]>
Commit | Line | Data |
---|---|---|
1 | /* auditfilter.c -- filtering of audit events | |
2 | * | |
3 | * Copyright 2003-2004 Red Hat, Inc. | |
4 | * Copyright 2005 Hewlett-Packard Development Company, L.P. | |
5 | * Copyright 2005 IBM Corporation | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify | |
8 | * it under the terms of the GNU General Public License as published by | |
9 | * the Free Software Foundation; either version 2 of the License, or | |
10 | * (at your option) any later version. | |
11 | * | |
12 | * This program is distributed in the hope that it will be useful, | |
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | * GNU General Public License for more details. | |
16 | * | |
17 | * You should have received a copy of the GNU General Public License | |
18 | * along with this program; if not, write to the Free Software | |
19 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
20 | */ | |
21 | ||
22 | #include <linux/kernel.h> | |
23 | #include <linux/audit.h> | |
24 | #include <linux/kthread.h> | |
25 | #include <linux/mutex.h> | |
26 | #include <linux/fs.h> | |
27 | #include <linux/namei.h> | |
28 | #include <linux/netlink.h> | |
29 | #include <linux/sched.h> | |
30 | #include <linux/slab.h> | |
31 | #include <linux/security.h> | |
32 | #include "audit.h" | |
33 | ||
34 | /* | |
35 | * Locking model: | |
36 | * | |
37 | * audit_filter_mutex: | |
38 | * Synchronizes writes and blocking reads of audit's filterlist | |
39 | * data. Rcu is used to traverse the filterlist and access | |
40 | * contents of structs audit_entry, audit_watch and opaque | |
41 | * LSM rules during filtering. If modified, these structures | |
42 | * must be copied and replace their counterparts in the filterlist. | |
43 | * An audit_parent struct is not accessed during filtering, so may | |
44 | * be written directly provided audit_filter_mutex is held. | |
45 | */ | |
46 | ||
47 | /* Audit filter lists, defined in <linux/audit.h> */ | |
48 | struct list_head audit_filter_list[AUDIT_NR_FILTERS] = { | |
49 | LIST_HEAD_INIT(audit_filter_list[0]), | |
50 | LIST_HEAD_INIT(audit_filter_list[1]), | |
51 | LIST_HEAD_INIT(audit_filter_list[2]), | |
52 | LIST_HEAD_INIT(audit_filter_list[3]), | |
53 | LIST_HEAD_INIT(audit_filter_list[4]), | |
54 | LIST_HEAD_INIT(audit_filter_list[5]), | |
55 | #if AUDIT_NR_FILTERS != 6 | |
56 | #error Fix audit_filter_list initialiser | |
57 | #endif | |
58 | }; | |
59 | static struct list_head audit_rules_list[AUDIT_NR_FILTERS] = { | |
60 | LIST_HEAD_INIT(audit_rules_list[0]), | |
61 | LIST_HEAD_INIT(audit_rules_list[1]), | |
62 | LIST_HEAD_INIT(audit_rules_list[2]), | |
63 | LIST_HEAD_INIT(audit_rules_list[3]), | |
64 | LIST_HEAD_INIT(audit_rules_list[4]), | |
65 | LIST_HEAD_INIT(audit_rules_list[5]), | |
66 | }; | |
67 | ||
68 | DEFINE_MUTEX(audit_filter_mutex); | |
69 | ||
70 | static inline void audit_free_rule(struct audit_entry *e) | |
71 | { | |
72 | int i; | |
73 | struct audit_krule *erule = &e->rule; | |
74 | ||
75 | /* some rules don't have associated watches */ | |
76 | if (erule->watch) | |
77 | audit_put_watch(erule->watch); | |
78 | if (erule->fields) | |
79 | for (i = 0; i < erule->field_count; i++) { | |
80 | struct audit_field *f = &erule->fields[i]; | |
81 | kfree(f->lsm_str); | |
82 | security_audit_rule_free(f->lsm_rule); | |
83 | } | |
84 | kfree(erule->fields); | |
85 | kfree(erule->filterkey); | |
86 | kfree(e); | |
87 | } | |
88 | ||
89 | void audit_free_rule_rcu(struct rcu_head *head) | |
90 | { | |
91 | struct audit_entry *e = container_of(head, struct audit_entry, rcu); | |
92 | audit_free_rule(e); | |
93 | } | |
94 | ||
95 | /* Initialize an audit filterlist entry. */ | |
96 | static inline struct audit_entry *audit_init_entry(u32 field_count) | |
97 | { | |
98 | struct audit_entry *entry; | |
99 | struct audit_field *fields; | |
100 | ||
101 | entry = kzalloc(sizeof(*entry), GFP_KERNEL); | |
102 | if (unlikely(!entry)) | |
103 | return NULL; | |
104 | ||
105 | fields = kzalloc(sizeof(*fields) * field_count, GFP_KERNEL); | |
106 | if (unlikely(!fields)) { | |
107 | kfree(entry); | |
108 | return NULL; | |
109 | } | |
110 | entry->rule.fields = fields; | |
111 | ||
112 | return entry; | |
113 | } | |
114 | ||
115 | /* Unpack a filter field's string representation from user-space | |
116 | * buffer. */ | |
117 | char *audit_unpack_string(void **bufp, size_t *remain, size_t len) | |
118 | { | |
119 | char *str; | |
120 | ||
121 | if (!*bufp || (len == 0) || (len > *remain)) | |
122 | return ERR_PTR(-EINVAL); | |
123 | ||
124 | /* Of the currently implemented string fields, PATH_MAX | |
125 | * defines the longest valid length. | |
126 | */ | |
127 | if (len > PATH_MAX) | |
128 | return ERR_PTR(-ENAMETOOLONG); | |
129 | ||
130 | str = kmalloc(len + 1, GFP_KERNEL); | |
131 | if (unlikely(!str)) | |
132 | return ERR_PTR(-ENOMEM); | |
133 | ||
134 | memcpy(str, *bufp, len); | |
135 | str[len] = 0; | |
136 | *bufp += len; | |
137 | *remain -= len; | |
138 | ||
139 | return str; | |
140 | } | |
141 | ||
142 | /* Translate an inode field to kernel respresentation. */ | |
143 | static inline int audit_to_inode(struct audit_krule *krule, | |
144 | struct audit_field *f) | |
145 | { | |
146 | if (krule->listnr != AUDIT_FILTER_EXIT || | |
147 | krule->watch || krule->inode_f || krule->tree || | |
148 | (f->op != Audit_equal && f->op != Audit_not_equal)) | |
149 | return -EINVAL; | |
150 | ||
151 | krule->inode_f = f; | |
152 | return 0; | |
153 | } | |
154 | ||
155 | static __u32 *classes[AUDIT_SYSCALL_CLASSES]; | |
156 | ||
157 | int __init audit_register_class(int class, unsigned *list) | |
