1718 | struct blkcg *blkcg = css_to_blkcg(css); | |
1719 | struct blkcg_gq *blkg; | |
1720 | ||
1721 | if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX) | |
1722 | return -EINVAL; | |
1723 | ||
1724 | spin_lock_irq(&blkcg->lock); | |
1725 | ||
1726 | if (!is_leaf_weight) | |
1727 | blkcg->cfq_weight = val; | |
1728 | else | |
1729 | blkcg->cfq_leaf_weight = val; | |
1730 | ||
1731 | hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { | |
1732 | struct cfq_group *cfqg = blkg_to_cfqg(blkg); | |
1733 | ||
1734 | if (!cfqg) | |
1735 | continue; | |
1736 | ||
1737 | if (!is_leaf_weight) { | |
1738 | if (!cfqg->dev_weight) | |
1739 | cfqg->new_weight = blkcg->cfq_weight; | |
1740 | } else { | |
1741 | if (!cfqg->dev_leaf_weight) | |
1742 | cfqg->new_leaf_weight = blkcg->cfq_leaf_weight; | |
1743 | } | |
1744 | } | |
1745 | ||
1746 | spin_unlock_irq(&blkcg->lock); | |
1747 | return 0; | |
1748 | } | |
1749 | ||
1750 | static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft, | |
1751 | u64 val) | |
1752 | { | |
1753 | return __cfq_set_weight(css, cft, val, false); | |
1754 | } | |
1755 | ||
1756 | static int cfq_set_leaf_weight(struct cgroup_subsys_state *css, | |
1757 | struct cftype *cft, u64 val) | |
1758 | { | |
1759 | return __cfq_set_weight(css, cft, val, true); | |
1760 | } | |
1761 | ||
1762 | static int cfqg_print_stat(struct seq_file *sf, void *v) | |
1763 | { | |
1764 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat, | |
1765 | &blkcg_policy_cfq, seq_cft(sf)->private, false); | |
1766 | return 0; | |
1767 | } | |
1768 | ||
1769 | static int cfqg_print_rwstat(struct seq_file *sf, void *v) | |
1770 | { | |
1771 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat, | |
1772 | &blkcg_policy_cfq, seq_cft(sf)->private, true); | |
1773 | return 0; | |
1774 | } | |
1775 | ||
1776 | static u64 cfqg_prfill_stat_recursive(struct seq_file *sf, | |
1777 | struct blkg_policy_data *pd, int off) | |
1778 | { | |
1779 | u64 sum = cfqg_stat_pd_recursive_sum(pd, off); | |
1780 | ||
1781 | return __blkg_prfill_u64(sf, pd, sum); | |
1782 | } | |
1783 | ||
1784 | static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf, | |
1785 | struct blkg_policy_data *pd, int off) | |
1786 | { | |
1787 | struct blkg_rwstat sum = cfqg_rwstat_pd_recursive_sum(pd, off); | |
1788 | ||
1789 | return __blkg_prfill_rwstat(sf, pd, &sum); | |
1790 | } | |
1791 | ||
1792 | static int cfqg_print_stat_recursive(struct seq_file *sf, void *v) | |
1793 | { | |
1794 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | |
1795 | cfqg_prfill_stat_recursive, &blkcg_policy_cfq, | |
1796 | seq_cft(sf)->private, false); | |
1797 | return 0; | |
1798 | } | |
1799 | ||
1800 | static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v) | |
1801 | { | |
1802 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | |
1803 | cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq, | |
1804 | seq_cft(sf)->private, true); | |
1805 | return 0; | |
1806 | } | |
1807 | ||
1808 | #ifdef CONFIG_DEBUG_BLK_CGROUP | |
1809 | static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf, | |
1810 | struct blkg_policy_data *pd, int off) | |
1811 | { | |
1812 | struct cfq_group *cfqg = pd_to_cfqg(pd); | |
1813 | u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples); | |
1814 | u64 v = 0; | |
1815 | ||
1816 | if (samples) { | |
1817 | v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum); | |
1818 | v = div64_u64(v, samples); | |
1819 | } | |
1820 | __blkg_prfill_u64(sf, pd, v); | |
1821 | return 0; | |
1822 | } | |
1823 | ||
1824 | /* print avg_queue_size */ | |
1825 | static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v) | |
1826 | { | |
1827 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | |
1828 | cfqg_prfill_avg_queue_size, &blkcg_policy_cfq, | |
1829 | 0, false); | |
1830 | return 0; | |
1831 | } | |
1832 | #endif /* CONFIG_DEBUG_BLK_CGROUP */ | |
1833 | ||
1834 | static struct cftype cfq_blkcg_files[] = { | |
1835 | /* on root, weight is mapped to leaf_weight */ | |
1836 | { | |
1837 | .name = "weight_device", | |
1838 | .flags = CFTYPE_ONLY_ON_ROOT, | |
1839 | .seq_show = cfqg_print_leaf_weight_device, | |
1840 | .write_string = cfqg_set_leaf_weight_device, | |
1841 | .max_write_len = 256, | |
1842 | }, | |
1843 | { | |
1844 | .name = "weight", | |
1845 | .flags = CFTYPE_ONLY_ON_ROOT, | |
1846 | .seq_show = cfq_print_leaf_weight, | |
1847 | .write_u64 = cfq_set_leaf_weight, | |
1848 | }, | |
1849 | ||
1850 | /* no such mapping necessary for !roots */ | |
1851 | { | |
1852 | .name = "weight_device", | |
1853 | .flags = CFTYPE_NOT_ON_ROOT, | |
1854 | .seq_show = cfqg_print_weight_device, | |
1855 | .write_string = cfqg_set_weight_device, | |
1856 | .max_write_len = 256, | |
1857 | }, | |
1858 | { | |
1859 | .name = "weight", | |
1860 | .flags = CFTYPE_NOT_ON_ROOT, | |
1861 | .seq_show = cfq_print_weight, | |
1862 | .write_u64 = cfq_set_weight, | |
1863 | }, | |
1864 | ||
1865 | { | |
1866 | .name = "leaf_weight_device", | |
1867 | .seq_show = cfqg_print_leaf_weight_device, | |
1868 | .write_string = cfqg_set_leaf_weight_device, | |
1869 | .max_write_len = 256, | |
1870 | }, | |
1871 | { | |
1872 | .name = "leaf_weight", | |
1873 | .seq_show = cfq_print_leaf_weight, | |
1874 | .write_u64 = cfq_set_leaf_weight, | |
1875 | }, | |
1876 | ||
1877 | /* statistics, covers only the tasks in the cfqg */ | |
1878 | { | |
1879 | .name = "time", | |
1880 | .private = offsetof(struct cfq_group, stats.time), | |
1881 | .seq_show = cfqg_print_stat, | |
1882 | }, | |
1883 | { | |
1884 | .name = "sectors", | |
1885 | .private = offsetof(struct cfq_group, stats.sectors), | |
1886 | .seq_show = cfqg_print_stat, | |
1887 | }, | |
1888 | { | |
1889 | .name = "io_service_bytes", | |
1890 | .private = offsetof(struct cfq_group, stats.service_bytes), | |
1891 | .seq_show = cfqg_print_rwstat, | |
1892 | }, | |
1893 | { | |
1894 | .name = "io_serviced", | |
1895 | .private = offsetof(struct cfq_group, stats.serviced), | |
1896 | .seq_show = cfqg_print_rwstat, | |
1897 | }, | |
1898 | { | |
1899 | .name = "io_service_time", | |
1900 | .private = offsetof(struct cfq_group, stats.service_time), | |
1901 | .seq_show = cfqg_print_rwstat, | |
1902 | }, | |
1903 | { | |
1904 | .name = "io_wait_time", | |
1905 | .private = offsetof(struct cfq_group, stats.wait_time), | |
1906 | .seq_show = cfqg_print_rwstat, | |
1907 | }, | |
1908 | { | |
1909 | .name = "io_merged", | |
1910 | .private = offsetof(struct cfq_group, stats.merged), | |
1911 | .seq_show = cfqg_print_rwstat, | |
1912 | }, | |
1913 | { | |
1914 | .name = "io_queued", | |
1915 | .private = offsetof(struct cfq_group, stats.queued), | |
1916 | .seq_show = cfqg_print_rwstat, | |
1917 | }, | |
1918 | ||
1919 | /* the same statictics which cover the cfqg and its descendants */ | |
1920 | { | |
1921 | .name = "time_recursive", | |
1922 | .private = offsetof(struct cfq_group, stats.time), | |
1923 | .seq_show = cfqg_print_stat_recursive, | |
1924 | }, | |
1925 | { | |
1926 | .name = "sectors_recursive", | |
1927 | .private = offsetof(struct cfq_group, stats.sectors), | |
1928 | .seq_show = cfqg_print_stat_recursive, | |
1929 | }, | |
1930 | { | |
1931 | .name = "io_service_bytes_recursive", | |
1932 | .private = offsetof(struct cfq_group, stats.service_bytes), | |
1933 | .seq_show = cfqg_print_rwstat_recursive, | |
1934 | }, | |
1935 | { | |
1936 | .name = "io_serviced_recursive", | |
1937 | .private = offsetof(struct cfq_group, stats.serviced), | |
1938 | .seq_show = cfqg_print_rwstat_recursive, | |
1939 | }, | |
1940 | { | |
1941 | .name = "io_service_time_recursive", | |
1942 | .private = offsetof(struct cfq_group, stats.service_time), | |
1943 | .seq_show = cfqg_print_rwstat_recursive, | |
1944 | }, | |
1945 | { | |
1946 | .name = "io_wait_time_recursive", | |
1947 | .private = offsetof(struct cfq_group, stats.wait_time), | |
1948 | .seq_show = cfqg_print_rwstat_recursive, | |
1949 | }, | |
1950 | { | |
1951 | .name = "io_merged_recursive", | |
1952 | .private = offsetof(struct cfq_group, stats.merged), | |
1953 | .seq_show = cfqg_print_rwstat_recursive, | |
1954 | }, | |
1955 | { | |
1956 | .name = "io_queued_recursive", | |
1957 | .private = offsetof(struct cfq_group, stats.queued), | |
1958 | .seq_show = cfqg_print_rwstat_recursive, | |
1959 | }, | |
1960 | #ifdef CONFIG_DEBUG_BLK_CGROUP | |
1961 | { | |
1962 | .name = "avg_queue_size", | |
1963 | .seq_show = cfqg_print_avg_queue_size, | |
1964 | }, | |
1965 | { | |
1966 | .name = "group_wait_time", | |
1967 | .private = offsetof(struct cfq_group, stats.group_wait_time), | |
1968 | .seq_show = cfqg_print_stat, | |
1969 | }, | |
1970 | { | |
1971 | .name = "idle_time", | |
1972 | .private = offsetof(struct cfq_group, stats.idle_time), | |
1973 | .seq_show = cfqg_print_stat, | |
1974 | }, | |
1975 | { | |
1976 | .name = "empty_time", | |
1977 | .private = offsetof(struct cfq_group, stats.empty_time), | |
1978 | .seq_show = cfqg_print_stat, | |
1979 | }, | |
1980 | { | |
1981 | .name = "dequeue", | |
1982 | .private = offsetof(struct cfq_group, stats.dequeue), | |
1983 | .seq_show = cfqg_print_stat, | |
1984 | }, | |
1985 | { | |
1986 | .name = "unaccounted_time", | |
1987 | .private = offsetof(struct cfq_group, stats.unaccounted_time), | |
1988 | .seq_show = cfqg_print_stat, | |
1989 | }, | |
1990 | #endif /* CONFIG_DEBUG_BLK_CGROUP */ | |
1991 | { } /* terminate */ | |
1992 | }; | |
1993 | #else /* GROUP_IOSCHED */ | |
1994 | static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd, | |
1995 | struct blkcg *blkcg) | |
1996 | { | |
1997 | return cfqd->root_group; | |
1998 | } | |
1999 | ||
2000 | static inline void | |
2001 | cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) { | |
2002 | cfqq->cfqg = cfqg; | |
2003 | } | |
2004 | ||
2005 | #endif /* GROUP_IOSCHED */ | |
2006 | ||
2007 | /* | |
2008 | * The cfqd->service_trees holds all pending cfq_queue's that have | |
2009 | * requests waiting to be processed. It is sorted in the order that | |
2010 | * we will service the queues. | |
2011 | */ | |
2012 | static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq, | |
2013 | bool add_front) | |
2014 | { | |
2015 | struct rb_node **p, *parent; | |
2016 | struct cfq_queue *__cfqq; | |
2017 | unsigned long rb_key; | |
2018 | struct cfq_rb_root *st; | |
2019 | int left; | |
2020 | int new_cfqq = 1; | |
2021 | ||
2022 | st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq)); | |
2023 | if (cfq_class_idle(cfqq)) { | |
2024 | rb_key = CFQ_IDLE_DELAY; | |
2025 | parent = rb_last(&st->rb); | |
2026 | if (parent && parent != &cfqq->rb_node) { | |
2027 | __cfqq = rb_entry(parent, struct cfq_queue, rb_node); | |
2028 | rb_key += __cfqq->rb_key; | |
2029 | } else | |
2030 | rb_key += jiffies; | |
2031 | } else if (!add_front) { | |
2032 | /* | |
2033 | * Get our rb key offset. Subtract any residual slice | |
2034 | * value carried from last service. A negative resid | |
2035 | * count indicates slice overrun, and this should position | |
2036 | * the next service time further away in the tree. | |
2037 | */ | |
2038 | rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies; | |
2039 | rb_key -= cfqq->slice_resid; | |
2040 | cfqq->slice_resid = 0; | |
2041 | } else { | |
2042 | rb_key = -HZ; | |
2043 | __cfqq = cfq_rb_first(st); | |
2044 | rb_key += __cfqq ? __cfqq->rb_key : jiffies; | |
2045 | } | |
2046 | ||
2047 | if (!RB_EMPTY_NODE(&cfqq->rb_node)) { | |
2048 | new_cfqq = 0; | |
2049 | /* | |
2050 | * same position, nothing more to do | |
2051 | */ | |
2052 | if (rb_key == cfqq->rb_key && cfqq->service_tree == st) | |
2053 | return; | |
2054 | ||
2055 | cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree); | |
2056 | cfqq->service_tree = NULL; | |
2057 | } | |
2058 | ||
2059 | left = 1; | |
2060 | parent = NULL; | |
2061 | cfqq->service_tree = st; | |
2062 | p = &st->rb.rb_node; | |
2063 | while (*p) { | |
2064 | parent = *p; | |
2065 | __cfqq = rb_entry(parent, struct cfq_queue, rb_node); | |
2066 | ||
2067 | /* | |
2068 | * sort by key, that represents service time. | |
2069 | */ | |
2070 | if (time_before(rb_key, __cfqq->rb_key)) | |
2071 | p = &parent->rb_left; | |
2072 | else { | |
2073 | p = &parent->rb_right; | |
2074 | left = 0; | |
2075 | } | |
2076 | } | |
2077 | ||
2078 | if (left) | |
2079 | st->left = &cfqq->rb_node; | |
2080 | ||
2081 | cfqq->rb_key = rb_key; | |
2082 | rb_link_node(&cfqq->rb_node, parent, p); | |
2083 | rb_insert_color(&cfqq->rb_node, &st->rb); | |
2084 | st->count++; | |
2085 | if (add_front || !new_cfqq) | |
2086 | return; | |
2087 | cfq_group_notify_queue_add(cfqd, cfqq->cfqg); | |
2088 | } | |
2089 | ||
2090 | static struct cfq_queue * | |
2091 | cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root, | |
