| 1 | /* |
| 2 | * Copyright 2014 Advanced Micro Devices, Inc. |
| 3 | * Copyright 2008 Red Hat Inc. |
| 4 | * Copyright 2009 Jerome Glisse. |
| 5 | * |
| 6 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 7 | * copy of this software and associated documentation files (the "Software"), |
| 8 | * to deal in the Software without restriction, including without limitation |
| 9 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 10 | * and/or sell copies of the Software, and to permit persons to whom the |
| 11 | * Software is furnished to do so, subject to the following conditions: |
| 12 | * |
| 13 | * The above copyright notice and this permission notice shall be included in |
| 14 | * all copies or substantial portions of the Software. |
| 15 | * |
| 16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 19 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| 20 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| 21 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| 22 | * OTHER DEALINGS IN THE SOFTWARE. |
| 23 | * |
| 24 | */ |
| 25 | |
| 26 | #include <linux/firmware.h> |
| 27 | #include <linux/pm_runtime.h> |
| 28 | |
| 29 | #include "amdgpu.h" |
| 30 | #include "amdgpu_gfx.h" |
| 31 | #include "amdgpu_rlc.h" |
| 32 | #include "amdgpu_ras.h" |
| 33 | #include "amdgpu_reset.h" |
| 34 | #include "amdgpu_xcp.h" |
| 35 | #include "amdgpu_xgmi.h" |
| 36 | |
| 37 | /* delay 0.1 second to enable gfx off feature */ |
| 38 | #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) |
| 39 | |
| 40 | #define GFX_OFF_NO_DELAY 0 |
| 41 | |
| 42 | /* |
| 43 | * GPU GFX IP block helpers function. |
| 44 | */ |
| 45 | |
| 46 | int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, |
| 47 | int pipe, int queue) |
| 48 | { |
| 49 | int bit = 0; |
| 50 | |
| 51 | bit += mec * adev->gfx.mec.num_pipe_per_mec |
| 52 | * adev->gfx.mec.num_queue_per_pipe; |
| 53 | bit += pipe * adev->gfx.mec.num_queue_per_pipe; |
| 54 | bit += queue; |
| 55 | |
| 56 | return bit; |
| 57 | } |
| 58 | |
| 59 | void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, |
| 60 | int *mec, int *pipe, int *queue) |
| 61 | { |
| 62 | *queue = bit % adev->gfx.mec.num_queue_per_pipe; |
| 63 | *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) |
| 64 | % adev->gfx.mec.num_pipe_per_mec; |
| 65 | *mec = (bit / adev->gfx.mec.num_queue_per_pipe) |
| 66 | / adev->gfx.mec.num_pipe_per_mec; |
| 67 | |
| 68 | } |
| 69 | |
| 70 | bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, |
| 71 | int xcc_id, int mec, int pipe, int queue) |
| 72 | { |
| 73 | return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), |
| 74 | adev->gfx.mec_bitmap[xcc_id].queue_bitmap); |
| 75 | } |
| 76 | |
| 77 | int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, |
| 78 | int me, int pipe, int queue) |
| 79 | { |
| 80 | int bit = 0; |
| 81 | |
| 82 | bit += me * adev->gfx.me.num_pipe_per_me |
| 83 | * adev->gfx.me.num_queue_per_pipe; |
| 84 | bit += pipe * adev->gfx.me.num_queue_per_pipe; |
| 85 | bit += queue; |
| 86 | |
| 87 | return bit; |
| 88 | } |
| 89 | |
| 90 | bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, |
| 91 | int me, int pipe, int queue) |
| 92 | { |
| 93 | return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), |
| 94 | adev->gfx.me.queue_bitmap); |
| 95 | } |
| 96 | |
| 97 | /** |
| 98 | * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter |
| 99 | * |
| 100 | * @mask: array in which the per-shader array disable masks will be stored |
| 101 | * @max_se: number of SEs |
| 102 | * @max_sh: number of SHs |
| 103 | * |
| 104 | * The bitmask of CUs to be disabled in the shader array determined by se and |
| 105 | * sh is stored in mask[se * max_sh + sh]. |
| 106 | */ |
| 107 | void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh) |
| 108 | { |
| 109 | unsigned int se, sh, cu; |
| 110 | const char *p; |
| 111 | |
| 112 | memset(mask, 0, sizeof(*mask) * max_se * max_sh); |
| 113 | |
| 114 | if (!amdgpu_disable_cu || !*amdgpu_disable_cu) |
| 115 | return; |
| 116 | |
| 117 | p = amdgpu_disable_cu; |
| 118 | for (;;) { |
| 119 | char *next; |
| 120 | int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); |
| 121 | |
| 122 | if (ret < 3) { |
| 123 | DRM_ERROR("amdgpu: could not parse disable_cu\n"); |
| 124 | return; |
| 125 | } |
| 126 | |
| 127 | if (se < max_se && sh < max_sh && cu < 16) { |
| 128 | DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu); |
| 129 | mask[se * max_sh + sh] |= 1u << cu; |
| 130 | } else { |
| 131 | DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n", |
| 132 | se, sh, cu); |
| 133 | } |
| 134 | |
| 135 | next = strchr(p, ','); |
| 136 | if (!next) |
| 137 | break; |
| 138 | p = next + 1; |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) |
| 143 | { |
| 144 | return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; |
| 145 | } |
| 146 | |
| 147 | static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) |
| 148 | { |
| 149 | if (amdgpu_compute_multipipe != -1) { |
| 150 | DRM_INFO("amdgpu: forcing compute pipe policy %d\n", |
| 151 | amdgpu_compute_multipipe); |
| 152 | return amdgpu_compute_multipipe == 1; |
| 153 | } |
| 154 | |
| 155 | if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0)) |
| 156 | return true; |
| 157 | |
| 158 | /* FIXME: spreading the queues across pipes causes perf regressions |
| 159 | * on POLARIS11 compute workloads */ |
| 160 | if (adev->asic_type == CHIP_POLARIS11) |
| 161 | return false; |
| 162 | |
| 163 | return adev->gfx.mec.num_mec > 1; |
| 164 | } |
| 165 | |
| 166 | bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, |
| 167 | struct amdgpu_ring *ring) |
| 168 | { |
| 169 | int queue = ring->queue; |
| 170 | int pipe = ring->pipe; |
| 171 | |
| 172 | /* Policy: use pipe1 queue0 as high priority graphics queue if we |
| 173 | * have more than one gfx pipe. |
| 174 | */ |
| 175 | if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && |
| 176 | adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { |
| 177 | int me = ring->me; |
| 178 | int bit; |
| 179 | |
| 180 | bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); |
| 181 | if (ring == &adev->gfx.gfx_ring[bit]) |
| 182 | return true; |
| 183 | } |
| 184 | |
| 185 | return false; |
| 186 | } |
| 187 | |
| 188 | bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, |
| 189 | struct amdgpu_ring *ring) |
| 190 | { |
| 191 | /* Policy: use 1st queue as high priority compute queue if we |
| 192 | * have more than one compute queue. |
| 193 | */ |
| 194 | if (adev->gfx.num_compute_rings > 1 && |
| 195 | ring == &adev->gfx.compute_ring[0]) |
| 196 | return true; |
| 197 | |
| 198 | return false; |
| 199 | } |
| 200 | |
| 201 | void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) |
| 202 | { |
| 203 | int i, j, queue, pipe; |
| 204 | bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); |
| 205 | int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * |
| 206 | adev->gfx.mec.num_queue_per_pipe, |
| 207 | adev->gfx.num_compute_rings); |
| 208 | int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; |
| 209 | |
| 210 | if (multipipe_policy) { |
| 211 | /* policy: make queues evenly cross all pipes on MEC1 only |
| 212 | * for multiple xcc, just use the original policy for simplicity */ |
| 213 | for (j = 0; j < num_xcc; j++) { |
| 214 | for (i = 0; i < max_queues_per_mec; i++) { |
| 215 | pipe = i % adev->gfx.mec.num_pipe_per_mec; |
| 216 | queue = (i / adev->gfx.mec.num_pipe_per_mec) % |
| 217 | adev->gfx.mec.num_queue_per_pipe; |
| 218 | |
| 219 | set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, |
| 220 | adev->gfx.mec_bitmap[j].queue_bitmap); |
| 221 | } |
| 222 | } |
| 223 | } else { |
| 224 | /* policy: amdgpu owns all queues in the given pipe */ |
| 225 | for (j = 0; j < num_xcc; j++) { |
| 226 | for (i = 0; i < max_queues_per_mec; ++i) |
| 227 | set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap); |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | for (j = 0; j < num_xcc; j++) { |
| 232 | dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", |
| 233 | bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); |
| 234 | } |
| 235 | } |
| 236 | |
| 237 | void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) |
| 238 | { |
| 239 | int i, queue, pipe; |
| 240 | bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); |
| 241 | int max_queues_per_me = adev->gfx.me.num_pipe_per_me * |
| 242 | adev->gfx.me.num_queue_per_pipe; |
| 243 | |
| 244 | if (multipipe_policy) { |
| 245 | /* policy: amdgpu owns the first queue per pipe at this stage |
| 246 | * will extend to mulitple queues per pipe later */ |
| 247 | for (i = 0; i < max_queues_per_me; i++) { |
| 248 | pipe = i % adev->gfx.me.num_pipe_per_me; |
| 249 | queue = (i / adev->gfx.me.num_pipe_per_me) % |
| 250 | adev->gfx.me.num_queue_per_pipe; |
| 251 | |
| 252 | set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue, |
| 253 | adev->gfx.me.queue_bitmap); |
| 254 | } |
| 255 | } else { |
| 256 | for (i = 0; i < max_queues_per_me; ++i) |
| 257 | set_bit(i, adev->gfx.me.queue_bitmap); |
| 258 | } |
| 259 | |
| 260 | /* update the number of active graphics rings */ |
| 261 | adev->gfx.num_gfx_rings = |
| 262 | bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); |
| 263 | } |
