]> Git Repo - linux.git/blame_incremental - fs/buffer.c
ufs: remove writepage implementation
[linux.git] / fs / buffer.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8/*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <[email protected]>
20 */
21
22#include <linux/kernel.h>
23#include <linux/sched/signal.h>
24#include <linux/syscalls.h>
25#include <linux/fs.h>
26#include <linux/iomap.h>
27#include <linux/mm.h>
28#include <linux/percpu.h>
29#include <linux/slab.h>
30#include <linux/capability.h>
31#include <linux/blkdev.h>
32#include <linux/file.h>
33#include <linux/quotaops.h>
34#include <linux/highmem.h>
35#include <linux/export.h>
36#include <linux/backing-dev.h>
37#include <linux/writeback.h>
38#include <linux/hash.h>
39#include <linux/suspend.h>
40#include <linux/buffer_head.h>
41#include <linux/task_io_accounting_ops.h>
42#include <linux/bio.h>
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
46#include <linux/bit_spinlock.h>
47#include <linux/pagevec.h>
48#include <linux/sched/mm.h>
49#include <trace/events/block.h>
50#include <linux/fscrypt.h>
51#include <linux/fsverity.h>
52#include <linux/sched/isolation.h>
53
54#include "internal.h"
55
56static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58 struct writeback_control *wbc);
59
60#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61
62inline void touch_buffer(struct buffer_head *bh)
63{
64 trace_block_touch_buffer(bh);
65 folio_mark_accessed(bh->b_folio);
66}
67EXPORT_SYMBOL(touch_buffer);
68
69void __lock_buffer(struct buffer_head *bh)
70{
71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72}
73EXPORT_SYMBOL(__lock_buffer);
74
75void unlock_buffer(struct buffer_head *bh)
76{
77 clear_bit_unlock(BH_Lock, &bh->b_state);
78 smp_mb__after_atomic();
79 wake_up_bit(&bh->b_state, BH_Lock);
80}
81EXPORT_SYMBOL(unlock_buffer);
82
83/*
84 * Returns if the folio has dirty or writeback buffers. If all the buffers
85 * are unlocked and clean then the folio_test_dirty information is stale. If
86 * any of the buffers are locked, it is assumed they are locked for IO.
87 */
88void buffer_check_dirty_writeback(struct folio *folio,
89 bool *dirty, bool *writeback)
90{
91 struct buffer_head *head, *bh;
92 *dirty = false;
93 *writeback = false;
94
95 BUG_ON(!folio_test_locked(folio));
96
97 head = folio_buffers(folio);
98 if (!head)
99 return;
100
101 if (folio_test_writeback(folio))
102 *writeback = true;
103
104 bh = head;
105 do {
106 if (buffer_locked(bh))
107 *writeback = true;
108
109 if (buffer_dirty(bh))
110 *dirty = true;
111
112 bh = bh->b_this_page;
113 } while (bh != head);
114}
115
116/*
117 * Block until a buffer comes unlocked. This doesn't stop it
118 * from becoming locked again - you have to lock it yourself
119 * if you want to preserve its state.
120 */
121void __wait_on_buffer(struct buffer_head * bh)
122{
123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124}
125EXPORT_SYMBOL(__wait_on_buffer);
126
127static void buffer_io_error(struct buffer_head *bh, char *msg)
128{
129 if (!test_bit(BH_Quiet, &bh->b_state))
130 printk_ratelimited(KERN_ERR
131 "Buffer I/O error on dev %pg, logical block %llu%s\n",
132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133}
134
135/*
136 * End-of-IO handler helper function which does not touch the bh after
137 * unlocking it.
138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139 * a race there is benign: unlock_buffer() only use the bh's address for
140 * hashing after unlocking the buffer, so it doesn't actually touch the bh
141 * itself.
142 */
143static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144{
145 if (uptodate) {
146 set_buffer_uptodate(bh);
147 } else {
148 /* This happens, due to failed read-ahead attempts. */
149 clear_buffer_uptodate(bh);
150 }
151 unlock_buffer(bh);
152}
153
154/*
155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
156 * unlock the buffer.
157 */
158void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159{
160 __end_buffer_read_notouch(bh, uptodate);
161 put_bh(bh);
162}
163EXPORT_SYMBOL(end_buffer_read_sync);
164
165void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166{
167 if (uptodate) {
168 set_buffer_uptodate(bh);
169 } else {
170 buffer_io_error(bh, ", lost sync page write");
171 mark_buffer_write_io_error(bh);
172 clear_buffer_uptodate(bh);
173 }
174 unlock_buffer(bh);
175 put_bh(bh);
176}
177EXPORT_SYMBOL(end_buffer_write_sync);
178
179/*
180 * Various filesystems appear to want __find_get_block to be non-blocking.
181 * But it's the page lock which protects the buffers. To get around this,
182 * we get exclusion from try_to_free_buffers with the blockdev mapping's
183 * private_lock.
184 *
185 * Hack idea: for the blockdev mapping, private_lock contention
186 * may be quite high. This code could TryLock the page, and if that
187 * succeeds, there is no need to take private_lock.
188 */
189static struct buffer_head *
190__find_get_block_slow(struct block_device *bdev, sector_t block)
191{
192 struct inode *bd_inode = bdev->bd_inode;
193 struct address_space *bd_mapping = bd_inode->i_mapping;
194 struct buffer_head *ret = NULL;
195 pgoff_t index;
196 struct buffer_head *bh;
197 struct buffer_head *head;
198 struct folio *folio;
199 int all_mapped = 1;
200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201
202 index = ((loff_t)block << bd_inode->i_blkbits) / PAGE_SIZE;
203 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
204 if (IS_ERR(folio))
205 goto out;
206
207 spin_lock(&bd_mapping->private_lock);
208 head = folio_buffers(folio);
209 if (!head)
210 goto out_unlock;
211 bh = head;
212 do {
213 if (!buffer_mapped(bh))
214 all_mapped = 0;
215 else if (bh->b_blocknr == block) {
216 ret = bh;
217 get_bh(bh);
218 goto out_unlock;
219 }
220 bh = bh->b_this_page;
221 } while (bh != head);
222
223 /* we might be here because some of the buffers on this page are
224 * not mapped. This is due to various races between
225 * file io on the block device and getblk. It gets dealt with
226 * elsewhere, don't buffer_error if we had some unmapped buffers
227 */
228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 if (all_mapped && __ratelimit(&last_warned)) {
230 printk("__find_get_block_slow() failed. block=%llu, "
231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 "device %pg blocksize: %d\n",
233 (unsigned long long)block,
234 (unsigned long long)bh->b_blocknr,
235 bh->b_state, bh->b_size, bdev,
236 1 << bd_inode->i_blkbits);
237 }
238out_unlock:
239 spin_unlock(&bd_mapping->private_lock);
240 folio_put(folio);
241out:
242 return ret;
243}
244
245static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246{
247 unsigned long flags;
248 struct buffer_head *first;
249 struct buffer_head *tmp;
250 struct folio *folio;
251 int folio_uptodate = 1;
252
253 BUG_ON(!buffer_async_read(bh));
254
255 folio = bh->b_folio;
256 if (uptodate) {
257 set_buffer_uptodate(bh);
258 } else {
259 clear_buffer_uptodate(bh);
260 buffer_io_error(bh, ", async page read");
261 folio_set_error(folio);
262 }
263
264 /*
265 * Be _very_ careful from here on. Bad things can happen if
266 * two buffer heads end IO at almost the same time and both
267 * decide that the page is now completely done.
268 */
269 first = folio_buffers(folio);
270 spin_lock_irqsave(&first->b_uptodate_lock, flags);
271 clear_buffer_async_read(bh);
272 unlock_buffer(bh);
273 tmp = bh;
274 do {
275 if (!buffer_uptodate(tmp))
276 folio_uptodate = 0;
277 if (buffer_async_read(tmp)) {
278 BUG_ON(!buffer_locked(tmp));
279 goto still_busy;
280 }
281 tmp = tmp->b_this_page;
282 } while (tmp != bh);
283 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
284
285 folio_end_read(folio, folio_uptodate);
286 return;
287
288still_busy:
289 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
290 return;
291}
292
293struct postprocess_bh_ctx {
294 struct work_struct work;
295 struct buffer_head *bh;
296};
297
298static void verify_bh(struct work_struct *work)
299{
300 struct postprocess_bh_ctx *ctx =
301 container_of(work, struct postprocess_bh_ctx, work);
302 struct buffer_head *bh = ctx->bh;
303 bool valid;
304
305 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
306 end_buffer_async_read(bh, valid);
307 kfree(ctx);
308}
309
310static bool need_fsverity(struct buffer_head *bh)
311{
312 struct folio *folio = bh->b_folio;
313 struct inode *inode = folio->mapping->host;
314
315 return fsverity_active(inode) &&
316 /* needed by ext4 */
317 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
318}
319
320static void decrypt_bh(struct work_struct *work)
321{
322 struct postprocess_bh_ctx *ctx =
323 container_of(work, struct postprocess_bh_ctx, work);
324 struct buffer_head *bh = ctx->bh;
325 int err;
326
327 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
328 bh_offset(bh));
329 if (err == 0 && need_fsverity(bh)) {
330 /*
331 * We use different work queues for decryption and for verity
332 * because verity may require reading metadata pages that need
333 * decryption, and we shouldn't recurse to the same workqueue.
334 */
335 INIT_WORK(&ctx->work, verify_bh);
336 fsverity_enqueue_verify_work(&ctx->work);
337 return;
338 }
339 end_buffer_async_read(bh, err == 0);
340 kfree(ctx);
341}
342
343/*
344 * I/O completion handler for block_read_full_folio() - pages
345 * which come unlocked at the end of I/O.
346 */
347static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
348{
349 struct inode *inode = bh->b_folio->mapping->host;
350 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
351 bool verify = need_fsverity(bh);
352
353 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
354 if (uptodate && (decrypt || verify)) {
355 struct postprocess_bh_ctx *ctx =
356 kmalloc(sizeof(*ctx), GFP_ATOMIC);
357
358 if (ctx) {
359 ctx->bh = bh;
360 if (decrypt) {
361 INIT_WORK(&ctx->work, decrypt_bh);
362 fscrypt_enqueue_decrypt_work(&ctx->work);
363 } else {
364 INIT_WORK(&ctx->work, verify_bh);
365 fsverity_enqueue_verify_work(&ctx->work);
366 }
367 return;
368 }
369 uptodate = 0;
370 }
371 end_buffer_async_read(bh, uptodate);
372}
373
374/*
375 * Completion handler for block_write_full_page() - pages which are unlocked
376 * during I/O, and which have PageWriteback cleared upon I/O completion.
377 */
378void end_buffer_async_write(struct buffer_head *bh, int uptodate)
379{
380 unsigned long flags;
381 struct buffer_head *first;
382 struct buffer_head *tmp;
383 struct folio *folio;
384
385 BUG_ON(!buffer_async_write(bh));
386
387 folio = bh->b_folio;
388 if (uptodate) {
389 set_buffer_uptodate(bh);
390 } else {
391 buffer_io_error(bh, ", lost async page write");
392 mark_buffer_write_io_error(bh);
393 clear_buffer_uptodate(bh);
394 folio_set_error(folio);
395 }
396
397 first = folio_buffers(folio);
398 spin_lock_irqsave(&first->b_uptodate_lock, flags);
399
400 clear_buffer_async_write(bh);
401 unlock_buffer(bh);
402 tmp = bh->b_this_page;
403 while (tmp != bh) {
404 if (buffer_async_write(tmp)) {
405 BUG_ON(!buffer_locked(tmp));
406 goto still_busy;
407 }
408 tmp = tmp->b_this_page;
409 }
410 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
411 folio_end_writeback(folio);
412 return;
413
414still_busy:
415 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
416 return;
417}
418EXPORT_SYMBOL(end_buffer_async_write);
419
420/*
421 * If a page's buffers are under async readin (end_buffer_async_read
422 * completion) then there is a possibility that another thread of
423 * control could lock one of the buffers after it has completed
424 * but while some of the other buffers have not completed. This
425 * locked buffer would confuse end_buffer_async_read() into not unlocking
426 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
427 * that this buffer is not under async I/O.
428 *
429 * The page comes unlocked when it has no locked buffer_async buffers
430 * left.