158 | { | |
159 | __u32 *p = kzalloc(AUDIT_BITMASK_SIZE * sizeof(__u32), GFP_KERNEL); | |
160 | if (!p) | |
161 | return -ENOMEM; | |
162 | while (*list != ~0U) { | |
163 | unsigned n = *list++; | |
164 | if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) { | |
165 | kfree(p); | |
166 | return -EINVAL; | |
167 | } | |
168 | p[AUDIT_WORD(n)] |= AUDIT_BIT(n); | |
169 | } | |
170 | if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) { | |
171 | kfree(p); | |
172 | return -EINVAL; | |
173 | } | |
174 | classes[class] = p; | |
175 | return 0; | |
176 | } | |
177 | ||
178 | int audit_match_class(int class, unsigned syscall) | |
179 | { | |
180 | if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32)) | |
181 | return 0; | |
182 | if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class])) | |
183 | return 0; | |
184 | return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall); | |
185 | } | |
186 | ||
187 | #ifdef CONFIG_AUDITSYSCALL | |
188 | static inline int audit_match_class_bits(int class, u32 *mask) | |
189 | { | |
190 | int i; | |
191 | ||
192 | if (classes[class]) { | |
193 | for (i = 0; i < AUDIT_BITMASK_SIZE; i++) | |
194 | if (mask[i] & classes[class][i]) | |
195 | return 0; | |
196 | } | |
197 | return 1; | |
198 | } | |
199 | ||
200 | static int audit_match_signal(struct audit_entry *entry) | |
201 | { | |
202 | struct audit_field *arch = entry->rule.arch_f; | |
203 | ||
204 | if (!arch) { | |
205 | /* When arch is unspecified, we must check both masks on biarch | |
206 | * as syscall number alone is ambiguous. */ | |
207 | return (audit_match_class_bits(AUDIT_CLASS_SIGNAL, | |
208 | entry->rule.mask) && | |
209 | audit_match_class_bits(AUDIT_CLASS_SIGNAL_32, | |
210 | entry->rule.mask)); | |
211 | } | |
212 | ||
213 | switch(audit_classify_arch(arch->val)) { | |
214 | case 0: /* native */ | |
215 | return (audit_match_class_bits(AUDIT_CLASS_SIGNAL, | |
216 | entry->rule.mask)); | |
217 | case 1: /* 32bit on biarch */ | |
218 | return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32, | |
219 | entry->rule.mask)); | |
220 | default: | |
221 | return 1; | |
222 | } | |
223 | } | |
224 | #endif | |
225 | ||
226 | /* Common user-space to kernel rule translation. */ | |
227 | static inline struct audit_entry *audit_to_entry_common(struct audit_rule *rule) | |
228 | { | |
229 | unsigned listnr; | |
230 | struct audit_entry *entry; | |
231 | int i, err; | |
232 | ||
233 | err = -EINVAL; | |
234 | listnr = rule->flags & ~AUDIT_FILTER_PREPEND; | |
235 | switch(listnr) { | |
236 | default: | |
237 | goto exit_err; | |
238 | #ifdef CONFIG_AUDITSYSCALL | |
239 | case AUDIT_FILTER_ENTRY: | |
240 | if (rule->action == AUDIT_ALWAYS) | |
241 | goto exit_err; | |
242 | case AUDIT_FILTER_EXIT: | |
243 | case AUDIT_FILTER_TASK: | |
244 | #endif | |
245 | case AUDIT_FILTER_USER: | |
246 | case AUDIT_FILTER_TYPE: | |
247 | ; | |
248 | } | |
249 | if (unlikely(rule->action == AUDIT_POSSIBLE)) { | |
250 | printk(KERN_ERR "AUDIT_POSSIBLE is deprecated\n"); | |
251 | goto exit_err; | |
252 | } | |
253 | if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS) | |
254 | goto exit_err; | |
255 | if (rule->field_count > AUDIT_MAX_FIELDS) | |
256 | goto exit_err; | |
257 | ||
258 | err = -ENOMEM; | |
259 | entry = audit_init_entry(rule->field_count); | |
260 | if (!entry) | |
261 | goto exit_err; | |
262 | ||
263 | entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND; | |
264 | entry->rule.listnr = listnr; | |
265 | entry->rule.action = rule->action; | |
266 | entry->rule.field_count = rule->field_count; | |
267 | ||
268 | for (i = 0; i < AUDIT_BITMASK_SIZE; i++) | |
269 | entry->rule.mask[i] = rule->mask[i]; | |
270 | ||
271 | for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) { | |
272 | int bit = AUDIT_BITMASK_SIZE * 32 - i - 1; | |
273 | __u32 *p = &entry->rule.mask[AUDIT_WORD(bit)]; | |
274 | __u32 *class; | |
275 | ||
276 | if (!(*p & AUDIT_BIT(bit))) | |
277 | continue; | |
278 | *p &= ~AUDIT_BIT(bit); | |
279 | class = classes[i]; | |
280 | if (class) { | |
281 | int j; | |
282 | for (j = 0; j < AUDIT_BITMASK_SIZE; j++) | |
283 | entry->rule.mask[j] |= class[j]; | |
284 | } | |
285 | } | |
286 | ||
287 | return entry; | |
288 | ||
289 | exit_err: | |
290 | return ERR_PTR(err); | |
291 | } | |
292 | ||
293 | static u32 audit_ops[] = | |
294 | { | |
295 | [Audit_equal] = AUDIT_EQUAL, | |
296 | [Audit_not_equal] = AUDIT_NOT_EQUAL, | |
297 | [Audit_bitmask] = AUDIT_BIT_MASK, | |
298 | [Audit_bittest] = AUDIT_BIT_TEST, | |
299 | [Audit_lt] = AUDIT_LESS_THAN, | |
300 | [Audit_gt] = AUDIT_GREATER_THAN, | |
301 | [Audit_le] = AUDIT_LESS_THAN_OR_EQUAL, | |
302 | [Audit_ge] = AUDIT_GREATER_THAN_OR_EQUAL, | |
303 | }; | |
304 | ||
305 | static u32 audit_to_op(u32 op) | |
306 | { | |
307 | u32 n; | |
308 | for (n = Audit_equal; n < Audit_bad && audit_ops[n] != op; n++) | |
309 | ; | |
310 | return n; | |
311 | } | |
312 | ||
313 | /* check if an audit field is valid */ | |
314 | static int audit_field_valid(struct audit_entry *entry, struct audit_field *f) | |
315 | { | |
316 | switch(f->type) { | |
317 | case AUDIT_MSGTYPE: | |
318 | if (entry->rule.listnr != AUDIT_FILTER_TYPE && | |
319 | entry->rule.listnr != AUDIT_FILTER_USER) | |
320 | return -EINVAL; | |
321 | break; | |
322 | }; | |
323 | ||
324 | switch(f->type) { | |
325 | default: | |
326 | return -EINVAL; | |
327 | case AUDIT_UID: | |
328 | case AUDIT_EUID: | |
329 | case AUDIT_SUID: | |
330 | case AUDIT_FSUID: | |
331 | case AUDIT_LOGINUID: | |
332 | case AUDIT_OBJ_UID: | |
333 | case AUDIT_GID: | |
334 | case AUDIT_EGID: | |
