]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * IPv6 output functions | |
3 | * Linux INET6 implementation | |
4 | * | |
5 | * Authors: | |
6 | * Pedro Roque <[email protected]> | |
7 | * | |
8 | * Based on linux/net/ipv4/ip_output.c | |
9 | * | |
10 | * This program is free software; you can redistribute it and/or | |
11 | * modify it under the terms of the GNU General Public License | |
12 | * as published by the Free Software Foundation; either version | |
13 | * 2 of the License, or (at your option) any later version. | |
14 | * | |
15 | * Changes: | |
16 | * A.N.Kuznetsov : airthmetics in fragmentation. | |
17 | * extension headers are implemented. | |
18 | * route changes now work. | |
19 | * ip6_forward does not confuse sniffers. | |
20 | * etc. | |
21 | * | |
22 | * H. von Brand : Added missing #include <linux/string.h> | |
23 | * Imran Patel : frag id should be in NBO | |
24 | * Kazunori MIYAZAWA @USAGI | |
25 | * : add ip6_append_data and related functions | |
26 | * for datagram xmit | |
27 | */ | |
28 | ||
29 | #include <linux/errno.h> | |
30 | #include <linux/kernel.h> | |
31 | #include <linux/string.h> | |
32 | #include <linux/socket.h> | |
33 | #include <linux/net.h> | |
34 | #include <linux/netdevice.h> | |
35 | #include <linux/if_arp.h> | |
36 | #include <linux/in6.h> | |
37 | #include <linux/tcp.h> | |
38 | #include <linux/route.h> | |
39 | #include <linux/module.h> | |
40 | #include <linux/slab.h> | |
41 | ||
42 | #include <linux/bpf-cgroup.h> | |
43 | #include <linux/netfilter.h> | |
44 | #include <linux/netfilter_ipv6.h> | |
45 | ||
46 | #include <net/sock.h> | |
47 | #include <net/snmp.h> | |
48 | ||
49 | #include <net/ipv6.h> | |
50 | #include <net/ndisc.h> | |
51 | #include <net/protocol.h> | |
52 | #include <net/ip6_route.h> | |
53 | #include <net/addrconf.h> | |
54 | #include <net/rawv6.h> | |
55 | #include <net/icmp.h> | |
56 | #include <net/xfrm.h> | |
57 | #include <net/checksum.h> | |
58 | #include <linux/mroute6.h> | |
59 | #include <net/l3mdev.h> | |
60 | #include <net/lwtunnel.h> | |
61 | ||
62 | static int ip6_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) | |
63 | { | |
64 | struct dst_entry *dst = skb_dst(skb); | |
65 | struct net_device *dev = dst->dev; | |
66 | struct neighbour *neigh; | |
67 | struct in6_addr *nexthop; | |
68 | int ret; | |
69 | ||
70 | skb->protocol = htons(ETH_P_IPV6); | |
71 | skb->dev = dev; | |
72 | ||
73 | if (ipv6_addr_is_multicast(&ipv6_hdr(skb)->daddr)) { | |
74 | struct inet6_dev *idev = ip6_dst_idev(skb_dst(skb)); | |
75 | ||
76 | if (!(dev->flags & IFF_LOOPBACK) && sk_mc_loop(sk) && | |
77 | ((mroute6_socket(net, skb) && | |
78 | !(IP6CB(skb)->flags & IP6SKB_FORWARDED)) || | |
79 | ipv6_chk_mcast_addr(dev, &ipv6_hdr(skb)->daddr, | |
80 | &ipv6_hdr(skb)->saddr))) { | |
81 | struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); | |
82 | ||
83 | /* Do not check for IFF_ALLMULTI; multicast routing | |
84 | is not supported in any case. | |
85 | */ | |
86 | if (newskb) | |
87 | NF_HOOK(NFPROTO_IPV6, NF_INET_POST_ROUTING, | |
88 | net, sk, newskb, NULL, newskb->dev, | |
89 | dev_loopback_xmit); | |
90 | ||
91 | if (ipv6_hdr(skb)->hop_limit == 0) { | |
92 | IP6_INC_STATS(net, idev, | |
93 | IPSTATS_MIB_OUTDISCARDS); | |
94 | kfree_skb(skb); | |
95 | return 0; | |
96 | } | |
97 | } | |
98 | ||
99 | IP6_UPD_PO_STATS(net, idev, IPSTATS_MIB_OUTMCAST, skb->len); | |
100 | ||
101 | if (IPV6_ADDR_MC_SCOPE(&ipv6_hdr(skb)->daddr) <= | |
102 | IPV6_ADDR_SCOPE_NODELOCAL && | |
103 | !(dev->flags & IFF_LOOPBACK)) { | |
104 | kfree_skb(skb); | |
105 | return 0; | |
106 | } | |
107 | } | |
108 | ||
109 | if (lwtunnel_xmit_redirect(dst->lwtstate)) { | |
110 | int res = lwtunnel_xmit(skb); | |
111 | ||
112 | if (res < 0 || res == LWTUNNEL_XMIT_DONE) | |
113 | return res; | |
114 | } | |
115 | ||
116 | rcu_read_lock_bh(); | |
117 | nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr); | |
118 | neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop); | |
119 | if (unlikely(!neigh)) | |
120 | neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false); | |
121 | if (!IS_ERR(neigh)) { | |
122 | ret = dst_neigh_output(dst, neigh, skb); | |
123 | rcu_read_unlock_bh(); | |
124 | return ret; | |
125 | } | |
126 | rcu_read_unlock_bh(); | |
127 | ||
128 | IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); | |
129 | kfree_skb(skb); | |
130 | return -EINVAL; | |
131 | } | |
132 | ||
133 | static int ip6_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) | |
134 | { | |
135 | int ret; | |
136 | ||
137 | ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); | |
138 | if (ret) { | |
139 | kfree_skb(skb); | |
140 | return ret; | |
141 | } | |
142 | ||
143 | if ((skb->len > ip6_skb_dst_mtu(skb) && !skb_is_gso(skb)) || | |
144 | dst_allfrag(skb_dst(skb)) || | |
145 | (IP6CB(skb)->frag_max_size && skb->len > IP6CB(skb)->frag_max_size)) | |
146 | return ip6_fragment(net, sk, skb, ip6_finish_output2); | |
147 | else | |
148 | return ip6_finish_output2(net, sk, skb); | |
149 | } | |
150 | ||
151 | int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb) | |
152 | { | |
153 | struct net_device *dev = skb_dst(skb)->dev; | |
154 | struct inet6_dev *idev = ip6_dst_idev(skb_dst(skb)); | |
155 | ||
156 | if (unlikely(idev->cnf.disable_ipv6)) { | |
157 | IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTDISCARDS); | |
158 | kfree_skb(skb); | |
159 | return 0; | |
160 | } | |
161 | ||
162 | return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, | |
163 | net, sk, skb, NULL, dev, | |
164 | ip6_finish_output, | |
165 | !(IP6CB(skb)->flags & IP6SKB_REROUTED)); | |
166 | } | |
167 | ||
168 | /* | |
169 | * xmit an sk_buff (used by TCP, SCTP and DCCP) | |
170 | * Note : socket lock is not held for SYNACK packets, but might be modified | |
171 | * by calls to skb_set_owner_w() and ipv6_local_error(), | |
172 | * which are using proper atomic operations or spinlocks. | |
173 | */ | |
174 | int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6, | |
175 | __u32 mark, struct ipv6_txoptions *opt, int tclass) | |
176 | { | |
177 | struct net *net = sock_net(sk); | |
178 | const struct ipv6_pinfo *np = inet6_sk(sk); | |
179 | struct in6_addr *first_hop = &fl6->daddr; | |
180 | struct dst_entry *dst = skb_dst(skb); | |
181 | struct ipv6hdr *hdr; | |
182 | u8 proto = fl6->flowi6_proto; | |
183 | int seg_len = skb->len; | |
184 | int hlimit = -1; | |
185 | u32 mtu; | |
186 | ||
187 | if (opt) { | |
188 | unsigned int head_room; | |
189 | ||
190 | /* First: exthdrs may take lots of space (~8K for now) | |
191 | MAX_HEADER is not enough. | |
192 | */ | |
193 | head_room = opt->opt_nflen + opt->opt_flen; | |
194 | seg_len += head_room; | |
195 | head_room += sizeof(struct ipv6hdr) + LL_RESERVED_SPACE(dst->dev); | |
196 | ||
197 | if (skb_headroom(skb) < head_room) { | |
198 | struct sk_buff *skb2 = skb_realloc_headroom(skb, head_room); | |
199 | if (!skb2) { | |
200 | IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), | |
201 | IPSTATS_MIB_OUTDISCARDS); | |
202 | kfree_skb(skb); | |
203 | return -ENOBUFS; | |
204 | } | |
205 | consume_skb(skb); | |
206 | skb = skb2; | |
207 | /* skb_set_owner_w() changes sk->sk_wmem_alloc atomically, | |
208 | * it is safe to call in our context (socket lock not held) | |
209 | */ | |
210 | skb_set_owner_w(skb, (struct sock *)sk); | |
211 | } | |
212 | if (opt->opt_flen) | |
213 | ipv6_push_frag_opts(skb, opt, &proto); | |
214 | if (opt->opt_nflen) | |
215 | ipv6_push_nfrag_opts(skb, opt, &proto, &first_hop, | |
216 | &fl6->saddr); | |
217 | } | |
218 | ||
219 | skb_push(skb, sizeof(struct ipv6hdr)); | |
220 | skb_reset_network_header(skb); | |
