]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * mm/readahead.c - address_space-level file readahead. | |
3 | * | |
4 | * Copyright (C) 2002, Linus Torvalds | |
5 | * | |
6 | * 09Apr2002 [email protected] | |
7 | * Initial version. | |
8 | */ | |
9 | ||
10 | #include <linux/kernel.h> | |
11 | #include <linux/fs.h> | |
12 | #include <linux/mm.h> | |
13 | #include <linux/module.h> | |
14 | #include <linux/blkdev.h> | |
15 | #include <linux/backing-dev.h> | |
16 | #include <linux/task_io_accounting_ops.h> | |
17 | #include <linux/pagevec.h> | |
18 | ||
19 | void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) | |
20 | { | |
21 | } | |
22 | EXPORT_SYMBOL(default_unplug_io_fn); | |
23 | ||
24 | /* | |
25 | * Convienent macros for min/max read-ahead pages. | |
26 | * Note that MAX_RA_PAGES is rounded down, while MIN_RA_PAGES is rounded up. | |
27 | * The latter is necessary for systems with large page size(i.e. 64k). | |
28 | */ | |
29 | #define MAX_RA_PAGES (VM_MAX_READAHEAD*1024 / PAGE_CACHE_SIZE) | |
30 | #define MIN_RA_PAGES DIV_ROUND_UP(VM_MIN_READAHEAD*1024, PAGE_CACHE_SIZE) | |
31 | ||
32 | struct backing_dev_info default_backing_dev_info = { | |
33 | .ra_pages = MAX_RA_PAGES, | |
34 | .state = 0, | |
35 | .capabilities = BDI_CAP_MAP_COPY, | |
36 | .unplug_io_fn = default_unplug_io_fn, | |
37 | }; | |
38 | EXPORT_SYMBOL_GPL(default_backing_dev_info); | |
39 | ||
40 | /* | |
41 | * Initialise a struct file's readahead state. Assumes that the caller has | |
42 | * memset *ra to zero. | |
43 | */ | |
44 | void | |
45 | file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) | |
46 | { | |
47 | ra->ra_pages = mapping->backing_dev_info->ra_pages; | |
48 | ra->prev_index = -1; | |
49 | } | |
50 | EXPORT_SYMBOL_GPL(file_ra_state_init); | |
51 | ||
52 | #define list_to_page(head) (list_entry((head)->prev, struct page, lru)) | |
53 | ||
54 | /** | |
55 | * read_cache_pages - populate an address space with some pages & start reads against them | |
56 | * @mapping: the address_space | |
57 | * @pages: The address of a list_head which contains the target pages. These | |
58 | * pages have their ->index populated and are otherwise uninitialised. | |
59 | * @filler: callback routine for filling a single page. | |
60 | * @data: private data for the callback routine. | |
61 | * | |
62 | * Hides the details of the LRU cache etc from the filesystems. | |
63 | */ | |
64 | int read_cache_pages(struct address_space *mapping, struct list_head *pages, | |
65 | int (*filler)(void *, struct page *), void *data) | |
66 | { | |
67 | struct page *page; | |
68 | struct pagevec lru_pvec; | |
69 | int ret = 0; | |
70 | ||
71 | pagevec_init(&lru_pvec, 0); | |
72 | ||
73 | while (!list_empty(pages)) { | |
74 | page = list_to_page(pages); | |
75 | list_del(&page->lru); | |
76 | if (add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) { | |
77 | page_cache_release(page); | |
78 | continue; | |
79 | } | |
80 | ret = filler(data, page); | |
81 | if (!pagevec_add(&lru_pvec, page)) | |
82 | __pagevec_lru_add(&lru_pvec); | |
83 | if (ret) { | |
84 | put_pages_list(pages); | |
85 | break; | |
86 | } | |
87 | task_io_account_read(PAGE_CACHE_SIZE); | |
88 | } | |
89 | pagevec_lru_add(&lru_pvec); | |
90 | return ret; | |
91 | } | |
92 | ||
93 | EXPORT_SYMBOL(read_cache_pages); | |
94 | ||
95 | static int read_pages(struct address_space *mapping, struct file *filp, | |
96 | struct list_head *pages, unsigned nr_pages) | |
97 | { | |
98 | unsigned page_idx; | |