335 | case AUDIT_SGID: | |
336 | case AUDIT_FSGID: | |
337 | case AUDIT_OBJ_GID: | |
338 | case AUDIT_PID: | |
339 | case AUDIT_PERS: | |
340 | case AUDIT_MSGTYPE: | |
341 | case AUDIT_PPID: | |
342 | case AUDIT_DEVMAJOR: | |
343 | case AUDIT_DEVMINOR: | |
344 | case AUDIT_EXIT: | |
345 | case AUDIT_SUCCESS: | |
346 | /* bit ops are only useful on syscall args */ | |
347 | if (f->op == Audit_bitmask || f->op == Audit_bittest) | |
348 | return -EINVAL; | |
349 | break; | |
350 | case AUDIT_ARG0: | |
351 | case AUDIT_ARG1: | |
352 | case AUDIT_ARG2: | |
353 | case AUDIT_ARG3: | |
354 | case AUDIT_SUBJ_USER: | |
355 | case AUDIT_SUBJ_ROLE: | |
356 | case AUDIT_SUBJ_TYPE: | |
357 | case AUDIT_SUBJ_SEN: | |
358 | case AUDIT_SUBJ_CLR: | |
359 | case AUDIT_OBJ_USER: | |
360 | case AUDIT_OBJ_ROLE: | |
361 | case AUDIT_OBJ_TYPE: | |
362 | case AUDIT_OBJ_LEV_LOW: | |
363 | case AUDIT_OBJ_LEV_HIGH: | |
364 | case AUDIT_WATCH: | |
365 | case AUDIT_DIR: | |
366 | case AUDIT_FILTERKEY: | |
367 | break; | |
368 | case AUDIT_LOGINUID_SET: | |
369 | if ((f->val != 0) && (f->val != 1)) | |
370 | return -EINVAL; | |
371 | /* FALL THROUGH */ | |
372 | case AUDIT_ARCH: | |
373 | if (f->op != Audit_not_equal && f->op != Audit_equal) | |
374 | return -EINVAL; | |
375 | break; | |
376 | case AUDIT_PERM: | |
377 | if (f->val & ~15) | |
378 | return -EINVAL; | |
379 | break; | |
380 | case AUDIT_FILETYPE: | |
381 | if (f->val & ~S_IFMT) | |
382 | return -EINVAL; | |
383 | break; | |
384 | case AUDIT_FIELD_COMPARE: | |
385 | if (f->val > AUDIT_MAX_FIELD_COMPARE) | |
386 | return -EINVAL; | |
387 | break; | |
388 | }; | |
389 | return 0; | |
390 | } | |
391 | ||
392 | /* Translate struct audit_rule_data to kernel's rule respresentation. */ | |
393 | static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data, | |
394 | size_t datasz) | |
395 | { | |
396 | int err = 0; | |
397 | struct audit_entry *entry; | |
398 | void *bufp; | |
399 | size_t remain = datasz - sizeof(struct audit_rule_data); | |
400 | int i; | |
401 | char *str; | |
402 | ||
403 | entry = audit_to_entry_common((struct audit_rule *)data); | |
404 | if (IS_ERR(entry)) | |
405 | goto exit_nofree; | |
406 | ||
407 | bufp = data->buf; | |
408 | entry->rule.vers_ops = 2; | |
409 | for (i = 0; i < data->field_count; i++) { | |
410 | struct audit_field *f = &entry->rule.fields[i]; | |
411 | ||
412 | err = -EINVAL; | |
413 | ||
414 | f->op = audit_to_op(data->fieldflags[i]); | |
415 | if (f->op == Audit_bad) | |
416 | goto exit_free; | |
417 | ||
418 | f->type = data->fields[i]; | |
419 | f->val = data->values[i]; | |
420 | f->uid = INVALID_UID; | |
421 | f->gid = INVALID_GID; | |
422 | f->lsm_str = NULL; | |
423 | f->lsm_rule = NULL; | |
424 | ||
425 | /* Support legacy tests for a valid loginuid */ | |
426 | if ((f->type == AUDIT_LOGINUID) && (f->val == ~0U)) { | |
427 | f->type = AUDIT_LOGINUID_SET; | |
428 | f->val = 0; | |
429 | } | |
430 | ||
431 | err = audit_field_valid(entry, f); | |
432 | if (err) | |
433 | goto exit_free; | |
434 | ||
435 | err = -EINVAL; | |
436 | switch (f->type) { | |
437 | case AUDIT_LOGINUID: | |
438 | case AUDIT_UID: | |
439 | case AUDIT_EUID: | |
440 | case AUDIT_SUID: | |
441 | case AUDIT_FSUID: | |
442 | case AUDIT_OBJ_UID: | |
443 | f->uid = make_kuid(current_user_ns(), f->val); | |
444 | if (!uid_valid(f->uid)) | |
445 | goto exit_free; | |
446 | break; | |
447 | case AUDIT_GID: | |
448 | case AUDIT_EGID: | |
449 | case AUDIT_SGID: | |
450 | case AUDIT_FSGID: | |
451 | case AUDIT_OBJ_GID: | |
452 | f->gid = make_kgid(current_user_ns(), f->val); | |
453 | if (!gid_valid(f->gid)) | |
454 | goto exit_free; | |
455 | break; | |
456 | case AUDIT_ARCH: | |
457 | entry->rule.arch_f = f; | |
458 | break; | |
459 | case AUDIT_SUBJ_USER: | |
460 | case AUDIT_SUBJ_ROLE: | |
461 | case AUDIT_SUBJ_TYPE: | |
462 | case AUDIT_SUBJ_SEN: | |
463 | case AUDIT_SUBJ_CLR: | |
464 | case AUDIT_OBJ_USER: | |
465 | case AUDIT_OBJ_ROLE: | |
466 | case AUDIT_OBJ_TYPE: | |
467 | case AUDIT_OBJ_LEV_LOW: | |
468 | case AUDIT_OBJ_LEV_HIGH: | |
469 | str = audit_unpack_string(&bufp, &remain, f->val); | |
470 | if (IS_ERR(str)) | |
471 | goto exit_free; | |
472 | entry->rule.buflen += f->val; | |
473 | ||
474 | err = security_audit_rule_init(f->type, f->op, str, | |
475 | (void **)&f->lsm_rule); | |
476 | /* Keep currently invalid fields around in case they | |
477 | * become valid after a policy reload. */ | |
478 | if (err == -EINVAL) { | |
479 | printk(KERN_WARNING "audit rule for LSM " | |
480 | "\'%s\' is invalid\n", str); | |
481 | err = 0; | |
482 | } | |
483 | if (err) { | |
484 | kfree(str); | |
485 | goto exit_free; | |
486 | } else | |
487 | f->lsm_str = str; | |
488 | break; | |
489 | case AUDIT_WATCH: | |
490 | str = audit_unpack_string(&bufp, &remain, f->val); | |
491 | if (IS_ERR(str)) | |
492 | goto exit_free; | |
493 | entry->rule.buflen += f->val; | |
494 | ||
495 | err = audit_to_watch(&entry->rule, str, f->val, f->op); | |
496 | if (err) { | |
497 | kfree(str); | |
498 | goto exit_free; | |
499 | } | |
500 | break; | |
501 | case AUDIT_DIR: | |
502 | str = audit_unpack_string(&bufp, &remain, f->val); | |
503 | if (IS_ERR(str)) | |
504 | goto exit_free; | |
505 | entry->rule.buflen += f->val; | |
506 | ||
507 | err = audit_make_tree(&entry->rule, str, f->op); | |
508 | kfree(str); | |
509 | if (err) | |
510 | goto exit_free; | |
511 | break; | |
512 | case AUDIT_INODE: | |
513 | err = audit_to_inode(&entry->rule, f); | |
514 | if (err) | |
515 | goto exit_free; | |
516 | break; | |
517 | case AUDIT_FILTERKEY: | |
518 | if (entry->rule.filterkey || f->val > AUDIT_MAX_KEY_LEN) | |
