]>
Commit | Line | Data |
---|---|---|
1 | /* memcontrol.c - Memory Controller | |
2 | * | |
3 | * Copyright IBM Corporation, 2007 | |
4 | * Author Balbir Singh <[email protected]> | |
5 | * | |
6 | * Copyright 2007 OpenVZ SWsoft Inc | |
7 | * Author: Pavel Emelianov <[email protected]> | |
8 | * | |
9 | * Memory thresholds | |
10 | * Copyright (C) 2009 Nokia Corporation | |
11 | * Author: Kirill A. Shutemov | |
12 | * | |
13 | * Kernel Memory Controller | |
14 | * Copyright (C) 2012 Parallels Inc. and Google Inc. | |
15 | * Authors: Glauber Costa and Suleiman Souhlal | |
16 | * | |
17 | * This program is free software; you can redistribute it and/or modify | |
18 | * it under the terms of the GNU General Public License as published by | |
19 | * the Free Software Foundation; either version 2 of the License, or | |
20 | * (at your option) any later version. | |
21 | * | |
22 | * This program is distributed in the hope that it will be useful, | |
23 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
24 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
25 | * GNU General Public License for more details. | |
26 | */ | |
27 | ||
28 | #include <linux/page_counter.h> | |
29 | #include <linux/memcontrol.h> | |
30 | #include <linux/cgroup.h> | |
31 | #include <linux/mm.h> | |
32 | #include <linux/hugetlb.h> | |
33 | #include <linux/pagemap.h> | |
34 | #include <linux/smp.h> | |
35 | #include <linux/page-flags.h> | |
36 | #include <linux/backing-dev.h> | |
37 | #include <linux/bit_spinlock.h> | |
38 | #include <linux/rcupdate.h> | |
39 | #include <linux/limits.h> | |
40 | #include <linux/export.h> | |
41 | #include <linux/mutex.h> | |
42 | #include <linux/rbtree.h> | |
43 | #include <linux/slab.h> | |
44 | #include <linux/swap.h> | |
45 | #include <linux/swapops.h> | |
46 | #include <linux/spinlock.h> | |
47 | #include <linux/eventfd.h> | |
48 | #include <linux/poll.h> | |
49 | #include <linux/sort.h> | |
50 | #include <linux/fs.h> | |
51 | #include <linux/seq_file.h> | |
52 | #include <linux/vmpressure.h> | |
53 | #include <linux/mm_inline.h> | |
54 | #include <linux/swap_cgroup.h> | |
55 | #include <linux/cpu.h> | |
56 | #include <linux/oom.h> | |
57 | #include <linux/lockdep.h> | |
58 | #include <linux/file.h> | |
59 | #include "internal.h" | |
60 | #include <net/sock.h> | |
61 | #include <net/ip.h> | |
62 | #include <net/tcp_memcontrol.h> | |
63 | #include "slab.h" | |
64 | ||
65 | #include <asm/uaccess.h> | |
66 | ||
67 | #include <trace/events/vmscan.h> | |
68 | ||
69 | struct cgroup_subsys memory_cgrp_subsys __read_mostly; | |
70 | EXPORT_SYMBOL(memory_cgrp_subsys); | |
71 | ||
72 | #define MEM_CGROUP_RECLAIM_RETRIES 5 | |
73 | static struct mem_cgroup *root_mem_cgroup __read_mostly; | |
74 | ||
75 | #ifdef CONFIG_MEMCG_SWAP | |
76 | /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ | |
77 | int do_swap_account __read_mostly; | |
78 | ||
79 | /* for remember boot option*/ | |
80 | #ifdef CONFIG_MEMCG_SWAP_ENABLED | |
81 | static int really_do_swap_account __initdata = 1; | |
82 | #else | |
83 | static int really_do_swap_account __initdata; | |
84 | #endif | |
85 | ||
86 | #else | |
87 | #define do_swap_account 0 | |
88 | #endif | |
89 | ||
90 | ||
91 | static const char * const mem_cgroup_stat_names[] = { | |
92 | "cache", | |
93 | "rss", | |
94 | "rss_huge", | |
95 | "mapped_file", | |
96 | "writeback", | |
97 | "swap", | |
98 | }; | |
99 | ||
100 | enum mem_cgroup_events_index { | |
101 | MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ | |
102 | MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ | |
103 | MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ | |
104 | MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ | |
105 | MEM_CGROUP_EVENTS_NSTATS, | |
106 | }; | |
107 | ||
108 | static const char * const mem_cgroup_events_names[] = { | |
109 | "pgpgin", | |
110 | "pgpgout", | |
111 | "pgfault", | |
112 | "pgmajfault", | |
113 | }; | |
114 | ||
115 | static const char * const mem_cgroup_lru_names[] = { | |
116 | "inactive_anon", | |
117 | "active_anon", | |
118 | "inactive_file", | |
119 | "active_file", | |
120 | "unevictable", | |
121 | }; | |
122 | ||
123 | /* | |
124 | * Per memcg event counter is incremented at every pagein/pageout. With THP, | |
125 | * it will be incremated by the number of pages. This counter is used for | |
126 | * for trigger some periodic events. This is straightforward and better | |
127 | * than using jiffies etc. to handle periodic memcg event. | |
128 | */ | |
129 | enum mem_cgroup_events_target { | |
130 | MEM_CGROUP_TARGET_THRESH, | |
131 | MEM_CGROUP_TARGET_SOFTLIMIT, | |
132 | MEM_CGROUP_TARGET_NUMAINFO, | |
133 | MEM_CGROUP_NTARGETS, | |
134 | }; | |
135 | #define THRESHOLDS_EVENTS_TARGET 128 | |
136 | #define SOFTLIMIT_EVENTS_TARGET 1024 | |
137 | #define NUMAINFO_EVENTS_TARGET 1024 | |
138 | ||
139 | struct mem_cgroup_stat_cpu { | |
140 | long count[MEM_CGROUP_STAT_NSTATS]; | |
141 | unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; | |
142 | unsigned long nr_page_events; | |
143 | unsigned long targets[MEM_CGROUP_NTARGETS]; | |
144 | }; | |
145 | ||
146 | struct reclaim_iter { | |
147 | struct mem_cgroup *position; | |
148 | /* scan generation, increased every round-trip */ | |
149 | unsigned int generation; | |
150 | }; | |
151 | ||
152 | /* | |
153 | * per-zone information in memory controller. | |
154 | */ | |
155 | struct mem_cgroup_per_zone { | |
156 | struct lruvec lruvec; | |
157 | unsigned long lru_size[NR_LRU_LISTS]; | |
158 | ||
159 | struct reclaim_iter iter[DEF_PRIORITY + 1]; | |
160 | ||
161 | struct rb_node tree_node; /* RB tree node */ | |
162 | unsigned long usage_in_excess;/* Set to the value by which */ | |
163 | /* the soft limit is exceeded*/ | |
164 | bool on_tree; | |
165 | struct mem_cgroup *memcg; /* Back pointer, we cannot */ | |
166 | /* use container_of */ | |
167 | }; | |
168 | ||
169 | struct mem_cgroup_per_node { | |
170 | struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; | |
171 | }; | |
172 | ||
173 | /* | |
174 | * Cgroups above their limits are maintained in a RB-Tree, independent of | |
175 | * their hierarchy representation | |
176 | */ | |
177 | ||
178 | struct mem_cgroup_tree_per_zone { | |
179 | struct rb_root rb_root; | |
180 | spinlock_t lock; | |
181 | }; | |
182 | ||
183 | struct mem_cgroup_tree_per_node { | |
184 | struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; | |
185 | }; | |
186 | ||
187 | struct mem_cgroup_tree { | |
188 | struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; | |
189 | }; | |
190 | ||
191 | static struct mem_cgroup_tree soft_limit_tree __read_mostly; | |
192 | ||
193 | struct mem_cgroup_threshold { | |
194 | struct eventfd_ctx *eventfd; | |
195 | unsigned long threshold; | |
196 | }; | |
197 | ||
198 | /* For threshold */ | |
199 | struct mem_cgroup_threshold_ary { | |
200 | /* An array index points to threshold just below or equal to usage. */ | |
201 | int current_threshold; | |
202 | /* Size of entries[] */ | |
203 | unsigned int size; | |
204 | /* Array of thresholds */ | |
205 | struct mem_cgroup_threshold entries[0]; | |
206 | }; | |
207 | ||
208 | struct mem_cgroup_thresholds { | |
209 | /* Primary thresholds array */ | |
210 | struct mem_cgroup_threshold_ary *primary; | |
211 | /* | |
212 | * Spare threshold array. | |
213 | * This is needed to make mem_cgroup_unregister_event() "never fail". | |
214 | * It must be able to store at least primary->size - 1 entries. | |
215 | */ | |
216 | struct mem_cgroup_threshold_ary *spare; | |
217 | }; | |
218 | ||
219 | /* for OOM */ | |
220 | struct mem_cgroup_eventfd_list { | |
221 | struct list_head list; | |
222 | struct eventfd_ctx *eventfd; | |
223 | }; | |
224 | ||
225 | /* | |
226 | * cgroup_event represents events which userspace want to receive. | |
227 | */ | |
228 | struct mem_cgroup_event { | |
229 | /* | |
230 | * memcg which the event belongs to. | |
231 | */ | |
232 | struct mem_cgroup *memcg; | |
233 | /* | |
234 | * eventfd to signal userspace about the event. | |
235 | */ | |
236 | struct eventfd_ctx *eventfd; | |
237 | /* | |
238 | * Each of these stored in a list by the cgroup. | |
239 | */ | |
240 | struct list_head list; | |
241 | /* | |
242 | * register_event() callback will be used to add new userspace | |
243 | * waiter for changes related to this event. Use eventfd_signal() | |
244 | * on eventfd to send notification to userspace. | |
245 | */ | |
246 | int (*register_event)(struct mem_cgroup *memcg, | |
247 | struct eventfd_ctx *eventfd, const char *args); | |
248 | /* | |
249 | * unregister_event() callback will be called when userspace closes | |
250 | * the eventfd or on cgroup removing. This callback must be set, | |
251 | * if you want provide notification functionality. | |
252 | */ | |
253 | void (*unregister_event)(struct mem_cgroup *memcg, | |
254 | struct eventfd_ctx *eventfd); | |
255 | /* | |
256 | * All fields below needed to unregister event when | |
257 | * userspace closes eventfd. | |
258 | */ | |
259 | poll_table pt; | |
260 | wait_queue_head_t *wqh; | |
261 | wait_queue_t wait; | |
262 | struct work_struct remove; | |
263 | }; | |
264 | ||
265 | static void mem_cgroup_threshold(struct mem_cgroup *memcg); | |
266 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); | |
267 | ||
268 | /* | |
269 | * The memory controller data structure. The memory controller controls both | |
270 | * page cache and RSS per cgroup. We would eventually like to provide | |
271 | * statistics based on the statistics developed by Rik Van Riel for clock-pro, | |
272 | * to help the administrator determine what knobs to tune. | |
273 | * | |
274 | * TODO: Add a water mark for the memory controller. Reclaim will begin when | |
275 | * we hit the water mark. May be even add a low water mark, such that | |
276 | * no reclaim occurs from a cgroup at it's low water mark, this is | |
277 | * a feature that will be implemented much later in the future. | |
278 | */ | |
279 | struct mem_cgroup { | |
280 | struct cgroup_subsys_state css; | |
281 | ||
282 | /* Accounted resources */ | |
283 | struct page_counter memory; | |
284 | struct page_counter memsw; | |
285 | struct page_counter kmem; | |
286 | ||
287 | unsigned long soft_limit; | |
288 | ||
