]>
Commit | Line | Data |
---|---|---|
1 | // SPDX-License-Identifier: GPL-2.0 | |
2 | #include <linux/slab.h> | |
3 | #include <linux/file.h> | |
4 | #include <linux/fdtable.h> | |
5 | #include <linux/freezer.h> | |
6 | #include <linux/mm.h> | |
7 | #include <linux/stat.h> | |
8 | #include <linux/fcntl.h> | |
9 | #include <linux/swap.h> | |
10 | #include <linux/ctype.h> | |
11 | #include <linux/string.h> | |
12 | #include <linux/init.h> | |
13 | #include <linux/pagemap.h> | |
14 | #include <linux/perf_event.h> | |
15 | #include <linux/highmem.h> | |
16 | #include <linux/spinlock.h> | |
17 | #include <linux/key.h> | |
18 | #include <linux/personality.h> | |
19 | #include <linux/binfmts.h> | |
20 | #include <linux/coredump.h> | |
21 | #include <linux/sched/coredump.h> | |
22 | #include <linux/sched/signal.h> | |
23 | #include <linux/sched/task_stack.h> | |
24 | #include <linux/utsname.h> | |
25 | #include <linux/pid_namespace.h> | |
26 | #include <linux/module.h> | |
27 | #include <linux/namei.h> | |
28 | #include <linux/mount.h> | |
29 | #include <linux/security.h> | |
30 | #include <linux/syscalls.h> | |
31 | #include <linux/tsacct_kern.h> | |
32 | #include <linux/cn_proc.h> | |
33 | #include <linux/audit.h> | |
34 | #include <linux/tracehook.h> | |
35 | #include <linux/kmod.h> | |
36 | #include <linux/fsnotify.h> | |
37 | #include <linux/fs_struct.h> | |
38 | #include <linux/pipe_fs_i.h> | |
39 | #include <linux/oom.h> | |
40 | #include <linux/compat.h> | |
41 | #include <linux/fs.h> | |
42 | #include <linux/path.h> | |
43 | #include <linux/timekeeping.h> | |
44 | ||
45 | #include <linux/uaccess.h> | |
46 | #include <asm/mmu_context.h> | |
47 | #include <asm/tlb.h> | |
48 | #include <asm/exec.h> | |
49 | ||
50 | #include <trace/events/task.h> | |
51 | #include "internal.h" | |
52 | ||
53 | #include <trace/events/sched.h> | |
54 | ||
55 | int core_uses_pid; | |
56 | unsigned int core_pipe_limit; | |
57 | char core_pattern[CORENAME_MAX_SIZE] = "core"; | |
58 | static int core_name_size = CORENAME_MAX_SIZE; | |
59 | ||
60 | struct core_name { | |
61 | char *corename; | |
62 | int used, size; | |
63 | }; | |
64 | ||
65 | /* The maximal length of core_pattern is also specified in sysctl.c */ | |
66 | ||
67 | static int expand_corename(struct core_name *cn, int size) | |
68 | { | |
69 | char *corename = krealloc(cn->corename, size, GFP_KERNEL); | |
70 | ||
71 | if (!corename) | |
72 | return -ENOMEM; | |
73 | ||
74 | if (size > core_name_size) /* racy but harmless */ | |
75 | core_name_size = size; | |
76 | ||
77 | cn->size = ksize(corename); | |
78 | cn->corename = corename; | |
79 | return 0; | |
80 | } | |
81 | ||
82 | static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt, | |
83 | va_list arg) | |
84 | { | |
85 | int free, need; | |
86 | va_list arg_copy; | |
87 | ||
88 | again: | |
89 | free = cn->size - cn->used; | |
90 | ||
91 | va_copy(arg_copy, arg); | |
92 | need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy); | |
93 | va_end(arg_copy); | |
94 | ||
95 | if (need < free) { | |
96 | cn->used += need; | |
97 | return 0; | |
98 | } | |
99 | ||
100 | if (!expand_corename(cn, cn->size + need - free + 1)) | |
101 | goto again; | |
102 | ||
103 | return -ENOMEM; | |
104 | } | |
105 | ||
106 | static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...) | |
107 | { | |
108 | va_list arg; | |
109 | int ret; | |
110 | ||
111 | va_start(arg, fmt); | |
112 | ret = cn_vprintf(cn, fmt, arg); | |
113 | va_end(arg); | |
114 | ||
115 | return ret; | |
116 | } | |
117 | ||
118 | static __printf(2, 3) | |
119 | int cn_esc_printf(struct core_name *cn, const char *fmt, ...) | |
120 | { | |
121 | int cur = cn->used; | |
122 | va_list arg; | |
123 | int ret; | |
124 | ||
125 | va_start(arg, fmt); | |
126 | ret = cn_vprintf(cn, fmt, arg); | |
127 | va_end(arg); | |
128 | ||
129 | if (ret == 0) { | |
130 | /* | |
131 | * Ensure that this coredump name component can't cause the | |
132 | * resulting corefile path to consist of a ".." or ".". | |
133 | */ | |
134 | if ((cn->used - cur == 1 && cn->corename[cur] == '.') || | |
135 | (cn->used - cur == 2 && cn->corename[cur] == '.' | |
136 | && cn->corename[cur+1] == '.')) | |
137 | cn->corename[cur] = '!'; | |
138 | ||
139 | /* | |
140 | * Empty names are fishy and could be used to create a "//" in a | |
141 | * corefile name, causing the coredump to happen one directory | |
142 | * level too high. Enforce that all components of the core | |
143 | * pattern are at least one character long. | |
144 | */ | |
145 | if (cn->used == cur) | |
146 | ret = cn_printf(cn, "!"); | |
147 | } | |
148 | ||
149 | for (; cur < cn->used; ++cur) { | |
150 | if (cn->corename[cur] == '/') | |