2092 | sector_t sector, struct rb_node **ret_parent, | |
2093 | struct rb_node ***rb_link) | |
2094 | { | |
2095 | struct rb_node **p, *parent; | |
2096 | struct cfq_queue *cfqq = NULL; | |
2097 | ||
2098 | parent = NULL; | |
2099 | p = &root->rb_node; | |
2100 | while (*p) { | |
2101 | struct rb_node **n; | |
2102 | ||
2103 | parent = *p; | |
2104 | cfqq = rb_entry(parent, struct cfq_queue, p_node); | |
2105 | ||
2106 | /* | |
2107 | * Sort strictly based on sector. Smallest to the left, | |
2108 | * largest to the right. | |
2109 | */ | |
2110 | if (sector > blk_rq_pos(cfqq->next_rq)) | |
2111 | n = &(*p)->rb_right; | |
2112 | else if (sector < blk_rq_pos(cfqq->next_rq)) | |
2113 | n = &(*p)->rb_left; | |
2114 | else | |
2115 | break; | |
2116 | p = n; | |
2117 | cfqq = NULL; | |
2118 | } | |
2119 | ||
2120 | *ret_parent = parent; | |
2121 | if (rb_link) | |
2122 | *rb_link = p; | |
2123 | return cfqq; | |
2124 | } | |
2125 | ||
2126 | static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq) | |
2127 | { | |
2128 | struct rb_node **p, *parent; | |
2129 | struct cfq_queue *__cfqq; | |
2130 | ||
2131 | if (cfqq->p_root) { | |
2132 | rb_erase(&cfqq->p_node, cfqq->p_root); | |
2133 | cfqq->p_root = NULL; | |
2134 | } | |
2135 | ||
2136 | if (cfq_class_idle(cfqq)) | |
2137 | return; | |
2138 | if (!cfqq->next_rq) | |
2139 | return; | |
2140 | ||
2141 | cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio]; | |
2142 | __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root, | |
2143 | blk_rq_pos(cfqq->next_rq), &parent, &p); | |
2144 | if (!__cfqq) { | |
2145 | rb_link_node(&cfqq->p_node, parent, p); | |
2146 | rb_insert_color(&cfqq->p_node, cfqq->p_root); | |
2147 | } else | |
2148 | cfqq->p_root = NULL; | |
2149 | } | |
2150 | ||
2151 | /* | |
2152 | * Update cfqq's position in the service tree. | |
2153 | */ | |
2154 | static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq) | |
2155 | { | |
2156 | /* | |
2157 | * Resorting requires the cfqq to be on the RR list already. | |
2158 | */ | |
2159 | if (cfq_cfqq_on_rr(cfqq)) { | |
2160 | cfq_service_tree_add(cfqd, cfqq, 0); | |
2161 | cfq_prio_tree_add(cfqd, cfqq); | |
2162 | } | |
2163 | } | |
2164 | ||
2165 | /* | |
2166 | * add to busy list of queues for service, trying to be fair in ordering | |
2167 | * the pending list according to last request service | |
2168 | */ | |
2169 | static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq) | |
2170 | { | |
2171 | cfq_log_cfqq(cfqd, cfqq, "add_to_rr"); | |
2172 | BUG_ON(cfq_cfqq_on_rr(cfqq)); | |
2173 | cfq_mark_cfqq_on_rr(cfqq); | |
2174 | cfqd->busy_queues++; | |
2175 | if (cfq_cfqq_sync(cfqq)) | |
2176 | cfqd->busy_sync_queues++; | |
2177 | ||
2178 | cfq_resort_rr_list(cfqd, cfqq); | |
2179 | } | |
2180 | ||
2181 | /* | |
2182 | * Called when the cfqq no longer has requests pending, remove it from | |
2183 | * the service tree. | |
2184 | */ | |
2185 | static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq) | |
2186 | { | |
2187 | cfq_log_cfqq(cfqd, cfqq, "del_from_rr"); | |
2188 | BUG_ON(!cfq_cfqq_on_rr(cfqq)); | |
2189 | cfq_clear_cfqq_on_rr(cfqq); | |
2190 | ||
2191 | if (!RB_EMPTY_NODE(&cfqq->rb_node)) { | |
2192 | cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree); | |
2193 | cfqq->service_tree = NULL; | |
2194 | } | |
2195 | if (cfqq->p_root) { | |
2196 | rb_erase(&cfqq->p_node, cfqq->p_root); | |
2197 | cfqq->p_root = NULL; | |
2198 | } | |
2199 | ||
2200 | cfq_group_notify_queue_del(cfqd, cfqq->cfqg); | |
2201 | BUG_ON(!cfqd->busy_queues); | |
2202 | cfqd->busy_queues--; | |
2203 | if (cfq_cfqq_sync(cfqq)) | |
2204 | cfqd->busy_sync_queues--; | |
2205 | } | |
2206 | ||
2207 | /* | |
2208 | * rb tree support functions | |
2209 | */ | |
2210 | static void cfq_del_rq_rb(struct request *rq) | |
2211 | { | |
2212 | struct cfq_queue *cfqq = RQ_CFQQ(rq); | |
2213 | const int sync = rq_is_sync(rq); | |
2214 | ||
2215 | BUG_ON(!cfqq->queued[sync]); | |
2216 | cfqq->queued[sync]--; | |
2217 | ||
2218 | elv_rb_del(&cfqq->sort_list, rq); | |
2219 | ||
2220 | if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) { | |
2221 | /* | |
2222 | * Queue will be deleted from service tree when we actually | |
2223 | * expire it later. Right now just remove it from prio tree | |
2224 | * as it is empty. | |
2225 | */ | |
2226 | if (cfqq->p_root) { | |
2227 | rb_erase(&cfqq->p_node, cfqq->p_root); | |
2228 | cfqq->p_root = NULL; | |
2229 | } | |
2230 | } | |
2231 | } | |
2232 | ||
2233 | static void cfq_add_rq_rb(struct request *rq) | |
2234 | { | |
2235 | struct cfq_queue *cfqq = RQ_CFQQ(rq); | |
2236 | struct cfq_data *cfqd = cfqq->cfqd; | |
2237 | struct request *prev; | |
2238 | ||
2239 | cfqq->queued[rq_is_sync(rq)]++; | |
2240 | ||
2241 | elv_rb_add(&cfqq->sort_list, rq); | |
2242 | ||
2243 | if (!cfq_cfqq_on_rr(cfqq)) | |
2244 | cfq_add_cfqq_rr(cfqd, cfqq); | |
2245 | ||
2246 | /* | |
2247 | * check if this request is a better next-serve candidate | |
2248 | */ | |
2249 | prev = cfqq->next_rq; | |
2250 | cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position); | |
2251 | ||
2252 | /* | |
2253 | * adjust priority tree position, if ->next_rq changes | |
2254 | */ | |
2255 | if (prev != cfqq->next_rq) | |
2256 | cfq_prio_tree_add(cfqd, cfqq); | |
2257 | ||
2258 | BUG_ON(!cfqq->next_rq); | |
2259 | } | |
2260 | ||
2261 | static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq) | |
2262 | { | |
2263 | elv_rb_del(&cfqq->sort_list, rq); | |
2264 | cfqq->queued[rq_is_sync(rq)]--; | |
2265 | cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags); | |
2266 | cfq_add_rq_rb(rq); | |
2267 | cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group, | |
2268 | rq->cmd_flags); | |
2269 | } | |
2270 | ||
2271 | static struct request * | |
2272 | cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio) | |
2273 | { | |
2274 | struct task_struct *tsk = current; | |
2275 | struct cfq_io_cq *cic; | |
2276 | struct cfq_queue *cfqq; | |
2277 | ||
2278 | cic = cfq_cic_lookup(cfqd, tsk->io_context); | |
2279 | if (!cic) | |
2280 | return NULL; | |
2281 | ||
2282 | cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio)); | |
2283 | if (cfqq) | |
2284 | return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio)); | |
2285 | ||
2286 | return NULL; | |
2287 | } | |
2288 | ||
2289 | static void cfq_activate_request(struct request_queue *q, struct request *rq) | |
2290 | { | |
2291 | struct cfq_data *cfqd = q->elevator->elevator_data; | |
2292 | ||
2293 | cfqd->rq_in_driver++; | |
2294 | cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d", | |
2295 | cfqd->rq_in_driver); | |
2296 | ||
2297 | cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq); | |
2298 | } | |
2299 | ||
2300 | static void cfq_deactivate_request(struct request_queue *q, struct request *rq) | |
2301 | { | |
2302 | struct cfq_data *cfqd = q->elevator->elevator_data; | |
2303 | ||
2304 | WARN_ON(!cfqd->rq_in_driver); | |
2305 | cfqd->rq_in_driver--; | |
2306 | cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d", | |
2307 | cfqd->rq_in_driver); | |
2308 | } | |
2309 | ||
2310 | static void cfq_remove_request(struct request *rq) | |
2311 | { | |
2312 | struct cfq_queue *cfqq = RQ_CFQQ(rq); | |
2313 | ||
2314 | if (cfqq->next_rq == rq) | |
2315 | cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq); | |
2316 | ||
2317 | list_del_init(&rq->queuelist); | |
2318 | cfq_del_rq_rb(rq); | |
2319 | ||
2320 | cfqq->cfqd->rq_queued--; | |
2321 | cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags); | |
2322 | if (rq->cmd_flags & REQ_PRIO) { | |
2323 | WARN_ON(!cfqq->prio_pending); | |
2324 | cfqq->prio_pending--; | |
2325 | } | |
2326 | } | |
2327 | ||
2328 | static int cfq_merge(struct request_queue *q, struct request **req, | |
2329 | struct bio *bio) | |
2330 | { | |
2331 | struct cfq_data *cfqd = q->elevator->elevator_data; | |
2332 | struct request *__rq; | |
2333 | ||
2334 | __rq = cfq_find_rq_fmerge(cfqd, bio); | |
2335 | if (__rq && elv_rq_merge_ok(__rq, bio)) { | |
2336 | *req = __rq; | |
2337 | return ELEVATOR_FRONT_MERGE; | |
2338 | } | |
2339 | ||
2340 | return ELEVATOR_NO_MERGE; | |
2341 | } | |
2342 | ||
2343 | static void cfq_merged_request(struct request_queue *q, struct request *req, | |
2344 | int type) | |
2345 | { | |
2346 | if (type == ELEVATOR_FRONT_MERGE) { | |
2347 | struct cfq_queue *cfqq = RQ_CFQQ(req); | |
2348 | ||
2349 | cfq_reposition_rq_rb(cfqq, req); | |
2350 | } | |
2351 | } | |
2352 | ||
2353 | static void cfq_bio_merged(struct request_queue *q, struct request *req, | |
2354 | struct bio *bio) | |
2355 | { | |
2356 | cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw); | |
2357 | } | |
2358 | ||
2359 | static void | |
2360 | cfq_merged_requests(struct request_queue *q, struct request *rq, | |
2361 | struct request *next) | |
2362 | { | |
2363 | struct cfq_queue *cfqq = RQ_CFQQ(rq); | |
2364 | struct cfq_data *cfqd = q->elevator->elevator_data; | |
2365 | ||
2366 | /* | |
2367 | * reposition in fifo if next is older than rq | |
2368 | */ | |
2369 | if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && | |
2370 | time_before(rq_fifo_time(next), rq_fifo_time(rq)) && | |
2371 | cfqq == RQ_CFQQ(next)) { | |
2372 | list_move(&rq->queuelist, &next->queuelist); | |
2373 | rq_set_fifo_time(rq, rq_fifo_time(next)); | |
2374 | } | |
2375 | ||
2376 | if (cfqq->next_rq == next) | |
2377 | cfqq->next_rq = rq; | |
2378 | cfq_remove_request(next); | |
2379 | cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags); | |
2380 | ||
2381 | cfqq = RQ_CFQQ(next); | |
2382 | /* | |
2383 | * all requests of this queue are merged to other queues, delete it | |
2384 | * from the service tree. If it's the active_queue, | |
2385 | * cfq_dispatch_requests() will choose to expire it or do idle | |
2386 | */ | |
2387 | if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) && | |
2388 | cfqq != cfqd->active_queue) | |
2389 | cfq_del_cfqq_rr(cfqd, cfqq); | |
2390 | } | |
2391 | ||
2392 | static int cfq_allow_merge(struct request_queue *q, struct request *rq, | |
2393 | struct bio *bio) | |
2394 | { | |
2395 | struct cfq_data *cfqd = q->elevator->elevator_data; | |
2396 | struct cfq_io_cq *cic; | |
2397 | struct cfq_queue *cfqq; | |
2398 | ||
2399 | /* | |
2400 | * Disallow merge of a sync bio into an async request. | |
2401 | */ | |
2402 | if (cfq_bio_sync(bio) && !rq_is_sync(rq)) | |
2403 | return false; | |
2404 | ||
2405 | /* | |
2406 | * Lookup the cfqq that this bio will be queued with and allow | |
2407 | * merge only if rq is queued there. | |
2408 | */ | |
2409 | cic = cfq_cic_lookup(cfqd, current->io_context); | |
2410 | if (!cic) | |
2411 | return false; | |
2412 | ||
2413 | cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio)); | |
2414 | return cfqq == RQ_CFQQ(rq); | |
2415 | } | |
2416 | ||
2417 | static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq) | |
2418 | { | |
2419 | del_timer(&cfqd->idle_slice_timer); | |
2420 | cfqg_stats_update_idle_time(cfqq->cfqg); | |
2421 | } | |
2422 | ||
2423 | static void __cfq_set_active_queue(struct cfq_data *cfqd, | |
2424 | struct cfq_queue *cfqq) | |
2425 | { | |
2426 | if (cfqq) { | |
2427 | cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d", | |
2428 | cfqd->serving_wl_class, cfqd->serving_wl_type); | |
2429 | cfqg_stats_update_avg_queue_size(cfqq->cfqg); | |
2430 | cfqq->slice_start = 0; | |
2431 | cfqq->dispatch_start = jiffies; | |
2432 | cfqq->allocated_slice = 0; | |
2433 | cfqq->slice_end = 0; | |
2434 | cfqq->slice_dispatch = 0; | |
2435 | cfqq->nr_sectors = 0; | |
2436 | ||
2437 | cfq_clear_cfqq_wait_request(cfqq); | |
2438 | cfq_clear_cfqq_must_dispatch(cfqq); | |
2439 | cfq_clear_cfqq_must_alloc_slice(cfqq); | |
2440 | cfq_clear_cfqq_fifo_expire(cfqq); | |
2441 | cfq_mark_cfqq_slice_new(cfqq); | |
2442 | ||
2443 | cfq_del_timer(cfqd, cfqq); | |
2444 | } | |
2445 | ||
2446 | cfqd->active_queue = cfqq; | |
2447 | } | |
2448 | ||
2449 | /* | |
2450 | * current cfqq expired its slice (or was too idle), select new one | |
2451 | */ | |
2452 | static void | |
2453 | __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq, | |
2454 | bool timed_out) | |
2455 | { | |
2456 | cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out); | |
2457 | ||
2458 | if (cfq_cfqq_wait_request(cfqq)) | |
2459 | cfq_del_timer(cfqd, cfqq); | |
2460 | ||
2461 | cfq_clear_cfqq_wait_request(cfqq); | |
2462 | cfq_clear_cfqq_wait_busy(cfqq); | |
2463 | ||
2464 | /* | |
2465 | * If this cfqq is shared between multiple processes, check to | |
2466 | * make sure that those processes are still issuing I/Os within | |
2467 | * the mean seek distance. If not, it may be time to break the | |
2468 | * queues apart again. | |
