]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. | |
3 | * | |
4 | * This software is available to you under a choice of one of two | |
5 | * licenses. You may choose to be licensed under the terms of the GNU | |
6 | * General Public License (GPL) Version 2, available from the file | |
7 | * COPYING in the main directory of this source tree, or the | |
8 | * OpenIB.org BSD license below: | |
9 | * | |
10 | * Redistribution and use in source and binary forms, with or | |
11 | * without modification, are permitted provided that the following | |
12 | * conditions are met: | |
13 | * | |
14 | * - Redistributions of source code must retain the above | |
15 | * copyright notice, this list of conditions and the following | |
16 | * disclaimer. | |
17 | * | |
18 | * - Redistributions in binary form must reproduce the above | |
19 | * copyright notice, this list of conditions and the following | |
20 | * disclaimer in the documentation and/or other materials | |
21 | * provided with the distribution. | |
22 | * | |
23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | |
27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | |
28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
30 | * SOFTWARE. | |
31 | * | |
32 | */ | |
33 | #include <linux/kernel.h> | |
34 | #include <linux/in.h> | |
35 | #include <linux/if.h> | |
36 | #include <linux/netdevice.h> | |
37 | #include <linux/inetdevice.h> | |
38 | #include <linux/if_arp.h> | |
39 | #include <linux/delay.h> | |
40 | #include <linux/slab.h> | |
41 | #include <linux/module.h> | |
42 | #include <net/addrconf.h> | |
43 | ||
44 | #include "rds_single_path.h" | |
45 | #include "rds.h" | |
46 | #include "ib.h" | |
47 | #include "ib_mr.h" | |
48 | ||
49 | static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE; | |
50 | static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE; | |
51 | unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT; | |
52 | static atomic_t rds_ib_unloading; | |
53 | ||
54 | module_param(rds_ib_mr_1m_pool_size, int, 0444); | |
55 | MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA"); | |
56 | module_param(rds_ib_mr_8k_pool_size, int, 0444); | |
57 | MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA"); | |
58 | module_param(rds_ib_retry_count, int, 0444); | |
59 | MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error"); | |
60 | ||
61 | /* | |
62 | * we have a clumsy combination of RCU and a rwsem protecting this list | |
63 | * because it is used both in the get_mr fast path and while blocking in | |
64 | * the FMR flushing path. | |
65 | */ | |
66 | DECLARE_RWSEM(rds_ib_devices_lock); | |
67 | struct list_head rds_ib_devices; | |
68 | ||
69 | /* NOTE: if also grabbing ibdev lock, grab this first */ | |
70 | DEFINE_SPINLOCK(ib_nodev_conns_lock); | |
71 | LIST_HEAD(ib_nodev_conns); | |
72 | ||
73 | static void rds_ib_nodev_connect(void) | |
74 | { | |
75 | struct rds_ib_connection *ic; | |
76 | ||
77 | spin_lock(&ib_nodev_conns_lock); | |
78 | list_for_each_entry(ic, &ib_nodev_conns, ib_node) | |
79 | rds_conn_connect_if_down(ic->conn); | |
80 | spin_unlock(&ib_nodev_conns_lock); | |
81 | } | |
82 | ||
83 | static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev) | |
84 | { | |
85 | struct rds_ib_connection *ic; | |
86 | unsigned long flags; | |
87 | ||
88 | spin_lock_irqsave(&rds_ibdev->spinlock, flags); | |
89 | list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node) | |
90 | rds_conn_path_drop(&ic->conn->c_path[0], true); | |
91 | spin_unlock_irqrestore(&rds_ibdev->spinlock, flags); | |
92 | } | |
93 | ||
94 | /* | |
95 | * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references | |