221 | hdr = ipv6_hdr(skb); | |
222 | ||
223 | /* | |
224 | * Fill in the IPv6 header | |
225 | */ | |
226 | if (np) | |
227 | hlimit = np->hop_limit; | |
228 | if (hlimit < 0) | |
229 | hlimit = ip6_dst_hoplimit(dst); | |
230 | ||
231 | ip6_flow_hdr(hdr, tclass, ip6_make_flowlabel(net, skb, fl6->flowlabel, | |
232 | np->autoflowlabel, fl6)); | |
233 | ||
234 | hdr->payload_len = htons(seg_len); | |
235 | hdr->nexthdr = proto; | |
236 | hdr->hop_limit = hlimit; | |
237 | ||
238 | hdr->saddr = fl6->saddr; | |
239 | hdr->daddr = *first_hop; | |
240 | ||
241 | skb->protocol = htons(ETH_P_IPV6); | |
242 | skb->priority = sk->sk_priority; | |
243 | skb->mark = mark; | |
244 | ||
245 | mtu = dst_mtu(dst); | |
246 | if ((skb->len <= mtu) || skb->ignore_df || skb_is_gso(skb)) { | |
247 | IP6_UPD_PO_STATS(net, ip6_dst_idev(skb_dst(skb)), | |
248 | IPSTATS_MIB_OUT, skb->len); | |
249 | ||
250 | /* if egress device is enslaved to an L3 master device pass the | |
251 | * skb to its handler for processing | |
252 | */ | |
253 | skb = l3mdev_ip6_out((struct sock *)sk, skb); | |
254 | if (unlikely(!skb)) | |
255 | return 0; | |
256 | ||
257 | /* hooks should never assume socket lock is held. | |
258 | * we promote our socket to non const | |
259 | */ | |
260 | return NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, | |
261 | net, (struct sock *)sk, skb, NULL, dst->dev, | |
262 | dst_output); | |
263 | } | |
264 | ||
265 | skb->dev = dst->dev; | |
266 | /* ipv6_local_error() does not require socket lock, | |
267 | * we promote our socket to non const | |
268 | */ | |
269 | ipv6_local_error((struct sock *)sk, EMSGSIZE, fl6, mtu); | |
270 | ||
271 | IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGFAILS); | |
272 | kfree_skb(skb); | |
273 | return -EMSGSIZE; | |
274 | } | |
275 | EXPORT_SYMBOL(ip6_xmit); | |
276 | ||
277 | static int ip6_call_ra_chain(struct sk_buff *skb, int sel) | |
278 | { | |
279 | struct ip6_ra_chain *ra; | |
280 | struct sock *last = NULL; | |
281 | ||
282 | read_lock(&ip6_ra_lock); | |
283 | for (ra = ip6_ra_chain; ra; ra = ra->next) { | |
284 | struct sock *sk = ra->sk; | |
285 | if (sk && ra->sel == sel && | |
286 | (!sk->sk_bound_dev_if || | |
287 | sk->sk_bound_dev_if == skb->dev->ifindex)) { | |
288 | if (last) { | |
289 | struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); | |
290 | if (skb2) | |
291 | rawv6_rcv(last, skb2); | |
292 | } | |
293 | last = sk; | |
294 | } | |
295 | } | |
296 | ||
297 | if (last) { | |
298 | rawv6_rcv(last, skb); | |
299 | read_unlock(&ip6_ra_lock); | |
300 | return 1; | |
301 | } | |
302 | read_unlock(&ip6_ra_lock); | |
303 | return 0; | |
304 | } | |
305 | ||
306 | static int ip6_forward_proxy_check(struct sk_buff *skb) | |
307 | { | |
308 | struct ipv6hdr *hdr = ipv6_hdr(skb); | |
309 | u8 nexthdr = hdr->nexthdr; | |
310 | __be16 frag_off; | |
311 | int offset; | |
312 | ||
313 | if (ipv6_ext_hdr(nexthdr)) { | |
314 | offset = ipv6_skip_exthdr(skb, sizeof(*hdr), &nexthdr, &frag_off); | |
315 | if (offset < 0) | |
316 | return 0; | |
317 | } else | |
318 | offset = sizeof(struct ipv6hdr); | |
319 | ||
320 | if (nexthdr == IPPROTO_ICMPV6) { | |
321 | struct icmp6hdr *icmp6; | |
322 | ||
323 | if (!pskb_may_pull(skb, (skb_network_header(skb) + | |
324 | offset + 1 - skb->data))) | |
325 | return 0; | |
326 | ||
327 | icmp6 = (struct icmp6hdr *)(skb_network_header(skb) + offset); | |
328 | ||
329 | switch (icmp6->icmp6_type) { | |
330 | case NDISC_ROUTER_SOLICITATION: | |
331 | case NDISC_ROUTER_ADVERTISEMENT: | |
332 | case NDISC_NEIGHBOUR_SOLICITATION: | |
333 | case NDISC_NEIGHBOUR_ADVERTISEMENT: | |
334 | case NDISC_REDIRECT: | |
335 | /* For reaction involving unicast neighbor discovery | |
336 | * message destined to the proxied address, pass it to | |
337 | * input function. | |
338 | */ | |
339 | return 1; | |
340 | default: | |
341 | break; | |
342 | } | |
343 | } | |
344 | ||
345 | /* | |
346 | * The proxying router can't forward traffic sent to a link-local | |
347 | * address, so signal the sender and discard the packet. This | |
348 | * behavior is clarified by the MIPv6 specification. | |
349 | */ | |
350 | if (ipv6_addr_type(&hdr->daddr) & IPV6_ADDR_LINKLOCAL) { | |
351 | dst_link_failure(skb); | |
352 | return -1; | |
353 | } | |
354 | ||
355 | return 0; | |
356 | } | |
357 | ||
358 | static inline int ip6_forward_finish(struct net *net, struct sock *sk, | |
359 | struct sk_buff *skb) | |
360 | { | |
361 | return dst_output(net, sk, skb); | |
362 | } | |
363 | ||
364 | static unsigned int ip6_dst_mtu_forward(const struct dst_entry *dst) | |
365 | { | |
366 | unsigned int mtu; | |
367 | struct inet6_dev *idev; | |
368 | ||
369 | if (dst_metric_locked(dst, RTAX_MTU)) { | |
370 | mtu = dst_metric_raw(dst, RTAX_MTU); | |
371 | if (mtu) | |
372 | return mtu; | |
373 | } | |
374 | ||
375 | mtu = IPV6_MIN_MTU; | |
376 | rcu_read_lock(); | |
377 | idev = __in6_dev_get(dst->dev); | |
378 | if (idev) | |
379 | mtu = idev->cnf.mtu6; | |
380 | rcu_read_unlock(); | |
381 | ||
382 | return mtu; | |
383 | } | |
384 | ||
385 | static bool ip6_pkt_too_big(const struct sk_buff *skb, unsigned int mtu) | |
386 | { | |
387 | if (skb->len <= mtu) | |
388 | return false; | |
389 | ||
390 | /* ipv6 conntrack defrag sets max_frag_size + ignore_df */ | |
391 | if (IP6CB(skb)->frag_max_size && IP6CB(skb)->frag_max_size > mtu) | |
392 | return true; | |
393 | ||
394 | if (skb->ignore_df) | |
395 | return false; | |
396 | ||
397 | if (skb_is_gso(skb) && skb_gso_validate_mtu(skb, mtu)) | |
398 | return false; | |
399 | ||
400 | return true; | |
401 | } | |
402 | ||
403 | int ip6_forward(struct sk_buff *skb) | |
404 | { | |
405 | struct dst_entry *dst = skb_dst(skb); | |
406 | struct ipv6hdr *hdr = ipv6_hdr(skb); | |
407 | struct inet6_skb_parm *opt = IP6CB(skb); | |
408 | struct net *net = dev_net(dst->dev); | |
409 | u32 mtu; | |
410 | ||
411 | if (net->ipv6.devconf_all->forwarding == 0) | |
412 | goto error; | |
413 | ||
414 | if (skb->pkt_type != PACKET_HOST) | |
415 | goto drop; | |
416 | ||
417 | if (unlikely(skb->sk)) | |
418 | goto drop; | |
419 | ||
420 | if (skb_warn_if_lro(skb)) | |
421 | goto drop; | |
422 | ||
423 | if (!xfrm6_policy_check(NULL, XFRM_POLICY_FWD, skb)) { | |
424 | __IP6_INC_STATS(net, ip6_dst_idev(dst), | |
425 | IPSTATS_MIB_INDISCARDS); | |
426 | goto drop; | |
427 | } | |
428 | ||
429 | skb_forward_csum(skb); | |
430 | ||
431 | /* | |
432 | * We DO NOT make any processing on | |
433 | * RA packets, pushing them to user level AS IS | |
434 | * without ane WARRANTY that application will be able | |
435 | * to interpret them. The reason is that we | |
436 | * cannot make anything clever here. | |
437 | * | |
438 | * We are not end-node, so that if packet contains | |
439 | * AH/ESP, we cannot make anything. | |
440 | * Defragmentation also would be mistake, RA packets | |
441 | * cannot be fragmented, because there is no warranty | |
442 | * that different fragments will go along one path. --ANK | |
443 | */ | |
444 | if (unlikely(opt->flags & IP6SKB_ROUTERALERT)) { | |
445 | if (ip6_call_ra_chain(skb, ntohs(opt->ra))) | |
446 | return 0; | |
447 | } | |
448 | ||
449 | /* | |
450 | * check and decrement ttl | |
451 | */ | |
452 | if (hdr->hop_limit <= 1) { | |
453 | /* Force OUTPUT device used as source address */ | |
454 | skb->dev = dst->dev; | |
455 | icmpv6_send(skb, ICMPV6_TIME_EXCEED, ICMPV6_EXC_HOPLIMIT, 0); | |
456 | __IP6_INC_STATS(net, ip6_dst_idev(dst), | |
457 | IPSTATS_MIB_INHDRERRORS); | |
458 | ||
459 | kfree_skb(skb); | |
460 | return -ETIMEDOUT; | |
461 | } | |
462 | ||
463 | /* XXX: idev->cnf.proxy_ndp? */ | |
464 | if (net->ipv6.devconf_all->proxy_ndp && | |