2469 | */ | |
2470 | if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq)) | |
2471 | cfq_mark_cfqq_split_coop(cfqq); | |
2472 | ||
2473 | /* | |
2474 | * store what was left of this slice, if the queue idled/timed out | |
2475 | */ | |
2476 | if (timed_out) { | |
2477 | if (cfq_cfqq_slice_new(cfqq)) | |
2478 | cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq); | |
2479 | else | |
2480 | cfqq->slice_resid = cfqq->slice_end - jiffies; | |
2481 | cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid); | |
2482 | } | |
2483 | ||
2484 | cfq_group_served(cfqd, cfqq->cfqg, cfqq); | |
2485 | ||
2486 | if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) | |
2487 | cfq_del_cfqq_rr(cfqd, cfqq); | |
2488 | ||
2489 | cfq_resort_rr_list(cfqd, cfqq); | |
2490 | ||
2491 | if (cfqq == cfqd->active_queue) | |
2492 | cfqd->active_queue = NULL; | |
2493 | ||
2494 | if (cfqd->active_cic) { | |
2495 | put_io_context(cfqd->active_cic->icq.ioc); | |
2496 | cfqd->active_cic = NULL; | |
2497 | } | |
2498 | } | |
2499 | ||
2500 | static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out) | |
2501 | { | |
2502 | struct cfq_queue *cfqq = cfqd->active_queue; | |
2503 | ||
2504 | if (cfqq) | |
2505 | __cfq_slice_expired(cfqd, cfqq, timed_out); | |
2506 | } | |
2507 | ||
2508 | /* | |
2509 | * Get next queue for service. Unless we have a queue preemption, | |
2510 | * we'll simply select the first cfqq in the service tree. | |
2511 | */ | |
2512 | static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd) | |
2513 | { | |
2514 | struct cfq_rb_root *st = st_for(cfqd->serving_group, | |
2515 | cfqd->serving_wl_class, cfqd->serving_wl_type); | |
2516 | ||
2517 | if (!cfqd->rq_queued) | |
2518 | return NULL; | |
2519 | ||
2520 | /* There is nothing to dispatch */ | |
2521 | if (!st) | |
2522 | return NULL; | |
2523 | if (RB_EMPTY_ROOT(&st->rb)) | |
2524 | return NULL; | |
2525 | return cfq_rb_first(st); | |
2526 | } | |
2527 | ||
2528 | static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd) | |
2529 | { | |
2530 | struct cfq_group *cfqg; | |
2531 | struct cfq_queue *cfqq; | |
2532 | int i, j; | |
2533 | struct cfq_rb_root *st; | |
2534 | ||
2535 | if (!cfqd->rq_queued) | |
2536 | return NULL; | |
2537 | ||
2538 | cfqg = cfq_get_next_cfqg(cfqd); | |
2539 | if (!cfqg) | |
2540 | return NULL; | |
2541 | ||
2542 | for_each_cfqg_st(cfqg, i, j, st) | |
2543 | if ((cfqq = cfq_rb_first(st)) != NULL) | |
2544 | return cfqq; | |
2545 | return NULL; | |
2546 | } | |
2547 | ||
2548 | /* | |
2549 | * Get and set a new active queue for service. | |
2550 | */ | |
2551 | static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd, | |
2552 | struct cfq_queue *cfqq) | |
2553 | { | |
2554 | if (!cfqq) | |
2555 | cfqq = cfq_get_next_queue(cfqd); | |
2556 | ||
2557 | __cfq_set_active_queue(cfqd, cfqq); | |
2558 | return cfqq; | |
2559 | } | |
2560 | ||
2561 | static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd, | |
2562 | struct request *rq) | |
2563 | { | |
2564 | if (blk_rq_pos(rq) >= cfqd->last_position) | |
2565 | return blk_rq_pos(rq) - cfqd->last_position; | |
2566 | else | |
2567 | return cfqd->last_position - blk_rq_pos(rq); | |
2568 | } | |
2569 | ||
2570 | static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq, | |
2571 | struct request *rq) | |
2572 | { | |
2573 | return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR; | |
2574 | } | |
2575 | ||
2576 | static struct cfq_queue *cfqq_close(struct cfq_data *cfqd, | |
2577 | struct cfq_queue *cur_cfqq) | |
2578 | { | |
2579 | struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio]; | |
2580 | struct rb_node *parent, *node; | |
2581 | struct cfq_queue *__cfqq; | |
2582 | sector_t sector = cfqd->last_position; | |
2583 | ||
2584 | if (RB_EMPTY_ROOT(root)) | |
2585 | return NULL; | |
2586 | ||
2587 | /* | |
2588 | * First, if we find a request starting at the end of the last | |
2589 | * request, choose it. | |
2590 | */ | |
2591 | __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL); | |
2592 | if (__cfqq) | |
2593 | return __cfqq; | |
2594 | ||
2595 | /* | |
2596 | * If the exact sector wasn't found, the parent of the NULL leaf | |
2597 | * will contain the closest sector. | |
2598 | */ | |
2599 | __cfqq = rb_entry(parent, struct cfq_queue, p_node); | |
2600 | if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq)) | |
2601 | return __cfqq; | |
2602 | ||
2603 | if (blk_rq_pos(__cfqq->next_rq) < sector) | |
2604 | node = rb_next(&__cfqq->p_node); | |
2605 | else | |
2606 | node = rb_prev(&__cfqq->p_node); | |
2607 | if (!node) | |
2608 | return NULL; | |
2609 | ||
2610 | __cfqq = rb_entry(node, struct cfq_queue, p_node); | |
2611 | if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq)) | |
2612 | return __cfqq; | |
2613 | ||
2614 | return NULL; | |
2615 | } | |
2616 | ||
2617 | /* | |
2618 | * cfqd - obvious | |
2619 | * cur_cfqq - passed in so that we don't decide that the current queue is | |
2620 | * closely cooperating with itself. | |
2621 | * | |
2622 | * So, basically we're assuming that that cur_cfqq has dispatched at least | |
2623 | * one request, and that cfqd->last_position reflects a position on the disk | |
2624 | * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid | |
2625 | * assumption. | |
2626 | */ | |
2627 | static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd, | |
2628 | struct cfq_queue *cur_cfqq) | |
2629 | { | |
2630 | struct cfq_queue *cfqq; | |
2631 | ||
2632 | if (cfq_class_idle(cur_cfqq)) | |
2633 | return NULL; | |
2634 | if (!cfq_cfqq_sync(cur_cfqq)) | |
2635 | return NULL; | |
2636 | if (CFQQ_SEEKY(cur_cfqq)) | |
2637 | return NULL; | |
2638 | ||
2639 | /* | |
2640 | * Don't search priority tree if it's the only queue in the group. | |
2641 | */ | |
2642 | if (cur_cfqq->cfqg->nr_cfqq == 1) | |
2643 | return NULL; | |
2644 | ||
2645 | /* | |
2646 | * We should notice if some of the queues are cooperating, eg | |
2647 | * working closely on the same area of the disk. In that case, | |
2648 | * we can group them together and don't waste time idling. | |
2649 | */ | |
2650 | cfqq = cfqq_close(cfqd, cur_cfqq); | |
2651 | if (!cfqq) | |
2652 | return NULL; | |
2653 | ||
2654 | /* If new queue belongs to different cfq_group, don't choose it */ | |
2655 | if (cur_cfqq->cfqg != cfqq->cfqg) | |
2656 | return NULL; | |
2657 | ||
2658 | /* | |
2659 | * It only makes sense to merge sync queues. | |
2660 | */ | |
2661 | if (!cfq_cfqq_sync(cfqq)) | |
2662 | return NULL; | |
2663 | if (CFQQ_SEEKY(cfqq)) | |
2664 | return NULL; | |
2665 | ||
2666 | /* | |
2667 | * Do not merge queues of different priority classes | |
2668 | */ | |
2669 | if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq)) | |
2670 | return NULL; | |
2671 | ||
2672 | return cfqq; | |
2673 | } | |
2674 | ||
2675 | /* | |
2676 | * Determine whether we should enforce idle window for this queue. | |
2677 | */ | |
2678 | ||
2679 | static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq) | |
2680 | { | |
2681 | enum wl_class_t wl_class = cfqq_class(cfqq); | |
2682 | struct cfq_rb_root *st = cfqq->service_tree; | |
2683 | ||
2684 | BUG_ON(!st); | |
2685 | BUG_ON(!st->count); | |
2686 | ||
2687 | if (!cfqd->cfq_slice_idle) | |
2688 | return false; | |
2689 | ||
2690 | /* We never do for idle class queues. */ | |
2691 | if (wl_class == IDLE_WORKLOAD) | |
2692 | return false; | |
2693 | ||
2694 | /* We do for queues that were marked with idle window flag. */ | |
2695 | if (cfq_cfqq_idle_window(cfqq) && | |
2696 | !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)) | |
2697 | return true; | |
2698 | ||
2699 | /* | |
2700 | * Otherwise, we do only if they are the last ones | |
2701 | * in their service tree. | |
2702 | */ | |
2703 | if (st->count == 1 && cfq_cfqq_sync(cfqq) && | |
2704 | !cfq_io_thinktime_big(cfqd, &st->ttime, false)) | |
2705 | return true; | |
2706 | cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count); | |
2707 | return false; | |
2708 | } | |
2709 | ||
2710 | static void cfq_arm_slice_timer(struct cfq_data *cfqd) | |
2711 | { | |
2712 | struct cfq_queue *cfqq = cfqd->active_queue; | |
2713 | struct cfq_io_cq *cic; | |
2714 | unsigned long sl, group_idle = 0; | |
2715 | ||
2716 | /* | |
2717 | * SSD device without seek penalty, disable idling. But only do so | |
2718 | * for devices that support queuing, otherwise we still have a problem | |
2719 | * with sync vs async workloads. | |
2720 | */ | |
2721 | if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag) | |
2722 | return; | |
2723 | ||
2724 | WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list)); | |
2725 | WARN_ON(cfq_cfqq_slice_new(cfqq)); | |
2726 | ||
2727 | /* | |
2728 | * idle is disabled, either manually or by past process history | |
2729 | */ | |
2730 | if (!cfq_should_idle(cfqd, cfqq)) { | |
2731 | /* no queue idling. Check for group idling */ | |
2732 | if (cfqd->cfq_group_idle) | |
2733 | group_idle = cfqd->cfq_group_idle; | |
2734 | else | |
2735 | return; | |
2736 | } | |
2737 | ||
2738 | /* | |
2739 | * still active requests from this queue, don't idle | |
2740 | */ | |
2741 | if (cfqq->dispatched) | |
2742 | return; | |
2743 | ||
2744 | /* | |
2745 | * task has exited, don't wait | |
2746 | */ | |
2747 | cic = cfqd->active_cic; | |
2748 | if (!cic || !atomic_read(&cic->icq.ioc->active_ref)) | |
2749 | return; | |
2750 | ||
2751 | /* | |
2752 | * If our average think time is larger than the remaining time | |
2753 | * slice, then don't idle. This avoids overrunning the allotted | |
2754 | * time slice. | |
2755 | */ | |
2756 | if (sample_valid(cic->ttime.ttime_samples) && | |
2757 | (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) { | |
2758 | cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu", | |
2759 | cic->ttime.ttime_mean); | |
2760 | return; | |
2761 | } | |
2762 | ||
2763 | /* There are other queues in the group, don't do group idle */ | |
2764 | if (group_idle && cfqq->cfqg->nr_cfqq > 1) | |
2765 | return; | |
2766 | ||
2767 | cfq_mark_cfqq_wait_request(cfqq); | |
2768 | ||
2769 | if (group_idle) | |
2770 | sl = cfqd->cfq_group_idle; | |
2771 | else | |
2772 | sl = cfqd->cfq_slice_idle; | |
2773 | ||
2774 | mod_timer(&cfqd->idle_slice_timer, jiffies + sl); | |
2775 | cfqg_stats_set_start_idle_time(cfqq->cfqg); | |
2776 | cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl, | |
2777 | group_idle ? 1 : 0); | |
2778 | } | |
2779 | ||
2780 | /* | |
2781 | * Move request from internal lists to the request queue dispatch list. | |
2782 | */ | |
2783 | static void cfq_dispatch_insert(struct request_queue *q, struct request *rq) | |
2784 | { | |
2785 | struct cfq_data *cfqd = q->elevator->elevator_data; | |
2786 | struct cfq_queue *cfqq = RQ_CFQQ(rq); | |
2787 | ||
2788 | cfq_log_cfqq(cfqd, cfqq, "dispatch_insert"); | |
2789 | ||
2790 | cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq); | |
2791 | cfq_remove_request(rq); | |
2792 | cfqq->dispatched++; | |
2793 | (RQ_CFQG(rq))->dispatched++; | |
2794 | elv_dispatch_sort(q, rq); | |
2795 | ||
2796 | cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++; | |
2797 | cfqq->nr_sectors += blk_rq_sectors(rq); | |
2798 | cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags); | |
2799 | } | |
2800 | ||
2801 | /* | |
2802 | * return expired entry, or NULL to just start from scratch in rbtree | |
2803 | */ | |
2804 | static struct request *cfq_check_fifo(struct cfq_queue *cfqq) | |
2805 | { | |
2806 | struct request *rq = NULL; | |
2807 | ||
2808 | if (cfq_cfqq_fifo_expire(cfqq)) | |
2809 | return NULL; | |
2810 | ||
2811 | cfq_mark_cfqq_fifo_expire(cfqq); | |
2812 | ||
2813 | if (list_empty(&cfqq->fifo)) | |
2814 | return NULL; | |
2815 | ||
2816 | rq = rq_entry_fifo(cfqq->fifo.next); | |
2817 | if (time_before(jiffies, rq_fifo_time(rq))) | |
2818 | rq = NULL; | |
2819 | ||
2820 | cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq); | |
2821 | return rq; | |
2822 | } | |
2823 | ||
2824 | static inline int | |
2825 | cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq) | |
2826 | { | |
2827 | const int base_rq = cfqd->cfq_slice_async_rq; | |
2828 | ||
2829 | WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR); | |
2830 | ||
2831 | return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio); | |
2832 | } | |
2833 | ||
2834 | /* | |
2835 | * Must be called with the queue_lock held. | |
2836 | */ | |
2837 | static int cfqq_process_refs(struct cfq_queue *cfqq) | |
2838 | { | |
2839 | int process_refs, io_refs; | |
2840 | ||
2841 | io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE]; | |
2842 | process_refs = cfqq->ref - io_refs; | |
2843 | BUG_ON(process_refs < 0); | |
2844 | return process_refs; | |
2845 | } | |
2846 | ||