151 | cn->corename[cur] = '!'; | |
152 | } | |
153 | return ret; | |
154 | } | |
155 | ||
156 | static int cn_print_exe_file(struct core_name *cn, bool name_only) | |
157 | { | |
158 | struct file *exe_file; | |
159 | char *pathbuf, *path, *ptr; | |
160 | int ret; | |
161 | ||
162 | exe_file = get_mm_exe_file(current->mm); | |
163 | if (!exe_file) | |
164 | return cn_esc_printf(cn, "%s (path unknown)", current->comm); | |
165 | ||
166 | pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); | |
167 | if (!pathbuf) { | |
168 | ret = -ENOMEM; | |
169 | goto put_exe_file; | |
170 | } | |
171 | ||
172 | path = file_path(exe_file, pathbuf, PATH_MAX); | |
173 | if (IS_ERR(path)) { | |
174 | ret = PTR_ERR(path); | |
175 | goto free_buf; | |
176 | } | |
177 | ||
178 | if (name_only) { | |
179 | ptr = strrchr(path, '/'); | |
180 | if (ptr) | |
181 | path = ptr + 1; | |
182 | } | |
183 | ret = cn_esc_printf(cn, "%s", path); | |
184 | ||
185 | free_buf: | |
186 | kfree(pathbuf); | |
187 | put_exe_file: | |
188 | fput(exe_file); | |
189 | return ret; | |
190 | } | |
191 | ||
192 | /* format_corename will inspect the pattern parameter, and output a | |
193 | * name into corename, which must have space for at least | |
194 | * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. | |
195 | */ | |
196 | static int format_corename(struct core_name *cn, struct coredump_params *cprm, | |
197 | size_t **argv, int *argc) | |
198 | { | |
199 | const struct cred *cred = current_cred(); | |
200 | const char *pat_ptr = core_pattern; | |
201 | int ispipe = (*pat_ptr == '|'); | |
202 | bool was_space = false; | |
203 | int pid_in_pattern = 0; | |
204 | int err = 0; | |
205 | ||
206 | cn->used = 0; | |
207 | cn->corename = NULL; | |
208 | if (expand_corename(cn, core_name_size)) | |
209 | return -ENOMEM; | |
210 | cn->corename[0] = '\0'; | |
211 | ||
212 | if (ispipe) { | |
213 | int argvs = sizeof(core_pattern) / 2; | |
214 | (*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL); | |
215 | if (!(*argv)) | |
216 | return -ENOMEM; | |
217 | (*argv)[(*argc)++] = 0; | |
218 | ++pat_ptr; | |
219 | if (!(*pat_ptr)) | |
220 | return -ENOMEM; | |
221 | } | |
222 | ||
223 | /* Repeat as long as we have more pattern to process and more output | |
224 | space */ | |
225 | while (*pat_ptr) { | |
226 | /* | |
227 | * Split on spaces before doing template expansion so that | |
228 | * %e and %E don't get split if they have spaces in them | |
229 | */ | |
230 | if (ispipe) { | |
231 | if (isspace(*pat_ptr)) { | |
232 | if (cn->used != 0) | |
233 | was_space = true; | |
234 | pat_ptr++; | |
235 | continue; | |
236 | } else if (was_space) { | |
237 | was_space = false; | |
238 | err = cn_printf(cn, "%c", '\0'); | |
239 | if (err) | |
240 | return err; | |
241 | (*argv)[(*argc)++] = cn->used; | |
242 | } | |
243 | } | |
244 | if (*pat_ptr != '%') { | |
245 | err = cn_printf(cn, "%c", *pat_ptr++); | |
246 | } else { | |
247 | switch (*++pat_ptr) { | |
248 | /* single % at the end, drop that */ | |
249 | case 0: | |
250 | goto out; | |
251 | /* Double percent, output one percent */ | |
252 | case '%': | |
253 | err = cn_printf(cn, "%c", '%'); | |
254 | break; | |
255 | /* pid */ | |
256 | case 'p': | |
257 | pid_in_pattern = 1; | |
258 | err = cn_printf(cn, "%d", | |
259 | task_tgid_vnr(current)); | |
260 | break; | |
261 | /* global pid */ | |
262 | case 'P': | |
263 | err = cn_printf(cn, "%d", | |
264 | task_tgid_nr(current)); | |
265 | break; | |
266 | case 'i': | |
267 | err = cn_printf(cn, "%d", | |
268 | task_pid_vnr(current)); | |
269 | break; | |
270 | case 'I': | |
271 | err = cn_printf(cn, "%d", | |
272 | task_pid_nr(current)); | |
273 | break; | |
274 | /* uid */ | |
275 | case 'u': | |
276 | err = cn_printf(cn, "%u", | |
277 | from_kuid(&init_user_ns, | |
278 | cred->uid)); | |
279 | break; | |
280 | /* gid */ | |
281 | case 'g': | |
282 | err = cn_printf(cn, "%u", | |
283 | from_kgid(&init_user_ns, | |
284 | cred->gid)); | |
285 | break; | |
286 | case 'd': | |
287 | err = cn_printf(cn, "%d", | |
288 | __get_dumpable(cprm->mm_flags)); | |
289 | break; | |
290 | /* signal that caused the coredump */ | |
291 | case 's': | |
292 | err = cn_printf(cn, "%d", | |
293 | cprm->siginfo->si_signo); | |
294 | break; | |
295 | /* UNIX time of coredump */ | |
296 | case 't': { | |
297 | time64_t time; | |
298 | ||
299 | time = ktime_get_real_seconds(); | |
300 | err = cn_printf(cn, "%lld", time); | |
301 | break; | |
302 | } | |
303 | /* hostname */ | |
304 | case 'h': | |
305 | down_read(&uts_sem); | |
306 | err = cn_esc_printf(cn, "%s", | |
307 | utsname()->nodename); | |
308 | up_read(&uts_sem); | |
309 | break; | |
310 | /* executable, could be changed by prctl PR_SET_NAME etc */ | |
