]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * fs/f2fs/node.c | |
3 | * | |
4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | |
5 | * http://www.samsung.com/ | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify | |
8 | * it under the terms of the GNU General Public License version 2 as | |
9 | * published by the Free Software Foundation. | |
10 | */ | |
11 | #include <linux/fs.h> | |
12 | #include <linux/f2fs_fs.h> | |
13 | #include <linux/mpage.h> | |
14 | #include <linux/backing-dev.h> | |
15 | #include <linux/blkdev.h> | |
16 | #include <linux/pagevec.h> | |
17 | #include <linux/swap.h> | |
18 | ||
19 | #include "f2fs.h" | |
20 | #include "node.h" | |
21 | #include "segment.h" | |
22 | #include "trace.h" | |
23 | #include <trace/events/f2fs.h> | |
24 | ||
25 | #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock) | |
26 | ||
27 | static struct kmem_cache *nat_entry_slab; | |
28 | static struct kmem_cache *free_nid_slab; | |
29 | static struct kmem_cache *nat_entry_set_slab; | |
30 | ||
31 | bool available_free_memory(struct f2fs_sb_info *sbi, int type) | |
32 | { | |
33 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
34 | struct sysinfo val; | |
35 | unsigned long avail_ram; | |
36 | unsigned long mem_size = 0; | |
37 | bool res = false; | |
38 | ||
39 | si_meminfo(&val); | |
40 | ||
41 | /* only uses low memory */ | |
42 | avail_ram = val.totalram - val.totalhigh; | |
43 | ||
44 | /* | |
45 | * give 25%, 25%, 50%, 50%, 50% memory for each components respectively | |
46 | */ | |
47 | if (type == FREE_NIDS) { | |
48 | mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> | |
49 | PAGE_SHIFT; | |
50 | res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); | |
51 | } else if (type == NAT_ENTRIES) { | |
52 | mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> | |
53 | PAGE_SHIFT; | |
54 | res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); | |
55 | if (excess_cached_nats(sbi)) | |
56 | res = false; | |
57 | if (nm_i->nat_cnt > DEF_NAT_CACHE_THRESHOLD) | |
58 | res = false; | |
59 | } else if (type == DIRTY_DENTS) { | |
60 | if (sbi->sb->s_bdi->wb.dirty_exceeded) | |
61 | return false; | |
62 | mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); | |
63 | res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); | |
64 | } else if (type == INO_ENTRIES) { | |
65 | int i; | |
66 | ||
67 | for (i = 0; i <= UPDATE_INO; i++) | |
68 | mem_size += (sbi->im[i].ino_num * | |
69 | sizeof(struct ino_entry)) >> PAGE_SHIFT; | |
70 | res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); | |
71 | } else if (type == EXTENT_CACHE) { | |
72 | mem_size = (atomic_read(&sbi->total_ext_tree) * | |
73 | sizeof(struct extent_tree) + | |
74 | atomic_read(&sbi->total_ext_node) * | |
75 | sizeof(struct extent_node)) >> PAGE_SHIFT; | |
76 | res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); | |
77 | } else { | |
78 | if (!sbi->sb->s_bdi->wb.dirty_exceeded) | |
79 | return true; | |
80 | } | |
81 | return res; | |
82 | } | |
83 | ||
84 | static void clear_node_page_dirty(struct page *page) | |
85 | { | |
86 | struct address_space *mapping = page->mapping; | |
87 | unsigned int long flags; | |
88 | ||
89 | if (PageDirty(page)) { | |
90 | spin_lock_irqsave(&mapping->tree_lock, flags); | |
91 | radix_tree_tag_clear(&mapping->page_tree, | |
92 | page_index(page), | |
93 | PAGECACHE_TAG_DIRTY); | |
94 | spin_unlock_irqrestore(&mapping->tree_lock, flags); | |
95 | ||
96 | clear_page_dirty_for_io(page); | |
97 | dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); | |
98 | } | |
99 | ClearPageUptodate(page); | |
100 | } | |
101 | ||
102 | static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) | |
103 | { | |
104 | pgoff_t index = current_nat_addr(sbi, nid); | |
105 | return get_meta_page(sbi, index); | |
106 | } | |
107 | ||
108 | static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) | |
109 | { | |
110 | struct page *src_page; | |
111 | struct page *dst_page; | |
112 | pgoff_t src_off; | |
113 | pgoff_t dst_off; | |
114 | void *src_addr; | |
115 | void *dst_addr; | |
116 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
117 | ||
118 | src_off = current_nat_addr(sbi, nid); | |
119 | dst_off = next_nat_addr(sbi, src_off); | |
120 | ||
121 | /* get current nat block page with lock */ | |
122 | src_page = get_meta_page(sbi, src_off); | |
123 | dst_page = grab_meta_page(sbi, dst_off); | |
124 | f2fs_bug_on(sbi, PageDirty(src_page)); | |
125 | ||
126 | src_addr = page_address(src_page); | |
127 | dst_addr = page_address(dst_page); | |
128 | memcpy(dst_addr, src_addr, PAGE_SIZE); | |
129 | set_page_dirty(dst_page); | |
130 | f2fs_put_page(src_page, 1); | |
131 | ||
132 | set_to_next_nat(nm_i, nid); | |
133 | ||
134 | return dst_page; | |
135 | } | |
136 | ||
137 | static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) | |
138 | { | |
139 | return radix_tree_lookup(&nm_i->nat_root, n); | |
140 | } | |
141 | ||
142 | static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, | |
143 | nid_t start, unsigned int nr, struct nat_entry **ep) | |
144 | { | |
145 | return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); | |
146 | } | |
147 | ||
148 | static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) | |
149 | { | |
150 | list_del(&e->list); | |
151 | radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); | |
152 | nm_i->nat_cnt--; | |
153 | kmem_cache_free(nat_entry_slab, e); | |
154 | } | |
155 | ||
156 | static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, | |
157 | struct nat_entry *ne) | |
158 | { | |
159 | nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); | |
160 | struct nat_entry_set *head; | |
161 | ||
162 | if (get_nat_flag(ne, IS_DIRTY)) | |
163 | return; | |
164 | ||
165 | head = radix_tree_lookup(&nm_i->nat_set_root, set); | |
166 | if (!head) { | |
167 | head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); | |
168 | ||
169 | INIT_LIST_HEAD(&head->entry_list); | |
170 | INIT_LIST_HEAD(&head->set_list); | |
171 | head->set = set; | |
172 | head->entry_cnt = 0; | |
173 | f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); | |
174 | } | |
175 | list_move_tail(&ne->list, &head->entry_list); | |
176 | nm_i->dirty_nat_cnt++; | |
177 | head->entry_cnt++; | |
178 | set_nat_flag(ne, IS_DIRTY, true); | |
179 | } | |
180 | ||
181 | static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, | |
182 | struct nat_entry *ne) | |
183 | { | |
184 | nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); | |
185 | struct nat_entry_set *head; | |
186 | ||
187 | head = radix_tree_lookup(&nm_i->nat_set_root, set); | |
188 | if (head) { | |
189 | list_move_tail(&ne->list, &nm_i->nat_entries); | |
190 | set_nat_flag(ne, IS_DIRTY, false); | |
191 | head->entry_cnt--; | |
192 | nm_i->dirty_nat_cnt--; | |
193 | } | |
194 | } | |
195 | ||
196 | static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, | |
197 | nid_t start, unsigned int nr, struct nat_entry_set **ep) | |
198 | { | |
199 | return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, | |
200 | start, nr); | |
201 | } | |
202 | ||
203 | int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) | |
204 | { | |
205 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
206 | struct nat_entry *e; | |
207 | bool need = false; | |
208 | ||
209 | down_read(&nm_i->nat_tree_lock); | |
210 | e = __lookup_nat_cache(nm_i, nid); | |
211 | if (e) { | |
212 | if (!get_nat_flag(e, IS_CHECKPOINTED) && | |
213 | !get_nat_flag(e, HAS_FSYNCED_INODE)) | |
214 | need = true; | |
215 | } | |
216 | up_read(&nm_i->nat_tree_lock); | |
217 | return need; | |
218 | } | |
219 | ||
220 | bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) | |
221 | { | |
222 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
223 | struct nat_entry *e; | |
224 | bool is_cp = true; | |
225 | ||
226 | down_read(&nm_i->nat_tree_lock); | |
227 | e = __lookup_nat_cache(nm_i, nid); | |
228 | if (e && !get_nat_flag(e, IS_CHECKPOINTED)) | |
229 | is_cp = false; | |
230 | up_read(&nm_i->nat_tree_lock); | |
231 | return is_cp; | |
232 | } | |
233 | ||
234 | bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) | |
235 | { | |
236 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
237 | struct nat_entry *e; | |
238 | bool need_update = true; | |
239 | ||
240 | down_read(&nm_i->nat_tree_lock); | |
241 | e = __lookup_nat_cache(nm_i, ino); | |
242 | if (e && get_nat_flag(e, HAS_LAST_FSYNC) && | |
243 | (get_nat_flag(e, IS_CHECKPOINTED) || | |
244 | get_nat_flag(e, HAS_FSYNCED_INODE))) | |
245 | need_update = false; | |
246 | up_read(&nm_i->nat_tree_lock); | |
247 | return need_update; | |
248 | } | |
249 | ||
250 | static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) | |
251 | { | |
252 | struct nat_entry *new; | |
253 | ||
254 | new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS); | |
255 | f2fs_radix_tree_insert(&nm_i->nat_root, nid, new); | |
256 | memset(new, 0, sizeof(struct nat_entry)); | |
257 | nat_set_nid(new, nid); | |
258 | nat_reset_flag(new); | |
259 | list_add_tail(&new->list, &nm_i->nat_entries); | |
260 | nm_i->nat_cnt++; | |
261 | return new; | |
262 | } | |
263 | ||
264 | static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, | |
265 | struct f2fs_nat_entry *ne) | |
266 | { | |
267 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
268 | struct nat_entry *e; | |
269 | ||
270 | e = __lookup_nat_cache(nm_i, nid); | |
271 | if (!e) { | |
272 | e = grab_nat_entry(nm_i, nid); | |
273 | node_info_from_raw_nat(&e->ni, ne); | |
274 | } else { | |
275 | f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino || | |
276 | nat_get_blkaddr(e) != ne->block_addr || | |
277 | nat_get_version(e) != ne->version); | |
278 | } | |
279 | } | |
280 | ||
281 | static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, | |
282 | block_t new_blkaddr, bool fsync_done) | |