431 *
432 * PageLocked prevents anyone starting new async I/O reads any of
433 * the buffers.
434 *
435 * PageWriteback is used to prevent simultaneous writeout of the same
436 * page.
437 *
438 * PageLocked prevents anyone from starting writeback of a page which is
439 * under read I/O (PageWriteback is only ever set against a locked page).
440 */
441static void mark_buffer_async_read(struct buffer_head *bh)
442{
443 bh->b_end_io = end_buffer_async_read_io;
444 set_buffer_async_read(bh);
445}
446
447static void mark_buffer_async_write_endio(struct buffer_head *bh,
448 bh_end_io_t *handler)
449{
450 bh->b_end_io = handler;
451 set_buffer_async_write(bh);
452}
453
454void mark_buffer_async_write(struct buffer_head *bh)
455{
456 mark_buffer_async_write_endio(bh, end_buffer_async_write);
457}
458EXPORT_SYMBOL(mark_buffer_async_write);
459
460
461/*
462 * fs/buffer.c contains helper functions for buffer-backed address space's
463 * fsync functions. A common requirement for buffer-based filesystems is
464 * that certain data from the backing blockdev needs to be written out for
465 * a successful fsync(). For example, ext2 indirect blocks need to be
466 * written back and waited upon before fsync() returns.
467 *
468 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
469 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
470 * management of a list of dependent buffers at ->i_mapping->private_list.
471 *
472 * Locking is a little subtle: try_to_free_buffers() will remove buffers
473 * from their controlling inode's queue when they are being freed. But
474 * try_to_free_buffers() will be operating against the *blockdev* mapping
475 * at the time, not against the S_ISREG file which depends on those buffers.
476 * So the locking for private_list is via the private_lock in the address_space
477 * which backs the buffers. Which is different from the address_space
478 * against which the buffers are listed. So for a particular address_space,
479 * mapping->private_lock does *not* protect mapping->private_list! In fact,
480 * mapping->private_list will always be protected by the backing blockdev's
481 * ->private_lock.
482 *
483 * Which introduces a requirement: all buffers on an address_space's
484 * ->private_list must be from the same address_space: the blockdev's.
485 *
486 * address_spaces which do not place buffers at ->private_list via these
487 * utility functions are free to use private_lock and private_list for
488 * whatever they want. The only requirement is that list_empty(private_list)
489 * be true at clear_inode() time.
490 *
491 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
492 * filesystems should do that. invalidate_inode_buffers() should just go
493 * BUG_ON(!list_empty).
494 *
495 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
496 * take an address_space, not an inode. And it should be called
497 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
498 * queued up.
499 *
500 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
501 * list if it is already on a list. Because if the buffer is on a list,
502 * it *must* already be on the right one. If not, the filesystem is being
503 * silly. This will save a ton of locking. But first we have to ensure
504 * that buffers are taken *off* the old inode's list when they are freed
505 * (presumably in truncate). That requires careful auditing of all
506 * filesystems (do it inside bforget()). It could also be done by bringing
507 * b_inode back.
508 */
509
510/*
511 * The buffer's backing address_space's private_lock must be held
512 */
513static void __remove_assoc_queue(struct buffer_head *bh)
514{
515 list_del_init(&bh->b_assoc_buffers);
516 WARN_ON(!bh->b_assoc_map);
517 bh->b_assoc_map = NULL;
518}
519
520int inode_has_buffers(struct inode *inode)
521{
522 return !list_empty(&inode->i_data.private_list);
523}
524
525/*
526 * osync is designed to support O_SYNC io. It waits synchronously for
527 * all already-submitted IO to complete, but does not queue any new
528 * writes to the disk.
529 *
530 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
531 * as you dirty the buffers, and then use osync_inode_buffers to wait for
532 * completion. Any other dirty buffers which are not yet queued for
533 * write will not be flushed to disk by the osync.
534 */
535static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
536{
537 struct buffer_head *bh;
538 struct list_head *p;
539 int err = 0;
540
541 spin_lock(lock);
542repeat:
543 list_for_each_prev(p, list) {
544 bh = BH_ENTRY(p);
545 if (buffer_locked(bh)) {
546 get_bh(bh);
547 spin_unlock(lock);
548 wait_on_buffer(bh);
549 if (!buffer_uptodate(bh))
550 err = -EIO;
551 brelse(bh);
552 spin_lock(lock);
553 goto repeat;
554 }
555 }
556 spin_unlock(lock);
557 return err;
558}
559
560/**
561 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
562 * @mapping: the mapping which wants those buffers written
563 *
564 * Starts I/O against the buffers at mapping->private_list, and waits upon
565 * that I/O.
566 *
567 * Basically, this is a convenience function for fsync().
568 * @mapping is a file or directory which needs those buffers to be written for
569 * a successful fsync().
570 */
571int sync_mapping_buffers(struct address_space *mapping)
572{
573 struct address_space *buffer_mapping = mapping->private_data;
574
575 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
576 return 0;
577
578 return fsync_buffers_list(&buffer_mapping->private_lock,
579 &mapping->private_list);
580}
581EXPORT_SYMBOL(sync_mapping_buffers);
582
583/**
584 * generic_buffers_fsync_noflush - generic buffer fsync implementation
585 * for simple filesystems with no inode lock
586 *
587 * @file: file to synchronize
588 * @start: start offset in bytes
589 * @end: end offset in bytes (inclusive)
590 * @datasync: only synchronize essential metadata if true
591 *
592 * This is a generic implementation of the fsync method for simple
593 * filesystems which track all non-inode metadata in the buffers list
594 * hanging off the address_space structure.
595 */
596int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
597 bool datasync)
598{
599 struct inode *inode = file->f_mapping->host;
600 int err;
601 int ret;
602
603 err = file_write_and_wait_range(file, start, end);
604 if (err)
605 return err;
606
607 ret = sync_mapping_buffers(inode->i_mapping);
608 if (!(inode->i_state & I_DIRTY_ALL))
609 goto out;
610 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
611 goto out;
612
613 err = sync_inode_metadata(inode, 1);
614 if (ret == 0)
615 ret = err;
616
617out:
618 /* check and advance again to catch errors after syncing out buffers */
619 err = file_check_and_advance_wb_err(file);
620 if (ret == 0)
621 ret = err;
622 return ret;
623}
624EXPORT_SYMBOL(generic_buffers_fsync_noflush);
625
626/**
627 * generic_buffers_fsync - generic buffer fsync implementation
628 * for simple filesystems with no inode lock
629 *
630 * @file: file to synchronize
631 * @start: start offset in bytes
632 * @end: end offset in bytes (inclusive)
633 * @datasync: only synchronize essential metadata if true
634 *
635 * This is a generic implementation of the fsync method for simple
636 * filesystems which track all non-inode metadata in the buffers list
637 * hanging off the address_space structure. This also makes sure that
638 * a device cache flush operation is called at the end.
639 */
640int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
641 bool datasync)
642{
643 struct inode *inode = file->f_mapping->host;
644 int ret;
645
646 ret = generic_buffers_fsync_noflush(file, start, end, datasync);
647 if (!ret)
648 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
649 return ret;
650}
651EXPORT_SYMBOL(generic_buffers_fsync);
652
653/*
654 * Called when we've recently written block `bblock', and it is known that
655 * `bblock' was for a buffer_boundary() buffer. This means that the block at
656 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
657 * dirty, schedule it for IO. So that indirects merge nicely with their data.
658 */
659void write_boundary_block(struct block_device *bdev,
660 sector_t bblock, unsigned blocksize)
661{
662 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
663 if (bh) {
664 if (buffer_dirty(bh))
665 write_dirty_buffer(bh, 0);
666 put_bh(bh);
667 }
668}
669
670void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
671{
672 struct address_space *mapping = inode->i_mapping;
673 struct address_space *buffer_mapping = bh->b_folio->mapping;
674
675 mark_buffer_dirty(bh);
676 if (!mapping->private_data) {
677 mapping->private_data = buffer_mapping;
678 } else {
679 BUG_ON(mapping->private_data != buffer_mapping);
680 }
681 if (!bh->b_assoc_map) {
682 spin_lock(&buffer_mapping->private_lock);
683 list_move_tail(&bh->b_assoc_buffers,
684 &mapping->private_list);
685 bh->b_assoc_map = mapping;
686 spin_unlock(&buffer_mapping->private_lock);
687 }
688}
689EXPORT_SYMBOL(mark_buffer_dirty_inode);
690
691/*
692 * Add a page to the dirty page list.
693 *
694 * It is a sad fact of life that this function is called from several places
695 * deeply under spinlocking. It may not sleep.
696 *
697 * If the page has buffers, the uptodate buffers are set dirty, to preserve
698 * dirty-state coherency between the page and the buffers. It the page does
699 * not have buffers then when they are later attached they will all be set
700 * dirty.
701 *
702 * The buffers are dirtied before the page is dirtied. There's a small race
703 * window in which a writepage caller may see the page cleanness but not the
704 * buffer dirtiness. That's fine. If this code were to set the page dirty
705 * before the buffers, a concurrent writepage caller could clear the page dirty
706 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
707 * page on the dirty page list.
708 *
709 * We use private_lock to lock against try_to_free_buffers while using the
710 * page's buffer list. Also use this to protect against clean buffers being
711 * added to the page after it was set dirty.
712 *
713 * FIXME: may need to call ->reservepage here as well. That's rather up to the
714 * address_space though.
715 */
716bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
717{
718 struct buffer_head *head;
719 bool newly_dirty;
720
721 spin_lock(&mapping->private_lock);
722 head = folio_buffers(folio);
723 if (head) {
724 struct buffer_head *bh = head;
725
726 do {
727 set_buffer_dirty(bh);
728 bh = bh->b_this_page;
729 } while (bh != head);
730 }
731 /*
732 * Lock out page's memcg migration to keep PageDirty
733 * synchronized with per-memcg dirty page counters.
734 */
735 folio_memcg_lock(folio);
736 newly_dirty = !folio_test_set_dirty(folio);
737 spin_unlock(&mapping->private_lock);
738
739 if (newly_dirty)
740 __folio_mark_dirty(folio, mapping, 1);
741
742 folio_memcg_unlock(folio);
743
744 if (newly_dirty)
745 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
746
747 return newly_dirty;
748}
749EXPORT_SYMBOL(block_dirty_folio);
750
751/*
752 * Write out and wait upon a list of buffers.
753 *
754 * We have conflicting pressures: we want to make sure that all
755 * initially dirty buffers get waited on, but that any subsequently
756 * dirtied buffers don't. After all, we don't want fsync to last
757 * forever if somebody is actively writing to the file.
758 *
759 * Do this in two main stages: first we copy dirty buffers to a
760 * temporary inode list, queueing the writes as we go. Then we clean
761 * up, waiting for those writes to complete.
762 *
763 * During this second stage, any subsequent updates to the file may end
764 * up refiling the buffer on the original inode's dirty list again, so
765 * there is a chance we will end up with a buffer queued for write but
766 * not yet completed on that list. So, as a final cleanup we go through
767 * the osync code to catch these locked, dirty buffers without requeuing
768 * any newly dirty buffers for write.
769 */
770static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
771{
772 struct buffer_head *bh;
773 struct list_head tmp;
774 struct address_space *mapping;
775 int err = 0, err2;
776 struct blk_plug plug;
777
778 INIT_LIST_HEAD(&tmp);
779 blk_start_plug(&plug);
780
781 spin_lock(lock);
782 while (!list_empty(list)) {
783 bh = BH_ENTRY(list->next);
784 mapping = bh->b_assoc_map;
785 __remove_assoc_queue(bh);
786 /* Avoid race with mark_buffer_dirty_inode() which does
787 * a lockless check and we rely on seeing the dirty bit */
788 smp_mb();
789 if (buffer_dirty(bh) || buffer_locked(bh)) {
790 list_add(&bh->b_assoc_buffers, &tmp);
791 bh->b_assoc_map = mapping;
792 if (buffer_dirty(bh)) {
793 get_bh(bh);
794 spin_unlock(lock);
795 /*
796 * Ensure any pending I/O completes so that
797 * write_dirty_buffer() actually writes the
798 * current contents - it is a noop if I/O is
799 * still in flight on potentially older
800 * contents.