289 | /* vmpressure notifications */ | |
290 | struct vmpressure vmpressure; | |
291 | ||
292 | /* css_online() has been completed */ | |
293 | int initialized; | |
294 | ||
295 | /* | |
296 | * Should the accounting and control be hierarchical, per subtree? | |
297 | */ | |
298 | bool use_hierarchy; | |
299 | ||
300 | bool oom_lock; | |
301 | atomic_t under_oom; | |
302 | atomic_t oom_wakeups; | |
303 | ||
304 | int swappiness; | |
305 | /* OOM-Killer disable */ | |
306 | int oom_kill_disable; | |
307 | ||
308 | /* protect arrays of thresholds */ | |
309 | struct mutex thresholds_lock; | |
310 | ||
311 | /* thresholds for memory usage. RCU-protected */ | |
312 | struct mem_cgroup_thresholds thresholds; | |
313 | ||
314 | /* thresholds for mem+swap usage. RCU-protected */ | |
315 | struct mem_cgroup_thresholds memsw_thresholds; | |
316 | ||
317 | /* For oom notifier event fd */ | |
318 | struct list_head oom_notify; | |
319 | ||
320 | /* | |
321 | * Should we move charges of a task when a task is moved into this | |
322 | * mem_cgroup ? And what type of charges should we move ? | |
323 | */ | |
324 | unsigned long move_charge_at_immigrate; | |
325 | /* | |
326 | * set > 0 if pages under this cgroup are moving to other cgroup. | |
327 | */ | |
328 | atomic_t moving_account; | |
329 | /* taken only while moving_account > 0 */ | |
330 | spinlock_t move_lock; | |
331 | /* | |
332 | * percpu counter. | |
333 | */ | |
334 | struct mem_cgroup_stat_cpu __percpu *stat; | |
335 | /* | |
336 | * used when a cpu is offlined or other synchronizations | |
337 | * See mem_cgroup_read_stat(). | |
338 | */ | |
339 | struct mem_cgroup_stat_cpu nocpu_base; | |
340 | spinlock_t pcp_counter_lock; | |
341 | ||
342 | #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) | |
343 | struct cg_proto tcp_mem; | |
344 | #endif | |
345 | #if defined(CONFIG_MEMCG_KMEM) | |
346 | /* analogous to slab_common's slab_caches list, but per-memcg; | |
347 | * protected by memcg_slab_mutex */ | |
348 | struct list_head memcg_slab_caches; | |
349 | /* Index in the kmem_cache->memcg_params->memcg_caches array */ | |
350 | int kmemcg_id; | |
351 | #endif | |
352 | ||
353 | int last_scanned_node; | |
354 | #if MAX_NUMNODES > 1 | |
355 | nodemask_t scan_nodes; | |
356 | atomic_t numainfo_events; | |
357 | atomic_t numainfo_updating; | |
358 | #endif | |
359 | ||
360 | /* List of events which userspace want to receive */ | |
361 | struct list_head event_list; | |
362 | spinlock_t event_list_lock; | |
363 | ||
364 | struct mem_cgroup_per_node *nodeinfo[0]; | |
365 | /* WARNING: nodeinfo must be the last member here */ | |
366 | }; | |
367 | ||
368 | #ifdef CONFIG_MEMCG_KMEM | |
369 | static bool memcg_kmem_is_active(struct mem_cgroup *memcg) | |
370 | { | |
371 | return memcg->kmemcg_id >= 0; | |
372 | } | |
373 | #endif | |
374 | ||
375 | /* Stuffs for move charges at task migration. */ | |
376 | /* | |
377 | * Types of charges to be moved. "move_charge_at_immitgrate" and | |
378 | * "immigrate_flags" are treated as a left-shifted bitmap of these types. | |
379 | */ | |
380 | enum move_type { | |
381 | MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ | |
382 | MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ | |
383 | NR_MOVE_TYPE, | |
384 | }; | |
385 | ||
386 | /* "mc" and its members are protected by cgroup_mutex */ | |
387 | static struct move_charge_struct { | |
388 | spinlock_t lock; /* for from, to */ | |
389 | struct mem_cgroup *from; | |
390 | struct mem_cgroup *to; | |
391 | unsigned long immigrate_flags; | |
392 | unsigned long precharge; | |
393 | unsigned long moved_charge; | |
394 | unsigned long moved_swap; | |
395 | struct task_struct *moving_task; /* a task moving charges */ | |
396 | wait_queue_head_t waitq; /* a waitq for other context */ | |
397 | } mc = { | |
398 | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), | |
399 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), | |
400 | }; | |
401 | ||
402 | static bool move_anon(void) | |
403 | { | |
404 | return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); | |
405 | } | |
406 | ||
407 | static bool move_file(void) | |
408 | { | |
409 | return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); | |
410 | } | |
411 | ||
412 | /* | |
413 | * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft | |
414 | * limit reclaim to prevent infinite loops, if they ever occur. | |
415 | */ | |
416 | #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 | |
417 | #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 | |
418 | ||
419 | enum charge_type { | |
420 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | |
421 | MEM_CGROUP_CHARGE_TYPE_ANON, | |
422 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ | |
423 | MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ | |
424 | NR_CHARGE_TYPE, | |
425 | }; | |
426 | ||
427 | /* for encoding cft->private value on file */ | |
428 | enum res_type { | |
429 | _MEM, | |
430 | _MEMSWAP, | |
431 | _OOM_TYPE, | |
432 | _KMEM, | |
433 | }; | |
434 | ||
435 | #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) | |
436 | #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) | |
437 | #define MEMFILE_ATTR(val) ((val) & 0xffff) | |
438 | /* Used for OOM nofiier */ | |
439 | #define OOM_CONTROL (0) | |
440 | ||
441 | /* | |
442 | * The memcg_create_mutex will be held whenever a new cgroup is created. | |
443 | * As a consequence, any change that needs to protect against new child cgroups | |
444 | * appearing has to hold it as well. | |
445 | */ | |
446 | static DEFINE_MUTEX(memcg_create_mutex); | |
447 | ||
448 | struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) | |
449 | { | |
450 | return s ? container_of(s, struct mem_cgroup, css) : NULL; | |
451 | } | |
452 | ||
453 | /* Some nice accessors for the vmpressure. */ | |
454 | struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) | |
455 | { | |
456 | if (!memcg) | |
457 | memcg = root_mem_cgroup; | |
458 | return &memcg->vmpressure; | |
459 | } | |
460 | ||
461 | struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) | |
462 | { | |
463 | return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; | |
464 | } | |
465 | ||
466 | static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) | |
467 | { | |
468 | return (memcg == root_mem_cgroup); | |
469 | } | |
470 | ||
471 | /* | |
472 | * We restrict the id in the range of [1, 65535], so it can fit into | |
473 | * an unsigned short. | |
474 | */ | |
475 | #define MEM_CGROUP_ID_MAX USHRT_MAX | |
476 | ||
477 | static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) | |
478 | { | |
479 | return memcg->css.id; | |
480 | } | |
481 | ||
482 | static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) | |
483 | { | |
484 | struct cgroup_subsys_state *css; | |
485 | ||
486 | css = css_from_id(id, &memory_cgrp_subsys); | |
487 | return mem_cgroup_from_css(css); | |
488 | } | |
489 | ||
490 | /* Writing them here to avoid exposing memcg's inner layout */ | |
491 | #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) | |
492 | ||
493 | void sock_update_memcg(struct sock *sk) | |
494 | { | |
495 | if (mem_cgroup_sockets_enabled) { | |
496 | struct mem_cgroup *memcg; | |
497 | struct cg_proto *cg_proto; | |
498 | ||
499 | BUG_ON(!sk->sk_prot->proto_cgroup); | |
500 | ||
501 | /* Socket cloning can throw us here with sk_cgrp already | |
502 | * filled. It won't however, necessarily happen from | |
503 | * process context. So the test for root memcg given | |
504 | * the current task's memcg won't help us in this case. | |
505 | * | |
506 | * Respecting the original socket's memcg is a better | |
507 | * decision in this case. | |
508 | */ | |
509 | if (sk->sk_cgrp) { | |
510 | BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); | |
511 | css_get(&sk->sk_cgrp->memcg->css); | |
512 | return; | |
513 | } | |
514 | ||
515 | rcu_read_lock(); | |
516 | memcg = mem_cgroup_from_task(current); | |
517 | cg_proto = sk->sk_prot->proto_cgroup(memcg); | |
518 | if (!mem_cgroup_is_root(memcg) && | |
519 | memcg_proto_active(cg_proto) && | |
520 | css_tryget_online(&memcg->css)) { | |
521 | sk->sk_cgrp = cg_proto; | |
522 | } | |
523 | rcu_read_unlock(); | |
524 | } | |
525 | } | |
526 | EXPORT_SYMBOL(sock_update_memcg); | |
527 | ||
528 | void sock_release_memcg(struct sock *sk) | |
529 | { | |
530 | if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { | |
531 | struct mem_cgroup *memcg; | |
532 | WARN_ON(!sk->sk_cgrp->memcg); | |
533 | memcg = sk->sk_cgrp->memcg; | |
534 | css_put(&sk->sk_cgrp->memcg->css); | |
535 | } | |
536 | } | |
537 | ||
538 | struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) | |
539 | { | |
540 | if (!memcg || mem_cgroup_is_root(memcg)) | |
541 | return NULL; | |
542 | ||
543 | return &memcg->tcp_mem; | |
544 | } | |
545 | EXPORT_SYMBOL(tcp_proto_cgroup); | |
546 | ||
547 | static void disarm_sock_keys(struct mem_cgroup *memcg) | |
548 | { | |
549 | if (!memcg_proto_activated(&memcg->tcp_mem)) | |
550 | return; | |
551 | static_key_slow_dec(&memcg_socket_limit_enabled); | |
552 | } | |
553 | #else | |
554 | static void disarm_sock_keys(struct mem_cgroup *memcg) | |
555 | { | |
556 | } | |
557 | #endif | |
558 | ||
559 | #ifdef CONFIG_MEMCG_KMEM | |
560 | /* | |
561 | * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. | |
562 | * The main reason for not using cgroup id for this: | |
563 | * this works better in sparse environments, where we have a lot of memcgs, | |
564 | * but only a few kmem-limited. Or also, if we have, for instance, 200 | |
565 | * memcgs, and none but the 200th is kmem-limited, we'd have to have a | |
566 | * 200 entry array for that. | |
567 | * | |
568 | * The current size of the caches array is stored in | |
569 | * memcg_limited_groups_array_size. It will double each time we have to | |
570 | * increase it. | |
571 | */ | |
572 | static DEFINE_IDA(kmem_limited_groups); | |
573 | int memcg_limited_groups_array_size; | |
574 | ||
575 | /* | |
576 | * MIN_SIZE is different than 1, because we would like to avoid going through | |
577 | * the alloc/free process all the time. In a small machine, 4 kmem-limited | |
578 | * cgroups is a reasonable guess. In the future, it could be a parameter or | |
579 | * tunable, but that is strictly not necessary. | |