283 | { | |
284 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
285 | struct nat_entry *e; | |
286 | ||
287 | down_write(&nm_i->nat_tree_lock); | |
288 | e = __lookup_nat_cache(nm_i, ni->nid); | |
289 | if (!e) { | |
290 | e = grab_nat_entry(nm_i, ni->nid); | |
291 | copy_node_info(&e->ni, ni); | |
292 | f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); | |
293 | } else if (new_blkaddr == NEW_ADDR) { | |
294 | /* | |
295 | * when nid is reallocated, | |
296 | * previous nat entry can be remained in nat cache. | |
297 | * So, reinitialize it with new information. | |
298 | */ | |
299 | copy_node_info(&e->ni, ni); | |
300 | f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); | |
301 | } | |
302 | ||
303 | /* sanity check */ | |
304 | f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); | |
305 | f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && | |
306 | new_blkaddr == NULL_ADDR); | |
307 | f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && | |
308 | new_blkaddr == NEW_ADDR); | |
309 | f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR && | |
310 | nat_get_blkaddr(e) != NULL_ADDR && | |
311 | new_blkaddr == NEW_ADDR); | |
312 | ||
313 | /* increment version no as node is removed */ | |
314 | if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { | |
315 | unsigned char version = nat_get_version(e); | |
316 | nat_set_version(e, inc_node_version(version)); | |
317 | ||
318 | /* in order to reuse the nid */ | |
319 | if (nm_i->next_scan_nid > ni->nid) | |
320 | nm_i->next_scan_nid = ni->nid; | |
321 | } | |
322 | ||
323 | /* change address */ | |
324 | nat_set_blkaddr(e, new_blkaddr); | |
325 | if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR) | |
326 | set_nat_flag(e, IS_CHECKPOINTED, false); | |
327 | __set_nat_cache_dirty(nm_i, e); | |
328 | ||
329 | /* update fsync_mark if its inode nat entry is still alive */ | |
330 | if (ni->nid != ni->ino) | |
331 | e = __lookup_nat_cache(nm_i, ni->ino); | |
332 | if (e) { | |
333 | if (fsync_done && ni->nid == ni->ino) | |
334 | set_nat_flag(e, HAS_FSYNCED_INODE, true); | |
335 | set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); | |
336 | } | |
337 | up_write(&nm_i->nat_tree_lock); | |
338 | } | |
339 | ||
340 | int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) | |
341 | { | |
342 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
343 | int nr = nr_shrink; | |
344 | ||
345 | if (!down_write_trylock(&nm_i->nat_tree_lock)) | |
346 | return 0; | |
347 | ||
348 | while (nr_shrink && !list_empty(&nm_i->nat_entries)) { | |
349 | struct nat_entry *ne; | |
350 | ne = list_first_entry(&nm_i->nat_entries, | |
351 | struct nat_entry, list); | |
352 | __del_from_nat_cache(nm_i, ne); | |
353 | nr_shrink--; | |
354 | } | |
355 | up_write(&nm_i->nat_tree_lock); | |
356 | return nr - nr_shrink; | |
357 | } | |
358 | ||
359 | /* | |
360 | * This function always returns success | |
361 | */ | |
362 | void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) | |
363 | { | |
364 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
365 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | |
366 | struct f2fs_journal *journal = curseg->journal; | |
367 | nid_t start_nid = START_NID(nid); | |
368 | struct f2fs_nat_block *nat_blk; | |
369 | struct page *page = NULL; | |
370 | struct f2fs_nat_entry ne; | |
371 | struct nat_entry *e; | |
372 | int i; | |
373 | ||
374 | ni->nid = nid; | |
375 | ||
376 | /* Check nat cache */ | |
377 | down_read(&nm_i->nat_tree_lock); | |
378 | e = __lookup_nat_cache(nm_i, nid); | |
379 | if (e) { | |
380 | ni->ino = nat_get_ino(e); | |
381 | ni->blk_addr = nat_get_blkaddr(e); | |
382 | ni->version = nat_get_version(e); | |
383 | up_read(&nm_i->nat_tree_lock); | |
384 | return; | |
385 | } | |
386 | ||
387 | memset(&ne, 0, sizeof(struct f2fs_nat_entry)); | |
388 | ||
389 | /* Check current segment summary */ | |
390 | down_read(&curseg->journal_rwsem); | |
391 | i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); | |
392 | if (i >= 0) { | |
393 | ne = nat_in_journal(journal, i); | |
394 | node_info_from_raw_nat(ni, &ne); | |
395 | } | |
396 | up_read(&curseg->journal_rwsem); | |
397 | if (i >= 0) | |
398 | goto cache; | |
399 | ||
400 | /* Fill node_info from nat page */ | |
401 | page = get_current_nat_page(sbi, start_nid); | |
402 | nat_blk = (struct f2fs_nat_block *)page_address(page); | |
403 | ne = nat_blk->entries[nid - start_nid]; | |
404 | node_info_from_raw_nat(ni, &ne); | |
405 | f2fs_put_page(page, 1); | |
406 | cache: | |
407 | up_read(&nm_i->nat_tree_lock); | |
408 | /* cache nat entry */ | |
409 | down_write(&nm_i->nat_tree_lock); | |
410 | cache_nat_entry(sbi, nid, &ne); | |
411 | up_write(&nm_i->nat_tree_lock); | |
412 | } | |
413 | ||
414 | /* | |
415 | * readahead MAX_RA_NODE number of node pages. | |
416 | */ | |
417 | static void ra_node_pages(struct page *parent, int start, int n) | |
418 | { | |
419 | struct f2fs_sb_info *sbi = F2FS_P_SB(parent); | |
420 | struct blk_plug plug; | |
421 | int i, end; | |
422 | nid_t nid; | |
423 | ||
424 | blk_start_plug(&plug); | |
425 | ||
426 | /* Then, try readahead for siblings of the desired node */ | |
427 | end = start + n; | |
428 | end = min(end, NIDS_PER_BLOCK); | |
429 | for (i = start; i < end; i++) { | |
430 | nid = get_nid(parent, i, false); | |
431 | ra_node_page(sbi, nid); | |
432 | } | |
433 | ||
434 | blk_finish_plug(&plug); | |
435 | } | |
436 | ||
437 | pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) | |
438 | { | |
439 | const long direct_index = ADDRS_PER_INODE(dn->inode); | |
440 | const long direct_blks = ADDRS_PER_BLOCK; | |
441 | const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; | |
442 | unsigned int skipped_unit = ADDRS_PER_BLOCK; | |
443 | int cur_level = dn->cur_level; | |
444 | int max_level = dn->max_level; | |
445 | pgoff_t base = 0; | |
446 | ||
447 | if (!dn->max_level) | |
448 | return pgofs + 1; | |
449 | ||
450 | while (max_level-- > cur_level) | |
451 | skipped_unit *= NIDS_PER_BLOCK; | |
452 | ||
453 | switch (dn->max_level) { | |
454 | case 3: | |
455 | base += 2 * indirect_blks; | |
456 | case 2: | |
457 | base += 2 * direct_blks; | |
458 | case 1: | |
459 | base += direct_index; | |
460 | break; | |
461 | default: | |
462 | f2fs_bug_on(F2FS_I_SB(dn->inode), 1); | |
463 | } | |
464 | ||
465 | return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; | |
466 | } | |
467 | ||
468 | /* | |
469 | * The maximum depth is four. | |
470 | * Offset[0] will have raw inode offset. | |
471 | */ | |
472 | static int get_node_path(struct inode *inode, long block, | |
473 | int offset[4], unsigned int noffset[4]) | |
474 | { | |
475 | const long direct_index = ADDRS_PER_INODE(inode); | |
476 | const long direct_blks = ADDRS_PER_BLOCK; | |
477 | const long dptrs_per_blk = NIDS_PER_BLOCK; | |
478 | const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; | |
479 | const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; | |
480 | int n = 0; | |
481 | int level = 0; | |
482 | ||
483 | noffset[0] = 0; | |
484 | ||
485 | if (block < direct_index) { | |
486 | offset[n] = block; | |
487 | goto got; | |
488 | } | |
489 | block -= direct_index; | |
490 | if (block < direct_blks) { | |
491 | offset[n++] = NODE_DIR1_BLOCK; | |
492 | noffset[n] = 1; | |
493 | offset[n] = block; | |
494 | level = 1; | |
495 | goto got; | |
496 | } | |
497 | block -= direct_blks; | |
498 | if (block < direct_blks) { | |
499 | offset[n++] = NODE_DIR2_BLOCK; | |
500 | noffset[n] = 2; | |
501 | offset[n] = block; | |
502 | level = 1; | |
503 | goto got; | |
504 | } | |
505 | block -= direct_blks; | |
506 | if (block < indirect_blks) { | |
507 | offset[n++] = NODE_IND1_BLOCK; | |
508 | noffset[n] = 3; | |
509 | offset[n++] = block / direct_blks; | |
510 | noffset[n] = 4 + offset[n - 1]; | |
511 | offset[n] = block % direct_blks; | |
512 | level = 2; | |
513 | goto got; | |
514 | } | |
515 | block -= indirect_blks; | |
516 | if (block < indirect_blks) { | |
517 | offset[n++] = NODE_IND2_BLOCK; | |
518 | noffset[n] = 4 + dptrs_per_blk; | |
519 | offset[n++] = block / direct_blks; | |
520 | noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; | |
521 | offset[n] = block % direct_blks; | |
522 | level = 2; | |
523 | goto got; | |
524 | } | |
525 | block -= indirect_blks; | |
526 | if (block < dindirect_blks) { | |
527 | offset[n++] = NODE_DIND_BLOCK; | |
528 | noffset[n] = 5 + (dptrs_per_blk * 2); | |
529 | offset[n++] = block / indirect_blks; | |
530 | noffset[n] = 6 + (dptrs_per_blk * 2) + | |
531 | offset[n - 1] * (dptrs_per_blk + 1); | |
532 | offset[n++] = (block / direct_blks) % dptrs_per_blk; | |
533 | noffset[n] = 7 + (dptrs_per_blk * 2) + | |
534 | offset[n - 2] * (dptrs_per_blk + 1) + | |
535 | offset[n - 1]; | |
536 | offset[n] = block % direct_blks; | |
537 | level = 3; | |
538 | goto got; | |
539 | } else { | |
540 | BUG(); | |
541 | } | |
542 | got: | |
543 | return level; | |
544 | } | |
545 | ||
546 | /* | |
547 | * Caller should call f2fs_put_dnode(dn). | |
548 | * Also, it should grab and release a rwsem by calling f2fs_lock_op() and | |
549 | * f2fs_unlock_op() only if ro is not set RDONLY_NODE. | |
550 | * In the case of RDONLY_NODE, we don't need to care about mutex. | |
551 | */ | |
552 | int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) | |
553 | { | |
554 | struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); | |
555 | struct page *npage[4]; | |
556 | struct page *parent = NULL; | |
557 | int offset[4]; | |
558 | unsigned int noffset[4]; | |
559 | nid_t nids[4]; | |
560 | int level, i = 0; | |
561 | int err = 0; | |
562 | ||
563 | level = get_node_path(dn->inode, index, offset, noffset); | |
564 | ||
565 | nids[0] = dn->inode->i_ino; | |
566 | npage[0] = dn->inode_page; | |
567 | ||
568 | if (!npage[0]) { | |
569 | npage[0] = get_node_page(sbi, nids[0]); | |