311 | case 'e': | |
312 | err = cn_esc_printf(cn, "%s", current->comm); | |
313 | break; | |
314 | /* file name of executable */ | |
315 | case 'f': | |
316 | err = cn_print_exe_file(cn, true); | |
317 | break; | |
318 | case 'E': | |
319 | err = cn_print_exe_file(cn, false); | |
320 | break; | |
321 | /* core limit size */ | |
322 | case 'c': | |
323 | err = cn_printf(cn, "%lu", | |
324 | rlimit(RLIMIT_CORE)); | |
325 | break; | |
326 | default: | |
327 | break; | |
328 | } | |
329 | ++pat_ptr; | |
330 | } | |
331 | ||
332 | if (err) | |
333 | return err; | |
334 | } | |
335 | ||
336 | out: | |
337 | /* Backward compatibility with core_uses_pid: | |
338 | * | |
339 | * If core_pattern does not include a %p (as is the default) | |
340 | * and core_uses_pid is set, then .%pid will be appended to | |
341 | * the filename. Do not do this for piped commands. */ | |
342 | if (!ispipe && !pid_in_pattern && core_uses_pid) { | |
343 | err = cn_printf(cn, ".%d", task_tgid_vnr(current)); | |
344 | if (err) | |
345 | return err; | |
346 | } | |
347 | return ispipe; | |
348 | } | |
349 | ||
350 | static int zap_process(struct task_struct *start, int exit_code, int flags) | |
351 | { | |
352 | struct task_struct *t; | |
353 | int nr = 0; | |
354 | ||
355 | /* ignore all signals except SIGKILL, see prepare_signal() */ | |
356 | start->signal->flags = SIGNAL_GROUP_COREDUMP | flags; | |
357 | start->signal->group_exit_code = exit_code; | |
358 | start->signal->group_stop_count = 0; | |
359 | ||
360 | for_each_thread(start, t) { | |
361 | task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); | |
362 | if (t != current && t->mm) { | |
363 | sigaddset(&t->pending.signal, SIGKILL); | |
364 | signal_wake_up(t, 1); | |
365 | nr++; | |
366 | } | |
367 | } | |
368 | ||
369 | return nr; | |
370 | } | |
371 | ||
372 | static int zap_threads(struct task_struct *tsk, struct mm_struct *mm, | |
373 | struct core_state *core_state, int exit_code) | |
374 | { | |
375 | struct task_struct *g, *p; | |
376 | unsigned long flags; | |
377 | int nr = -EAGAIN; | |
378 | ||
379 | spin_lock_irq(&tsk->sighand->siglock); | |
380 | if (!signal_group_exit(tsk->signal)) { | |
381 | mm->core_state = core_state; | |
382 | tsk->signal->group_exit_task = tsk; | |
383 | nr = zap_process(tsk, exit_code, 0); | |
384 | clear_tsk_thread_flag(tsk, TIF_SIGPENDING); | |
385 | } | |
386 | spin_unlock_irq(&tsk->sighand->siglock); | |
387 | if (unlikely(nr < 0)) | |
388 | return nr; | |
389 | ||
390 | tsk->flags |= PF_DUMPCORE; | |
391 | if (atomic_read(&mm->mm_users) == nr + 1) | |
392 | goto done; | |
393 | /* | |
394 | * We should find and kill all tasks which use this mm, and we should | |
395 | * count them correctly into ->nr_threads. We don't take tasklist | |
396 | * lock, but this is safe wrt: | |
397 | * | |
398 | * fork: | |
399 | * None of sub-threads can fork after zap_process(leader). All | |
400 | * processes which were created before this point should be | |
401 | * visible to zap_threads() because copy_process() adds the new | |
402 | * process to the tail of init_task.tasks list, and lock/unlock | |
403 | * of ->siglock provides a memory barrier. | |
404 | * | |
405 | * do_exit: | |
406 | * The caller holds mm->mmap_lock. This means that the task which | |
407 | * uses this mm can't pass exit_mm(), so it can't exit or clear | |
408 | * its ->mm. | |
409 | * | |
410 | * de_thread: | |
411 | * It does list_replace_rcu(&leader->tasks, ¤t->tasks), | |
412 | * we must see either old or new leader, this does not matter. | |
413 | * However, it can change p->sighand, so lock_task_sighand(p) | |
414 | * must be used. Since p->mm != NULL and we hold ->mmap_lock | |
415 | * it can't fail. | |
416 | * | |
417 | * Note also that "g" can be the old leader with ->mm == NULL | |
418 | * and already unhashed and thus removed from ->thread_group. | |
419 | * This is OK, __unhash_process()->list_del_rcu() does not | |
420 | * clear the ->next pointer, we will find the new leader via | |
421 | * next_thread(). | |
422 | */ | |
423 | rcu_read_lock(); | |
424 | for_each_process(g) { | |
425 | if (g == tsk->group_leader) | |
426 | continue; | |
427 | if (g->flags & PF_KTHREAD) | |
428 | continue; | |
429 | ||
430 | for_each_thread(g, p) { | |
431 | if (unlikely(!p->mm)) | |
432 | continue; | |
433 | if (unlikely(p->mm == mm)) { | |
434 | lock_task_sighand(p, &flags); | |
435 | nr += zap_process(p, exit_code, | |
436 | SIGNAL_GROUP_EXIT); | |
437 | unlock_task_sighand(p, &flags); | |
438 | } | |
439 | break; | |
440 | } | |
441 | } | |
442 | rcu_read_unlock(); | |
443 | done: | |
444 | atomic_set(&core_state->nr_threads, nr); | |
445 | return nr; | |