580 | * | |
581 | * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get | |
582 | * this constant directly from cgroup, but it is understandable that this is | |
583 | * better kept as an internal representation in cgroup.c. In any case, the | |
584 | * cgrp_id space is not getting any smaller, and we don't have to necessarily | |
585 | * increase ours as well if it increases. | |
586 | */ | |
587 | #define MEMCG_CACHES_MIN_SIZE 4 | |
588 | #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX | |
589 | ||
590 | /* | |
591 | * A lot of the calls to the cache allocation functions are expected to be | |
592 | * inlined by the compiler. Since the calls to memcg_kmem_get_cache are | |
593 | * conditional to this static branch, we'll have to allow modules that does | |
594 | * kmem_cache_alloc and the such to see this symbol as well | |
595 | */ | |
596 | struct static_key memcg_kmem_enabled_key; | |
597 | EXPORT_SYMBOL(memcg_kmem_enabled_key); | |
598 | ||
599 | static void memcg_free_cache_id(int id); | |
600 | ||
601 | static void disarm_kmem_keys(struct mem_cgroup *memcg) | |
602 | { | |
603 | if (memcg_kmem_is_active(memcg)) { | |
604 | static_key_slow_dec(&memcg_kmem_enabled_key); | |
605 | memcg_free_cache_id(memcg->kmemcg_id); | |
606 | } | |
607 | /* | |
608 | * This check can't live in kmem destruction function, | |
609 | * since the charges will outlive the cgroup | |
610 | */ | |
611 | WARN_ON(page_counter_read(&memcg->kmem)); | |
612 | } | |
613 | #else | |
614 | static void disarm_kmem_keys(struct mem_cgroup *memcg) | |
615 | { | |
616 | } | |
617 | #endif /* CONFIG_MEMCG_KMEM */ | |
618 | ||
619 | static void disarm_static_keys(struct mem_cgroup *memcg) | |
620 | { | |
621 | disarm_sock_keys(memcg); | |
622 | disarm_kmem_keys(memcg); | |
623 | } | |
624 | ||
625 | static struct mem_cgroup_per_zone * | |
626 | mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone) | |
627 | { | |
628 | int nid = zone_to_nid(zone); | |
629 | int zid = zone_idx(zone); | |
630 | ||
631 | return &memcg->nodeinfo[nid]->zoneinfo[zid]; | |
632 | } | |
633 | ||
634 | struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) | |
635 | { | |
636 | return &memcg->css; | |
637 | } | |
638 | ||
639 | static struct mem_cgroup_per_zone * | |
640 | mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page) | |
641 | { | |
642 | int nid = page_to_nid(page); | |
643 | int zid = page_zonenum(page); | |
644 | ||
645 | return &memcg->nodeinfo[nid]->zoneinfo[zid]; | |
646 | } | |
647 | ||
648 | static struct mem_cgroup_tree_per_zone * | |
649 | soft_limit_tree_node_zone(int nid, int zid) | |
650 | { | |
651 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | |
652 | } | |
653 | ||
654 | static struct mem_cgroup_tree_per_zone * | |
655 | soft_limit_tree_from_page(struct page *page) | |
656 | { | |
657 | int nid = page_to_nid(page); | |
658 | int zid = page_zonenum(page); | |
659 | ||
660 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | |
661 | } | |
662 | ||
663 | static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz, | |
664 | struct mem_cgroup_tree_per_zone *mctz, | |
665 | unsigned long new_usage_in_excess) | |
666 | { | |
667 | struct rb_node **p = &mctz->rb_root.rb_node; | |
668 | struct rb_node *parent = NULL; | |
669 | struct mem_cgroup_per_zone *mz_node; | |
670 | ||
671 | if (mz->on_tree) | |
672 | return; | |
673 | ||
674 | mz->usage_in_excess = new_usage_in_excess; | |
675 | if (!mz->usage_in_excess) | |
676 | return; | |
677 | while (*p) { | |
678 | parent = *p; | |
679 | mz_node = rb_entry(parent, struct mem_cgroup_per_zone, | |
680 | tree_node); | |
681 | if (mz->usage_in_excess < mz_node->usage_in_excess) | |
682 | p = &(*p)->rb_left; | |
683 | /* | |
684 | * We can't avoid mem cgroups that are over their soft | |
685 | * limit by the same amount | |
686 | */ | |
687 | else if (mz->usage_in_excess >= mz_node->usage_in_excess) | |
688 | p = &(*p)->rb_right; | |
689 | } | |
690 | rb_link_node(&mz->tree_node, parent, p); | |
691 | rb_insert_color(&mz->tree_node, &mctz->rb_root); | |
692 | mz->on_tree = true; | |
693 | } | |
694 | ||
695 | static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, | |
696 | struct mem_cgroup_tree_per_zone *mctz) | |
697 | { | |
698 | if (!mz->on_tree) | |
699 | return; | |
700 | rb_erase(&mz->tree_node, &mctz->rb_root); | |
701 | mz->on_tree = false; | |
702 | } | |
703 | ||
704 | static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, | |
705 | struct mem_cgroup_tree_per_zone *mctz) | |
706 | { | |
707 | unsigned long flags; | |
708 | ||
709 | spin_lock_irqsave(&mctz->lock, flags); | |
710 | __mem_cgroup_remove_exceeded(mz, mctz); | |
711 | spin_unlock_irqrestore(&mctz->lock, flags); | |
712 | } | |
713 | ||
714 | static unsigned long soft_limit_excess(struct mem_cgroup *memcg) | |
715 | { | |
716 | unsigned long nr_pages = page_counter_read(&memcg->memory); | |
717 | unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit); | |
718 | unsigned long excess = 0; | |
719 | ||
720 | if (nr_pages > soft_limit) | |
721 | excess = nr_pages - soft_limit; | |
722 | ||
723 | return excess; | |
724 | } | |
725 | ||
726 | static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) | |
727 | { | |
728 | unsigned long excess; | |
729 | struct mem_cgroup_per_zone *mz; | |
730 | struct mem_cgroup_tree_per_zone *mctz; | |
731 | ||
732 | mctz = soft_limit_tree_from_page(page); | |
733 | /* | |
734 | * Necessary to update all ancestors when hierarchy is used. | |
735 | * because their event counter is not touched. | |
736 | */ | |
737 | for (; memcg; memcg = parent_mem_cgroup(memcg)) { | |
738 | mz = mem_cgroup_page_zoneinfo(memcg, page); | |
739 | excess = soft_limit_excess(memcg); | |
740 | /* | |
741 | * We have to update the tree if mz is on RB-tree or | |
742 | * mem is over its softlimit. | |
743 | */ | |
744 | if (excess || mz->on_tree) { | |
745 | unsigned long flags; | |
746 | ||
747 | spin_lock_irqsave(&mctz->lock, flags); | |
748 | /* if on-tree, remove it */ | |
749 | if (mz->on_tree) | |
750 | __mem_cgroup_remove_exceeded(mz, mctz); | |
751 | /* | |
752 | * Insert again. mz->usage_in_excess will be updated. | |
753 | * If excess is 0, no tree ops. | |
754 | */ | |
755 | __mem_cgroup_insert_exceeded(mz, mctz, excess); | |
756 | spin_unlock_irqrestore(&mctz->lock, flags); | |
757 | } | |
758 | } | |
759 | } | |
760 | ||
761 | static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) | |
762 | { | |
763 | struct mem_cgroup_tree_per_zone *mctz; | |
764 | struct mem_cgroup_per_zone *mz; | |
765 | int nid, zid; | |
766 | ||
767 | for_each_node(nid) { | |
768 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
769 | mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; | |
770 | mctz = soft_limit_tree_node_zone(nid, zid); | |
771 | mem_cgroup_remove_exceeded(mz, mctz); | |
772 | } | |
773 | } | |
774 | } | |
775 | ||
776 | static struct mem_cgroup_per_zone * | |
777 | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | |
778 | { | |
779 | struct rb_node *rightmost = NULL; | |
780 | struct mem_cgroup_per_zone *mz; | |
781 | ||
782 | retry: | |
783 | mz = NULL; | |
784 | rightmost = rb_last(&mctz->rb_root); | |
785 | if (!rightmost) | |
786 | goto done; /* Nothing to reclaim from */ | |
787 | ||
788 | mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); | |
789 | /* | |
790 | * Remove the node now but someone else can add it back, | |
791 | * we will to add it back at the end of reclaim to its correct | |
792 | * position in the tree. | |
793 | */ | |
794 | __mem_cgroup_remove_exceeded(mz, mctz); | |
795 | if (!soft_limit_excess(mz->memcg) || | |
796 | !css_tryget_online(&mz->memcg->css)) | |
797 | goto retry; | |
798 | done: | |
799 | return mz; | |
800 | } | |
801 | ||
802 | static struct mem_cgroup_per_zone * | |
803 | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | |
804 | { | |
805 | struct mem_cgroup_per_zone *mz; | |
806 | ||
807 | spin_lock_irq(&mctz->lock); | |
808 | mz = __mem_cgroup_largest_soft_limit_node(mctz); | |
809 | spin_unlock_irq(&mctz->lock); | |
810 | return mz; | |
811 | } | |
812 | ||
813 | /* | |
814 | * Implementation Note: reading percpu statistics for memcg. | |
815 | * | |
816 | * Both of vmstat[] and percpu_counter has threshold and do periodic | |
817 | * synchronization to implement "quick" read. There are trade-off between | |
818 | * reading cost and precision of value. Then, we may have a chance to implement | |
819 | * a periodic synchronizion of counter in memcg's counter. | |
820 | * | |
821 | * But this _read() function is used for user interface now. The user accounts | |
822 | * memory usage by memory cgroup and he _always_ requires exact value because | |
823 | * he accounts memory. Even if we provide quick-and-fuzzy read, we always | |
824 | * have to visit all online cpus and make sum. So, for now, unnecessary | |
825 | * synchronization is not implemented. (just implemented for cpu hotplug) | |
826 | * | |
827 | * If there are kernel internal actions which can make use of some not-exact | |
828 | * value, and reading all cpu value can be performance bottleneck in some | |
829 | * common workload, threashold and synchonization as vmstat[] should be | |
830 | * implemented. | |
831 | */ | |
832 | static long mem_cgroup_read_stat(struct mem_cgroup *memcg, | |
833 | enum mem_cgroup_stat_index idx) | |
834 | { | |
835 | long val = 0; | |
836 | int cpu; | |
837 | ||
838 | get_online_cpus(); | |
839 | for_each_online_cpu(cpu) | |
840 | val += per_cpu(memcg->stat->count[idx], cpu); | |
841 | #ifdef CONFIG_HOTPLUG_CPU | |
842 | spin_lock(&memcg->pcp_counter_lock); | |
843 | val += memcg->nocpu_base.count[idx]; | |
844 | spin_unlock(&memcg->pcp_counter_lock); | |
845 | #endif | |
846 | put_online_cpus(); | |
847 | return val; | |
848 | } | |
849 | ||
850 | static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, | |
851 | enum mem_cgroup_events_index idx) | |
852 | { | |
853 | unsigned long val = 0; | |
854 | int cpu; | |
855 | ||
856 | get_online_cpus(); | |
857 | for_each_online_cpu(cpu) | |
858 | val += per_cpu(memcg->stat->events[idx], cpu); | |
859 | #ifdef CONFIG_HOTPLUG_CPU | |
860 | spin_lock(&memcg->pcp_counter_lock); | |
861 | val += memcg->nocpu_base.events[idx]; | |