570 | if (IS_ERR(npage[0])) | |
571 | return PTR_ERR(npage[0]); | |
572 | } | |
573 | ||
574 | /* if inline_data is set, should not report any block indices */ | |
575 | if (f2fs_has_inline_data(dn->inode) && index) { | |
576 | err = -ENOENT; | |
577 | f2fs_put_page(npage[0], 1); | |
578 | goto release_out; | |
579 | } | |
580 | ||
581 | parent = npage[0]; | |
582 | if (level != 0) | |
583 | nids[1] = get_nid(parent, offset[0], true); | |
584 | dn->inode_page = npage[0]; | |
585 | dn->inode_page_locked = true; | |
586 | ||
587 | /* get indirect or direct nodes */ | |
588 | for (i = 1; i <= level; i++) { | |
589 | bool done = false; | |
590 | ||
591 | if (!nids[i] && mode == ALLOC_NODE) { | |
592 | /* alloc new node */ | |
593 | if (!alloc_nid(sbi, &(nids[i]))) { | |
594 | err = -ENOSPC; | |
595 | goto release_pages; | |
596 | } | |
597 | ||
598 | dn->nid = nids[i]; | |
599 | npage[i] = new_node_page(dn, noffset[i], NULL); | |
600 | if (IS_ERR(npage[i])) { | |
601 | alloc_nid_failed(sbi, nids[i]); | |
602 | err = PTR_ERR(npage[i]); | |
603 | goto release_pages; | |
604 | } | |
605 | ||
606 | set_nid(parent, offset[i - 1], nids[i], i == 1); | |
607 | alloc_nid_done(sbi, nids[i]); | |
608 | done = true; | |
609 | } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { | |
610 | npage[i] = get_node_page_ra(parent, offset[i - 1]); | |
611 | if (IS_ERR(npage[i])) { | |
612 | err = PTR_ERR(npage[i]); | |
613 | goto release_pages; | |
614 | } | |
615 | done = true; | |
616 | } | |
617 | if (i == 1) { | |
618 | dn->inode_page_locked = false; | |
619 | unlock_page(parent); | |
620 | } else { | |
621 | f2fs_put_page(parent, 1); | |
622 | } | |
623 | ||
624 | if (!done) { | |
625 | npage[i] = get_node_page(sbi, nids[i]); | |
626 | if (IS_ERR(npage[i])) { | |
627 | err = PTR_ERR(npage[i]); | |
628 | f2fs_put_page(npage[0], 0); | |
629 | goto release_out; | |
630 | } | |
631 | } | |
632 | if (i < level) { | |
633 | parent = npage[i]; | |
634 | nids[i + 1] = get_nid(parent, offset[i], false); | |
635 | } | |
636 | } | |
637 | dn->nid = nids[level]; | |
638 | dn->ofs_in_node = offset[level]; | |
639 | dn->node_page = npage[level]; | |
640 | dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); | |
641 | return 0; | |
642 | ||
643 | release_pages: | |
644 | f2fs_put_page(parent, 1); | |
645 | if (i > 1) | |
646 | f2fs_put_page(npage[0], 0); | |
647 | release_out: | |
648 | dn->inode_page = NULL; | |
649 | dn->node_page = NULL; | |
650 | if (err == -ENOENT) { | |
651 | dn->cur_level = i; | |
652 | dn->max_level = level; | |
653 | } | |
654 | return err; | |
655 | } | |
656 | ||
657 | static void truncate_node(struct dnode_of_data *dn) | |
658 | { | |
659 | struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); | |
660 | struct node_info ni; | |
661 | ||
662 | get_node_info(sbi, dn->nid, &ni); | |
663 | if (dn->inode->i_blocks == 0) { | |
664 | f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR); | |
665 | goto invalidate; | |
666 | } | |
667 | f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); | |
668 | ||
669 | /* Deallocate node address */ | |
670 | invalidate_blocks(sbi, ni.blk_addr); | |
671 | dec_valid_node_count(sbi, dn->inode); | |
672 | set_node_addr(sbi, &ni, NULL_ADDR, false); | |
673 | ||
674 | if (dn->nid == dn->inode->i_ino) { | |
675 | remove_orphan_inode(sbi, dn->nid); | |
676 | dec_valid_inode_count(sbi); | |
677 | f2fs_inode_synced(dn->inode); | |
678 | } | |
679 | invalidate: | |
680 | clear_node_page_dirty(dn->node_page); | |
681 | set_sbi_flag(sbi, SBI_IS_DIRTY); | |
682 | ||
683 | f2fs_put_page(dn->node_page, 1); | |
684 | ||
685 | invalidate_mapping_pages(NODE_MAPPING(sbi), | |
686 | dn->node_page->index, dn->node_page->index); | |
687 | ||
688 | dn->node_page = NULL; | |
689 | trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); | |
690 | } | |
691 | ||
692 | static int truncate_dnode(struct dnode_of_data *dn) | |
693 | { | |
694 | struct page *page; | |
695 | ||
696 | if (dn->nid == 0) | |
697 | return 1; | |
698 | ||
699 | /* get direct node */ | |
700 | page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); | |
701 | if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) | |
702 | return 1; | |
703 | else if (IS_ERR(page)) | |
704 | return PTR_ERR(page); | |
705 | ||
706 | /* Make dnode_of_data for parameter */ | |
707 | dn->node_page = page; | |
708 | dn->ofs_in_node = 0; | |
709 | truncate_data_blocks(dn); | |
710 | truncate_node(dn); | |
711 | return 1; | |
712 | } | |
713 | ||
714 | static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, | |
715 | int ofs, int depth) | |
716 | { | |
717 | struct dnode_of_data rdn = *dn; | |
718 | struct page *page; | |
719 | struct f2fs_node *rn; | |
720 | nid_t child_nid; | |
721 | unsigned int child_nofs; | |
722 | int freed = 0; | |
723 | int i, ret; | |
724 | ||
725 | if (dn->nid == 0) | |
726 | return NIDS_PER_BLOCK + 1; | |
727 | ||
728 | trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); | |
729 | ||
730 | page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); | |
731 | if (IS_ERR(page)) { | |
732 | trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); | |
733 | return PTR_ERR(page); | |
734 | } | |
735 | ||
736 | ra_node_pages(page, ofs, NIDS_PER_BLOCK); | |
737 | ||
738 | rn = F2FS_NODE(page); | |
739 | if (depth < 3) { | |
740 | for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { | |
741 | child_nid = le32_to_cpu(rn->in.nid[i]); | |
742 | if (child_nid == 0) | |
743 | continue; | |
744 | rdn.nid = child_nid; | |
745 | ret = truncate_dnode(&rdn); | |
746 | if (ret < 0) | |
747 | goto out_err; | |
748 | if (set_nid(page, i, 0, false)) | |
749 | dn->node_changed = true; | |
750 | } | |
751 | } else { | |
752 | child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; | |
753 | for (i = ofs; i < NIDS_PER_BLOCK; i++) { | |
754 | child_nid = le32_to_cpu(rn->in.nid[i]); | |
755 | if (child_nid == 0) { | |
756 | child_nofs += NIDS_PER_BLOCK + 1; | |
757 | continue; | |
758 | } | |
759 | rdn.nid = child_nid; | |
760 | ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); | |
761 | if (ret == (NIDS_PER_BLOCK + 1)) { | |
762 | if (set_nid(page, i, 0, false)) | |
763 | dn->node_changed = true; | |
764 | child_nofs += ret; | |
765 | } else if (ret < 0 && ret != -ENOENT) { | |
766 | goto out_err; | |
767 | } | |
768 | } | |
769 | freed = child_nofs; | |
770 | } | |
771 | ||
772 | if (!ofs) { | |
773 | /* remove current indirect node */ | |
774 | dn->node_page = page; | |
775 | truncate_node(dn); | |
776 | freed++; | |
777 | } else { | |
778 | f2fs_put_page(page, 1); | |
779 | } | |
780 | trace_f2fs_truncate_nodes_exit(dn->inode, freed); | |
781 | return freed; | |
782 | ||
783 | out_err: | |
784 | f2fs_put_page(page, 1); | |
785 | trace_f2fs_truncate_nodes_exit(dn->inode, ret); | |
786 | return ret; | |
787 | } | |
788 | ||
789 | static int truncate_partial_nodes(struct dnode_of_data *dn, | |
790 | struct f2fs_inode *ri, int *offset, int depth) | |
791 | { | |
792 | struct page *pages[2]; | |
793 | nid_t nid[3]; | |
794 | nid_t child_nid; | |
795 | int err = 0; | |
796 | int i; | |
797 | int idx = depth - 2; | |
798 | ||
799 | nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); | |
800 | if (!nid[0]) | |
801 | return 0; | |
802 | ||
803 | /* get indirect nodes in the path */ | |
804 | for (i = 0; i < idx + 1; i++) { | |
805 | /* reference count'll be increased */ | |
806 | pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]); | |
807 | if (IS_ERR(pages[i])) { | |
808 | err = PTR_ERR(pages[i]); | |
809 | idx = i - 1; | |
810 | goto fail; | |
811 | } | |
812 | nid[i + 1] = get_nid(pages[i], offset[i + 1], false); | |
813 | } | |
814 | ||
815 | ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); | |
816 | ||
817 | /* free direct nodes linked to a partial indirect node */ | |
818 | for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { | |
819 | child_nid = get_nid(pages[idx], i, false); | |
820 | if (!child_nid) | |
821 | continue; | |
822 | dn->nid = child_nid; | |
823 | err = truncate_dnode(dn); | |
824 | if (err < 0) | |
825 | goto fail; | |
826 | if (set_nid(pages[idx], i, 0, false)) | |
827 | dn->node_changed = true; | |
828 | } | |
829 | ||
830 | if (offset[idx + 1] == 0) { | |
831 | dn->node_page = pages[idx]; | |
832 | dn->nid = nid[idx]; | |
833 | truncate_node(dn); | |
834 | } else { | |
835 | f2fs_put_page(pages[idx], 1); | |
836 | } | |
837 | offset[idx]++; | |
838 | offset[idx + 1] = 0; | |
839 | idx--; | |
840 | fail: | |
841 | for (i = idx; i >= 0; i--) | |
842 | f2fs_put_page(pages[i], 1); | |
843 | ||
844 | trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); | |
845 | ||
846 | return err; | |
847 | } | |
848 | ||
849 | /* | |
850 | * All the block addresses of data and nodes should be nullified. | |
851 | */ | |
852 | int truncate_inode_blocks(struct inode *inode, pgoff_t from) | |
853 | { | |
854 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | |
855 | int err = 0, cont = 1; | |
856 | int level, offset[4], noffset[4]; | |
857 | unsigned int nofs = 0; | |
858 | struct f2fs_inode *ri; | |
859 | struct dnode_of_data dn; | |
860 | struct page *page; | |
861 | ||
862 | trace_f2fs_truncate_inode_blocks_enter(inode, from); | |
863 | ||
864 | level = get_node_path(inode, from, offset, noffset); | |
865 | ||
866 | page = get_node_page(sbi, inode->i_ino); | |
867 | if (IS_ERR(page)) { | |
868 | trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); | |
869 | return PTR_ERR(page); | |
870 | } | |
871 | ||
872 | set_new_dnode(&dn, inode, page, NULL, 0); | |
873 | unlock_page(page); | |
874 | ||
875 | ri = F2FS_INODE(page); | |
876 | switch (level) { | |
877 | case 0: | |
878 | case 1: | |
879 | nofs = noffset[1]; | |
880 | break; | |
881 | case 2: | |
882 | nofs = noffset[1]; | |
883 | if (!offset[level - 1]) | |
884 | goto skip_partial; | |