801 */
802 write_dirty_buffer(bh, REQ_SYNC);
803
804 /*
805 * Kick off IO for the previous mapping. Note
806 * that we will not run the very last mapping,
807 * wait_on_buffer() will do that for us
808 * through sync_buffer().
809 */
810 brelse(bh);
811 spin_lock(lock);
812 }
813 }
814 }
815
816 spin_unlock(lock);
817 blk_finish_plug(&plug);
818 spin_lock(lock);
819
820 while (!list_empty(&tmp)) {
821 bh = BH_ENTRY(tmp.prev);
822 get_bh(bh);
823 mapping = bh->b_assoc_map;
824 __remove_assoc_queue(bh);
825 /* Avoid race with mark_buffer_dirty_inode() which does
826 * a lockless check and we rely on seeing the dirty bit */
827 smp_mb();
828 if (buffer_dirty(bh)) {
829 list_add(&bh->b_assoc_buffers,
830 &mapping->private_list);
831 bh->b_assoc_map = mapping;
832 }
833 spin_unlock(lock);
834 wait_on_buffer(bh);
835 if (!buffer_uptodate(bh))
836 err = -EIO;
837 brelse(bh);
838 spin_lock(lock);
839 }
840
841 spin_unlock(lock);
842 err2 = osync_buffers_list(lock, list);
843 if (err)
844 return err;
845 else
846 return err2;
847}
848
849/*
850 * Invalidate any and all dirty buffers on a given inode. We are
851 * probably unmounting the fs, but that doesn't mean we have already
852 * done a sync(). Just drop the buffers from the inode list.
853 *
854 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
855 * assumes that all the buffers are against the blockdev. Not true
856 * for reiserfs.
857 */
858void invalidate_inode_buffers(struct inode *inode)
859{
860 if (inode_has_buffers(inode)) {
861 struct address_space *mapping = &inode->i_data;
862 struct list_head *list = &mapping->private_list;
863 struct address_space *buffer_mapping = mapping->private_data;
864
865 spin_lock(&buffer_mapping->private_lock);
866 while (!list_empty(list))
867 __remove_assoc_queue(BH_ENTRY(list->next));
868 spin_unlock(&buffer_mapping->private_lock);
869 }
870}
871EXPORT_SYMBOL(invalidate_inode_buffers);
872
873/*
874 * Remove any clean buffers from the inode's buffer list. This is called
875 * when we're trying to free the inode itself. Those buffers can pin it.
876 *
877 * Returns true if all buffers were removed.
878 */
879int remove_inode_buffers(struct inode *inode)
880{
881 int ret = 1;
882
883 if (inode_has_buffers(inode)) {
884 struct address_space *mapping = &inode->i_data;
885 struct list_head *list = &mapping->private_list;
886 struct address_space *buffer_mapping = mapping->private_data;
887
888 spin_lock(&buffer_mapping->private_lock);
889 while (!list_empty(list)) {
890 struct buffer_head *bh = BH_ENTRY(list->next);
891 if (buffer_dirty(bh)) {
892 ret = 0;
893 break;
894 }
895 __remove_assoc_queue(bh);
896 }
897 spin_unlock(&buffer_mapping->private_lock);
898 }
899 return ret;
900}
901
902/*
903 * Create the appropriate buffers when given a folio for data area and
904 * the size of each buffer.. Use the bh->b_this_page linked list to
905 * follow the buffers created. Return NULL if unable to create more
906 * buffers.
907 *
908 * The retry flag is used to differentiate async IO (paging, swapping)
909 * which may not fail from ordinary buffer allocations.
910 */
911struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
912 gfp_t gfp)
913{
914 struct buffer_head *bh, *head;
915 long offset;
916 struct mem_cgroup *memcg, *old_memcg;
917
918 /* The folio lock pins the memcg */
919 memcg = folio_memcg(folio);
920 old_memcg = set_active_memcg(memcg);
921
922 head = NULL;
923 offset = folio_size(folio);
924 while ((offset -= size) >= 0) {
925 bh = alloc_buffer_head(gfp);
926 if (!bh)
927 goto no_grow;
928
929 bh->b_this_page = head;
930 bh->b_blocknr = -1;
931 head = bh;
932
933 bh->b_size = size;
934
935 /* Link the buffer to its folio */
936 folio_set_bh(bh, folio, offset);
937 }
938out:
939 set_active_memcg(old_memcg);
940 return head;
941/*
942 * In case anything failed, we just free everything we got.
943 */
944no_grow:
945 if (head) {
946 do {
947 bh = head;
948 head = head->b_this_page;
949 free_buffer_head(bh);
950 } while (head);
951 }
952
953 goto out;
954}
955EXPORT_SYMBOL_GPL(folio_alloc_buffers);
956
957struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
958 bool retry)
959{
960 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
961 if (retry)
962 gfp |= __GFP_NOFAIL;
963
964 return folio_alloc_buffers(page_folio(page), size, gfp);
965}
966EXPORT_SYMBOL_GPL(alloc_page_buffers);
967
968static inline void link_dev_buffers(struct folio *folio,
969 struct buffer_head *head)
970{
971 struct buffer_head *bh, *tail;
972
973 bh = head;
974 do {
975 tail = bh;
976 bh = bh->b_this_page;
977 } while (bh);
978 tail->b_this_page = head;
979 folio_attach_private(folio, head);
980}
981
982static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
983{
984 sector_t retval = ~((sector_t)0);
985 loff_t sz = bdev_nr_bytes(bdev);
986
987 if (sz) {
988 unsigned int sizebits = blksize_bits(size);
989 retval = (sz >> sizebits);
990 }
991 return retval;
992}
993
994/*
995 * Initialise the state of a blockdev folio's buffers.
996 */
997static sector_t folio_init_buffers(struct folio *folio,
998 struct block_device *bdev, unsigned size)
999{
1000 struct buffer_head *head = folio_buffers(folio);
1001 struct buffer_head *bh = head;
1002 bool uptodate = folio_test_uptodate(folio);
1003 sector_t block = div_u64(folio_pos(folio), size);
1004 sector_t end_block = blkdev_max_block(bdev, size);
1005
1006 do {
1007 if (!buffer_mapped(bh)) {
1008 bh->b_end_io = NULL;
1009 bh->b_private = NULL;
1010 bh->b_bdev = bdev;
1011 bh->b_blocknr = block;
1012 if (uptodate)
1013 set_buffer_uptodate(bh);
1014 if (block < end_block)
1015 set_buffer_mapped(bh);
1016 }
1017 block++;
1018 bh = bh->b_this_page;
1019 } while (bh != head);
1020
1021 /*
1022 * Caller needs to validate requested block against end of device.
1023 */
1024 return end_block;
1025}
1026
1027/*
1028 * Create the page-cache folio that contains the requested block.
1029 *
1030 * This is used purely for blockdev mappings.
1031 *
1032 * Returns false if we have a 'permanent' failure. Returns true if
1033 * we succeeded, or the caller should retry.
1034 */
1035static bool grow_dev_folio(struct block_device *bdev, sector_t block,
1036 pgoff_t index, unsigned size, gfp_t gfp)
1037{
1038 struct inode *inode = bdev->bd_inode;
1039 struct folio *folio;
1040 struct buffer_head *bh;
1041 sector_t end_block = 0;
1042
1043 folio = __filemap_get_folio(inode->i_mapping, index,
1044 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1045 if (IS_ERR(folio))
1046 return false;
1047
1048 bh = folio_buffers(folio);
1049 if (bh) {
1050 if (bh->b_size == size) {
1051 end_block = folio_init_buffers(folio, bdev, size);
1052 goto unlock;
1053 }
1054
1055 /* Caller should retry if this call fails */
1056 end_block = ~0ULL;
1057 if (!try_to_free_buffers(folio))
1058 goto unlock;
1059 }
1060
1061 bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1062 if (!bh)
1063 goto unlock;
1064
1065 /*
1066 * Link the folio to the buffers and initialise them. Take the
1067 * lock to be atomic wrt __find_get_block(), which does not
1068 * run under the folio lock.
1069 */
1070 spin_lock(&inode->i_mapping->private_lock);
1071 link_dev_buffers(folio, bh);
1072 end_block = folio_init_buffers(folio, bdev, size);
1073 spin_unlock(&inode->i_mapping->private_lock);
1074unlock:
1075 folio_unlock(folio);
1076 folio_put(folio);
1077 return block < end_block;
1078}
1079
1080/*
1081 * Create buffers for the specified block device block's folio. If
1082 * that folio was dirty, the buffers are set dirty also. Returns false
1083 * if we've hit a permanent error.
1084 */
1085static bool grow_buffers(struct block_device *bdev, sector_t block,
1086 unsigned size, gfp_t gfp)
1087{
1088 loff_t pos;
1089
1090 /*
1091 * Check for a block which lies outside our maximum possible
1092 * pagecache index.
1093 */
1094 if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1095 printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
1096 __func__, (unsigned long long)block,
1097 bdev);
1098 return false;
1099 }
1100
1101 /* Create a folio with the proper size buffers */
1102 return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1103}
1104
1105static struct buffer_head *
1106__getblk_slow(struct block_device *bdev, sector_t block,
1107 unsigned size, gfp_t gfp)
1108{
1109 /* Size must be multiple of hard sectorsize */
1110 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1111 (size < 512 || size > PAGE_SIZE))) {
1112 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1113 size);
1114 printk(KERN_ERR "logical block size: %d\n",
1115 bdev_logical_block_size(bdev));
1116
1117 dump_stack();
1118 return NULL;
1119 }
1120
1121 for (;;) {
1122 struct buffer_head *bh;
1123
1124 bh = __find_get_block(bdev, block, size);
1125 if (bh)
1126 return bh;
1127
1128 if (!grow_buffers(bdev, block, size, gfp))
1129 return NULL;
1130 }
1131}
1132
1133/*
1134 * The relationship between dirty buffers and dirty pages:
1135 *
1136 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1137 * the page is tagged dirty in the page cache.
1138 *
1139 * At all times, the dirtiness of the buffers represents the dirtiness of
1140 * subsections of the page. If the page has buffers, the page dirty bit is
1141 * merely a hint about the true dirty state.
1142 *
1143 * When a page is set dirty in its entirety, all its buffers are marked dirty
1144 * (if the page has buffers).
1145 *
1146 * When a buffer is marked dirty, its page is dirtied, but the page's other
1147 * buffers are not.
1148 *
1149 * Also. When blockdev buffers are explicitly read with bread(), they
1150 * individually become uptodate. But their backing page remains not
1151 * uptodate - even if all of its buffers are uptodate. A subsequent
1152 * block_read_full_folio() against that folio will discover all the uptodate
1153 * buffers, will set the folio uptodate and will perform no I/O.
1154 */
1155
1156/**
1157 * mark_buffer_dirty - mark a buffer_head as needing writeout
1158 * @bh: the buffer_head to mark dirty
1159 *
1160 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1161 * its backing page dirty, then tag the page as dirty in the page cache
1162 * and then attach the address_space's inode to its superblock's dirty
1163 * inode list.
1164 *
1165 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->private_lock,
1166 * i_pages lock and mapping->host->i_lock.
1167 */
1168void mark_buffer_dirty(struct buffer_head *bh)
1169{
1170 WARN_ON_ONCE(!buffer_uptodate(bh));
1171
1172 trace_block_dirty_buffer(bh);
1173
1174 /*
1175 * Very *carefully* optimize the it-is-already-dirty case.
1176 *
1177 * Don't let the final "is it dirty" escape to before we
1178 * perhaps modified the buffer.
1179 */
1180 if (buffer_dirty(bh)) {
1181 smp_mb();
1182 if (buffer_dirty(bh))
1183 return;
1184 }
1185
1186 if (!test_set_buffer_dirty(bh)) {
1187 struct folio *folio = bh->b_folio;
1188 struct address_space *mapping = NULL;
1189
1190 folio_memcg_lock(folio);
1191 if (!folio_test_set_dirty(folio)) {
1192 mapping = folio->mapping;
1193 if (mapping)
1194 __folio_mark_dirty(folio, mapping, 0);
1195 }
1196 folio_memcg_unlock(folio);
1197 if (mapping)
1198 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1199 }
1200}
1201EXPORT_SYMBOL(mark_buffer_dirty);
1202
1203void mark_buffer_write_io_error(struct buffer_head *bh)
1204{
1205 set_buffer_write_io_error(bh);
1206 /* FIXME: do we need to set this in both places? */
1207 if (bh->b_folio && bh->b_folio->mapping)
1208 mapping_set_error(bh->b_folio->mapping, -EIO);
1209 if (bh->b_assoc_map) {
1210 mapping_set_error(bh->b_assoc_map, -EIO);
1211 errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1212 }
1213}
1214EXPORT_SYMBOL(mark_buffer_write_io_error);
1215
1216/*
1217 * Decrement a buffer_head's reference count. If all buffers against a page
1218 * have zero reference count, are clean and unlocked, and if the page is clean
1219 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1220 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1221 * a page but it ends up not being freed, and buffers may later be reattached).