2847 | static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq) | |
2848 | { | |
2849 | int process_refs, new_process_refs; | |
2850 | struct cfq_queue *__cfqq; | |
2851 | ||
2852 | /* | |
2853 | * If there are no process references on the new_cfqq, then it is | |
2854 | * unsafe to follow the ->new_cfqq chain as other cfqq's in the | |
2855 | * chain may have dropped their last reference (not just their | |
2856 | * last process reference). | |
2857 | */ | |
2858 | if (!cfqq_process_refs(new_cfqq)) | |
2859 | return; | |
2860 | ||
2861 | /* Avoid a circular list and skip interim queue merges */ | |
2862 | while ((__cfqq = new_cfqq->new_cfqq)) { | |
2863 | if (__cfqq == cfqq) | |
2864 | return; | |
2865 | new_cfqq = __cfqq; | |
2866 | } | |
2867 | ||
2868 | process_refs = cfqq_process_refs(cfqq); | |
2869 | new_process_refs = cfqq_process_refs(new_cfqq); | |
2870 | /* | |
2871 | * If the process for the cfqq has gone away, there is no | |
2872 | * sense in merging the queues. | |
2873 | */ | |
2874 | if (process_refs == 0 || new_process_refs == 0) | |
2875 | return; | |
2876 | ||
2877 | /* | |
2878 | * Merge in the direction of the lesser amount of work. | |
2879 | */ | |
2880 | if (new_process_refs >= process_refs) { | |
2881 | cfqq->new_cfqq = new_cfqq; | |
2882 | new_cfqq->ref += process_refs; | |
2883 | } else { | |
2884 | new_cfqq->new_cfqq = cfqq; | |
2885 | cfqq->ref += new_process_refs; | |
2886 | } | |
2887 | } | |
2888 | ||
2889 | static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd, | |
2890 | struct cfq_group *cfqg, enum wl_class_t wl_class) | |
2891 | { | |
2892 | struct cfq_queue *queue; | |
2893 | int i; | |
2894 | bool key_valid = false; | |
2895 | unsigned long lowest_key = 0; | |
2896 | enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD; | |
2897 | ||
2898 | for (i = 0; i <= SYNC_WORKLOAD; ++i) { | |
2899 | /* select the one with lowest rb_key */ | |
2900 | queue = cfq_rb_first(st_for(cfqg, wl_class, i)); | |
2901 | if (queue && | |
2902 | (!key_valid || time_before(queue->rb_key, lowest_key))) { | |
2903 | lowest_key = queue->rb_key; | |
2904 | cur_best = i; | |
2905 | key_valid = true; | |
2906 | } | |
2907 | } | |
2908 | ||
2909 | return cur_best; | |
2910 | } | |
2911 | ||
2912 | static void | |
2913 | choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg) | |
2914 | { | |
2915 | unsigned slice; | |
2916 | unsigned count; | |
2917 | struct cfq_rb_root *st; | |
2918 | unsigned group_slice; | |
2919 | enum wl_class_t original_class = cfqd->serving_wl_class; | |
2920 | ||
2921 | /* Choose next priority. RT > BE > IDLE */ | |
2922 | if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg)) | |
2923 | cfqd->serving_wl_class = RT_WORKLOAD; | |
2924 | else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg)) | |
2925 | cfqd->serving_wl_class = BE_WORKLOAD; | |
2926 | else { | |
2927 | cfqd->serving_wl_class = IDLE_WORKLOAD; | |
2928 | cfqd->workload_expires = jiffies + 1; | |
2929 | return; | |
2930 | } | |
2931 | ||
2932 | if (original_class != cfqd->serving_wl_class) | |
2933 | goto new_workload; | |
2934 | ||
2935 | /* | |
2936 | * For RT and BE, we have to choose also the type | |
2937 | * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload | |
2938 | * expiration time | |
2939 | */ | |
2940 | st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type); | |
2941 | count = st->count; | |
2942 | ||
2943 | /* | |
2944 | * check workload expiration, and that we still have other queues ready | |
2945 | */ | |
2946 | if (count && !time_after(jiffies, cfqd->workload_expires)) | |
2947 | return; | |
2948 | ||
2949 | new_workload: | |
2950 | /* otherwise select new workload type */ | |
2951 | cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg, | |
2952 | cfqd->serving_wl_class); | |
2953 | st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type); | |
2954 | count = st->count; | |
2955 | ||
2956 | /* | |
2957 | * the workload slice is computed as a fraction of target latency | |
2958 | * proportional to the number of queues in that workload, over | |
2959 | * all the queues in the same priority class | |
2960 | */ | |
2961 | group_slice = cfq_group_slice(cfqd, cfqg); | |
2962 | ||
2963 | slice = group_slice * count / | |
2964 | max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class], | |
2965 | cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd, | |
2966 | cfqg)); | |
2967 | ||
2968 | if (cfqd->serving_wl_type == ASYNC_WORKLOAD) { | |
2969 | unsigned int tmp; | |
2970 | ||
2971 | /* | |
2972 | * Async queues are currently system wide. Just taking | |
2973 | * proportion of queues with-in same group will lead to higher | |
2974 | * async ratio system wide as generally root group is going | |
2975 | * to have higher weight. A more accurate thing would be to | |
2976 | * calculate system wide asnc/sync ratio. | |
2977 | */ | |
2978 | tmp = cfqd->cfq_target_latency * | |
2979 | cfqg_busy_async_queues(cfqd, cfqg); | |
2980 | tmp = tmp/cfqd->busy_queues; | |
2981 | slice = min_t(unsigned, slice, tmp); | |
2982 | ||
2983 | /* async workload slice is scaled down according to | |
2984 | * the sync/async slice ratio. */ | |
2985 | slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1]; | |
2986 | } else | |
2987 | /* sync workload slice is at least 2 * cfq_slice_idle */ | |
2988 | slice = max(slice, 2 * cfqd->cfq_slice_idle); | |
2989 | ||
2990 | slice = max_t(unsigned, slice, CFQ_MIN_TT); | |
2991 | cfq_log(cfqd, "workload slice:%d", slice); | |
2992 | cfqd->workload_expires = jiffies + slice; | |
2993 | } | |
2994 | ||
2995 | static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd) | |
2996 | { | |
2997 | struct cfq_rb_root *st = &cfqd->grp_service_tree; | |
2998 | struct cfq_group *cfqg; | |
2999 | ||
3000 | if (RB_EMPTY_ROOT(&st->rb)) | |
3001 | return NULL; | |
3002 | cfqg = cfq_rb_first_group(st); | |
3003 | update_min_vdisktime(st); | |
3004 | return cfqg; | |
3005 | } | |
3006 | ||
3007 | static void cfq_choose_cfqg(struct cfq_data *cfqd) | |
3008 | { | |
3009 | struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd); | |
3010 | ||
3011 | cfqd->serving_group = cfqg; | |
3012 | ||
3013 | /* Restore the workload type data */ | |
3014 | if (cfqg->saved_wl_slice) { | |
3015 | cfqd->workload_expires = jiffies + cfqg->saved_wl_slice; | |
3016 | cfqd->serving_wl_type = cfqg->saved_wl_type; | |
3017 | cfqd->serving_wl_class = cfqg->saved_wl_class; | |
3018 | } else | |
3019 | cfqd->workload_expires = jiffies - 1; | |
3020 | ||
3021 | choose_wl_class_and_type(cfqd, cfqg); | |
3022 | } | |
3023 | ||
3024 | /* | |
3025 | * Select a queue for service. If we have a current active queue, | |
3026 | * check whether to continue servicing it, or retrieve and set a new one. | |
3027 | */ | |
3028 | static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd) | |
3029 | { | |
3030 | struct cfq_queue *cfqq, *new_cfqq = NULL; | |
3031 | ||
3032 | cfqq = cfqd->active_queue; | |
3033 | if (!cfqq) | |
3034 | goto new_queue; | |
3035 | ||
3036 | if (!cfqd->rq_queued) | |
3037 | return NULL; | |
3038 | ||
3039 | /* | |
3040 | * We were waiting for group to get backlogged. Expire the queue | |
3041 | */ | |
3042 | if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list)) | |
3043 | goto expire; | |
3044 | ||
3045 | /* | |
3046 | * The active queue has run out of time, expire it and select new. | |
3047 | */ | |
3048 | if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) { | |
3049 | /* | |
3050 | * If slice had not expired at the completion of last request | |
3051 | * we might not have turned on wait_busy flag. Don't expire | |
3052 | * the queue yet. Allow the group to get backlogged. | |
3053 | * | |
3054 | * The very fact that we have used the slice, that means we | |
3055 | * have been idling all along on this queue and it should be | |
3056 | * ok to wait for this request to complete. | |
3057 | */ | |
3058 | if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list) | |
3059 | && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) { | |
3060 | cfqq = NULL; | |
3061 | goto keep_queue; | |
3062 | } else | |
3063 | goto check_group_idle; | |
3064 | } | |
3065 | ||
3066 | /* | |
3067 | * The active queue has requests and isn't expired, allow it to | |
3068 | * dispatch. | |
3069 | */ | |
3070 | if (!RB_EMPTY_ROOT(&cfqq->sort_list)) | |
3071 | goto keep_queue; | |
3072 | ||
3073 | /* | |
3074 | * If another queue has a request waiting within our mean seek | |
3075 | * distance, let it run. The expire code will check for close | |
3076 | * cooperators and put the close queue at the front of the service | |
3077 | * tree. If possible, merge the expiring queue with the new cfqq. | |
3078 | */ | |
3079 | new_cfqq = cfq_close_cooperator(cfqd, cfqq); | |
3080 | if (new_cfqq) { | |
3081 | if (!cfqq->new_cfqq) | |
3082 | cfq_setup_merge(cfqq, new_cfqq); | |
3083 | goto expire; | |
3084 | } | |
3085 | ||
3086 | /* | |
3087 | * No requests pending. If the active queue still has requests in | |
3088 | * flight or is idling for a new request, allow either of these | |
3089 | * conditions to happen (or time out) before selecting a new queue. | |
3090 | */ | |
3091 | if (timer_pending(&cfqd->idle_slice_timer)) { | |
3092 | cfqq = NULL; | |
3093 | goto keep_queue; | |
3094 | } | |
3095 | ||
3096 | /* | |
3097 | * This is a deep seek queue, but the device is much faster than | |
3098 | * the queue can deliver, don't idle | |
3099 | **/ | |
3100 | if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) && | |
3101 | (cfq_cfqq_slice_new(cfqq) || | |
3102 | (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) { | |
3103 | cfq_clear_cfqq_deep(cfqq); | |
3104 | cfq_clear_cfqq_idle_window(cfqq); | |
3105 | } | |
3106 | ||
3107 | if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) { | |
3108 | cfqq = NULL; | |
3109 | goto keep_queue; | |
3110 | } | |
3111 | ||
3112 | /* | |
3113 | * If group idle is enabled and there are requests dispatched from | |
3114 | * this group, wait for requests to complete. | |
3115 | */ | |
3116 | check_group_idle: | |
3117 | if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 && | |
3118 | cfqq->cfqg->dispatched && | |
3119 | !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) { | |
3120 | cfqq = NULL; | |
3121 | goto keep_queue; | |
3122 | } | |
3123 | ||
3124 | expire: | |
3125 | cfq_slice_expired(cfqd, 0); | |
3126 | new_queue: | |
3127 | /* | |
3128 | * Current queue expired. Check if we have to switch to a new | |
3129 | * service tree | |
3130 | */ | |
3131 | if (!new_cfqq) | |
3132 | cfq_choose_cfqg(cfqd); | |
3133 | ||
3134 | cfqq = cfq_set_active_queue(cfqd, new_cfqq); | |
3135 | keep_queue: | |
3136 | return cfqq; | |
3137 | } | |
3138 | ||
3139 | static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq) | |
3140 | { | |
3141 | int dispatched = 0; | |
3142 | ||
3143 | while (cfqq->next_rq) { | |
3144 | cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq); | |
3145 | dispatched++; | |
3146 | } | |
3147 | ||
3148 | BUG_ON(!list_empty(&cfqq->fifo)); | |
3149 | ||
3150 | /* By default cfqq is not expired if it is empty. Do it explicitly */ | |
3151 | __cfq_slice_expired(cfqq->cfqd, cfqq, 0); | |
3152 | return dispatched; | |
3153 | } | |
3154 | ||
3155 | /* | |
3156 | * Drain our current requests. Used for barriers and when switching | |
3157 | * io schedulers on-the-fly. | |
3158 | */ | |
3159 | static int cfq_forced_dispatch(struct cfq_data *cfqd) | |
3160 | { | |
3161 | struct cfq_queue *cfqq; | |
3162 | int dispatched = 0; | |
3163 | ||
3164 | /* Expire the timeslice of the current active queue first */ | |
3165 | cfq_slice_expired(cfqd, 0); | |
3166 | while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) { | |
3167 | __cfq_set_active_queue(cfqd, cfqq); | |
3168 | dispatched += __cfq_forced_dispatch_cfqq(cfqq); | |
3169 | } | |
3170 | ||
3171 | BUG_ON(cfqd->busy_queues); | |
3172 | ||
3173 | cfq_log(cfqd, "forced_dispatch=%d", dispatched); | |
3174 | return dispatched; | |
3175 | } | |
3176 | ||
3177 | static inline bool cfq_slice_used_soon(struct cfq_data *cfqd, | |
3178 | struct cfq_queue *cfqq) | |
3179 | { | |
3180 | /* the queue hasn't finished any request, can't estimate */ | |
3181 | if (cfq_cfqq_slice_new(cfqq)) | |
3182 | return true; | |
3183 | if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched, | |
3184 | cfqq->slice_end)) | |
3185 | return true; | |
3186 | ||
3187 | return false; | |
3188 | } | |
3189 | ||
3190 | static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq) | |
3191 | { | |
3192 | unsigned int max_dispatch; | |
3193 | ||
3194 | /* | |
3195 | * Drain async requests before we start sync IO | |
3196 | */ | |
3197 | if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC]) | |