885 | err = truncate_partial_nodes(&dn, ri, offset, level); | |
886 | if (err < 0 && err != -ENOENT) | |
887 | goto fail; | |
888 | nofs += 1 + NIDS_PER_BLOCK; | |
889 | break; | |
890 | case 3: | |
891 | nofs = 5 + 2 * NIDS_PER_BLOCK; | |
892 | if (!offset[level - 1]) | |
893 | goto skip_partial; | |
894 | err = truncate_partial_nodes(&dn, ri, offset, level); | |
895 | if (err < 0 && err != -ENOENT) | |
896 | goto fail; | |
897 | break; | |
898 | default: | |
899 | BUG(); | |
900 | } | |
901 | ||
902 | skip_partial: | |
903 | while (cont) { | |
904 | dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); | |
905 | switch (offset[0]) { | |
906 | case NODE_DIR1_BLOCK: | |
907 | case NODE_DIR2_BLOCK: | |
908 | err = truncate_dnode(&dn); | |
909 | break; | |
910 | ||
911 | case NODE_IND1_BLOCK: | |
912 | case NODE_IND2_BLOCK: | |
913 | err = truncate_nodes(&dn, nofs, offset[1], 2); | |
914 | break; | |
915 | ||
916 | case NODE_DIND_BLOCK: | |
917 | err = truncate_nodes(&dn, nofs, offset[1], 3); | |
918 | cont = 0; | |
919 | break; | |
920 | ||
921 | default: | |
922 | BUG(); | |
923 | } | |
924 | if (err < 0 && err != -ENOENT) | |
925 | goto fail; | |
926 | if (offset[1] == 0 && | |
927 | ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { | |
928 | lock_page(page); | |
929 | BUG_ON(page->mapping != NODE_MAPPING(sbi)); | |
930 | f2fs_wait_on_page_writeback(page, NODE, true); | |
931 | ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; | |
932 | set_page_dirty(page); | |
933 | unlock_page(page); | |
934 | } | |
935 | offset[1] = 0; | |
936 | offset[0]++; | |
937 | nofs += err; | |
938 | } | |
939 | fail: | |
940 | f2fs_put_page(page, 0); | |
941 | trace_f2fs_truncate_inode_blocks_exit(inode, err); | |
942 | return err > 0 ? 0 : err; | |
943 | } | |
944 | ||
945 | int truncate_xattr_node(struct inode *inode, struct page *page) | |
946 | { | |
947 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | |
948 | nid_t nid = F2FS_I(inode)->i_xattr_nid; | |
949 | struct dnode_of_data dn; | |
950 | struct page *npage; | |
951 | ||
952 | if (!nid) | |
953 | return 0; | |
954 | ||
955 | npage = get_node_page(sbi, nid); | |
956 | if (IS_ERR(npage)) | |
957 | return PTR_ERR(npage); | |
958 | ||
959 | f2fs_i_xnid_write(inode, 0); | |
960 | ||
961 | /* need to do checkpoint during fsync */ | |
962 | F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi)); | |
963 | ||
964 | set_new_dnode(&dn, inode, page, npage, nid); | |
965 | ||
966 | if (page) | |
967 | dn.inode_page_locked = true; | |
968 | truncate_node(&dn); | |
969 | return 0; | |
970 | } | |
971 | ||
972 | /* | |
973 | * Caller should grab and release a rwsem by calling f2fs_lock_op() and | |
974 | * f2fs_unlock_op(). | |
975 | */ | |
976 | int remove_inode_page(struct inode *inode) | |
977 | { | |
978 | struct dnode_of_data dn; | |
979 | int err; | |
980 | ||
981 | set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); | |
982 | err = get_dnode_of_data(&dn, 0, LOOKUP_NODE); | |
983 | if (err) | |
984 | return err; | |
985 | ||
986 | err = truncate_xattr_node(inode, dn.inode_page); | |
987 | if (err) { | |
988 | f2fs_put_dnode(&dn); | |
989 | return err; | |
990 | } | |
991 | ||
992 | /* remove potential inline_data blocks */ | |
993 | if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || | |
994 | S_ISLNK(inode->i_mode)) | |
995 | truncate_data_blocks_range(&dn, 1); | |
996 | ||
997 | /* 0 is possible, after f2fs_new_inode() has failed */ | |
998 | f2fs_bug_on(F2FS_I_SB(inode), | |
999 | inode->i_blocks != 0 && inode->i_blocks != 1); | |
1000 | ||
1001 | /* will put inode & node pages */ | |
1002 | truncate_node(&dn); | |
1003 | return 0; | |
1004 | } | |
1005 | ||
1006 | struct page *new_inode_page(struct inode *inode) | |
1007 | { | |
1008 | struct dnode_of_data dn; | |
1009 | ||
1010 | /* allocate inode page for new inode */ | |
1011 | set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); | |
1012 | ||
1013 | /* caller should f2fs_put_page(page, 1); */ | |
1014 | return new_node_page(&dn, 0, NULL); | |
1015 | } | |
1016 | ||
1017 | struct page *new_node_page(struct dnode_of_data *dn, | |
1018 | unsigned int ofs, struct page *ipage) | |
1019 | { | |
1020 | struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); | |
1021 | struct node_info old_ni, new_ni; | |
1022 | struct page *page; | |
1023 | int err; | |
1024 | ||
1025 | if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) | |
1026 | return ERR_PTR(-EPERM); | |
1027 | ||
1028 | page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); | |
1029 | if (!page) | |
1030 | return ERR_PTR(-ENOMEM); | |
1031 | ||
1032 | if (unlikely(!inc_valid_node_count(sbi, dn->inode))) { | |
1033 | err = -ENOSPC; | |
1034 | goto fail; | |
1035 | } | |
1036 | ||
1037 | get_node_info(sbi, dn->nid, &old_ni); | |
1038 | ||
1039 | /* Reinitialize old_ni with new node page */ | |
1040 | f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR); | |
1041 | new_ni = old_ni; | |
1042 | new_ni.ino = dn->inode->i_ino; | |
1043 | set_node_addr(sbi, &new_ni, NEW_ADDR, false); | |
1044 | ||
1045 | f2fs_wait_on_page_writeback(page, NODE, true); | |
1046 | fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); | |
1047 | set_cold_node(dn->inode, page); | |
1048 | SetPageUptodate(page); | |
1049 | if (set_page_dirty(page)) | |
1050 | dn->node_changed = true; | |
1051 | ||
1052 | if (f2fs_has_xattr_block(ofs)) | |
1053 | f2fs_i_xnid_write(dn->inode, dn->nid); | |
1054 | ||
1055 | if (ofs == 0) | |
1056 | inc_valid_inode_count(sbi); | |
1057 | return page; | |
1058 | ||
1059 | fail: | |
1060 | clear_node_page_dirty(page); | |
1061 | f2fs_put_page(page, 1); | |
1062 | return ERR_PTR(err); | |
1063 | } | |
1064 | ||
1065 | /* | |
1066 | * Caller should do after getting the following values. | |
1067 | * 0: f2fs_put_page(page, 0) | |
1068 | * LOCKED_PAGE or error: f2fs_put_page(page, 1) | |
1069 | */ | |
1070 | static int read_node_page(struct page *page, int rw) | |
1071 | { | |
1072 | struct f2fs_sb_info *sbi = F2FS_P_SB(page); | |
1073 | struct node_info ni; | |
1074 | struct f2fs_io_info fio = { | |
1075 | .sbi = sbi, | |
1076 | .type = NODE, | |
1077 | .rw = rw, | |
1078 | .page = page, | |
1079 | .encrypted_page = NULL, | |
1080 | }; | |
1081 | ||
1082 | get_node_info(sbi, page->index, &ni); | |
1083 | ||
1084 | if (unlikely(ni.blk_addr == NULL_ADDR)) { | |
1085 | ClearPageUptodate(page); | |
1086 | return -ENOENT; | |
1087 | } | |
1088 | ||
1089 | if (PageUptodate(page)) | |
1090 | return LOCKED_PAGE; | |
1091 | ||
1092 | fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; | |
1093 | return f2fs_submit_page_bio(&fio); | |
1094 | } | |
1095 | ||
1096 | /* | |
1097 | * Readahead a node page | |
1098 | */ | |
1099 | void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) | |
1100 | { | |
1101 | struct page *apage; | |
1102 | int err; | |
1103 | ||
1104 | if (!nid) | |
1105 | return; | |
1106 | f2fs_bug_on(sbi, check_nid_range(sbi, nid)); | |
1107 | ||
1108 | rcu_read_lock(); | |
1109 | apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid); | |
1110 | rcu_read_unlock(); | |
1111 | if (apage) | |
1112 | return; | |
1113 | ||
1114 | apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); | |
1115 | if (!apage) | |
1116 | return; | |
1117 | ||
1118 | err = read_node_page(apage, READA); | |
1119 | f2fs_put_page(apage, err ? 1 : 0); | |
1120 | } | |
1121 | ||
1122 | static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, | |
1123 | struct page *parent, int start) | |
1124 | { | |
1125 | struct page *page; | |
1126 | int err; | |
1127 | ||
1128 | if (!nid) | |
1129 | return ERR_PTR(-ENOENT); | |
1130 | f2fs_bug_on(sbi, check_nid_range(sbi, nid)); | |
1131 | repeat: | |
1132 | page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); | |
1133 | if (!page) | |
1134 | return ERR_PTR(-ENOMEM); | |
1135 | ||
1136 | err = read_node_page(page, READ_SYNC); | |
1137 | if (err < 0) { | |
1138 | f2fs_put_page(page, 1); | |
1139 | return ERR_PTR(err); | |
1140 | } else if (err == LOCKED_PAGE) { | |
1141 | goto page_hit; | |
1142 | } | |
1143 | ||
1144 | if (parent) | |
1145 | ra_node_pages(parent, start + 1, MAX_RA_NODE); | |
1146 | ||
1147 | lock_page(page); | |
1148 | ||
1149 | if (unlikely(page->mapping != NODE_MAPPING(sbi))) { | |
1150 | f2fs_put_page(page, 1); | |
1151 | goto repeat; | |
1152 | } | |
1153 | ||
1154 | if (unlikely(!PageUptodate(page))) | |
1155 | goto out_err; | |
1156 | page_hit: | |
1157 | if(unlikely(nid != nid_of_node(page))) { | |
1158 | f2fs_bug_on(sbi, 1); | |
1159 | ClearPageUptodate(page); | |
1160 | out_err: | |
1161 | f2fs_put_page(page, 1); | |
1162 | return ERR_PTR(-EIO); | |
1163 | } | |
1164 | return page; | |
1165 | } | |
1166 | ||
1167 | struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) | |
1168 | { | |
1169 | return __get_node_page(sbi, nid, NULL, 0); | |
1170 | } | |
1171 | ||
1172 | struct page *get_node_page_ra(struct page *parent, int start) | |
1173 | { | |
1174 | struct f2fs_sb_info *sbi = F2FS_P_SB(parent); | |
1175 | nid_t nid = get_nid(parent, start, false); | |
1176 | ||
1177 | return __get_node_page(sbi, nid, parent, start); | |
1178 | } | |
1179 | ||
1180 | static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) | |
1181 | { | |
1182 | struct inode *inode; | |
1183 | struct page *page; | |
1184 | int ret; | |
1185 | ||
1186 | /* should flush inline_data before evict_inode */ | |
1187 | inode = ilookup(sbi->sb, ino); | |
1188 | if (!inode) | |
1189 | return; | |
1190 | ||
1191 | page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0); | |
1192 | if (!page) | |
1193 | goto iput_out; | |
1194 | ||
1195 | if (!PageUptodate(page)) | |
1196 | goto page_out; | |
1197 | ||
1198 | if (!PageDirty(page)) | |
1199 | goto page_out; | |
1200 | ||
1201 | if (!clear_page_dirty_for_io(page)) | |
1202 | goto page_out; | |
1203 | ||