1222 */
1223void __brelse(struct buffer_head * buf)
1224{
1225 if (atomic_read(&buf->b_count)) {
1226 put_bh(buf);
1227 return;
1228 }
1229 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1230}
1231EXPORT_SYMBOL(__brelse);
1232
1233/*
1234 * bforget() is like brelse(), except it discards any
1235 * potentially dirty data.
1236 */
1237void __bforget(struct buffer_head *bh)
1238{
1239 clear_buffer_dirty(bh);
1240 if (bh->b_assoc_map) {
1241 struct address_space *buffer_mapping = bh->b_folio->mapping;
1242
1243 spin_lock(&buffer_mapping->private_lock);
1244 list_del_init(&bh->b_assoc_buffers);
1245 bh->b_assoc_map = NULL;
1246 spin_unlock(&buffer_mapping->private_lock);
1247 }
1248 __brelse(bh);
1249}
1250EXPORT_SYMBOL(__bforget);
1251
1252static struct buffer_head *__bread_slow(struct buffer_head *bh)
1253{
1254 lock_buffer(bh);
1255 if (buffer_uptodate(bh)) {
1256 unlock_buffer(bh);
1257 return bh;
1258 } else {
1259 get_bh(bh);
1260 bh->b_end_io = end_buffer_read_sync;
1261 submit_bh(REQ_OP_READ, bh);
1262 wait_on_buffer(bh);
1263 if (buffer_uptodate(bh))
1264 return bh;
1265 }
1266 brelse(bh);
1267 return NULL;
1268}
1269
1270/*
1271 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1272 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1273 * refcount elevated by one when they're in an LRU. A buffer can only appear
1274 * once in a particular CPU's LRU. A single buffer can be present in multiple
1275 * CPU's LRUs at the same time.
1276 *
1277 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1278 * sb_find_get_block().
1279 *
1280 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1281 * a local interrupt disable for that.
1282 */
1283
1284#define BH_LRU_SIZE 16
1285
1286struct bh_lru {
1287 struct buffer_head *bhs[BH_LRU_SIZE];
1288};
1289
1290static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1291
1292#ifdef CONFIG_SMP
1293#define bh_lru_lock() local_irq_disable()
1294#define bh_lru_unlock() local_irq_enable()
1295#else
1296#define bh_lru_lock() preempt_disable()
1297#define bh_lru_unlock() preempt_enable()
1298#endif
1299
1300static inline void check_irqs_on(void)
1301{
1302#ifdef irqs_disabled
1303 BUG_ON(irqs_disabled());
1304#endif
1305}
1306
1307/*
1308 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1309 * inserted at the front, and the buffer_head at the back if any is evicted.
1310 * Or, if already in the LRU it is moved to the front.
1311 */
1312static void bh_lru_install(struct buffer_head *bh)
1313{
1314 struct buffer_head *evictee = bh;
1315 struct bh_lru *b;
1316 int i;
1317
1318 check_irqs_on();
1319 bh_lru_lock();
1320
1321 /*
1322 * the refcount of buffer_head in bh_lru prevents dropping the
1323 * attached page(i.e., try_to_free_buffers) so it could cause
1324 * failing page migration.
1325 * Skip putting upcoming bh into bh_lru until migration is done.
1326 */
1327 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1328 bh_lru_unlock();
1329 return;
1330 }
1331
1332 b = this_cpu_ptr(&bh_lrus);
1333 for (i = 0; i < BH_LRU_SIZE; i++) {
1334 swap(evictee, b->bhs[i]);
1335 if (evictee == bh) {
1336 bh_lru_unlock();
1337 return;
1338 }
1339 }
1340
1341 get_bh(bh);
1342 bh_lru_unlock();
1343 brelse(evictee);
1344}
1345
1346/*
1347 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1348 */
1349static struct buffer_head *
1350lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1351{
1352 struct buffer_head *ret = NULL;
1353 unsigned int i;
1354
1355 check_irqs_on();
1356 bh_lru_lock();
1357 if (cpu_is_isolated(smp_processor_id())) {
1358 bh_lru_unlock();
1359 return NULL;
1360 }
1361 for (i = 0; i < BH_LRU_SIZE; i++) {
1362 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1363
1364 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1365 bh->b_size == size) {
1366 if (i) {
1367 while (i) {
1368 __this_cpu_write(bh_lrus.bhs[i],
1369 __this_cpu_read(bh_lrus.bhs[i - 1]));
1370 i--;
1371 }
1372 __this_cpu_write(bh_lrus.bhs[0], bh);
1373 }
1374 get_bh(bh);
1375 ret = bh;
1376 break;
1377 }
1378 }
1379 bh_lru_unlock();
1380 return ret;
1381}
1382
1383/*
1384 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1385 * it in the LRU and mark it as accessed. If it is not present then return
1386 * NULL
1387 */
1388struct buffer_head *
1389__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1390{
1391 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1392
1393 if (bh == NULL) {
1394 /* __find_get_block_slow will mark the page accessed */
1395 bh = __find_get_block_slow(bdev, block);
1396 if (bh)
1397 bh_lru_install(bh);
1398 } else
1399 touch_buffer(bh);
1400
1401 return bh;
1402}
1403EXPORT_SYMBOL(__find_get_block);
1404
1405/**
1406 * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1407 * @bdev: The block device.
1408 * @block: The block number.
1409 * @size: The size of buffer_heads for this @bdev.
1410 * @gfp: The memory allocation flags to use.
1411 *
1412 * Return: The buffer head, or NULL if memory could not be allocated.
1413 */
1414struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1415 unsigned size, gfp_t gfp)
1416{
1417 struct buffer_head *bh = __find_get_block(bdev, block, size);
1418
1419 might_alloc(gfp);
1420 if (bh)
1421 return bh;
1422
1423 return __getblk_slow(bdev, block, size, gfp);
1424}
1425EXPORT_SYMBOL(bdev_getblk);
1426
1427/*
1428 * Do async read-ahead on a buffer..
1429 */
1430void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1431{
1432 struct buffer_head *bh = bdev_getblk(bdev, block, size,
1433 GFP_NOWAIT | __GFP_MOVABLE);
1434
1435 if (likely(bh)) {
1436 bh_readahead(bh, REQ_RAHEAD);
1437 brelse(bh);
1438 }
1439}
1440EXPORT_SYMBOL(__breadahead);
1441
1442/**
1443 * __bread_gfp() - reads a specified block and returns the bh
1444 * @bdev: the block_device to read from
1445 * @block: number of block
1446 * @size: size (in bytes) to read
1447 * @gfp: page allocation flag
1448 *
1449 * Reads a specified block, and returns buffer head that contains it.
1450 * The page cache can be allocated from non-movable area
1451 * not to prevent page migration if you set gfp to zero.
1452 * It returns NULL if the block was unreadable.
1453 */
1454struct buffer_head *
1455__bread_gfp(struct block_device *bdev, sector_t block,
1456 unsigned size, gfp_t gfp)
1457{
1458 struct buffer_head *bh;
1459
1460 gfp |= mapping_gfp_constraint(bdev->bd_inode->i_mapping, ~__GFP_FS);
1461
1462 /*
1463 * Prefer looping in the allocator rather than here, at least that
1464 * code knows what it's doing.
1465 */
1466 gfp |= __GFP_NOFAIL;
1467
1468 bh = bdev_getblk(bdev, block, size, gfp);
1469
1470 if (likely(bh) && !buffer_uptodate(bh))
1471 bh = __bread_slow(bh);
1472 return bh;
1473}
1474EXPORT_SYMBOL(__bread_gfp);
1475
1476static void __invalidate_bh_lrus(struct bh_lru *b)
1477{
1478 int i;
1479
1480 for (i = 0; i < BH_LRU_SIZE; i++) {
1481 brelse(b->bhs[i]);
1482 b->bhs[i] = NULL;
1483 }
1484}
1485/*
1486 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1487 * This doesn't race because it runs in each cpu either in irq
1488 * or with preempt disabled.
1489 */
1490static void invalidate_bh_lru(void *arg)
1491{
1492 struct bh_lru *b = &get_cpu_var(bh_lrus);
1493
1494 __invalidate_bh_lrus(b);
1495 put_cpu_var(bh_lrus);
1496}
1497
1498bool has_bh_in_lru(int cpu, void *dummy)
1499{
1500 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1501 int i;
1502
1503 for (i = 0; i < BH_LRU_SIZE; i++) {
1504 if (b->bhs[i])
1505 return true;
1506 }
1507
1508 return false;
1509}
1510
1511void invalidate_bh_lrus(void)
1512{
1513 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1514}
1515EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1516
1517/*
1518 * It's called from workqueue context so we need a bh_lru_lock to close
1519 * the race with preemption/irq.
1520 */
1521void invalidate_bh_lrus_cpu(void)
1522{
1523 struct bh_lru *b;
1524
1525 bh_lru_lock();
1526 b = this_cpu_ptr(&bh_lrus);
1527 __invalidate_bh_lrus(b);
1528 bh_lru_unlock();
1529}
1530
1531void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1532 unsigned long offset)
1533{
1534 bh->b_folio = folio;
1535 BUG_ON(offset >= folio_size(folio));
1536 if (folio_test_highmem(folio))
1537 /*
1538 * This catches illegal uses and preserves the offset:
1539 */
1540 bh->b_data = (char *)(0 + offset);
1541 else
1542 bh->b_data = folio_address(folio) + offset;
1543}
1544EXPORT_SYMBOL(folio_set_bh);
1545
1546/*
1547 * Called when truncating a buffer on a page completely.
1548 */
1549
1550/* Bits that are cleared during an invalidate */
1551#define BUFFER_FLAGS_DISCARD \
1552 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1553 1 << BH_Delay | 1 << BH_Unwritten)
1554
1555static void discard_buffer(struct buffer_head * bh)
1556{
1557 unsigned long b_state;
1558
1559 lock_buffer(bh);
1560 clear_buffer_dirty(bh);
1561 bh->b_bdev = NULL;
1562 b_state = READ_ONCE(bh->b_state);
1563 do {
1564 } while (!try_cmpxchg(&bh->b_state, &b_state,
1565 b_state & ~BUFFER_FLAGS_DISCARD));
1566 unlock_buffer(bh);
1567}
1568
1569/**
1570 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1571 * @folio: The folio which is affected.
1572 * @offset: start of the range to invalidate
1573 * @length: length of the range to invalidate
1574 *
1575 * block_invalidate_folio() is called when all or part of the folio has been
1576 * invalidated by a truncate operation.
1577 *
1578 * block_invalidate_folio() does not have to release all buffers, but it must
1579 * ensure that no dirty buffer is left outside @offset and that no I/O
1580 * is underway against any of the blocks which are outside the truncation
1581 * point. Because the caller is about to free (and possibly reuse) those
1582 * blocks on-disk.
1583 */
1584void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1585{
1586 struct buffer_head *head, *bh, *next;
1587 size_t curr_off = 0;
1588 size_t stop = length + offset;
1589
1590 BUG_ON(!folio_test_locked(folio));
1591
1592 /*
1593 * Check for overflow
1594 */
1595 BUG_ON(stop > folio_size(folio) || stop < length);
1596
1597 head = folio_buffers(folio);
1598 if (!head)
1599 return;
1600
1601 bh = head;
1602 do {
1603 size_t next_off = curr_off + bh->b_size;
1604 next = bh->b_this_page;
1605
1606 /*
1607 * Are we still fully in range ?
1608 */
1609 if (next_off > stop)
1610 goto out;
1611
1612 /*
1613 * is this block fully invalidated?
