]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * linux/mm/bootmem.c | |
3 | * | |
4 | * Copyright (C) 1999 Ingo Molnar | |
5 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | |
6 | * | |
7 | * simple boot-time physical memory area allocator and | |
8 | * free memory collector. It's used to deal with reserved | |
9 | * system memory and memory holes as well. | |
10 | */ | |
11 | ||
12 | #include <linux/mm.h> | |
13 | #include <linux/kernel_stat.h> | |
14 | #include <linux/swap.h> | |
15 | #include <linux/interrupt.h> | |
16 | #include <linux/init.h> | |
17 | #include <linux/bootmem.h> | |
18 | #include <linux/mmzone.h> | |
19 | #include <linux/module.h> | |
20 | #include <asm/dma.h> | |
21 | #include <asm/io.h> | |
22 | #include "internal.h" | |
23 | ||
24 | /* | |
25 | * Access to this subsystem has to be serialized externally. (this is | |
26 | * true for the boot process anyway) | |
27 | */ | |
28 | unsigned long max_low_pfn; | |
29 | unsigned long min_low_pfn; | |
30 | unsigned long max_pfn; | |
31 | ||
32 | EXPORT_UNUSED_SYMBOL(max_pfn); /* June 2006 */ | |
33 | ||
34 | static LIST_HEAD(bdata_list); | |
35 | #ifdef CONFIG_CRASH_DUMP | |
36 | /* | |
37 | * If we have booted due to a crash, max_pfn will be a very low value. We need | |
38 | * to know the amount of memory that the previous kernel used. | |
39 | */ | |
40 | unsigned long saved_max_pfn; | |
41 | #endif | |
42 | ||
43 | /* return the number of _pages_ that will be allocated for the boot bitmap */ | |
44 | unsigned long __init bootmem_bootmap_pages (unsigned long pages) | |
45 | { | |
46 | unsigned long mapsize; | |
47 | ||
48 | mapsize = (pages+7)/8; | |
49 | mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK; | |
50 | mapsize >>= PAGE_SHIFT; | |
51 | ||
52 | return mapsize; | |
53 | } | |
54 | /* | |
55 | * link bdata in order | |
56 | */ | |
57 | static void link_bootmem(bootmem_data_t *bdata) | |
58 | { | |
59 | bootmem_data_t *ent; | |
60 | if (list_empty(&bdata_list)) { | |
61 | list_add(&bdata->list, &bdata_list); | |
62 | return; | |
63 | } | |
64 | /* insert in order */ | |
65 | list_for_each_entry(ent, &bdata_list, list) { | |
66 | if (bdata->node_boot_start < ent->node_boot_start) { | |
67 | list_add_tail(&bdata->list, &ent->list); | |
68 | return; | |
69 | } | |
70 | } | |
71 | list_add_tail(&bdata->list, &bdata_list); | |
72 | return; | |
73 | } | |
74 | ||
75 | ||
76 | /* | |
77 | * Called once to set up the allocator itself. | |
78 | */ | |
79 | static unsigned long __init init_bootmem_core (pg_data_t *pgdat, | |
80 | unsigned long mapstart, unsigned long start, unsigned long end) | |
81 | { | |
82 | bootmem_data_t *bdata = pgdat->bdata; | |
83 | unsigned long mapsize = ((end - start)+7)/8; | |
84 | ||
85 | mapsize = ALIGN(mapsize, sizeof(long)); | |
86 | bdata->node_bootmem_map = phys_to_virt(mapstart << PAGE_SHIFT); | |
87 | bdata->node_boot_start = (start << PAGE_SHIFT); | |
88 | bdata->node_low_pfn = end; | |
89 | link_bootmem(bdata); | |
90 | ||
91 | /* | |
92 | * Initially all pages are reserved - setup_arch() has to | |
93 | * register free RAM areas explicitly. | |
94 | */ | |
95 | memset(bdata->node_bootmem_map, 0xff, mapsize); | |
96 | ||
97 | return mapsize; | |
98 | } | |
99 | ||
100 | /* | |
101 | * Marks a particular physical memory range as unallocatable. Usable RAM | |
102 | * might be used for boot-time allocations - or it might get added | |
103 | * to the free page pool later on. | |
104 | */ | |
105 | static void __init reserve_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size) | |
106 | { | |
107 | unsigned long i; | |
108 | /* | |
109 | * round up, partially reserved pages are considered | |
110 | * fully reserved. | |
111 | */ | |
112 | unsigned long sidx = (addr - bdata->node_boot_start)/PAGE_SIZE; | |
113 | unsigned long eidx = (addr + size - bdata->node_boot_start + | |
114 | PAGE_SIZE-1)/PAGE_SIZE; | |
115 | unsigned long end = (addr + size + PAGE_SIZE-1)/PAGE_SIZE; | |
116 | ||