446 | } | |
447 | ||
448 | static int coredump_wait(int exit_code, struct core_state *core_state) | |
449 | { | |
450 | struct task_struct *tsk = current; | |
451 | struct mm_struct *mm = tsk->mm; | |
452 | int core_waiters = -EBUSY; | |
453 | ||
454 | init_completion(&core_state->startup); | |
455 | core_state->dumper.task = tsk; | |
456 | core_state->dumper.next = NULL; | |
457 | ||
458 | if (mmap_write_lock_killable(mm)) | |
459 | return -EINTR; | |
460 | ||
461 | if (!mm->core_state) | |
462 | core_waiters = zap_threads(tsk, mm, core_state, exit_code); | |
463 | mmap_write_unlock(mm); | |
464 | ||
465 | if (core_waiters > 0) { | |
466 | struct core_thread *ptr; | |
467 | ||
468 | freezer_do_not_count(); | |
469 | wait_for_completion(&core_state->startup); | |
470 | freezer_count(); | |
471 | /* | |
472 | * Wait for all the threads to become inactive, so that | |
473 | * all the thread context (extended register state, like | |
474 | * fpu etc) gets copied to the memory. | |
475 | */ | |
476 | ptr = core_state->dumper.next; | |
477 | while (ptr != NULL) { | |
478 | wait_task_inactive(ptr->task, 0); | |
479 | ptr = ptr->next; | |
480 | } | |
481 | } | |
482 | ||
483 | return core_waiters; | |
484 | } | |
485 | ||
486 | static void coredump_finish(struct mm_struct *mm, bool core_dumped) | |
487 | { | |
488 | struct core_thread *curr, *next; | |
489 | struct task_struct *task; | |
490 | ||
491 | spin_lock_irq(¤t->sighand->siglock); | |
492 | if (core_dumped && !__fatal_signal_pending(current)) | |
493 | current->signal->group_exit_code |= 0x80; | |
494 | current->signal->group_exit_task = NULL; | |
495 | current->signal->flags = SIGNAL_GROUP_EXIT; | |
496 | spin_unlock_irq(¤t->sighand->siglock); | |
497 | ||
498 | next = mm->core_state->dumper.next; | |
499 | while ((curr = next) != NULL) { | |
500 | next = curr->next; | |
501 | task = curr->task; | |
502 | /* | |
503 | * see exit_mm(), curr->task must not see | |
504 | * ->task == NULL before we read ->next. | |
505 | */ | |
506 | smp_mb(); | |
507 | curr->task = NULL; | |
508 | wake_up_process(task); | |
509 | } | |
510 | ||
511 | mm->core_state = NULL; | |
512 | } | |
513 | ||
514 | static bool dump_interrupted(void) | |
515 | { | |
516 | /* | |
517 | * SIGKILL or freezing() interrupt the coredumping. Perhaps we | |
518 | * can do try_to_freeze() and check __fatal_signal_pending(), | |
519 | * but then we need to teach dump_write() to restart and clear | |
520 | * TIF_SIGPENDING. | |
521 | */ | |
522 | return signal_pending(current); | |
523 | } | |
524 | ||
525 | static void wait_for_dump_helpers(struct file *file) | |
526 | { | |
527 | struct pipe_inode_info *pipe = file->private_data; | |
528 | ||
529 | pipe_lock(pipe); | |
530 | pipe->readers++; | |
531 | pipe->writers--; | |
532 | wake_up_interruptible_sync(&pipe->rd_wait); | |
533 | kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); | |
534 | pipe_unlock(pipe); | |
535 | ||
536 | /* | |
537 | * We actually want wait_event_freezable() but then we need | |
538 | * to clear TIF_SIGPENDING and improve dump_interrupted(). | |
539 | */ | |
540 | wait_event_interruptible(pipe->rd_wait, pipe->readers == 1); | |
541 | ||
542 | pipe_lock(pipe); | |
543 | pipe->readers--; | |
544 | pipe->writers++; | |
545 | pipe_unlock(pipe); | |
546 | } | |
547 | ||
548 | /* | |
549 | * umh_pipe_setup | |
550 | * helper function to customize the process used | |
551 | * to collect the core in userspace. Specifically | |
552 | * it sets up a pipe and installs it as fd 0 (stdin) | |
553 | * for the process. Returns 0 on success, or | |
554 | * PTR_ERR on failure. | |
555 | * Note that it also sets the core limit to 1. This | |
556 | * is a special value that we use to trap recursive | |
557 | * core dumps | |
558 | */ | |
559 | static int umh_pipe_setup(struct subprocess_info *info, struct cred *new) | |
560 | { | |
561 | struct file *files[2]; | |
562 | struct coredump_params *cp = (struct coredump_params *)info->data; | |
563 | int err = create_pipe_files(files, 0); | |
564 | if (err) | |
565 | return err; | |
566 | ||
567 | cp->file = files[1]; | |
568 | ||
569 | err = replace_fd(0, files[0], 0); | |
570 | fput(files[0]); | |
571 | /* and disallow core files too */ | |
572 | current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; | |
573 | ||
574 | return err; | |
575 | } | |
576 | ||
577 | void do_coredump(const kernel_siginfo_t *siginfo) | |
578 | { | |
579 | struct core_state core_state; | |
580 | struct core_name cn; | |
581 | struct mm_struct *mm = current->mm; | |
582 | struct linux_binfmt * binfmt; | |
583 | const struct cred *old_cred; | |
584 | struct cred *cred; | |
585 | int retval = 0; | |
586 | int ispipe; | |