1614 */
1615 if (offset <= curr_off)
1616 discard_buffer(bh);
1617 curr_off = next_off;
1618 bh = next;
1619 } while (bh != head);
1620
1621 /*
1622 * We release buffers only if the entire folio is being invalidated.
1623 * The get_block cached value has been unconditionally invalidated,
1624 * so real IO is not possible anymore.
1625 */
1626 if (length == folio_size(folio))
1627 filemap_release_folio(folio, 0);
1628out:
1629 return;
1630}
1631EXPORT_SYMBOL(block_invalidate_folio);
1632
1633/*
1634 * We attach and possibly dirty the buffers atomically wrt
1635 * block_dirty_folio() via private_lock. try_to_free_buffers
1636 * is already excluded via the folio lock.
1637 */
1638struct buffer_head *create_empty_buffers(struct folio *folio,
1639 unsigned long blocksize, unsigned long b_state)
1640{
1641 struct buffer_head *bh, *head, *tail;
1642 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1643
1644 head = folio_alloc_buffers(folio, blocksize, gfp);
1645 bh = head;
1646 do {
1647 bh->b_state |= b_state;
1648 tail = bh;
1649 bh = bh->b_this_page;
1650 } while (bh);
1651 tail->b_this_page = head;
1652
1653 spin_lock(&folio->mapping->private_lock);
1654 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1655 bh = head;
1656 do {
1657 if (folio_test_dirty(folio))
1658 set_buffer_dirty(bh);
1659 if (folio_test_uptodate(folio))
1660 set_buffer_uptodate(bh);
1661 bh = bh->b_this_page;
1662 } while (bh != head);
1663 }
1664 folio_attach_private(folio, head);
1665 spin_unlock(&folio->mapping->private_lock);
1666
1667 return head;
1668}
1669EXPORT_SYMBOL(create_empty_buffers);
1670
1671/**
1672 * clean_bdev_aliases: clean a range of buffers in block device
1673 * @bdev: Block device to clean buffers in
1674 * @block: Start of a range of blocks to clean
1675 * @len: Number of blocks to clean
1676 *
1677 * We are taking a range of blocks for data and we don't want writeback of any
1678 * buffer-cache aliases starting from return from this function and until the
1679 * moment when something will explicitly mark the buffer dirty (hopefully that
1680 * will not happen until we will free that block ;-) We don't even need to mark
1681 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1682 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1683 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1684 * would confuse anyone who might pick it with bread() afterwards...
1685 *
1686 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1687 * writeout I/O going on against recently-freed buffers. We don't wait on that
1688 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1689 * need to. That happens here.
1690 */
1691void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1692{
1693 struct inode *bd_inode = bdev->bd_inode;
1694 struct address_space *bd_mapping = bd_inode->i_mapping;
1695 struct folio_batch fbatch;
1696 pgoff_t index = ((loff_t)block << bd_inode->i_blkbits) / PAGE_SIZE;
1697 pgoff_t end;
1698 int i, count;
1699 struct buffer_head *bh;
1700 struct buffer_head *head;
1701
1702 end = ((loff_t)(block + len - 1) << bd_inode->i_blkbits) / PAGE_SIZE;
1703 folio_batch_init(&fbatch);
1704 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1705 count = folio_batch_count(&fbatch);
1706 for (i = 0; i < count; i++) {
1707 struct folio *folio = fbatch.folios[i];
1708
1709 if (!folio_buffers(folio))
1710 continue;
1711 /*
1712 * We use folio lock instead of bd_mapping->private_lock
1713 * to pin buffers here since we can afford to sleep and
1714 * it scales better than a global spinlock lock.
1715 */
1716 folio_lock(folio);
1717 /* Recheck when the folio is locked which pins bhs */
1718 head = folio_buffers(folio);
1719 if (!head)
1720 goto unlock_page;
1721 bh = head;
1722 do {
1723 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1724 goto next;
1725 if (bh->b_blocknr >= block + len)
1726 break;
1727 clear_buffer_dirty(bh);
1728 wait_on_buffer(bh);
1729 clear_buffer_req(bh);
1730next:
1731 bh = bh->b_this_page;
1732 } while (bh != head);
1733unlock_page:
1734 folio_unlock(folio);
1735 }
1736 folio_batch_release(&fbatch);
1737 cond_resched();
1738 /* End of range already reached? */
1739 if (index > end || !index)
1740 break;
1741 }
1742}
1743EXPORT_SYMBOL(clean_bdev_aliases);
1744
1745static struct buffer_head *folio_create_buffers(struct folio *folio,
1746 struct inode *inode,
1747 unsigned int b_state)
1748{
1749 struct buffer_head *bh;
1750
1751 BUG_ON(!folio_test_locked(folio));
1752
1753 bh = folio_buffers(folio);
1754 if (!bh)
1755 bh = create_empty_buffers(folio,
1756 1 << READ_ONCE(inode->i_blkbits), b_state);
1757 return bh;
1758}
1759
1760/*
1761 * NOTE! All mapped/uptodate combinations are valid:
1762 *
1763 * Mapped Uptodate Meaning
1764 *
1765 * No No "unknown" - must do get_block()
1766 * No Yes "hole" - zero-filled
1767 * Yes No "allocated" - allocated on disk, not read in
1768 * Yes Yes "valid" - allocated and up-to-date in memory.
1769 *
1770 * "Dirty" is valid only with the last case (mapped+uptodate).
1771 */
1772
1773/*
1774 * While block_write_full_page is writing back the dirty buffers under
1775 * the page lock, whoever dirtied the buffers may decide to clean them
1776 * again at any time. We handle that by only looking at the buffer
1777 * state inside lock_buffer().
1778 *
1779 * If block_write_full_page() is called for regular writeback
1780 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1781 * locked buffer. This only can happen if someone has written the buffer
1782 * directly, with submit_bh(). At the address_space level PageWriteback
1783 * prevents this contention from occurring.
1784 *
1785 * If block_write_full_page() is called with wbc->sync_mode ==
1786 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1787 * causes the writes to be flagged as synchronous writes.
1788 */
1789int __block_write_full_folio(struct inode *inode, struct folio *folio,
1790 get_block_t *get_block, struct writeback_control *wbc,
1791 bh_end_io_t *handler)
1792{
1793 int err;
1794 sector_t block;
1795 sector_t last_block;
1796 struct buffer_head *bh, *head;
1797 size_t blocksize;
1798 int nr_underway = 0;
1799 blk_opf_t write_flags = wbc_to_write_flags(wbc);
1800
1801 head = folio_create_buffers(folio, inode,
1802 (1 << BH_Dirty) | (1 << BH_Uptodate));
1803
1804 /*
1805 * Be very careful. We have no exclusion from block_dirty_folio
1806 * here, and the (potentially unmapped) buffers may become dirty at
1807 * any time. If a buffer becomes dirty here after we've inspected it
1808 * then we just miss that fact, and the folio stays dirty.
1809 *
1810 * Buffers outside i_size may be dirtied by block_dirty_folio;
1811 * handle that here by just cleaning them.
1812 */
1813
1814 bh = head;
1815 blocksize = bh->b_size;
1816
1817 block = div_u64(folio_pos(folio), blocksize);
1818 last_block = div_u64(i_size_read(inode) - 1, blocksize);
1819
1820 /*
1821 * Get all the dirty buffers mapped to disk addresses and
1822 * handle any aliases from the underlying blockdev's mapping.
1823 */
1824 do {
1825 if (block > last_block) {
1826 /*
1827 * mapped buffers outside i_size will occur, because
1828 * this folio can be outside i_size when there is a
1829 * truncate in progress.
1830 */
1831 /*
1832 * The buffer was zeroed by block_write_full_page()
1833 */
1834 clear_buffer_dirty(bh);
1835 set_buffer_uptodate(bh);
1836 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1837 buffer_dirty(bh)) {
1838 WARN_ON(bh->b_size != blocksize);
1839 err = get_block(inode, block, bh, 1);
1840 if (err)
1841 goto recover;
1842 clear_buffer_delay(bh);
1843 if (buffer_new(bh)) {
1844 /* blockdev mappings never come here */
1845 clear_buffer_new(bh);
1846 clean_bdev_bh_alias(bh);
1847 }
1848 }
1849 bh = bh->b_this_page;
1850 block++;
1851 } while (bh != head);
1852
1853 do {
1854 if (!buffer_mapped(bh))
1855 continue;
1856 /*
1857 * If it's a fully non-blocking write attempt and we cannot
1858 * lock the buffer then redirty the folio. Note that this can
1859 * potentially cause a busy-wait loop from writeback threads
1860 * and kswapd activity, but those code paths have their own
1861 * higher-level throttling.
1862 */
1863 if (wbc->sync_mode != WB_SYNC_NONE) {
1864 lock_buffer(bh);
1865 } else if (!trylock_buffer(bh)) {
1866 folio_redirty_for_writepage(wbc, folio);
1867 continue;
1868 }
1869 if (test_clear_buffer_dirty(bh)) {
1870 mark_buffer_async_write_endio(bh, handler);
1871 } else {
1872 unlock_buffer(bh);
1873 }
1874 } while ((bh = bh->b_this_page) != head);
1875
1876 /*
1877 * The folio and its buffers are protected by the writeback flag,
1878 * so we can drop the bh refcounts early.
1879 */
1880 BUG_ON(folio_test_writeback(folio));
1881 folio_start_writeback(folio);
1882
1883 do {
1884 struct buffer_head *next = bh->b_this_page;
1885 if (buffer_async_write(bh)) {
1886 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1887 nr_underway++;
1888 }
1889 bh = next;
1890 } while (bh != head);
1891 folio_unlock(folio);
1892
1893 err = 0;
1894done:
1895 if (nr_underway == 0) {
1896 /*
1897 * The folio was marked dirty, but the buffers were
1898 * clean. Someone wrote them back by hand with
1899 * write_dirty_buffer/submit_bh. A rare case.
1900 */
1901 folio_end_writeback(folio);
1902
1903 /*
1904 * The folio and buffer_heads can be released at any time from
1905 * here on.
1906 */
1907 }
1908 return err;
1909
1910recover:
1911 /*
1912 * ENOSPC, or some other error. We may already have added some
1913 * blocks to the file, so we need to write these out to avoid
1914 * exposing stale data.
1915 * The folio is currently locked and not marked for writeback
1916 */
1917 bh = head;
1918 /* Recovery: lock and submit the mapped buffers */
1919 do {
1920 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1921 !buffer_delay(bh)) {
1922 lock_buffer(bh);
1923 mark_buffer_async_write_endio(bh, handler);
1924 } else {
1925 /*
1926 * The buffer may have been set dirty during
1927 * attachment to a dirty folio.
1928 */
1929 clear_buffer_dirty(bh);
1930 }
1931 } while ((bh = bh->b_this_page) != head);
1932 folio_set_error(folio);
1933 BUG_ON(folio_test_writeback(folio));
1934 mapping_set_error(folio->mapping, err);
1935 folio_start_writeback(folio);
1936 do {
1937 struct buffer_head *next = bh->b_this_page;
1938 if (buffer_async_write(bh)) {
1939 clear_buffer_dirty(bh);
1940 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1941 nr_underway++;
1942 }
1943 bh = next;
1944 } while (bh != head);
1945 folio_unlock(folio);
1946 goto done;
1947}
1948EXPORT_SYMBOL(__block_write_full_folio);
1949
1950/*
1951 * If a folio has any new buffers, zero them out here, and mark them uptodate
1952 * and dirty so they'll be written out (in order to prevent uninitialised
1953 * block data from leaking). And clear the new bit.