3198 | return false; | |
3199 | ||
3200 | /* | |
3201 | * If this is an async queue and we have sync IO in flight, let it wait | |
3202 | */ | |
3203 | if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq)) | |
3204 | return false; | |
3205 | ||
3206 | max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1); | |
3207 | if (cfq_class_idle(cfqq)) | |
3208 | max_dispatch = 1; | |
3209 | ||
3210 | /* | |
3211 | * Does this cfqq already have too much IO in flight? | |
3212 | */ | |
3213 | if (cfqq->dispatched >= max_dispatch) { | |
3214 | bool promote_sync = false; | |
3215 | /* | |
3216 | * idle queue must always only have a single IO in flight | |
3217 | */ | |
3218 | if (cfq_class_idle(cfqq)) | |
3219 | return false; | |
3220 | ||
3221 | /* | |
3222 | * If there is only one sync queue | |
3223 | * we can ignore async queue here and give the sync | |
3224 | * queue no dispatch limit. The reason is a sync queue can | |
3225 | * preempt async queue, limiting the sync queue doesn't make | |
3226 | * sense. This is useful for aiostress test. | |
3227 | */ | |
3228 | if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1) | |
3229 | promote_sync = true; | |
3230 | ||
3231 | /* | |
3232 | * We have other queues, don't allow more IO from this one | |
3233 | */ | |
3234 | if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) && | |
3235 | !promote_sync) | |
3236 | return false; | |
3237 | ||
3238 | /* | |
3239 | * Sole queue user, no limit | |
3240 | */ | |
3241 | if (cfqd->busy_queues == 1 || promote_sync) | |
3242 | max_dispatch = -1; | |
3243 | else | |
3244 | /* | |
3245 | * Normally we start throttling cfqq when cfq_quantum/2 | |
3246 | * requests have been dispatched. But we can drive | |
3247 | * deeper queue depths at the beginning of slice | |
3248 | * subjected to upper limit of cfq_quantum. | |
3249 | * */ | |
3250 | max_dispatch = cfqd->cfq_quantum; | |
3251 | } | |
3252 | ||
3253 | /* | |
3254 | * Async queues must wait a bit before being allowed dispatch. | |
3255 | * We also ramp up the dispatch depth gradually for async IO, | |
3256 | * based on the last sync IO we serviced | |
3257 | */ | |
3258 | if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) { | |
3259 | unsigned long last_sync = jiffies - cfqd->last_delayed_sync; | |
3260 | unsigned int depth; | |
3261 | ||
3262 | depth = last_sync / cfqd->cfq_slice[1]; | |
3263 | if (!depth && !cfqq->dispatched) | |
3264 | depth = 1; | |
3265 | if (depth < max_dispatch) | |
3266 | max_dispatch = depth; | |
3267 | } | |
3268 | ||
3269 | /* | |
3270 | * If we're below the current max, allow a dispatch | |
3271 | */ | |
3272 | return cfqq->dispatched < max_dispatch; | |
3273 | } | |
3274 | ||
3275 | /* | |
3276 | * Dispatch a request from cfqq, moving them to the request queue | |
3277 | * dispatch list. | |
3278 | */ | |
3279 | static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq) | |
3280 | { | |
3281 | struct request *rq; | |
3282 | ||
3283 | BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list)); | |
3284 | ||
3285 | if (!cfq_may_dispatch(cfqd, cfqq)) | |
3286 | return false; | |
3287 | ||
3288 | /* | |
3289 | * follow expired path, else get first next available | |
3290 | */ | |
3291 | rq = cfq_check_fifo(cfqq); | |
3292 | if (!rq) | |
3293 | rq = cfqq->next_rq; | |
3294 | ||
3295 | /* | |
3296 | * insert request into driver dispatch list | |
3297 | */ | |
3298 | cfq_dispatch_insert(cfqd->queue, rq); | |
3299 | ||
3300 | if (!cfqd->active_cic) { | |
3301 | struct cfq_io_cq *cic = RQ_CIC(rq); | |
3302 | ||
3303 | atomic_long_inc(&cic->icq.ioc->refcount); | |
3304 | cfqd->active_cic = cic; | |
3305 | } | |
3306 | ||
3307 | return true; | |
3308 | } | |
3309 | ||
3310 | /* | |
3311 | * Find the cfqq that we need to service and move a request from that to the | |
3312 | * dispatch list | |
3313 | */ | |
3314 | static int cfq_dispatch_requests(struct request_queue *q, int force) | |
3315 | { | |
3316 | struct cfq_data *cfqd = q->elevator->elevator_data; | |
3317 | struct cfq_queue *cfqq; | |
3318 | ||
3319 | if (!cfqd->busy_queues) | |
3320 | return 0; | |
3321 | ||
3322 | if (unlikely(force)) | |
3323 | return cfq_forced_dispatch(cfqd); | |
3324 | ||
3325 | cfqq = cfq_select_queue(cfqd); | |
3326 | if (!cfqq) | |
3327 | return 0; | |
3328 | ||
3329 | /* | |
3330 | * Dispatch a request from this cfqq, if it is allowed | |
3331 | */ | |
3332 | if (!cfq_dispatch_request(cfqd, cfqq)) | |
3333 | return 0; | |
3334 | ||
3335 | cfqq->slice_dispatch++; | |
3336 | cfq_clear_cfqq_must_dispatch(cfqq); | |
3337 | ||
3338 | /* | |
3339 | * expire an async queue immediately if it has used up its slice. idle | |
3340 | * queue always expire after 1 dispatch round. | |
3341 | */ | |
3342 | if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) && | |
3343 | cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) || | |
3344 | cfq_class_idle(cfqq))) { | |
3345 | cfqq->slice_end = jiffies + 1; | |
3346 | cfq_slice_expired(cfqd, 0); | |
3347 | } | |
3348 | ||
3349 | cfq_log_cfqq(cfqd, cfqq, "dispatched a request"); | |
3350 | return 1; | |
3351 | } | |
3352 | ||
3353 | /* | |
3354 | * task holds one reference to the queue, dropped when task exits. each rq | |
3355 | * in-flight on this queue also holds a reference, dropped when rq is freed. | |
3356 | * | |
3357 | * Each cfq queue took a reference on the parent group. Drop it now. | |
3358 | * queue lock must be held here. | |
3359 | */ | |
3360 | static void cfq_put_queue(struct cfq_queue *cfqq) | |
3361 | { | |
3362 | struct cfq_data *cfqd = cfqq->cfqd; | |
3363 | struct cfq_group *cfqg; | |
3364 | ||
3365 | BUG_ON(cfqq->ref <= 0); | |
3366 | ||
3367 | cfqq->ref--; | |
3368 | if (cfqq->ref) | |
3369 | return; | |
3370 | ||
3371 | cfq_log_cfqq(cfqd, cfqq, "put_queue"); | |
3372 | BUG_ON(rb_first(&cfqq->sort_list)); | |
3373 | BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]); | |
3374 | cfqg = cfqq->cfqg; | |
3375 | ||
3376 | if (unlikely(cfqd->active_queue == cfqq)) { | |
3377 | __cfq_slice_expired(cfqd, cfqq, 0); | |
3378 | cfq_schedule_dispatch(cfqd); | |
3379 | } | |
3380 | ||
3381 | BUG_ON(cfq_cfqq_on_rr(cfqq)); | |
3382 | kmem_cache_free(cfq_pool, cfqq); | |
3383 | cfqg_put(cfqg); | |
3384 | } | |
3385 | ||
3386 | static void cfq_put_cooperator(struct cfq_queue *cfqq) | |
3387 | { | |
3388 | struct cfq_queue *__cfqq, *next; | |
3389 | ||
3390 | /* | |
3391 | * If this queue was scheduled to merge with another queue, be | |
3392 | * sure to drop the reference taken on that queue (and others in | |
3393 | * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs. | |
3394 | */ | |
3395 | __cfqq = cfqq->new_cfqq; | |
3396 | while (__cfqq) { | |
3397 | if (__cfqq == cfqq) { | |
3398 | WARN(1, "cfqq->new_cfqq loop detected\n"); | |
3399 | break; | |
3400 | } | |
3401 | next = __cfqq->new_cfqq; | |
3402 | cfq_put_queue(__cfqq); | |
3403 | __cfqq = next; | |
3404 | } | |
3405 | } | |
3406 | ||
3407 | static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq) | |
3408 | { | |
3409 | if (unlikely(cfqq == cfqd->active_queue)) { | |
3410 | __cfq_slice_expired(cfqd, cfqq, 0); | |
3411 | cfq_schedule_dispatch(cfqd); | |
3412 | } | |
3413 | ||
3414 | cfq_put_cooperator(cfqq); | |
3415 | ||
3416 | cfq_put_queue(cfqq); | |
3417 | } | |
3418 | ||
3419 | static void cfq_init_icq(struct io_cq *icq) | |
3420 | { | |
3421 | struct cfq_io_cq *cic = icq_to_cic(icq); | |
3422 | ||
3423 | cic->ttime.last_end_request = jiffies; | |
3424 | } | |
3425 | ||
3426 | static void cfq_exit_icq(struct io_cq *icq) | |
3427 | { | |
3428 | struct cfq_io_cq *cic = icq_to_cic(icq); | |
3429 | struct cfq_data *cfqd = cic_to_cfqd(cic); | |
3430 | ||
3431 | if (cic->cfqq[BLK_RW_ASYNC]) { | |
3432 | cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]); | |
3433 | cic->cfqq[BLK_RW_ASYNC] = NULL; | |
3434 | } | |
3435 | ||
3436 | if (cic->cfqq[BLK_RW_SYNC]) { | |
3437 | cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]); | |
3438 | cic->cfqq[BLK_RW_SYNC] = NULL; | |
3439 | } | |
3440 | } | |
3441 | ||
3442 | static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic) | |
3443 | { | |
3444 | struct task_struct *tsk = current; | |
3445 | int ioprio_class; | |
3446 | ||
3447 | if (!cfq_cfqq_prio_changed(cfqq)) | |
3448 | return; | |
3449 | ||
3450 | ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio); | |
3451 | switch (ioprio_class) { | |
3452 | default: | |
3453 | printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class); | |
3454 | case IOPRIO_CLASS_NONE: | |
3455 | /* | |
3456 | * no prio set, inherit CPU scheduling settings | |
3457 | */ | |
3458 | cfqq->ioprio = task_nice_ioprio(tsk); | |
3459 | cfqq->ioprio_class = task_nice_ioclass(tsk); | |
3460 | break; | |
3461 | case IOPRIO_CLASS_RT: | |
3462 | cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio); | |
3463 | cfqq->ioprio_class = IOPRIO_CLASS_RT; | |
3464 | break; | |
3465 | case IOPRIO_CLASS_BE: | |
3466 | cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio); | |
3467 | cfqq->ioprio_class = IOPRIO_CLASS_BE; | |
3468 | break; | |
3469 | case IOPRIO_CLASS_IDLE: | |
3470 | cfqq->ioprio_class = IOPRIO_CLASS_IDLE; | |
3471 | cfqq->ioprio = 7; | |
3472 | cfq_clear_cfqq_idle_window(cfqq); | |
3473 | break; | |
3474 | } | |
3475 | ||
3476 | /* | |
3477 | * keep track of original prio settings in case we have to temporarily | |
3478 | * elevate the priority of this queue | |
3479 | */ | |
3480 | cfqq->org_ioprio = cfqq->ioprio; | |
3481 | cfq_clear_cfqq_prio_changed(cfqq); | |
3482 | } | |
3483 | ||
3484 | static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio) | |
3485 | { | |
3486 | int ioprio = cic->icq.ioc->ioprio; | |
3487 | struct cfq_data *cfqd = cic_to_cfqd(cic); | |
3488 | struct cfq_queue *cfqq; | |
3489 | ||
3490 | /* | |
3491 | * Check whether ioprio has changed. The condition may trigger | |
3492 | * spuriously on a newly created cic but there's no harm. | |
3493 | */ | |
3494 | if (unlikely(!cfqd) || likely(cic->ioprio == ioprio)) | |
3495 | return; | |
3496 | ||
3497 | cfqq = cic->cfqq[BLK_RW_ASYNC]; | |
3498 | if (cfqq) { | |
3499 | struct cfq_queue *new_cfqq; | |
3500 | new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio, | |
3501 | GFP_ATOMIC); | |
3502 | if (new_cfqq) { | |
3503 | cic->cfqq[BLK_RW_ASYNC] = new_cfqq; | |
3504 | cfq_put_queue(cfqq); | |
3505 | } | |
3506 | } | |
3507 | ||
3508 | cfqq = cic->cfqq[BLK_RW_SYNC]; | |
3509 | if (cfqq) | |
3510 | cfq_mark_cfqq_prio_changed(cfqq); | |
3511 | ||
3512 | cic->ioprio = ioprio; | |
3513 | } | |
3514 | ||
3515 | static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq, | |
3516 | pid_t pid, bool is_sync) | |
3517 | { | |
3518 | RB_CLEAR_NODE(&cfqq->rb_node); | |
3519 | RB_CLEAR_NODE(&cfqq->p_node); | |
3520 | INIT_LIST_HEAD(&cfqq->fifo); | |
3521 | ||
3522 | cfqq->ref = 0; | |
3523 | cfqq->cfqd = cfqd; | |
3524 | ||
3525 | cfq_mark_cfqq_prio_changed(cfqq); | |
3526 | ||
3527 | if (is_sync) { | |
3528 | if (!cfq_class_idle(cfqq)) | |
3529 | cfq_mark_cfqq_idle_window(cfqq); | |
3530 | cfq_mark_cfqq_sync(cfqq); | |
3531 | } | |
3532 | cfqq->pid = pid; | |
3533 | } | |
3534 | ||
3535 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | |
3536 | static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) | |
3537 | { | |
3538 | struct cfq_data *cfqd = cic_to_cfqd(cic); | |
3539 | struct cfq_queue *sync_cfqq; | |
3540 | uint64_t id; | |
3541 | ||
3542 | rcu_read_lock(); | |
3543 | id = bio_blkcg(bio)->id; | |
3544 | rcu_read_unlock(); | |
3545 | ||
3546 | /* | |
3547 | * Check whether blkcg has changed. The condition may trigger | |
3548 | * spuriously on a newly created cic but there's no harm. | |
3549 | */ | |
3550 | if (unlikely(!cfqd) || likely(cic->blkcg_id == id)) | |
3551 | return; | |
3552 | ||
3553 | sync_cfqq = cic_to_cfqq(cic, 1); | |
3554 | if (sync_cfqq) { | |
3555 | /* | |
3556 | * Drop reference to sync queue. A new sync queue will be | |
3557 | * assigned in new group upon arrival of a fresh request. | |
3558 | */ | |
3559 | cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup"); | |
3560 | cic_set_cfqq(cic, NULL, 1); | |
3561 | cfq_put_queue(sync_cfqq); | |
3562 | } | |
3563 | ||
3564 | cic->blkcg_id = id; | |
3565 | } | |
3566 | #else | |
3567 | static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { } | |
3568 | #endif /* CONFIG_CFQ_GROUP_IOSCHED */ | |
3569 | ||
3570 | static struct cfq_queue * | |
3571 | cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic, | |
3572 | struct bio *bio, gfp_t gfp_mask) | |
3573 | { | |
3574 | struct blkcg *blkcg; | |
3575 | struct cfq_queue *cfqq, *new_cfqq = NULL; | |
3576 | struct cfq_group *cfqg; | |
3577 | ||
3578 | retry: | |
3579 | rcu_read_lock(); | |
3580 | ||
3581 | blkcg = bio_blkcg(bio); | |