| 264 | |
| 265 | static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, |
| 266 | struct amdgpu_ring *ring, int xcc_id) |
| 267 | { |
| 268 | int queue_bit; |
| 269 | int mec, pipe, queue; |
| 270 | |
| 271 | queue_bit = adev->gfx.mec.num_mec |
| 272 | * adev->gfx.mec.num_pipe_per_mec |
| 273 | * adev->gfx.mec.num_queue_per_pipe; |
| 274 | |
| 275 | while (--queue_bit >= 0) { |
| 276 | if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) |
| 277 | continue; |
| 278 | |
| 279 | amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); |
| 280 | |
| 281 | /* |
| 282 | * 1. Using pipes 2/3 from MEC 2 seems cause problems. |
| 283 | * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN |
| 284 | * only can be issued on queue 0. |
| 285 | */ |
| 286 | if ((mec == 1 && pipe > 1) || queue != 0) |
| 287 | continue; |
| 288 | |
| 289 | ring->me = mec + 1; |
| 290 | ring->pipe = pipe; |
| 291 | ring->queue = queue; |
| 292 | |
| 293 | return 0; |
| 294 | } |
| 295 | |
| 296 | dev_err(adev->dev, "Failed to find a queue for KIQ\n"); |
| 297 | return -EINVAL; |
| 298 | } |
| 299 | |
| 300 | int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id) |
| 301 | { |
| 302 | struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| 303 | struct amdgpu_irq_src *irq = &kiq->irq; |
| 304 | struct amdgpu_ring *ring = &kiq->ring; |
| 305 | int r = 0; |
| 306 | |
| 307 | spin_lock_init(&kiq->ring_lock); |
| 308 | |
| 309 | ring->adev = NULL; |
| 310 | ring->ring_obj = NULL; |
| 311 | ring->use_doorbell = true; |
| 312 | ring->xcc_id = xcc_id; |
| 313 | ring->vm_hub = AMDGPU_GFXHUB(xcc_id); |
| 314 | ring->doorbell_index = |
| 315 | (adev->doorbell_index.kiq + |
| 316 | xcc_id * adev->doorbell_index.xcc_doorbell_range) |
| 317 | << 1; |
| 318 | |
| 319 | r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id); |
| 320 | if (r) |
| 321 | return r; |
| 322 | |
| 323 | ring->eop_gpu_addr = kiq->eop_gpu_addr; |
| 324 | ring->no_scheduler = true; |
| 325 | snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu", |
| 326 | (unsigned char)xcc_id, (unsigned char)ring->me, |
| 327 | (unsigned char)ring->pipe, (unsigned char)ring->queue); |
| 328 | r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, |
| 329 | AMDGPU_RING_PRIO_DEFAULT, NULL); |
| 330 | if (r) |
| 331 | dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); |
| 332 | |
| 333 | return r; |
| 334 | } |
| 335 | |
| 336 | void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) |
| 337 | { |
| 338 | amdgpu_ring_fini(ring); |
| 339 | } |
| 340 | |
| 341 | void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id) |
| 342 | { |
| 343 | struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| 344 | |
| 345 | amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); |
| 346 | } |
| 347 | |
| 348 | int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, |
| 349 | unsigned int hpd_size, int xcc_id) |
| 350 | { |
| 351 | int r; |
| 352 | u32 *hpd; |
| 353 | struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| 354 | |
| 355 | r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, |
| 356 | AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, |
| 357 | &kiq->eop_gpu_addr, (void **)&hpd); |
| 358 | if (r) { |
| 359 | dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); |
| 360 | return r; |
| 361 | } |
| 362 | |
| 363 | memset(hpd, 0, hpd_size); |
| 364 | |
| 365 | r = amdgpu_bo_reserve(kiq->eop_obj, true); |
| 366 | if (unlikely(r != 0)) |
| 367 | dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); |
| 368 | amdgpu_bo_kunmap(kiq->eop_obj); |
| 369 | amdgpu_bo_unreserve(kiq->eop_obj); |
| 370 | |
| 371 | return 0; |
| 372 | } |
| 373 | |
| 374 | /* create MQD for each compute/gfx queue */ |
| 375 | int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, |
| 376 | unsigned int mqd_size, int xcc_id) |
| 377 | { |
| 378 | int r, i, j; |
| 379 | struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| 380 | struct amdgpu_ring *ring = &kiq->ring; |
| 381 | u32 domain = AMDGPU_GEM_DOMAIN_GTT; |
| 382 | |
| 383 | #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64) |
| 384 | /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */ |
| 385 | if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0)) |
| 386 | domain |= AMDGPU_GEM_DOMAIN_VRAM; |
| 387 | #endif |
| 388 | |
| 389 | /* create MQD for KIQ */ |
| 390 | if (!adev->enable_mes_kiq && !ring->mqd_obj) { |
| 391 | /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must |
| 392 | * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD |
| 393 | * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for |
| 394 | * KIQ MQD no matter SRIOV or Bare-metal |
| 395 | */ |
| 396 | r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, |
| 397 | AMDGPU_GEM_DOMAIN_VRAM | |
| 398 | AMDGPU_GEM_DOMAIN_GTT, |
| 399 | &ring->mqd_obj, |
| 400 | &ring->mqd_gpu_addr, |
| 401 | &ring->mqd_ptr); |
| 402 | if (r) { |
| 403 | dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); |
| 404 | return r; |
| 405 | } |
| 406 | |
| 407 | /* prepare MQD backup */ |
| 408 | kiq->mqd_backup = kzalloc(mqd_size, GFP_KERNEL); |
| 409 | if (!kiq->mqd_backup) { |
| 410 | dev_warn(adev->dev, |
| 411 | "no memory to create MQD backup for ring %s\n", ring->name); |
| 412 | return -ENOMEM; |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { |
| 417 | /* create MQD for each KGQ */ |
| 418 | for (i = 0; i < adev->gfx.num_gfx_rings; i++) { |
| 419 | ring = &adev->gfx.gfx_ring[i]; |
| 420 | if (!ring->mqd_obj) { |
| 421 | r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, |
| 422 | domain, &ring->mqd_obj, |
| 423 | &ring->mqd_gpu_addr, &ring->mqd_ptr); |
| 424 | if (r) { |
| 425 | dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); |
| 426 | return r; |
| 427 | } |
| 428 | |
| 429 | ring->mqd_size = mqd_size; |
| 430 | /* prepare MQD backup */ |
| 431 | adev->gfx.me.mqd_backup[i] = kzalloc(mqd_size, GFP_KERNEL); |
| 432 | if (!adev->gfx.me.mqd_backup[i]) { |
| 433 | dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); |
| 434 | return -ENOMEM; |
| 435 | } |
| 436 | } |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | /* create MQD for each KCQ */ |
| 441 | for (i = 0; i < adev->gfx.num_compute_rings; i++) { |
| 442 | j = i + xcc_id * adev->gfx.num_compute_rings; |
| 443 | ring = &adev->gfx.compute_ring[j]; |
| 444 | if (!ring->mqd_obj) { |
| 445 | r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, |
| 446 | domain, &ring->mqd_obj, |
| 447 | &ring->mqd_gpu_addr, &ring->mqd_ptr); |
| 448 | if (r) { |
| 449 | dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); |
| 450 | return r; |
| 451 | } |
| 452 | |
| 453 | ring->mqd_size = mqd_size; |
| 454 | /* prepare MQD backup */ |
| 455 | adev->gfx.mec.mqd_backup[j] = kzalloc(mqd_size, GFP_KERNEL); |
| 456 | if (!adev->gfx.mec.mqd_backup[j]) { |
| 457 | dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); |
| 458 | return -ENOMEM; |
| 459 | } |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | return 0; |
| 464 | } |
| 465 | |
| 466 | void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id) |
| 467 | { |
| 468 | struct amdgpu_ring *ring = NULL; |
| 469 | int i, j; |
| 470 | struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| 471 | |
| 472 | if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { |
| 473 | for (i = 0; i < adev->gfx.num_gfx_rings; i++) { |
| 474 | ring = &adev->gfx.gfx_ring[i]; |
| 475 | kfree(adev->gfx.me.mqd_backup[i]); |
| 476 | amdgpu_bo_free_kernel(&ring->mqd_obj, |
| 477 | &ring->mqd_gpu_addr, |
| 478 | &ring->mqd_ptr); |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | for (i = 0; i < adev->gfx.num_compute_rings; i++) { |
| 483 | j = i + xcc_id * adev->gfx.num_compute_rings; |
| 484 | ring = &adev->gfx.compute_ring[j]; |
| 485 | kfree(adev->gfx.mec.mqd_backup[j]); |
| 486 | amdgpu_bo_free_kernel(&ring->mqd_obj, |
| 487 | &ring->mqd_gpu_addr, |
| 488 | &ring->mqd_ptr); |
| 489 | } |
| 490 | |
| 491 | ring = &kiq->ring; |
| 492 | kfree(kiq->mqd_backup); |
| 493 | amdgpu_bo_free_kernel(&ring->mqd_obj, |
| 494 | &ring->mqd_gpu_addr, |
| 495 | &ring->mqd_ptr); |
| 496 | } |
| 497 | |
| 498 | int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id) |
| 499 | { |
| 500 | struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| 501 | struct amdgpu_ring *kiq_ring = &kiq->ring; |
| 502 | int i, r = 0; |
| 503 | int j; |
| 504 | |
| 505 | if (adev->enable_mes) { |
| 506 | for (i = 0; i < adev->gfx.num_compute_rings; i++) { |
| 507 | j = i + xcc_id * adev->gfx.num_compute_rings; |
| 508 | amdgpu_mes_unmap_legacy_queue(adev, |
| 509 | &adev->gfx.compute_ring[j], |
| 510 | RESET_QUEUES, 0, 0); |
| 511 | } |
| 512 | return 0; |
| 513 | } |
| 514 | |
| 515 | if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) |
| 516 | return -EINVAL; |
| 517 | |
| 518 | spin_lock(&kiq->ring_lock); |
| 519 | if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * |
| 520 | adev->gfx.num_compute_rings)) { |
| 521 | spin_unlock(&kiq->ring_lock); |
| 522 | return -ENOMEM; |
| 523 | } |
| 524 | |
| 525 | for (i = 0; i < adev->gfx.num_compute_rings; i++) { |
| 526 | j = i + xcc_id * adev->gfx.num_compute_rings; |
| 527 | kiq->pmf->kiq_unmap_queues(kiq_ring, |
| 528 | &adev->gfx.compute_ring[j], |
| 529 | RESET_QUEUES, 0, 0); |
| 530 | } |