862 | spin_unlock(&memcg->pcp_counter_lock); | |
863 | #endif | |
864 | put_online_cpus(); | |
865 | return val; | |
866 | } | |
867 | ||
868 | static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, | |
869 | struct page *page, | |
870 | int nr_pages) | |
871 | { | |
872 | /* | |
873 | * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is | |
874 | * counted as CACHE even if it's on ANON LRU. | |
875 | */ | |
876 | if (PageAnon(page)) | |
877 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], | |
878 | nr_pages); | |
879 | else | |
880 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], | |
881 | nr_pages); | |
882 | ||
883 | if (PageTransHuge(page)) | |
884 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], | |
885 | nr_pages); | |
886 | ||
887 | /* pagein of a big page is an event. So, ignore page size */ | |
888 | if (nr_pages > 0) | |
889 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); | |
890 | else { | |
891 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); | |
892 | nr_pages = -nr_pages; /* for event */ | |
893 | } | |
894 | ||
895 | __this_cpu_add(memcg->stat->nr_page_events, nr_pages); | |
896 | } | |
897 | ||
898 | unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) | |
899 | { | |
900 | struct mem_cgroup_per_zone *mz; | |
901 | ||
902 | mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); | |
903 | return mz->lru_size[lru]; | |
904 | } | |
905 | ||
906 | static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, | |
907 | int nid, | |
908 | unsigned int lru_mask) | |
909 | { | |
910 | unsigned long nr = 0; | |
911 | int zid; | |
912 | ||
913 | VM_BUG_ON((unsigned)nid >= nr_node_ids); | |
914 | ||
915 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
916 | struct mem_cgroup_per_zone *mz; | |
917 | enum lru_list lru; | |
918 | ||
919 | for_each_lru(lru) { | |
920 | if (!(BIT(lru) & lru_mask)) | |
921 | continue; | |
922 | mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; | |
923 | nr += mz->lru_size[lru]; | |
924 | } | |
925 | } | |
926 | return nr; | |
927 | } | |
928 | ||
929 | static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, | |
930 | unsigned int lru_mask) | |
931 | { | |
932 | unsigned long nr = 0; | |
933 | int nid; | |
934 | ||
935 | for_each_node_state(nid, N_MEMORY) | |
936 | nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); | |
937 | return nr; | |
938 | } | |
939 | ||
940 | static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, | |
941 | enum mem_cgroup_events_target target) | |
942 | { | |
943 | unsigned long val, next; | |
944 | ||
945 | val = __this_cpu_read(memcg->stat->nr_page_events); | |
946 | next = __this_cpu_read(memcg->stat->targets[target]); | |
947 | /* from time_after() in jiffies.h */ | |
948 | if ((long)next - (long)val < 0) { | |
949 | switch (target) { | |
950 | case MEM_CGROUP_TARGET_THRESH: | |
951 | next = val + THRESHOLDS_EVENTS_TARGET; | |
952 | break; | |
953 | case MEM_CGROUP_TARGET_SOFTLIMIT: | |
954 | next = val + SOFTLIMIT_EVENTS_TARGET; | |
955 | break; | |
956 | case MEM_CGROUP_TARGET_NUMAINFO: | |
957 | next = val + NUMAINFO_EVENTS_TARGET; | |
958 | break; | |
959 | default: | |
960 | break; | |
961 | } | |
962 | __this_cpu_write(memcg->stat->targets[target], next); | |
963 | return true; | |
964 | } | |
965 | return false; | |
966 | } | |
967 | ||
968 | /* | |
969 | * Check events in order. | |
970 | * | |
971 | */ | |
972 | static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) | |
973 | { | |
974 | /* threshold event is triggered in finer grain than soft limit */ | |
975 | if (unlikely(mem_cgroup_event_ratelimit(memcg, | |
976 | MEM_CGROUP_TARGET_THRESH))) { | |
977 | bool do_softlimit; | |
978 | bool do_numainfo __maybe_unused; | |
979 | ||
980 | do_softlimit = mem_cgroup_event_ratelimit(memcg, | |
981 | MEM_CGROUP_TARGET_SOFTLIMIT); | |
982 | #if MAX_NUMNODES > 1 | |
983 | do_numainfo = mem_cgroup_event_ratelimit(memcg, | |
984 | MEM_CGROUP_TARGET_NUMAINFO); | |
985 | #endif | |
986 | mem_cgroup_threshold(memcg); | |
987 | if (unlikely(do_softlimit)) | |
988 | mem_cgroup_update_tree(memcg, page); | |
989 | #if MAX_NUMNODES > 1 | |
990 | if (unlikely(do_numainfo)) | |
991 | atomic_inc(&memcg->numainfo_events); | |
992 | #endif | |
993 | } | |
994 | } | |
995 | ||
996 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) | |
997 | { | |
998 | /* | |
999 | * mm_update_next_owner() may clear mm->owner to NULL | |
1000 | * if it races with swapoff, page migration, etc. | |
1001 | * So this can be called with p == NULL. | |
1002 | */ | |
1003 | if (unlikely(!p)) | |
1004 | return NULL; | |
1005 | ||
1006 | return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); | |
1007 | } | |
1008 | ||
1009 | static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) | |
1010 | { | |
1011 | struct mem_cgroup *memcg = NULL; | |
1012 | ||
1013 | rcu_read_lock(); | |
1014 | do { | |
1015 | /* | |
1016 | * Page cache insertions can happen withou an | |
1017 | * actual mm context, e.g. during disk probing | |
1018 | * on boot, loopback IO, acct() writes etc. | |
1019 | */ | |
1020 | if (unlikely(!mm)) | |
1021 | memcg = root_mem_cgroup; | |
1022 | else { | |
1023 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); | |
1024 | if (unlikely(!memcg)) | |
1025 | memcg = root_mem_cgroup; | |
1026 | } | |
1027 | } while (!css_tryget_online(&memcg->css)); | |
1028 | rcu_read_unlock(); | |
1029 | return memcg; | |
1030 | } | |
1031 | ||
1032 | /** | |
1033 | * mem_cgroup_iter - iterate over memory cgroup hierarchy | |
1034 | * @root: hierarchy root | |
1035 | * @prev: previously returned memcg, NULL on first invocation | |
1036 | * @reclaim: cookie for shared reclaim walks, NULL for full walks | |
1037 | * | |
1038 | * Returns references to children of the hierarchy below @root, or | |
1039 | * @root itself, or %NULL after a full round-trip. | |
1040 | * | |
1041 | * Caller must pass the return value in @prev on subsequent | |
1042 | * invocations for reference counting, or use mem_cgroup_iter_break() | |
1043 | * to cancel a hierarchy walk before the round-trip is complete. | |
1044 | * | |
1045 | * Reclaimers can specify a zone and a priority level in @reclaim to | |
1046 | * divide up the memcgs in the hierarchy among all concurrent | |
1047 | * reclaimers operating on the same zone and priority. | |
1048 | */ | |
1049 | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, | |
1050 | struct mem_cgroup *prev, | |
1051 | struct mem_cgroup_reclaim_cookie *reclaim) | |
1052 | { | |
1053 | struct reclaim_iter *uninitialized_var(iter); | |
1054 | struct cgroup_subsys_state *css = NULL; | |
1055 | struct mem_cgroup *memcg = NULL; | |
1056 | struct mem_cgroup *pos = NULL; | |
1057 | ||
1058 | if (mem_cgroup_disabled()) | |
1059 | return NULL; | |
1060 | ||
1061 | if (!root) | |
1062 | root = root_mem_cgroup; | |
1063 | ||
1064 | if (prev && !reclaim) | |
1065 | pos = prev; | |
1066 | ||
1067 | if (!root->use_hierarchy && root != root_mem_cgroup) { | |
1068 | if (prev) | |
1069 | goto out; | |
1070 | return root; | |
1071 | } | |
1072 | ||
1073 | rcu_read_lock(); | |
1074 | ||
1075 | if (reclaim) { | |
1076 | struct mem_cgroup_per_zone *mz; | |
1077 | ||
1078 | mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone); | |
1079 | iter = &mz->iter[reclaim->priority]; | |
1080 | ||
1081 | if (prev && reclaim->generation != iter->generation) | |
1082 | goto out_unlock; | |
1083 | ||
1084 | do { | |
1085 | pos = ACCESS_ONCE(iter->position); | |
1086 | /* | |
1087 | * A racing update may change the position and | |
1088 | * put the last reference, hence css_tryget(), | |
1089 | * or retry to see the updated position. | |
1090 | */ | |
1091 | } while (pos && !css_tryget(&pos->css)); | |
1092 | } | |
1093 | ||
1094 | if (pos) | |
1095 | css = &pos->css; | |
1096 | ||
1097 | for (;;) { | |
1098 | css = css_next_descendant_pre(css, &root->css); | |
1099 | if (!css) { | |
1100 | /* | |
1101 | * Reclaimers share the hierarchy walk, and a | |
1102 | * new one might jump in right at the end of | |
1103 | * the hierarchy - make sure they see at least | |
1104 | * one group and restart from the beginning. | |
1105 | */ | |
1106 | if (!prev) | |
1107 | continue; | |
1108 | break; | |
1109 | } | |
1110 | ||
1111 | /* | |
1112 | * Verify the css and acquire a reference. The root | |
1113 | * is provided by the caller, so we know it's alive | |
1114 | * and kicking, and don't take an extra reference. | |
1115 | */ | |
1116 | memcg = mem_cgroup_from_css(css); | |
1117 | ||
1118 | if (css == &root->css) | |
1119 | break; | |
1120 | ||
1121 | if (css_tryget(css)) { | |
1122 | /* | |
1123 | * Make sure the memcg is initialized: | |
1124 | * mem_cgroup_css_online() orders the the | |
1125 | * initialization against setting the flag. | |
1126 | */ | |
1127 | if (smp_load_acquire(&memcg->initialized)) | |
1128 | break; | |
1129 | ||
1130 | css_put(css); | |
1131 | } | |
1132 | ||
1133 | memcg = NULL; | |
1134 | } | |
1135 | ||
1136 | if (reclaim) { | |
1137 | if (cmpxchg(&iter->position, pos, memcg) == pos) { | |
1138 | if (memcg) | |
1139 | css_get(&memcg->css); | |
1140 | if (pos) | |
1141 | css_put(&pos->css); | |
1142 | } | |
1143 | ||
1144 | /* | |
1145 | * pairs with css_tryget when dereferencing iter->position | |
1146 | * above. | |
1147 | */ | |
1148 | if (pos) | |
1149 | css_put(&pos->css); | |
1150 | ||
1151 | if (!memcg) | |
1152 | iter->generation++; | |
1153 | else if (!prev) | |
1154 | reclaim->generation = iter->generation; | |
1155 | } | |
1156 | ||
1157 | out_unlock: | |
1158 | rcu_read_unlock(); | |
1159 | out: | |
1160 | if (prev && prev != root) | |
1161 | css_put(&prev->css); | |
1162 | ||
1163 | return memcg; | |
1164 | } | |
1165 | ||
1166 | /** | |
1167 | * mem_cgroup_iter_break - abort a hierarchy walk prematurely | |
1168 | * @root: hierarchy root | |
1169 | * @prev: last visited hierarchy member as returned by mem_cgroup_iter() | |
1170 | */ | |
1171 | void mem_cgroup_iter_break(struct mem_cgroup *root, | |
1172 | struct mem_cgroup *prev) | |
1173 | { | |
1174 | if (!root) | |
1175 | root = root_mem_cgroup; | |
1176 | if (prev && prev != root) | |
1177 | css_put(&prev->css); | |
1178 | } | |
1179 | ||
1180 | /* | |
1181 | * Iteration constructs for visiting all cgroups (under a tree). If | |