117 | BUG_ON(!size); | |
118 | BUG_ON(sidx >= eidx); | |
119 | BUG_ON((addr >> PAGE_SHIFT) >= bdata->node_low_pfn); | |
120 | BUG_ON(end > bdata->node_low_pfn); | |
121 | ||
122 | for (i = sidx; i < eidx; i++) | |
123 | if (test_and_set_bit(i, bdata->node_bootmem_map)) { | |
124 | #ifdef CONFIG_DEBUG_BOOTMEM | |
125 | printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE); | |
126 | #endif | |
127 | } | |
128 | } | |
129 | ||
130 | static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size) | |
131 | { | |
132 | unsigned long i; | |
133 | unsigned long start; | |
134 | /* | |
135 | * round down end of usable mem, partially free pages are | |
136 | * considered reserved. | |
137 | */ | |
138 | unsigned long sidx; | |
139 | unsigned long eidx = (addr + size - bdata->node_boot_start)/PAGE_SIZE; | |
140 | unsigned long end = (addr + size)/PAGE_SIZE; | |
141 | ||
142 | BUG_ON(!size); | |
143 | BUG_ON(end > bdata->node_low_pfn); | |
144 | ||
145 | if (addr < bdata->last_success) | |
146 | bdata->last_success = addr; | |
147 | ||
148 | /* | |
149 | * Round up the beginning of the address. | |
150 | */ | |
151 | start = (addr + PAGE_SIZE-1) / PAGE_SIZE; | |
152 | sidx = start - (bdata->node_boot_start/PAGE_SIZE); | |
153 | ||
154 | for (i = sidx; i < eidx; i++) { | |
155 | if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map))) | |
156 | BUG(); | |
157 | } | |
158 | } | |
159 | ||
160 | /* | |
161 | * We 'merge' subsequent allocations to save space. We might 'lose' | |
162 | * some fraction of a page if allocations cannot be satisfied due to | |
163 | * size constraints on boxes where there is physical RAM space | |
164 | * fragmentation - in these cases (mostly large memory boxes) this | |
165 | * is not a problem. | |
166 | * | |
167 | * On low memory boxes we get it right in 100% of the cases. | |
168 | * | |
169 | * alignment has to be a power of 2 value. | |
170 | * | |
171 | * NOTE: This function is _not_ reentrant. | |
172 | */ | |
173 | void * __init | |
174 | __alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size, | |
175 | unsigned long align, unsigned long goal, unsigned long limit) | |
176 | { | |
177 | unsigned long offset, remaining_size, areasize, preferred; | |
178 | unsigned long i, start = 0, incr, eidx, end_pfn = bdata->node_low_pfn; | |
179 | void *ret; | |
180 | ||
181 | if(!size) { | |
182 | printk("__alloc_bootmem_core(): zero-sized request\n"); | |
183 | BUG(); | |
184 | } | |
185 | BUG_ON(align & (align-1)); | |
186 | ||
187 | if (limit && bdata->node_boot_start >= limit) | |
188 | return NULL; | |
189 | ||
190 | limit >>=PAGE_SHIFT; | |
191 | if (limit && end_pfn > limit) | |
192 | end_pfn = limit; | |
193 | ||
194 | eidx = end_pfn - (bdata->node_boot_start >> PAGE_SHIFT); | |
195 | offset = 0; | |
196 | if (align && | |
197 | (bdata->node_boot_start & (align - 1UL)) != 0) | |
198 | offset = (align - (bdata->node_boot_start & (align - 1UL))); | |
199 | offset >>= PAGE_SHIFT; | |
200 | ||
201 | /* | |
202 | * We try to allocate bootmem pages above 'goal' | |
203 | * first, then we try to allocate lower pages. | |
204 | */ | |
205 | if (goal && (goal >= bdata->node_boot_start) && | |
206 | ((goal >> PAGE_SHIFT) < end_pfn)) { | |
207 | preferred = goal - bdata->node_boot_start; | |
208 | ||
209 | if (bdata->last_success >= preferred) | |
210 | if (!limit || (limit && limit > bdata->last_success)) | |
211 | preferred = bdata->last_success; | |
212 | } else | |
213 | preferred = 0; | |
214 | ||
215 | preferred = ALIGN(preferred, align) >> PAGE_SHIFT; | |
216 | preferred += offset; | |
217 | areasize = (size+PAGE_SIZE-1)/PAGE_SIZE; | |
218 | incr = align >> PAGE_SHIFT ? : 1; | |
219 | ||
220 | restart_scan: | |
221 | for (i = preferred; i < eidx; i += incr) { | |
222 | unsigned long j; | |
223 | i = find_next_zero_bit(bdata->node_bootmem_map, eidx, i); | |
224 | i = ALIGN(i, incr); | |
225 | if (i >= eidx) | |
226 | break; | |
227 | if (test_bit(i, bdata->node_bootmem_map)) | |