96 | * from interrupt context so we push freing off into a work struct in krdsd. | |
97 | */ | |
98 | static void rds_ib_dev_free(struct work_struct *work) | |
99 | { | |
100 | struct rds_ib_ipaddr *i_ipaddr, *i_next; | |
101 | struct rds_ib_device *rds_ibdev = container_of(work, | |
102 | struct rds_ib_device, free_work); | |
103 | ||
104 | if (rds_ibdev->mr_8k_pool) | |
105 | rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool); | |
106 | if (rds_ibdev->mr_1m_pool) | |
107 | rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool); | |
108 | if (rds_ibdev->pd) | |
109 | ib_dealloc_pd(rds_ibdev->pd); | |
110 | ||
111 | list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) { | |
112 | list_del(&i_ipaddr->list); | |
113 | kfree(i_ipaddr); | |
114 | } | |
115 | ||
116 | kfree(rds_ibdev->vector_load); | |
117 | ||
118 | kfree(rds_ibdev); | |
119 | } | |
120 | ||
121 | void rds_ib_dev_put(struct rds_ib_device *rds_ibdev) | |
122 | { | |
123 | BUG_ON(refcount_read(&rds_ibdev->refcount) == 0); | |
124 | if (refcount_dec_and_test(&rds_ibdev->refcount)) | |
125 | queue_work(rds_wq, &rds_ibdev->free_work); | |
126 | } | |
127 | ||
128 | static int rds_ib_add_one(struct ib_device *device) | |
129 | { | |
130 | struct rds_ib_device *rds_ibdev; | |
131 | int ret; | |
132 | ||
133 | /* Only handle IB (no iWARP) devices */ | |
134 | if (device->node_type != RDMA_NODE_IB_CA) | |
135 | return -EOPNOTSUPP; | |
136 | ||
137 | /* Device must support FRWR */ | |
138 | if (!(device->attrs.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS)) | |
139 | return -EOPNOTSUPP; | |
140 | ||
141 | rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL, | |
142 | ibdev_to_node(device)); | |
143 | if (!rds_ibdev) | |
144 | return -ENOMEM; | |
145 | ||
146 | spin_lock_init(&rds_ibdev->spinlock); | |
147 | refcount_set(&rds_ibdev->refcount, 1); | |
148 | INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free); | |
149 | ||
150 | INIT_LIST_HEAD(&rds_ibdev->ipaddr_list); | |
151 | INIT_LIST_HEAD(&rds_ibdev->conn_list); | |
152 | ||
153 | rds_ibdev->max_wrs = device->attrs.max_qp_wr; | |
154 | rds_ibdev->max_sge = min(device->attrs.max_send_sge, RDS_IB_MAX_SGE); | |
155 | ||
156 | rds_ibdev->odp_capable = | |
157 | !!(device->attrs.kernel_cap_flags & | |
158 | IBK_ON_DEMAND_PAGING) && | |
159 | !!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps & | |
160 | IB_ODP_SUPPORT_WRITE) && | |
161 | !!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps & | |
162 | IB_ODP_SUPPORT_READ); | |
163 | ||
164 | rds_ibdev->max_1m_mrs = device->attrs.max_mr ? | |
165 | min_t(unsigned int, (device->attrs.max_mr / 2), | |
166 | rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size; | |
167 | ||
168 | rds_ibdev->max_8k_mrs = device->attrs.max_mr ? | |
169 | min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE), | |
170 | rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size; | |
171 | ||
172 | rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom; | |
173 | rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom; | |
174 | ||
175 | rds_ibdev->vector_load = kcalloc(device->num_comp_vectors, | |
176 | sizeof(int), | |
177 | GFP_KERNEL); | |
178 | if (!rds_ibdev->vector_load) { | |
179 | pr_err("RDS/IB: %s failed to allocate vector memory\n", | |
180 | __func__); | |
181 | ret = -ENOMEM; | |
182 | goto put_dev; | |
183 | } | |
184 | ||
185 | rds_ibdev->dev = device; | |
186 | rds_ibdev->pd = ib_alloc_pd(device, 0); | |
187 | if (IS_ERR(rds_ibdev->pd)) { | |
188 | ret = PTR_ERR(rds_ibdev->pd); | |
189 | rds_ibdev->pd = NULL; | |
190 | goto put_dev; | |
191 | } | |
192 | ||
193 | rds_ibdev->mr_1m_pool = | |