1204 | ret = f2fs_write_inline_data(inode, page); | |
1205 | inode_dec_dirty_pages(inode); | |
1206 | if (ret) | |
1207 | set_page_dirty(page); | |
1208 | page_out: | |
1209 | f2fs_put_page(page, 1); | |
1210 | iput_out: | |
1211 | iput(inode); | |
1212 | } | |
1213 | ||
1214 | void move_node_page(struct page *node_page, int gc_type) | |
1215 | { | |
1216 | if (gc_type == FG_GC) { | |
1217 | struct f2fs_sb_info *sbi = F2FS_P_SB(node_page); | |
1218 | struct writeback_control wbc = { | |
1219 | .sync_mode = WB_SYNC_ALL, | |
1220 | .nr_to_write = 1, | |
1221 | .for_reclaim = 0, | |
1222 | }; | |
1223 | ||
1224 | set_page_dirty(node_page); | |
1225 | f2fs_wait_on_page_writeback(node_page, NODE, true); | |
1226 | ||
1227 | f2fs_bug_on(sbi, PageWriteback(node_page)); | |
1228 | if (!clear_page_dirty_for_io(node_page)) | |
1229 | goto out_page; | |
1230 | ||
1231 | if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc)) | |
1232 | unlock_page(node_page); | |
1233 | goto release_page; | |
1234 | } else { | |
1235 | /* set page dirty and write it */ | |
1236 | if (!PageWriteback(node_page)) | |
1237 | set_page_dirty(node_page); | |
1238 | } | |
1239 | out_page: | |
1240 | unlock_page(node_page); | |
1241 | release_page: | |
1242 | f2fs_put_page(node_page, 0); | |
1243 | } | |
1244 | ||
1245 | static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) | |
1246 | { | |
1247 | pgoff_t index, end; | |
1248 | struct pagevec pvec; | |
1249 | struct page *last_page = NULL; | |
1250 | ||
1251 | pagevec_init(&pvec, 0); | |
1252 | index = 0; | |
1253 | end = ULONG_MAX; | |
1254 | ||
1255 | while (index <= end) { | |
1256 | int i, nr_pages; | |
1257 | nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, | |
1258 | PAGECACHE_TAG_DIRTY, | |
1259 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); | |
1260 | if (nr_pages == 0) | |
1261 | break; | |
1262 | ||
1263 | for (i = 0; i < nr_pages; i++) { | |
1264 | struct page *page = pvec.pages[i]; | |
1265 | ||
1266 | if (unlikely(f2fs_cp_error(sbi))) { | |
1267 | f2fs_put_page(last_page, 0); | |
1268 | pagevec_release(&pvec); | |
1269 | return ERR_PTR(-EIO); | |
1270 | } | |
1271 | ||
1272 | if (!IS_DNODE(page) || !is_cold_node(page)) | |
1273 | continue; | |
1274 | if (ino_of_node(page) != ino) | |
1275 | continue; | |
1276 | ||
1277 | lock_page(page); | |
1278 | ||
1279 | if (unlikely(page->mapping != NODE_MAPPING(sbi))) { | |
1280 | continue_unlock: | |
1281 | unlock_page(page); | |
1282 | continue; | |
1283 | } | |
1284 | if (ino_of_node(page) != ino) | |
1285 | goto continue_unlock; | |
1286 | ||
1287 | if (!PageDirty(page)) { | |
1288 | /* someone wrote it for us */ | |
1289 | goto continue_unlock; | |
1290 | } | |
1291 | ||
1292 | if (last_page) | |
1293 | f2fs_put_page(last_page, 0); | |
1294 | ||
1295 | get_page(page); | |
1296 | last_page = page; | |
1297 | unlock_page(page); | |
1298 | } | |
1299 | pagevec_release(&pvec); | |
1300 | cond_resched(); | |
1301 | } | |
1302 | return last_page; | |
1303 | } | |
1304 | ||
1305 | int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, | |
1306 | struct writeback_control *wbc, bool atomic) | |
1307 | { | |
1308 | pgoff_t index, end; | |
1309 | struct pagevec pvec; | |
1310 | int ret = 0; | |
1311 | struct page *last_page = NULL; | |
1312 | bool marked = false; | |
1313 | nid_t ino = inode->i_ino; | |
1314 | ||
1315 | if (atomic) { | |
1316 | last_page = last_fsync_dnode(sbi, ino); | |
1317 | if (IS_ERR_OR_NULL(last_page)) | |
1318 | return PTR_ERR_OR_ZERO(last_page); | |
1319 | } | |
1320 | retry: | |
1321 | pagevec_init(&pvec, 0); | |
1322 | index = 0; | |
1323 | end = ULONG_MAX; | |
1324 | ||
1325 | while (index <= end) { | |
1326 | int i, nr_pages; | |
1327 | nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, | |
1328 | PAGECACHE_TAG_DIRTY, | |
1329 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); | |
1330 | if (nr_pages == 0) | |
1331 | break; | |
1332 | ||
1333 | for (i = 0; i < nr_pages; i++) { | |
1334 | struct page *page = pvec.pages[i]; | |
1335 | ||
1336 | if (unlikely(f2fs_cp_error(sbi))) { | |
1337 | f2fs_put_page(last_page, 0); | |
1338 | pagevec_release(&pvec); | |
1339 | return -EIO; | |
1340 | } | |
1341 | ||
1342 | if (!IS_DNODE(page) || !is_cold_node(page)) | |
1343 | continue; | |
1344 | if (ino_of_node(page) != ino) | |
1345 | continue; | |
1346 | ||
1347 | lock_page(page); | |
1348 | ||
1349 | if (unlikely(page->mapping != NODE_MAPPING(sbi))) { | |
1350 | continue_unlock: | |
1351 | unlock_page(page); | |
1352 | continue; | |
1353 | } | |
1354 | if (ino_of_node(page) != ino) | |
1355 | goto continue_unlock; | |
1356 | ||
1357 | if (!PageDirty(page) && page != last_page) { | |
1358 | /* someone wrote it for us */ | |
1359 | goto continue_unlock; | |
1360 | } | |
1361 | ||
1362 | f2fs_wait_on_page_writeback(page, NODE, true); | |
1363 | BUG_ON(PageWriteback(page)); | |
1364 | ||
1365 | if (!atomic || page == last_page) { | |
1366 | set_fsync_mark(page, 1); | |
1367 | if (IS_INODE(page)) { | |
1368 | if (is_inode_flag_set(inode, | |
1369 | FI_DIRTY_INODE)) | |
1370 | update_inode(inode, page); | |
1371 | set_dentry_mark(page, | |
1372 | need_dentry_mark(sbi, ino)); | |
1373 | } | |
1374 | /* may be written by other thread */ | |
1375 | if (!PageDirty(page)) | |
1376 | set_page_dirty(page); | |
1377 | } | |
1378 | ||
1379 | if (!clear_page_dirty_for_io(page)) | |
1380 | goto continue_unlock; | |
1381 | ||
1382 | ret = NODE_MAPPING(sbi)->a_ops->writepage(page, wbc); | |
1383 | if (ret) { | |
1384 | unlock_page(page); | |
1385 | f2fs_put_page(last_page, 0); | |
1386 | break; | |
1387 | } | |
1388 | if (page == last_page) { | |
1389 | f2fs_put_page(page, 0); | |
1390 | marked = true; | |
1391 | break; | |
1392 | } | |
1393 | } | |
1394 | pagevec_release(&pvec); | |
1395 | cond_resched(); | |
1396 | ||
1397 | if (ret || marked) | |
1398 | break; | |
1399 | } | |
1400 | if (!ret && atomic && !marked) { | |
1401 | f2fs_msg(sbi->sb, KERN_DEBUG, | |
1402 | "Retry to write fsync mark: ino=%u, idx=%lx", | |
1403 | ino, last_page->index); | |
1404 | lock_page(last_page); | |
1405 | set_page_dirty(last_page); | |
1406 | unlock_page(last_page); | |
1407 | goto retry; | |
1408 | } | |
1409 | return ret ? -EIO: 0; | |
1410 | } | |
1411 | ||
1412 | int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc) | |
1413 | { | |
1414 | pgoff_t index, end; | |
1415 | struct pagevec pvec; | |
1416 | int step = 0; | |
1417 | int nwritten = 0; | |
1418 | ||
1419 | pagevec_init(&pvec, 0); | |
1420 | ||
1421 | next_step: | |
1422 | index = 0; | |
1423 | end = ULONG_MAX; | |
1424 | ||
1425 | while (index <= end) { | |
1426 | int i, nr_pages; | |
1427 | nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, | |
1428 | PAGECACHE_TAG_DIRTY, | |
1429 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); | |
1430 | if (nr_pages == 0) | |
1431 | break; | |
1432 | ||
1433 | for (i = 0; i < nr_pages; i++) { | |
1434 | struct page *page = pvec.pages[i]; | |
1435 | ||
1436 | if (unlikely(f2fs_cp_error(sbi))) { | |
1437 | pagevec_release(&pvec); | |
1438 | return -EIO; | |
1439 | } | |
1440 | ||
1441 | /* | |
1442 | * flushing sequence with step: | |
1443 | * 0. indirect nodes | |
1444 | * 1. dentry dnodes | |
1445 | * 2. file dnodes | |
1446 | */ | |
1447 | if (step == 0 && IS_DNODE(page)) | |
1448 | continue; | |
1449 | if (step == 1 && (!IS_DNODE(page) || | |
1450 | is_cold_node(page))) | |
1451 | continue; | |
1452 | if (step == 2 && (!IS_DNODE(page) || | |
1453 | !is_cold_node(page))) | |
1454 | continue; | |
1455 | lock_node: | |
1456 | if (!trylock_page(page)) | |
1457 | continue; | |
1458 | ||
1459 | if (unlikely(page->mapping != NODE_MAPPING(sbi))) { | |
1460 | continue_unlock: | |
1461 | unlock_page(page); | |
1462 | continue; | |
1463 | } | |
1464 | ||
1465 | if (!PageDirty(page)) { | |
1466 | /* someone wrote it for us */ | |
1467 | goto continue_unlock; | |
1468 | } | |
1469 | ||
1470 | /* flush inline_data */ | |
1471 | if (is_inline_node(page)) { | |
1472 | clear_inline_node(page); | |
1473 | unlock_page(page); | |
1474 | flush_inline_data(sbi, ino_of_node(page)); | |
1475 | goto lock_node; | |
1476 | } | |
1477 | ||
1478 | f2fs_wait_on_page_writeback(page, NODE, true); | |
1479 | ||
1480 | BUG_ON(PageWriteback(page)); | |
1481 | if (!clear_page_dirty_for_io(page)) | |
1482 | goto continue_unlock; | |
1483 | ||
1484 | set_fsync_mark(page, 0); | |
1485 | set_dentry_mark(page, 0); | |
1486 | ||
1487 | if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc)) | |
1488 | unlock_page(page); | |
1489 | ||
1490 | if (--wbc->nr_to_write == 0) | |
1491 | break; | |
1492 | } | |
1493 | pagevec_release(&pvec); | |
1494 | cond_resched(); | |
1495 | ||
1496 | if (wbc->nr_to_write == 0) { | |
1497 | step = 2; | |
1498 | break; | |
1499 | } | |
1500 | } | |
1501 | ||
1502 | if (step < 2) { | |
1503 | step++; | |
1504 | goto next_step; | |
1505 | } | |
1506 | return nwritten; | |
1507 | } | |
1508 | ||
1509 | int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino) | |
1510 | { | |
1511 | pgoff_t index = 0, end = ULONG_MAX; | |
1512 | struct pagevec pvec; | |
1513 | int ret2 = 0, ret = 0; | |
1514 | ||
1515 | pagevec_init(&pvec, 0); | |
1516 | ||
1517 | while (index <= end) { | |
1518 | int i, nr_pages; | |
1519 | nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, | |
1520 | PAGECACHE_TAG_WRITEBACK, | |
1521 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); | |
1522 | if (nr_pages == 0) | |
1523 | break; | |
1524 | ||
1525 | for (i = 0; i < nr_pages; i++) { | |
1526 | struct page *page = pvec.pages[i]; | |
1527 | ||
1528 | /* until radix tree lookup accepts end_index */ | |
1529 | if (unlikely(page->index > end)) | |
1530 | continue; | |
1531 | ||
1532 | if (ino && ino_of_node(page) == ino) { | |
1533 | f2fs_wait_on_page_writeback(page, NODE, true); | |
1534 | if (TestClearPageError(page)) | |
1535 | ret = -EIO; | |