1182 | * loops are exited prematurely (break), mem_cgroup_iter_break() must | |
1183 | * be used for reference counting. | |
1184 | */ | |
1185 | #define for_each_mem_cgroup_tree(iter, root) \ | |
1186 | for (iter = mem_cgroup_iter(root, NULL, NULL); \ | |
1187 | iter != NULL; \ | |
1188 | iter = mem_cgroup_iter(root, iter, NULL)) | |
1189 | ||
1190 | #define for_each_mem_cgroup(iter) \ | |
1191 | for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ | |
1192 | iter != NULL; \ | |
1193 | iter = mem_cgroup_iter(NULL, iter, NULL)) | |
1194 | ||
1195 | void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) | |
1196 | { | |
1197 | struct mem_cgroup *memcg; | |
1198 | ||
1199 | rcu_read_lock(); | |
1200 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); | |
1201 | if (unlikely(!memcg)) | |
1202 | goto out; | |
1203 | ||
1204 | switch (idx) { | |
1205 | case PGFAULT: | |
1206 | this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); | |
1207 | break; | |
1208 | case PGMAJFAULT: | |
1209 | this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); | |
1210 | break; | |
1211 | default: | |
1212 | BUG(); | |
1213 | } | |
1214 | out: | |
1215 | rcu_read_unlock(); | |
1216 | } | |
1217 | EXPORT_SYMBOL(__mem_cgroup_count_vm_event); | |
1218 | ||
1219 | /** | |
1220 | * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg | |
1221 | * @zone: zone of the wanted lruvec | |
1222 | * @memcg: memcg of the wanted lruvec | |
1223 | * | |
1224 | * Returns the lru list vector holding pages for the given @zone and | |
1225 | * @mem. This can be the global zone lruvec, if the memory controller | |
1226 | * is disabled. | |
1227 | */ | |
1228 | struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, | |
1229 | struct mem_cgroup *memcg) | |
1230 | { | |
1231 | struct mem_cgroup_per_zone *mz; | |
1232 | struct lruvec *lruvec; | |
1233 | ||
1234 | if (mem_cgroup_disabled()) { | |
1235 | lruvec = &zone->lruvec; | |
1236 | goto out; | |
1237 | } | |
1238 | ||
1239 | mz = mem_cgroup_zone_zoneinfo(memcg, zone); | |
1240 | lruvec = &mz->lruvec; | |
1241 | out: | |
1242 | /* | |
1243 | * Since a node can be onlined after the mem_cgroup was created, | |
1244 | * we have to be prepared to initialize lruvec->zone here; | |
1245 | * and if offlined then reonlined, we need to reinitialize it. | |
1246 | */ | |
1247 | if (unlikely(lruvec->zone != zone)) | |
1248 | lruvec->zone = zone; | |
1249 | return lruvec; | |
1250 | } | |
1251 | ||
1252 | /** | |
1253 | * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page | |
1254 | * @page: the page | |
1255 | * @zone: zone of the page | |
1256 | * | |
1257 | * This function is only safe when following the LRU page isolation | |
1258 | * and putback protocol: the LRU lock must be held, and the page must | |
1259 | * either be PageLRU() or the caller must have isolated/allocated it. | |
1260 | */ | |
1261 | struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) | |
1262 | { | |
1263 | struct mem_cgroup_per_zone *mz; | |
1264 | struct mem_cgroup *memcg; | |
1265 | struct lruvec *lruvec; | |
1266 | ||
1267 | if (mem_cgroup_disabled()) { | |
1268 | lruvec = &zone->lruvec; | |
1269 | goto out; | |
1270 | } | |
1271 | ||
1272 | memcg = page->mem_cgroup; | |
1273 | /* | |
1274 | * Swapcache readahead pages are added to the LRU - and | |
1275 | * possibly migrated - before they are charged. | |
1276 | */ | |
1277 | if (!memcg) | |
1278 | memcg = root_mem_cgroup; | |
1279 | ||
1280 | mz = mem_cgroup_page_zoneinfo(memcg, page); | |
1281 | lruvec = &mz->lruvec; | |
1282 | out: | |
1283 | /* | |
1284 | * Since a node can be onlined after the mem_cgroup was created, | |
1285 | * we have to be prepared to initialize lruvec->zone here; | |
1286 | * and if offlined then reonlined, we need to reinitialize it. | |
1287 | */ | |
1288 | if (unlikely(lruvec->zone != zone)) | |
1289 | lruvec->zone = zone; | |
1290 | return lruvec; | |
1291 | } | |
1292 | ||
1293 | /** | |
1294 | * mem_cgroup_update_lru_size - account for adding or removing an lru page | |
1295 | * @lruvec: mem_cgroup per zone lru vector | |
1296 | * @lru: index of lru list the page is sitting on | |
1297 | * @nr_pages: positive when adding or negative when removing | |
1298 | * | |
1299 | * This function must be called when a page is added to or removed from an | |
1300 | * lru list. | |
1301 | */ | |
1302 | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, | |
1303 | int nr_pages) | |
1304 | { | |
1305 | struct mem_cgroup_per_zone *mz; | |
1306 | unsigned long *lru_size; | |
1307 | ||
1308 | if (mem_cgroup_disabled()) | |
1309 | return; | |
1310 | ||
1311 | mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); | |
1312 | lru_size = mz->lru_size + lru; | |
1313 | *lru_size += nr_pages; | |
1314 | VM_BUG_ON((long)(*lru_size) < 0); | |
1315 | } | |
1316 | ||
1317 | bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root) | |
1318 | { | |
1319 | if (root == memcg) | |
1320 | return true; | |
1321 | if (!root->use_hierarchy) | |
1322 | return false; | |
1323 | return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); | |
1324 | } | |
1325 | ||
1326 | bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) | |
1327 | { | |
1328 | struct mem_cgroup *task_memcg; | |
1329 | struct task_struct *p; | |
1330 | bool ret; | |
1331 | ||
1332 | p = find_lock_task_mm(task); | |
1333 | if (p) { | |
1334 | task_memcg = get_mem_cgroup_from_mm(p->mm); | |
1335 | task_unlock(p); | |
1336 | } else { | |
1337 | /* | |
1338 | * All threads may have already detached their mm's, but the oom | |
1339 | * killer still needs to detect if they have already been oom | |
1340 | * killed to prevent needlessly killing additional tasks. | |
1341 | */ | |
1342 | rcu_read_lock(); | |
1343 | task_memcg = mem_cgroup_from_task(task); | |
1344 | css_get(&task_memcg->css); | |
1345 | rcu_read_unlock(); | |
1346 | } | |
1347 | ret = mem_cgroup_is_descendant(task_memcg, memcg); | |
1348 | css_put(&task_memcg->css); | |
1349 | return ret; | |
1350 | } | |
1351 | ||
1352 | int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) | |
1353 | { | |
1354 | unsigned long inactive_ratio; | |
1355 | unsigned long inactive; | |
1356 | unsigned long active; | |
1357 | unsigned long gb; | |
1358 | ||
1359 | inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); | |
1360 | active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); | |
1361 | ||
1362 | gb = (inactive + active) >> (30 - PAGE_SHIFT); | |
1363 | if (gb) | |
1364 | inactive_ratio = int_sqrt(10 * gb); | |
1365 | else | |
1366 | inactive_ratio = 1; | |
1367 | ||
1368 | return inactive * inactive_ratio < active; | |
1369 | } | |
1370 | ||
1371 | #define mem_cgroup_from_counter(counter, member) \ | |
1372 | container_of(counter, struct mem_cgroup, member) | |
1373 | ||
1374 | /** | |
1375 | * mem_cgroup_margin - calculate chargeable space of a memory cgroup | |
1376 | * @memcg: the memory cgroup | |
1377 | * | |
1378 | * Returns the maximum amount of memory @mem can be charged with, in | |
1379 | * pages. | |
1380 | */ | |
1381 | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) | |
1382 | { | |
1383 | unsigned long margin = 0; | |
1384 | unsigned long count; | |
1385 | unsigned long limit; | |
1386 | ||
1387 | count = page_counter_read(&memcg->memory); | |
1388 | limit = ACCESS_ONCE(memcg->memory.limit); | |
1389 | if (count < limit) | |
1390 | margin = limit - count; | |
1391 | ||
1392 | if (do_swap_account) { | |
1393 | count = page_counter_read(&memcg->memsw); | |
1394 | limit = ACCESS_ONCE(memcg->memsw.limit); | |
1395 | if (count <= limit) | |
1396 | margin = min(margin, limit - count); | |
1397 | } | |
1398 | ||
1399 | return margin; | |
1400 | } | |
1401 | ||
1402 | int mem_cgroup_swappiness(struct mem_cgroup *memcg) | |
1403 | { | |
1404 | /* root ? */ | |
1405 | if (mem_cgroup_disabled() || !memcg->css.parent) | |
1406 | return vm_swappiness; | |
1407 | ||
1408 | return memcg->swappiness; | |
1409 | } | |
1410 | ||
1411 | /* | |
1412 | * A routine for checking "mem" is under move_account() or not. | |
1413 | * | |
1414 | * Checking a cgroup is mc.from or mc.to or under hierarchy of | |
1415 | * moving cgroups. This is for waiting at high-memory pressure | |
1416 | * caused by "move". | |
1417 | */ | |
1418 | static bool mem_cgroup_under_move(struct mem_cgroup *memcg) | |
1419 | { | |
1420 | struct mem_cgroup *from; | |
1421 | struct mem_cgroup *to; | |
1422 | bool ret = false; | |
1423 | /* | |
1424 | * Unlike task_move routines, we access mc.to, mc.from not under | |
1425 | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. | |
1426 | */ | |
1427 | spin_lock(&mc.lock); | |
1428 | from = mc.from; | |
1429 | to = mc.to; | |
1430 | if (!from) | |
1431 | goto unlock; | |
1432 | ||
1433 | ret = mem_cgroup_is_descendant(from, memcg) || | |
1434 | mem_cgroup_is_descendant(to, memcg); | |
1435 | unlock: | |
1436 | spin_unlock(&mc.lock); | |
1437 | return ret; | |
1438 | } | |
1439 | ||
1440 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) | |
1441 | { | |
1442 | if (mc.moving_task && current != mc.moving_task) { | |
1443 | if (mem_cgroup_under_move(memcg)) { | |
1444 | DEFINE_WAIT(wait); | |
1445 | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); | |
1446 | /* moving charge context might have finished. */ | |
1447 | if (mc.moving_task) | |
1448 | schedule(); | |
1449 | finish_wait(&mc.waitq, &wait); | |
1450 | return true; | |
1451 | } | |
1452 | } | |
1453 | return false; | |
1454 | } | |
1455 | ||
1456 | #define K(x) ((x) << (PAGE_SHIFT-10)) | |
1457 | /** | |
1458 | * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. | |
1459 | * @memcg: The memory cgroup that went over limit | |
1460 | * @p: Task that is going to be killed | |
1461 | * | |
1462 | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | |
1463 | * enabled | |
1464 | */ | |
1465 | void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) | |
1466 | { | |
1467 | /* oom_info_lock ensures that parallel ooms do not interleave */ | |
1468 | static DEFINE_MUTEX(oom_info_lock); | |
1469 | struct mem_cgroup *iter; | |
1470 | unsigned int i; | |
1471 | ||
1472 | if (!p) | |
1473 | return; | |
1474 | ||
1475 | mutex_lock(&oom_info_lock); | |
1476 | rcu_read_lock(); | |
1477 | ||
1478 | pr_info("Task in "); | |