194 | rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL); | |
195 | if (IS_ERR(rds_ibdev->mr_1m_pool)) { | |
196 | ret = PTR_ERR(rds_ibdev->mr_1m_pool); | |
197 | rds_ibdev->mr_1m_pool = NULL; | |
198 | goto put_dev; | |
199 | } | |
200 | ||
201 | rds_ibdev->mr_8k_pool = | |
202 | rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL); | |
203 | if (IS_ERR(rds_ibdev->mr_8k_pool)) { | |
204 | ret = PTR_ERR(rds_ibdev->mr_8k_pool); | |
205 | rds_ibdev->mr_8k_pool = NULL; | |
206 | goto put_dev; | |
207 | } | |
208 | ||
209 | rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, max_1m_mrs = %d, max_8k_mrs = %d\n", | |
210 | device->attrs.max_mr, rds_ibdev->max_wrs, rds_ibdev->max_sge, | |
211 | rds_ibdev->max_1m_mrs, rds_ibdev->max_8k_mrs); | |
212 | ||
213 | pr_info("RDS/IB: %s: added\n", device->name); | |
214 | ||
215 | down_write(&rds_ib_devices_lock); | |
216 | list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices); | |
217 | up_write(&rds_ib_devices_lock); | |
218 | refcount_inc(&rds_ibdev->refcount); | |
219 | ||
220 | ib_set_client_data(device, &rds_ib_client, rds_ibdev); | |
221 | ||
222 | rds_ib_nodev_connect(); | |
223 | return 0; | |
224 | ||
225 | put_dev: | |
226 | rds_ib_dev_put(rds_ibdev); | |
227 | return ret; | |
228 | } | |
229 | ||
230 | /* | |
231 | * New connections use this to find the device to associate with the | |
232 | * connection. It's not in the fast path so we're not concerned about the | |
233 | * performance of the IB call. (As of this writing, it uses an interrupt | |
234 | * blocking spinlock to serialize walking a per-device list of all registered | |
235 | * clients.) | |
236 | * | |
237 | * RCU is used to handle incoming connections racing with device teardown. | |
238 | * Rather than use a lock to serialize removal from the client_data and | |
239 | * getting a new reference, we use an RCU grace period. The destruction | |
240 | * path removes the device from client_data and then waits for all RCU | |
241 | * readers to finish. | |
242 | * | |
243 | * A new connection can get NULL from this if its arriving on a | |
244 | * device that is in the process of being removed. | |
245 | */ | |
246 | struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device) | |
247 | { | |
248 | struct rds_ib_device *rds_ibdev; | |
249 | ||
250 | rcu_read_lock(); | |
251 | rds_ibdev = ib_get_client_data(device, &rds_ib_client); | |
252 | if (rds_ibdev) | |
253 | refcount_inc(&rds_ibdev->refcount); | |
254 | rcu_read_unlock(); | |
255 | return rds_ibdev; | |
256 | } | |
257 | ||
258 | /* | |
259 | * The IB stack is letting us know that a device is going away. This can | |
260 | * happen if the underlying HCA driver is removed or if PCI hotplug is removing | |
261 | * the pci function, for example. | |
262 | * | |
263 | * This can be called at any time and can be racing with any other RDS path. | |
264 | */ | |
265 | static void rds_ib_remove_one(struct ib_device *device, void *client_data) | |
266 | { | |
267 | struct rds_ib_device *rds_ibdev = client_data; | |
268 | ||
269 | rds_ib_dev_shutdown(rds_ibdev); | |
270 | ||
271 | /* stop connection attempts from getting a reference to this device. */ | |
272 | ib_set_client_data(device, &rds_ib_client, NULL); | |
273 | ||
274 | down_write(&rds_ib_devices_lock); | |
275 | list_del_rcu(&rds_ibdev->list); | |
276 | up_write(&rds_ib_devices_lock); | |
277 | ||
278 | /* | |
279 | * This synchronize rcu is waiting for readers of both the ib | |
280 | * client data and the devices list to finish before we drop | |
281 | * both of those references. | |
282 | */ | |
283 | synchronize_rcu(); | |
284 | rds_ib_dev_put(rds_ibdev); | |
285 | rds_ib_dev_put(rds_ibdev); | |