465 | pneigh_lookup(&nd_tbl, net, &hdr->daddr, skb->dev, 0)) { | |
466 | int proxied = ip6_forward_proxy_check(skb); | |
467 | if (proxied > 0) | |
468 | return ip6_input(skb); | |
469 | else if (proxied < 0) { | |
470 | __IP6_INC_STATS(net, ip6_dst_idev(dst), | |
471 | IPSTATS_MIB_INDISCARDS); | |
472 | goto drop; | |
473 | } | |
474 | } | |
475 | ||
476 | if (!xfrm6_route_forward(skb)) { | |
477 | __IP6_INC_STATS(net, ip6_dst_idev(dst), | |
478 | IPSTATS_MIB_INDISCARDS); | |
479 | goto drop; | |
480 | } | |
481 | dst = skb_dst(skb); | |
482 | ||
483 | /* IPv6 specs say nothing about it, but it is clear that we cannot | |
484 | send redirects to source routed frames. | |
485 | We don't send redirects to frames decapsulated from IPsec. | |
486 | */ | |
487 | if (skb->dev == dst->dev && opt->srcrt == 0 && !skb_sec_path(skb)) { | |
488 | struct in6_addr *target = NULL; | |
489 | struct inet_peer *peer; | |
490 | struct rt6_info *rt; | |
491 | ||
492 | /* | |
493 | * incoming and outgoing devices are the same | |
494 | * send a redirect. | |
495 | */ | |
496 | ||
497 | rt = (struct rt6_info *) dst; | |
498 | if (rt->rt6i_flags & RTF_GATEWAY) | |
499 | target = &rt->rt6i_gateway; | |
500 | else | |
501 | target = &hdr->daddr; | |
502 | ||
503 | peer = inet_getpeer_v6(net->ipv6.peers, &hdr->daddr, 1); | |
504 | ||
505 | /* Limit redirects both by destination (here) | |
506 | and by source (inside ndisc_send_redirect) | |
507 | */ | |
508 | if (inet_peer_xrlim_allow(peer, 1*HZ)) | |
509 | ndisc_send_redirect(skb, target); | |
510 | if (peer) | |
511 | inet_putpeer(peer); | |
512 | } else { | |
513 | int addrtype = ipv6_addr_type(&hdr->saddr); | |
514 | ||
515 | /* This check is security critical. */ | |
516 | if (addrtype == IPV6_ADDR_ANY || | |
517 | addrtype & (IPV6_ADDR_MULTICAST | IPV6_ADDR_LOOPBACK)) | |
518 | goto error; | |
519 | if (addrtype & IPV6_ADDR_LINKLOCAL) { | |
520 | icmpv6_send(skb, ICMPV6_DEST_UNREACH, | |
521 | ICMPV6_NOT_NEIGHBOUR, 0); | |
522 | goto error; | |
523 | } | |
524 | } | |
525 | ||
526 | mtu = ip6_dst_mtu_forward(dst); | |
527 | if (mtu < IPV6_MIN_MTU) | |
528 | mtu = IPV6_MIN_MTU; | |
529 | ||
530 | if (ip6_pkt_too_big(skb, mtu)) { | |
531 | /* Again, force OUTPUT device used as source address */ | |
532 | skb->dev = dst->dev; | |
533 | icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu); | |
534 | __IP6_INC_STATS(net, ip6_dst_idev(dst), | |
535 | IPSTATS_MIB_INTOOBIGERRORS); | |
536 | __IP6_INC_STATS(net, ip6_dst_idev(dst), | |
537 | IPSTATS_MIB_FRAGFAILS); | |
538 | kfree_skb(skb); | |
539 | return -EMSGSIZE; | |
540 | } | |
541 | ||
542 | if (skb_cow(skb, dst->dev->hard_header_len)) { | |
543 | __IP6_INC_STATS(net, ip6_dst_idev(dst), | |
544 | IPSTATS_MIB_OUTDISCARDS); | |
545 | goto drop; | |
546 | } | |
547 | ||
548 | hdr = ipv6_hdr(skb); | |
549 | ||
550 | /* Mangling hops number delayed to point after skb COW */ | |
551 | ||
552 | hdr->hop_limit--; | |
553 | ||
554 | __IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTFORWDATAGRAMS); | |
555 | __IP6_ADD_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTOCTETS, skb->len); | |
556 | return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD, | |
557 | net, NULL, skb, skb->dev, dst->dev, | |
558 | ip6_forward_finish); | |
559 | ||
560 | error: | |
561 | __IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_INADDRERRORS); | |
562 | drop: | |
563 | kfree_skb(skb); | |
564 | return -EINVAL; | |
565 | } | |
566 | ||
567 | static void ip6_copy_metadata(struct sk_buff *to, struct sk_buff *from) | |
568 | { | |
569 | to->pkt_type = from->pkt_type; | |
570 | to->priority = from->priority; | |
571 | to->protocol = from->protocol; | |
572 | skb_dst_drop(to); | |
573 | skb_dst_set(to, dst_clone(skb_dst(from))); | |
574 | to->dev = from->dev; | |
575 | to->mark = from->mark; | |
576 | ||
577 | #ifdef CONFIG_NET_SCHED | |
578 | to->tc_index = from->tc_index; | |
579 | #endif | |
580 | nf_copy(to, from); | |
581 | skb_copy_secmark(to, from); | |
582 | } | |
583 | ||
584 | int ip6_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, | |
585 | int (*output)(struct net *, struct sock *, struct sk_buff *)) | |
586 | { | |
587 | struct sk_buff *frag; | |
588 | struct rt6_info *rt = (struct rt6_info *)skb_dst(skb); | |
589 | struct ipv6_pinfo *np = skb->sk && !dev_recursion_level() ? | |
590 | inet6_sk(skb->sk) : NULL; | |
591 | struct ipv6hdr *tmp_hdr; | |
592 | struct frag_hdr *fh; | |
593 | unsigned int mtu, hlen, left, len; | |
594 | int hroom, troom; | |
595 | __be32 frag_id; | |
596 | int ptr, offset = 0, err = 0; | |
597 | u8 *prevhdr, nexthdr = 0; | |
598 | ||
599 | hlen = ip6_find_1stfragopt(skb, &prevhdr); | |
600 | nexthdr = *prevhdr; | |
601 | ||
602 | mtu = ip6_skb_dst_mtu(skb); | |
603 | ||
604 | /* We must not fragment if the socket is set to force MTU discovery | |
605 | * or if the skb it not generated by a local socket. | |
606 | */ | |
607 | if (unlikely(!skb->ignore_df && skb->len > mtu)) | |
608 | goto fail_toobig; | |
609 | ||
610 | if (IP6CB(skb)->frag_max_size) { | |
611 | if (IP6CB(skb)->frag_max_size > mtu) | |
612 | goto fail_toobig; | |
613 | ||
614 | /* don't send fragments larger than what we received */ | |
615 | mtu = IP6CB(skb)->frag_max_size; | |
616 | if (mtu < IPV6_MIN_MTU) | |
617 | mtu = IPV6_MIN_MTU; | |
618 | } | |
619 | ||
620 | if (np && np->frag_size < mtu) { | |
621 | if (np->frag_size) | |
622 | mtu = np->frag_size; | |
623 | } | |
624 | if (mtu < hlen + sizeof(struct frag_hdr) + 8) | |
625 | goto fail_toobig; | |
626 | mtu -= hlen + sizeof(struct frag_hdr); | |
627 | ||
628 | frag_id = ipv6_select_ident(net, &ipv6_hdr(skb)->daddr, | |
629 | &ipv6_hdr(skb)->saddr); | |
630 | ||
631 | if (skb->ip_summed == CHECKSUM_PARTIAL && | |
632 | (err = skb_checksum_help(skb))) | |
633 | goto fail; | |
634 | ||
635 | hroom = LL_RESERVED_SPACE(rt->dst.dev); | |
636 | if (skb_has_frag_list(skb)) { | |
637 | unsigned int first_len = skb_pagelen(skb); | |
638 | struct sk_buff *frag2; | |
639 | ||
640 | if (first_len - hlen > mtu || | |
641 | ((first_len - hlen) & 7) || | |
642 | skb_cloned(skb) || | |
643 | skb_headroom(skb) < (hroom + sizeof(struct frag_hdr))) | |
644 | goto slow_path; | |
645 | ||
646 | skb_walk_frags(skb, frag) { | |
647 | /* Correct geometry. */ | |
648 | if (frag->len > mtu || | |
649 | ((frag->len & 7) && frag->next) || | |
650 | skb_headroom(frag) < (hlen + hroom + sizeof(struct frag_hdr))) | |
651 | goto slow_path_clean; | |
652 | ||
653 | /* Partially cloned skb? */ | |
654 | if (skb_shared(frag)) | |
655 | goto slow_path_clean; | |
656 | ||
657 | BUG_ON(frag->sk); | |
658 | if (skb->sk) { | |
659 | frag->sk = skb->sk; | |
660 | frag->destructor = sock_wfree; | |
661 | } | |
662 | skb->truesize -= frag->truesize; | |
663 | } | |
664 | ||
665 | err = 0; | |
666 | offset = 0; | |
667 | /* BUILD HEADER */ | |
668 | ||
669 | *prevhdr = NEXTHDR_FRAGMENT; | |
670 | tmp_hdr = kmemdup(skb_network_header(skb), hlen, GFP_ATOMIC); | |
671 | if (!tmp_hdr) { | |
672 | IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), | |
673 | IPSTATS_MIB_FRAGFAILS); | |
674 | err = -ENOMEM; | |
675 | goto fail; | |
676 | } | |
677 | frag = skb_shinfo(skb)->frag_list; | |
678 | skb_frag_list_init(skb); | |
679 | ||
680 | __skb_pull(skb, hlen); | |
681 | fh = (struct frag_hdr *)__skb_push(skb, sizeof(struct frag_hdr)); | |
682 | __skb_push(skb, hlen); | |
683 | skb_reset_network_header(skb); | |
684 | memcpy(skb_network_header(skb), tmp_hdr, hlen); | |
685 | ||
686 | fh->nexthdr = nexthdr; | |
687 | fh->reserved = 0; | |
688 | fh->frag_off = htons(IP6_MF); | |
689 | fh->identification = frag_id; | |
690 | ||
691 | first_len = skb_pagelen(skb); | |