1479 | pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); | |
1480 | pr_info(" killed as a result of limit of "); | |
1481 | pr_cont_cgroup_path(memcg->css.cgroup); | |
1482 | pr_info("\n"); | |
1483 | ||
1484 | rcu_read_unlock(); | |
1485 | ||
1486 | pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", | |
1487 | K((u64)page_counter_read(&memcg->memory)), | |
1488 | K((u64)memcg->memory.limit), memcg->memory.failcnt); | |
1489 | pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", | |
1490 | K((u64)page_counter_read(&memcg->memsw)), | |
1491 | K((u64)memcg->memsw.limit), memcg->memsw.failcnt); | |
1492 | pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", | |
1493 | K((u64)page_counter_read(&memcg->kmem)), | |
1494 | K((u64)memcg->kmem.limit), memcg->kmem.failcnt); | |
1495 | ||
1496 | for_each_mem_cgroup_tree(iter, memcg) { | |
1497 | pr_info("Memory cgroup stats for "); | |
1498 | pr_cont_cgroup_path(iter->css.cgroup); | |
1499 | pr_cont(":"); | |
1500 | ||
1501 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | |
1502 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) | |
1503 | continue; | |
1504 | pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], | |
1505 | K(mem_cgroup_read_stat(iter, i))); | |
1506 | } | |
1507 | ||
1508 | for (i = 0; i < NR_LRU_LISTS; i++) | |
1509 | pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], | |
1510 | K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); | |
1511 | ||
1512 | pr_cont("\n"); | |
1513 | } | |
1514 | mutex_unlock(&oom_info_lock); | |
1515 | } | |
1516 | ||
1517 | /* | |
1518 | * This function returns the number of memcg under hierarchy tree. Returns | |
1519 | * 1(self count) if no children. | |
1520 | */ | |
1521 | static int mem_cgroup_count_children(struct mem_cgroup *memcg) | |
1522 | { | |
1523 | int num = 0; | |
1524 | struct mem_cgroup *iter; | |
1525 | ||
1526 | for_each_mem_cgroup_tree(iter, memcg) | |
1527 | num++; | |
1528 | return num; | |
1529 | } | |
1530 | ||
1531 | /* | |
1532 | * Return the memory (and swap, if configured) limit for a memcg. | |
1533 | */ | |
1534 | static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) | |
1535 | { | |
1536 | unsigned long limit; | |
1537 | ||
1538 | limit = memcg->memory.limit; | |
1539 | if (mem_cgroup_swappiness(memcg)) { | |
1540 | unsigned long memsw_limit; | |
1541 | ||
1542 | memsw_limit = memcg->memsw.limit; | |
1543 | limit = min(limit + total_swap_pages, memsw_limit); | |
1544 | } | |
1545 | return limit; | |
1546 | } | |
1547 | ||
1548 | static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, | |
1549 | int order) | |
1550 | { | |
1551 | struct mem_cgroup *iter; | |
1552 | unsigned long chosen_points = 0; | |
1553 | unsigned long totalpages; | |
1554 | unsigned int points = 0; | |
1555 | struct task_struct *chosen = NULL; | |
1556 | ||
1557 | /* | |
1558 | * If current has a pending SIGKILL or is exiting, then automatically | |
1559 | * select it. The goal is to allow it to allocate so that it may | |
1560 | * quickly exit and free its memory. | |
1561 | */ | |
1562 | if (fatal_signal_pending(current) || current->flags & PF_EXITING) { | |
1563 | set_thread_flag(TIF_MEMDIE); | |
1564 | return; | |
1565 | } | |
1566 | ||
1567 | check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); | |
1568 | totalpages = mem_cgroup_get_limit(memcg) ? : 1; | |
1569 | for_each_mem_cgroup_tree(iter, memcg) { | |
1570 | struct css_task_iter it; | |
1571 | struct task_struct *task; | |
1572 | ||
1573 | css_task_iter_start(&iter->css, &it); | |
1574 | while ((task = css_task_iter_next(&it))) { | |
1575 | switch (oom_scan_process_thread(task, totalpages, NULL, | |
1576 | false)) { | |
1577 | case OOM_SCAN_SELECT: | |
1578 | if (chosen) | |
1579 | put_task_struct(chosen); | |
1580 | chosen = task; | |
1581 | chosen_points = ULONG_MAX; | |
1582 | get_task_struct(chosen); | |
1583 | /* fall through */ | |
1584 | case OOM_SCAN_CONTINUE: | |
1585 | continue; | |
1586 | case OOM_SCAN_ABORT: | |
1587 | css_task_iter_end(&it); | |
1588 | mem_cgroup_iter_break(memcg, iter); | |
1589 | if (chosen) | |
1590 | put_task_struct(chosen); | |
1591 | return; | |
1592 | case OOM_SCAN_OK: | |
1593 | break; | |
1594 | }; | |
1595 | points = oom_badness(task, memcg, NULL, totalpages); | |
1596 | if (!points || points < chosen_points) | |
1597 | continue; | |
1598 | /* Prefer thread group leaders for display purposes */ | |
1599 | if (points == chosen_points && | |
1600 | thread_group_leader(chosen)) | |
1601 | continue; | |
1602 | ||
1603 | if (chosen) | |
1604 | put_task_struct(chosen); | |
1605 | chosen = task; | |
1606 | chosen_points = points; | |
1607 | get_task_struct(chosen); | |
1608 | } | |
1609 | css_task_iter_end(&it); | |
1610 | } | |
1611 | ||
1612 | if (!chosen) | |
1613 | return; | |
1614 | points = chosen_points * 1000 / totalpages; | |
1615 | oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, | |
1616 | NULL, "Memory cgroup out of memory"); | |
1617 | } | |
1618 | ||
1619 | /** | |
1620 | * test_mem_cgroup_node_reclaimable | |
1621 | * @memcg: the target memcg | |
1622 | * @nid: the node ID to be checked. | |
1623 | * @noswap : specify true here if the user wants flle only information. | |
1624 | * | |
1625 | * This function returns whether the specified memcg contains any | |
1626 | * reclaimable pages on a node. Returns true if there are any reclaimable | |
1627 | * pages in the node. | |
1628 | */ | |
1629 | static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, | |
1630 | int nid, bool noswap) | |
1631 | { | |
1632 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) | |
1633 | return true; | |
1634 | if (noswap || !total_swap_pages) | |
1635 | return false; | |
1636 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) | |
1637 | return true; | |
1638 | return false; | |
1639 | ||
1640 | } | |
1641 | #if MAX_NUMNODES > 1 | |
1642 | ||
1643 | /* | |
1644 | * Always updating the nodemask is not very good - even if we have an empty | |
1645 | * list or the wrong list here, we can start from some node and traverse all | |
1646 | * nodes based on the zonelist. So update the list loosely once per 10 secs. | |
1647 | * | |
1648 | */ | |
1649 | static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) | |
1650 | { | |
1651 | int nid; | |
1652 | /* | |
1653 | * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET | |
1654 | * pagein/pageout changes since the last update. | |
1655 | */ | |
1656 | if (!atomic_read(&memcg->numainfo_events)) | |
1657 | return; | |
1658 | if (atomic_inc_return(&memcg->numainfo_updating) > 1) | |
1659 | return; | |
1660 | ||
1661 | /* make a nodemask where this memcg uses memory from */ | |
1662 | memcg->scan_nodes = node_states[N_MEMORY]; | |
1663 | ||
1664 | for_each_node_mask(nid, node_states[N_MEMORY]) { | |
1665 | ||
1666 | if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) | |
1667 | node_clear(nid, memcg->scan_nodes); | |
1668 | } | |
1669 | ||
1670 | atomic_set(&memcg->numainfo_events, 0); | |
1671 | atomic_set(&memcg->numainfo_updating, 0); | |
1672 | } | |
1673 | ||
1674 | /* | |
1675 | * Selecting a node where we start reclaim from. Because what we need is just | |
1676 | * reducing usage counter, start from anywhere is O,K. Considering | |
1677 | * memory reclaim from current node, there are pros. and cons. | |
1678 | * | |
1679 | * Freeing memory from current node means freeing memory from a node which | |
1680 | * we'll use or we've used. So, it may make LRU bad. And if several threads | |
1681 | * hit limits, it will see a contention on a node. But freeing from remote | |
1682 | * node means more costs for memory reclaim because of memory latency. | |
1683 | * | |
1684 | * Now, we use round-robin. Better algorithm is welcomed. | |
1685 | */ | |
1686 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) | |
1687 | { | |
1688 | int node; | |
1689 | ||
1690 | mem_cgroup_may_update_nodemask(memcg); | |
1691 | node = memcg->last_scanned_node; | |
1692 | ||
1693 | node = next_node(node, memcg->scan_nodes); | |
1694 | if (node == MAX_NUMNODES) | |
1695 | node = first_node(memcg->scan_nodes); | |
1696 | /* | |
1697 | * We call this when we hit limit, not when pages are added to LRU. | |
1698 | * No LRU may hold pages because all pages are UNEVICTABLE or | |
1699 | * memcg is too small and all pages are not on LRU. In that case, | |
1700 | * we use curret node. | |
1701 | */ | |
1702 | if (unlikely(node == MAX_NUMNODES)) | |
1703 | node = numa_node_id(); | |
1704 | ||
1705 | memcg->last_scanned_node = node; | |
1706 | return node; | |
1707 | } | |
1708 | #else | |
1709 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) | |
1710 | { | |
1711 | return 0; | |
1712 | } | |
1713 | #endif | |
1714 | ||
1715 | static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, | |
1716 | struct zone *zone, | |
1717 | gfp_t gfp_mask, | |
1718 | unsigned long *total_scanned) | |
1719 | { | |
1720 | struct mem_cgroup *victim = NULL; | |
1721 | int total = 0; | |
1722 | int loop = 0; | |
1723 | unsigned long excess; | |
1724 | unsigned long nr_scanned; | |
1725 | struct mem_cgroup_reclaim_cookie reclaim = { | |
1726 | .zone = zone, | |
1727 | .priority = 0, | |
1728 | }; | |
1729 | ||
1730 | excess = soft_limit_excess(root_memcg); | |
1731 | ||
1732 | while (1) { | |
1733 | victim = mem_cgroup_iter(root_memcg, victim, &reclaim); | |
1734 | if (!victim) { | |
1735 | loop++; | |
1736 | if (loop >= 2) { | |
1737 | /* | |
1738 | * If we have not been able to reclaim | |
1739 | * anything, it might because there are | |
1740 | * no reclaimable pages under this hierarchy | |
1741 | */ | |
1742 | if (!total) | |
1743 | break; | |
1744 | /* | |
1745 | * We want to do more targeted reclaim. | |
1746 | * excess >> 2 is not to excessive so as to | |
1747 | * reclaim too much, nor too less that we keep | |
1748 | * coming back to reclaim from this cgroup | |
1749 | */ | |
1750 | if (total >= (excess >> 2) || | |
1751 | (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) | |
1752 | break; | |
1753 | } | |
1754 | continue; | |
1755 | } | |
1756 | total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, | |
1757 | zone, &nr_scanned); | |
1758 | *total_scanned += nr_scanned; | |
1759 | if (!soft_limit_excess(root_memcg)) | |