1954 */
1955void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1956{
1957 size_t block_start, block_end;
1958 struct buffer_head *head, *bh;
1959
1960 BUG_ON(!folio_test_locked(folio));
1961 head = folio_buffers(folio);
1962 if (!head)
1963 return;
1964
1965 bh = head;
1966 block_start = 0;
1967 do {
1968 block_end = block_start + bh->b_size;
1969
1970 if (buffer_new(bh)) {
1971 if (block_end > from && block_start < to) {
1972 if (!folio_test_uptodate(folio)) {
1973 size_t start, xend;
1974
1975 start = max(from, block_start);
1976 xend = min(to, block_end);
1977
1978 folio_zero_segment(folio, start, xend);
1979 set_buffer_uptodate(bh);
1980 }
1981
1982 clear_buffer_new(bh);
1983 mark_buffer_dirty(bh);
1984 }
1985 }
1986
1987 block_start = block_end;
1988 bh = bh->b_this_page;
1989 } while (bh != head);
1990}
1991EXPORT_SYMBOL(folio_zero_new_buffers);
1992
1993static int
1994iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1995 const struct iomap *iomap)
1996{
1997 loff_t offset = (loff_t)block << inode->i_blkbits;
1998
1999 bh->b_bdev = iomap->bdev;
2000
2001 /*
2002 * Block points to offset in file we need to map, iomap contains
2003 * the offset at which the map starts. If the map ends before the
2004 * current block, then do not map the buffer and let the caller
2005 * handle it.
2006 */
2007 if (offset >= iomap->offset + iomap->length)
2008 return -EIO;
2009
2010 switch (iomap->type) {
2011 case IOMAP_HOLE:
2012 /*
2013 * If the buffer is not up to date or beyond the current EOF,
2014 * we need to mark it as new to ensure sub-block zeroing is
2015 * executed if necessary.
2016 */
2017 if (!buffer_uptodate(bh) ||
2018 (offset >= i_size_read(inode)))
2019 set_buffer_new(bh);
2020 return 0;
2021 case IOMAP_DELALLOC:
2022 if (!buffer_uptodate(bh) ||
2023 (offset >= i_size_read(inode)))
2024 set_buffer_new(bh);
2025 set_buffer_uptodate(bh);
2026 set_buffer_mapped(bh);
2027 set_buffer_delay(bh);
2028 return 0;
2029 case IOMAP_UNWRITTEN:
2030 /*
2031 * For unwritten regions, we always need to ensure that regions
2032 * in the block we are not writing to are zeroed. Mark the
2033 * buffer as new to ensure this.
2034 */
2035 set_buffer_new(bh);
2036 set_buffer_unwritten(bh);
2037 fallthrough;
2038 case IOMAP_MAPPED:
2039 if ((iomap->flags & IOMAP_F_NEW) ||
2040 offset >= i_size_read(inode)) {
2041 /*
2042 * This can happen if truncating the block device races
2043 * with the check in the caller as i_size updates on
2044 * block devices aren't synchronized by i_rwsem for
2045 * block devices.
2046 */
2047 if (S_ISBLK(inode->i_mode))
2048 return -EIO;
2049 set_buffer_new(bh);
2050 }
2051 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2052 inode->i_blkbits;
2053 set_buffer_mapped(bh);
2054 return 0;
2055 default:
2056 WARN_ON_ONCE(1);
2057 return -EIO;
2058 }
2059}
2060
2061int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2062 get_block_t *get_block, const struct iomap *iomap)
2063{
2064 size_t from = offset_in_folio(folio, pos);
2065 size_t to = from + len;
2066 struct inode *inode = folio->mapping->host;
2067 size_t block_start, block_end;
2068 sector_t block;
2069 int err = 0;
2070 size_t blocksize;
2071 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2072
2073 BUG_ON(!folio_test_locked(folio));
2074 BUG_ON(to > folio_size(folio));
2075 BUG_ON(from > to);
2076
2077 head = folio_create_buffers(folio, inode, 0);
2078 blocksize = head->b_size;
2079 block = div_u64(folio_pos(folio), blocksize);
2080
2081 for (bh = head, block_start = 0; bh != head || !block_start;
2082 block++, block_start=block_end, bh = bh->b_this_page) {
2083 block_end = block_start + blocksize;
2084 if (block_end <= from || block_start >= to) {
2085 if (folio_test_uptodate(folio)) {
2086 if (!buffer_uptodate(bh))
2087 set_buffer_uptodate(bh);
2088 }
2089 continue;
2090 }
2091 if (buffer_new(bh))
2092 clear_buffer_new(bh);
2093 if (!buffer_mapped(bh)) {
2094 WARN_ON(bh->b_size != blocksize);
2095 if (get_block)
2096 err = get_block(inode, block, bh, 1);
2097 else
2098 err = iomap_to_bh(inode, block, bh, iomap);
2099 if (err)
2100 break;
2101
2102 if (buffer_new(bh)) {
2103 clean_bdev_bh_alias(bh);
2104 if (folio_test_uptodate(folio)) {
2105 clear_buffer_new(bh);
2106 set_buffer_uptodate(bh);
2107 mark_buffer_dirty(bh);
2108 continue;
2109 }
2110 if (block_end > to || block_start < from)
2111 folio_zero_segments(folio,
2112 to, block_end,
2113 block_start, from);
2114 continue;
2115 }
2116 }
2117 if (folio_test_uptodate(folio)) {
2118 if (!buffer_uptodate(bh))
2119 set_buffer_uptodate(bh);
2120 continue;
2121 }
2122 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2123 !buffer_unwritten(bh) &&
2124 (block_start < from || block_end > to)) {
2125 bh_read_nowait(bh, 0);
2126 *wait_bh++=bh;
2127 }
2128 }
2129 /*
2130 * If we issued read requests - let them complete.
2131 */
2132 while(wait_bh > wait) {
2133 wait_on_buffer(*--wait_bh);
2134 if (!buffer_uptodate(*wait_bh))
2135 err = -EIO;
2136 }
2137 if (unlikely(err))
2138 folio_zero_new_buffers(folio, from, to);
2139 return err;
2140}
2141
2142int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2143 get_block_t *get_block)
2144{
2145 return __block_write_begin_int(page_folio(page), pos, len, get_block,
2146 NULL);
2147}
2148EXPORT_SYMBOL(__block_write_begin);
2149
2150static void __block_commit_write(struct folio *folio, size_t from, size_t to)
2151{
2152 size_t block_start, block_end;
2153 bool partial = false;
2154 unsigned blocksize;
2155 struct buffer_head *bh, *head;
2156
2157 bh = head = folio_buffers(folio);
2158 blocksize = bh->b_size;
2159
2160 block_start = 0;
2161 do {
2162 block_end = block_start + blocksize;
2163 if (block_end <= from || block_start >= to) {
2164 if (!buffer_uptodate(bh))
2165 partial = true;
2166 } else {
2167 set_buffer_uptodate(bh);
2168 mark_buffer_dirty(bh);
2169 }
2170 if (buffer_new(bh))
2171 clear_buffer_new(bh);
2172
2173 block_start = block_end;
2174 bh = bh->b_this_page;
2175 } while (bh != head);
2176
2177 /*
2178 * If this is a partial write which happened to make all buffers
2179 * uptodate then we can optimize away a bogus read_folio() for
2180 * the next read(). Here we 'discover' whether the folio went
2181 * uptodate as a result of this (potentially partial) write.
2182 */
2183 if (!partial)
2184 folio_mark_uptodate(folio);
2185}
2186
2187/*
2188 * block_write_begin takes care of the basic task of block allocation and
2189 * bringing partial write blocks uptodate first.
2190 *
2191 * The filesystem needs to handle block truncation upon failure.
2192 */
2193int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2194 struct page **pagep, get_block_t *get_block)
2195{
2196 pgoff_t index = pos >> PAGE_SHIFT;
2197 struct page *page;
2198 int status;
2199
2200 page = grab_cache_page_write_begin(mapping, index);
2201 if (!page)
2202 return -ENOMEM;
2203
2204 status = __block_write_begin(page, pos, len, get_block);
2205 if (unlikely(status)) {
2206 unlock_page(page);
2207 put_page(page);
2208 page = NULL;
2209 }
2210
2211 *pagep = page;
2212 return status;
2213}
2214EXPORT_SYMBOL(block_write_begin);
2215
2216int block_write_end(struct file *file, struct address_space *mapping,
2217 loff_t pos, unsigned len, unsigned copied,
2218 struct page *page, void *fsdata)
2219{
2220 struct folio *folio = page_folio(page);
2221 size_t start = pos - folio_pos(folio);
2222
2223 if (unlikely(copied < len)) {
2224 /*
2225 * The buffers that were written will now be uptodate, so
2226 * we don't have to worry about a read_folio reading them
2227 * and overwriting a partial write. However if we have
2228 * encountered a short write and only partially written
2229 * into a buffer, it will not be marked uptodate, so a
2230 * read_folio might come in and destroy our partial write.
2231 *
2232 * Do the simplest thing, and just treat any short write to a
2233 * non uptodate folio as a zero-length write, and force the
2234 * caller to redo the whole thing.
2235 */
2236 if (!folio_test_uptodate(folio))
2237 copied = 0;
2238
2239 folio_zero_new_buffers(folio, start+copied, start+len);
2240 }
2241 flush_dcache_folio(folio);
2242
2243 /* This could be a short (even 0-length) commit */
2244 __block_commit_write(folio, start, start + copied);
2245
2246 return copied;
2247}
2248EXPORT_SYMBOL(block_write_end);
2249
2250int generic_write_end(struct file *file, struct address_space *mapping,
2251 loff_t pos, unsigned len, unsigned copied,
2252 struct page *page, void *fsdata)
2253{
2254 struct inode *inode = mapping->host;
2255 loff_t old_size = inode->i_size;
2256 bool i_size_changed = false;
2257
2258 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2259
2260 /*
2261 * No need to use i_size_read() here, the i_size cannot change under us
2262 * because we hold i_rwsem.
2263 *
2264 * But it's important to update i_size while still holding page lock:
2265 * page writeout could otherwise come in and zero beyond i_size.
2266 */
2267 if (pos + copied > inode->i_size) {
2268 i_size_write(inode, pos + copied);
2269 i_size_changed = true;
2270 }
2271
2272 unlock_page(page);
2273 put_page(page);
2274
2275 if (old_size < pos)
2276 pagecache_isize_extended(inode, old_size, pos);
2277 /*
2278 * Don't mark the inode dirty under page lock. First, it unnecessarily
2279 * makes the holding time of page lock longer. Second, it forces lock
2280 * ordering of page lock and transaction start for journaling
2281 * filesystems.
2282 */
2283 if (i_size_changed)
2284 mark_inode_dirty(inode);
2285 return copied;
2286}
2287EXPORT_SYMBOL(generic_write_end);
2288
2289/*
2290 * block_is_partially_uptodate checks whether buffers within a folio are
2291 * uptodate or not.
2292 *
2293 * Returns true if all buffers which correspond to the specified part
2294 * of the folio are uptodate.
2295 */
2296bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2297{
2298 unsigned block_start, block_end, blocksize;
2299 unsigned to;
2300 struct buffer_head *bh, *head;
2301 bool ret = true;
2302
2303 head = folio_buffers(folio);
2304 if (!head)
2305 return false;
2306 blocksize = head->b_size;
2307 to = min_t(unsigned, folio_size(folio) - from, count);
2308 to = from + to;
2309 if (from < blocksize && to > folio_size(folio) - blocksize)
2310 return false;
2311
2312 bh = head;
2313 block_start = 0;
2314 do {
2315 block_end = block_start + blocksize;
2316 if (block_end > from && block_start < to) {
2317 if (!buffer_uptodate(bh)) {
2318 ret = false;
2319 break;
2320 }
2321 if (block_end >= to)
2322 break;
2323 }
2324 block_start = block_end;
2325 bh = bh->b_this_page;
2326 } while (bh != head);
2327
2328 return ret;
2329}
2330EXPORT_SYMBOL(block_is_partially_uptodate);
2331
2332/*
2333 * Generic "read_folio" function for block devices that have the normal
2334 * get_block functionality. This is most of the block device filesystems.
2335 * Reads the folio asynchronously --- the unlock_buffer() and
2336 * set/clear_buffer_uptodate() functions propagate buffer state into the
2337 * folio once IO has completed.