692 | skb->data_len = first_len - skb_headlen(skb); | |
693 | skb->len = first_len; | |
694 | ipv6_hdr(skb)->payload_len = htons(first_len - | |
695 | sizeof(struct ipv6hdr)); | |
696 | ||
697 | dst_hold(&rt->dst); | |
698 | ||
699 | for (;;) { | |
700 | /* Prepare header of the next frame, | |
701 | * before previous one went down. */ | |
702 | if (frag) { | |
703 | frag->ip_summed = CHECKSUM_NONE; | |
704 | skb_reset_transport_header(frag); | |
705 | fh = (struct frag_hdr *)__skb_push(frag, sizeof(struct frag_hdr)); | |
706 | __skb_push(frag, hlen); | |
707 | skb_reset_network_header(frag); | |
708 | memcpy(skb_network_header(frag), tmp_hdr, | |
709 | hlen); | |
710 | offset += skb->len - hlen - sizeof(struct frag_hdr); | |
711 | fh->nexthdr = nexthdr; | |
712 | fh->reserved = 0; | |
713 | fh->frag_off = htons(offset); | |
714 | if (frag->next) | |
715 | fh->frag_off |= htons(IP6_MF); | |
716 | fh->identification = frag_id; | |
717 | ipv6_hdr(frag)->payload_len = | |
718 | htons(frag->len - | |
719 | sizeof(struct ipv6hdr)); | |
720 | ip6_copy_metadata(frag, skb); | |
721 | } | |
722 | ||
723 | err = output(net, sk, skb); | |
724 | if (!err) | |
725 | IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), | |
726 | IPSTATS_MIB_FRAGCREATES); | |
727 | ||
728 | if (err || !frag) | |
729 | break; | |
730 | ||
731 | skb = frag; | |
732 | frag = skb->next; | |
733 | skb->next = NULL; | |
734 | } | |
735 | ||
736 | kfree(tmp_hdr); | |
737 | ||
738 | if (err == 0) { | |
739 | IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), | |
740 | IPSTATS_MIB_FRAGOKS); | |
741 | ip6_rt_put(rt); | |
742 | return 0; | |
743 | } | |
744 | ||
745 | kfree_skb_list(frag); | |
746 | ||
747 | IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), | |
748 | IPSTATS_MIB_FRAGFAILS); | |
749 | ip6_rt_put(rt); | |
750 | return err; | |
751 | ||
752 | slow_path_clean: | |
753 | skb_walk_frags(skb, frag2) { | |
754 | if (frag2 == frag) | |
755 | break; | |
756 | frag2->sk = NULL; | |
757 | frag2->destructor = NULL; | |
758 | skb->truesize += frag2->truesize; | |
759 | } | |
760 | } | |
761 | ||
762 | slow_path: | |
763 | left = skb->len - hlen; /* Space per frame */ | |
764 | ptr = hlen; /* Where to start from */ | |
765 | ||
766 | /* | |
767 | * Fragment the datagram. | |
768 | */ | |
769 | ||
770 | *prevhdr = NEXTHDR_FRAGMENT; | |
771 | troom = rt->dst.dev->needed_tailroom; | |
772 | ||
773 | /* | |
774 | * Keep copying data until we run out. | |
775 | */ | |
776 | while (left > 0) { | |
777 | len = left; | |
778 | /* IF: it doesn't fit, use 'mtu' - the data space left */ | |
779 | if (len > mtu) | |
780 | len = mtu; | |
781 | /* IF: we are not sending up to and including the packet end | |
782 | then align the next start on an eight byte boundary */ | |
783 | if (len < left) { | |
784 | len &= ~7; | |
785 | } | |
786 | ||
787 | /* Allocate buffer */ | |
788 | frag = alloc_skb(len + hlen + sizeof(struct frag_hdr) + | |
789 | hroom + troom, GFP_ATOMIC); | |
790 | if (!frag) { | |
791 | IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), | |
792 | IPSTATS_MIB_FRAGFAILS); | |
793 | err = -ENOMEM; | |
794 | goto fail; | |
795 | } | |
796 | ||
797 | /* | |
798 | * Set up data on packet | |
799 | */ | |
800 | ||
801 | ip6_copy_metadata(frag, skb); | |
802 | skb_reserve(frag, hroom); | |
803 | skb_put(frag, len + hlen + sizeof(struct frag_hdr)); | |
804 | skb_reset_network_header(frag); | |
805 | fh = (struct frag_hdr *)(skb_network_header(frag) + hlen); | |
806 | frag->transport_header = (frag->network_header + hlen + | |
807 | sizeof(struct frag_hdr)); | |
808 | ||
809 | /* | |
810 | * Charge the memory for the fragment to any owner | |
811 | * it might possess | |
812 | */ | |
813 | if (skb->sk) | |
814 | skb_set_owner_w(frag, skb->sk); | |
815 | ||
816 | /* | |
817 | * Copy the packet header into the new buffer. | |
818 | */ | |
819 | skb_copy_from_linear_data(skb, skb_network_header(frag), hlen); | |
820 | ||
821 | /* | |
822 | * Build fragment header. | |
823 | */ | |
824 | fh->nexthdr = nexthdr; | |
825 | fh->reserved = 0; | |
826 | fh->identification = frag_id; | |
827 | ||
828 | /* | |
829 | * Copy a block of the IP datagram. | |
830 | */ | |
831 | BUG_ON(skb_copy_bits(skb, ptr, skb_transport_header(frag), | |
832 | len)); | |
833 | left -= len; | |
834 | ||
835 | fh->frag_off = htons(offset); | |
836 | if (left > 0) | |
837 | fh->frag_off |= htons(IP6_MF); | |
838 | ipv6_hdr(frag)->payload_len = htons(frag->len - | |
839 | sizeof(struct ipv6hdr)); | |
840 | ||
841 | ptr += len; | |
842 | offset += len; | |
843 | ||
844 | /* | |
845 | * Put this fragment into the sending queue. | |
846 | */ | |
847 | err = output(net, sk, frag); | |
848 | if (err) | |
849 | goto fail; | |
850 | ||
851 | IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), | |
852 | IPSTATS_MIB_FRAGCREATES); | |
853 | } | |
854 | IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), | |
855 | IPSTATS_MIB_FRAGOKS); | |
856 | consume_skb(skb); | |
857 | return err; | |
858 | ||
859 | fail_toobig: | |
860 | if (skb->sk && dst_allfrag(skb_dst(skb))) | |
861 | sk_nocaps_add(skb->sk, NETIF_F_GSO_MASK); | |
862 | ||
863 | skb->dev = skb_dst(skb)->dev; | |
864 | icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu); | |
865 | err = -EMSGSIZE; | |
866 | ||
867 | fail: | |
868 | IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), | |
869 | IPSTATS_MIB_FRAGFAILS); | |
870 | kfree_skb(skb); | |
871 | return err; | |
872 | } | |
873 | ||
874 | static inline int ip6_rt_check(const struct rt6key *rt_key, | |
875 | const struct in6_addr *fl_addr, | |
876 | const struct in6_addr *addr_cache) | |
877 | { | |
878 | return (rt_key->plen != 128 || !ipv6_addr_equal(fl_addr, &rt_key->addr)) && | |
879 | (!addr_cache || !ipv6_addr_equal(fl_addr, addr_cache)); | |
880 | } | |
881 | ||
882 | static struct dst_entry *ip6_sk_dst_check(struct sock *sk, | |
883 | struct dst_entry *dst, | |
884 | const struct flowi6 *fl6) | |
885 | { | |
886 | struct ipv6_pinfo *np = inet6_sk(sk); | |
887 | struct rt6_info *rt; | |
888 | ||
889 | if (!dst) | |
890 | goto out; | |
891 | ||
892 | if (dst->ops->family != AF_INET6) { | |
893 | dst_release(dst); | |
894 | return NULL; | |
895 | } | |
896 | ||
897 | rt = (struct rt6_info *)dst; | |
898 | /* Yes, checking route validity in not connected | |
899 | * case is not very simple. Take into account, | |
900 | * that we do not support routing by source, TOS, | |
901 | * and MSG_DONTROUTE --ANK (980726) | |
902 | * | |
903 | * 1. ip6_rt_check(): If route was host route, | |
904 | * check that cached destination is current. | |
905 | * If it is network route, we still may | |
906 | * check its validity using saved pointer | |
907 | * to the last used address: daddr_cache. | |
908 | * We do not want to save whole address now, | |
909 | * (because main consumer of this service | |
910 | * is tcp, which has not this problem), | |
911 | * so that the last trick works only on connected | |
912 | * sockets. | |
913 | * 2. oif also should be the same. | |
914 | */ | |
915 | if (ip6_rt_check(&rt->rt6i_dst, &fl6->daddr, np->daddr_cache) || | |
916 | #ifdef CONFIG_IPV6_SUBTREES | |
917 | ip6_rt_check(&rt->rt6i_src, &fl6->saddr, np->saddr_cache) || | |
918 | #endif | |
919 | (!(fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF) && | |
920 | (fl6->flowi6_oif && fl6->flowi6_oif != dst->dev->ifindex))) { | |
921 | dst_release(dst); | |
922 | dst = NULL; | |
923 | } | |
924 | ||
925 | out: | |
926 | return dst; | |
927 | } | |
928 | ||
929 | static int ip6_dst_lookup_tail(struct net *net, const struct sock *sk, | |
930 | struct dst_entry **dst, struct flowi6 *fl6) | |