1536 | } | |
1537 | } | |
1538 | pagevec_release(&pvec); | |
1539 | cond_resched(); | |
1540 | } | |
1541 | ||
1542 | if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags))) | |
1543 | ret2 = -ENOSPC; | |
1544 | if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags))) | |
1545 | ret2 = -EIO; | |
1546 | if (!ret) | |
1547 | ret = ret2; | |
1548 | return ret; | |
1549 | } | |
1550 | ||
1551 | static int f2fs_write_node_page(struct page *page, | |
1552 | struct writeback_control *wbc) | |
1553 | { | |
1554 | struct f2fs_sb_info *sbi = F2FS_P_SB(page); | |
1555 | nid_t nid; | |
1556 | struct node_info ni; | |
1557 | struct f2fs_io_info fio = { | |
1558 | .sbi = sbi, | |
1559 | .type = NODE, | |
1560 | .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE, | |
1561 | .page = page, | |
1562 | .encrypted_page = NULL, | |
1563 | }; | |
1564 | ||
1565 | trace_f2fs_writepage(page, NODE); | |
1566 | ||
1567 | if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) | |
1568 | goto redirty_out; | |
1569 | if (unlikely(f2fs_cp_error(sbi))) | |
1570 | goto redirty_out; | |
1571 | ||
1572 | /* get old block addr of this node page */ | |
1573 | nid = nid_of_node(page); | |
1574 | f2fs_bug_on(sbi, page->index != nid); | |
1575 | ||
1576 | if (wbc->for_reclaim) { | |
1577 | if (!down_read_trylock(&sbi->node_write)) | |
1578 | goto redirty_out; | |
1579 | } else { | |
1580 | down_read(&sbi->node_write); | |
1581 | } | |
1582 | ||
1583 | get_node_info(sbi, nid, &ni); | |
1584 | ||
1585 | /* This page is already truncated */ | |
1586 | if (unlikely(ni.blk_addr == NULL_ADDR)) { | |
1587 | ClearPageUptodate(page); | |
1588 | dec_page_count(sbi, F2FS_DIRTY_NODES); | |
1589 | up_read(&sbi->node_write); | |
1590 | unlock_page(page); | |
1591 | return 0; | |
1592 | } | |
1593 | ||
1594 | set_page_writeback(page); | |
1595 | fio.old_blkaddr = ni.blk_addr; | |
1596 | write_node_page(nid, &fio); | |
1597 | set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); | |
1598 | dec_page_count(sbi, F2FS_DIRTY_NODES); | |
1599 | up_read(&sbi->node_write); | |
1600 | ||
1601 | if (wbc->for_reclaim) | |
1602 | f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE); | |
1603 | ||
1604 | unlock_page(page); | |
1605 | ||
1606 | if (unlikely(f2fs_cp_error(sbi))) | |
1607 | f2fs_submit_merged_bio(sbi, NODE, WRITE); | |
1608 | ||
1609 | return 0; | |
1610 | ||
1611 | redirty_out: | |
1612 | redirty_page_for_writepage(wbc, page); | |
1613 | return AOP_WRITEPAGE_ACTIVATE; | |
1614 | } | |
1615 | ||
1616 | static int f2fs_write_node_pages(struct address_space *mapping, | |
1617 | struct writeback_control *wbc) | |
1618 | { | |
1619 | struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); | |
1620 | long diff; | |
1621 | ||
1622 | /* balancing f2fs's metadata in background */ | |
1623 | f2fs_balance_fs_bg(sbi); | |
1624 | ||
1625 | /* collect a number of dirty node pages and write together */ | |
1626 | if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE)) | |
1627 | goto skip_write; | |
1628 | ||
1629 | trace_f2fs_writepages(mapping->host, wbc, NODE); | |
1630 | ||
1631 | diff = nr_pages_to_write(sbi, NODE, wbc); | |
1632 | wbc->sync_mode = WB_SYNC_NONE; | |
1633 | sync_node_pages(sbi, wbc); | |
1634 | wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); | |
1635 | return 0; | |
1636 | ||
1637 | skip_write: | |
1638 | wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); | |
1639 | trace_f2fs_writepages(mapping->host, wbc, NODE); | |
1640 | return 0; | |
1641 | } | |
1642 | ||
1643 | static int f2fs_set_node_page_dirty(struct page *page) | |
1644 | { | |
1645 | trace_f2fs_set_page_dirty(page, NODE); | |
1646 | ||
1647 | SetPageUptodate(page); | |
1648 | if (!PageDirty(page)) { | |
1649 | __set_page_dirty_nobuffers(page); | |
1650 | inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); | |
1651 | SetPagePrivate(page); | |
1652 | f2fs_trace_pid(page); | |
1653 | return 1; | |
1654 | } | |
1655 | return 0; | |
1656 | } | |
1657 | ||
1658 | /* | |
1659 | * Structure of the f2fs node operations | |
1660 | */ | |
1661 | const struct address_space_operations f2fs_node_aops = { | |
1662 | .writepage = f2fs_write_node_page, | |
1663 | .writepages = f2fs_write_node_pages, | |
1664 | .set_page_dirty = f2fs_set_node_page_dirty, | |
1665 | .invalidatepage = f2fs_invalidate_page, | |
1666 | .releasepage = f2fs_release_page, | |
1667 | }; | |
1668 | ||
1669 | static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, | |
1670 | nid_t n) | |
1671 | { | |
1672 | return radix_tree_lookup(&nm_i->free_nid_root, n); | |
1673 | } | |
1674 | ||
1675 | static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i, | |
1676 | struct free_nid *i) | |
1677 | { | |
1678 | list_del(&i->list); | |
1679 | radix_tree_delete(&nm_i->free_nid_root, i->nid); | |
1680 | } | |
1681 | ||
1682 | static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build) | |
1683 | { | |
1684 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
1685 | struct free_nid *i; | |
1686 | struct nat_entry *ne; | |
1687 | ||
1688 | if (!available_free_memory(sbi, FREE_NIDS)) | |
1689 | return -1; | |
1690 | ||
1691 | /* 0 nid should not be used */ | |
1692 | if (unlikely(nid == 0)) | |
1693 | return 0; | |
1694 | ||
1695 | if (build) { | |
1696 | /* do not add allocated nids */ | |
1697 | ne = __lookup_nat_cache(nm_i, nid); | |
1698 | if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || | |
1699 | nat_get_blkaddr(ne) != NULL_ADDR)) | |
1700 | return 0; | |
1701 | } | |
1702 | ||
1703 | i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); | |
1704 | i->nid = nid; | |
1705 | i->state = NID_NEW; | |
1706 | ||
1707 | if (radix_tree_preload(GFP_NOFS)) { | |
1708 | kmem_cache_free(free_nid_slab, i); | |
1709 | return 0; | |
1710 | } | |
1711 | ||
1712 | spin_lock(&nm_i->free_nid_list_lock); | |
1713 | if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) { | |
1714 | spin_unlock(&nm_i->free_nid_list_lock); | |
1715 | radix_tree_preload_end(); | |
1716 | kmem_cache_free(free_nid_slab, i); | |
1717 | return 0; | |
1718 | } | |
1719 | list_add_tail(&i->list, &nm_i->free_nid_list); | |
1720 | nm_i->fcnt++; | |
1721 | spin_unlock(&nm_i->free_nid_list_lock); | |
1722 | radix_tree_preload_end(); | |
1723 | return 1; | |
1724 | } | |
1725 | ||
1726 | static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) | |
1727 | { | |
1728 | struct free_nid *i; | |
1729 | bool need_free = false; | |
1730 | ||
1731 | spin_lock(&nm_i->free_nid_list_lock); | |
1732 | i = __lookup_free_nid_list(nm_i, nid); | |
1733 | if (i && i->state == NID_NEW) { | |
1734 | __del_from_free_nid_list(nm_i, i); | |
1735 | nm_i->fcnt--; | |
1736 | need_free = true; | |
1737 | } | |
1738 | spin_unlock(&nm_i->free_nid_list_lock); | |
1739 | ||
1740 | if (need_free) | |
1741 | kmem_cache_free(free_nid_slab, i); | |
1742 | } | |
1743 | ||
1744 | static void scan_nat_page(struct f2fs_sb_info *sbi, | |
1745 | struct page *nat_page, nid_t start_nid) | |
1746 | { | |
1747 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
1748 | struct f2fs_nat_block *nat_blk = page_address(nat_page); | |
1749 | block_t blk_addr; | |
1750 | int i; | |
1751 | ||
1752 | i = start_nid % NAT_ENTRY_PER_BLOCK; | |
1753 | ||
1754 | for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { | |
1755 | ||
1756 | if (unlikely(start_nid >= nm_i->max_nid)) | |
1757 | break; | |
1758 | ||
1759 | blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); | |
1760 | f2fs_bug_on(sbi, blk_addr == NEW_ADDR); | |
1761 | if (blk_addr == NULL_ADDR) { | |
1762 | if (add_free_nid(sbi, start_nid, true) < 0) | |
1763 | break; | |
1764 | } | |
1765 | } | |
1766 | } | |
1767 | ||
1768 | void build_free_nids(struct f2fs_sb_info *sbi) | |
1769 | { | |
1770 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
1771 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | |
1772 | struct f2fs_journal *journal = curseg->journal; | |
1773 | int i = 0; | |
1774 | nid_t nid = nm_i->next_scan_nid; | |
1775 | ||
1776 | /* Enough entries */ | |
1777 | if (nm_i->fcnt >= NAT_ENTRY_PER_BLOCK) | |
1778 | return; | |
1779 | ||
1780 | /* readahead nat pages to be scanned */ | |
1781 | ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, | |
1782 | META_NAT, true); | |
1783 | ||
1784 | down_read(&nm_i->nat_tree_lock); | |
1785 | ||
1786 | while (1) { | |
1787 | struct page *page = get_current_nat_page(sbi, nid); | |
1788 | ||
1789 | scan_nat_page(sbi, page, nid); | |
1790 | f2fs_put_page(page, 1); | |
1791 | ||
1792 | nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); | |
1793 | if (unlikely(nid >= nm_i->max_nid)) | |
1794 | nid = 0; | |
1795 | ||
1796 | if (++i >= FREE_NID_PAGES) | |
1797 | break; | |
1798 | } | |
1799 | ||
1800 | /* go to the next free nat pages to find free nids abundantly */ | |
1801 | nm_i->next_scan_nid = nid; | |
1802 | ||
1803 | /* find free nids from current sum_pages */ | |
1804 | down_read(&curseg->journal_rwsem); | |
1805 | for (i = 0; i < nats_in_cursum(journal); i++) { | |
1806 | block_t addr; | |
1807 | ||
1808 | addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); | |
1809 | nid = le32_to_cpu(nid_in_journal(journal, i)); | |
1810 | if (addr == NULL_ADDR) | |
1811 | add_free_nid(sbi, nid, true); | |
1812 | else | |
1813 | remove_free_nid(nm_i, nid); | |
1814 | } | |
1815 | up_read(&curseg->journal_rwsem); | |
1816 | up_read(&nm_i->nat_tree_lock); | |
1817 | ||
1818 | ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), | |
1819 | nm_i->ra_nid_pages, META_NAT, false); | |
1820 | } | |
1821 | ||
1822 | /* | |
1823 | * If this function returns success, caller can obtain a new nid | |
1824 | * from second parameter of this function. | |
1825 | * The returned nid could be used ino as well as nid when inode is created. | |
1826 | */ | |
1827 | bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) | |
1828 | { | |