3582 | cfqg = cfq_lookup_create_cfqg(cfqd, blkcg); | |
3583 | cfqq = cic_to_cfqq(cic, is_sync); | |
3584 | ||
3585 | /* | |
3586 | * Always try a new alloc if we fell back to the OOM cfqq | |
3587 | * originally, since it should just be a temporary situation. | |
3588 | */ | |
3589 | if (!cfqq || cfqq == &cfqd->oom_cfqq) { | |
3590 | cfqq = NULL; | |
3591 | if (new_cfqq) { | |
3592 | cfqq = new_cfqq; | |
3593 | new_cfqq = NULL; | |
3594 | } else if (gfp_mask & __GFP_WAIT) { | |
3595 | rcu_read_unlock(); | |
3596 | spin_unlock_irq(cfqd->queue->queue_lock); | |
3597 | new_cfqq = kmem_cache_alloc_node(cfq_pool, | |
3598 | gfp_mask | __GFP_ZERO, | |
3599 | cfqd->queue->node); | |
3600 | spin_lock_irq(cfqd->queue->queue_lock); | |
3601 | if (new_cfqq) | |
3602 | goto retry; | |
3603 | else | |
3604 | return &cfqd->oom_cfqq; | |
3605 | } else { | |
3606 | cfqq = kmem_cache_alloc_node(cfq_pool, | |
3607 | gfp_mask | __GFP_ZERO, | |
3608 | cfqd->queue->node); | |
3609 | } | |
3610 | ||
3611 | if (cfqq) { | |
3612 | cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync); | |
3613 | cfq_init_prio_data(cfqq, cic); | |
3614 | cfq_link_cfqq_cfqg(cfqq, cfqg); | |
3615 | cfq_log_cfqq(cfqd, cfqq, "alloced"); | |
3616 | } else | |
3617 | cfqq = &cfqd->oom_cfqq; | |
3618 | } | |
3619 | ||
3620 | if (new_cfqq) | |
3621 | kmem_cache_free(cfq_pool, new_cfqq); | |
3622 | ||
3623 | rcu_read_unlock(); | |
3624 | return cfqq; | |
3625 | } | |
3626 | ||
3627 | static struct cfq_queue ** | |
3628 | cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio) | |
3629 | { | |
3630 | switch (ioprio_class) { | |
3631 | case IOPRIO_CLASS_RT: | |
3632 | return &cfqd->async_cfqq[0][ioprio]; | |
3633 | case IOPRIO_CLASS_NONE: | |
3634 | ioprio = IOPRIO_NORM; | |
3635 | /* fall through */ | |
3636 | case IOPRIO_CLASS_BE: | |
3637 | return &cfqd->async_cfqq[1][ioprio]; | |
3638 | case IOPRIO_CLASS_IDLE: | |
3639 | return &cfqd->async_idle_cfqq; | |
3640 | default: | |
3641 | BUG(); | |
3642 | } | |
3643 | } | |
3644 | ||
3645 | static struct cfq_queue * | |
3646 | cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic, | |
3647 | struct bio *bio, gfp_t gfp_mask) | |
3648 | { | |
3649 | const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio); | |
3650 | const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio); | |
3651 | struct cfq_queue **async_cfqq = NULL; | |
3652 | struct cfq_queue *cfqq = NULL; | |
3653 | ||
3654 | if (!is_sync) { | |
3655 | async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio); | |
3656 | cfqq = *async_cfqq; | |
3657 | } | |
3658 | ||
3659 | if (!cfqq) | |
3660 | cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask); | |
3661 | ||
3662 | /* | |
3663 | * pin the queue now that it's allocated, scheduler exit will prune it | |
3664 | */ | |
3665 | if (!is_sync && !(*async_cfqq)) { | |
3666 | cfqq->ref++; | |
3667 | *async_cfqq = cfqq; | |
3668 | } | |
3669 | ||
3670 | cfqq->ref++; | |
3671 | return cfqq; | |
3672 | } | |
3673 | ||
3674 | static void | |
3675 | __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle) | |
3676 | { | |
3677 | unsigned long elapsed = jiffies - ttime->last_end_request; | |
3678 | elapsed = min(elapsed, 2UL * slice_idle); | |
3679 | ||
3680 | ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8; | |
3681 | ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8; | |
3682 | ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples; | |
3683 | } | |
3684 | ||
3685 | static void | |
3686 | cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq, | |
3687 | struct cfq_io_cq *cic) | |
3688 | { | |
3689 | if (cfq_cfqq_sync(cfqq)) { | |
3690 | __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle); | |
3691 | __cfq_update_io_thinktime(&cfqq->service_tree->ttime, | |
3692 | cfqd->cfq_slice_idle); | |
3693 | } | |
3694 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | |
3695 | __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle); | |
3696 | #endif | |
3697 | } | |
3698 | ||
3699 | static void | |
3700 | cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq, | |
3701 | struct request *rq) | |
3702 | { | |
3703 | sector_t sdist = 0; | |
3704 | sector_t n_sec = blk_rq_sectors(rq); | |
3705 | if (cfqq->last_request_pos) { | |
3706 | if (cfqq->last_request_pos < blk_rq_pos(rq)) | |
3707 | sdist = blk_rq_pos(rq) - cfqq->last_request_pos; | |
3708 | else | |
3709 | sdist = cfqq->last_request_pos - blk_rq_pos(rq); | |
3710 | } | |
3711 | ||
3712 | cfqq->seek_history <<= 1; | |
3713 | if (blk_queue_nonrot(cfqd->queue)) | |
3714 | cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT); | |
3715 | else | |
3716 | cfqq->seek_history |= (sdist > CFQQ_SEEK_THR); | |
3717 | } | |
3718 | ||
3719 | /* | |
3720 | * Disable idle window if the process thinks too long or seeks so much that | |
3721 | * it doesn't matter | |
3722 | */ | |
3723 | static void | |
3724 | cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq, | |
3725 | struct cfq_io_cq *cic) | |
3726 | { | |
3727 | int old_idle, enable_idle; | |
3728 | ||
3729 | /* | |
3730 | * Don't idle for async or idle io prio class | |
3731 | */ | |
3732 | if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq)) | |
3733 | return; | |
3734 | ||
3735 | enable_idle = old_idle = cfq_cfqq_idle_window(cfqq); | |
3736 | ||
3737 | if (cfqq->queued[0] + cfqq->queued[1] >= 4) | |
3738 | cfq_mark_cfqq_deep(cfqq); | |
3739 | ||
3740 | if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE)) | |
3741 | enable_idle = 0; | |
3742 | else if (!atomic_read(&cic->icq.ioc->active_ref) || | |
3743 | !cfqd->cfq_slice_idle || | |
3744 | (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq))) | |
3745 | enable_idle = 0; | |
3746 | else if (sample_valid(cic->ttime.ttime_samples)) { | |
3747 | if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle) | |
3748 | enable_idle = 0; | |
3749 | else | |
3750 | enable_idle = 1; | |
3751 | } | |
3752 | ||
3753 | if (old_idle != enable_idle) { | |
3754 | cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle); | |
3755 | if (enable_idle) | |
3756 | cfq_mark_cfqq_idle_window(cfqq); | |
3757 | else | |
3758 | cfq_clear_cfqq_idle_window(cfqq); | |
3759 | } | |
3760 | } | |
3761 | ||
3762 | /* | |
3763 | * Check if new_cfqq should preempt the currently active queue. Return 0 for | |
3764 | * no or if we aren't sure, a 1 will cause a preempt. | |
3765 | */ | |
3766 | static bool | |
3767 | cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq, | |
3768 | struct request *rq) | |
3769 | { | |
3770 | struct cfq_queue *cfqq; | |
3771 | ||
3772 | cfqq = cfqd->active_queue; | |
3773 | if (!cfqq) | |
3774 | return false; | |
3775 | ||
3776 | if (cfq_class_idle(new_cfqq)) | |
3777 | return false; | |
3778 | ||
3779 | if (cfq_class_idle(cfqq)) | |
3780 | return true; | |
3781 | ||
3782 | /* | |
3783 | * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice. | |
3784 | */ | |
3785 | if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq)) | |
3786 | return false; | |
3787 | ||
3788 | /* | |
3789 | * if the new request is sync, but the currently running queue is | |
3790 | * not, let the sync request have priority. | |
3791 | */ | |
3792 | if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq)) | |
3793 | return true; | |
3794 | ||
3795 | if (new_cfqq->cfqg != cfqq->cfqg) | |
3796 | return false; | |
3797 | ||
3798 | if (cfq_slice_used(cfqq)) | |
3799 | return true; | |
3800 | ||
3801 | /* Allow preemption only if we are idling on sync-noidle tree */ | |
3802 | if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD && | |
3803 | cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD && | |
3804 | new_cfqq->service_tree->count == 2 && | |
3805 | RB_EMPTY_ROOT(&cfqq->sort_list)) | |
3806 | return true; | |
3807 | ||
3808 | /* | |
3809 | * So both queues are sync. Let the new request get disk time if | |
3810 | * it's a metadata request and the current queue is doing regular IO. | |
3811 | */ | |
3812 | if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending) | |
3813 | return true; | |
3814 | ||
3815 | /* | |
3816 | * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice. | |
3817 | */ | |
3818 | if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq)) | |
3819 | return true; | |
3820 | ||
3821 | /* An idle queue should not be idle now for some reason */ | |
3822 | if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq)) | |
3823 | return true; | |
3824 | ||
3825 | if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq)) | |
3826 | return false; | |
3827 | ||
3828 | /* | |
3829 | * if this request is as-good as one we would expect from the | |
3830 | * current cfqq, let it preempt | |
3831 | */ | |
3832 | if (cfq_rq_close(cfqd, cfqq, rq)) | |
3833 | return true; | |
3834 | ||
3835 | return false; | |
3836 | } | |
3837 | ||
3838 | /* | |
3839 | * cfqq preempts the active queue. if we allowed preempt with no slice left, | |
3840 | * let it have half of its nominal slice. | |
3841 | */ | |
3842 | static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq) | |
3843 | { | |
3844 | enum wl_type_t old_type = cfqq_type(cfqd->active_queue); | |
3845 | ||
3846 | cfq_log_cfqq(cfqd, cfqq, "preempt"); | |
3847 | cfq_slice_expired(cfqd, 1); | |
3848 | ||
3849 | /* | |
3850 | * workload type is changed, don't save slice, otherwise preempt | |
3851 | * doesn't happen | |
3852 | */ | |
3853 | if (old_type != cfqq_type(cfqq)) | |
3854 | cfqq->cfqg->saved_wl_slice = 0; | |
3855 | ||
3856 | /* | |
3857 | * Put the new queue at the front of the of the current list, | |
3858 | * so we know that it will be selected next. | |
3859 | */ | |
3860 | BUG_ON(!cfq_cfqq_on_rr(cfqq)); | |
3861 | ||
3862 | cfq_service_tree_add(cfqd, cfqq, 1); | |
3863 | ||
3864 | cfqq->slice_end = 0; | |
3865 | cfq_mark_cfqq_slice_new(cfqq); | |
3866 | } | |
3867 | ||
3868 | /* | |
3869 | * Called when a new fs request (rq) is added (to cfqq). Check if there's | |
3870 | * something we should do about it | |
3871 | */ | |
3872 | static void | |
3873 | cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq, | |
3874 | struct request *rq) | |
3875 | { | |
3876 | struct cfq_io_cq *cic = RQ_CIC(rq); | |
3877 | ||
3878 | cfqd->rq_queued++; | |
3879 | if (rq->cmd_flags & REQ_PRIO) | |
3880 | cfqq->prio_pending++; | |
3881 | ||
3882 | cfq_update_io_thinktime(cfqd, cfqq, cic); | |
3883 | cfq_update_io_seektime(cfqd, cfqq, rq); | |
3884 | cfq_update_idle_window(cfqd, cfqq, cic); | |
3885 | ||
3886 | cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq); | |
3887 | ||
3888 | if (cfqq == cfqd->active_queue) { | |
3889 | /* | |
3890 | * Remember that we saw a request from this process, but | |
3891 | * don't start queuing just yet. Otherwise we risk seeing lots | |
3892 | * of tiny requests, because we disrupt the normal plugging | |
3893 | * and merging. If the request is already larger than a single | |
3894 | * page, let it rip immediately. For that case we assume that | |
3895 | * merging is already done. Ditto for a busy system that | |
3896 | * has other work pending, don't risk delaying until the | |
3897 | * idle timer unplug to continue working. | |
3898 | */ | |
3899 | if (cfq_cfqq_wait_request(cfqq)) { | |
3900 | if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE || | |
3901 | cfqd->busy_queues > 1) { | |
3902 | cfq_del_timer(cfqd, cfqq); | |
3903 | cfq_clear_cfqq_wait_request(cfqq); | |
3904 | __blk_run_queue(cfqd->queue); | |
3905 | } else { | |
3906 | cfqg_stats_update_idle_time(cfqq->cfqg); | |
3907 | cfq_mark_cfqq_must_dispatch(cfqq); | |
3908 | } | |
3909 | } | |
3910 | } else if (cfq_should_preempt(cfqd, cfqq, rq)) { | |
3911 | /* | |
3912 | * not the active queue - expire current slice if it is | |
3913 | * idle and has expired it's mean thinktime or this new queue | |
3914 | * has some old slice time left and is of higher priority or | |
3915 | * this new queue is RT and the current one is BE | |
3916 | */ | |
3917 | cfq_preempt_queue(cfqd, cfqq); | |
3918 | __blk_run_queue(cfqd->queue); | |
3919 | } | |
3920 | } | |
3921 | ||
3922 | static void cfq_insert_request(struct request_queue *q, struct request *rq) | |
3923 | { | |
3924 | struct cfq_data *cfqd = q->elevator->elevator_data; | |
3925 | struct cfq_queue *cfqq = RQ_CFQQ(rq); | |
3926 | ||
3927 | cfq_log_cfqq(cfqd, cfqq, "insert_request"); | |
3928 | cfq_init_prio_data(cfqq, RQ_CIC(rq)); | |
3929 | ||
3930 | rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]); | |
3931 | list_add_tail(&rq->queuelist, &cfqq->fifo); | |
3932 | cfq_add_rq_rb(rq); | |
3933 | cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group, | |
3934 | rq->cmd_flags); | |
3935 | cfq_rq_enqueued(cfqd, cfqq, rq); | |
3936 | } | |
3937 | ||
3938 | /* | |