99 | struct pagevec lru_pvec; | |
100 | int ret; | |
101 | ||
102 | if (mapping->a_ops->readpages) { | |
103 | ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages); | |
104 | /* Clean up the remaining pages */ | |
105 | put_pages_list(pages); | |
106 | goto out; | |
107 | } | |
108 | ||
109 | pagevec_init(&lru_pvec, 0); | |
110 | for (page_idx = 0; page_idx < nr_pages; page_idx++) { | |
111 | struct page *page = list_to_page(pages); | |
112 | list_del(&page->lru); | |
113 | if (!add_to_page_cache(page, mapping, | |
114 | page->index, GFP_KERNEL)) { | |
115 | mapping->a_ops->readpage(filp, page); | |
116 | if (!pagevec_add(&lru_pvec, page)) | |
117 | __pagevec_lru_add(&lru_pvec); | |
118 | } else | |
119 | page_cache_release(page); | |
120 | } | |
121 | pagevec_lru_add(&lru_pvec); | |
122 | ret = 0; | |
123 | out: | |
124 | return ret; | |
125 | } | |
126 | ||
127 | /* | |
128 | * do_page_cache_readahead actually reads a chunk of disk. It allocates all | |
129 | * the pages first, then submits them all for I/O. This avoids the very bad | |
130 | * behaviour which would occur if page allocations are causing VM writeback. | |
131 | * We really don't want to intermingle reads and writes like that. | |
132 | * | |
133 | * Returns the number of pages requested, or the maximum amount of I/O allowed. | |
134 | * | |
135 | * do_page_cache_readahead() returns -1 if it encountered request queue | |
136 | * congestion. | |
137 | */ | |
138 | static int | |
139 | __do_page_cache_readahead(struct address_space *mapping, struct file *filp, | |
140 | pgoff_t offset, unsigned long nr_to_read, | |
141 | unsigned long lookahead_size) | |
142 | { | |
143 | struct inode *inode = mapping->host; | |
144 | struct page *page; | |
145 | unsigned long end_index; /* The last page we want to read */ | |
146 | LIST_HEAD(page_pool); | |
147 | int page_idx; | |
148 | int ret = 0; | |
149 | loff_t isize = i_size_read(inode); | |
150 | ||
151 | if (isize == 0) | |
152 | goto out; | |
153 | ||
154 | end_index = ((isize - 1) >> PAGE_CACHE_SHIFT); | |
155 | ||
156 | /* | |
157 | * Preallocate as many pages as we will need. | |
158 | */ | |
159 | read_lock_irq(&mapping->tree_lock); | |
160 | for (page_idx = 0; page_idx < nr_to_read; page_idx++) { | |
161 | pgoff_t page_offset = offset + page_idx; | |
162 | ||
163 | if (page_offset > end_index) | |
164 | break; | |
165 | ||
166 | page = radix_tree_lookup(&mapping->page_tree, page_offset); | |
167 | if (page) | |
168 | continue; | |
169 | ||
170 | read_unlock_irq(&mapping->tree_lock); | |
171 | page = page_cache_alloc_cold(mapping); | |
172 | read_lock_irq(&mapping->tree_lock); | |
173 | if (!page) | |
174 | break; | |
175 | page->index = page_offset; | |
176 | list_add(&page->lru, &page_pool); | |
177 | if (page_idx == nr_to_read - lookahead_size) | |
178 | SetPageReadahead(page); | |
179 | ret++; | |
180 | } | |
181 | read_unlock_irq(&mapping->tree_lock); | |
182 | ||
183 | /* | |
184 | * Now start the IO. We ignore I/O errors - if the page is not | |
185 | * uptodate then the caller will launch readpage again, and | |
186 | * will then handle the error. | |
187 | */ | |
188 | if (ret) | |
189 | read_pages(mapping, filp, &page_pool, ret); | |
190 | BUG_ON(!list_empty(&page_pool)); | |
191 | out: | |
192 | return ret; | |
193 | } | |
194 | ||
195 | /* | |
196 | * Chunk the readahead into 2 megabyte units, so that we don't pin too much | |
197 | * memory at once. | |
198 | */ | |
199 | int force_page_cache_readahead(struct address_space *mapping, struct file *filp, | |