1829 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
1830 | struct free_nid *i = NULL; | |
1831 | retry: | |
1832 | #ifdef CONFIG_F2FS_FAULT_INJECTION | |
1833 | if (time_to_inject(FAULT_ALLOC_NID)) | |
1834 | return false; | |
1835 | #endif | |
1836 | if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids)) | |
1837 | return false; | |
1838 | ||
1839 | spin_lock(&nm_i->free_nid_list_lock); | |
1840 | ||
1841 | /* We should not use stale free nids created by build_free_nids */ | |
1842 | if (nm_i->fcnt && !on_build_free_nids(nm_i)) { | |
1843 | f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); | |
1844 | list_for_each_entry(i, &nm_i->free_nid_list, list) | |
1845 | if (i->state == NID_NEW) | |
1846 | break; | |
1847 | ||
1848 | f2fs_bug_on(sbi, i->state != NID_NEW); | |
1849 | *nid = i->nid; | |
1850 | i->state = NID_ALLOC; | |
1851 | nm_i->fcnt--; | |
1852 | spin_unlock(&nm_i->free_nid_list_lock); | |
1853 | return true; | |
1854 | } | |
1855 | spin_unlock(&nm_i->free_nid_list_lock); | |
1856 | ||
1857 | /* Let's scan nat pages and its caches to get free nids */ | |
1858 | mutex_lock(&nm_i->build_lock); | |
1859 | build_free_nids(sbi); | |
1860 | mutex_unlock(&nm_i->build_lock); | |
1861 | goto retry; | |
1862 | } | |
1863 | ||
1864 | /* | |
1865 | * alloc_nid() should be called prior to this function. | |
1866 | */ | |
1867 | void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) | |
1868 | { | |
1869 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
1870 | struct free_nid *i; | |
1871 | ||
1872 | spin_lock(&nm_i->free_nid_list_lock); | |
1873 | i = __lookup_free_nid_list(nm_i, nid); | |
1874 | f2fs_bug_on(sbi, !i || i->state != NID_ALLOC); | |
1875 | __del_from_free_nid_list(nm_i, i); | |
1876 | spin_unlock(&nm_i->free_nid_list_lock); | |
1877 | ||
1878 | kmem_cache_free(free_nid_slab, i); | |
1879 | } | |
1880 | ||
1881 | /* | |
1882 | * alloc_nid() should be called prior to this function. | |
1883 | */ | |
1884 | void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) | |
1885 | { | |
1886 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
1887 | struct free_nid *i; | |
1888 | bool need_free = false; | |
1889 | ||
1890 | if (!nid) | |
1891 | return; | |
1892 | ||
1893 | spin_lock(&nm_i->free_nid_list_lock); | |
1894 | i = __lookup_free_nid_list(nm_i, nid); | |
1895 | f2fs_bug_on(sbi, !i || i->state != NID_ALLOC); | |
1896 | if (!available_free_memory(sbi, FREE_NIDS)) { | |
1897 | __del_from_free_nid_list(nm_i, i); | |
1898 | need_free = true; | |
1899 | } else { | |
1900 | i->state = NID_NEW; | |
1901 | nm_i->fcnt++; | |
1902 | } | |
1903 | spin_unlock(&nm_i->free_nid_list_lock); | |
1904 | ||
1905 | if (need_free) | |
1906 | kmem_cache_free(free_nid_slab, i); | |
1907 | } | |
1908 | ||
1909 | int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) | |
1910 | { | |
1911 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
1912 | struct free_nid *i, *next; | |
1913 | int nr = nr_shrink; | |
1914 | ||
1915 | if (nm_i->fcnt <= MAX_FREE_NIDS) | |
1916 | return 0; | |
1917 | ||
1918 | if (!mutex_trylock(&nm_i->build_lock)) | |
1919 | return 0; | |
1920 | ||
1921 | spin_lock(&nm_i->free_nid_list_lock); | |
1922 | list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { | |
1923 | if (nr_shrink <= 0 || nm_i->fcnt <= MAX_FREE_NIDS) | |
1924 | break; | |
1925 | if (i->state == NID_ALLOC) | |
1926 | continue; | |
1927 | __del_from_free_nid_list(nm_i, i); | |
1928 | kmem_cache_free(free_nid_slab, i); | |
1929 | nm_i->fcnt--; | |
1930 | nr_shrink--; | |
1931 | } | |
1932 | spin_unlock(&nm_i->free_nid_list_lock); | |
1933 | mutex_unlock(&nm_i->build_lock); | |
1934 | ||
1935 | return nr - nr_shrink; | |
1936 | } | |
1937 | ||
1938 | void recover_inline_xattr(struct inode *inode, struct page *page) | |
1939 | { | |
1940 | void *src_addr, *dst_addr; | |
1941 | size_t inline_size; | |
1942 | struct page *ipage; | |
1943 | struct f2fs_inode *ri; | |
1944 | ||
1945 | ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); | |
1946 | f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); | |
1947 | ||
1948 | ri = F2FS_INODE(page); | |
1949 | if (!(ri->i_inline & F2FS_INLINE_XATTR)) { | |
1950 | clear_inode_flag(inode, FI_INLINE_XATTR); | |
1951 | goto update_inode; | |
1952 | } | |
1953 | ||
1954 | dst_addr = inline_xattr_addr(ipage); | |
1955 | src_addr = inline_xattr_addr(page); | |
1956 | inline_size = inline_xattr_size(inode); | |
1957 | ||
1958 | f2fs_wait_on_page_writeback(ipage, NODE, true); | |
1959 | memcpy(dst_addr, src_addr, inline_size); | |
1960 | update_inode: | |
1961 | update_inode(inode, ipage); | |
1962 | f2fs_put_page(ipage, 1); | |
1963 | } | |
1964 | ||
1965 | void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr) | |
1966 | { | |
1967 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | |
1968 | nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; | |
1969 | nid_t new_xnid = nid_of_node(page); | |
1970 | struct node_info ni; | |
1971 | ||
1972 | /* 1: invalidate the previous xattr nid */ | |
1973 | if (!prev_xnid) | |
1974 | goto recover_xnid; | |
1975 | ||
1976 | /* Deallocate node address */ | |
1977 | get_node_info(sbi, prev_xnid, &ni); | |
1978 | f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); | |
1979 | invalidate_blocks(sbi, ni.blk_addr); | |
1980 | dec_valid_node_count(sbi, inode); | |
1981 | set_node_addr(sbi, &ni, NULL_ADDR, false); | |
1982 | ||
1983 | recover_xnid: | |
1984 | /* 2: allocate new xattr nid */ | |
1985 | if (unlikely(!inc_valid_node_count(sbi, inode))) | |
1986 | f2fs_bug_on(sbi, 1); | |
1987 | ||
1988 | remove_free_nid(NM_I(sbi), new_xnid); | |
1989 | get_node_info(sbi, new_xnid, &ni); | |
1990 | ni.ino = inode->i_ino; | |
1991 | set_node_addr(sbi, &ni, NEW_ADDR, false); | |
1992 | f2fs_i_xnid_write(inode, new_xnid); | |
1993 | ||
1994 | /* 3: update xattr blkaddr */ | |
1995 | refresh_sit_entry(sbi, NEW_ADDR, blkaddr); | |
1996 | set_node_addr(sbi, &ni, blkaddr, false); | |
1997 | } | |
1998 | ||
1999 | int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) | |
2000 | { | |
2001 | struct f2fs_inode *src, *dst; | |
2002 | nid_t ino = ino_of_node(page); | |
2003 | struct node_info old_ni, new_ni; | |
2004 | struct page *ipage; | |
2005 | ||
2006 | get_node_info(sbi, ino, &old_ni); | |
2007 | ||
2008 | if (unlikely(old_ni.blk_addr != NULL_ADDR)) | |
2009 | return -EINVAL; | |
2010 | ||
2011 | ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); | |
2012 | if (!ipage) | |
2013 | return -ENOMEM; | |
2014 | ||
2015 | /* Should not use this inode from free nid list */ | |
2016 | remove_free_nid(NM_I(sbi), ino); | |
2017 | ||
2018 | SetPageUptodate(ipage); | |
2019 | fill_node_footer(ipage, ino, ino, 0, true); | |
2020 | ||
2021 | src = F2FS_INODE(page); | |
2022 | dst = F2FS_INODE(ipage); | |
2023 | ||
2024 | memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); | |
2025 | dst->i_size = 0; | |
2026 | dst->i_blocks = cpu_to_le64(1); | |
2027 | dst->i_links = cpu_to_le32(1); | |
2028 | dst->i_xattr_nid = 0; | |
2029 | dst->i_inline = src->i_inline & F2FS_INLINE_XATTR; | |
2030 | ||
2031 | new_ni = old_ni; | |
2032 | new_ni.ino = ino; | |
2033 | ||
2034 | if (unlikely(!inc_valid_node_count(sbi, NULL))) | |
2035 | WARN_ON(1); | |
2036 | set_node_addr(sbi, &new_ni, NEW_ADDR, false); | |
2037 | inc_valid_inode_count(sbi); | |
2038 | set_page_dirty(ipage); | |
2039 | f2fs_put_page(ipage, 1); | |
2040 | return 0; | |
2041 | } | |
2042 | ||
2043 | int restore_node_summary(struct f2fs_sb_info *sbi, | |
2044 | unsigned int segno, struct f2fs_summary_block *sum) | |
2045 | { | |
2046 | struct f2fs_node *rn; | |
2047 | struct f2fs_summary *sum_entry; | |
2048 | block_t addr; | |
2049 | int bio_blocks = MAX_BIO_BLOCKS(sbi); | |
2050 | int i, idx, last_offset, nrpages; | |
2051 | ||
2052 | /* scan the node segment */ | |
2053 | last_offset = sbi->blocks_per_seg; | |
2054 | addr = START_BLOCK(sbi, segno); | |
2055 | sum_entry = &sum->entries[0]; | |
2056 | ||
2057 | for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { | |
2058 | nrpages = min(last_offset - i, bio_blocks); | |
2059 | ||
2060 | /* readahead node pages */ | |
2061 | ra_meta_pages(sbi, addr, nrpages, META_POR, true); | |
2062 | ||
2063 | for (idx = addr; idx < addr + nrpages; idx++) { | |
2064 | struct page *page = get_tmp_page(sbi, idx); | |
2065 | ||
2066 | rn = F2FS_NODE(page); | |
2067 | sum_entry->nid = rn->footer.nid; | |
2068 | sum_entry->version = 0; | |
2069 | sum_entry->ofs_in_node = 0; | |
2070 | sum_entry++; | |
2071 | f2fs_put_page(page, 1); | |
2072 | } | |
2073 | ||
2074 | invalidate_mapping_pages(META_MAPPING(sbi), addr, | |
2075 | addr + nrpages); | |
2076 | } | |
2077 | return 0; | |
2078 | } | |
2079 | ||
2080 | static void remove_nats_in_journal(struct f2fs_sb_info *sbi) | |
2081 | { | |
2082 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
2083 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | |
2084 | struct f2fs_journal *journal = curseg->journal; | |
2085 | int i; | |
2086 | ||
2087 | down_write(&curseg->journal_rwsem); | |
2088 | for (i = 0; i < nats_in_cursum(journal); i++) { | |
2089 | struct nat_entry *ne; | |
2090 | struct f2fs_nat_entry raw_ne; | |
2091 | nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); | |
2092 | ||
2093 | raw_ne = nat_in_journal(journal, i); | |
2094 | ||
2095 | ne = __lookup_nat_cache(nm_i, nid); | |
2096 | if (!ne) { | |
2097 | ne = grab_nat_entry(nm_i, nid); | |
2098 | node_info_from_raw_nat(&ne->ni, &raw_ne); | |
2099 | } | |
2100 | __set_nat_cache_dirty(nm_i, ne); | |
2101 | } | |
2102 | update_nats_in_cursum(journal, -i); | |
2103 | up_write(&curseg->journal_rwsem); | |
2104 | } | |
2105 | ||
2106 | static void __adjust_nat_entry_set(struct nat_entry_set *nes, | |
2107 | struct list_head *head, int max) | |
2108 | { | |
2109 | struct nat_entry_set *cur; | |
2110 | ||