587 | size_t *argv = NULL; | |
588 | int argc = 0; | |
589 | /* require nonrelative corefile path and be extra careful */ | |
590 | bool need_suid_safe = false; | |
591 | bool core_dumped = false; | |
592 | static atomic_t core_dump_count = ATOMIC_INIT(0); | |
593 | struct coredump_params cprm = { | |
594 | .siginfo = siginfo, | |
595 | .regs = signal_pt_regs(), | |
596 | .limit = rlimit(RLIMIT_CORE), | |
597 | /* | |
598 | * We must use the same mm->flags while dumping core to avoid | |
599 | * inconsistency of bit flags, since this flag is not protected | |
600 | * by any locks. | |
601 | */ | |
602 | .mm_flags = mm->flags, | |
603 | }; | |
604 | ||
605 | audit_core_dumps(siginfo->si_signo); | |
606 | ||
607 | binfmt = mm->binfmt; | |
608 | if (!binfmt || !binfmt->core_dump) | |
609 | goto fail; | |
610 | if (!__get_dumpable(cprm.mm_flags)) | |
611 | goto fail; | |
612 | ||
613 | cred = prepare_creds(); | |
614 | if (!cred) | |
615 | goto fail; | |
616 | /* | |
617 | * We cannot trust fsuid as being the "true" uid of the process | |
618 | * nor do we know its entire history. We only know it was tainted | |
619 | * so we dump it as root in mode 2, and only into a controlled | |
620 | * environment (pipe handler or fully qualified path). | |
621 | */ | |
622 | if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) { | |
623 | /* Setuid core dump mode */ | |
624 | cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */ | |
625 | need_suid_safe = true; | |
626 | } | |
627 | ||
628 | retval = coredump_wait(siginfo->si_signo, &core_state); | |
629 | if (retval < 0) | |
630 | goto fail_creds; | |
631 | ||
632 | old_cred = override_creds(cred); | |
633 | ||
634 | ispipe = format_corename(&cn, &cprm, &argv, &argc); | |
635 | ||
636 | if (ispipe) { | |
637 | int argi; | |
638 | int dump_count; | |
639 | char **helper_argv; | |
640 | struct subprocess_info *sub_info; | |
641 | ||
642 | if (ispipe < 0) { | |
643 | printk(KERN_WARNING "format_corename failed\n"); | |
644 | printk(KERN_WARNING "Aborting core\n"); | |
645 | goto fail_unlock; | |
646 | } | |
647 | ||
648 | if (cprm.limit == 1) { | |
649 | /* See umh_pipe_setup() which sets RLIMIT_CORE = 1. | |
650 | * | |
651 | * Normally core limits are irrelevant to pipes, since | |
652 | * we're not writing to the file system, but we use | |
653 | * cprm.limit of 1 here as a special value, this is a | |
654 | * consistent way to catch recursive crashes. | |
655 | * We can still crash if the core_pattern binary sets | |
656 | * RLIM_CORE = !1, but it runs as root, and can do | |
657 | * lots of stupid things. | |
658 | * | |
659 | * Note that we use task_tgid_vnr here to grab the pid | |
660 | * of the process group leader. That way we get the | |
661 | * right pid if a thread in a multi-threaded | |
662 | * core_pattern process dies. | |
663 | */ | |
664 | printk(KERN_WARNING | |
665 | "Process %d(%s) has RLIMIT_CORE set to 1\n", | |
666 | task_tgid_vnr(current), current->comm); | |
667 | printk(KERN_WARNING "Aborting core\n"); | |
668 | goto fail_unlock; | |
669 | } | |
670 | cprm.limit = RLIM_INFINITY; | |
671 | ||
672 | dump_count = atomic_inc_return(&core_dump_count); | |
673 | if (core_pipe_limit && (core_pipe_limit < dump_count)) { | |
674 | printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", | |
675 | task_tgid_vnr(current), current->comm); | |
676 | printk(KERN_WARNING "Skipping core dump\n"); | |
677 | goto fail_dropcount; | |
678 | } | |
679 | ||
680 | helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv), | |
681 | GFP_KERNEL); | |
682 | if (!helper_argv) { | |
683 | printk(KERN_WARNING "%s failed to allocate memory\n", | |
684 | __func__); | |
685 | goto fail_dropcount; | |
686 | } | |
687 | for (argi = 0; argi < argc; argi++) | |
688 | helper_argv[argi] = cn.corename + argv[argi]; | |
689 | helper_argv[argi] = NULL; | |
690 | ||
691 | retval = -ENOMEM; | |
692 | sub_info = call_usermodehelper_setup(helper_argv[0], | |
693 | helper_argv, NULL, GFP_KERNEL, | |
694 | umh_pipe_setup, NULL, &cprm); | |
695 | if (sub_info) | |
696 | retval = call_usermodehelper_exec(sub_info, | |
697 | UMH_WAIT_EXEC); | |
698 | ||
699 | kfree(helper_argv); | |
700 | if (retval) { | |
701 | printk(KERN_INFO "Core dump to |%s pipe failed\n", | |
702 | cn.corename); | |
703 | goto close_fail; | |
704 | } | |
705 | } else { | |
706 | struct user_namespace *mnt_userns; | |
707 | struct inode *inode; | |
708 | int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW | | |
709 | O_LARGEFILE | O_EXCL; | |
710 | ||
711 | if (cprm.limit < binfmt->min_coredump) | |
712 | goto fail_unlock; | |
713 | ||
714 | if (need_suid_safe && cn.corename[0] != '/') { | |
715 | printk(KERN_WARNING "Pid %d(%s) can only dump core "\ | |