286 | } | |
287 | ||
288 | struct ib_client rds_ib_client = { | |
289 | .name = "rds_ib", | |
290 | .add = rds_ib_add_one, | |
291 | .remove = rds_ib_remove_one | |
292 | }; | |
293 | ||
294 | static int rds_ib_conn_info_visitor(struct rds_connection *conn, | |
295 | void *buffer) | |
296 | { | |
297 | struct rds_info_rdma_connection *iinfo = buffer; | |
298 | struct rds_ib_connection *ic = conn->c_transport_data; | |
299 | ||
300 | /* We will only ever look at IB transports */ | |
301 | if (conn->c_trans != &rds_ib_transport) | |
302 | return 0; | |
303 | if (conn->c_isv6) | |
304 | return 0; | |
305 | ||
306 | iinfo->src_addr = conn->c_laddr.s6_addr32[3]; | |
307 | iinfo->dst_addr = conn->c_faddr.s6_addr32[3]; | |
308 | if (ic) { | |
309 | iinfo->tos = conn->c_tos; | |
310 | iinfo->sl = ic->i_sl; | |
311 | } | |
312 | ||
313 | memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid)); | |
314 | memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid)); | |
315 | if (rds_conn_state(conn) == RDS_CONN_UP) { | |
316 | struct rds_ib_device *rds_ibdev; | |
317 | ||
318 | rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo->src_gid, | |
319 | (union ib_gid *)&iinfo->dst_gid); | |
320 | ||
321 | rds_ibdev = ic->rds_ibdev; | |
322 | iinfo->max_send_wr = ic->i_send_ring.w_nr; | |
323 | iinfo->max_recv_wr = ic->i_recv_ring.w_nr; | |
324 | iinfo->max_send_sge = rds_ibdev->max_sge; | |
325 | rds_ib_get_mr_info(rds_ibdev, iinfo); | |
326 | iinfo->cache_allocs = atomic_read(&ic->i_cache_allocs); | |
327 | } | |
328 | return 1; | |
329 | } | |
330 | ||
331 | #if IS_ENABLED(CONFIG_IPV6) | |
332 | /* IPv6 version of rds_ib_conn_info_visitor(). */ | |
333 | static int rds6_ib_conn_info_visitor(struct rds_connection *conn, | |
334 | void *buffer) | |
335 | { | |
336 | struct rds6_info_rdma_connection *iinfo6 = buffer; | |
337 | struct rds_ib_connection *ic = conn->c_transport_data; | |
338 | ||
339 | /* We will only ever look at IB transports */ | |
340 | if (conn->c_trans != &rds_ib_transport) | |
341 | return 0; | |
342 | ||
343 | iinfo6->src_addr = conn->c_laddr; | |
344 | iinfo6->dst_addr = conn->c_faddr; | |
345 | if (ic) { | |
346 | iinfo6->tos = conn->c_tos; | |
347 | iinfo6->sl = ic->i_sl; | |
348 | } | |
349 | ||
350 | memset(&iinfo6->src_gid, 0, sizeof(iinfo6->src_gid)); | |
351 | memset(&iinfo6->dst_gid, 0, sizeof(iinfo6->dst_gid)); | |
352 | ||
353 | if (rds_conn_state(conn) == RDS_CONN_UP) { | |
354 | struct rds_ib_device *rds_ibdev; | |
355 | ||
356 | rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo6->src_gid, | |
357 | (union ib_gid *)&iinfo6->dst_gid); | |
358 | rds_ibdev = ic->rds_ibdev; | |
359 | iinfo6->max_send_wr = ic->i_send_ring.w_nr; | |
360 | iinfo6->max_recv_wr = ic->i_recv_ring.w_nr; | |
361 | iinfo6->max_send_sge = rds_ibdev->max_sge; | |
362 | rds6_ib_get_mr_info(rds_ibdev, iinfo6); | |
363 | iinfo6->cache_allocs = atomic_read(&ic->i_cache_allocs); | |
364 | } | |
365 | return 1; | |
366 | } | |
367 | #endif | |
368 | ||
369 | static void rds_ib_ic_info(struct socket *sock, unsigned int len, | |
370 | struct rds_info_iterator *iter, | |
371 | struct rds_info_lengths *lens) | |
372 | { | |
373 | u64 buffer[(sizeof(struct rds_info_rdma_connection) + 7) / 8]; | |
374 | ||
375 | rds_for_each_conn_info(sock, len, iter, lens, | |
376 | rds_ib_conn_info_visitor, | |
377 | buffer, | |
378 | sizeof(struct rds_info_rdma_connection)); | |
379 | } | |
380 | ||
381 | #if IS_ENABLED(CONFIG_IPV6) | |
382 | /* IPv6 version of rds_ib_ic_info(). */ | |
383 | static void rds6_ib_ic_info(struct socket *sock, unsigned int len, | |
384 | struct rds_info_iterator *iter, | |
385 | struct rds_info_lengths *lens) | |