200 | pgoff_t offset, unsigned long nr_to_read) | |
201 | { | |
202 | int ret = 0; | |
203 | ||
204 | if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages)) | |
205 | return -EINVAL; | |
206 | ||
207 | while (nr_to_read) { | |
208 | int err; | |
209 | ||
210 | unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE; | |
211 | ||
212 | if (this_chunk > nr_to_read) | |
213 | this_chunk = nr_to_read; | |
214 | err = __do_page_cache_readahead(mapping, filp, | |
215 | offset, this_chunk, 0); | |
216 | if (err < 0) { | |
217 | ret = err; | |
218 | break; | |
219 | } | |
220 | ret += err; | |
221 | offset += this_chunk; | |
222 | nr_to_read -= this_chunk; | |
223 | } | |
224 | return ret; | |
225 | } | |
226 | ||
227 | /* | |
228 | * This version skips the IO if the queue is read-congested, and will tell the | |
229 | * block layer to abandon the readahead if request allocation would block. | |
230 | * | |
231 | * force_page_cache_readahead() will ignore queue congestion and will block on | |
232 | * request queues. | |
233 | */ | |
234 | int do_page_cache_readahead(struct address_space *mapping, struct file *filp, | |
235 | pgoff_t offset, unsigned long nr_to_read) | |
236 | { | |
237 | if (bdi_read_congested(mapping->backing_dev_info)) | |
238 | return -1; | |
239 | ||
240 | return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0); | |
241 | } | |
242 | ||
243 | /* | |
244 | * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a | |
245 | * sensible upper limit. | |
246 | */ | |
247 | unsigned long max_sane_readahead(unsigned long nr) | |
248 | { | |
249 | return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE) | |
250 | + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2); | |
251 | } | |
252 | ||
253 | /* | |
254 | * Submit IO for the read-ahead request in file_ra_state. | |
255 | */ | |
256 | static unsigned long ra_submit(struct file_ra_state *ra, | |
257 | struct address_space *mapping, struct file *filp) | |
258 | { | |
259 | int actual; | |
260 | ||
261 | actual = __do_page_cache_readahead(mapping, filp, | |
262 | ra->start, ra->size, ra->async_size); | |
263 | ||
264 | return actual; | |
265 | } | |
266 | ||
267 | /* | |
268 | * Set the initial window size, round to next power of 2 and square | |
269 | * for small size, x 4 for medium, and x 2 for large | |
270 | * for 128k (32 page) max ra | |
271 | * 1-8 page = 32k initial, > 8 page = 128k initial | |
272 | */ | |
273 | static unsigned long get_init_ra_size(unsigned long size, unsigned long max) | |
274 | { | |
275 | unsigned long newsize = roundup_pow_of_two(size); | |
276 | ||
277 | if (newsize <= max / 32) | |
278 | newsize = newsize * 4; | |
279 | else if (newsize <= max / 4) | |
280 | newsize = newsize * 2; | |
281 | else | |
282 | newsize = max; | |
283 | ||
284 | return newsize; | |
285 | } | |
286 | ||
287 | /* | |
288 | * Get the previous window size, ramp it up, and | |
289 | * return it as the new window size. | |
290 | */ | |
291 | static unsigned long get_next_ra_size(struct file_ra_state *ra, | |
292 | unsigned long max) | |
293 | { | |
294 | unsigned long cur = ra->size; | |
295 | unsigned long newsize; | |
296 | ||
297 | if (cur < max / 16) | |
298 | newsize = 4 * cur; | |
299 | else | |
300 | newsize = 2 * cur; | |
301 | ||
302 | return min(newsize, max); | |
303 | } | |
304 | ||
305 | /* | |
306 | * On-demand readahead design. | |
307 | * | |
308 | * The fields in struct file_ra_state represent the most-recently-executed | |
309 | * readahead attempt: | |