716 | "to fully qualified path!\n", | |
717 | task_tgid_vnr(current), current->comm); | |
718 | printk(KERN_WARNING "Skipping core dump\n"); | |
719 | goto fail_unlock; | |
720 | } | |
721 | ||
722 | /* | |
723 | * Unlink the file if it exists unless this is a SUID | |
724 | * binary - in that case, we're running around with root | |
725 | * privs and don't want to unlink another user's coredump. | |
726 | */ | |
727 | if (!need_suid_safe) { | |
728 | /* | |
729 | * If it doesn't exist, that's fine. If there's some | |
730 | * other problem, we'll catch it at the filp_open(). | |
731 | */ | |
732 | do_unlinkat(AT_FDCWD, getname_kernel(cn.corename)); | |
733 | } | |
734 | ||
735 | /* | |
736 | * There is a race between unlinking and creating the | |
737 | * file, but if that causes an EEXIST here, that's | |
738 | * fine - another process raced with us while creating | |
739 | * the corefile, and the other process won. To userspace, | |
740 | * what matters is that at least one of the two processes | |
741 | * writes its coredump successfully, not which one. | |
742 | */ | |
743 | if (need_suid_safe) { | |
744 | /* | |
745 | * Using user namespaces, normal user tasks can change | |
746 | * their current->fs->root to point to arbitrary | |
747 | * directories. Since the intention of the "only dump | |
748 | * with a fully qualified path" rule is to control where | |
749 | * coredumps may be placed using root privileges, | |
750 | * current->fs->root must not be used. Instead, use the | |
751 | * root directory of init_task. | |
752 | */ | |
753 | struct path root; | |
754 | ||
755 | task_lock(&init_task); | |
756 | get_fs_root(init_task.fs, &root); | |
757 | task_unlock(&init_task); | |
758 | cprm.file = file_open_root(root.dentry, root.mnt, | |
759 | cn.corename, open_flags, 0600); | |
760 | path_put(&root); | |
761 | } else { | |
762 | cprm.file = filp_open(cn.corename, open_flags, 0600); | |
763 | } | |
764 | if (IS_ERR(cprm.file)) | |
765 | goto fail_unlock; | |
766 | ||
767 | inode = file_inode(cprm.file); | |
768 | if (inode->i_nlink > 1) | |
769 | goto close_fail; | |
770 | if (d_unhashed(cprm.file->f_path.dentry)) | |
771 | goto close_fail; | |
772 | /* | |
773 | * AK: actually i see no reason to not allow this for named | |
774 | * pipes etc, but keep the previous behaviour for now. | |
775 | */ | |
776 | if (!S_ISREG(inode->i_mode)) | |
777 | goto close_fail; | |
778 | /* | |
779 | * Don't dump core if the filesystem changed owner or mode | |
780 | * of the file during file creation. This is an issue when | |
781 | * a process dumps core while its cwd is e.g. on a vfat | |
782 | * filesystem. | |
783 | */ | |
784 | mnt_userns = file_mnt_user_ns(cprm.file); | |
785 | if (!uid_eq(i_uid_into_mnt(mnt_userns, inode), current_fsuid())) | |
786 | goto close_fail; | |
787 | if ((inode->i_mode & 0677) != 0600) | |
788 | goto close_fail; | |
789 | if (!(cprm.file->f_mode & FMODE_CAN_WRITE)) | |
790 | goto close_fail; | |
791 | if (do_truncate(mnt_userns, cprm.file->f_path.dentry, | |
792 | 0, 0, cprm.file)) | |
793 | goto close_fail; | |
794 | } | |
795 | ||
796 | /* get us an unshared descriptor table; almost always a no-op */ | |
797 | /* The cell spufs coredump code reads the file descriptor tables */ | |
798 | retval = unshare_files(); | |
799 | if (retval) | |
800 | goto close_fail; | |
801 | if (!dump_interrupted()) { | |
802 | /* | |
803 | * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would | |
804 | * have this set to NULL. | |
805 | */ | |
806 | if (!cprm.file) { | |
807 | pr_info("Core dump to |%s disabled\n", cn.corename); | |
808 | goto close_fail; | |
809 | } | |
810 | file_start_write(cprm.file); | |
811 | core_dumped = binfmt->core_dump(&cprm); | |
812 | file_end_write(cprm.file); | |
813 | } | |
814 | if (ispipe && core_pipe_limit) | |
815 | wait_for_dump_helpers(cprm.file); | |
816 | close_fail: | |
817 | if (cprm.file) | |
818 | filp_close(cprm.file, NULL); | |
819 | fail_dropcount: | |
820 | if (ispipe) | |
821 | atomic_dec(&core_dump_count); | |
822 | fail_unlock: | |
823 | kfree(argv); | |
824 | kfree(cn.corename); | |
825 | coredump_finish(mm, core_dumped); | |
826 | revert_creds(old_cred); | |
827 | fail_creds: | |
828 | put_cred(cred); | |
829 | fail: | |
830 | return; | |
831 | } | |
832 | ||
833 | /* | |
834 | * Core dumping helper functions. These are the only things you should | |
835 | * do on a core-file: use only these functions to write out all the | |
836 | * necessary info. | |
837 | */ | |
838 | int dump_emit(struct coredump_params *cprm, const void *addr, int nr) | |
839 | { | |
840 | struct file *file = cprm->file; | |
841 | loff_t pos = file->f_pos; | |