| 531 | |
| 532 | /** |
| 533 | * This is workaround: only skip kiq_ring test |
| 534 | * during ras recovery in suspend stage for gfx9.4.3 |
| 535 | */ |
| 536 | if ((amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) || |
| 537 | amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)) && |
| 538 | amdgpu_ras_in_recovery(adev)) { |
| 539 | spin_unlock(&kiq->ring_lock); |
| 540 | return 0; |
| 541 | } |
| 542 | |
| 543 | if (kiq_ring->sched.ready && !adev->job_hang) |
| 544 | r = amdgpu_ring_test_helper(kiq_ring); |
| 545 | spin_unlock(&kiq->ring_lock); |
| 546 | |
| 547 | return r; |
| 548 | } |
| 549 | |
| 550 | int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id) |
| 551 | { |
| 552 | struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| 553 | struct amdgpu_ring *kiq_ring = &kiq->ring; |
| 554 | int i, r = 0; |
| 555 | int j; |
| 556 | |
| 557 | if (adev->enable_mes) { |
| 558 | if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { |
| 559 | for (i = 0; i < adev->gfx.num_gfx_rings; i++) { |
| 560 | j = i + xcc_id * adev->gfx.num_gfx_rings; |
| 561 | amdgpu_mes_unmap_legacy_queue(adev, |
| 562 | &adev->gfx.gfx_ring[j], |
| 563 | PREEMPT_QUEUES, 0, 0); |
| 564 | } |
| 565 | } |
| 566 | return 0; |
| 567 | } |
| 568 | |
| 569 | if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) |
| 570 | return -EINVAL; |
| 571 | |
| 572 | spin_lock(&kiq->ring_lock); |
| 573 | if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { |
| 574 | if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * |
| 575 | adev->gfx.num_gfx_rings)) { |
| 576 | spin_unlock(&kiq->ring_lock); |
| 577 | return -ENOMEM; |
| 578 | } |
| 579 | |
| 580 | for (i = 0; i < adev->gfx.num_gfx_rings; i++) { |
| 581 | j = i + xcc_id * adev->gfx.num_gfx_rings; |
| 582 | kiq->pmf->kiq_unmap_queues(kiq_ring, |
| 583 | &adev->gfx.gfx_ring[j], |
| 584 | PREEMPT_QUEUES, 0, 0); |
| 585 | } |
| 586 | } |
| 587 | |
| 588 | if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang) |
| 589 | r = amdgpu_ring_test_helper(kiq_ring); |
| 590 | spin_unlock(&kiq->ring_lock); |
| 591 | |
| 592 | return r; |
| 593 | } |
| 594 | |
| 595 | int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, |
| 596 | int queue_bit) |
| 597 | { |
| 598 | int mec, pipe, queue; |
| 599 | int set_resource_bit = 0; |
| 600 | |
| 601 | amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); |
| 602 | |
| 603 | set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; |
| 604 | |
| 605 | return set_resource_bit; |
| 606 | } |
| 607 | |
| 608 | static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id) |
| 609 | { |
| 610 | struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| 611 | struct amdgpu_ring *kiq_ring = &kiq->ring; |
| 612 | uint64_t queue_mask = ~0ULL; |
| 613 | int r, i, j; |
| 614 | |
| 615 | amdgpu_device_flush_hdp(adev, NULL); |
| 616 | |
| 617 | if (!adev->enable_uni_mes) { |
| 618 | spin_lock(&kiq->ring_lock); |
| 619 | r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size); |
| 620 | if (r) { |
| 621 | dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r); |
| 622 | spin_unlock(&kiq->ring_lock); |
| 623 | return r; |
| 624 | } |
| 625 | |
| 626 | kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); |
| 627 | r = amdgpu_ring_test_helper(kiq_ring); |
| 628 | spin_unlock(&kiq->ring_lock); |
| 629 | if (r) |
| 630 | dev_err(adev->dev, "KIQ failed to set resources\n"); |
| 631 | } |
| 632 | |
| 633 | for (i = 0; i < adev->gfx.num_compute_rings; i++) { |
| 634 | j = i + xcc_id * adev->gfx.num_compute_rings; |
| 635 | r = amdgpu_mes_map_legacy_queue(adev, |
| 636 | &adev->gfx.compute_ring[j]); |
| 637 | if (r) { |
| 638 | dev_err(adev->dev, "failed to map compute queue\n"); |
| 639 | return r; |
| 640 | } |
| 641 | } |
| 642 | |
| 643 | return 0; |
| 644 | } |
| 645 | |
| 646 | int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id) |
| 647 | { |
| 648 | struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| 649 | struct amdgpu_ring *kiq_ring = &kiq->ring; |
| 650 | uint64_t queue_mask = 0; |
| 651 | int r, i, j; |
| 652 | |
| 653 | if (adev->mes.enable_legacy_queue_map) |
| 654 | return amdgpu_gfx_mes_enable_kcq(adev, xcc_id); |
| 655 | |
| 656 | if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) |
| 657 | return -EINVAL; |
| 658 | |
| 659 | for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { |
| 660 | if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) |
| 661 | continue; |
| 662 | |
| 663 | /* This situation may be hit in the future if a new HW |
| 664 | * generation exposes more than 64 queues. If so, the |
| 665 | * definition of queue_mask needs updating */ |
| 666 | if (WARN_ON(i > (sizeof(queue_mask)*8))) { |
| 667 | DRM_ERROR("Invalid KCQ enabled: %d\n", i); |
| 668 | break; |
| 669 | } |
| 670 | |
| 671 | queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); |
| 672 | } |
| 673 | |
| 674 | amdgpu_device_flush_hdp(adev, NULL); |
| 675 | |
| 676 | DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe, |
| 677 | kiq_ring->queue); |
| 678 | |
| 679 | spin_lock(&kiq->ring_lock); |
| 680 | r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * |
| 681 | adev->gfx.num_compute_rings + |
| 682 | kiq->pmf->set_resources_size); |
| 683 | if (r) { |
| 684 | DRM_ERROR("Failed to lock KIQ (%d).\n", r); |
| 685 | spin_unlock(&kiq->ring_lock); |
| 686 | return r; |
| 687 | } |
| 688 | |
| 689 | kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); |
| 690 | for (i = 0; i < adev->gfx.num_compute_rings; i++) { |
| 691 | j = i + xcc_id * adev->gfx.num_compute_rings; |
| 692 | kiq->pmf->kiq_map_queues(kiq_ring, |
| 693 | &adev->gfx.compute_ring[j]); |
| 694 | } |
| 695 | |
| 696 | r = amdgpu_ring_test_helper(kiq_ring); |
| 697 | spin_unlock(&kiq->ring_lock); |
| 698 | if (r) |
| 699 | DRM_ERROR("KCQ enable failed\n"); |
| 700 | |
| 701 | return r; |
| 702 | } |
| 703 | |
| 704 | int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id) |
| 705 | { |
| 706 | struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| 707 | struct amdgpu_ring *kiq_ring = &kiq->ring; |
| 708 | int r, i, j; |
| 709 | |
| 710 | if (!kiq->pmf || !kiq->pmf->kiq_map_queues) |
| 711 | return -EINVAL; |
| 712 | |
| 713 | amdgpu_device_flush_hdp(adev, NULL); |
| 714 | |
| 715 | if (adev->mes.enable_legacy_queue_map) { |
| 716 | for (i = 0; i < adev->gfx.num_gfx_rings; i++) { |
| 717 | j = i + xcc_id * adev->gfx.num_gfx_rings; |
| 718 | r = amdgpu_mes_map_legacy_queue(adev, |
| 719 | &adev->gfx.gfx_ring[j]); |
| 720 | if (r) { |
| 721 | DRM_ERROR("failed to map gfx queue\n"); |
| 722 | return r; |
| 723 | } |
| 724 | } |
| 725 | |
| 726 | return 0; |
| 727 | } |
| 728 | |
| 729 | spin_lock(&kiq->ring_lock); |
| 730 | /* No need to map kcq on the slave */ |
| 731 | if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { |
| 732 | r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * |
| 733 | adev->gfx.num_gfx_rings); |
| 734 | if (r) { |
| 735 | DRM_ERROR("Failed to lock KIQ (%d).\n", r); |
| 736 | spin_unlock(&kiq->ring_lock); |
| 737 | return r; |
| 738 | } |
| 739 | |
| 740 | for (i = 0; i < adev->gfx.num_gfx_rings; i++) { |
| 741 | j = i + xcc_id * adev->gfx.num_gfx_rings; |
| 742 | kiq->pmf->kiq_map_queues(kiq_ring, |
| 743 | &adev->gfx.gfx_ring[j]); |
| 744 | } |
| 745 | } |
| 746 | |
| 747 | r = amdgpu_ring_test_helper(kiq_ring); |
| 748 | spin_unlock(&kiq->ring_lock); |
| 749 | if (r) |
| 750 | DRM_ERROR("KGQ enable failed\n"); |
| 751 | |
| 752 | return r; |
| 753 | } |
| 754 | |
| 755 | /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable |
| 756 | * |
| 757 | * @adev: amdgpu_device pointer |
| 758 | * @bool enable true: enable gfx off feature, false: disable gfx off feature |
| 759 | * |
| 760 | * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled. |
| 761 | * 2. other client can send request to disable gfx off feature, the request should be honored. |
| 762 | * 3. other client can cancel their request of disable gfx off feature |
| 763 | * 4. other client should not send request to enable gfx off feature before disable gfx off feature. |
| 764 | */ |
| 765 | |
| 766 | void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) |
| 767 | { |
| 768 | unsigned long delay = GFX_OFF_DELAY_ENABLE; |
| 769 | |
| 770 | if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) |
| 771 | return; |
| 772 | |
| 773 | mutex_lock(&adev->gfx.gfx_off_mutex); |
| 774 | |
| 775 | if (enable) { |
| 776 | /* If the count is already 0, it means there's an imbalance bug somewhere. |
| 777 | * Note that the bug may be in a different caller than the one which triggers the |
| 778 | * WARN_ON_ONCE. |
| 779 | */ |
| 780 | if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) |
| 781 | goto unlock; |
| 782 | |
| 783 | adev->gfx.gfx_off_req_count--; |
| 784 | |
| 785 | if (adev->gfx.gfx_off_req_count == 0 && |
| 786 | !adev->gfx.gfx_off_state) { |
| 787 | /* If going to s2idle, no need to wait */ |
| 788 | if (adev->in_s0ix) { |
| 789 | if (!amdgpu_dpm_set_powergating_by_smu(adev, |
| 790 | AMD_IP_BLOCK_TYPE_GFX, true)) |
| 791 | adev->gfx.gfx_off_state = true; |
| 792 | } else { |
| 793 | schedule_delayed_work(&adev->gfx.gfx_off_delay_work, |
| 794 | delay); |
| 795 | } |
| 796 | } |
| 797 | } else { |
| 798 | if (adev->gfx.gfx_off_req_count == 0) { |