931 | { | |
932 | #ifdef CONFIG_IPV6_OPTIMISTIC_DAD | |
933 | struct neighbour *n; | |
934 | struct rt6_info *rt; | |
935 | #endif | |
936 | int err; | |
937 | int flags = 0; | |
938 | ||
939 | /* The correct way to handle this would be to do | |
940 | * ip6_route_get_saddr, and then ip6_route_output; however, | |
941 | * the route-specific preferred source forces the | |
942 | * ip6_route_output call _before_ ip6_route_get_saddr. | |
943 | * | |
944 | * In source specific routing (no src=any default route), | |
945 | * ip6_route_output will fail given src=any saddr, though, so | |
946 | * that's why we try it again later. | |
947 | */ | |
948 | if (ipv6_addr_any(&fl6->saddr) && (!*dst || !(*dst)->error)) { | |
949 | struct rt6_info *rt; | |
950 | bool had_dst = *dst != NULL; | |
951 | ||
952 | if (!had_dst) | |
953 | *dst = ip6_route_output(net, sk, fl6); | |
954 | rt = (*dst)->error ? NULL : (struct rt6_info *)*dst; | |
955 | err = ip6_route_get_saddr(net, rt, &fl6->daddr, | |
956 | sk ? inet6_sk(sk)->srcprefs : 0, | |
957 | &fl6->saddr); | |
958 | if (err) | |
959 | goto out_err_release; | |
960 | ||
961 | /* If we had an erroneous initial result, pretend it | |
962 | * never existed and let the SA-enabled version take | |
963 | * over. | |
964 | */ | |
965 | if (!had_dst && (*dst)->error) { | |
966 | dst_release(*dst); | |
967 | *dst = NULL; | |
968 | } | |
969 | ||
970 | if (fl6->flowi6_oif) | |
971 | flags |= RT6_LOOKUP_F_IFACE; | |
972 | } | |
973 | ||
974 | if (!*dst) | |
975 | *dst = ip6_route_output_flags(net, sk, fl6, flags); | |
976 | ||
977 | err = (*dst)->error; | |
978 | if (err) | |
979 | goto out_err_release; | |
980 | ||
981 | #ifdef CONFIG_IPV6_OPTIMISTIC_DAD | |
982 | /* | |
983 | * Here if the dst entry we've looked up | |
984 | * has a neighbour entry that is in the INCOMPLETE | |
985 | * state and the src address from the flow is | |
986 | * marked as OPTIMISTIC, we release the found | |
987 | * dst entry and replace it instead with the | |
988 | * dst entry of the nexthop router | |
989 | */ | |
990 | rt = (struct rt6_info *) *dst; | |
991 | rcu_read_lock_bh(); | |
992 | n = __ipv6_neigh_lookup_noref(rt->dst.dev, | |
993 | rt6_nexthop(rt, &fl6->daddr)); | |
994 | err = n && !(n->nud_state & NUD_VALID) ? -EINVAL : 0; | |
995 | rcu_read_unlock_bh(); | |
996 | ||
997 | if (err) { | |
998 | struct inet6_ifaddr *ifp; | |
999 | struct flowi6 fl_gw6; | |
1000 | int redirect; | |
1001 | ||
1002 | ifp = ipv6_get_ifaddr(net, &fl6->saddr, | |
1003 | (*dst)->dev, 1); | |
1004 | ||
1005 | redirect = (ifp && ifp->flags & IFA_F_OPTIMISTIC); | |
1006 | if (ifp) | |
1007 | in6_ifa_put(ifp); | |
1008 | ||
1009 | if (redirect) { | |
1010 | /* | |
1011 | * We need to get the dst entry for the | |
1012 | * default router instead | |
1013 | */ | |
1014 | dst_release(*dst); | |
1015 | memcpy(&fl_gw6, fl6, sizeof(struct flowi6)); | |
1016 | memset(&fl_gw6.daddr, 0, sizeof(struct in6_addr)); | |
1017 | *dst = ip6_route_output(net, sk, &fl_gw6); | |
1018 | err = (*dst)->error; | |
1019 | if (err) | |
1020 | goto out_err_release; | |
1021 | } | |
1022 | } | |
1023 | #endif | |
1024 | ||
1025 | return 0; | |
1026 | ||
1027 | out_err_release: | |
1028 | dst_release(*dst); | |
1029 | *dst = NULL; | |
1030 | ||
1031 | if (err == -ENETUNREACH) | |
1032 | IP6_INC_STATS(net, NULL, IPSTATS_MIB_OUTNOROUTES); | |
1033 | return err; | |
1034 | } | |
1035 | ||
1036 | /** | |
1037 | * ip6_dst_lookup - perform route lookup on flow | |
1038 | * @sk: socket which provides route info | |
1039 | * @dst: pointer to dst_entry * for result | |
1040 | * @fl6: flow to lookup | |
1041 | * | |
1042 | * This function performs a route lookup on the given flow. | |
1043 | * | |
1044 | * It returns zero on success, or a standard errno code on error. | |
1045 | */ | |
1046 | int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst, | |
1047 | struct flowi6 *fl6) | |
1048 | { | |
1049 | *dst = NULL; | |
1050 | return ip6_dst_lookup_tail(net, sk, dst, fl6); | |
1051 | } | |
1052 | EXPORT_SYMBOL_GPL(ip6_dst_lookup); | |
1053 | ||
1054 | /** | |
1055 | * ip6_dst_lookup_flow - perform route lookup on flow with ipsec | |
1056 | * @sk: socket which provides route info | |
1057 | * @fl6: flow to lookup | |
1058 | * @final_dst: final destination address for ipsec lookup | |
1059 | * | |
1060 | * This function performs a route lookup on the given flow. | |
1061 | * | |
1062 | * It returns a valid dst pointer on success, or a pointer encoded | |
1063 | * error code. | |
1064 | */ | |
1065 | struct dst_entry *ip6_dst_lookup_flow(const struct sock *sk, struct flowi6 *fl6, | |
1066 | const struct in6_addr *final_dst) | |
1067 | { | |
1068 | struct dst_entry *dst = NULL; | |
1069 | int err; | |
1070 | ||
1071 | err = ip6_dst_lookup_tail(sock_net(sk), sk, &dst, fl6); | |
1072 | if (err) | |
1073 | return ERR_PTR(err); | |
1074 | if (final_dst) | |
1075 | fl6->daddr = *final_dst; | |
1076 | ||
1077 | return xfrm_lookup_route(sock_net(sk), dst, flowi6_to_flowi(fl6), sk, 0); | |
1078 | } | |
1079 | EXPORT_SYMBOL_GPL(ip6_dst_lookup_flow); | |
1080 | ||
1081 | /** | |
1082 | * ip6_sk_dst_lookup_flow - perform socket cached route lookup on flow | |
1083 | * @sk: socket which provides the dst cache and route info | |
1084 | * @fl6: flow to lookup | |
1085 | * @final_dst: final destination address for ipsec lookup | |
1086 | * | |
1087 | * This function performs a route lookup on the given flow with the | |
1088 | * possibility of using the cached route in the socket if it is valid. | |
1089 | * It will take the socket dst lock when operating on the dst cache. | |
1090 | * As a result, this function can only be used in process context. | |
1091 | * | |
1092 | * It returns a valid dst pointer on success, or a pointer encoded | |
1093 | * error code. | |
1094 | */ | |
1095 | struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6, | |
1096 | const struct in6_addr *final_dst) | |
1097 | { | |
1098 | struct dst_entry *dst = sk_dst_check(sk, inet6_sk(sk)->dst_cookie); | |
1099 | ||
1100 | dst = ip6_sk_dst_check(sk, dst, fl6); | |
1101 | if (!dst) | |
1102 | dst = ip6_dst_lookup_flow(sk, fl6, final_dst); | |
1103 | ||
1104 | return dst; | |
1105 | } | |
1106 | EXPORT_SYMBOL_GPL(ip6_sk_dst_lookup_flow); | |
1107 | ||
1108 | static inline int ip6_ufo_append_data(struct sock *sk, | |
1109 | struct sk_buff_head *queue, | |
1110 | int getfrag(void *from, char *to, int offset, int len, | |
1111 | int odd, struct sk_buff *skb), | |
1112 | void *from, int length, int hh_len, int fragheaderlen, | |
1113 | int exthdrlen, int transhdrlen, int mtu, | |
1114 | unsigned int flags, const struct flowi6 *fl6) | |
1115 | ||
1116 | { | |
1117 | struct sk_buff *skb; | |
1118 | int err; | |
1119 | ||
1120 | /* There is support for UDP large send offload by network | |
1121 | * device, so create one single skb packet containing complete | |
1122 | * udp datagram | |
1123 | */ | |
1124 | skb = skb_peek_tail(queue); | |
1125 | if (!skb) { | |
1126 | skb = sock_alloc_send_skb(sk, | |
1127 | hh_len + fragheaderlen + transhdrlen + 20, | |
1128 | (flags & MSG_DONTWAIT), &err); | |
1129 | if (!skb) | |
1130 | return err; | |
1131 | ||
1132 | /* reserve space for Hardware header */ | |
1133 | skb_reserve(skb, hh_len); | |
1134 | ||
1135 | /* create space for UDP/IP header */ | |
1136 | skb_put(skb, fragheaderlen + transhdrlen); | |
1137 | ||
1138 | /* initialize network header pointer */ | |
1139 | skb_set_network_header(skb, exthdrlen); | |
1140 | ||
1141 | /* initialize protocol header pointer */ | |
1142 | skb->transport_header = skb->network_header + fragheaderlen; | |
1143 | ||
1144 | skb->protocol = htons(ETH_P_IPV6); | |