228 | continue; | |
229 | for (j = i + 1; j < i + areasize; ++j) { | |
230 | if (j >= eidx) | |
231 | goto fail_block; | |
232 | if (test_bit (j, bdata->node_bootmem_map)) | |
233 | goto fail_block; | |
234 | } | |
235 | start = i; | |
236 | goto found; | |
237 | fail_block: | |
238 | i = ALIGN(j, incr); | |
239 | } | |
240 | ||
241 | if (preferred > offset) { | |
242 | preferred = offset; | |
243 | goto restart_scan; | |
244 | } | |
245 | return NULL; | |
246 | ||
247 | found: | |
248 | bdata->last_success = start << PAGE_SHIFT; | |
249 | BUG_ON(start >= eidx); | |
250 | ||
251 | /* | |
252 | * Is the next page of the previous allocation-end the start | |
253 | * of this allocation's buffer? If yes then we can 'merge' | |
254 | * the previous partial page with this allocation. | |
255 | */ | |
256 | if (align < PAGE_SIZE && | |
257 | bdata->last_offset && bdata->last_pos+1 == start) { | |
258 | offset = ALIGN(bdata->last_offset, align); | |
259 | BUG_ON(offset > PAGE_SIZE); | |
260 | remaining_size = PAGE_SIZE-offset; | |
261 | if (size < remaining_size) { | |
262 | areasize = 0; | |
263 | /* last_pos unchanged */ | |
264 | bdata->last_offset = offset+size; | |
265 | ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset + | |
266 | bdata->node_boot_start); | |
267 | } else { | |
268 | remaining_size = size - remaining_size; | |
269 | areasize = (remaining_size+PAGE_SIZE-1)/PAGE_SIZE; | |
270 | ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset + | |
271 | bdata->node_boot_start); | |
272 | bdata->last_pos = start+areasize-1; | |
273 | bdata->last_offset = remaining_size; | |
274 | } | |
275 | bdata->last_offset &= ~PAGE_MASK; | |
276 | } else { | |
277 | bdata->last_pos = start + areasize - 1; | |
278 | bdata->last_offset = size & ~PAGE_MASK; | |
279 | ret = phys_to_virt(start * PAGE_SIZE + bdata->node_boot_start); | |
280 | } | |
281 | ||
282 | /* | |
283 | * Reserve the area now: | |
284 | */ | |
285 | for (i = start; i < start+areasize; i++) | |
286 | if (unlikely(test_and_set_bit(i, bdata->node_bootmem_map))) | |
287 | BUG(); | |
288 | memset(ret, 0, size); | |
289 | return ret; | |
290 | } | |
291 | ||
292 | static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat) | |
293 | { | |
294 | struct page *page; | |
295 | unsigned long pfn; | |
296 | bootmem_data_t *bdata = pgdat->bdata; | |
297 | unsigned long i, count, total = 0; | |
298 | unsigned long idx; | |
299 | unsigned long *map; | |
300 | int gofast = 0; | |
301 | ||
302 | BUG_ON(!bdata->node_bootmem_map); | |
303 | ||
304 | count = 0; | |
305 | /* first extant page of the node */ | |
306 | pfn = bdata->node_boot_start >> PAGE_SHIFT; | |
307 | idx = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT); | |
308 | map = bdata->node_bootmem_map; | |
309 | /* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */ | |
310 | if (bdata->node_boot_start == 0 || | |
311 | ffs(bdata->node_boot_start) - PAGE_SHIFT > ffs(BITS_PER_LONG)) | |
312 | gofast = 1; | |
313 | for (i = 0; i < idx; ) { | |
314 | unsigned long v = ~map[i / BITS_PER_LONG]; | |
315 | ||
316 | if (gofast && v == ~0UL) { | |
317 | int order; | |
318 | ||
319 | page = pfn_to_page(pfn); | |
320 | count += BITS_PER_LONG; | |
321 | order = ffs(BITS_PER_LONG) - 1; | |
322 | __free_pages_bootmem(page, order); | |
323 | i += BITS_PER_LONG; | |
324 | page += BITS_PER_LONG; | |
325 | } else if (v) { | |
326 | unsigned long m; | |
327 | ||
328 | page = pfn_to_page(pfn); | |
329 | for (m = 1; m && i < idx; m<<=1, page++, i++) { | |
330 | if (v & m) { | |
331 | count++; | |
332 | __free_pages_bootmem(page, 0); | |
333 | } | |
334 | } | |
335 | } else { | |
336 | i+=BITS_PER_LONG; | |
337 | } | |
338 | pfn += BITS_PER_LONG; | |
339 | } | |
340 | total += count; | |
341 | ||
342 | /* | |
343 | * Now free the allocator bitmap itself, it's not | |
344 | * needed anymore: | |
345 | */ | |
346 | page = virt_to_page(bdata->node_bootmem_map); | |
347 | count = 0; | |