519 | goto exit_free; | |
520 | str = audit_unpack_string(&bufp, &remain, f->val); | |
521 | if (IS_ERR(str)) | |
522 | goto exit_free; | |
523 | entry->rule.buflen += f->val; | |
524 | entry->rule.filterkey = str; | |
525 | break; | |
526 | } | |
527 | } | |
528 | ||
529 | if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal) | |
530 | entry->rule.inode_f = NULL; | |
531 | ||
532 | exit_nofree: | |
533 | return entry; | |
534 | ||
535 | exit_free: | |
536 | if (entry->rule.watch) | |
537 | audit_put_watch(entry->rule.watch); /* matches initial get */ | |
538 | if (entry->rule.tree) | |
539 | audit_put_tree(entry->rule.tree); /* that's the temporary one */ | |
540 | audit_free_rule(entry); | |
541 | return ERR_PTR(err); | |
542 | } | |
543 | ||
544 | /* Pack a filter field's string representation into data block. */ | |
545 | static inline size_t audit_pack_string(void **bufp, const char *str) | |
546 | { | |
547 | size_t len = strlen(str); | |
548 | ||
549 | memcpy(*bufp, str, len); | |
550 | *bufp += len; | |
551 | ||
552 | return len; | |
553 | } | |
554 | ||
555 | /* Translate kernel rule respresentation to struct audit_rule_data. */ | |
556 | static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule) | |
557 | { | |
558 | struct audit_rule_data *data; | |
559 | void *bufp; | |
560 | int i; | |
561 | ||
562 | data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL); | |
563 | if (unlikely(!data)) | |
564 | return NULL; | |
565 | memset(data, 0, sizeof(*data)); | |
566 | ||
567 | data->flags = krule->flags | krule->listnr; | |
568 | data->action = krule->action; | |
569 | data->field_count = krule->field_count; | |
570 | bufp = data->buf; | |
571 | for (i = 0; i < data->field_count; i++) { | |
572 | struct audit_field *f = &krule->fields[i]; | |
573 | ||
574 | data->fields[i] = f->type; | |
575 | data->fieldflags[i] = audit_ops[f->op]; | |
576 | switch(f->type) { | |
577 | case AUDIT_SUBJ_USER: | |
578 | case AUDIT_SUBJ_ROLE: | |
579 | case AUDIT_SUBJ_TYPE: | |
580 | case AUDIT_SUBJ_SEN: | |
581 | case AUDIT_SUBJ_CLR: | |
582 | case AUDIT_OBJ_USER: | |
583 | case AUDIT_OBJ_ROLE: | |
584 | case AUDIT_OBJ_TYPE: | |
585 | case AUDIT_OBJ_LEV_LOW: | |
586 | case AUDIT_OBJ_LEV_HIGH: | |
587 | data->buflen += data->values[i] = | |
588 | audit_pack_string(&bufp, f->lsm_str); | |
589 | break; | |
590 | case AUDIT_WATCH: | |
591 | data->buflen += data->values[i] = | |
592 | audit_pack_string(&bufp, | |
593 | audit_watch_path(krule->watch)); | |
594 | break; | |
595 | case AUDIT_DIR: | |
596 | data->buflen += data->values[i] = | |
597 | audit_pack_string(&bufp, | |
598 | audit_tree_path(krule->tree)); | |
599 | break; | |
600 | case AUDIT_FILTERKEY: | |
601 | data->buflen += data->values[i] = | |
602 | audit_pack_string(&bufp, krule->filterkey); | |
603 | break; | |
604 | default: | |
605 | data->values[i] = f->val; | |
606 | } | |
607 | } | |
608 | for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i]; | |
609 | ||
610 | return data; | |
611 | } | |
612 | ||
613 | /* Compare two rules in kernel format. Considered success if rules | |
614 | * don't match. */ | |
615 | static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b) | |
616 | { | |
617 | int i; | |
618 | ||
619 | if (a->flags != b->flags || | |
620 | a->listnr != b->listnr || | |
621 | a->action != b->action || | |
622 | a->field_count != b->field_count) | |
623 | return 1; | |
624 | ||
625 | for (i = 0; i < a->field_count; i++) { | |
626 | if (a->fields[i].type != b->fields[i].type || | |
627 | a->fields[i].op != b->fields[i].op) | |
628 | return 1; | |
629 | ||
630 | switch(a->fields[i].type) { | |
631 | case AUDIT_SUBJ_USER: | |
632 | case AUDIT_SUBJ_ROLE: | |
633 | case AUDIT_SUBJ_TYPE: | |
634 | case AUDIT_SUBJ_SEN: | |
635 | case AUDIT_SUBJ_CLR: | |
636 | case AUDIT_OBJ_USER: | |
637 | case AUDIT_OBJ_ROLE: | |
638 | case AUDIT_OBJ_TYPE: | |
639 | case AUDIT_OBJ_LEV_LOW: | |
640 | case AUDIT_OBJ_LEV_HIGH: | |
641 | if (strcmp(a->fields[i].lsm_str, b->fields[i].lsm_str)) | |
642 | return 1; | |
643 | break; | |
644 | case AUDIT_WATCH: | |
645 | if (strcmp(audit_watch_path(a->watch), | |
646 | audit_watch_path(b->watch))) | |
647 | return 1; | |
648 | break; | |
649 | case AUDIT_DIR: | |
650 | if (strcmp(audit_tree_path(a->tree), | |
651 | audit_tree_path(b->tree))) | |
652 | return 1; | |
653 | break; | |
654 | case AUDIT_FILTERKEY: | |
655 | /* both filterkeys exist based on above type compare */ | |
656 | if (strcmp(a->filterkey, b->filterkey)) | |
657 | return 1; | |
658 | break; | |
659 | case AUDIT_UID: | |
660 | case AUDIT_EUID: | |
661 | case AUDIT_SUID: | |
662 | case AUDIT_FSUID: | |
663 | case AUDIT_LOGINUID: | |
664 | case AUDIT_OBJ_UID: | |
665 | if (!uid_eq(a->fields[i].uid, b->fields[i].uid)) | |
666 | return 1; | |
667 | break; | |
668 | case AUDIT_GID: | |
669 | case AUDIT_EGID: | |
670 | case AUDIT_SGID: | |
671 | case AUDIT_FSGID: | |
672 | case AUDIT_OBJ_GID: | |
673 | if (!gid_eq(a->fields[i].gid, b->fields[i].gid)) | |
674 | return 1; | |
675 | break; | |
676 | default: | |
677 | if (a->fields[i].val != b->fields[i].val) | |
678 | return 1; | |
679 | } | |
680 | } | |
681 | ||
682 | for (i = 0; i < AUDIT_BITMASK_SIZE; i++) | |
683 | if (a->mask[i] != b->mask[i]) | |
684 | return 1; | |
685 | ||
686 | return 0; | |
687 | } | |
688 | ||
689 | /* Duplicate LSM field information. The lsm_rule is opaque, so must be | |
690 | * re-initialized. */ | |
691 | static inline int audit_dupe_lsm_field(struct audit_field *df, | |
692 | struct audit_field *sf) | |
693 | { | |
694 | int ret = 0; | |
695 | char *lsm_str; | |