| 799 | cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); |
| 800 | |
| 801 | if (adev->gfx.gfx_off_state && |
| 802 | !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) { |
| 803 | adev->gfx.gfx_off_state = false; |
| 804 | |
| 805 | if (adev->gfx.funcs->init_spm_golden) { |
| 806 | dev_dbg(adev->dev, |
| 807 | "GFXOFF is disabled, re-init SPM golden settings\n"); |
| 808 | amdgpu_gfx_init_spm_golden(adev); |
| 809 | } |
| 810 | } |
| 811 | } |
| 812 | |
| 813 | adev->gfx.gfx_off_req_count++; |
| 814 | } |
| 815 | |
| 816 | unlock: |
| 817 | mutex_unlock(&adev->gfx.gfx_off_mutex); |
| 818 | } |
| 819 | |
| 820 | int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) |
| 821 | { |
| 822 | int r = 0; |
| 823 | |
| 824 | mutex_lock(&adev->gfx.gfx_off_mutex); |
| 825 | |
| 826 | r = amdgpu_dpm_set_residency_gfxoff(adev, value); |
| 827 | |
| 828 | mutex_unlock(&adev->gfx.gfx_off_mutex); |
| 829 | |
| 830 | return r; |
| 831 | } |
| 832 | |
| 833 | int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) |
| 834 | { |
| 835 | int r = 0; |
| 836 | |
| 837 | mutex_lock(&adev->gfx.gfx_off_mutex); |
| 838 | |
| 839 | r = amdgpu_dpm_get_residency_gfxoff(adev, value); |
| 840 | |
| 841 | mutex_unlock(&adev->gfx.gfx_off_mutex); |
| 842 | |
| 843 | return r; |
| 844 | } |
| 845 | |
| 846 | int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) |
| 847 | { |
| 848 | int r = 0; |
| 849 | |
| 850 | mutex_lock(&adev->gfx.gfx_off_mutex); |
| 851 | |
| 852 | r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); |
| 853 | |
| 854 | mutex_unlock(&adev->gfx.gfx_off_mutex); |
| 855 | |
| 856 | return r; |
| 857 | } |
| 858 | |
| 859 | int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) |
| 860 | { |
| 861 | |
| 862 | int r = 0; |
| 863 | |
| 864 | mutex_lock(&adev->gfx.gfx_off_mutex); |
| 865 | |
| 866 | r = amdgpu_dpm_get_status_gfxoff(adev, value); |
| 867 | |
| 868 | mutex_unlock(&adev->gfx.gfx_off_mutex); |
| 869 | |
| 870 | return r; |
| 871 | } |
| 872 | |
| 873 | int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) |
| 874 | { |
| 875 | int r; |
| 876 | |
| 877 | if (amdgpu_ras_is_supported(adev, ras_block->block)) { |
| 878 | if (!amdgpu_persistent_edc_harvesting_supported(adev)) { |
| 879 | r = amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); |
| 880 | if (r) |
| 881 | return r; |
| 882 | } |
| 883 | |
| 884 | r = amdgpu_ras_block_late_init(adev, ras_block); |
| 885 | if (r) |
| 886 | return r; |
| 887 | |
| 888 | if (adev->gfx.cp_ecc_error_irq.funcs) { |
| 889 | r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); |
| 890 | if (r) |
| 891 | goto late_fini; |
| 892 | } |
| 893 | } else { |
| 894 | amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); |
| 895 | } |
| 896 | |
| 897 | return 0; |
| 898 | late_fini: |
| 899 | amdgpu_ras_block_late_fini(adev, ras_block); |
| 900 | return r; |
| 901 | } |
| 902 | |
| 903 | int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) |
| 904 | { |
| 905 | int err = 0; |
| 906 | struct amdgpu_gfx_ras *ras = NULL; |
| 907 | |
| 908 | /* adev->gfx.ras is NULL, which means gfx does not |
| 909 | * support ras function, then do nothing here. |
| 910 | */ |
| 911 | if (!adev->gfx.ras) |
| 912 | return 0; |
| 913 | |
| 914 | ras = adev->gfx.ras; |
| 915 | |
| 916 | err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); |
| 917 | if (err) { |
| 918 | dev_err(adev->dev, "Failed to register gfx ras block!\n"); |
| 919 | return err; |
| 920 | } |
| 921 | |
| 922 | strcpy(ras->ras_block.ras_comm.name, "gfx"); |
| 923 | ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; |
| 924 | ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; |
| 925 | adev->gfx.ras_if = &ras->ras_block.ras_comm; |
| 926 | |
| 927 | /* If not define special ras_late_init function, use gfx default ras_late_init */ |
| 928 | if (!ras->ras_block.ras_late_init) |
| 929 | ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; |
| 930 | |
| 931 | /* If not defined special ras_cb function, use default ras_cb */ |
| 932 | if (!ras->ras_block.ras_cb) |
| 933 | ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; |
| 934 | |
| 935 | return 0; |
| 936 | } |
| 937 | |
| 938 | int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, |
| 939 | struct amdgpu_iv_entry *entry) |
| 940 | { |
| 941 | if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) |
| 942 | return adev->gfx.ras->poison_consumption_handler(adev, entry); |
| 943 | |
| 944 | return 0; |
| 945 | } |
| 946 | |
| 947 | int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, |
| 948 | void *err_data, |
| 949 | struct amdgpu_iv_entry *entry) |
| 950 | { |
| 951 | /* TODO ue will trigger an interrupt. |
| 952 | * |
| 953 | * When “Full RAS” is enabled, the per-IP interrupt sources should |
| 954 | * be disabled and the driver should only look for the aggregated |
| 955 | * interrupt via sync flood |
| 956 | */ |
| 957 | if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { |
| 958 | kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); |
| 959 | if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && |
| 960 | adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) |
| 961 | adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); |
| 962 | amdgpu_ras_reset_gpu(adev); |
| 963 | } |
| 964 | return AMDGPU_RAS_SUCCESS; |
| 965 | } |
| 966 | |
| 967 | int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, |
| 968 | struct amdgpu_irq_src *source, |
| 969 | struct amdgpu_iv_entry *entry) |
| 970 | { |
| 971 | struct ras_common_if *ras_if = adev->gfx.ras_if; |
| 972 | struct ras_dispatch_if ih_data = { |
| 973 | .entry = entry, |
| 974 | }; |
| 975 | |
| 976 | if (!ras_if) |
| 977 | return 0; |
| 978 | |
| 979 | ih_data.head = *ras_if; |
| 980 | |
| 981 | DRM_ERROR("CP ECC ERROR IRQ\n"); |
| 982 | amdgpu_ras_interrupt_dispatch(adev, &ih_data); |
| 983 | return 0; |
| 984 | } |
| 985 | |
| 986 | void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev, |
| 987 | void *ras_error_status, |
| 988 | void (*func)(struct amdgpu_device *adev, void *ras_error_status, |
| 989 | int xcc_id)) |
| 990 | { |
| 991 | int i; |
| 992 | int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; |
| 993 | uint32_t xcc_mask = GENMASK(num_xcc - 1, 0); |
| 994 | struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; |
| 995 | |
| 996 | if (err_data) { |
| 997 | err_data->ue_count = 0; |
| 998 | err_data->ce_count = 0; |
| 999 | } |
| 1000 | |
| 1001 | for_each_inst(i, xcc_mask) |
| 1002 | func(adev, ras_error_status, i); |
| 1003 | } |
| 1004 | |
| 1005 | uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id) |
| 1006 | { |
| 1007 | signed long r, cnt = 0; |
| 1008 | unsigned long flags; |
| 1009 | uint32_t seq, reg_val_offs = 0, value = 0; |
| 1010 | struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| 1011 | struct amdgpu_ring *ring = &kiq->ring; |
| 1012 | |
| 1013 | if (amdgpu_device_skip_hw_access(adev)) |
| 1014 | return 0; |
| 1015 | |
| 1016 | if (adev->mes.ring[0].sched.ready) |
| 1017 | return amdgpu_mes_rreg(adev, reg); |
| 1018 | |
| 1019 | BUG_ON(!ring->funcs->emit_rreg); |
| 1020 | |
| 1021 | spin_lock_irqsave(&kiq->ring_lock, flags); |
| 1022 | if (amdgpu_device_wb_get(adev, ®_val_offs)) { |
| 1023 | pr_err("critical bug! too many kiq readers\n"); |
| 1024 | goto failed_unlock; |
| 1025 | } |
| 1026 | r = amdgpu_ring_alloc(ring, 32); |
| 1027 | if (r) |
| 1028 | goto failed_unlock; |
| 1029 | |
| 1030 | amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); |
| 1031 | r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); |
| 1032 | if (r) |
| 1033 | goto failed_undo; |
| 1034 | |
| 1035 | amdgpu_ring_commit(ring); |
| 1036 | spin_unlock_irqrestore(&kiq->ring_lock, flags); |
| 1037 | |
| 1038 | r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); |
| 1039 | |
| 1040 | /* don't wait anymore for gpu reset case because this way may |
| 1041 | * block gpu_recover() routine forever, e.g. this virt_kiq_rreg |
| 1042 | * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will |
| 1043 | * never return if we keep waiting in virt_kiq_rreg, which cause |
| 1044 | * gpu_recover() hang there. |
| 1045 | * |
| 1046 | * also don't wait anymore for IRQ context |
| 1047 | * */ |
| 1048 | if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) |
| 1049 | goto failed_kiq_read; |
| 1050 | |
| 1051 | might_sleep(); |
| 1052 | while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { |
| 1053 | msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); |
| 1054 | r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); |
| 1055 | } |
| 1056 | |
| 1057 | if (cnt > MAX_KIQ_REG_TRY) |
| 1058 | goto failed_kiq_read; |
| 1059 | |
| 1060 | mb(); |
| 1061 | value = adev->wb.wb[reg_val_offs]; |
| 1062 | amdgpu_device_wb_free(adev, reg_val_offs); |
| 1063 | return value; |
| 1064 | |
| 1065 | failed_undo: |
| 1066 | amdgpu_ring_undo(ring); |
| 1067 | failed_unlock: |
| 1068 | spin_unlock_irqrestore(&kiq->ring_lock, flags); |
| 1069 | failed_kiq_read: |
| 1070 | if (reg_val_offs) |
| 1071 | amdgpu_device_wb_free(adev, reg_val_offs); |
| 1072 | dev_err(adev->dev, "failed to read reg:%x\n", reg); |
| 1073 | return ~0; |
| 1074 | } |
| 1075 | |
| 1076 | void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id) |