842 | ssize_t n; | |
843 | if (cprm->written + nr > cprm->limit) | |
844 | return 0; | |
845 | ||
846 | ||
847 | if (dump_interrupted()) | |
848 | return 0; | |
849 | n = __kernel_write(file, addr, nr, &pos); | |
850 | if (n != nr) | |
851 | return 0; | |
852 | file->f_pos = pos; | |
853 | cprm->written += n; | |
854 | cprm->pos += n; | |
855 | ||
856 | return 1; | |
857 | } | |
858 | EXPORT_SYMBOL(dump_emit); | |
859 | ||
860 | int dump_skip(struct coredump_params *cprm, size_t nr) | |
861 | { | |
862 | static char zeroes[PAGE_SIZE]; | |
863 | struct file *file = cprm->file; | |
864 | if (file->f_op->llseek && file->f_op->llseek != no_llseek) { | |
865 | if (dump_interrupted() || | |
866 | file->f_op->llseek(file, nr, SEEK_CUR) < 0) | |
867 | return 0; | |
868 | cprm->pos += nr; | |
869 | return 1; | |
870 | } else { | |
871 | while (nr > PAGE_SIZE) { | |
872 | if (!dump_emit(cprm, zeroes, PAGE_SIZE)) | |
873 | return 0; | |
874 | nr -= PAGE_SIZE; | |
875 | } | |
876 | return dump_emit(cprm, zeroes, nr); | |
877 | } | |
878 | } | |
879 | EXPORT_SYMBOL(dump_skip); | |
880 | ||
881 | #ifdef CONFIG_ELF_CORE | |
882 | int dump_user_range(struct coredump_params *cprm, unsigned long start, | |
883 | unsigned long len) | |
884 | { | |
885 | unsigned long addr; | |
886 | ||
887 | for (addr = start; addr < start + len; addr += PAGE_SIZE) { | |
888 | struct page *page; | |
889 | int stop; | |
890 | ||
891 | /* | |
892 | * To avoid having to allocate page tables for virtual address | |
893 | * ranges that have never been used yet, and also to make it | |
894 | * easy to generate sparse core files, use a helper that returns | |
895 | * NULL when encountering an empty page table entry that would | |
896 | * otherwise have been filled with the zero page. | |
897 | */ | |
898 | page = get_dump_page(addr); | |
899 | if (page) { | |
900 | void *kaddr = kmap_local_page(page); | |
901 | ||
902 | stop = !dump_emit(cprm, kaddr, PAGE_SIZE); | |
903 | kunmap_local(kaddr); | |
904 | put_page(page); | |
905 | } else { | |
906 | stop = !dump_skip(cprm, PAGE_SIZE); | |
907 | } | |
908 | if (stop) | |
909 | return 0; | |
910 | } | |
911 | return 1; | |
912 | } | |
913 | #endif | |
914 | ||
915 | int dump_align(struct coredump_params *cprm, int align) | |
916 | { | |
917 | unsigned mod = cprm->pos & (align - 1); | |
918 | if (align & (align - 1)) | |
919 | return 0; | |
920 | return mod ? dump_skip(cprm, align - mod) : 1; | |
921 | } | |
922 | EXPORT_SYMBOL(dump_align); | |
923 | ||
924 | /* | |
925 | * Ensures that file size is big enough to contain the current file | |
926 | * postion. This prevents gdb from complaining about a truncated file | |
927 | * if the last "write" to the file was dump_skip. | |
928 | */ | |
929 | void dump_truncate(struct coredump_params *cprm) | |
930 | { | |
931 | struct file *file = cprm->file; | |
932 | loff_t offset; | |
933 | ||
934 | if (file->f_op->llseek && file->f_op->llseek != no_llseek) { | |
935 | offset = file->f_op->llseek(file, 0, SEEK_CUR); | |
936 | if (i_size_read(file->f_mapping->host) < offset) | |
937 | do_truncate(file_mnt_user_ns(file), file->f_path.dentry, | |
938 | offset, 0, file); | |
939 | } | |
940 | } | |
941 | EXPORT_SYMBOL(dump_truncate); | |
942 | ||
943 | /* | |
944 | * The purpose of always_dump_vma() is to make sure that special kernel mappings | |
945 | * that are useful for post-mortem analysis are included in every core dump. | |
946 | * In that way we ensure that the core dump is fully interpretable later | |
947 | * without matching up the same kernel and hardware config to see what PC values | |
948 | * meant. These special mappings include - vDSO, vsyscall, and other | |
949 | * architecture specific mappings | |
950 | */ | |
951 | static bool always_dump_vma(struct vm_area_struct *vma) | |
952 | { | |
953 | /* Any vsyscall mappings? */ | |
954 | if (vma == get_gate_vma(vma->vm_mm)) | |
955 | return true; | |
956 | ||
957 | /* | |
958 | * Assume that all vmas with a .name op should always be dumped. | |
959 | * If this changes, a new vm_ops field can easily be added. | |
960 | */ | |
961 | if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma)) | |
962 | return true; | |
963 | ||
964 | /* | |
965 | * arch_vma_name() returns non-NULL for special architecture mappings, | |
966 | * such as vDSO sections. | |
967 | */ | |
968 | if (arch_vma_name(vma)) | |
969 | return true; | |
970 | ||
971 | return false; | |
972 | } | |
973 | ||
974 | /* | |
975 | * Decide how much of @vma's contents should be included in a core dump. | |
976 | */ | |
977 | static unsigned long vma_dump_size(struct vm_area_struct *vma, | |
978 | unsigned long mm_flags) | |
979 | { | |