348 | for (i = 0; i < ((bdata->node_low_pfn-(bdata->node_boot_start >> PAGE_SHIFT))/8 + PAGE_SIZE-1)/PAGE_SIZE; i++,page++) { | |
349 | count++; | |
350 | __free_pages_bootmem(page, 0); | |
351 | } | |
352 | total += count; | |
353 | bdata->node_bootmem_map = NULL; | |
354 | ||
355 | return total; | |
356 | } | |
357 | ||
358 | unsigned long __init init_bootmem_node (pg_data_t *pgdat, unsigned long freepfn, unsigned long startpfn, unsigned long endpfn) | |
359 | { | |
360 | return(init_bootmem_core(pgdat, freepfn, startpfn, endpfn)); | |
361 | } | |
362 | ||
363 | void __init reserve_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size) | |
364 | { | |
365 | reserve_bootmem_core(pgdat->bdata, physaddr, size); | |
366 | } | |
367 | ||
368 | void __init free_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size) | |
369 | { | |
370 | free_bootmem_core(pgdat->bdata, physaddr, size); | |
371 | } | |
372 | ||
373 | unsigned long __init free_all_bootmem_node (pg_data_t *pgdat) | |
374 | { | |
375 | return(free_all_bootmem_core(pgdat)); | |
376 | } | |
377 | ||
378 | unsigned long __init init_bootmem (unsigned long start, unsigned long pages) | |
379 | { | |
380 | max_low_pfn = pages; | |
381 | min_low_pfn = start; | |
382 | return(init_bootmem_core(NODE_DATA(0), start, 0, pages)); | |
383 | } | |
384 | ||
385 | #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE | |
386 | void __init reserve_bootmem (unsigned long addr, unsigned long size) | |
387 | { | |
388 | reserve_bootmem_core(NODE_DATA(0)->bdata, addr, size); | |
389 | } | |
390 | #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */ | |
391 | ||
392 | void __init free_bootmem (unsigned long addr, unsigned long size) | |
393 | { | |
394 | free_bootmem_core(NODE_DATA(0)->bdata, addr, size); | |
395 | } | |
396 | ||
397 | unsigned long __init free_all_bootmem (void) | |
398 | { | |
399 | return(free_all_bootmem_core(NODE_DATA(0))); | |
400 | } | |
401 | ||
402 | void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align, unsigned long goal) | |
403 | { | |
404 | bootmem_data_t *bdata; | |
405 | void *ptr; | |
406 | ||
407 | list_for_each_entry(bdata, &bdata_list, list) | |
408 | if ((ptr = __alloc_bootmem_core(bdata, size, align, goal, 0))) | |
409 | return(ptr); | |
410 | return NULL; | |
411 | } | |
412 | ||
413 | void * __init __alloc_bootmem(unsigned long size, unsigned long align, unsigned long goal) | |
414 | { | |
415 | void *mem = __alloc_bootmem_nopanic(size,align,goal); | |
416 | if (mem) | |
417 | return mem; | |
418 | /* | |
419 | * Whoops, we cannot satisfy the allocation request. | |
420 | */ | |
421 | printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size); | |
422 | panic("Out of memory"); | |
423 | return NULL; | |
424 | } | |
425 | ||
426 | ||
427 | void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size, unsigned long align, | |
428 | unsigned long goal) | |
429 | { | |
430 | void *ptr; | |
431 | ||
432 | ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal, 0); | |
433 | if (ptr) | |
434 | return (ptr); | |
435 | ||
436 | return __alloc_bootmem(size, align, goal); | |
437 | } | |
438 | ||
439 | #define LOW32LIMIT 0xffffffff | |
440 | ||
441 | void * __init __alloc_bootmem_low(unsigned long size, unsigned long align, unsigned long goal) | |
442 | { | |
443 | bootmem_data_t *bdata; | |
444 | void *ptr; | |
445 | ||
446 | list_for_each_entry(bdata, &bdata_list, list) | |
447 | if ((ptr = __alloc_bootmem_core(bdata, size, | |
448 | align, goal, LOW32LIMIT))) | |
449 | return(ptr); | |
450 | ||
451 | /* | |
452 | * Whoops, we cannot satisfy the allocation request. | |
453 | */ | |
454 | printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size); | |
455 | panic("Out of low memory"); | |
456 | return NULL; | |
457 | } | |
458 | ||
459 | void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size, | |
460 | unsigned long align, unsigned long goal) | |
461 | { | |
462 | return __alloc_bootmem_core(pgdat->bdata, size, align, goal, LOW32LIMIT); | |
463 | } |