1145 | skb->csum = 0; | |
1146 | ||
1147 | __skb_queue_tail(queue, skb); | |
1148 | } else if (skb_is_gso(skb)) { | |
1149 | goto append; | |
1150 | } | |
1151 | ||
1152 | skb->ip_summed = CHECKSUM_PARTIAL; | |
1153 | /* Specify the length of each IPv6 datagram fragment. | |
1154 | * It has to be a multiple of 8. | |
1155 | */ | |
1156 | skb_shinfo(skb)->gso_size = (mtu - fragheaderlen - | |
1157 | sizeof(struct frag_hdr)) & ~7; | |
1158 | skb_shinfo(skb)->gso_type = SKB_GSO_UDP; | |
1159 | skb_shinfo(skb)->ip6_frag_id = ipv6_select_ident(sock_net(sk), | |
1160 | &fl6->daddr, | |
1161 | &fl6->saddr); | |
1162 | ||
1163 | append: | |
1164 | return skb_append_datato_frags(sk, skb, getfrag, from, | |
1165 | (length - transhdrlen)); | |
1166 | } | |
1167 | ||
1168 | static inline struct ipv6_opt_hdr *ip6_opt_dup(struct ipv6_opt_hdr *src, | |
1169 | gfp_t gfp) | |
1170 | { | |
1171 | return src ? kmemdup(src, (src->hdrlen + 1) * 8, gfp) : NULL; | |
1172 | } | |
1173 | ||
1174 | static inline struct ipv6_rt_hdr *ip6_rthdr_dup(struct ipv6_rt_hdr *src, | |
1175 | gfp_t gfp) | |
1176 | { | |
1177 | return src ? kmemdup(src, (src->hdrlen + 1) * 8, gfp) : NULL; | |
1178 | } | |
1179 | ||
1180 | static void ip6_append_data_mtu(unsigned int *mtu, | |
1181 | int *maxfraglen, | |
1182 | unsigned int fragheaderlen, | |
1183 | struct sk_buff *skb, | |
1184 | struct rt6_info *rt, | |
1185 | unsigned int orig_mtu) | |
1186 | { | |
1187 | if (!(rt->dst.flags & DST_XFRM_TUNNEL)) { | |
1188 | if (!skb) { | |
1189 | /* first fragment, reserve header_len */ | |
1190 | *mtu = orig_mtu - rt->dst.header_len; | |
1191 | ||
1192 | } else { | |
1193 | /* | |
1194 | * this fragment is not first, the headers | |
1195 | * space is regarded as data space. | |
1196 | */ | |
1197 | *mtu = orig_mtu; | |
1198 | } | |
1199 | *maxfraglen = ((*mtu - fragheaderlen) & ~7) | |
1200 | + fragheaderlen - sizeof(struct frag_hdr); | |
1201 | } | |
1202 | } | |
1203 | ||
1204 | static int ip6_setup_cork(struct sock *sk, struct inet_cork_full *cork, | |
1205 | struct inet6_cork *v6_cork, struct ipcm6_cookie *ipc6, | |
1206 | struct rt6_info *rt, struct flowi6 *fl6) | |
1207 | { | |
1208 | struct ipv6_pinfo *np = inet6_sk(sk); | |
1209 | unsigned int mtu; | |
1210 | struct ipv6_txoptions *opt = ipc6->opt; | |
1211 | ||
1212 | /* | |
1213 | * setup for corking | |
1214 | */ | |
1215 | if (opt) { | |
1216 | if (WARN_ON(v6_cork->opt)) | |
1217 | return -EINVAL; | |
1218 | ||
1219 | v6_cork->opt = kzalloc(opt->tot_len, sk->sk_allocation); | |
1220 | if (unlikely(!v6_cork->opt)) | |
1221 | return -ENOBUFS; | |
1222 | ||
1223 | v6_cork->opt->tot_len = opt->tot_len; | |
1224 | v6_cork->opt->opt_flen = opt->opt_flen; | |
1225 | v6_cork->opt->opt_nflen = opt->opt_nflen; | |
1226 | ||
1227 | v6_cork->opt->dst0opt = ip6_opt_dup(opt->dst0opt, | |
1228 | sk->sk_allocation); | |
1229 | if (opt->dst0opt && !v6_cork->opt->dst0opt) | |
1230 | return -ENOBUFS; | |
1231 | ||
1232 | v6_cork->opt->dst1opt = ip6_opt_dup(opt->dst1opt, | |
1233 | sk->sk_allocation); | |
1234 | if (opt->dst1opt && !v6_cork->opt->dst1opt) | |
1235 | return -ENOBUFS; | |
1236 | ||
1237 | v6_cork->opt->hopopt = ip6_opt_dup(opt->hopopt, | |
1238 | sk->sk_allocation); | |
1239 | if (opt->hopopt && !v6_cork->opt->hopopt) | |
1240 | return -ENOBUFS; | |
1241 | ||
1242 | v6_cork->opt->srcrt = ip6_rthdr_dup(opt->srcrt, | |
1243 | sk->sk_allocation); | |
1244 | if (opt->srcrt && !v6_cork->opt->srcrt) | |
1245 | return -ENOBUFS; | |
1246 | ||
1247 | /* need source address above miyazawa*/ | |
1248 | } | |
1249 | dst_hold(&rt->dst); | |
1250 | cork->base.dst = &rt->dst; | |
1251 | cork->fl.u.ip6 = *fl6; | |
1252 | v6_cork->hop_limit = ipc6->hlimit; | |
1253 | v6_cork->tclass = ipc6->tclass; | |
1254 | if (rt->dst.flags & DST_XFRM_TUNNEL) | |
1255 | mtu = np->pmtudisc >= IPV6_PMTUDISC_PROBE ? | |
1256 | rt->dst.dev->mtu : dst_mtu(&rt->dst); | |
1257 | else | |
1258 | mtu = np->pmtudisc >= IPV6_PMTUDISC_PROBE ? | |
1259 | rt->dst.dev->mtu : dst_mtu(rt->dst.path); | |
1260 | if (np->frag_size < mtu) { | |
1261 | if (np->frag_size) | |
1262 | mtu = np->frag_size; | |
1263 | } | |
1264 | cork->base.fragsize = mtu; | |
1265 | if (dst_allfrag(rt->dst.path)) | |
1266 | cork->base.flags |= IPCORK_ALLFRAG; | |
1267 | cork->base.length = 0; | |
1268 | ||
1269 | return 0; | |
1270 | } | |
1271 | ||
1272 | static int __ip6_append_data(struct sock *sk, | |
1273 | struct flowi6 *fl6, | |
1274 | struct sk_buff_head *queue, | |
1275 | struct inet_cork *cork, | |
1276 | struct inet6_cork *v6_cork, | |
1277 | struct page_frag *pfrag, | |
1278 | int getfrag(void *from, char *to, int offset, | |
1279 | int len, int odd, struct sk_buff *skb), | |
1280 | void *from, int length, int transhdrlen, | |
1281 | unsigned int flags, struct ipcm6_cookie *ipc6, | |
1282 | const struct sockcm_cookie *sockc) | |
1283 | { | |
1284 | struct sk_buff *skb, *skb_prev = NULL; | |
1285 | unsigned int maxfraglen, fragheaderlen, mtu, orig_mtu; | |
1286 | int exthdrlen = 0; | |
1287 | int dst_exthdrlen = 0; | |
1288 | int hh_len; | |
1289 | int copy; | |
1290 | int err; | |
1291 | int offset = 0; | |
1292 | __u8 tx_flags = 0; | |
1293 | u32 tskey = 0; | |
1294 | struct rt6_info *rt = (struct rt6_info *)cork->dst; | |
1295 | struct ipv6_txoptions *opt = v6_cork->opt; | |
1296 | int csummode = CHECKSUM_NONE; | |
1297 | unsigned int maxnonfragsize, headersize; | |
1298 | ||
1299 | skb = skb_peek_tail(queue); | |
1300 | if (!skb) { | |
1301 | exthdrlen = opt ? opt->opt_flen : 0; | |
1302 | dst_exthdrlen = rt->dst.header_len - rt->rt6i_nfheader_len; | |
1303 | } | |
1304 | ||
1305 | mtu = cork->fragsize; | |
1306 | orig_mtu = mtu; | |
1307 | ||
1308 | hh_len = LL_RESERVED_SPACE(rt->dst.dev); | |
1309 | ||
1310 | fragheaderlen = sizeof(struct ipv6hdr) + rt->rt6i_nfheader_len + | |
1311 | (opt ? opt->opt_nflen : 0); | |
1312 | maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen - | |
1313 | sizeof(struct frag_hdr); | |
1314 | ||
1315 | headersize = sizeof(struct ipv6hdr) + | |
1316 | (opt ? opt->opt_flen + opt->opt_nflen : 0) + | |
1317 | (dst_allfrag(&rt->dst) ? | |
1318 | sizeof(struct frag_hdr) : 0) + | |
1319 | rt->rt6i_nfheader_len; | |
1320 | ||
1321 | if (cork->length + length > mtu - headersize && ipc6->dontfrag && | |
1322 | (sk->sk_protocol == IPPROTO_UDP || | |
1323 | sk->sk_protocol == IPPROTO_RAW)) { | |
1324 | ipv6_local_rxpmtu(sk, fl6, mtu - headersize + | |
1325 | sizeof(struct ipv6hdr)); | |
1326 | goto emsgsize; | |
1327 | } | |
1328 | ||
1329 | if (ip6_sk_ignore_df(sk)) | |
1330 | maxnonfragsize = sizeof(struct ipv6hdr) + IPV6_MAXPLEN; | |
1331 | else | |
1332 | maxnonfragsize = mtu; | |
1333 | ||
1334 | if (cork->length + length > maxnonfragsize - headersize) { | |
1335 | emsgsize: | |
1336 | ipv6_local_error(sk, EMSGSIZE, fl6, | |
1337 | mtu - headersize + | |
1338 | sizeof(struct ipv6hdr)); | |
1339 | return -EMSGSIZE; | |
1340 | } | |
1341 | ||
1342 | /* CHECKSUM_PARTIAL only with no extension headers and when | |
1343 | * we are not going to fragment | |
1344 | */ | |
1345 | if (transhdrlen && sk->sk_protocol == IPPROTO_UDP && | |
1346 | headersize == sizeof(struct ipv6hdr) && | |
1347 | length <= mtu - headersize && | |
1348 | !(flags & MSG_MORE) && | |
1349 | rt->dst.dev->features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM)) | |
1350 | csummode = CHECKSUM_PARTIAL; | |
1351 | ||
1352 | if (sk->sk_type == SOCK_DGRAM || sk->sk_type == SOCK_RAW) { | |
1353 | sock_tx_timestamp(sk, sockc->tsflags, &tx_flags); | |
1354 | if (tx_flags & SKBTX_ANY_SW_TSTAMP && | |
1355 | sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) | |
1356 | tskey = sk->sk_tskey++; | |
1357 | } | |