310 | * | |
311 | * |<----- async_size ---------| | |
312 | * |------------------- size -------------------->| | |
313 | * |==================#===========================| | |
314 | * ^start ^page marked with PG_readahead | |
315 | * | |
316 | * To overlap application thinking time and disk I/O time, we do | |
317 | * `readahead pipelining': Do not wait until the application consumed all | |
318 | * readahead pages and stalled on the missing page at readahead_index; | |
319 | * Instead, submit an asynchronous readahead I/O as soon as there are | |
320 | * only async_size pages left in the readahead window. Normally async_size | |
321 | * will be equal to size, for maximum pipelining. | |
322 | * | |
323 | * In interleaved sequential reads, concurrent streams on the same fd can | |
324 | * be invalidating each other's readahead state. So we flag the new readahead | |
325 | * page at (start+size-async_size) with PG_readahead, and use it as readahead | |
326 | * indicator. The flag won't be set on already cached pages, to avoid the | |
327 | * readahead-for-nothing fuss, saving pointless page cache lookups. | |
328 | * | |
329 | * prev_index tracks the last visited page in the _previous_ read request. | |
330 | * It should be maintained by the caller, and will be used for detecting | |
331 | * small random reads. Note that the readahead algorithm checks loosely | |
332 | * for sequential patterns. Hence interleaved reads might be served as | |
333 | * sequential ones. | |
334 | * | |
335 | * There is a special-case: if the first page which the application tries to | |
336 | * read happens to be the first page of the file, it is assumed that a linear | |
337 | * read is about to happen and the window is immediately set to the initial size | |
338 | * based on I/O request size and the max_readahead. | |
339 | * | |
340 | * The code ramps up the readahead size aggressively at first, but slow down as | |
341 | * it approaches max_readhead. | |
342 | */ | |
343 | ||
344 | /* | |
345 | * A minimal readahead algorithm for trivial sequential/random reads. | |
346 | */ | |
347 | static unsigned long | |
348 | ondemand_readahead(struct address_space *mapping, | |
349 | struct file_ra_state *ra, struct file *filp, | |
350 | bool hit_readahead_marker, pgoff_t offset, | |
351 | unsigned long req_size) | |
352 | { | |
353 | unsigned long max; /* max readahead pages */ | |
354 | int sequential; | |
355 | ||
356 | max = ra->ra_pages; | |
357 | sequential = (offset - ra->prev_index <= 1UL) || (req_size > max); | |
358 | ||
359 | /* | |
360 | * It's the expected callback offset, assume sequential access. | |
361 | * Ramp up sizes, and push forward the readahead window. | |
362 | */ | |
363 | if (offset && (offset == (ra->start + ra->size - ra->async_size) || | |
364 | offset == (ra->start + ra->size))) { | |
365 | ra->start += ra->size; | |
366 | ra->size = get_next_ra_size(ra, max); | |
367 | ra->async_size = ra->size; | |
368 | goto readit; | |
369 | } | |
370 | ||
371 | /* | |
372 | * Standalone, small read. | |
373 | * Read as is, and do not pollute the readahead state. | |
374 | */ | |
375 | if (!hit_readahead_marker && !sequential) { | |
376 | return __do_page_cache_readahead(mapping, filp, | |
377 | offset, req_size, 0); | |
378 | } | |
379 | ||
380 | /* | |
381 | * It may be one of | |
382 | * - first read on start of file | |
383 | * - sequential cache miss | |
384 | * - oversize random read | |
385 | * Start readahead for it. | |
386 | */ | |