2111 | if (nes->entry_cnt >= max) | |
2112 | goto add_out; | |
2113 | ||
2114 | list_for_each_entry(cur, head, set_list) { | |
2115 | if (cur->entry_cnt >= nes->entry_cnt) { | |
2116 | list_add(&nes->set_list, cur->set_list.prev); | |
2117 | return; | |
2118 | } | |
2119 | } | |
2120 | add_out: | |
2121 | list_add_tail(&nes->set_list, head); | |
2122 | } | |
2123 | ||
2124 | static void __flush_nat_entry_set(struct f2fs_sb_info *sbi, | |
2125 | struct nat_entry_set *set) | |
2126 | { | |
2127 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | |
2128 | struct f2fs_journal *journal = curseg->journal; | |
2129 | nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; | |
2130 | bool to_journal = true; | |
2131 | struct f2fs_nat_block *nat_blk; | |
2132 | struct nat_entry *ne, *cur; | |
2133 | struct page *page = NULL; | |
2134 | ||
2135 | /* | |
2136 | * there are two steps to flush nat entries: | |
2137 | * #1, flush nat entries to journal in current hot data summary block. | |
2138 | * #2, flush nat entries to nat page. | |
2139 | */ | |
2140 | if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) | |
2141 | to_journal = false; | |
2142 | ||
2143 | if (to_journal) { | |
2144 | down_write(&curseg->journal_rwsem); | |
2145 | } else { | |
2146 | page = get_next_nat_page(sbi, start_nid); | |
2147 | nat_blk = page_address(page); | |
2148 | f2fs_bug_on(sbi, !nat_blk); | |
2149 | } | |
2150 | ||
2151 | /* flush dirty nats in nat entry set */ | |
2152 | list_for_each_entry_safe(ne, cur, &set->entry_list, list) { | |
2153 | struct f2fs_nat_entry *raw_ne; | |
2154 | nid_t nid = nat_get_nid(ne); | |
2155 | int offset; | |
2156 | ||
2157 | if (nat_get_blkaddr(ne) == NEW_ADDR) | |
2158 | continue; | |
2159 | ||
2160 | if (to_journal) { | |
2161 | offset = lookup_journal_in_cursum(journal, | |
2162 | NAT_JOURNAL, nid, 1); | |
2163 | f2fs_bug_on(sbi, offset < 0); | |
2164 | raw_ne = &nat_in_journal(journal, offset); | |
2165 | nid_in_journal(journal, offset) = cpu_to_le32(nid); | |
2166 | } else { | |
2167 | raw_ne = &nat_blk->entries[nid - start_nid]; | |
2168 | } | |
2169 | raw_nat_from_node_info(raw_ne, &ne->ni); | |
2170 | nat_reset_flag(ne); | |
2171 | __clear_nat_cache_dirty(NM_I(sbi), ne); | |
2172 | if (nat_get_blkaddr(ne) == NULL_ADDR) | |
2173 | add_free_nid(sbi, nid, false); | |
2174 | } | |
2175 | ||
2176 | if (to_journal) | |
2177 | up_write(&curseg->journal_rwsem); | |
2178 | else | |
2179 | f2fs_put_page(page, 1); | |
2180 | ||
2181 | f2fs_bug_on(sbi, set->entry_cnt); | |
2182 | ||
2183 | radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); | |
2184 | kmem_cache_free(nat_entry_set_slab, set); | |
2185 | } | |
2186 | ||
2187 | /* | |
2188 | * This function is called during the checkpointing process. | |
2189 | */ | |
2190 | void flush_nat_entries(struct f2fs_sb_info *sbi) | |
2191 | { | |
2192 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
2193 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | |
2194 | struct f2fs_journal *journal = curseg->journal; | |
2195 | struct nat_entry_set *setvec[SETVEC_SIZE]; | |
2196 | struct nat_entry_set *set, *tmp; | |
2197 | unsigned int found; | |
2198 | nid_t set_idx = 0; | |
2199 | LIST_HEAD(sets); | |
2200 | ||
2201 | if (!nm_i->dirty_nat_cnt) | |
2202 | return; | |
2203 | ||
2204 | down_write(&nm_i->nat_tree_lock); | |
2205 | ||
2206 | /* | |
2207 | * if there are no enough space in journal to store dirty nat | |
2208 | * entries, remove all entries from journal and merge them | |
2209 | * into nat entry set. | |
2210 | */ | |
2211 | if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL)) | |
2212 | remove_nats_in_journal(sbi); | |
2213 | ||
2214 | while ((found = __gang_lookup_nat_set(nm_i, | |
2215 | set_idx, SETVEC_SIZE, setvec))) { | |
2216 | unsigned idx; | |
2217 | set_idx = setvec[found - 1]->set + 1; | |
2218 | for (idx = 0; idx < found; idx++) | |
2219 | __adjust_nat_entry_set(setvec[idx], &sets, | |
2220 | MAX_NAT_JENTRIES(journal)); | |
2221 | } | |
2222 | ||
2223 | /* flush dirty nats in nat entry set */ | |
2224 | list_for_each_entry_safe(set, tmp, &sets, set_list) | |
2225 | __flush_nat_entry_set(sbi, set); | |
2226 | ||
2227 | up_write(&nm_i->nat_tree_lock); | |
2228 | ||
2229 | f2fs_bug_on(sbi, nm_i->dirty_nat_cnt); | |
2230 | } | |
2231 | ||
2232 | static int init_node_manager(struct f2fs_sb_info *sbi) | |
2233 | { | |
2234 | struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); | |
2235 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
2236 | unsigned char *version_bitmap; | |
2237 | unsigned int nat_segs, nat_blocks; | |
2238 | ||
2239 | nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); | |
2240 | ||
2241 | /* segment_count_nat includes pair segment so divide to 2. */ | |
2242 | nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; | |
2243 | nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); | |
2244 | ||
2245 | nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; | |
2246 | ||
2247 | /* not used nids: 0, node, meta, (and root counted as valid node) */ | |
2248 | nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM; | |
2249 | nm_i->fcnt = 0; | |
2250 | nm_i->nat_cnt = 0; | |
2251 | nm_i->ram_thresh = DEF_RAM_THRESHOLD; | |
2252 | nm_i->ra_nid_pages = DEF_RA_NID_PAGES; | |
2253 | nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; | |
2254 | ||
2255 | INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); | |
2256 | INIT_LIST_HEAD(&nm_i->free_nid_list); | |
2257 | INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); | |
2258 | INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); | |
2259 | INIT_LIST_HEAD(&nm_i->nat_entries); | |
2260 | ||
2261 | mutex_init(&nm_i->build_lock); | |
2262 | spin_lock_init(&nm_i->free_nid_list_lock); | |
2263 | init_rwsem(&nm_i->nat_tree_lock); | |
2264 | ||
2265 | nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); | |
2266 | nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); | |
2267 | version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); | |
2268 | if (!version_bitmap) | |
2269 | return -EFAULT; | |
2270 | ||
2271 | nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, | |
2272 | GFP_KERNEL); | |
2273 | if (!nm_i->nat_bitmap) | |
2274 | return -ENOMEM; | |
2275 | return 0; | |
2276 | } | |
2277 | ||
2278 | int build_node_manager(struct f2fs_sb_info *sbi) | |
2279 | { | |
2280 | int err; | |
2281 | ||
2282 | sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); | |
2283 | if (!sbi->nm_info) | |
2284 | return -ENOMEM; | |
2285 | ||
2286 | err = init_node_manager(sbi); | |
2287 | if (err) | |
2288 | return err; | |
2289 | ||
2290 | build_free_nids(sbi); | |
2291 | return 0; | |
2292 | } | |
2293 | ||
2294 | void destroy_node_manager(struct f2fs_sb_info *sbi) | |
2295 | { | |
2296 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
2297 | struct free_nid *i, *next_i; | |
2298 | struct nat_entry *natvec[NATVEC_SIZE]; | |
2299 | struct nat_entry_set *setvec[SETVEC_SIZE]; | |
2300 | nid_t nid = 0; | |
2301 | unsigned int found; | |
2302 | ||
2303 | if (!nm_i) | |
2304 | return; | |
2305 | ||
2306 | /* destroy free nid list */ | |
2307 | spin_lock(&nm_i->free_nid_list_lock); | |
2308 | list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { | |
2309 | f2fs_bug_on(sbi, i->state == NID_ALLOC); | |
2310 | __del_from_free_nid_list(nm_i, i); | |
2311 | nm_i->fcnt--; | |
2312 | spin_unlock(&nm_i->free_nid_list_lock); | |
2313 | kmem_cache_free(free_nid_slab, i); | |
2314 | spin_lock(&nm_i->free_nid_list_lock); | |
2315 | } | |
2316 | f2fs_bug_on(sbi, nm_i->fcnt); | |
2317 | spin_unlock(&nm_i->free_nid_list_lock); | |
2318 | ||
2319 | /* destroy nat cache */ | |
2320 | down_write(&nm_i->nat_tree_lock); | |
2321 | while ((found = __gang_lookup_nat_cache(nm_i, | |
2322 | nid, NATVEC_SIZE, natvec))) { | |
2323 | unsigned idx; | |
2324 | ||
2325 | nid = nat_get_nid(natvec[found - 1]) + 1; | |
2326 | for (idx = 0; idx < found; idx++) | |
2327 | __del_from_nat_cache(nm_i, natvec[idx]); | |
2328 | } | |
2329 | f2fs_bug_on(sbi, nm_i->nat_cnt); | |
2330 | ||
2331 | /* destroy nat set cache */ | |
2332 | nid = 0; | |
2333 | while ((found = __gang_lookup_nat_set(nm_i, | |
2334 | nid, SETVEC_SIZE, setvec))) { | |
2335 | unsigned idx; | |
2336 | ||
2337 | nid = setvec[found - 1]->set + 1; | |
2338 | for (idx = 0; idx < found; idx++) { | |
2339 | /* entry_cnt is not zero, when cp_error was occurred */ | |
2340 | f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); | |
2341 | radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); | |
2342 | kmem_cache_free(nat_entry_set_slab, setvec[idx]); | |
2343 | } | |
2344 | } | |
2345 | up_write(&nm_i->nat_tree_lock); | |
2346 | ||
2347 | kfree(nm_i->nat_bitmap); | |
2348 | sbi->nm_info = NULL; | |
2349 | kfree(nm_i); | |
2350 | } | |
2351 | ||
2352 | int __init create_node_manager_caches(void) | |
2353 | { | |
2354 | nat_entry_slab = f2fs_kmem_cache_create("nat_entry", | |
2355 | sizeof(struct nat_entry)); | |
2356 | if (!nat_entry_slab) | |
2357 | goto fail; | |
2358 | ||
2359 | free_nid_slab = f2fs_kmem_cache_create("free_nid", | |
2360 | sizeof(struct free_nid)); | |
2361 | if (!free_nid_slab) | |
2362 | goto destroy_nat_entry; | |
2363 | ||
2364 | nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", | |
2365 | sizeof(struct nat_entry_set)); | |
2366 | if (!nat_entry_set_slab) | |
2367 | goto destroy_free_nid; | |
2368 | return 0; | |
2369 | ||
2370 | destroy_free_nid: | |
2371 | kmem_cache_destroy(free_nid_slab); | |
2372 | destroy_nat_entry: | |
2373 | kmem_cache_destroy(nat_entry_slab); | |
2374 | fail: | |
2375 | return -ENOMEM; | |
2376 | } | |
2377 | ||
2378 | void destroy_node_manager_caches(void) | |
2379 | { | |
2380 | kmem_cache_destroy(nat_entry_set_slab); | |
2381 | kmem_cache_destroy(free_nid_slab); | |
2382 | kmem_cache_destroy(nat_entry_slab); | |
2383 | } |