2338 */
2339int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2340{
2341 struct inode *inode = folio->mapping->host;
2342 sector_t iblock, lblock;
2343 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2344 size_t blocksize;
2345 int nr, i;
2346 int fully_mapped = 1;
2347 bool page_error = false;
2348 loff_t limit = i_size_read(inode);
2349
2350 /* This is needed for ext4. */
2351 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2352 limit = inode->i_sb->s_maxbytes;
2353
2354 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2355
2356 head = folio_create_buffers(folio, inode, 0);
2357 blocksize = head->b_size;
2358
2359 iblock = div_u64(folio_pos(folio), blocksize);
2360 lblock = div_u64(limit + blocksize - 1, blocksize);
2361 bh = head;
2362 nr = 0;
2363 i = 0;
2364
2365 do {
2366 if (buffer_uptodate(bh))
2367 continue;
2368
2369 if (!buffer_mapped(bh)) {
2370 int err = 0;
2371
2372 fully_mapped = 0;
2373 if (iblock < lblock) {
2374 WARN_ON(bh->b_size != blocksize);
2375 err = get_block(inode, iblock, bh, 0);
2376 if (err) {
2377 folio_set_error(folio);
2378 page_error = true;
2379 }
2380 }
2381 if (!buffer_mapped(bh)) {
2382 folio_zero_range(folio, i * blocksize,
2383 blocksize);
2384 if (!err)
2385 set_buffer_uptodate(bh);
2386 continue;
2387 }
2388 /*
2389 * get_block() might have updated the buffer
2390 * synchronously
2391 */
2392 if (buffer_uptodate(bh))
2393 continue;
2394 }
2395 arr[nr++] = bh;
2396 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2397
2398 if (fully_mapped)
2399 folio_set_mappedtodisk(folio);
2400
2401 if (!nr) {
2402 /*
2403 * All buffers are uptodate or get_block() returned an
2404 * error when trying to map them - we can finish the read.
2405 */
2406 folio_end_read(folio, !page_error);
2407 return 0;
2408 }
2409
2410 /* Stage two: lock the buffers */
2411 for (i = 0; i < nr; i++) {
2412 bh = arr[i];
2413 lock_buffer(bh);
2414 mark_buffer_async_read(bh);
2415 }
2416
2417 /*
2418 * Stage 3: start the IO. Check for uptodateness
2419 * inside the buffer lock in case another process reading
2420 * the underlying blockdev brought it uptodate (the sct fix).
2421 */
2422 for (i = 0; i < nr; i++) {
2423 bh = arr[i];
2424 if (buffer_uptodate(bh))
2425 end_buffer_async_read(bh, 1);
2426 else
2427 submit_bh(REQ_OP_READ, bh);
2428 }
2429 return 0;
2430}
2431EXPORT_SYMBOL(block_read_full_folio);
2432
2433/* utility function for filesystems that need to do work on expanding
2434 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2435 * deal with the hole.
2436 */
2437int generic_cont_expand_simple(struct inode *inode, loff_t size)
2438{
2439 struct address_space *mapping = inode->i_mapping;
2440 const struct address_space_operations *aops = mapping->a_ops;
2441 struct page *page;
2442 void *fsdata = NULL;
2443 int err;
2444
2445 err = inode_newsize_ok(inode, size);
2446 if (err)
2447 goto out;
2448
2449 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2450 if (err)
2451 goto out;
2452
2453 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2454 BUG_ON(err > 0);
2455
2456out:
2457 return err;
2458}
2459EXPORT_SYMBOL(generic_cont_expand_simple);
2460
2461static int cont_expand_zero(struct file *file, struct address_space *mapping,
2462 loff_t pos, loff_t *bytes)
2463{
2464 struct inode *inode = mapping->host;
2465 const struct address_space_operations *aops = mapping->a_ops;
2466 unsigned int blocksize = i_blocksize(inode);
2467 struct page *page;
2468 void *fsdata = NULL;
2469 pgoff_t index, curidx;
2470 loff_t curpos;
2471 unsigned zerofrom, offset, len;
2472 int err = 0;
2473
2474 index = pos >> PAGE_SHIFT;
2475 offset = pos & ~PAGE_MASK;
2476
2477 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2478 zerofrom = curpos & ~PAGE_MASK;
2479 if (zerofrom & (blocksize-1)) {
2480 *bytes |= (blocksize-1);
2481 (*bytes)++;
2482 }
2483 len = PAGE_SIZE - zerofrom;
2484
2485 err = aops->write_begin(file, mapping, curpos, len,
2486 &page, &fsdata);
2487 if (err)
2488 goto out;
2489 zero_user(page, zerofrom, len);
2490 err = aops->write_end(file, mapping, curpos, len, len,
2491 page, fsdata);
2492 if (err < 0)
2493 goto out;
2494 BUG_ON(err != len);
2495 err = 0;
2496
2497 balance_dirty_pages_ratelimited(mapping);
2498
2499 if (fatal_signal_pending(current)) {
2500 err = -EINTR;
2501 goto out;
2502 }
2503 }
2504
2505 /* page covers the boundary, find the boundary offset */
2506 if (index == curidx) {
2507 zerofrom = curpos & ~PAGE_MASK;
2508 /* if we will expand the thing last block will be filled */
2509 if (offset <= zerofrom) {
2510 goto out;
2511 }
2512 if (zerofrom & (blocksize-1)) {
2513 *bytes |= (blocksize-1);
2514 (*bytes)++;
2515 }
2516 len = offset - zerofrom;
2517
2518 err = aops->write_begin(file, mapping, curpos, len,
2519 &page, &fsdata);
2520 if (err)
2521 goto out;
2522 zero_user(page, zerofrom, len);
2523 err = aops->write_end(file, mapping, curpos, len, len,
2524 page, fsdata);
2525 if (err < 0)
2526 goto out;
2527 BUG_ON(err != len);
2528 err = 0;
2529 }
2530out:
2531 return err;
2532}
2533
2534/*
2535 * For moronic filesystems that do not allow holes in file.
2536 * We may have to extend the file.
2537 */
2538int cont_write_begin(struct file *file, struct address_space *mapping,
2539 loff_t pos, unsigned len,
2540 struct page **pagep, void **fsdata,
2541 get_block_t *get_block, loff_t *bytes)
2542{
2543 struct inode *inode = mapping->host;
2544 unsigned int blocksize = i_blocksize(inode);
2545 unsigned int zerofrom;
2546 int err;
2547
2548 err = cont_expand_zero(file, mapping, pos, bytes);
2549 if (err)
2550 return err;
2551
2552 zerofrom = *bytes & ~PAGE_MASK;
2553 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2554 *bytes |= (blocksize-1);
2555 (*bytes)++;
2556 }
2557
2558 return block_write_begin(mapping, pos, len, pagep, get_block);
2559}
2560EXPORT_SYMBOL(cont_write_begin);
2561
2562void block_commit_write(struct page *page, unsigned from, unsigned to)
2563{
2564 struct folio *folio = page_folio(page);
2565 __block_commit_write(folio, from, to);
2566}
2567EXPORT_SYMBOL(block_commit_write);
2568
2569/*
2570 * block_page_mkwrite() is not allowed to change the file size as it gets
2571 * called from a page fault handler when a page is first dirtied. Hence we must
2572 * be careful to check for EOF conditions here. We set the page up correctly
2573 * for a written page which means we get ENOSPC checking when writing into
2574 * holes and correct delalloc and unwritten extent mapping on filesystems that
2575 * support these features.
2576 *
2577 * We are not allowed to take the i_mutex here so we have to play games to
2578 * protect against truncate races as the page could now be beyond EOF. Because
2579 * truncate writes the inode size before removing pages, once we have the
2580 * page lock we can determine safely if the page is beyond EOF. If it is not
2581 * beyond EOF, then the page is guaranteed safe against truncation until we
2582 * unlock the page.
2583 *
2584 * Direct callers of this function should protect against filesystem freezing
2585 * using sb_start_pagefault() - sb_end_pagefault() functions.
2586 */
2587int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2588 get_block_t get_block)
2589{
2590 struct folio *folio = page_folio(vmf->page);
2591 struct inode *inode = file_inode(vma->vm_file);
2592 unsigned long end;
2593 loff_t size;
2594 int ret;
2595
2596 folio_lock(folio);
2597 size = i_size_read(inode);
2598 if ((folio->mapping != inode->i_mapping) ||
2599 (folio_pos(folio) >= size)) {
2600 /* We overload EFAULT to mean page got truncated */
2601 ret = -EFAULT;
2602 goto out_unlock;
2603 }
2604
2605 end = folio_size(folio);
2606 /* folio is wholly or partially inside EOF */
2607 if (folio_pos(folio) + end > size)
2608 end = size - folio_pos(folio);
2609
2610 ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2611 if (unlikely(ret))
2612 goto out_unlock;
2613
2614 __block_commit_write(folio, 0, end);
2615
2616 folio_mark_dirty(folio);
2617 folio_wait_stable(folio);
2618 return 0;
2619out_unlock:
2620 folio_unlock(folio);
2621 return ret;
2622}
2623EXPORT_SYMBOL(block_page_mkwrite);
2624
2625int block_truncate_page(struct address_space *mapping,
2626 loff_t from, get_block_t *get_block)
2627{
2628 pgoff_t index = from >> PAGE_SHIFT;
2629 unsigned blocksize;
2630 sector_t iblock;
2631 size_t offset, length, pos;
2632 struct inode *inode = mapping->host;
2633 struct folio *folio;
2634 struct buffer_head *bh;
2635 int err = 0;
2636
2637 blocksize = i_blocksize(inode);
2638 length = from & (blocksize - 1);
2639
2640 /* Block boundary? Nothing to do */
2641 if (!length)
2642 return 0;
2643
2644 length = blocksize - length;
2645 iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2646
2647 folio = filemap_grab_folio(mapping, index);
2648 if (IS_ERR(folio))
2649 return PTR_ERR(folio);
2650
2651 bh = folio_buffers(folio);
2652 if (!bh)
2653 bh = create_empty_buffers(folio, blocksize, 0);
2654
2655 /* Find the buffer that contains "offset" */
2656 offset = offset_in_folio(folio, from);
2657 pos = blocksize;
2658 while (offset >= pos) {
2659 bh = bh->b_this_page;
2660 iblock++;
2661 pos += blocksize;
2662 }
2663
2664 if (!buffer_mapped(bh)) {
2665 WARN_ON(bh->b_size != blocksize);
2666 err = get_block(inode, iblock, bh, 0);
2667 if (err)
2668 goto unlock;
2669 /* unmapped? It's a hole - nothing to do */
2670 if (!buffer_mapped(bh))
2671 goto unlock;
2672 }
2673
2674 /* Ok, it's mapped. Make sure it's up-to-date */
2675 if (folio_test_uptodate(folio))
2676 set_buffer_uptodate(bh);
2677
2678 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2679 err = bh_read(bh, 0);
2680 /* Uhhuh. Read error. Complain and punt. */
2681 if (err < 0)
2682 goto unlock;
2683 }
2684
2685 folio_zero_range(folio, offset, length);
2686 mark_buffer_dirty(bh);
2687
2688unlock:
2689 folio_unlock(folio);
2690 folio_put(folio);
2691
2692 return err;
2693}
2694EXPORT_SYMBOL(block_truncate_page);
2695
2696/*
2697 * The generic ->writepage function for buffer-backed address_spaces
2698 */
2699int block_write_full_page(struct page *page, get_block_t *get_block,
2700 struct writeback_control *wbc)
2701{
2702 struct folio *folio = page_folio(page);
2703 struct inode * const inode = folio->mapping->host;
2704 loff_t i_size = i_size_read(inode);
2705
2706 /* Is the folio fully inside i_size? */
2707 if (folio_pos(folio) + folio_size(folio) <= i_size)
2708 return __block_write_full_folio(inode, folio, get_block, wbc,
2709 end_buffer_async_write);
2710
2711 /* Is the folio fully outside i_size? (truncate in progress) */
2712 if (folio_pos(folio) >= i_size) {
2713 folio_unlock(folio);
2714 return 0; /* don't care */
2715 }
2716
2717 /*
2718 * The folio straddles i_size. It must be zeroed out on each and every
2719 * writepage invocation because it may be mmapped. "A file is mapped
2720 * in multiples of the page size. For a file that is not a multiple of
2721 * the page size, the remaining memory is zeroed when mapped, and
2722 * writes to that region are not written out to the file."