1358 | ||
1359 | /* | |
1360 | * Let's try using as much space as possible. | |
1361 | * Use MTU if total length of the message fits into the MTU. | |
1362 | * Otherwise, we need to reserve fragment header and | |
1363 | * fragment alignment (= 8-15 octects, in total). | |
1364 | * | |
1365 | * Note that we may need to "move" the data from the tail of | |
1366 | * of the buffer to the new fragment when we split | |
1367 | * the message. | |
1368 | * | |
1369 | * FIXME: It may be fragmented into multiple chunks | |
1370 | * at once if non-fragmentable extension headers | |
1371 | * are too large. | |
1372 | * --yoshfuji | |
1373 | */ | |
1374 | ||
1375 | cork->length += length; | |
1376 | if ((((length + fragheaderlen) > mtu) || | |
1377 | (skb && skb_is_gso(skb))) && | |
1378 | (sk->sk_protocol == IPPROTO_UDP) && | |
1379 | (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len && | |
1380 | (sk->sk_type == SOCK_DGRAM) && !udp_get_no_check6_tx(sk)) { | |
1381 | err = ip6_ufo_append_data(sk, queue, getfrag, from, length, | |
1382 | hh_len, fragheaderlen, exthdrlen, | |
1383 | transhdrlen, mtu, flags, fl6); | |
1384 | if (err) | |
1385 | goto error; | |
1386 | return 0; | |
1387 | } | |
1388 | ||
1389 | if (!skb) | |
1390 | goto alloc_new_skb; | |
1391 | ||
1392 | while (length > 0) { | |
1393 | /* Check if the remaining data fits into current packet. */ | |
1394 | copy = (cork->length <= mtu && !(cork->flags & IPCORK_ALLFRAG) ? mtu : maxfraglen) - skb->len; | |
1395 | if (copy < length) | |
1396 | copy = maxfraglen - skb->len; | |
1397 | ||
1398 | if (copy <= 0) { | |
1399 | char *data; | |
1400 | unsigned int datalen; | |
1401 | unsigned int fraglen; | |
1402 | unsigned int fraggap; | |
1403 | unsigned int alloclen; | |
1404 | alloc_new_skb: | |
1405 | /* There's no room in the current skb */ | |
1406 | if (skb) | |
1407 | fraggap = skb->len - maxfraglen; | |
1408 | else | |
1409 | fraggap = 0; | |
1410 | /* update mtu and maxfraglen if necessary */ | |
1411 | if (!skb || !skb_prev) | |
1412 | ip6_append_data_mtu(&mtu, &maxfraglen, | |
1413 | fragheaderlen, skb, rt, | |
1414 | orig_mtu); | |
1415 | ||
1416 | skb_prev = skb; | |
1417 | ||
1418 | /* | |
1419 | * If remaining data exceeds the mtu, | |
1420 | * we know we need more fragment(s). | |
1421 | */ | |
1422 | datalen = length + fraggap; | |
1423 | ||
1424 | if (datalen > (cork->length <= mtu && !(cork->flags & IPCORK_ALLFRAG) ? mtu : maxfraglen) - fragheaderlen) | |
1425 | datalen = maxfraglen - fragheaderlen - rt->dst.trailer_len; | |
1426 | if ((flags & MSG_MORE) && | |
1427 | !(rt->dst.dev->features&NETIF_F_SG)) | |
1428 | alloclen = mtu; | |
1429 | else | |
1430 | alloclen = datalen + fragheaderlen; | |
1431 | ||
1432 | alloclen += dst_exthdrlen; | |
1433 | ||
1434 | if (datalen != length + fraggap) { | |
1435 | /* | |
1436 | * this is not the last fragment, the trailer | |
1437 | * space is regarded as data space. | |
1438 | */ | |
1439 | datalen += rt->dst.trailer_len; | |
1440 | } | |
1441 | ||
1442 | alloclen += rt->dst.trailer_len; | |
1443 | fraglen = datalen + fragheaderlen; | |
1444 | ||
1445 | /* | |
1446 | * We just reserve space for fragment header. | |
1447 | * Note: this may be overallocation if the message | |
1448 | * (without MSG_MORE) fits into the MTU. | |
1449 | */ | |
1450 | alloclen += sizeof(struct frag_hdr); | |
1451 | ||
1452 | if (transhdrlen) { | |
1453 | skb = sock_alloc_send_skb(sk, | |
1454 | alloclen + hh_len, | |
1455 | (flags & MSG_DONTWAIT), &err); | |
1456 | } else { | |
1457 | skb = NULL; | |
1458 | if (atomic_read(&sk->sk_wmem_alloc) <= | |
1459 | 2 * sk->sk_sndbuf) | |
1460 | skb = sock_wmalloc(sk, | |
1461 | alloclen + hh_len, 1, | |
1462 | sk->sk_allocation); | |
1463 | if (unlikely(!skb)) | |
1464 | err = -ENOBUFS; | |
1465 | } | |
1466 | if (!skb) | |
1467 | goto error; | |
1468 | /* | |
1469 | * Fill in the control structures | |
1470 | */ | |
1471 | skb->protocol = htons(ETH_P_IPV6); | |
1472 | skb->ip_summed = csummode; | |
1473 | skb->csum = 0; | |
1474 | /* reserve for fragmentation and ipsec header */ | |
1475 | skb_reserve(skb, hh_len + sizeof(struct frag_hdr) + | |
1476 | dst_exthdrlen); | |
1477 | ||
1478 | /* Only the initial fragment is time stamped */ | |
1479 | skb_shinfo(skb)->tx_flags = tx_flags; | |
1480 | tx_flags = 0; | |
1481 | skb_shinfo(skb)->tskey = tskey; | |
1482 | tskey = 0; | |
1483 | ||
1484 | /* | |
1485 | * Find where to start putting bytes | |
1486 | */ | |
1487 | data = skb_put(skb, fraglen); | |
1488 | skb_set_network_header(skb, exthdrlen); | |
1489 | data += fragheaderlen; | |
1490 | skb->transport_header = (skb->network_header + | |
1491 | fragheaderlen); | |
1492 | if (fraggap) { | |
1493 | skb->csum = skb_copy_and_csum_bits( | |
1494 | skb_prev, maxfraglen, | |
1495 | data + transhdrlen, fraggap, 0); | |
1496 | skb_prev->csum = csum_sub(skb_prev->csum, | |
1497 | skb->csum); | |
1498 | data += fraggap; | |
1499 | pskb_trim_unique(skb_prev, maxfraglen); | |
1500 | } | |
1501 | copy = datalen - transhdrlen - fraggap; | |
1502 | ||
1503 | if (copy < 0) { | |
1504 | err = -EINVAL; | |
1505 | kfree_skb(skb); | |
1506 | goto error; | |
1507 | } else if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { | |
1508 | err = -EFAULT; | |
1509 | kfree_skb(skb); | |
1510 | goto error; | |
1511 | } | |
1512 | ||
1513 | offset += copy; | |
1514 | length -= datalen - fraggap; | |
1515 | transhdrlen = 0; | |
1516 | exthdrlen = 0; | |
1517 | dst_exthdrlen = 0; | |
1518 | ||
1519 | /* | |
1520 | * Put the packet on the pending queue | |
1521 | */ | |
1522 | __skb_queue_tail(queue, skb); | |
1523 | continue; | |
1524 | } | |
1525 | ||
1526 | if (copy > length) | |
1527 | copy = length; | |
1528 | ||
1529 | if (!(rt->dst.dev->features&NETIF_F_SG)) { | |
1530 | unsigned int off; | |
1531 | ||
1532 | off = skb->len; | |
1533 | if (getfrag(from, skb_put(skb, copy), | |
1534 | offset, copy, off, skb) < 0) { | |
1535 | __skb_trim(skb, off); | |
1536 | err = -EFAULT; | |
1537 | goto error; | |
1538 | } | |
1539 | } else { | |
1540 | int i = skb_shinfo(skb)->nr_frags; | |
1541 | ||
1542 | err = -ENOMEM; | |
1543 | if (!sk_page_frag_refill(sk, pfrag)) | |
1544 | goto error; | |
1545 | ||
1546 | if (!skb_can_coalesce(skb, i, pfrag->page, | |
1547 | pfrag->offset)) { | |
1548 | err = -EMSGSIZE; | |
1549 | if (i == MAX_SKB_FRAGS) | |
1550 | goto error; | |
1551 | ||
1552 | __skb_fill_page_desc(skb, i, pfrag->page, | |
1553 | pfrag->offset, 0); | |
1554 | skb_shinfo(skb)->nr_frags = ++i; | |
1555 | get_page(pfrag->page); | |
1556 | } | |
1557 | copy = min_t(int, copy, pfrag->size - pfrag->offset); | |
1558 | if (getfrag(from, | |
1559 | page_address(pfrag->page) + pfrag->offset, | |
1560 | offset, copy, skb->len, skb) < 0) | |
1561 | goto error_efault; | |
1562 | ||
1563 | pfrag->offset += copy; | |
1564 | skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); | |
1565 | skb->len += copy; | |
1566 | skb->data_len += copy; | |
1567 | skb->truesize += copy; | |
1568 | atomic_add(copy, &sk->sk_wmem_alloc); | |
1569 | } | |
1570 | offset += copy; | |
1571 | length -= copy; | |
1572 | } | |
1573 | ||
1574 | return 0; | |
1575 | ||
1576 | error_efault: | |
1577 | err = -EFAULT; | |
1578 | error: | |
1579 | cork->length -= length; | |
1580 | IP6_INC_STATS(sock_net(sk), rt->rt6i_idev, IPSTATS_MIB_OUTDISCARDS); | |
1581 | return err; | |
1582 | } | |
1583 | ||
1584 | int ip6_append_data(struct sock *sk, | |
1585 | int getfrag(void *from, char *to, int offset, int len, | |
1586 | int odd, struct sk_buff *skb), | |
1587 | void *from, int length, int transhdrlen, | |
1588 | struct ipcm6_cookie *ipc6, struct flowi6 *fl6, | |