3939 | * Update hw_tag based on peak queue depth over 50 samples under | |
3940 | * sufficient load. | |
3941 | */ | |
3942 | static void cfq_update_hw_tag(struct cfq_data *cfqd) | |
3943 | { | |
3944 | struct cfq_queue *cfqq = cfqd->active_queue; | |
3945 | ||
3946 | if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth) | |
3947 | cfqd->hw_tag_est_depth = cfqd->rq_in_driver; | |
3948 | ||
3949 | if (cfqd->hw_tag == 1) | |
3950 | return; | |
3951 | ||
3952 | if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN && | |
3953 | cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN) | |
3954 | return; | |
3955 | ||
3956 | /* | |
3957 | * If active queue hasn't enough requests and can idle, cfq might not | |
3958 | * dispatch sufficient requests to hardware. Don't zero hw_tag in this | |
3959 | * case | |
3960 | */ | |
3961 | if (cfqq && cfq_cfqq_idle_window(cfqq) && | |
3962 | cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] < | |
3963 | CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN) | |
3964 | return; | |
3965 | ||
3966 | if (cfqd->hw_tag_samples++ < 50) | |
3967 | return; | |
3968 | ||
3969 | if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN) | |
3970 | cfqd->hw_tag = 1; | |
3971 | else | |
3972 | cfqd->hw_tag = 0; | |
3973 | } | |
3974 | ||
3975 | static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq) | |
3976 | { | |
3977 | struct cfq_io_cq *cic = cfqd->active_cic; | |
3978 | ||
3979 | /* If the queue already has requests, don't wait */ | |
3980 | if (!RB_EMPTY_ROOT(&cfqq->sort_list)) | |
3981 | return false; | |
3982 | ||
3983 | /* If there are other queues in the group, don't wait */ | |
3984 | if (cfqq->cfqg->nr_cfqq > 1) | |
3985 | return false; | |
3986 | ||
3987 | /* the only queue in the group, but think time is big */ | |
3988 | if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) | |
3989 | return false; | |
3990 | ||
3991 | if (cfq_slice_used(cfqq)) | |
3992 | return true; | |
3993 | ||
3994 | /* if slice left is less than think time, wait busy */ | |
3995 | if (cic && sample_valid(cic->ttime.ttime_samples) | |
3996 | && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) | |
3997 | return true; | |
3998 | ||
3999 | /* | |
4000 | * If think times is less than a jiffy than ttime_mean=0 and above | |
4001 | * will not be true. It might happen that slice has not expired yet | |
4002 | * but will expire soon (4-5 ns) during select_queue(). To cover the | |
4003 | * case where think time is less than a jiffy, mark the queue wait | |
4004 | * busy if only 1 jiffy is left in the slice. | |
4005 | */ | |
4006 | if (cfqq->slice_end - jiffies == 1) | |
4007 | return true; | |
4008 | ||
4009 | return false; | |
4010 | } | |
4011 | ||
4012 | static void cfq_completed_request(struct request_queue *q, struct request *rq) | |
4013 | { | |
4014 | struct cfq_queue *cfqq = RQ_CFQQ(rq); | |
4015 | struct cfq_data *cfqd = cfqq->cfqd; | |
4016 | const int sync = rq_is_sync(rq); | |
4017 | unsigned long now; | |
4018 | ||
4019 | now = jiffies; | |
4020 | cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", | |
4021 | !!(rq->cmd_flags & REQ_NOIDLE)); | |
4022 | ||
4023 | cfq_update_hw_tag(cfqd); | |
4024 | ||
4025 | WARN_ON(!cfqd->rq_in_driver); | |
4026 | WARN_ON(!cfqq->dispatched); | |
4027 | cfqd->rq_in_driver--; | |
4028 | cfqq->dispatched--; | |
4029 | (RQ_CFQG(rq))->dispatched--; | |
4030 | cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq), | |
4031 | rq_io_start_time_ns(rq), rq->cmd_flags); | |
4032 | ||
4033 | cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--; | |
4034 | ||
4035 | if (sync) { | |
4036 | struct cfq_rb_root *st; | |
4037 | ||
4038 | RQ_CIC(rq)->ttime.last_end_request = now; | |
4039 | ||
4040 | if (cfq_cfqq_on_rr(cfqq)) | |
4041 | st = cfqq->service_tree; | |
4042 | else | |
4043 | st = st_for(cfqq->cfqg, cfqq_class(cfqq), | |
4044 | cfqq_type(cfqq)); | |
4045 | ||
4046 | st->ttime.last_end_request = now; | |
4047 | if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now)) | |
4048 | cfqd->last_delayed_sync = now; | |
4049 | } | |
4050 | ||
4051 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | |
4052 | cfqq->cfqg->ttime.last_end_request = now; | |
4053 | #endif | |
4054 | ||
4055 | /* | |
4056 | * If this is the active queue, check if it needs to be expired, | |
4057 | * or if we want to idle in case it has no pending requests. | |
4058 | */ | |
4059 | if (cfqd->active_queue == cfqq) { | |
4060 | const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list); | |
4061 | ||
4062 | if (cfq_cfqq_slice_new(cfqq)) { | |
4063 | cfq_set_prio_slice(cfqd, cfqq); | |
4064 | cfq_clear_cfqq_slice_new(cfqq); | |
4065 | } | |
4066 | ||
4067 | /* | |
4068 | * Should we wait for next request to come in before we expire | |
4069 | * the queue. | |
4070 | */ | |
4071 | if (cfq_should_wait_busy(cfqd, cfqq)) { | |
4072 | unsigned long extend_sl = cfqd->cfq_slice_idle; | |
4073 | if (!cfqd->cfq_slice_idle) | |
4074 | extend_sl = cfqd->cfq_group_idle; | |
4075 | cfqq->slice_end = jiffies + extend_sl; | |
4076 | cfq_mark_cfqq_wait_busy(cfqq); | |
4077 | cfq_log_cfqq(cfqd, cfqq, "will busy wait"); | |
4078 | } | |
4079 | ||
4080 | /* | |
4081 | * Idling is not enabled on: | |
4082 | * - expired queues | |
4083 | * - idle-priority queues | |
4084 | * - async queues | |
4085 | * - queues with still some requests queued | |
4086 | * - when there is a close cooperator | |
4087 | */ | |
4088 | if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq)) | |
4089 | cfq_slice_expired(cfqd, 1); | |
4090 | else if (sync && cfqq_empty && | |
4091 | !cfq_close_cooperator(cfqd, cfqq)) { | |
4092 | cfq_arm_slice_timer(cfqd); | |
4093 | } | |
4094 | } | |
4095 | ||
4096 | if (!cfqd->rq_in_driver) | |
4097 | cfq_schedule_dispatch(cfqd); | |
4098 | } | |
4099 | ||
4100 | static inline int __cfq_may_queue(struct cfq_queue *cfqq) | |
4101 | { | |
4102 | if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) { | |
4103 | cfq_mark_cfqq_must_alloc_slice(cfqq); | |
4104 | return ELV_MQUEUE_MUST; | |
4105 | } | |
4106 | ||
4107 | return ELV_MQUEUE_MAY; | |
4108 | } | |
4109 | ||
4110 | static int cfq_may_queue(struct request_queue *q, int rw) | |
4111 | { | |
4112 | struct cfq_data *cfqd = q->elevator->elevator_data; | |
4113 | struct task_struct *tsk = current; | |
4114 | struct cfq_io_cq *cic; | |
4115 | struct cfq_queue *cfqq; | |
4116 | ||
4117 | /* | |
4118 | * don't force setup of a queue from here, as a call to may_queue | |
4119 | * does not necessarily imply that a request actually will be queued. | |
4120 | * so just lookup a possibly existing queue, or return 'may queue' | |
4121 | * if that fails | |
4122 | */ | |
4123 | cic = cfq_cic_lookup(cfqd, tsk->io_context); | |
4124 | if (!cic) | |
4125 | return ELV_MQUEUE_MAY; | |
4126 | ||
4127 | cfqq = cic_to_cfqq(cic, rw_is_sync(rw)); | |
4128 | if (cfqq) { | |
4129 | cfq_init_prio_data(cfqq, cic); | |
4130 | ||
4131 | return __cfq_may_queue(cfqq); | |
4132 | } | |
4133 | ||
4134 | return ELV_MQUEUE_MAY; | |
4135 | } | |
4136 | ||
4137 | /* | |
4138 | * queue lock held here | |
4139 | */ | |
4140 | static void cfq_put_request(struct request *rq) | |
4141 | { | |
4142 | struct cfq_queue *cfqq = RQ_CFQQ(rq); | |
4143 | ||
4144 | if (cfqq) { | |
4145 | const int rw = rq_data_dir(rq); | |
4146 | ||
4147 | BUG_ON(!cfqq->allocated[rw]); | |
4148 | cfqq->allocated[rw]--; | |
4149 | ||
4150 | /* Put down rq reference on cfqg */ | |
4151 | cfqg_put(RQ_CFQG(rq)); | |
4152 | rq->elv.priv[0] = NULL; | |
4153 | rq->elv.priv[1] = NULL; | |
4154 | ||
4155 | cfq_put_queue(cfqq); | |
4156 | } | |
4157 | } | |
4158 | ||
4159 | static struct cfq_queue * | |
4160 | cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic, | |
4161 | struct cfq_queue *cfqq) | |
4162 | { | |
4163 | cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq); | |
4164 | cic_set_cfqq(cic, cfqq->new_cfqq, 1); | |
4165 | cfq_mark_cfqq_coop(cfqq->new_cfqq); | |
4166 | cfq_put_queue(cfqq); | |
4167 | return cic_to_cfqq(cic, 1); | |
4168 | } | |
4169 | ||
4170 | /* | |
4171 | * Returns NULL if a new cfqq should be allocated, or the old cfqq if this | |
4172 | * was the last process referring to said cfqq. | |
4173 | */ | |
4174 | static struct cfq_queue * | |
4175 | split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq) | |
4176 | { | |
4177 | if (cfqq_process_refs(cfqq) == 1) { | |
4178 | cfqq->pid = current->pid; | |
4179 | cfq_clear_cfqq_coop(cfqq); | |
4180 | cfq_clear_cfqq_split_coop(cfqq); | |
4181 | return cfqq; | |
4182 | } | |
4183 | ||
4184 | cic_set_cfqq(cic, NULL, 1); | |
4185 | ||
4186 | cfq_put_cooperator(cfqq); | |
4187 | ||
4188 | cfq_put_queue(cfqq); | |
4189 | return NULL; | |
4190 | } | |
4191 | /* | |
4192 | * Allocate cfq data structures associated with this request. | |
4193 | */ | |
4194 | static int | |
4195 | cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio, | |
4196 | gfp_t gfp_mask) | |
4197 | { | |
4198 | struct cfq_data *cfqd = q->elevator->elevator_data; | |
4199 | struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq); | |
4200 | const int rw = rq_data_dir(rq); | |
4201 | const bool is_sync = rq_is_sync(rq); | |
4202 | struct cfq_queue *cfqq; | |
4203 | ||
4204 | might_sleep_if(gfp_mask & __GFP_WAIT); | |
4205 | ||
4206 | spin_lock_irq(q->queue_lock); | |
4207 | ||
4208 | check_ioprio_changed(cic, bio); | |
4209 | check_blkcg_changed(cic, bio); | |
4210 | new_queue: | |
4211 | cfqq = cic_to_cfqq(cic, is_sync); | |
4212 | if (!cfqq || cfqq == &cfqd->oom_cfqq) { | |
4213 | cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask); | |
4214 | cic_set_cfqq(cic, cfqq, is_sync); | |
4215 | } else { | |
4216 | /* | |
4217 | * If the queue was seeky for too long, break it apart. | |
4218 | */ | |
4219 | if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) { | |
4220 | cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq"); | |
4221 | cfqq = split_cfqq(cic, cfqq); | |
4222 | if (!cfqq) | |
4223 | goto new_queue; | |
4224 | } | |
4225 | ||
4226 | /* | |
4227 | * Check to see if this queue is scheduled to merge with | |
4228 | * another, closely cooperating queue. The merging of | |
4229 | * queues happens here as it must be done in process context. | |
4230 | * The reference on new_cfqq was taken in merge_cfqqs. | |
4231 | */ | |
4232 | if (cfqq->new_cfqq) | |
4233 | cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq); | |
4234 | } | |
4235 | ||
4236 | cfqq->allocated[rw]++; | |
4237 | ||
4238 | cfqq->ref++; | |
4239 | cfqg_get(cfqq->cfqg); | |
4240 | rq->elv.priv[0] = cfqq; | |
4241 | rq->elv.priv[1] = cfqq->cfqg; | |
4242 | spin_unlock_irq(q->queue_lock); | |
4243 | return 0; | |
4244 | } | |
4245 | ||
4246 | static void cfq_kick_queue(struct work_struct *work) | |
4247 | { | |
4248 | struct cfq_data *cfqd = | |
4249 | container_of(work, struct cfq_data, unplug_work); | |
4250 | struct request_queue *q = cfqd->queue; | |
4251 | ||
4252 | spin_lock_irq(q->queue_lock); | |
4253 | __blk_run_queue(cfqd->queue); | |
4254 | spin_unlock_irq(q->queue_lock); | |
4255 | } | |
4256 | ||
4257 | /* | |
4258 | * Timer running if the active_queue is currently idling inside its time slice | |
4259 | */ | |
4260 | static void cfq_idle_slice_timer(unsigned long data) | |
4261 | { | |
4262 | struct cfq_data *cfqd = (struct cfq_data *) data; | |
4263 | struct cfq_queue *cfqq; | |
4264 | unsigned long flags; | |
4265 | int timed_out = 1; | |
4266 | ||
4267 | cfq_log(cfqd, "idle timer fired"); | |
4268 | ||
4269 | spin_lock_irqsave(cfqd->queue->queue_lock, flags); | |
4270 | ||
4271 | cfqq = cfqd->active_queue; | |
4272 | if (cfqq) { | |
4273 | timed_out = 0; | |
4274 | ||
4275 | /* | |
4276 | * We saw a request before the queue expired, let it through | |
4277 | */ | |
4278 | if (cfq_cfqq_must_dispatch(cfqq)) | |
4279 | goto out_kick; | |
4280 | ||
4281 | /* | |
4282 | * expired | |
4283 | */ | |
4284 | if (cfq_slice_used(cfqq)) | |
4285 | goto expire; | |
4286 | ||
4287 | /* | |
4288 | * only expire and reinvoke request handler, if there are | |
4289 | * other queues with pending requests | |
4290 | */ | |
4291 | if (!cfqd->busy_queues) | |
4292 | goto out_cont; | |
4293 | ||
4294 | /* | |
4295 | * not expired and it has a request pending, let it dispatch | |
4296 | */ | |
4297 | if (!RB_EMPTY_ROOT(&cfqq->sort_list)) | |
4298 | goto out_kick; | |
4299 | ||
4300 | /* | |
4301 | * Queue depth flag is reset only when the idle didn't succeed | |
4302 | */ | |
4303 | cfq_clear_cfqq_deep(cfqq); | |
4304 | } | |
4305 | expire: | |
4306 | cfq_slice_expired(cfqd, timed_out); | |
4307 | out_kick: | |
4308 | cfq_schedule_dispatch(cfqd); | |
4309 | out_cont: | |
4310 | spin_unlock_irqrestore(cfqd->queue->queue_lock, flags); | |
4311 | } | |
4312 | ||