696 | ||
697 | /* our own copy of lsm_str */ | |
698 | lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL); | |
699 | if (unlikely(!lsm_str)) | |
700 | return -ENOMEM; | |
701 | df->lsm_str = lsm_str; | |
702 | ||
703 | /* our own (refreshed) copy of lsm_rule */ | |
704 | ret = security_audit_rule_init(df->type, df->op, df->lsm_str, | |
705 | (void **)&df->lsm_rule); | |
706 | /* Keep currently invalid fields around in case they | |
707 | * become valid after a policy reload. */ | |
708 | if (ret == -EINVAL) { | |
709 | printk(KERN_WARNING "audit rule for LSM \'%s\' is " | |
710 | "invalid\n", df->lsm_str); | |
711 | ret = 0; | |
712 | } | |
713 | ||
714 | return ret; | |
715 | } | |
716 | ||
717 | /* Duplicate an audit rule. This will be a deep copy with the exception | |
718 | * of the watch - that pointer is carried over. The LSM specific fields | |
719 | * will be updated in the copy. The point is to be able to replace the old | |
720 | * rule with the new rule in the filterlist, then free the old rule. | |
721 | * The rlist element is undefined; list manipulations are handled apart from | |
722 | * the initial copy. */ | |
723 | struct audit_entry *audit_dupe_rule(struct audit_krule *old) | |
724 | { | |
725 | u32 fcount = old->field_count; | |
726 | struct audit_entry *entry; | |
727 | struct audit_krule *new; | |
728 | char *fk; | |
729 | int i, err = 0; | |
730 | ||
731 | entry = audit_init_entry(fcount); | |
732 | if (unlikely(!entry)) | |
733 | return ERR_PTR(-ENOMEM); | |
734 | ||
735 | new = &entry->rule; | |
736 | new->vers_ops = old->vers_ops; | |
737 | new->flags = old->flags; | |
738 | new->listnr = old->listnr; | |
739 | new->action = old->action; | |
740 | for (i = 0; i < AUDIT_BITMASK_SIZE; i++) | |
741 | new->mask[i] = old->mask[i]; | |
742 | new->prio = old->prio; | |
743 | new->buflen = old->buflen; | |
744 | new->inode_f = old->inode_f; | |
745 | new->field_count = old->field_count; | |
746 | ||
747 | /* | |
748 | * note that we are OK with not refcounting here; audit_match_tree() | |
749 | * never dereferences tree and we can't get false positives there | |
750 | * since we'd have to have rule gone from the list *and* removed | |
751 | * before the chunks found by lookup had been allocated, i.e. before | |
752 | * the beginning of list scan. | |
753 | */ | |
754 | new->tree = old->tree; | |
755 | memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount); | |
756 | ||
757 | /* deep copy this information, updating the lsm_rule fields, because | |
758 | * the originals will all be freed when the old rule is freed. */ | |
759 | for (i = 0; i < fcount; i++) { | |
760 | switch (new->fields[i].type) { | |
761 | case AUDIT_SUBJ_USER: | |
762 | case AUDIT_SUBJ_ROLE: | |
763 | case AUDIT_SUBJ_TYPE: | |
764 | case AUDIT_SUBJ_SEN: | |
765 | case AUDIT_SUBJ_CLR: | |
766 | case AUDIT_OBJ_USER: | |
767 | case AUDIT_OBJ_ROLE: | |
768 | case AUDIT_OBJ_TYPE: | |
769 | case AUDIT_OBJ_LEV_LOW: | |
770 | case AUDIT_OBJ_LEV_HIGH: | |
771 | err = audit_dupe_lsm_field(&new->fields[i], | |
772 | &old->fields[i]); | |
773 | break; | |
774 | case AUDIT_FILTERKEY: | |
775 | fk = kstrdup(old->filterkey, GFP_KERNEL); | |
776 | if (unlikely(!fk)) | |
777 | err = -ENOMEM; | |
778 | else | |
779 | new->filterkey = fk; | |
780 | } | |
781 | if (err) { | |
782 | audit_free_rule(entry); | |
783 | return ERR_PTR(err); | |
784 | } | |
785 | } | |
786 | ||
787 | if (old->watch) { | |
788 | audit_get_watch(old->watch); | |
789 | new->watch = old->watch; | |
790 | } | |
791 | ||
792 | return entry; | |
793 | } | |
794 | ||
795 | /* Find an existing audit rule. | |
796 | * Caller must hold audit_filter_mutex to prevent stale rule data. */ | |
797 | static struct audit_entry *audit_find_rule(struct audit_entry *entry, | |
798 | struct list_head **p) | |
799 | { | |
800 | struct audit_entry *e, *found = NULL; | |
801 | struct list_head *list; | |
802 | int h; | |
803 | ||
804 | if (entry->rule.inode_f) { | |
805 | h = audit_hash_ino(entry->rule.inode_f->val); | |
806 | *p = list = &audit_inode_hash[h]; | |
807 | } else if (entry->rule.watch) { | |
808 | /* we don't know the inode number, so must walk entire hash */ | |
809 | for (h = 0; h < AUDIT_INODE_BUCKETS; h++) { | |
810 | list = &audit_inode_hash[h]; | |
811 | list_for_each_entry(e, list, list) | |
812 | if (!audit_compare_rule(&entry->rule, &e->rule)) { | |
813 | found = e; | |
814 | goto out; | |
815 | } | |
816 | } | |
817 | goto out; | |
818 | } else { | |
819 | *p = list = &audit_filter_list[entry->rule.listnr]; | |
820 | } | |
821 | ||
822 | list_for_each_entry(e, list, list) | |
823 | if (!audit_compare_rule(&entry->rule, &e->rule)) { | |
824 | found = e; | |
825 | goto out; | |
826 | } | |
827 | ||
828 | out: | |
829 | return found; | |
830 | } | |
831 | ||
832 | static u64 prio_low = ~0ULL/2; | |
833 | static u64 prio_high = ~0ULL/2 - 1; | |
834 | ||
835 | /* Add rule to given filterlist if not a duplicate. */ | |
836 | static inline int audit_add_rule(struct audit_entry *entry) | |
837 | { | |
838 | struct audit_entry *e; | |
839 | struct audit_watch *watch = entry->rule.watch; | |
840 | struct audit_tree *tree = entry->rule.tree; | |
841 | struct list_head *list; | |
842 | int err; | |
843 | #ifdef CONFIG_AUDITSYSCALL | |
844 | int dont_count = 0; | |
845 | ||
846 | /* If either of these, don't count towards total */ | |
847 | if (entry->rule.listnr == AUDIT_FILTER_USER || | |
848 | entry->rule.listnr == AUDIT_FILTER_TYPE) | |
849 | dont_count = 1; | |
850 | #endif | |
851 | ||
852 | mutex_lock(&audit_filter_mutex); | |
853 | e = audit_find_rule(entry, &list); | |