2723 */
2724 folio_zero_segment(folio, offset_in_folio(folio, i_size),
2725 folio_size(folio));
2726 return __block_write_full_folio(inode, folio, get_block, wbc,
2727 end_buffer_async_write);
2728}
2729EXPORT_SYMBOL(block_write_full_page);
2730
2731sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2732 get_block_t *get_block)
2733{
2734 struct inode *inode = mapping->host;
2735 struct buffer_head tmp = {
2736 .b_size = i_blocksize(inode),
2737 };
2738
2739 get_block(inode, block, &tmp, 0);
2740 return tmp.b_blocknr;
2741}
2742EXPORT_SYMBOL(generic_block_bmap);
2743
2744static void end_bio_bh_io_sync(struct bio *bio)
2745{
2746 struct buffer_head *bh = bio->bi_private;
2747
2748 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2749 set_bit(BH_Quiet, &bh->b_state);
2750
2751 bh->b_end_io(bh, !bio->bi_status);
2752 bio_put(bio);
2753}
2754
2755static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2756 struct writeback_control *wbc)
2757{
2758 const enum req_op op = opf & REQ_OP_MASK;
2759 struct bio *bio;
2760
2761 BUG_ON(!buffer_locked(bh));
2762 BUG_ON(!buffer_mapped(bh));
2763 BUG_ON(!bh->b_end_io);
2764 BUG_ON(buffer_delay(bh));
2765 BUG_ON(buffer_unwritten(bh));
2766
2767 /*
2768 * Only clear out a write error when rewriting
2769 */
2770 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2771 clear_buffer_write_io_error(bh);
2772
2773 if (buffer_meta(bh))
2774 opf |= REQ_META;
2775 if (buffer_prio(bh))
2776 opf |= REQ_PRIO;
2777
2778 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2779
2780 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2781
2782 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2783
2784 __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2785
2786 bio->bi_end_io = end_bio_bh_io_sync;
2787 bio->bi_private = bh;
2788
2789 /* Take care of bh's that straddle the end of the device */
2790 guard_bio_eod(bio);
2791
2792 if (wbc) {
2793 wbc_init_bio(wbc, bio);
2794 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2795 }
2796
2797 submit_bio(bio);
2798}
2799
2800void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2801{
2802 submit_bh_wbc(opf, bh, NULL);
2803}
2804EXPORT_SYMBOL(submit_bh);
2805
2806void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2807{
2808 lock_buffer(bh);
2809 if (!test_clear_buffer_dirty(bh)) {
2810 unlock_buffer(bh);
2811 return;
2812 }
2813 bh->b_end_io = end_buffer_write_sync;
2814 get_bh(bh);
2815 submit_bh(REQ_OP_WRITE | op_flags, bh);
2816}
2817EXPORT_SYMBOL(write_dirty_buffer);
2818
2819/*
2820 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2821 * and then start new I/O and then wait upon it. The caller must have a ref on
2822 * the buffer_head.
2823 */
2824int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2825{
2826 WARN_ON(atomic_read(&bh->b_count) < 1);
2827 lock_buffer(bh);
2828 if (test_clear_buffer_dirty(bh)) {
2829 /*
2830 * The bh should be mapped, but it might not be if the
2831 * device was hot-removed. Not much we can do but fail the I/O.
2832 */
2833 if (!buffer_mapped(bh)) {
2834 unlock_buffer(bh);
2835 return -EIO;
2836 }
2837
2838 get_bh(bh);
2839 bh->b_end_io = end_buffer_write_sync;
2840 submit_bh(REQ_OP_WRITE | op_flags, bh);
2841 wait_on_buffer(bh);
2842 if (!buffer_uptodate(bh))
2843 return -EIO;
2844 } else {
2845 unlock_buffer(bh);
2846 }
2847 return 0;
2848}
2849EXPORT_SYMBOL(__sync_dirty_buffer);
2850
2851int sync_dirty_buffer(struct buffer_head *bh)
2852{
2853 return __sync_dirty_buffer(bh, REQ_SYNC);
2854}
2855EXPORT_SYMBOL(sync_dirty_buffer);
2856
2857/*
2858 * try_to_free_buffers() checks if all the buffers on this particular folio
2859 * are unused, and releases them if so.
2860 *
2861 * Exclusion against try_to_free_buffers may be obtained by either
2862 * locking the folio or by holding its mapping's private_lock.
2863 *
2864 * If the folio is dirty but all the buffers are clean then we need to
2865 * be sure to mark the folio clean as well. This is because the folio
2866 * may be against a block device, and a later reattachment of buffers
2867 * to a dirty folio will set *all* buffers dirty. Which would corrupt
2868 * filesystem data on the same device.
2869 *
2870 * The same applies to regular filesystem folios: if all the buffers are
2871 * clean then we set the folio clean and proceed. To do that, we require
2872 * total exclusion from block_dirty_folio(). That is obtained with
2873 * private_lock.
2874 *
2875 * try_to_free_buffers() is non-blocking.
2876 */
2877static inline int buffer_busy(struct buffer_head *bh)
2878{
2879 return atomic_read(&bh->b_count) |
2880 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2881}
2882
2883static bool
2884drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2885{
2886 struct buffer_head *head = folio_buffers(folio);
2887 struct buffer_head *bh;
2888
2889 bh = head;
2890 do {
2891 if (buffer_busy(bh))
2892 goto failed;
2893 bh = bh->b_this_page;
2894 } while (bh != head);
2895
2896 do {
2897 struct buffer_head *next = bh->b_this_page;
2898
2899 if (bh->b_assoc_map)
2900 __remove_assoc_queue(bh);
2901 bh = next;
2902 } while (bh != head);
2903 *buffers_to_free = head;
2904 folio_detach_private(folio);
2905 return true;
2906failed:
2907 return false;
2908}
2909
2910bool try_to_free_buffers(struct folio *folio)
2911{
2912 struct address_space * const mapping = folio->mapping;
2913 struct buffer_head *buffers_to_free = NULL;
2914 bool ret = 0;
2915
2916 BUG_ON(!folio_test_locked(folio));
2917 if (folio_test_writeback(folio))
2918 return false;
2919
2920 if (mapping == NULL) { /* can this still happen? */
2921 ret = drop_buffers(folio, &buffers_to_free);
2922 goto out;
2923 }
2924
2925 spin_lock(&mapping->private_lock);
2926 ret = drop_buffers(folio, &buffers_to_free);
2927
2928 /*
2929 * If the filesystem writes its buffers by hand (eg ext3)
2930 * then we can have clean buffers against a dirty folio. We
2931 * clean the folio here; otherwise the VM will never notice
2932 * that the filesystem did any IO at all.
2933 *
2934 * Also, during truncate, discard_buffer will have marked all
2935 * the folio's buffers clean. We discover that here and clean
2936 * the folio also.
2937 *
2938 * private_lock must be held over this entire operation in order
2939 * to synchronise against block_dirty_folio and prevent the
2940 * dirty bit from being lost.
2941 */
2942 if (ret)
2943 folio_cancel_dirty(folio);
2944 spin_unlock(&mapping->private_lock);
2945out:
2946 if (buffers_to_free) {
2947 struct buffer_head *bh = buffers_to_free;
2948
2949 do {
2950 struct buffer_head *next = bh->b_this_page;
2951 free_buffer_head(bh);
2952 bh = next;
2953 } while (bh != buffers_to_free);
2954 }
2955 return ret;
2956}
2957EXPORT_SYMBOL(try_to_free_buffers);
2958
2959/*
2960 * Buffer-head allocation
2961 */
2962static struct kmem_cache *bh_cachep __ro_after_init;
2963
2964/*
2965 * Once the number of bh's in the machine exceeds this level, we start
2966 * stripping them in writeback.
2967 */
2968static unsigned long max_buffer_heads __ro_after_init;
2969
2970int buffer_heads_over_limit;
2971
2972struct bh_accounting {
2973 int nr; /* Number of live bh's */
2974 int ratelimit; /* Limit cacheline bouncing */
2975};
2976
2977static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2978
2979static void recalc_bh_state(void)
2980{
2981 int i;
2982 int tot = 0;
2983
2984 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
2985 return;
2986 __this_cpu_write(bh_accounting.ratelimit, 0);
2987 for_each_online_cpu(i)
2988 tot += per_cpu(bh_accounting, i).nr;
2989 buffer_heads_over_limit = (tot > max_buffer_heads);
2990}
2991
2992struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2993{
2994 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
2995 if (ret) {
2996 INIT_LIST_HEAD(&ret->b_assoc_buffers);
2997 spin_lock_init(&ret->b_uptodate_lock);
2998 preempt_disable();
2999 __this_cpu_inc(bh_accounting.nr);
3000 recalc_bh_state();
3001 preempt_enable();
3002 }
3003 return ret;
3004}
3005EXPORT_SYMBOL(alloc_buffer_head);
3006
3007void free_buffer_head(struct buffer_head *bh)
3008{
3009 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3010 kmem_cache_free(bh_cachep, bh);
3011 preempt_disable();
3012 __this_cpu_dec(bh_accounting.nr);
3013 recalc_bh_state();
3014 preempt_enable();
3015}
3016EXPORT_SYMBOL(free_buffer_head);
3017
3018static int buffer_exit_cpu_dead(unsigned int cpu)
3019{
3020 int i;
3021 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3022
3023 for (i = 0; i < BH_LRU_SIZE; i++) {
3024 brelse(b->bhs[i]);
3025 b->bhs[i] = NULL;
3026 }
3027 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3028 per_cpu(bh_accounting, cpu).nr = 0;
3029 return 0;
3030}
3031
3032/**
3033 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3034 * @bh: struct buffer_head
3035 *
3036 * Return true if the buffer is up-to-date and false,
3037 * with the buffer locked, if not.
3038 */
3039int bh_uptodate_or_lock(struct buffer_head *bh)
3040{
3041 if (!buffer_uptodate(bh)) {
3042 lock_buffer(bh);
3043 if (!buffer_uptodate(bh))
3044 return 0;
3045 unlock_buffer(bh);
3046 }
3047 return 1;
3048}
3049EXPORT_SYMBOL(bh_uptodate_or_lock);
3050
3051/**
3052 * __bh_read - Submit read for a locked buffer
3053 * @bh: struct buffer_head
3054 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3055 * @wait: wait until reading finish
3056 *
3057 * Returns zero on success or don't wait, and -EIO on error.
3058 */
3059int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3060{
3061 int ret = 0;
3062
3063 BUG_ON(!buffer_locked(bh));
3064
3065 get_bh(bh);
3066 bh->b_end_io = end_buffer_read_sync;
3067 submit_bh(REQ_OP_READ | op_flags, bh);
3068 if (wait) {
3069 wait_on_buffer(bh);
3070 if (!buffer_uptodate(bh))
3071 ret = -EIO;
3072 }
3073 return ret;
3074}
3075EXPORT_SYMBOL(__bh_read);
3076
3077/**
3078 * __bh_read_batch - Submit read for a batch of unlocked buffers
3079 * @nr: entry number of the buffer batch
3080 * @bhs: a batch of struct buffer_head
3081 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3082 * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3083 * buffer that cannot lock.
3084 *
3085 * Returns zero on success or don't wait, and -EIO on error.
3086 */
3087void __bh_read_batch(int nr, struct buffer_head *bhs[],
3088 blk_opf_t op_flags, bool force_lock)
3089{
3090 int i;
3091
3092 for (i = 0; i < nr; i++) {
3093 struct buffer_head *bh = bhs[i];
3094
3095 if (buffer_uptodate(bh))
3096 continue;
3097
3098 if (force_lock)
3099 lock_buffer(bh);
3100 else
3101 if (!trylock_buffer(bh))
3102 continue;
3103
3104 if (buffer_uptodate(bh)) {
3105 unlock_buffer(bh);
3106 continue;
3107 }
3108
3109 bh->b_end_io = end_buffer_read_sync;
3110 get_bh(bh);
3111 submit_bh(REQ_OP_READ | op_flags, bh);
3112 }
3113}
3114EXPORT_SYMBOL(__bh_read_batch);
3115
3116void __init buffer_init(void)
3117{
3118 unsigned long nrpages;
3119 int ret;
3120
3121 bh_cachep = kmem_cache_create("buffer_head",
3122 sizeof(struct buffer_head), 0,
3123 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3124 SLAB_MEM_SPREAD),
3125 NULL);
3126
3127 /*
3128 * Limit the bh occupancy to 10% of ZONE_NORMAL
3129 */
3130 nrpages = (nr_free_buffer_pages() * 10) / 100;
3131 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3132 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3133 NULL, buffer_exit_cpu_dead);
3134 WARN_ON(ret < 0);
3135}
This page took 0.112376 seconds and 4 git commands to generate.