| 1077 | { |
| 1078 | signed long r, cnt = 0; |
| 1079 | unsigned long flags; |
| 1080 | uint32_t seq; |
| 1081 | struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; |
| 1082 | struct amdgpu_ring *ring = &kiq->ring; |
| 1083 | |
| 1084 | BUG_ON(!ring->funcs->emit_wreg); |
| 1085 | |
| 1086 | if (amdgpu_device_skip_hw_access(adev)) |
| 1087 | return; |
| 1088 | |
| 1089 | if (adev->mes.ring[0].sched.ready) { |
| 1090 | amdgpu_mes_wreg(adev, reg, v); |
| 1091 | return; |
| 1092 | } |
| 1093 | |
| 1094 | spin_lock_irqsave(&kiq->ring_lock, flags); |
| 1095 | r = amdgpu_ring_alloc(ring, 32); |
| 1096 | if (r) |
| 1097 | goto failed_unlock; |
| 1098 | |
| 1099 | amdgpu_ring_emit_wreg(ring, reg, v); |
| 1100 | r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); |
| 1101 | if (r) |
| 1102 | goto failed_undo; |
| 1103 | |
| 1104 | amdgpu_ring_commit(ring); |
| 1105 | spin_unlock_irqrestore(&kiq->ring_lock, flags); |
| 1106 | |
| 1107 | r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); |
| 1108 | |
| 1109 | /* don't wait anymore for gpu reset case because this way may |
| 1110 | * block gpu_recover() routine forever, e.g. this virt_kiq_rreg |
| 1111 | * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will |
| 1112 | * never return if we keep waiting in virt_kiq_rreg, which cause |
| 1113 | * gpu_recover() hang there. |
| 1114 | * |
| 1115 | * also don't wait anymore for IRQ context |
| 1116 | * */ |
| 1117 | if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) |
| 1118 | goto failed_kiq_write; |
| 1119 | |
| 1120 | might_sleep(); |
| 1121 | while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { |
| 1122 | |
| 1123 | msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); |
| 1124 | r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); |
| 1125 | } |
| 1126 | |
| 1127 | if (cnt > MAX_KIQ_REG_TRY) |
| 1128 | goto failed_kiq_write; |
| 1129 | |
| 1130 | return; |
| 1131 | |
| 1132 | failed_undo: |
| 1133 | amdgpu_ring_undo(ring); |
| 1134 | failed_unlock: |
| 1135 | spin_unlock_irqrestore(&kiq->ring_lock, flags); |
| 1136 | failed_kiq_write: |
| 1137 | dev_err(adev->dev, "failed to write reg:%x\n", reg); |
| 1138 | } |
| 1139 | |
| 1140 | int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) |
| 1141 | { |
| 1142 | if (amdgpu_num_kcq == -1) { |
| 1143 | return 8; |
| 1144 | } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { |
| 1145 | dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); |
| 1146 | return 8; |
| 1147 | } |
| 1148 | return amdgpu_num_kcq; |
| 1149 | } |
| 1150 | |
| 1151 | void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, |
| 1152 | uint32_t ucode_id) |
| 1153 | { |
| 1154 | const struct gfx_firmware_header_v1_0 *cp_hdr; |
| 1155 | const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; |
| 1156 | struct amdgpu_firmware_info *info = NULL; |
| 1157 | const struct firmware *ucode_fw; |
| 1158 | unsigned int fw_size; |
| 1159 | |
| 1160 | switch (ucode_id) { |
| 1161 | case AMDGPU_UCODE_ID_CP_PFP: |
| 1162 | cp_hdr = (const struct gfx_firmware_header_v1_0 *) |
| 1163 | adev->gfx.pfp_fw->data; |
| 1164 | adev->gfx.pfp_fw_version = |
| 1165 | le32_to_cpu(cp_hdr->header.ucode_version); |
| 1166 | adev->gfx.pfp_feature_version = |
| 1167 | le32_to_cpu(cp_hdr->ucode_feature_version); |
| 1168 | ucode_fw = adev->gfx.pfp_fw; |
| 1169 | fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); |
| 1170 | break; |
| 1171 | case AMDGPU_UCODE_ID_CP_RS64_PFP: |
| 1172 | cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) |
| 1173 | adev->gfx.pfp_fw->data; |
| 1174 | adev->gfx.pfp_fw_version = |
| 1175 | le32_to_cpu(cp_hdr_v2_0->header.ucode_version); |
| 1176 | adev->gfx.pfp_feature_version = |
| 1177 | le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); |
| 1178 | ucode_fw = adev->gfx.pfp_fw; |
| 1179 | fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); |
| 1180 | break; |
| 1181 | case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: |
| 1182 | case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: |
| 1183 | cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) |
| 1184 | adev->gfx.pfp_fw->data; |
| 1185 | ucode_fw = adev->gfx.pfp_fw; |
| 1186 | fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); |
| 1187 | break; |
| 1188 | case AMDGPU_UCODE_ID_CP_ME: |
| 1189 | cp_hdr = (const struct gfx_firmware_header_v1_0 *) |
| 1190 | adev->gfx.me_fw->data; |
| 1191 | adev->gfx.me_fw_version = |
| 1192 | le32_to_cpu(cp_hdr->header.ucode_version); |
| 1193 | adev->gfx.me_feature_version = |
| 1194 | le32_to_cpu(cp_hdr->ucode_feature_version); |
| 1195 | ucode_fw = adev->gfx.me_fw; |
| 1196 | fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); |
| 1197 | break; |
| 1198 | case AMDGPU_UCODE_ID_CP_RS64_ME: |
| 1199 | cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) |
| 1200 | adev->gfx.me_fw->data; |
| 1201 | adev->gfx.me_fw_version = |
| 1202 | le32_to_cpu(cp_hdr_v2_0->header.ucode_version); |
| 1203 | adev->gfx.me_feature_version = |
| 1204 | le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); |
| 1205 | ucode_fw = adev->gfx.me_fw; |
| 1206 | fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); |
| 1207 | break; |
| 1208 | case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: |
| 1209 | case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: |
| 1210 | cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) |
| 1211 | adev->gfx.me_fw->data; |
| 1212 | ucode_fw = adev->gfx.me_fw; |
| 1213 | fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); |
| 1214 | break; |
| 1215 | case AMDGPU_UCODE_ID_CP_CE: |
| 1216 | cp_hdr = (const struct gfx_firmware_header_v1_0 *) |
| 1217 | adev->gfx.ce_fw->data; |
| 1218 | adev->gfx.ce_fw_version = |
| 1219 | le32_to_cpu(cp_hdr->header.ucode_version); |
| 1220 | adev->gfx.ce_feature_version = |
| 1221 | le32_to_cpu(cp_hdr->ucode_feature_version); |
| 1222 | ucode_fw = adev->gfx.ce_fw; |
| 1223 | fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); |
| 1224 | break; |
| 1225 | case AMDGPU_UCODE_ID_CP_MEC1: |
| 1226 | cp_hdr = (const struct gfx_firmware_header_v1_0 *) |
| 1227 | adev->gfx.mec_fw->data; |
| 1228 | adev->gfx.mec_fw_version = |
| 1229 | le32_to_cpu(cp_hdr->header.ucode_version); |
| 1230 | adev->gfx.mec_feature_version = |
| 1231 | le32_to_cpu(cp_hdr->ucode_feature_version); |
| 1232 | ucode_fw = adev->gfx.mec_fw; |
| 1233 | fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - |
| 1234 | le32_to_cpu(cp_hdr->jt_size) * 4; |
| 1235 | break; |
| 1236 | case AMDGPU_UCODE_ID_CP_MEC1_JT: |
| 1237 | cp_hdr = (const struct gfx_firmware_header_v1_0 *) |
| 1238 | adev->gfx.mec_fw->data; |
| 1239 | ucode_fw = adev->gfx.mec_fw; |
| 1240 | fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; |
| 1241 | break; |
| 1242 | case AMDGPU_UCODE_ID_CP_MEC2: |
| 1243 | cp_hdr = (const struct gfx_firmware_header_v1_0 *) |
| 1244 | adev->gfx.mec2_fw->data; |
| 1245 | adev->gfx.mec2_fw_version = |
| 1246 | le32_to_cpu(cp_hdr->header.ucode_version); |
| 1247 | adev->gfx.mec2_feature_version = |
| 1248 | le32_to_cpu(cp_hdr->ucode_feature_version); |
| 1249 | ucode_fw = adev->gfx.mec2_fw; |
| 1250 | fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - |
| 1251 | le32_to_cpu(cp_hdr->jt_size) * 4; |
| 1252 | break; |
| 1253 | case AMDGPU_UCODE_ID_CP_MEC2_JT: |
| 1254 | cp_hdr = (const struct gfx_firmware_header_v1_0 *) |
| 1255 | adev->gfx.mec2_fw->data; |
| 1256 | ucode_fw = adev->gfx.mec2_fw; |
| 1257 | fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; |
| 1258 | break; |
| 1259 | case AMDGPU_UCODE_ID_CP_RS64_MEC: |
| 1260 | cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) |
| 1261 | adev->gfx.mec_fw->data; |
| 1262 | adev->gfx.mec_fw_version = |
| 1263 | le32_to_cpu(cp_hdr_v2_0->header.ucode_version); |
| 1264 | adev->gfx.mec_feature_version = |
| 1265 | le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); |
| 1266 | ucode_fw = adev->gfx.mec_fw; |
| 1267 | fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); |
| 1268 | break; |
| 1269 | case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: |
| 1270 | case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: |
| 1271 | case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: |
| 1272 | case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: |
| 1273 | cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) |
| 1274 | adev->gfx.mec_fw->data; |
| 1275 | ucode_fw = adev->gfx.mec_fw; |
| 1276 | fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); |
| 1277 | break; |
| 1278 | default: |
| 1279 | dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id); |
| 1280 | return; |
| 1281 | } |
| 1282 | |
| 1283 | if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { |
| 1284 | info = &adev->firmware.ucode[ucode_id]; |
| 1285 | info->ucode_id = ucode_id; |
| 1286 | info->fw = ucode_fw; |
| 1287 | adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); |
| 1288 | } |
| 1289 | } |
| 1290 | |
| 1291 | bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id) |
| 1292 | { |
| 1293 | return !(xcc_id % (adev->gfx.num_xcc_per_xcp ? |
| 1294 | adev->gfx.num_xcc_per_xcp : 1)); |
| 1295 | } |
| 1296 | |
| 1297 | static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev, |
| 1298 | struct device_attribute *addr, |