854 | if (e) { | |
855 | mutex_unlock(&audit_filter_mutex); | |
856 | err = -EEXIST; | |
857 | /* normally audit_add_tree_rule() will free it on failure */ | |
858 | if (tree) | |
859 | audit_put_tree(tree); | |
860 | goto error; | |
861 | } | |
862 | ||
863 | if (watch) { | |
864 | /* audit_filter_mutex is dropped and re-taken during this call */ | |
865 | err = audit_add_watch(&entry->rule, &list); | |
866 | if (err) { | |
867 | mutex_unlock(&audit_filter_mutex); | |
868 | /* | |
869 | * normally audit_add_tree_rule() will free it | |
870 | * on failure | |
871 | */ | |
872 | if (tree) | |
873 | audit_put_tree(tree); | |
874 | goto error; | |
875 | } | |
876 | } | |
877 | if (tree) { | |
878 | err = audit_add_tree_rule(&entry->rule); | |
879 | if (err) { | |
880 | mutex_unlock(&audit_filter_mutex); | |
881 | goto error; | |
882 | } | |
883 | } | |
884 | ||
885 | entry->rule.prio = ~0ULL; | |
886 | if (entry->rule.listnr == AUDIT_FILTER_EXIT) { | |
887 | if (entry->rule.flags & AUDIT_FILTER_PREPEND) | |
888 | entry->rule.prio = ++prio_high; | |
889 | else | |
890 | entry->rule.prio = --prio_low; | |
891 | } | |
892 | ||
893 | if (entry->rule.flags & AUDIT_FILTER_PREPEND) { | |
894 | list_add(&entry->rule.list, | |
895 | &audit_rules_list[entry->rule.listnr]); | |
896 | list_add_rcu(&entry->list, list); | |
897 | entry->rule.flags &= ~AUDIT_FILTER_PREPEND; | |
898 | } else { | |
899 | list_add_tail(&entry->rule.list, | |
900 | &audit_rules_list[entry->rule.listnr]); | |
901 | list_add_tail_rcu(&entry->list, list); | |
902 | } | |
903 | #ifdef CONFIG_AUDITSYSCALL | |
904 | if (!dont_count) | |
905 | audit_n_rules++; | |
906 | ||
907 | if (!audit_match_signal(entry)) | |
908 | audit_signals++; | |
909 | #endif | |
910 | mutex_unlock(&audit_filter_mutex); | |
911 | ||
912 | return 0; | |
913 | ||
914 | error: | |
915 | if (watch) | |
916 | audit_put_watch(watch); /* tmp watch, matches initial get */ | |
917 | return err; | |
918 | } | |
919 | ||
920 | /* Remove an existing rule from filterlist. */ | |
921 | static inline int audit_del_rule(struct audit_entry *entry) | |
922 | { | |
923 | struct audit_entry *e; | |
924 | struct audit_watch *watch = entry->rule.watch; | |
925 | struct audit_tree *tree = entry->rule.tree; | |
926 | struct list_head *list; | |
927 | int ret = 0; | |
928 | #ifdef CONFIG_AUDITSYSCALL | |
929 | int dont_count = 0; | |
930 | ||
931 | /* If either of these, don't count towards total */ | |
932 | if (entry->rule.listnr == AUDIT_FILTER_USER || | |
933 | entry->rule.listnr == AUDIT_FILTER_TYPE) | |
934 | dont_count = 1; | |
935 | #endif | |
936 | ||
937 | mutex_lock(&audit_filter_mutex); | |
938 | e = audit_find_rule(entry, &list); | |
939 | if (!e) { | |
940 | mutex_unlock(&audit_filter_mutex); | |
941 | ret = -ENOENT; | |
942 | goto out; | |
943 | } | |
944 | ||
945 | if (e->rule.watch) | |
946 | audit_remove_watch_rule(&e->rule); | |
947 | ||
948 | if (e->rule.tree) | |
949 | audit_remove_tree_rule(&e->rule); | |
950 | ||
951 | list_del_rcu(&e->list); | |
952 | list_del(&e->rule.list); | |
953 | call_rcu(&e->rcu, audit_free_rule_rcu); | |
954 | ||
955 | #ifdef CONFIG_AUDITSYSCALL | |
956 | if (!dont_count) | |
957 | audit_n_rules--; | |
958 | ||
959 | if (!audit_match_signal(entry)) | |
960 | audit_signals--; | |
961 | #endif | |
962 | mutex_unlock(&audit_filter_mutex); | |
963 | ||
964 | out: | |
965 | if (watch) | |
966 | audit_put_watch(watch); /* match initial get */ | |
967 | if (tree) | |
968 | audit_put_tree(tree); /* that's the temporary one */ | |
969 | ||
970 | return ret; | |
971 | } | |
972 | ||
973 | /* List rules using struct audit_rule_data. */ | |
974 | static void audit_list_rules(int pid, int seq, struct sk_buff_head *q) | |
975 | { | |
976 | struct sk_buff *skb; | |
977 | struct audit_krule *r; | |
978 | int i; | |
979 | ||
980 | /* This is a blocking read, so use audit_filter_mutex instead of rcu | |
981 | * iterator to sync with list writers. */ | |
982 | for (i=0; i<AUDIT_NR_FILTERS; i++) { | |
983 | list_for_each_entry(r, &audit_rules_list[i], list) { | |
984 | struct audit_rule_data *data; | |
985 | ||
986 | data = audit_krule_to_data(r); | |
987 | if (unlikely(!data)) | |
988 | break; | |
989 | skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 0, 1, | |
990 | data, sizeof(*data) + data->buflen); | |
991 | if (skb) | |
992 | skb_queue_tail(q, skb); | |
993 | kfree(data); | |
994 | } | |
995 | } | |
996 | skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 1, 1, NULL, 0); | |
997 | if (skb) | |
998 | skb_queue_tail(q, skb); | |
999 | } | |
1000 | ||
1001 | /* Log rule additions and removals */ | |
1002 | static void audit_log_rule_change(char *action, struct audit_krule *rule, int res) | |
1003 | { | |
1004 | struct audit_buffer *ab; | |
1005 | uid_t loginuid = from_kuid(&init_user_ns, audit_get_loginuid(current)); | |
1006 | u32 sessionid = audit_get_sessionid(current); | |
1007 | ||
1008 | if (!audit_enabled) | |
1009 | return; | |
1010 | ||
1011 | ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); | |
1012 | if (!ab) | |
1013 | return; | |
1014 | audit_log_format(ab, "auid=%u ses=%u" ,loginuid, sessionid); | |
1015 | audit_log_task_context(ab); | |
1016 | audit_log_format(ab, " op="); | |
1017 | audit_log_string(ab, action); | |
1018 | audit_log_key(ab, rule->filterkey); | |
1019 | audit_log_format(ab, " list=%d res=%d", rule->listnr, res); | |
1020 | audit_log_end(ab); | |
1021 | } | |
1022 | ||
1023 | /** | |
1024 | * audit_receive_filter - apply all rules to the specified message type | |
1025 | * @type: audit message type | |
1026 | * @pid: target pid for netlink audit messages | |