1589 | struct rt6_info *rt, unsigned int flags, | |
1590 | const struct sockcm_cookie *sockc) | |
1591 | { | |
1592 | struct inet_sock *inet = inet_sk(sk); | |
1593 | struct ipv6_pinfo *np = inet6_sk(sk); | |
1594 | int exthdrlen; | |
1595 | int err; | |
1596 | ||
1597 | if (flags&MSG_PROBE) | |
1598 | return 0; | |
1599 | if (skb_queue_empty(&sk->sk_write_queue)) { | |
1600 | /* | |
1601 | * setup for corking | |
1602 | */ | |
1603 | err = ip6_setup_cork(sk, &inet->cork, &np->cork, | |
1604 | ipc6, rt, fl6); | |
1605 | if (err) | |
1606 | return err; | |
1607 | ||
1608 | exthdrlen = (ipc6->opt ? ipc6->opt->opt_flen : 0); | |
1609 | length += exthdrlen; | |
1610 | transhdrlen += exthdrlen; | |
1611 | } else { | |
1612 | fl6 = &inet->cork.fl.u.ip6; | |
1613 | transhdrlen = 0; | |
1614 | } | |
1615 | ||
1616 | return __ip6_append_data(sk, fl6, &sk->sk_write_queue, &inet->cork.base, | |
1617 | &np->cork, sk_page_frag(sk), getfrag, | |
1618 | from, length, transhdrlen, flags, ipc6, sockc); | |
1619 | } | |
1620 | EXPORT_SYMBOL_GPL(ip6_append_data); | |
1621 | ||
1622 | static void ip6_cork_release(struct inet_cork_full *cork, | |
1623 | struct inet6_cork *v6_cork) | |
1624 | { | |
1625 | if (v6_cork->opt) { | |
1626 | kfree(v6_cork->opt->dst0opt); | |
1627 | kfree(v6_cork->opt->dst1opt); | |
1628 | kfree(v6_cork->opt->hopopt); | |
1629 | kfree(v6_cork->opt->srcrt); | |
1630 | kfree(v6_cork->opt); | |
1631 | v6_cork->opt = NULL; | |
1632 | } | |
1633 | ||
1634 | if (cork->base.dst) { | |
1635 | dst_release(cork->base.dst); | |
1636 | cork->base.dst = NULL; | |
1637 | cork->base.flags &= ~IPCORK_ALLFRAG; | |
1638 | } | |
1639 | memset(&cork->fl, 0, sizeof(cork->fl)); | |
1640 | } | |
1641 | ||
1642 | struct sk_buff *__ip6_make_skb(struct sock *sk, | |
1643 | struct sk_buff_head *queue, | |
1644 | struct inet_cork_full *cork, | |
1645 | struct inet6_cork *v6_cork) | |
1646 | { | |
1647 | struct sk_buff *skb, *tmp_skb; | |
1648 | struct sk_buff **tail_skb; | |
1649 | struct in6_addr final_dst_buf, *final_dst = &final_dst_buf; | |
1650 | struct ipv6_pinfo *np = inet6_sk(sk); | |
1651 | struct net *net = sock_net(sk); | |
1652 | struct ipv6hdr *hdr; | |
1653 | struct ipv6_txoptions *opt = v6_cork->opt; | |
1654 | struct rt6_info *rt = (struct rt6_info *)cork->base.dst; | |
1655 | struct flowi6 *fl6 = &cork->fl.u.ip6; | |
1656 | unsigned char proto = fl6->flowi6_proto; | |
1657 | ||
1658 | skb = __skb_dequeue(queue); | |
1659 | if (!skb) | |
1660 | goto out; | |
1661 | tail_skb = &(skb_shinfo(skb)->frag_list); | |
1662 | ||
1663 | /* move skb->data to ip header from ext header */ | |
1664 | if (skb->data < skb_network_header(skb)) | |
1665 | __skb_pull(skb, skb_network_offset(skb)); | |
1666 | while ((tmp_skb = __skb_dequeue(queue)) != NULL) { | |
1667 | __skb_pull(tmp_skb, skb_network_header_len(skb)); | |
1668 | *tail_skb = tmp_skb; | |
1669 | tail_skb = &(tmp_skb->next); | |
1670 | skb->len += tmp_skb->len; | |
1671 | skb->data_len += tmp_skb->len; | |
1672 | skb->truesize += tmp_skb->truesize; | |
1673 | tmp_skb->destructor = NULL; | |
1674 | tmp_skb->sk = NULL; | |
1675 | } | |
1676 | ||
1677 | /* Allow local fragmentation. */ | |
1678 | skb->ignore_df = ip6_sk_ignore_df(sk); | |
1679 | ||
1680 | *final_dst = fl6->daddr; | |
1681 | __skb_pull(skb, skb_network_header_len(skb)); | |
1682 | if (opt && opt->opt_flen) | |
1683 | ipv6_push_frag_opts(skb, opt, &proto); | |
1684 | if (opt && opt->opt_nflen) | |
1685 | ipv6_push_nfrag_opts(skb, opt, &proto, &final_dst, &fl6->saddr); | |
1686 | ||
1687 | skb_push(skb, sizeof(struct ipv6hdr)); | |
1688 | skb_reset_network_header(skb); | |
1689 | hdr = ipv6_hdr(skb); | |
1690 | ||
1691 | ip6_flow_hdr(hdr, v6_cork->tclass, | |
1692 | ip6_make_flowlabel(net, skb, fl6->flowlabel, | |
1693 | np->autoflowlabel, fl6)); | |
1694 | hdr->hop_limit = v6_cork->hop_limit; | |
1695 | hdr->nexthdr = proto; | |
1696 | hdr->saddr = fl6->saddr; | |
1697 | hdr->daddr = *final_dst; | |
1698 | ||
1699 | skb->priority = sk->sk_priority; | |
1700 | skb->mark = sk->sk_mark; | |
1701 | ||
1702 | skb_dst_set(skb, dst_clone(&rt->dst)); | |
1703 | IP6_UPD_PO_STATS(net, rt->rt6i_idev, IPSTATS_MIB_OUT, skb->len); | |
1704 | if (proto == IPPROTO_ICMPV6) { | |
1705 | struct inet6_dev *idev = ip6_dst_idev(skb_dst(skb)); | |
1706 | ||
1707 | ICMP6MSGOUT_INC_STATS(net, idev, icmp6_hdr(skb)->icmp6_type); | |
1708 | ICMP6_INC_STATS(net, idev, ICMP6_MIB_OUTMSGS); | |
1709 | } | |
1710 | ||
1711 | ip6_cork_release(cork, v6_cork); | |
1712 | out: | |
1713 | return skb; | |
1714 | } | |
1715 | ||
1716 | int ip6_send_skb(struct sk_buff *skb) | |
1717 | { | |
1718 | struct net *net = sock_net(skb->sk); | |
1719 | struct rt6_info *rt = (struct rt6_info *)skb_dst(skb); | |
1720 | int err; | |
1721 | ||
1722 | err = ip6_local_out(net, skb->sk, skb); | |
1723 | if (err) { | |
1724 | if (err > 0) | |
1725 | err = net_xmit_errno(err); | |
1726 | if (err) | |
1727 | IP6_INC_STATS(net, rt->rt6i_idev, | |
1728 | IPSTATS_MIB_OUTDISCARDS); | |
1729 | } | |
1730 | ||
1731 | return err; | |
1732 | } | |
1733 | ||
1734 | int ip6_push_pending_frames(struct sock *sk) | |
1735 | { | |
1736 | struct sk_buff *skb; | |
1737 | ||
1738 | skb = ip6_finish_skb(sk); | |
1739 | if (!skb) | |
1740 | return 0; | |
1741 | ||
1742 | return ip6_send_skb(skb); | |
1743 | } | |
1744 | EXPORT_SYMBOL_GPL(ip6_push_pending_frames); | |
1745 | ||
1746 | static void __ip6_flush_pending_frames(struct sock *sk, | |
1747 | struct sk_buff_head *queue, | |
1748 | struct inet_cork_full *cork, | |
1749 | struct inet6_cork *v6_cork) | |
1750 | { | |
1751 | struct sk_buff *skb; | |
1752 | ||
1753 | while ((skb = __skb_dequeue_tail(queue)) != NULL) { | |
1754 | if (skb_dst(skb)) | |
1755 | IP6_INC_STATS(sock_net(sk), ip6_dst_idev(skb_dst(skb)), | |
1756 | IPSTATS_MIB_OUTDISCARDS); | |
1757 | kfree_skb(skb); | |
1758 | } | |
1759 | ||
1760 | ip6_cork_release(cork, v6_cork); | |
1761 | } | |
1762 | ||
1763 | void ip6_flush_pending_frames(struct sock *sk) | |
1764 | { | |
1765 | __ip6_flush_pending_frames(sk, &sk->sk_write_queue, | |
1766 | &inet_sk(sk)->cork, &inet6_sk(sk)->cork); | |
1767 | } | |
1768 | EXPORT_SYMBOL_GPL(ip6_flush_pending_frames); | |
1769 | ||
1770 | struct sk_buff *ip6_make_skb(struct sock *sk, | |
1771 | int getfrag(void *from, char *to, int offset, | |
1772 | int len, int odd, struct sk_buff *skb), | |
1773 | void *from, int length, int transhdrlen, | |
1774 | struct ipcm6_cookie *ipc6, struct flowi6 *fl6, | |
1775 | struct rt6_info *rt, unsigned int flags, | |
1776 | const struct sockcm_cookie *sockc) | |
1777 | { | |
1778 | struct inet_cork_full cork; | |
1779 | struct inet6_cork v6_cork; | |
1780 | struct sk_buff_head queue; | |
1781 | int exthdrlen = (ipc6->opt ? ipc6->opt->opt_flen : 0); | |
1782 | int err; | |
1783 | ||
1784 | if (flags & MSG_PROBE) | |
1785 | return NULL; | |
1786 | ||
1787 | __skb_queue_head_init(&queue); | |
1788 | ||
1789 | cork.base.flags = 0; | |
1790 | cork.base.addr = 0; | |
1791 | cork.base.opt = NULL; | |
1792 | v6_cork.opt = NULL; | |
1793 | err = ip6_setup_cork(sk, &cork, &v6_cork, ipc6, rt, fl6); | |
1794 | if (err) | |
1795 | return ERR_PTR(err); | |
1796 | ||
1797 | if (ipc6->dontfrag < 0) | |
1798 | ipc6->dontfrag = inet6_sk(sk)->dontfrag; | |
1799 | ||
1800 | err = __ip6_append_data(sk, fl6, &queue, &cork.base, &v6_cork, | |
1801 | ¤t->task_frag, getfrag, from, | |
1802 | length + exthdrlen, transhdrlen + exthdrlen, | |
1803 | flags, ipc6, sockc); | |
1804 | if (err) { | |
1805 | __ip6_flush_pending_frames(sk, &queue, &cork, &v6_cork); | |
1806 | return ERR_PTR(err); | |
1807 | } | |
1808 | ||
1809 | return __ip6_make_skb(sk, &queue, &cork, &v6_cork); | |
1810 | } |