| 1299 | char *buf) |
| 1300 | { |
| 1301 | struct drm_device *ddev = dev_get_drvdata(dev); |
| 1302 | struct amdgpu_device *adev = drm_to_adev(ddev); |
| 1303 | int mode; |
| 1304 | |
| 1305 | mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr, |
| 1306 | AMDGPU_XCP_FL_NONE); |
| 1307 | |
| 1308 | return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode)); |
| 1309 | } |
| 1310 | |
| 1311 | static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev, |
| 1312 | struct device_attribute *addr, |
| 1313 | const char *buf, size_t count) |
| 1314 | { |
| 1315 | struct drm_device *ddev = dev_get_drvdata(dev); |
| 1316 | struct amdgpu_device *adev = drm_to_adev(ddev); |
| 1317 | enum amdgpu_gfx_partition mode; |
| 1318 | int ret = 0, num_xcc; |
| 1319 | |
| 1320 | num_xcc = NUM_XCC(adev->gfx.xcc_mask); |
| 1321 | if (num_xcc % 2 != 0) |
| 1322 | return -EINVAL; |
| 1323 | |
| 1324 | if (!strncasecmp("SPX", buf, strlen("SPX"))) { |
| 1325 | mode = AMDGPU_SPX_PARTITION_MODE; |
| 1326 | } else if (!strncasecmp("DPX", buf, strlen("DPX"))) { |
| 1327 | /* |
| 1328 | * DPX mode needs AIDs to be in multiple of 2. |
| 1329 | * Each AID connects 2 XCCs. |
| 1330 | */ |
| 1331 | if (num_xcc%4) |
| 1332 | return -EINVAL; |
| 1333 | mode = AMDGPU_DPX_PARTITION_MODE; |
| 1334 | } else if (!strncasecmp("TPX", buf, strlen("TPX"))) { |
| 1335 | if (num_xcc != 6) |
| 1336 | return -EINVAL; |
| 1337 | mode = AMDGPU_TPX_PARTITION_MODE; |
| 1338 | } else if (!strncasecmp("QPX", buf, strlen("QPX"))) { |
| 1339 | if (num_xcc != 8) |
| 1340 | return -EINVAL; |
| 1341 | mode = AMDGPU_QPX_PARTITION_MODE; |
| 1342 | } else if (!strncasecmp("CPX", buf, strlen("CPX"))) { |
| 1343 | mode = AMDGPU_CPX_PARTITION_MODE; |
| 1344 | } else { |
| 1345 | return -EINVAL; |
| 1346 | } |
| 1347 | |
| 1348 | ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode); |
| 1349 | |
| 1350 | if (ret) |
| 1351 | return ret; |
| 1352 | |
| 1353 | return count; |
| 1354 | } |
| 1355 | |
| 1356 | static const char *xcp_desc[] = { |
| 1357 | [AMDGPU_SPX_PARTITION_MODE] = "SPX", |
| 1358 | [AMDGPU_DPX_PARTITION_MODE] = "DPX", |
| 1359 | [AMDGPU_TPX_PARTITION_MODE] = "TPX", |
| 1360 | [AMDGPU_QPX_PARTITION_MODE] = "QPX", |
| 1361 | [AMDGPU_CPX_PARTITION_MODE] = "CPX", |
| 1362 | }; |
| 1363 | |
| 1364 | static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev, |
| 1365 | struct device_attribute *addr, |
| 1366 | char *buf) |
| 1367 | { |
| 1368 | struct drm_device *ddev = dev_get_drvdata(dev); |
| 1369 | struct amdgpu_device *adev = drm_to_adev(ddev); |
| 1370 | struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr; |
| 1371 | int size = 0, mode; |
| 1372 | char *sep = ""; |
| 1373 | |
| 1374 | if (!xcp_mgr || !xcp_mgr->avail_xcp_modes) |
| 1375 | return sysfs_emit(buf, "Not supported\n"); |
| 1376 | |
| 1377 | for_each_inst(mode, xcp_mgr->avail_xcp_modes) { |
| 1378 | size += sysfs_emit_at(buf, size, "%s%s", sep, xcp_desc[mode]); |
| 1379 | sep = ", "; |
| 1380 | } |
| 1381 | |
| 1382 | size += sysfs_emit_at(buf, size, "\n"); |
| 1383 | |
| 1384 | return size; |
| 1385 | } |
| 1386 | |
| 1387 | static int amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring *ring) |
| 1388 | { |
| 1389 | struct amdgpu_device *adev = ring->adev; |
| 1390 | struct drm_gpu_scheduler *sched = &ring->sched; |
| 1391 | struct drm_sched_entity entity; |
| 1392 | struct dma_fence *f; |
| 1393 | struct amdgpu_job *job; |
| 1394 | struct amdgpu_ib *ib; |
| 1395 | int i, r; |
| 1396 | |
| 1397 | /* Initialize the scheduler entity */ |
| 1398 | r = drm_sched_entity_init(&entity, DRM_SCHED_PRIORITY_NORMAL, |
| 1399 | &sched, 1, NULL); |
| 1400 | if (r) { |
| 1401 | dev_err(adev->dev, "Failed setting up GFX kernel entity.\n"); |
| 1402 | goto err; |
| 1403 | } |
| 1404 | |
| 1405 | r = amdgpu_job_alloc_with_ib(ring->adev, &entity, NULL, |
| 1406 | 64, 0, |
| 1407 | &job); |
| 1408 | if (r) |
| 1409 | goto err; |
| 1410 | |
| 1411 | job->enforce_isolation = true; |
| 1412 | |
| 1413 | ib = &job->ibs[0]; |
| 1414 | for (i = 0; i <= ring->funcs->align_mask; ++i) |
| 1415 | ib->ptr[i] = ring->funcs->nop; |
| 1416 | ib->length_dw = ring->funcs->align_mask + 1; |
| 1417 | |
| 1418 | f = amdgpu_job_submit(job); |
| 1419 | |
| 1420 | r = dma_fence_wait(f, false); |
| 1421 | if (r) |
| 1422 | goto err; |
| 1423 | |
| 1424 | dma_fence_put(f); |
| 1425 | |
| 1426 | /* Clean up the scheduler entity */ |
| 1427 | drm_sched_entity_destroy(&entity); |
| 1428 | return 0; |
| 1429 | |
| 1430 | err: |
| 1431 | return r; |
| 1432 | } |
| 1433 | |
| 1434 | static int amdgpu_gfx_run_cleaner_shader(struct amdgpu_device *adev, int xcp_id) |
| 1435 | { |
| 1436 | int num_xcc = NUM_XCC(adev->gfx.xcc_mask); |
| 1437 | struct amdgpu_ring *ring; |
| 1438 | int num_xcc_to_clear; |
| 1439 | int i, r, xcc_id; |
| 1440 | |
| 1441 | if (adev->gfx.num_xcc_per_xcp) |
| 1442 | num_xcc_to_clear = adev->gfx.num_xcc_per_xcp; |
| 1443 | else |
| 1444 | num_xcc_to_clear = 1; |
| 1445 | |
| 1446 | for (xcc_id = 0; xcc_id < num_xcc; xcc_id++) { |
| 1447 | for (i = 0; i < adev->gfx.num_compute_rings; i++) { |
| 1448 | ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings]; |
| 1449 | if ((ring->xcp_id == xcp_id) && ring->sched.ready) { |
| 1450 | r = amdgpu_gfx_run_cleaner_shader_job(ring); |
| 1451 | if (r) |
| 1452 | return r; |
| 1453 | num_xcc_to_clear--; |
| 1454 | break; |
| 1455 | } |
| 1456 | } |
| 1457 | } |
| 1458 | |
| 1459 | if (num_xcc_to_clear) |
| 1460 | return -ENOENT; |
| 1461 | |
| 1462 | return 0; |
| 1463 | } |
| 1464 | |
| 1465 | static ssize_t amdgpu_gfx_set_run_cleaner_shader(struct device *dev, |
| 1466 | struct device_attribute *attr, |
| 1467 | const char *buf, |
| 1468 | size_t count) |
| 1469 | { |
| 1470 | struct drm_device *ddev = dev_get_drvdata(dev); |
| 1471 | struct amdgpu_device *adev = drm_to_adev(ddev); |
| 1472 | int ret; |
| 1473 | long value; |
| 1474 | |
| 1475 | if (amdgpu_in_reset(adev)) |
| 1476 | return -EPERM; |
| 1477 | if (adev->in_suspend && !adev->in_runpm) |
| 1478 | return -EPERM; |
| 1479 | |
| 1480 | ret = kstrtol(buf, 0, &value); |
| 1481 | |
| 1482 | if (ret) |
| 1483 | return -EINVAL; |
| 1484 | |
| 1485 | if (value < 0) |
| 1486 | return -EINVAL; |
| 1487 | |
| 1488 | if (adev->xcp_mgr) { |
| 1489 | if (value >= adev->xcp_mgr->num_xcps) |
| 1490 | return -EINVAL; |
| 1491 | } else { |
| 1492 | if (value > 1) |
| 1493 | return -EINVAL; |
| 1494 | } |
| 1495 | |
| 1496 | ret = pm_runtime_get_sync(ddev->dev); |
| 1497 | if (ret < 0) { |
| 1498 | pm_runtime_put_autosuspend(ddev->dev); |
| 1499 | return ret; |
| 1500 | } |
| 1501 | |
| 1502 | ret = amdgpu_gfx_run_cleaner_shader(adev, value); |
| 1503 | |
| 1504 | pm_runtime_mark_last_busy(ddev->dev); |
| 1505 | pm_runtime_put_autosuspend(ddev->dev); |
| 1506 | |
| 1507 | if (ret) |
| 1508 | return ret; |
| 1509 | |
| 1510 | return count; |
| 1511 | } |
| 1512 | |
| 1513 | static ssize_t amdgpu_gfx_get_enforce_isolation(struct device *dev, |
| 1514 | struct device_attribute *attr, |
| 1515 | char *buf) |
| 1516 | { |
| 1517 | struct drm_device *ddev = dev_get_drvdata(dev); |
| 1518 | struct amdgpu_device *adev = drm_to_adev(ddev); |
| 1519 | int i; |
| 1520 | ssize_t size = 0; |
| 1521 | |
| 1522 | if (adev->xcp_mgr) { |
| 1523 | for (i = 0; i < adev->xcp_mgr->num_xcps; i++) { |
| 1524 | size += sysfs_emit_at(buf, size, "%u", adev->enforce_isolation[i]); |
| 1525 | if (i < (adev->xcp_mgr->num_xcps - 1)) |
| 1526 | size += sysfs_emit_at(buf, size, " "); |
| 1527 | } |
| 1528 | buf[size++] = '\n'; |
| 1529 | } else { |
| 1530 | size = sysfs_emit_at(buf, 0, "%u\n", adev->enforce_isolation[0]); |
| 1531 | } |
| 1532 | |
| 1533 | return size; |
| 1534 | } |
| 1535 | |
| 1536 | static ssize_t amdgpu_gfx_set_enforce_isolation(struct device *dev, |
| 1537 | struct device_attribute *attr, |
| 1538 | const char *buf, size_t count) |
| 1539 | { |
| 1540 | struct drm_device *ddev = dev_get_drvdata(dev); |
| 1541 | struct amdgpu_device *adev = drm_to_adev(ddev); |
| 1542 | long partition_values[MAX_XCP] = {0}; |
| 1543 | int ret, i, num_partitions; |
| 1544 | const char *input_buf = buf; |
| 1545 | |
| 1546 | for (i = 0; i < (adev->xcp_mgr ? adev->xcp_mgr->num_xcps : 1); i++) { |
| 1547 | ret = sscanf(input_buf, "%ld", &partition_values[i]); |
| 1548 | if (ret <= 0) |
| 1549 | break; |
| 1550 | |
| 1551 | /* Move the pointer to the next value in the string */ |
| 1552 | input_buf = strchr(input_buf, ' '); |
| 1553 | if (input_buf) { |
| 1554 | input_buf++; |
| 1555 | } else { |
| 1556 | i++; |
| 1557 | break; |
| 1558 | } |
| 1559 | } |
| 1560 | num_partitions = i; |
| 1561 | |
| 1562 | if (adev->xcp_mgr && num_partitions != adev->xcp_mgr->num_xcps) |
| 1563 | return -EINVAL; |
| 1564 | |
| 1565 | if (!adev->xcp_mgr && num_partitions != 1) |
| 1566 | return -EINVAL; |
| 1567 | |
| 1568 | for (i = 0; i < num_partitions; i++) { |
| 1569 | if (partition_values[i] != 0 && partition_values[i] != 1) |
| 1570 | return -EINVAL; |
| 1571 | } |
| 1572 | |
| 1573 | mutex_lock(&adev->enforce_isolation_mutex); |
| 1574 | |
| 1575 | for (i = 0; i < num_partitions; i++) { |
| 1576 | if (adev->enforce_isolation[i] && !partition_values[i]) { |
| 1577 | /* Going from enabled to disabled */ |