1027 | * @seq: netlink audit message sequence (serial) number | |
1028 | * @data: payload data | |
1029 | * @datasz: size of payload data | |
1030 | */ | |
1031 | int audit_receive_filter(int type, int pid, int seq, void *data, size_t datasz) | |
1032 | { | |
1033 | struct task_struct *tsk; | |
1034 | struct audit_netlink_list *dest; | |
1035 | int err = 0; | |
1036 | struct audit_entry *entry; | |
1037 | ||
1038 | switch (type) { | |
1039 | case AUDIT_LIST_RULES: | |
1040 | /* We can't just spew out the rules here because we might fill | |
1041 | * the available socket buffer space and deadlock waiting for | |
1042 | * auditctl to read from it... which isn't ever going to | |
1043 | * happen if we're actually running in the context of auditctl | |
1044 | * trying to _send_ the stuff */ | |
1045 | ||
1046 | dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL); | |
1047 | if (!dest) | |
1048 | return -ENOMEM; | |
1049 | dest->pid = pid; | |
1050 | skb_queue_head_init(&dest->q); | |
1051 | ||
1052 | mutex_lock(&audit_filter_mutex); | |
1053 | audit_list_rules(pid, seq, &dest->q); | |
1054 | mutex_unlock(&audit_filter_mutex); | |
1055 | ||
1056 | tsk = kthread_run(audit_send_list, dest, "audit_send_list"); | |
1057 | if (IS_ERR(tsk)) { | |
1058 | skb_queue_purge(&dest->q); | |
1059 | kfree(dest); | |
1060 | err = PTR_ERR(tsk); | |
1061 | } | |
1062 | break; | |
1063 | case AUDIT_ADD_RULE: | |
1064 | entry = audit_data_to_entry(data, datasz); | |
1065 | if (IS_ERR(entry)) | |
1066 | return PTR_ERR(entry); | |
1067 | ||
1068 | err = audit_add_rule(entry); | |
1069 | audit_log_rule_change("add rule", &entry->rule, !err); | |
1070 | if (err) | |
1071 | audit_free_rule(entry); | |
1072 | break; | |
1073 | case AUDIT_DEL_RULE: | |
1074 | entry = audit_data_to_entry(data, datasz); | |
1075 | if (IS_ERR(entry)) | |
1076 | return PTR_ERR(entry); | |
1077 | ||
1078 | err = audit_del_rule(entry); | |
1079 | audit_log_rule_change("remove rule", &entry->rule, !err); | |
1080 | audit_free_rule(entry); | |
1081 | break; | |
1082 | default: | |
1083 | return -EINVAL; | |
1084 | } | |
1085 | ||
1086 | return err; | |
1087 | } | |
1088 | ||
1089 | int audit_comparator(u32 left, u32 op, u32 right) | |
1090 | { | |
1091 | switch (op) { | |
1092 | case Audit_equal: | |
1093 | return (left == right); | |
1094 | case Audit_not_equal: | |
1095 | return (left != right); | |
1096 | case Audit_lt: | |
1097 | return (left < right); | |
1098 | case Audit_le: | |
1099 | return (left <= right); | |
1100 | case Audit_gt: | |
1101 | return (left > right); | |
1102 | case Audit_ge: | |
1103 | return (left >= right); | |
1104 | case Audit_bitmask: | |
1105 | return (left & right); | |
1106 | case Audit_bittest: | |
1107 | return ((left & right) == right); | |
1108 | default: | |
1109 | BUG(); | |
1110 | return 0; | |
1111 | } | |
1112 | } | |
1113 | ||
1114 | int audit_uid_comparator(kuid_t left, u32 op, kuid_t right) | |
1115 | { | |
1116 | switch (op) { | |
1117 | case Audit_equal: | |
1118 | return uid_eq(left, right); | |
1119 | case Audit_not_equal: | |
1120 | return !uid_eq(left, right); | |
1121 | case Audit_lt: | |
1122 | return uid_lt(left, right); | |
1123 | case Audit_le: | |
1124 | return uid_lte(left, right); | |
1125 | case Audit_gt: | |
1126 | return uid_gt(left, right); | |
1127 | case Audit_ge: | |
1128 | return uid_gte(left, right); | |
1129 | case Audit_bitmask: | |
1130 | case Audit_bittest: | |
1131 | default: | |
1132 | BUG(); | |
1133 | return 0; | |
1134 | } | |
1135 | } | |
1136 | ||
1137 | int audit_gid_comparator(kgid_t left, u32 op, kgid_t right) | |
1138 | { | |
1139 | switch (op) { | |
1140 | case Audit_equal: | |
1141 | return gid_eq(left, right); | |
1142 | case Audit_not_equal: | |
1143 | return !gid_eq(left, right); | |
1144 | case Audit_lt: | |
1145 | return gid_lt(left, right); | |
1146 | case Audit_le: | |
1147 | return gid_lte(left, right); | |
1148 | case Audit_gt: | |
1149 | return gid_gt(left, right); | |
1150 | case Audit_ge: | |
1151 | return gid_gte(left, right); | |
1152 | case Audit_bitmask: | |
1153 | case Audit_bittest: | |
1154 | default: | |
1155 | BUG(); | |
1156 | return 0; | |
1157 | } | |
1158 | } | |
1159 | ||
1160 | /** | |
1161 | * parent_len - find the length of the parent portion of a pathname | |
1162 | * @path: pathname of which to determine length | |
1163 | */ | |
1164 | int parent_len(const char *path) | |
1165 | { | |
1166 | int plen; | |
1167 | const char *p; | |
1168 | ||
1169 | plen = strlen(path); | |
1170 | ||
1171 | if (plen == 0) | |
1172 | return plen; | |
1173 | ||
1174 | /* disregard trailing slashes */ | |
1175 | p = path + plen - 1; | |
1176 | while ((*p == '/') && (p > path)) | |
1177 | p--; | |
1178 | ||
1179 | /* walk backward until we find the next slash or hit beginning */ | |
1180 | while ((*p != '/') && (p > path)) | |
1181 | p--; | |
1182 | ||
1183 | /* did we find a slash? Then increment to include it in path */ | |
1184 | if (*p == '/') | |
1185 | p++; | |
1186 | ||
1187 | return p - path; | |
1188 | } | |
1189 | ||
1190 | /** | |
1191 | * audit_compare_dname_path - compare given dentry name with last component in | |
1192 | * given path. Return of 0 indicates a match. | |
1193 | * @dname: dentry name that we're comparing | |
1194 | * @path: full pathname that we're comparing | |
1195 | * @parentlen: length of the parent if known. Passing in AUDIT_NAME_FULL | |
1196 | * here indicates that we must compute this value. | |
1197 | */ | |
1198 | int audit_compare_dname_path(const char *dname, const char *path, int parentlen) | |
1199 | { | |
1200 | int dlen, pathlen; | |