1760 | break; | |
1761 | } | |
1762 | mem_cgroup_iter_break(root_memcg, victim); | |
1763 | return total; | |
1764 | } | |
1765 | ||
1766 | #ifdef CONFIG_LOCKDEP | |
1767 | static struct lockdep_map memcg_oom_lock_dep_map = { | |
1768 | .name = "memcg_oom_lock", | |
1769 | }; | |
1770 | #endif | |
1771 | ||
1772 | static DEFINE_SPINLOCK(memcg_oom_lock); | |
1773 | ||
1774 | /* | |
1775 | * Check OOM-Killer is already running under our hierarchy. | |
1776 | * If someone is running, return false. | |
1777 | */ | |
1778 | static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) | |
1779 | { | |
1780 | struct mem_cgroup *iter, *failed = NULL; | |
1781 | ||
1782 | spin_lock(&memcg_oom_lock); | |
1783 | ||
1784 | for_each_mem_cgroup_tree(iter, memcg) { | |
1785 | if (iter->oom_lock) { | |
1786 | /* | |
1787 | * this subtree of our hierarchy is already locked | |
1788 | * so we cannot give a lock. | |
1789 | */ | |
1790 | failed = iter; | |
1791 | mem_cgroup_iter_break(memcg, iter); | |
1792 | break; | |
1793 | } else | |
1794 | iter->oom_lock = true; | |
1795 | } | |
1796 | ||
1797 | if (failed) { | |
1798 | /* | |
1799 | * OK, we failed to lock the whole subtree so we have | |
1800 | * to clean up what we set up to the failing subtree | |
1801 | */ | |
1802 | for_each_mem_cgroup_tree(iter, memcg) { | |
1803 | if (iter == failed) { | |
1804 | mem_cgroup_iter_break(memcg, iter); | |
1805 | break; | |
1806 | } | |
1807 | iter->oom_lock = false; | |
1808 | } | |
1809 | } else | |
1810 | mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); | |
1811 | ||
1812 | spin_unlock(&memcg_oom_lock); | |
1813 | ||
1814 | return !failed; | |
1815 | } | |
1816 | ||
1817 | static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) | |
1818 | { | |
1819 | struct mem_cgroup *iter; | |
1820 | ||
1821 | spin_lock(&memcg_oom_lock); | |
1822 | mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); | |
1823 | for_each_mem_cgroup_tree(iter, memcg) | |
1824 | iter->oom_lock = false; | |
1825 | spin_unlock(&memcg_oom_lock); | |
1826 | } | |
1827 | ||
1828 | static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) | |
1829 | { | |
1830 | struct mem_cgroup *iter; | |
1831 | ||
1832 | for_each_mem_cgroup_tree(iter, memcg) | |
1833 | atomic_inc(&iter->under_oom); | |
1834 | } | |
1835 | ||
1836 | static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) | |
1837 | { | |
1838 | struct mem_cgroup *iter; | |
1839 | ||
1840 | /* | |
1841 | * When a new child is created while the hierarchy is under oom, | |
1842 | * mem_cgroup_oom_lock() may not be called. We have to use | |
1843 | * atomic_add_unless() here. | |
1844 | */ | |
1845 | for_each_mem_cgroup_tree(iter, memcg) | |
1846 | atomic_add_unless(&iter->under_oom, -1, 0); | |
1847 | } | |
1848 | ||
1849 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); | |
1850 | ||
1851 | struct oom_wait_info { | |
1852 | struct mem_cgroup *memcg; | |
1853 | wait_queue_t wait; | |
1854 | }; | |
1855 | ||
1856 | static int memcg_oom_wake_function(wait_queue_t *wait, | |
1857 | unsigned mode, int sync, void *arg) | |
1858 | { | |
1859 | struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; | |
1860 | struct mem_cgroup *oom_wait_memcg; | |
1861 | struct oom_wait_info *oom_wait_info; | |
1862 | ||
1863 | oom_wait_info = container_of(wait, struct oom_wait_info, wait); | |
1864 | oom_wait_memcg = oom_wait_info->memcg; | |
1865 | ||
1866 | if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && | |
1867 | !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) | |
1868 | return 0; | |
1869 | return autoremove_wake_function(wait, mode, sync, arg); | |
1870 | } | |
1871 | ||
1872 | static void memcg_wakeup_oom(struct mem_cgroup *memcg) | |
1873 | { | |
1874 | atomic_inc(&memcg->oom_wakeups); | |
1875 | /* for filtering, pass "memcg" as argument. */ | |
1876 | __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); | |
1877 | } | |
1878 | ||
1879 | static void memcg_oom_recover(struct mem_cgroup *memcg) | |
1880 | { | |
1881 | if (memcg && atomic_read(&memcg->under_oom)) | |
1882 | memcg_wakeup_oom(memcg); | |
1883 | } | |
1884 | ||
1885 | static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) | |
1886 | { | |
1887 | if (!current->memcg_oom.may_oom) | |
1888 | return; | |
1889 | /* | |
1890 | * We are in the middle of the charge context here, so we | |
1891 | * don't want to block when potentially sitting on a callstack | |
1892 | * that holds all kinds of filesystem and mm locks. | |
1893 | * | |
1894 | * Also, the caller may handle a failed allocation gracefully | |
1895 | * (like optional page cache readahead) and so an OOM killer | |
1896 | * invocation might not even be necessary. | |
1897 | * | |
1898 | * That's why we don't do anything here except remember the | |
1899 | * OOM context and then deal with it at the end of the page | |
1900 | * fault when the stack is unwound, the locks are released, | |
1901 | * and when we know whether the fault was overall successful. | |
1902 | */ | |
1903 | css_get(&memcg->css); | |
1904 | current->memcg_oom.memcg = memcg; | |
1905 | current->memcg_oom.gfp_mask = mask; | |
1906 | current->memcg_oom.order = order; | |
1907 | } | |
1908 | ||
1909 | /** | |
1910 | * mem_cgroup_oom_synchronize - complete memcg OOM handling | |
1911 | * @handle: actually kill/wait or just clean up the OOM state | |
1912 | * | |
1913 | * This has to be called at the end of a page fault if the memcg OOM | |
1914 | * handler was enabled. | |
1915 | * | |
1916 | * Memcg supports userspace OOM handling where failed allocations must | |
1917 | * sleep on a waitqueue until the userspace task resolves the | |
1918 | * situation. Sleeping directly in the charge context with all kinds | |
1919 | * of locks held is not a good idea, instead we remember an OOM state | |
1920 | * in the task and mem_cgroup_oom_synchronize() has to be called at | |
1921 | * the end of the page fault to complete the OOM handling. | |
1922 | * | |
1923 | * Returns %true if an ongoing memcg OOM situation was detected and | |
1924 | * completed, %false otherwise. | |
1925 | */ | |
1926 | bool mem_cgroup_oom_synchronize(bool handle) | |
1927 | { | |
1928 | struct mem_cgroup *memcg = current->memcg_oom.memcg; | |
1929 | struct oom_wait_info owait; | |
1930 | bool locked; | |
1931 | ||
1932 | /* OOM is global, do not handle */ | |
1933 | if (!memcg) | |
1934 | return false; | |
1935 | ||
1936 | if (!handle) | |
1937 | goto cleanup; | |
1938 | ||
1939 | owait.memcg = memcg; | |
1940 | owait.wait.flags = 0; | |
1941 | owait.wait.func = memcg_oom_wake_function; | |
1942 | owait.wait.private = current; | |
1943 | INIT_LIST_HEAD(&owait.wait.task_list); | |
1944 | ||
1945 | prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); | |
1946 | mem_cgroup_mark_under_oom(memcg); | |
1947 | ||
1948 | locked = mem_cgroup_oom_trylock(memcg); | |
1949 | ||
1950 | if (locked) | |
1951 | mem_cgroup_oom_notify(memcg); | |
1952 | ||
1953 | if (locked && !memcg->oom_kill_disable) { | |
1954 | mem_cgroup_unmark_under_oom(memcg); | |
1955 | finish_wait(&memcg_oom_waitq, &owait.wait); | |
1956 | mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask, | |
1957 | current->memcg_oom.order); | |
1958 | } else { | |
1959 | schedule(); | |
1960 | mem_cgroup_unmark_under_oom(memcg); | |
1961 | finish_wait(&memcg_oom_waitq, &owait.wait); | |
1962 | } | |
1963 | ||
1964 | if (locked) { | |
1965 | mem_cgroup_oom_unlock(memcg); | |
1966 | /* | |
1967 | * There is no guarantee that an OOM-lock contender | |
1968 | * sees the wakeups triggered by the OOM kill | |
1969 | * uncharges. Wake any sleepers explicitely. | |
1970 | */ | |
1971 | memcg_oom_recover(memcg); | |
1972 | } | |
1973 | cleanup: | |
1974 | current->memcg_oom.memcg = NULL; | |
1975 | css_put(&memcg->css); | |
1976 | return true; | |
1977 | } | |
1978 | ||
1979 | /** | |
1980 | * mem_cgroup_begin_page_stat - begin a page state statistics transaction | |
1981 | * @page: page that is going to change accounted state | |
1982 | * @locked: &memcg->move_lock slowpath was taken | |
1983 | * @flags: IRQ-state flags for &memcg->move_lock | |
1984 | * | |
1985 | * This function must mark the beginning of an accounted page state | |
1986 | * change to prevent double accounting when the page is concurrently | |
1987 | * being moved to another memcg: | |
1988 | * | |
1989 | * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags); | |
1990 | * if (TestClearPageState(page)) | |
1991 | * mem_cgroup_update_page_stat(memcg, state, -1); | |
1992 | * mem_cgroup_end_page_stat(memcg, locked, flags); | |
1993 | * | |
1994 | * The RCU lock is held throughout the transaction. The fast path can | |
1995 | * get away without acquiring the memcg->move_lock (@locked is false) | |
1996 | * because page moving starts with an RCU grace period. | |
1997 | * | |
1998 | * The RCU lock also protects the memcg from being freed when the page | |
1999 | * state that is going to change is the only thing preventing the page | |
2000 | * from being uncharged. E.g. end-writeback clearing PageWriteback(), | |
2001 | * which allows migration to go ahead and uncharge the page before the | |
2002 | * account transaction might be complete. | |
2003 | */ | |
2004 | struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page, | |
2005 | bool *locked, | |
2006 | unsigned long *flags) | |
2007 | { | |
2008 | struct mem_cgroup *memcg; | |
2009 | ||
2010 | rcu_read_lock(); | |
2011 | ||
2012 | if (mem_cgroup_disabled()) | |
2013 | return NULL; | |
2014 | again: | |
2015 | memcg = page->mem_cgroup; | |
2016 | if (unlikely(!memcg)) | |
2017 | return NULL; | |
2018 | ||
2019 | *locked = false; | |
2020 | if (atomic_read(&memcg->moving_account) <= 0) | |
2021 | return memcg; | |
2022 | ||
2023 | spin_lock_irqsave(&memcg->move_lock, *flags); | |
2024 | if (memcg != page->mem_cgroup) { | |
2025 | spin_unlock_irqrestore(&memcg->move_lock, *flags); | |
2026 | goto again; | |
2027 | } | |
2028 | *locked = true; | |
2029 | ||
2030 | return memcg; | |
2031 | } | |
2032 | ||
2033 | /** | |
2034 | * mem_cgroup_end_page_stat - finish a page state statistics transaction | |
2035 | * @memcg: the memcg that was accounted against | |
2036 | * @locked: value received from mem_cgroup_begin_page_stat() | |