| 1578 | amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(i)); |
| 1579 | } else if (!adev->enforce_isolation[i] && partition_values[i]) { |
| 1580 | /* Going from disabled to enabled */ |
| 1581 | amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(i)); |
| 1582 | } |
| 1583 | adev->enforce_isolation[i] = partition_values[i]; |
| 1584 | } |
| 1585 | |
| 1586 | mutex_unlock(&adev->enforce_isolation_mutex); |
| 1587 | |
| 1588 | return count; |
| 1589 | } |
| 1590 | |
| 1591 | static DEVICE_ATTR(run_cleaner_shader, 0200, |
| 1592 | NULL, amdgpu_gfx_set_run_cleaner_shader); |
| 1593 | |
| 1594 | static DEVICE_ATTR(enforce_isolation, 0644, |
| 1595 | amdgpu_gfx_get_enforce_isolation, |
| 1596 | amdgpu_gfx_set_enforce_isolation); |
| 1597 | |
| 1598 | static DEVICE_ATTR(current_compute_partition, 0644, |
| 1599 | amdgpu_gfx_get_current_compute_partition, |
| 1600 | amdgpu_gfx_set_compute_partition); |
| 1601 | |
| 1602 | static DEVICE_ATTR(available_compute_partition, 0444, |
| 1603 | amdgpu_gfx_get_available_compute_partition, NULL); |
| 1604 | |
| 1605 | int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev) |
| 1606 | { |
| 1607 | struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr; |
| 1608 | bool xcp_switch_supported; |
| 1609 | int r; |
| 1610 | |
| 1611 | if (!xcp_mgr) |
| 1612 | return 0; |
| 1613 | |
| 1614 | xcp_switch_supported = |
| 1615 | (xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode); |
| 1616 | |
| 1617 | if (!xcp_switch_supported) |
| 1618 | dev_attr_current_compute_partition.attr.mode &= |
| 1619 | ~(S_IWUSR | S_IWGRP | S_IWOTH); |
| 1620 | |
| 1621 | r = device_create_file(adev->dev, &dev_attr_current_compute_partition); |
| 1622 | if (r) |
| 1623 | return r; |
| 1624 | |
| 1625 | if (xcp_switch_supported) |
| 1626 | r = device_create_file(adev->dev, |
| 1627 | &dev_attr_available_compute_partition); |
| 1628 | |
| 1629 | return r; |
| 1630 | } |
| 1631 | |
| 1632 | void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev) |
| 1633 | { |
| 1634 | struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr; |
| 1635 | bool xcp_switch_supported; |
| 1636 | |
| 1637 | if (!xcp_mgr) |
| 1638 | return; |
| 1639 | |
| 1640 | xcp_switch_supported = |
| 1641 | (xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode); |
| 1642 | device_remove_file(adev->dev, &dev_attr_current_compute_partition); |
| 1643 | |
| 1644 | if (xcp_switch_supported) |
| 1645 | device_remove_file(adev->dev, |
| 1646 | &dev_attr_available_compute_partition); |
| 1647 | } |
| 1648 | |
| 1649 | int amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device *adev) |
| 1650 | { |
| 1651 | int r; |
| 1652 | |
| 1653 | r = device_create_file(adev->dev, &dev_attr_enforce_isolation); |
| 1654 | if (r) |
| 1655 | return r; |
| 1656 | |
| 1657 | r = device_create_file(adev->dev, &dev_attr_run_cleaner_shader); |
| 1658 | if (r) |
| 1659 | return r; |
| 1660 | |
| 1661 | return 0; |
| 1662 | } |
| 1663 | |
| 1664 | void amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device *adev) |
| 1665 | { |
| 1666 | device_remove_file(adev->dev, &dev_attr_enforce_isolation); |
| 1667 | device_remove_file(adev->dev, &dev_attr_run_cleaner_shader); |
| 1668 | } |
| 1669 | |
| 1670 | int amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device *adev, |
| 1671 | unsigned int cleaner_shader_size) |
| 1672 | { |
| 1673 | if (!adev->gfx.enable_cleaner_shader) |
| 1674 | return -EOPNOTSUPP; |
| 1675 | |
| 1676 | return amdgpu_bo_create_kernel(adev, cleaner_shader_size, PAGE_SIZE, |
| 1677 | AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, |
| 1678 | &adev->gfx.cleaner_shader_obj, |
| 1679 | &adev->gfx.cleaner_shader_gpu_addr, |
| 1680 | (void **)&adev->gfx.cleaner_shader_cpu_ptr); |
| 1681 | } |
| 1682 | |
| 1683 | void amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device *adev) |
| 1684 | { |
| 1685 | if (!adev->gfx.enable_cleaner_shader) |
| 1686 | return; |
| 1687 | |
| 1688 | amdgpu_bo_free_kernel(&adev->gfx.cleaner_shader_obj, |
| 1689 | &adev->gfx.cleaner_shader_gpu_addr, |
| 1690 | (void **)&adev->gfx.cleaner_shader_cpu_ptr); |
| 1691 | } |
| 1692 | |
| 1693 | void amdgpu_gfx_cleaner_shader_init(struct amdgpu_device *adev, |
| 1694 | unsigned int cleaner_shader_size, |
| 1695 | const void *cleaner_shader_ptr) |
| 1696 | { |
| 1697 | if (!adev->gfx.enable_cleaner_shader) |
| 1698 | return; |
| 1699 | |
| 1700 | if (adev->gfx.cleaner_shader_cpu_ptr && cleaner_shader_ptr) |
| 1701 | memcpy_toio(adev->gfx.cleaner_shader_cpu_ptr, cleaner_shader_ptr, |
| 1702 | cleaner_shader_size); |
| 1703 | } |
| 1704 | |
| 1705 | /** |
| 1706 | * amdgpu_gfx_kfd_sch_ctrl - Control the KFD scheduler from the KGD (Graphics Driver) |
| 1707 | * @adev: amdgpu_device pointer |
| 1708 | * @idx: Index of the scheduler to control |
| 1709 | * @enable: Whether to enable or disable the KFD scheduler |
| 1710 | * |
| 1711 | * This function is used to control the KFD (Kernel Fusion Driver) scheduler |
| 1712 | * from the KGD. It is part of the cleaner shader feature. This function plays |
| 1713 | * a key role in enforcing process isolation on the GPU. |
| 1714 | * |
| 1715 | * The function uses a reference count mechanism (kfd_sch_req_count) to keep |
| 1716 | * track of the number of requests to enable the KFD scheduler. When a request |
| 1717 | * to enable the KFD scheduler is made, the reference count is decremented. |
| 1718 | * When the reference count reaches zero, a delayed work is scheduled to |
| 1719 | * enforce isolation after a delay of GFX_SLICE_PERIOD. |
| 1720 | * |
| 1721 | * When a request to disable the KFD scheduler is made, the function first |
| 1722 | * checks if the reference count is zero. If it is, it cancels the delayed work |
| 1723 | * for enforcing isolation and checks if the KFD scheduler is active. If the |
| 1724 | * KFD scheduler is active, it sends a request to stop the KFD scheduler and |
| 1725 | * sets the KFD scheduler state to inactive. Then, it increments the reference |
| 1726 | * count. |
| 1727 | * |
| 1728 | * The function is synchronized using the kfd_sch_mutex to ensure that the KFD |
| 1729 | * scheduler state and reference count are updated atomically. |
| 1730 | * |
| 1731 | * Note: If the reference count is already zero when a request to enable the |
| 1732 | * KFD scheduler is made, it means there's an imbalance bug somewhere. The |
| 1733 | * function triggers a warning in this case. |
| 1734 | */ |
| 1735 | static void amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device *adev, u32 idx, |
| 1736 | bool enable) |
| 1737 | { |
| 1738 | mutex_lock(&adev->gfx.kfd_sch_mutex); |
| 1739 | |
| 1740 | if (enable) { |
| 1741 | /* If the count is already 0, it means there's an imbalance bug somewhere. |
| 1742 | * Note that the bug may be in a different caller than the one which triggers the |
| 1743 | * WARN_ON_ONCE. |
| 1744 | */ |
| 1745 | if (WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx] == 0)) { |
| 1746 | dev_err(adev->dev, "Attempted to enable KFD scheduler when reference count is already zero\n"); |
| 1747 | goto unlock; |
| 1748 | } |
| 1749 | |
| 1750 | adev->gfx.kfd_sch_req_count[idx]--; |
| 1751 | |
| 1752 | if (adev->gfx.kfd_sch_req_count[idx] == 0 && |
| 1753 | adev->gfx.kfd_sch_inactive[idx]) { |
| 1754 | schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work, |
| 1755 | msecs_to_jiffies(adev->gfx.enforce_isolation_time[idx])); |
| 1756 | } |
| 1757 | } else { |
| 1758 | if (adev->gfx.kfd_sch_req_count[idx] == 0) { |
| 1759 | cancel_delayed_work_sync(&adev->gfx.enforce_isolation[idx].work); |
| 1760 | if (!adev->gfx.kfd_sch_inactive[idx]) { |
| 1761 | amdgpu_amdkfd_stop_sched(adev, idx); |
| 1762 | adev->gfx.kfd_sch_inactive[idx] = true; |
| 1763 | } |
| 1764 | } |
| 1765 | |
| 1766 | adev->gfx.kfd_sch_req_count[idx]++; |
| 1767 | } |
| 1768 | |
| 1769 | unlock: |
| 1770 | mutex_unlock(&adev->gfx.kfd_sch_mutex); |
| 1771 | } |
| 1772 | |
| 1773 | /** |
| 1774 | * amdgpu_gfx_enforce_isolation_handler - work handler for enforcing shader isolation |
| 1775 | * |
| 1776 | * @work: work_struct. |
| 1777 | * |
| 1778 | * This function is the work handler for enforcing shader isolation on AMD GPUs. |
| 1779 | * It counts the number of emitted fences for each GFX and compute ring. If there |
| 1780 | * are any fences, it schedules the `enforce_isolation_work` to be run after a |
| 1781 | * delay of `GFX_SLICE_PERIOD`. If there are no fences, it signals the Kernel Fusion |
| 1782 | * Driver (KFD) to resume the runqueue. The function is synchronized using the |
| 1783 | * `enforce_isolation_mutex`. |
| 1784 | */ |
| 1785 | void amdgpu_gfx_enforce_isolation_handler(struct work_struct *work) |
| 1786 | { |
| 1787 | struct amdgpu_isolation_work *isolation_work = |
| 1788 | container_of(work, struct amdgpu_isolation_work, work.work); |
| 1789 | struct amdgpu_device *adev = isolation_work->adev; |
| 1790 | u32 i, idx, fences = 0; |
| 1791 | |
| 1792 | if (isolation_work->xcp_id == AMDGPU_XCP_NO_PARTITION) |
| 1793 | idx = 0; |
| 1794 | else |
| 1795 | idx = isolation_work->xcp_id; |
| 1796 | |
| 1797 | if (idx >= MAX_XCP) |
| 1798 | return; |
| 1799 | |
| 1800 | mutex_lock(&adev->enforce_isolation_mutex); |
| 1801 | for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) { |