4313 | static void cfq_shutdown_timer_wq(struct cfq_data *cfqd) | |
4314 | { | |
4315 | del_timer_sync(&cfqd->idle_slice_timer); | |
4316 | cancel_work_sync(&cfqd->unplug_work); | |
4317 | } | |
4318 | ||
4319 | static void cfq_put_async_queues(struct cfq_data *cfqd) | |
4320 | { | |
4321 | int i; | |
4322 | ||
4323 | for (i = 0; i < IOPRIO_BE_NR; i++) { | |
4324 | if (cfqd->async_cfqq[0][i]) | |
4325 | cfq_put_queue(cfqd->async_cfqq[0][i]); | |
4326 | if (cfqd->async_cfqq[1][i]) | |
4327 | cfq_put_queue(cfqd->async_cfqq[1][i]); | |
4328 | } | |
4329 | ||
4330 | if (cfqd->async_idle_cfqq) | |
4331 | cfq_put_queue(cfqd->async_idle_cfqq); | |
4332 | } | |
4333 | ||
4334 | static void cfq_exit_queue(struct elevator_queue *e) | |
4335 | { | |
4336 | struct cfq_data *cfqd = e->elevator_data; | |
4337 | struct request_queue *q = cfqd->queue; | |
4338 | ||
4339 | cfq_shutdown_timer_wq(cfqd); | |
4340 | ||
4341 | spin_lock_irq(q->queue_lock); | |
4342 | ||
4343 | if (cfqd->active_queue) | |
4344 | __cfq_slice_expired(cfqd, cfqd->active_queue, 0); | |
4345 | ||
4346 | cfq_put_async_queues(cfqd); | |
4347 | ||
4348 | spin_unlock_irq(q->queue_lock); | |
4349 | ||
4350 | cfq_shutdown_timer_wq(cfqd); | |
4351 | ||
4352 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | |
4353 | blkcg_deactivate_policy(q, &blkcg_policy_cfq); | |
4354 | #else | |
4355 | kfree(cfqd->root_group); | |
4356 | #endif | |
4357 | kfree(cfqd); | |
4358 | } | |
4359 | ||
4360 | static int cfq_init_queue(struct request_queue *q, struct elevator_type *e) | |
4361 | { | |
4362 | struct cfq_data *cfqd; | |
4363 | struct blkcg_gq *blkg __maybe_unused; | |
4364 | int i, ret; | |
4365 | struct elevator_queue *eq; | |
4366 | ||
4367 | eq = elevator_alloc(q, e); | |
4368 | if (!eq) | |
4369 | return -ENOMEM; | |
4370 | ||
4371 | cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node); | |
4372 | if (!cfqd) { | |
4373 | kobject_put(&eq->kobj); | |
4374 | return -ENOMEM; | |
4375 | } | |
4376 | eq->elevator_data = cfqd; | |
4377 | ||
4378 | cfqd->queue = q; | |
4379 | spin_lock_irq(q->queue_lock); | |
4380 | q->elevator = eq; | |
4381 | spin_unlock_irq(q->queue_lock); | |
4382 | ||
4383 | /* Init root service tree */ | |
4384 | cfqd->grp_service_tree = CFQ_RB_ROOT; | |
4385 | ||
4386 | /* Init root group and prefer root group over other groups by default */ | |
4387 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | |
4388 | ret = blkcg_activate_policy(q, &blkcg_policy_cfq); | |
4389 | if (ret) | |
4390 | goto out_free; | |
4391 | ||
4392 | cfqd->root_group = blkg_to_cfqg(q->root_blkg); | |
4393 | #else | |
4394 | ret = -ENOMEM; | |
4395 | cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group), | |
4396 | GFP_KERNEL, cfqd->queue->node); | |
4397 | if (!cfqd->root_group) | |
4398 | goto out_free; | |
4399 | ||
4400 | cfq_init_cfqg_base(cfqd->root_group); | |
4401 | #endif | |
4402 | cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT; | |
4403 | cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT; | |
4404 | ||
4405 | /* | |
4406 | * Not strictly needed (since RB_ROOT just clears the node and we | |
4407 | * zeroed cfqd on alloc), but better be safe in case someone decides | |
4408 | * to add magic to the rb code | |
4409 | */ | |
4410 | for (i = 0; i < CFQ_PRIO_LISTS; i++) | |
4411 | cfqd->prio_trees[i] = RB_ROOT; | |
4412 | ||
4413 | /* | |
4414 | * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues. | |
4415 | * Grab a permanent reference to it, so that the normal code flow | |
4416 | * will not attempt to free it. oom_cfqq is linked to root_group | |
4417 | * but shouldn't hold a reference as it'll never be unlinked. Lose | |
4418 | * the reference from linking right away. | |
4419 | */ | |
4420 | cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0); | |
4421 | cfqd->oom_cfqq.ref++; | |
4422 | ||
4423 | spin_lock_irq(q->queue_lock); | |
4424 | cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group); | |
4425 | cfqg_put(cfqd->root_group); | |
4426 | spin_unlock_irq(q->queue_lock); | |
4427 | ||
4428 | init_timer(&cfqd->idle_slice_timer); | |
4429 | cfqd->idle_slice_timer.function = cfq_idle_slice_timer; | |
4430 | cfqd->idle_slice_timer.data = (unsigned long) cfqd; | |
4431 | ||
4432 | INIT_WORK(&cfqd->unplug_work, cfq_kick_queue); | |
4433 | ||
4434 | cfqd->cfq_quantum = cfq_quantum; | |
4435 | cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0]; | |
4436 | cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1]; | |
4437 | cfqd->cfq_back_max = cfq_back_max; | |
4438 | cfqd->cfq_back_penalty = cfq_back_penalty; | |
4439 | cfqd->cfq_slice[0] = cfq_slice_async; | |
4440 | cfqd->cfq_slice[1] = cfq_slice_sync; | |
4441 | cfqd->cfq_target_latency = cfq_target_latency; | |
4442 | cfqd->cfq_slice_async_rq = cfq_slice_async_rq; | |
4443 | cfqd->cfq_slice_idle = cfq_slice_idle; | |
4444 | cfqd->cfq_group_idle = cfq_group_idle; | |
4445 | cfqd->cfq_latency = 1; | |
4446 | cfqd->hw_tag = -1; | |
4447 | /* | |
4448 | * we optimistically start assuming sync ops weren't delayed in last | |
4449 | * second, in order to have larger depth for async operations. | |
4450 | */ | |
4451 | cfqd->last_delayed_sync = jiffies - HZ; | |
4452 | return 0; | |
4453 | ||
4454 | out_free: | |
4455 | kfree(cfqd); | |
4456 | kobject_put(&eq->kobj); | |
4457 | return ret; | |
4458 | } | |
4459 | ||
4460 | /* | |
4461 | * sysfs parts below --> | |
4462 | */ | |
4463 | static ssize_t | |
4464 | cfq_var_show(unsigned int var, char *page) | |
4465 | { | |
4466 | return sprintf(page, "%d\n", var); | |
4467 | } | |
4468 | ||
4469 | static ssize_t | |
4470 | cfq_var_store(unsigned int *var, const char *page, size_t count) | |
4471 | { | |
4472 | char *p = (char *) page; | |
4473 | ||
4474 | *var = simple_strtoul(p, &p, 10); | |
4475 | return count; | |
4476 | } | |
4477 | ||
4478 | #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ | |
4479 | static ssize_t __FUNC(struct elevator_queue *e, char *page) \ | |
4480 | { \ | |
4481 | struct cfq_data *cfqd = e->elevator_data; \ | |
4482 | unsigned int __data = __VAR; \ | |
4483 | if (__CONV) \ | |
4484 | __data = jiffies_to_msecs(__data); \ | |
4485 | return cfq_var_show(__data, (page)); \ | |
4486 | } | |
4487 | SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0); | |
4488 | SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1); | |
4489 | SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1); | |
4490 | SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0); | |
4491 | SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0); | |
4492 | SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1); | |
4493 | SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1); | |
4494 | SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1); | |
4495 | SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1); | |
4496 | SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0); | |
4497 | SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0); | |
4498 | SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1); | |
4499 | #undef SHOW_FUNCTION | |
4500 | ||
4501 | #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ | |
4502 | static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \ | |
4503 | { \ | |
4504 | struct cfq_data *cfqd = e->elevator_data; \ | |
4505 | unsigned int __data; \ | |
4506 | int ret = cfq_var_store(&__data, (page), count); \ | |
4507 | if (__data < (MIN)) \ | |
4508 | __data = (MIN); \ | |
4509 | else if (__data > (MAX)) \ | |
4510 | __data = (MAX); \ | |
4511 | if (__CONV) \ | |
4512 | *(__PTR) = msecs_to_jiffies(__data); \ | |
4513 | else \ | |
4514 | *(__PTR) = __data; \ | |
4515 | return ret; \ | |
4516 | } | |
4517 | STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0); | |
4518 | STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, | |
4519 | UINT_MAX, 1); | |
4520 | STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, | |
4521 | UINT_MAX, 1); | |
4522 | STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0); | |
4523 | STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, | |
4524 | UINT_MAX, 0); | |
4525 | STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1); | |
4526 | STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1); | |
4527 | STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1); | |
4528 | STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1); | |
4529 | STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, | |
4530 | UINT_MAX, 0); | |
4531 | STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0); | |
4532 | STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1); | |
4533 | #undef STORE_FUNCTION | |
4534 | ||
4535 | #define CFQ_ATTR(name) \ | |
4536 | __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store) | |
4537 | ||
4538 | static struct elv_fs_entry cfq_attrs[] = { | |
4539 | CFQ_ATTR(quantum), | |
4540 | CFQ_ATTR(fifo_expire_sync), | |
4541 | CFQ_ATTR(fifo_expire_async), | |
4542 | CFQ_ATTR(back_seek_max), | |
4543 | CFQ_ATTR(back_seek_penalty), | |
4544 | CFQ_ATTR(slice_sync), | |
4545 | CFQ_ATTR(slice_async), | |
4546 | CFQ_ATTR(slice_async_rq), | |
4547 | CFQ_ATTR(slice_idle), | |
4548 | CFQ_ATTR(group_idle), | |
4549 | CFQ_ATTR(low_latency), | |
4550 | CFQ_ATTR(target_latency), | |
4551 | __ATTR_NULL | |
4552 | }; | |
4553 | ||
4554 | static struct elevator_type iosched_cfq = { | |
4555 | .ops = { | |
4556 | .elevator_merge_fn = cfq_merge, | |
4557 | .elevator_merged_fn = cfq_merged_request, | |
4558 | .elevator_merge_req_fn = cfq_merged_requests, | |
4559 | .elevator_allow_merge_fn = cfq_allow_merge, | |
4560 | .elevator_bio_merged_fn = cfq_bio_merged, | |
4561 | .elevator_dispatch_fn = cfq_dispatch_requests, | |
4562 | .elevator_add_req_fn = cfq_insert_request, | |
4563 | .elevator_activate_req_fn = cfq_activate_request, | |
4564 | .elevator_deactivate_req_fn = cfq_deactivate_request, | |
4565 | .elevator_completed_req_fn = cfq_completed_request, | |
4566 | .elevator_former_req_fn = elv_rb_former_request, | |
4567 | .elevator_latter_req_fn = elv_rb_latter_request, | |
4568 | .elevator_init_icq_fn = cfq_init_icq, | |
4569 | .elevator_exit_icq_fn = cfq_exit_icq, | |
4570 | .elevator_set_req_fn = cfq_set_request, | |
4571 | .elevator_put_req_fn = cfq_put_request, | |
4572 | .elevator_may_queue_fn = cfq_may_queue, | |
4573 | .elevator_init_fn = cfq_init_queue, | |
4574 | .elevator_exit_fn = cfq_exit_queue, | |
4575 | }, | |
4576 | .icq_size = sizeof(struct cfq_io_cq), | |
4577 | .icq_align = __alignof__(struct cfq_io_cq), | |
4578 | .elevator_attrs = cfq_attrs, | |
4579 | .elevator_name = "cfq", | |
4580 | .elevator_owner = THIS_MODULE, | |
4581 | }; | |
4582 | ||
4583 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | |
4584 | static struct blkcg_policy blkcg_policy_cfq = { | |
4585 | .pd_size = sizeof(struct cfq_group), | |
4586 | .cftypes = cfq_blkcg_files, | |
4587 | ||
4588 | .pd_init_fn = cfq_pd_init, | |
4589 | .pd_offline_fn = cfq_pd_offline, | |
4590 | .pd_reset_stats_fn = cfq_pd_reset_stats, | |
4591 | }; | |
4592 | #endif | |
4593 | ||
4594 | static int __init cfq_init(void) | |
4595 | { | |
4596 | int ret; | |
4597 | ||
4598 | /* | |
4599 | * could be 0 on HZ < 1000 setups | |
4600 | */ | |
4601 | if (!cfq_slice_async) | |
4602 | cfq_slice_async = 1; | |
4603 | if (!cfq_slice_idle) | |
4604 | cfq_slice_idle = 1; | |
4605 | ||
4606 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | |
4607 | if (!cfq_group_idle) | |
4608 | cfq_group_idle = 1; | |
4609 | ||
4610 | ret = blkcg_policy_register(&blkcg_policy_cfq); | |
4611 | if (ret) | |
4612 | return ret; | |
4613 | #else | |
4614 | cfq_group_idle = 0; | |
4615 | #endif | |
4616 | ||
4617 | ret = -ENOMEM; | |
4618 | cfq_pool = KMEM_CACHE(cfq_queue, 0); | |
4619 | if (!cfq_pool) | |
4620 | goto err_pol_unreg; | |
4621 | ||
4622 | ret = elv_register(&iosched_cfq); | |
4623 | if (ret) | |
4624 | goto err_free_pool; | |
4625 | ||
4626 | return 0; | |
4627 | ||
4628 | err_free_pool: | |
4629 | kmem_cache_destroy(cfq_pool); | |
4630 | err_pol_unreg: | |
4631 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | |
4632 | blkcg_policy_unregister(&blkcg_policy_cfq); | |
4633 | #endif | |
4634 | return ret; | |
4635 | } | |
4636 | ||
4637 | static void __exit cfq_exit(void) | |
4638 | { | |
4639 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | |
4640 | blkcg_policy_unregister(&blkcg_policy_cfq); | |
4641 | #endif | |
4642 | elv_unregister(&iosched_cfq); | |
4643 | kmem_cache_destroy(cfq_pool); | |
4644 | } | |
4645 | ||
4646 | module_init(cfq_init); | |
4647 | module_exit(cfq_exit); | |
4648 | ||
4649 | MODULE_AUTHOR("Jens Axboe"); | |
4650 | MODULE_LICENSE("GPL"); | |
4651 | MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler"); |