386 | { | |
387 | u64 buffer[(sizeof(struct rds6_info_rdma_connection) + 7) / 8]; | |
388 | ||
389 | rds_for_each_conn_info(sock, len, iter, lens, | |
390 | rds6_ib_conn_info_visitor, | |
391 | buffer, | |
392 | sizeof(struct rds6_info_rdma_connection)); | |
393 | } | |
394 | #endif | |
395 | ||
396 | /* | |
397 | * Early RDS/IB was built to only bind to an address if there is an IPoIB | |
398 | * device with that address set. | |
399 | * | |
400 | * If it were me, I'd advocate for something more flexible. Sending and | |
401 | * receiving should be device-agnostic. Transports would try and maintain | |
402 | * connections between peers who have messages queued. Userspace would be | |
403 | * allowed to influence which paths have priority. We could call userspace | |
404 | * asserting this policy "routing". | |
405 | */ | |
406 | static int rds_ib_laddr_check(struct net *net, const struct in6_addr *addr, | |
407 | __u32 scope_id) | |
408 | { | |
409 | int ret; | |
410 | struct rdma_cm_id *cm_id; | |
411 | #if IS_ENABLED(CONFIG_IPV6) | |
412 | struct sockaddr_in6 sin6; | |
413 | #endif | |
414 | struct sockaddr_in sin; | |
415 | struct sockaddr *sa; | |
416 | bool isv4; | |
417 | ||
418 | isv4 = ipv6_addr_v4mapped(addr); | |
419 | /* Create a CMA ID and try to bind it. This catches both | |
420 | * IB and iWARP capable NICs. | |
421 | */ | |
422 | cm_id = rdma_create_id(&init_net, rds_rdma_cm_event_handler, | |
423 | NULL, RDMA_PS_TCP, IB_QPT_RC); | |
424 | if (IS_ERR(cm_id)) | |
425 | return PTR_ERR(cm_id); | |
426 | ||
427 | if (isv4) { | |
428 | memset(&sin, 0, sizeof(sin)); | |
429 | sin.sin_family = AF_INET; | |
430 | sin.sin_addr.s_addr = addr->s6_addr32[3]; | |
431 | sa = (struct sockaddr *)&sin; | |
432 | } else { | |
433 | #if IS_ENABLED(CONFIG_IPV6) | |
434 | memset(&sin6, 0, sizeof(sin6)); | |
435 | sin6.sin6_family = AF_INET6; | |
436 | sin6.sin6_addr = *addr; | |
437 | sin6.sin6_scope_id = scope_id; | |
438 | sa = (struct sockaddr *)&sin6; | |
439 | ||
440 | /* XXX Do a special IPv6 link local address check here. The | |
441 | * reason is that rdma_bind_addr() always succeeds with IPv6 | |
442 | * link local address regardless it is indeed configured in a | |
443 | * system. | |
444 | */ | |
445 | if (ipv6_addr_type(addr) & IPV6_ADDR_LINKLOCAL) { | |
446 | struct net_device *dev; | |
447 | ||
448 | if (scope_id == 0) { | |
449 | ret = -EADDRNOTAVAIL; | |
450 | goto out; | |
451 | } | |
452 | ||
453 | /* Use init_net for now as RDS is not network | |
454 | * name space aware. | |
455 | */ | |
456 | dev = dev_get_by_index(&init_net, scope_id); | |
457 | if (!dev) { | |
458 | ret = -EADDRNOTAVAIL; | |
459 | goto out; | |
460 | } | |
461 | if (!ipv6_chk_addr(&init_net, addr, dev, 1)) { | |
462 | dev_put(dev); | |
463 | ret = -EADDRNOTAVAIL; | |
464 | goto out; | |
465 | } | |
466 | dev_put(dev); | |
467 | } | |
468 | #else | |
469 | ret = -EADDRNOTAVAIL; | |
470 | goto out; | |
471 | #endif | |
472 | } | |
473 | ||
474 | /* rdma_bind_addr will only succeed for IB & iWARP devices */ | |
475 | ret = rdma_bind_addr(cm_id, sa); | |
476 | /* due to this, we will claim to support iWARP devices unless we | |
477 | check node_type. */ | |
478 | if (ret || !cm_id->device || | |
479 | cm_id->device->node_type != RDMA_NODE_IB_CA) | |
480 | ret = -EADDRNOTAVAIL; | |
481 | ||
482 | rdsdebug("addr %pI6c%%%u ret %d node type %d\n", | |
483 | addr, scope_id, ret, | |
484 | cm_id->device ? cm_id->device->node_type : -1); | |
485 | ||
486 | out: | |
487 | rdma_destroy_id(cm_id); | |
488 | ||
489 | return ret; | |
490 | } | |
491 | ||
492 | static void rds_ib_unregister_client(void) | |
493 | { | |