1201 | const char *p; | |
1202 | ||
1203 | dlen = strlen(dname); | |
1204 | pathlen = strlen(path); | |
1205 | if (pathlen < dlen) | |
1206 | return 1; | |
1207 | ||
1208 | parentlen = parentlen == AUDIT_NAME_FULL ? parent_len(path) : parentlen; | |
1209 | if (pathlen - parentlen != dlen) | |
1210 | return 1; | |
1211 | ||
1212 | p = path + parentlen; | |
1213 | ||
1214 | return strncmp(p, dname, dlen); | |
1215 | } | |
1216 | ||
1217 | static int audit_filter_user_rules(struct audit_krule *rule, int type, | |
1218 | enum audit_state *state) | |
1219 | { | |
1220 | int i; | |
1221 | ||
1222 | for (i = 0; i < rule->field_count; i++) { | |
1223 | struct audit_field *f = &rule->fields[i]; | |
1224 | int result = 0; | |
1225 | u32 sid; | |
1226 | ||
1227 | switch (f->type) { | |
1228 | case AUDIT_PID: | |
1229 | result = audit_comparator(task_pid_vnr(current), f->op, f->val); | |
1230 | break; | |
1231 | case AUDIT_UID: | |
1232 | result = audit_uid_comparator(current_uid(), f->op, f->uid); | |
1233 | break; | |
1234 | case AUDIT_GID: | |
1235 | result = audit_gid_comparator(current_gid(), f->op, f->gid); | |
1236 | break; | |
1237 | case AUDIT_LOGINUID: | |
1238 | result = audit_uid_comparator(audit_get_loginuid(current), | |
1239 | f->op, f->uid); | |
1240 | break; | |
1241 | case AUDIT_LOGINUID_SET: | |
1242 | result = audit_comparator(audit_loginuid_set(current), | |
1243 | f->op, f->val); | |
1244 | break; | |
1245 | case AUDIT_MSGTYPE: | |
1246 | result = audit_comparator(type, f->op, f->val); | |
1247 | break; | |
1248 | case AUDIT_SUBJ_USER: | |
1249 | case AUDIT_SUBJ_ROLE: | |
1250 | case AUDIT_SUBJ_TYPE: | |
1251 | case AUDIT_SUBJ_SEN: | |
1252 | case AUDIT_SUBJ_CLR: | |
1253 | if (f->lsm_rule) { | |
1254 | security_task_getsecid(current, &sid); | |
1255 | result = security_audit_rule_match(sid, | |
1256 | f->type, | |
1257 | f->op, | |
1258 | f->lsm_rule, | |
1259 | NULL); | |
1260 | } | |
1261 | break; | |
1262 | } | |
1263 | ||
1264 | if (!result) | |
1265 | return 0; | |
1266 | } | |
1267 | switch (rule->action) { | |
1268 | case AUDIT_NEVER: *state = AUDIT_DISABLED; break; | |
1269 | case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; | |
1270 | } | |
1271 | return 1; | |
1272 | } | |
1273 | ||
1274 | int audit_filter_user(int type) | |
1275 | { | |
1276 | enum audit_state state = AUDIT_DISABLED; | |
1277 | struct audit_entry *e; | |
1278 | int ret = 1; | |
1279 | ||
1280 | rcu_read_lock(); | |
1281 | list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) { | |
1282 | if (audit_filter_user_rules(&e->rule, type, &state)) { | |
1283 | if (state == AUDIT_DISABLED) | |
1284 | ret = 0; | |
1285 | break; | |
1286 | } | |
1287 | } | |
1288 | rcu_read_unlock(); | |
1289 | ||
1290 | return ret; /* Audit by default */ | |
1291 | } | |
1292 | ||
1293 | int audit_filter_type(int type) | |
1294 | { | |
1295 | struct audit_entry *e; | |
1296 | int result = 0; | |
1297 | ||
1298 | rcu_read_lock(); | |
1299 | if (list_empty(&audit_filter_list[AUDIT_FILTER_TYPE])) | |
1300 | goto unlock_and_return; | |
1301 | ||
1302 | list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TYPE], | |
1303 | list) { | |
1304 | int i; | |
1305 | for (i = 0; i < e->rule.field_count; i++) { | |
1306 | struct audit_field *f = &e->rule.fields[i]; | |
1307 | if (f->type == AUDIT_MSGTYPE) { | |
1308 | result = audit_comparator(type, f->op, f->val); | |
1309 | if (!result) | |
1310 | break; | |
1311 | } | |
1312 | } | |
1313 | if (result) | |
1314 | goto unlock_and_return; | |
1315 | } | |
1316 | unlock_and_return: | |
1317 | rcu_read_unlock(); | |
1318 | return result; | |
1319 | } | |
1320 | ||
1321 | static int update_lsm_rule(struct audit_krule *r) | |
1322 | { | |
1323 | struct audit_entry *entry = container_of(r, struct audit_entry, rule); | |
1324 | struct audit_entry *nentry; | |
1325 | int err = 0; | |
1326 | ||
1327 | if (!security_audit_rule_known(r)) | |
1328 | return 0; | |
1329 | ||
1330 | nentry = audit_dupe_rule(r); | |
1331 | if (IS_ERR(nentry)) { | |
1332 | /* save the first error encountered for the | |
1333 | * return value */ | |
1334 | err = PTR_ERR(nentry); | |
1335 | audit_panic("error updating LSM filters"); | |
1336 | if (r->watch) | |
1337 | list_del(&r->rlist); | |
1338 | list_del_rcu(&entry->list); | |
1339 | list_del(&r->list); | |
1340 | } else { | |
1341 | if (r->watch || r->tree) | |
1342 | list_replace_init(&r->rlist, &nentry->rule.rlist); | |
1343 | list_replace_rcu(&entry->list, &nentry->list); | |
1344 | list_replace(&r->list, &nentry->rule.list); | |
1345 | } | |
1346 | call_rcu(&entry->rcu, audit_free_rule_rcu); | |
1347 | ||
1348 | return err; | |
1349 | } | |
1350 | ||
1351 | /* This function will re-initialize the lsm_rule field of all applicable rules. | |
1352 | * It will traverse the filter lists serarching for rules that contain LSM | |
1353 | * specific filter fields. When such a rule is found, it is copied, the | |
1354 | * LSM field is re-initialized, and the old rule is replaced with the | |
1355 | * updated rule. */ | |
1356 | int audit_update_lsm_rules(void) | |
1357 | { | |
1358 | struct audit_krule *r, *n; | |
1359 | int i, err = 0; | |
1360 | ||
1361 | /* audit_filter_mutex synchronizes the writers */ | |
1362 | mutex_lock(&audit_filter_mutex); | |
1363 | ||
1364 | for (i = 0; i < AUDIT_NR_FILTERS; i++) { | |
1365 | list_for_each_entry_safe(r, n, &audit_rules_list[i], list) { | |
1366 | int res = update_lsm_rule(r); | |
1367 | if (!err) | |
1368 | err = res; | |
1369 | } | |
1370 | } | |
1371 | mutex_unlock(&audit_filter_mutex); | |
1372 | ||
1373 | return err; | |
1374 | } |