387 | ra->start = offset; | |
388 | ra->size = get_init_ra_size(req_size, max); | |
389 | ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; | |
390 | ||
391 | /* | |
392 | * Hit on a marked page without valid readahead state. | |
393 | * E.g. interleaved reads. | |
394 | * Not knowing its readahead pos/size, bet on the minimal possible one. | |
395 | */ | |
396 | if (hit_readahead_marker) { | |
397 | ra->start++; | |
398 | ra->size = get_next_ra_size(ra, max); | |
399 | } | |
400 | ||
401 | readit: | |
402 | return ra_submit(ra, mapping, filp); | |
403 | } | |
404 | ||
405 | /** | |
406 | * page_cache_sync_readahead - generic file readahead | |
407 | * @mapping: address_space which holds the pagecache and I/O vectors | |
408 | * @ra: file_ra_state which holds the readahead state | |
409 | * @filp: passed on to ->readpage() and ->readpages() | |
410 | * @offset: start offset into @mapping, in pagecache page-sized units | |
411 | * @req_size: hint: total size of the read which the caller is performing in | |
412 | * pagecache pages | |
413 | * | |
414 | * page_cache_sync_readahead() should be called when a cache miss happened: | |
415 | * it will submit the read. The readahead logic may decide to piggyback more | |
416 | * pages onto the read request if access patterns suggest it will improve | |
417 | * performance. | |
418 | */ | |
419 | void page_cache_sync_readahead(struct address_space *mapping, | |
420 | struct file_ra_state *ra, struct file *filp, | |
421 | pgoff_t offset, unsigned long req_size) | |
422 | { | |
423 | /* no read-ahead */ | |
424 | if (!ra->ra_pages) | |
425 | return; | |
426 | ||
427 | /* do read-ahead */ | |
428 | ondemand_readahead(mapping, ra, filp, false, offset, req_size); | |
429 | } | |
430 | EXPORT_SYMBOL_GPL(page_cache_sync_readahead); | |
431 | ||
432 | /** | |
433 | * page_cache_async_readahead - file readahead for marked pages | |
434 | * @mapping: address_space which holds the pagecache and I/O vectors | |
435 | * @ra: file_ra_state which holds the readahead state | |
436 | * @filp: passed on to ->readpage() and ->readpages() | |
437 | * @page: the page at @offset which has the PG_readahead flag set | |
438 | * @offset: start offset into @mapping, in pagecache page-sized units | |
439 | * @req_size: hint: total size of the read which the caller is performing in | |
440 | * pagecache pages | |
441 | * | |
442 | * page_cache_async_ondemand() should be called when a page is used which | |
443 | * has the PG_readahead flag: this is a marker to suggest that the application | |
444 | * has used up enough of the readahead window that we should start pulling in | |
445 | * more pages. */ | |
446 | void | |
447 | page_cache_async_readahead(struct address_space *mapping, | |
448 | struct file_ra_state *ra, struct file *filp, | |
449 | struct page *page, pgoff_t offset, | |
450 | unsigned long req_size) | |
451 | { | |
452 | /* no read-ahead */ | |
453 | if (!ra->ra_pages) | |
454 | return; | |
455 | ||
456 | /* | |
457 | * Same bit is used for PG_readahead and PG_reclaim. | |
458 | */ | |
459 | if (PageWriteback(page)) | |
460 | return; | |
461 | ||
462 | ClearPageReadahead(page); | |
463 | ||
464 | /* | |
465 | * Defer asynchronous read-ahead on IO congestion. | |
466 | */ | |
467 | if (bdi_read_congested(mapping->backing_dev_info)) | |
468 | return; | |
469 | ||
470 | /* do read-ahead */ | |
471 | ondemand_readahead(mapping, ra, filp, true, offset, req_size); | |
472 | } | |
473 | EXPORT_SYMBOL_GPL(page_cache_async_readahead); |