494 | ib_unregister_client(&rds_ib_client); | |
495 | /* wait for rds_ib_dev_free() to complete */ | |
496 | flush_workqueue(rds_wq); | |
497 | } | |
498 | ||
499 | static void rds_ib_set_unloading(void) | |
500 | { | |
501 | atomic_set(&rds_ib_unloading, 1); | |
502 | } | |
503 | ||
504 | static bool rds_ib_is_unloading(struct rds_connection *conn) | |
505 | { | |
506 | struct rds_conn_path *cp = &conn->c_path[0]; | |
507 | ||
508 | return (test_bit(RDS_DESTROY_PENDING, &cp->cp_flags) || | |
509 | atomic_read(&rds_ib_unloading) != 0); | |
510 | } | |
511 | ||
512 | void rds_ib_exit(void) | |
513 | { | |
514 | rds_ib_set_unloading(); | |
515 | synchronize_rcu(); | |
516 | rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); | |
517 | #if IS_ENABLED(CONFIG_IPV6) | |
518 | rds_info_deregister_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info); | |
519 | #endif | |
520 | rds_ib_unregister_client(); | |
521 | rds_ib_destroy_nodev_conns(); | |
522 | rds_ib_sysctl_exit(); | |
523 | rds_ib_recv_exit(); | |
524 | rds_trans_unregister(&rds_ib_transport); | |
525 | rds_ib_mr_exit(); | |
526 | } | |
527 | ||
528 | static u8 rds_ib_get_tos_map(u8 tos) | |
529 | { | |
530 | /* 1:1 user to transport map for RDMA transport. | |
531 | * In future, if custom map is desired, hook can export | |
532 | * user configurable map. | |
533 | */ | |
534 | return tos; | |
535 | } | |
536 | ||
537 | struct rds_transport rds_ib_transport = { | |
538 | .laddr_check = rds_ib_laddr_check, | |
539 | .xmit_path_complete = rds_ib_xmit_path_complete, | |
540 | .xmit = rds_ib_xmit, | |
541 | .xmit_rdma = rds_ib_xmit_rdma, | |
542 | .xmit_atomic = rds_ib_xmit_atomic, | |
543 | .recv_path = rds_ib_recv_path, | |
544 | .conn_alloc = rds_ib_conn_alloc, | |
545 | .conn_free = rds_ib_conn_free, | |
546 | .conn_path_connect = rds_ib_conn_path_connect, | |
547 | .conn_path_shutdown = rds_ib_conn_path_shutdown, | |
548 | .inc_copy_to_user = rds_ib_inc_copy_to_user, | |
549 | .inc_free = rds_ib_inc_free, | |
550 | .cm_initiate_connect = rds_ib_cm_initiate_connect, | |
551 | .cm_handle_connect = rds_ib_cm_handle_connect, | |
552 | .cm_connect_complete = rds_ib_cm_connect_complete, | |
553 | .stats_info_copy = rds_ib_stats_info_copy, | |
554 | .exit = rds_ib_exit, | |
555 | .get_mr = rds_ib_get_mr, | |
556 | .sync_mr = rds_ib_sync_mr, | |
557 | .free_mr = rds_ib_free_mr, | |
558 | .flush_mrs = rds_ib_flush_mrs, | |
559 | .get_tos_map = rds_ib_get_tos_map, | |
560 | .t_owner = THIS_MODULE, | |
561 | .t_name = "infiniband", | |
562 | .t_unloading = rds_ib_is_unloading, | |
563 | .t_type = RDS_TRANS_IB | |
564 | }; | |
565 | ||
566 | int rds_ib_init(void) | |
567 | { | |
568 | int ret; | |
569 | ||
570 | INIT_LIST_HEAD(&rds_ib_devices); | |
571 | ||
572 | ret = rds_ib_mr_init(); | |
573 | if (ret) | |
574 | goto out; | |
575 | ||
576 | ret = ib_register_client(&rds_ib_client); | |
577 | if (ret) | |
578 | goto out_mr_exit; | |
579 | ||
580 | ret = rds_ib_sysctl_init(); | |
581 | if (ret) | |
582 | goto out_ibreg; | |
583 | ||
584 | ret = rds_ib_recv_init(); | |
585 | if (ret) | |
586 | goto out_sysctl; | |
587 | ||
588 | rds_trans_register(&rds_ib_transport); | |
589 | ||
590 | rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); | |
591 | #if IS_ENABLED(CONFIG_IPV6) | |
592 | rds_info_register_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info); | |
593 | #endif | |
594 | ||
595 | goto out; | |
596 | ||
597 | out_sysctl: | |
598 | rds_ib_sysctl_exit(); | |
599 | out_ibreg: | |
600 | rds_ib_unregister_client(); | |
601 | out_mr_exit: | |
602 | rds_ib_mr_exit(); | |
603 | out: | |
604 | return ret; | |
605 | } | |
606 | ||
607 | MODULE_LICENSE("GPL"); |