980 | #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type)) | |
981 | ||
982 | /* always dump the vdso and vsyscall sections */ | |
983 | if (always_dump_vma(vma)) | |
984 | goto whole; | |
985 | ||
986 | if (vma->vm_flags & VM_DONTDUMP) | |
987 | return 0; | |
988 | ||
989 | /* support for DAX */ | |
990 | if (vma_is_dax(vma)) { | |
991 | if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED)) | |
992 | goto whole; | |
993 | if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE)) | |
994 | goto whole; | |
995 | return 0; | |
996 | } | |
997 | ||
998 | /* Hugetlb memory check */ | |
999 | if (is_vm_hugetlb_page(vma)) { | |
1000 | if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED)) | |
1001 | goto whole; | |
1002 | if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE)) | |
1003 | goto whole; | |
1004 | return 0; | |
1005 | } | |
1006 | ||
1007 | /* Do not dump I/O mapped devices or special mappings */ | |
1008 | if (vma->vm_flags & VM_IO) | |
1009 | return 0; | |
1010 | ||
1011 | /* By default, dump shared memory if mapped from an anonymous file. */ | |
1012 | if (vma->vm_flags & VM_SHARED) { | |
1013 | if (file_inode(vma->vm_file)->i_nlink == 0 ? | |
1014 | FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) | |
1015 | goto whole; | |
1016 | return 0; | |
1017 | } | |
1018 | ||
1019 | /* Dump segments that have been written to. */ | |
1020 | if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE)) | |
1021 | goto whole; | |
1022 | if (vma->vm_file == NULL) | |
1023 | return 0; | |
1024 | ||
1025 | if (FILTER(MAPPED_PRIVATE)) | |
1026 | goto whole; | |
1027 | ||
1028 | /* | |
1029 | * If this is the beginning of an executable file mapping, | |
1030 | * dump the first page to aid in determining what was mapped here. | |
1031 | */ | |
1032 | if (FILTER(ELF_HEADERS) && | |
1033 | vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ) && | |
1034 | (READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0) | |
1035 | return PAGE_SIZE; | |
1036 | ||
1037 | #undef FILTER | |
1038 | ||
1039 | return 0; | |
1040 | ||
1041 | whole: | |
1042 | return vma->vm_end - vma->vm_start; | |
1043 | } | |
1044 | ||
1045 | static struct vm_area_struct *first_vma(struct task_struct *tsk, | |
1046 | struct vm_area_struct *gate_vma) | |
1047 | { | |
1048 | struct vm_area_struct *ret = tsk->mm->mmap; | |
1049 | ||
1050 | if (ret) | |
1051 | return ret; | |
1052 | return gate_vma; | |
1053 | } | |
1054 | ||
1055 | /* | |
1056 | * Helper function for iterating across a vma list. It ensures that the caller | |
1057 | * will visit `gate_vma' prior to terminating the search. | |
1058 | */ | |
1059 | static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma, | |
1060 | struct vm_area_struct *gate_vma) | |
1061 | { | |
1062 | struct vm_area_struct *ret; | |
1063 | ||
1064 | ret = this_vma->vm_next; | |
1065 | if (ret) | |
1066 | return ret; | |
1067 | if (this_vma == gate_vma) | |
1068 | return NULL; | |
1069 | return gate_vma; | |
1070 | } | |
1071 | ||
1072 | /* | |
1073 | * Under the mmap_lock, take a snapshot of relevant information about the task's | |
1074 | * VMAs. | |
1075 | */ | |
1076 | int dump_vma_snapshot(struct coredump_params *cprm, int *vma_count, | |
1077 | struct core_vma_metadata **vma_meta, | |
1078 | size_t *vma_data_size_ptr) | |
1079 | { | |
1080 | struct vm_area_struct *vma, *gate_vma; | |
1081 | struct mm_struct *mm = current->mm; | |
1082 | int i; | |
1083 | size_t vma_data_size = 0; | |
1084 | ||
1085 | /* | |
1086 | * Once the stack expansion code is fixed to not change VMA bounds | |
1087 | * under mmap_lock in read mode, this can be changed to take the | |
1088 | * mmap_lock in read mode. | |
1089 | */ | |
1090 | if (mmap_write_lock_killable(mm)) | |
1091 | return -EINTR; | |
1092 | ||
1093 | gate_vma = get_gate_vma(mm); | |
1094 | *vma_count = mm->map_count + (gate_vma ? 1 : 0); | |
1095 | ||
1096 | *vma_meta = kvmalloc_array(*vma_count, sizeof(**vma_meta), GFP_KERNEL); | |
1097 | if (!*vma_meta) { | |
1098 | mmap_write_unlock(mm); | |
1099 | return -ENOMEM; | |
1100 | } | |
1101 | ||
1102 | for (i = 0, vma = first_vma(current, gate_vma); vma != NULL; | |
1103 | vma = next_vma(vma, gate_vma), i++) { | |
1104 | struct core_vma_metadata *m = (*vma_meta) + i; | |
1105 | ||
1106 | m->start = vma->vm_start; | |
1107 | m->end = vma->vm_end; | |
1108 | m->flags = vma->vm_flags; | |
1109 | m->dump_size = vma_dump_size(vma, cprm->mm_flags); | |
1110 | ||
1111 | vma_data_size += m->dump_size; | |
1112 | } | |
1113 | ||
1114 | mmap_write_unlock(mm); | |
1115 | ||
1116 | if (WARN_ON(i != *vma_count)) | |
1117 | return -EFAULT; | |
1118 | ||
1119 | *vma_data_size_ptr = vma_data_size; | |
1120 | return 0; | |
1121 | } |