| 1802 | if (isolation_work->xcp_id == adev->gfx.gfx_ring[i].xcp_id) |
| 1803 | fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]); |
| 1804 | } |
| 1805 | for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) { |
| 1806 | if (isolation_work->xcp_id == adev->gfx.compute_ring[i].xcp_id) |
| 1807 | fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]); |
| 1808 | } |
| 1809 | if (fences) { |
| 1810 | /* we've already had our timeslice, so let's wrap this up */ |
| 1811 | schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work, |
| 1812 | msecs_to_jiffies(1)); |
| 1813 | } else { |
| 1814 | /* Tell KFD to resume the runqueue */ |
| 1815 | if (adev->kfd.init_complete) { |
| 1816 | WARN_ON_ONCE(!adev->gfx.kfd_sch_inactive[idx]); |
| 1817 | WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx]); |
| 1818 | amdgpu_amdkfd_start_sched(adev, idx); |
| 1819 | adev->gfx.kfd_sch_inactive[idx] = false; |
| 1820 | } |
| 1821 | } |
| 1822 | mutex_unlock(&adev->enforce_isolation_mutex); |
| 1823 | } |
| 1824 | |
| 1825 | static void |
| 1826 | amdgpu_gfx_enforce_isolation_wait_for_kfd(struct amdgpu_device *adev, |
| 1827 | u32 idx) |
| 1828 | { |
| 1829 | unsigned long cjiffies; |
| 1830 | bool wait = false; |
| 1831 | |
| 1832 | mutex_lock(&adev->enforce_isolation_mutex); |
| 1833 | if (adev->enforce_isolation[idx]) { |
| 1834 | /* set the initial values if nothing is set */ |
| 1835 | if (!adev->gfx.enforce_isolation_jiffies[idx]) { |
| 1836 | adev->gfx.enforce_isolation_jiffies[idx] = jiffies; |
| 1837 | adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS; |
| 1838 | } |
| 1839 | /* Make sure KFD gets a chance to run */ |
| 1840 | if (amdgpu_amdkfd_compute_active(adev, idx)) { |
| 1841 | cjiffies = jiffies; |
| 1842 | if (time_after(cjiffies, adev->gfx.enforce_isolation_jiffies[idx])) { |
| 1843 | cjiffies -= adev->gfx.enforce_isolation_jiffies[idx]; |
| 1844 | if ((jiffies_to_msecs(cjiffies) >= GFX_SLICE_PERIOD_MS)) { |
| 1845 | /* if our time is up, let KGD work drain before scheduling more */ |
| 1846 | wait = true; |
| 1847 | /* reset the timer period */ |
| 1848 | adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS; |
| 1849 | } else { |
| 1850 | /* set the timer period to what's left in our time slice */ |
| 1851 | adev->gfx.enforce_isolation_time[idx] = |
| 1852 | GFX_SLICE_PERIOD_MS - jiffies_to_msecs(cjiffies); |
| 1853 | } |
| 1854 | } else { |
| 1855 | /* if jiffies wrap around we will just wait a little longer */ |
| 1856 | adev->gfx.enforce_isolation_jiffies[idx] = jiffies; |
| 1857 | } |
| 1858 | } else { |
| 1859 | /* if there is no KFD work, then set the full slice period */ |
| 1860 | adev->gfx.enforce_isolation_jiffies[idx] = jiffies; |
| 1861 | adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS; |
| 1862 | } |
| 1863 | } |
| 1864 | mutex_unlock(&adev->enforce_isolation_mutex); |
| 1865 | |
| 1866 | if (wait) |
| 1867 | msleep(GFX_SLICE_PERIOD_MS); |
| 1868 | } |
| 1869 | |
| 1870 | void amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring *ring) |
| 1871 | { |
| 1872 | struct amdgpu_device *adev = ring->adev; |
| 1873 | u32 idx; |
| 1874 | |
| 1875 | if (!adev->gfx.enable_cleaner_shader) |
| 1876 | return; |
| 1877 | |
| 1878 | if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION) |
| 1879 | idx = 0; |
| 1880 | else |
| 1881 | idx = ring->xcp_id; |
| 1882 | |
| 1883 | if (idx >= MAX_XCP) |
| 1884 | return; |
| 1885 | |
| 1886 | /* Don't submit more work until KFD has had some time */ |
| 1887 | amdgpu_gfx_enforce_isolation_wait_for_kfd(adev, idx); |
| 1888 | |
| 1889 | mutex_lock(&adev->enforce_isolation_mutex); |
| 1890 | if (adev->enforce_isolation[idx]) { |
| 1891 | if (adev->kfd.init_complete) |
| 1892 | amdgpu_gfx_kfd_sch_ctrl(adev, idx, false); |
| 1893 | } |
| 1894 | mutex_unlock(&adev->enforce_isolation_mutex); |
| 1895 | } |
| 1896 | |
| 1897 | void amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring *ring) |
| 1898 | { |
| 1899 | struct amdgpu_device *adev = ring->adev; |
| 1900 | u32 idx; |
| 1901 | |
| 1902 | if (!adev->gfx.enable_cleaner_shader) |
| 1903 | return; |
| 1904 | |
| 1905 | if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION) |
| 1906 | idx = 0; |
| 1907 | else |
| 1908 | idx = ring->xcp_id; |
| 1909 | |
| 1910 | if (idx >= MAX_XCP) |
| 1911 | return; |
| 1912 | |
| 1913 | mutex_lock(&adev->enforce_isolation_mutex); |
| 1914 | if (adev->enforce_isolation[idx]) { |
| 1915 | if (adev->kfd.init_complete) |
| 1916 | amdgpu_gfx_kfd_sch_ctrl(adev, idx, true); |
| 1917 | } |
| 1918 | mutex_unlock(&adev->enforce_isolation_mutex); |
| 1919 | } |
| 1920 | |
| 1921 | /* |
| 1922 | * debugfs for to enable/disable gfx job submission to specific core. |
| 1923 | */ |
| 1924 | #if defined(CONFIG_DEBUG_FS) |
| 1925 | static int amdgpu_debugfs_gfx_sched_mask_set(void *data, u64 val) |
| 1926 | { |
| 1927 | struct amdgpu_device *adev = (struct amdgpu_device *)data; |
| 1928 | u32 i; |
| 1929 | u64 mask = 0; |
| 1930 | struct amdgpu_ring *ring; |
| 1931 | |
| 1932 | if (!adev) |
| 1933 | return -ENODEV; |
| 1934 | |
| 1935 | mask = (1 << adev->gfx.num_gfx_rings) - 1; |
| 1936 | if ((val & mask) == 0) |
| 1937 | return -EINVAL; |
| 1938 | |
| 1939 | for (i = 0; i < adev->gfx.num_gfx_rings; ++i) { |
| 1940 | ring = &adev->gfx.gfx_ring[i]; |
| 1941 | if (val & (1 << i)) |
| 1942 | ring->sched.ready = true; |
| 1943 | else |
| 1944 | ring->sched.ready = false; |
| 1945 | } |
| 1946 | /* publish sched.ready flag update effective immediately across smp */ |
| 1947 | smp_rmb(); |
| 1948 | return 0; |
| 1949 | } |
| 1950 | |
| 1951 | static int amdgpu_debugfs_gfx_sched_mask_get(void *data, u64 *val) |
| 1952 | { |
| 1953 | struct amdgpu_device *adev = (struct amdgpu_device *)data; |
| 1954 | u32 i; |
| 1955 | u64 mask = 0; |
| 1956 | struct amdgpu_ring *ring; |
| 1957 | |
| 1958 | if (!adev) |
| 1959 | return -ENODEV; |
| 1960 | for (i = 0; i < adev->gfx.num_gfx_rings; ++i) { |
| 1961 | ring = &adev->gfx.gfx_ring[i]; |
| 1962 | if (ring->sched.ready) |
| 1963 | mask |= 1 << i; |
| 1964 | } |
| 1965 | |
| 1966 | *val = mask; |
| 1967 | return 0; |
| 1968 | } |
| 1969 | |
| 1970 | DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_gfx_sched_mask_fops, |
| 1971 | amdgpu_debugfs_gfx_sched_mask_get, |
| 1972 | amdgpu_debugfs_gfx_sched_mask_set, "%llx\n"); |
| 1973 | |
| 1974 | #endif |
| 1975 | |
| 1976 | void amdgpu_debugfs_gfx_sched_mask_init(struct amdgpu_device *adev) |
| 1977 | { |
| 1978 | #if defined(CONFIG_DEBUG_FS) |
| 1979 | struct drm_minor *minor = adev_to_drm(adev)->primary; |
| 1980 | struct dentry *root = minor->debugfs_root; |
| 1981 | char name[32]; |
| 1982 | |
| 1983 | if (!(adev->gfx.num_gfx_rings > 1)) |
| 1984 | return; |
| 1985 | sprintf(name, "amdgpu_gfx_sched_mask"); |
| 1986 | debugfs_create_file(name, 0600, root, adev, |
| 1987 | &amdgpu_debugfs_gfx_sched_mask_fops); |
| 1988 | #endif |
| 1989 | } |
| 1990 | |
| 1991 | /* |
| 1992 | * debugfs for to enable/disable compute job submission to specific core. |
| 1993 | */ |
| 1994 | #if defined(CONFIG_DEBUG_FS) |
| 1995 | static int amdgpu_debugfs_compute_sched_mask_set(void *data, u64 val) |
| 1996 | { |
| 1997 | struct amdgpu_device *adev = (struct amdgpu_device *)data; |
| 1998 | u32 i; |
| 1999 | u64 mask = 0; |
| 2000 | struct amdgpu_ring *ring; |
| 2001 | |
| 2002 | if (!adev) |
| 2003 | return -ENODEV; |
| 2004 | |
| 2005 | mask = (1 << adev->gfx.num_compute_rings) - 1; |
| 2006 | if ((val & mask) == 0) |
| 2007 | return -EINVAL; |
| 2008 | |
| 2009 | for (i = 0; i < adev->gfx.num_compute_rings; ++i) { |
| 2010 | ring = &adev->gfx.compute_ring[i]; |
| 2011 | if (val & (1 << i)) |
| 2012 | ring->sched.ready = true; |
| 2013 | else |
| 2014 | ring->sched.ready = false; |
| 2015 | } |
| 2016 | |
| 2017 | /* publish sched.ready flag update effective immediately across smp */ |
| 2018 | smp_rmb(); |
| 2019 | return 0; |
| 2020 | } |
| 2021 | |
| 2022 | static int amdgpu_debugfs_compute_sched_mask_get(void *data, u64 *val) |
| 2023 | { |
| 2024 | struct amdgpu_device *adev = (struct amdgpu_device *)data; |
| 2025 | u32 i; |
| 2026 | u64 mask = 0; |
| 2027 | struct amdgpu_ring *ring; |
| 2028 | |
| 2029 | if (!adev) |
| 2030 | return -ENODEV; |
| 2031 | for (i = 0; i < adev->gfx.num_compute_rings; ++i) { |
| 2032 | ring = &adev->gfx.compute_ring[i]; |
| 2033 | if (ring->sched.ready) |
| 2034 | mask |= 1 << i; |
| 2035 | } |
| 2036 | |
| 2037 | *val = mask; |
| 2038 | return 0; |
| 2039 | } |
| 2040 | |
| 2041 | DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_compute_sched_mask_fops, |
| 2042 | amdgpu_debugfs_compute_sched_mask_get, |
| 2043 | amdgpu_debugfs_compute_sched_mask_set, "%llx\n"); |
| 2044 | |
| 2045 | #endif |
| 2046 | |
| 2047 | void amdgpu_debugfs_compute_sched_mask_init(struct amdgpu_device *adev) |
| 2048 | { |
| 2049 | #if defined(CONFIG_DEBUG_FS) |
| 2050 | struct drm_minor *minor = adev_to_drm(adev)->primary; |
| 2051 | struct dentry *root = minor->debugfs_root; |
| 2052 | char name[32]; |
| 2053 | |
| 2054 | if (!(adev->gfx.num_compute_rings > 1)) |
| 2055 | return; |
| 2056 | sprintf(name, "amdgpu_compute_sched_mask"); |
| 2057 | debugfs_create_file(name, 0600, root, adev, |
| 2058 | &amdgpu_debugfs_compute_sched_mask_fops); |
| 2059 | #endif |
| 2060 | } |