2037 | * @flags: value received from mem_cgroup_begin_page_stat() | |
2038 | */ | |
2039 | void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool *locked, | |
2040 | unsigned long *flags) | |
2041 | { | |
2042 | if (memcg && *locked) | |
2043 | spin_unlock_irqrestore(&memcg->move_lock, *flags); | |
2044 | ||
2045 | rcu_read_unlock(); | |
2046 | } | |
2047 | ||
2048 | /** | |
2049 | * mem_cgroup_update_page_stat - update page state statistics | |
2050 | * @memcg: memcg to account against | |
2051 | * @idx: page state item to account | |
2052 | * @val: number of pages (positive or negative) | |
2053 | * | |
2054 | * See mem_cgroup_begin_page_stat() for locking requirements. | |
2055 | */ | |
2056 | void mem_cgroup_update_page_stat(struct mem_cgroup *memcg, | |
2057 | enum mem_cgroup_stat_index idx, int val) | |
2058 | { | |
2059 | VM_BUG_ON(!rcu_read_lock_held()); | |
2060 | ||
2061 | if (memcg) | |
2062 | this_cpu_add(memcg->stat->count[idx], val); | |
2063 | } | |
2064 | ||
2065 | /* | |
2066 | * size of first charge trial. "32" comes from vmscan.c's magic value. | |
2067 | * TODO: maybe necessary to use big numbers in big irons. | |
2068 | */ | |
2069 | #define CHARGE_BATCH 32U | |
2070 | struct memcg_stock_pcp { | |
2071 | struct mem_cgroup *cached; /* this never be root cgroup */ | |
2072 | unsigned int nr_pages; | |
2073 | struct work_struct work; | |
2074 | unsigned long flags; | |
2075 | #define FLUSHING_CACHED_CHARGE 0 | |
2076 | }; | |
2077 | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); | |
2078 | static DEFINE_MUTEX(percpu_charge_mutex); | |
2079 | ||
2080 | /** | |
2081 | * consume_stock: Try to consume stocked charge on this cpu. | |
2082 | * @memcg: memcg to consume from. | |
2083 | * @nr_pages: how many pages to charge. | |
2084 | * | |
2085 | * The charges will only happen if @memcg matches the current cpu's memcg | |
2086 | * stock, and at least @nr_pages are available in that stock. Failure to | |
2087 | * service an allocation will refill the stock. | |
2088 | * | |
2089 | * returns true if successful, false otherwise. | |
2090 | */ | |
2091 | static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) | |
2092 | { | |
2093 | struct memcg_stock_pcp *stock; | |
2094 | bool ret = false; | |
2095 | ||
2096 | if (nr_pages > CHARGE_BATCH) | |
2097 | return ret; | |
2098 | ||
2099 | stock = &get_cpu_var(memcg_stock); | |
2100 | if (memcg == stock->cached && stock->nr_pages >= nr_pages) { | |
2101 | stock->nr_pages -= nr_pages; | |
2102 | ret = true; | |
2103 | } | |
2104 | put_cpu_var(memcg_stock); | |
2105 | return ret; | |
2106 | } | |
2107 | ||
2108 | /* | |
2109 | * Returns stocks cached in percpu and reset cached information. | |
2110 | */ | |
2111 | static void drain_stock(struct memcg_stock_pcp *stock) | |
2112 | { | |
2113 | struct mem_cgroup *old = stock->cached; | |
2114 | ||
2115 | if (stock->nr_pages) { | |
2116 | page_counter_uncharge(&old->memory, stock->nr_pages); | |
2117 | if (do_swap_account) | |
2118 | page_counter_uncharge(&old->memsw, stock->nr_pages); | |
2119 | css_put_many(&old->css, stock->nr_pages); | |
2120 | stock->nr_pages = 0; | |
2121 | } | |
2122 | stock->cached = NULL; | |
2123 | } | |
2124 | ||
2125 | /* | |
2126 | * This must be called under preempt disabled or must be called by | |
2127 | * a thread which is pinned to local cpu. | |
2128 | */ | |
2129 | static void drain_local_stock(struct work_struct *dummy) | |
2130 | { | |
2131 | struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock); | |
2132 | drain_stock(stock); | |
2133 | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); | |
2134 | } | |
2135 | ||
2136 | static void __init memcg_stock_init(void) | |
2137 | { | |
2138 | int cpu; | |
2139 | ||
2140 | for_each_possible_cpu(cpu) { | |
2141 | struct memcg_stock_pcp *stock = | |
2142 | &per_cpu(memcg_stock, cpu); | |
2143 | INIT_WORK(&stock->work, drain_local_stock); | |
2144 | } | |
2145 | } | |
2146 | ||
2147 | /* | |
2148 | * Cache charges(val) to local per_cpu area. | |
2149 | * This will be consumed by consume_stock() function, later. | |
2150 | */ | |
2151 | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) | |
2152 | { | |
2153 | struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); | |
2154 | ||
2155 | if (stock->cached != memcg) { /* reset if necessary */ | |
2156 | drain_stock(stock); | |
2157 | stock->cached = memcg; | |
2158 | } | |
2159 | stock->nr_pages += nr_pages; | |
2160 | put_cpu_var(memcg_stock); | |
2161 | } | |
2162 | ||
2163 | /* | |
2164 | * Drains all per-CPU charge caches for given root_memcg resp. subtree | |
2165 | * of the hierarchy under it. | |
2166 | */ | |
2167 | static void drain_all_stock(struct mem_cgroup *root_memcg) | |
2168 | { | |
2169 | int cpu, curcpu; | |
2170 | ||
2171 | /* If someone's already draining, avoid adding running more workers. */ | |
2172 | if (!mutex_trylock(&percpu_charge_mutex)) | |
2173 | return; | |
2174 | /* Notify other cpus that system-wide "drain" is running */ | |
2175 | get_online_cpus(); | |
2176 | curcpu = get_cpu(); | |
2177 | for_each_online_cpu(cpu) { | |
2178 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | |
2179 | struct mem_cgroup *memcg; | |
2180 | ||
2181 | memcg = stock->cached; | |
2182 | if (!memcg || !stock->nr_pages) | |
2183 | continue; | |
2184 | if (!mem_cgroup_is_descendant(memcg, root_memcg)) | |
2185 | continue; | |
2186 | if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { | |
2187 | if (cpu == curcpu) | |
2188 | drain_local_stock(&stock->work); | |
2189 | else | |
2190 | schedule_work_on(cpu, &stock->work); | |
2191 | } | |
2192 | } | |
2193 | put_cpu(); | |
2194 | put_online_cpus(); | |
2195 | mutex_unlock(&percpu_charge_mutex); | |
2196 | } | |
2197 | ||
2198 | /* | |
2199 | * This function drains percpu counter value from DEAD cpu and | |
2200 | * move it to local cpu. Note that this function can be preempted. | |
2201 | */ | |
2202 | static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) | |
2203 | { | |
2204 | int i; | |
2205 | ||
2206 | spin_lock(&memcg->pcp_counter_lock); | |
2207 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | |
2208 | long x = per_cpu(memcg->stat->count[i], cpu); | |
2209 | ||
2210 | per_cpu(memcg->stat->count[i], cpu) = 0; | |
2211 | memcg->nocpu_base.count[i] += x; | |
2212 | } | |
2213 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { | |
2214 | unsigned long x = per_cpu(memcg->stat->events[i], cpu); | |
2215 | ||
2216 | per_cpu(memcg->stat->events[i], cpu) = 0; | |
2217 | memcg->nocpu_base.events[i] += x; | |
2218 | } | |
2219 | spin_unlock(&memcg->pcp_counter_lock); | |
2220 | } | |
2221 | ||
2222 | static int memcg_cpu_hotplug_callback(struct notifier_block *nb, | |
2223 | unsigned long action, | |
2224 | void *hcpu) | |
2225 | { | |
2226 | int cpu = (unsigned long)hcpu; | |
2227 | struct memcg_stock_pcp *stock; | |
2228 | struct mem_cgroup *iter; | |
2229 | ||
2230 | if (action == CPU_ONLINE) | |
2231 | return NOTIFY_OK; | |
2232 | ||
2233 | if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) | |
2234 | return NOTIFY_OK; | |
2235 | ||
2236 | for_each_mem_cgroup(iter) | |
2237 | mem_cgroup_drain_pcp_counter(iter, cpu); | |
2238 | ||
2239 | stock = &per_cpu(memcg_stock, cpu); | |
2240 | drain_stock(stock); | |
2241 | return NOTIFY_OK; | |
2242 | } | |
2243 | ||
2244 | static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, | |
2245 | unsigned int nr_pages) | |
2246 | { | |
2247 | unsigned int batch = max(CHARGE_BATCH, nr_pages); | |
2248 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | |
2249 | struct mem_cgroup *mem_over_limit; | |
2250 | struct page_counter *counter; | |
2251 | unsigned long nr_reclaimed; | |
2252 | bool may_swap = true; | |
2253 | bool drained = false; | |
2254 | int ret = 0; | |
2255 | ||
2256 | if (mem_cgroup_is_root(memcg)) | |
2257 | goto done; | |
2258 | retry: | |
2259 | if (consume_stock(memcg, nr_pages)) | |
2260 | goto done; | |
2261 | ||
2262 | if (!do_swap_account || | |
2263 | !page_counter_try_charge(&memcg->memsw, batch, &counter)) { | |
2264 | if (!page_counter_try_charge(&memcg->memory, batch, &counter)) | |
2265 | goto done_restock; | |
2266 | if (do_swap_account) | |
2267 | page_counter_uncharge(&memcg->memsw, batch); | |
2268 | mem_over_limit = mem_cgroup_from_counter(counter, memory); | |
2269 | } else { | |
2270 | mem_over_limit = mem_cgroup_from_counter(counter, memsw); | |
2271 | may_swap = false; | |
2272 | } | |
2273 | ||
2274 | if (batch > nr_pages) { | |
2275 | batch = nr_pages; | |
2276 | goto retry; | |
2277 | } | |
2278 | ||
2279 | /* | |
2280 | * Unlike in global OOM situations, memcg is not in a physical | |
2281 | * memory shortage. Allow dying and OOM-killed tasks to | |
2282 | * bypass the last charges so that they can exit quickly and | |
2283 | * free their memory. | |
2284 | */ | |
2285 | if (unlikely(test_thread_flag(TIF_MEMDIE) || | |
2286 | fatal_signal_pending(current) || | |
2287 | current->flags & PF_EXITING)) | |
2288 | goto bypass; | |
2289 | ||
2290 | if (unlikely(task_in_memcg_oom(current))) | |
2291 | goto nomem; | |
2292 | ||
2293 | if (!(gfp_mask & __GFP_WAIT)) | |
2294 | goto nomem; | |
2295 | ||
2296 | nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, | |
2297 | gfp_mask, may_swap); | |
2298 | ||
2299 | if (mem_cgroup_margin(mem_over_limit) >= nr_pages) | |
2300 | goto retry; | |
2301 | ||
2302 | if (!drained) { | |
2303 | drain_all_stock(mem_over_limit); | |
2304 | drained = true; | |
2305 | goto retry; | |
2306 | } | |
2307 | ||
2308 | if (gfp_mask & __GFP_NORETRY) | |
2309 | goto nomem; | |
2310 | /* | |
2311 | * Even though the limit is exceeded at this point, reclaim | |
2312 | * may have been able to free some pages. Retry the charge | |
2313 | * before killing the task. | |
2314 | * | |
2315 | * Only for regular pages, though: huge pages are rather | |
2316 | * unlikely to succeed so close to the limit, and we fall back | |
2317 | * to regular pages anyway in case of failure. | |
2318 | */ | |
2319 | if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) | |
2320 | goto retry; | |
2321 | /* | |
2322 | * At task move, charge accounts can be doubly counted. So, it's | |
2323 | * better to wait until the end of task_move if something is going on. | |
2324 | */ | |
2325 | if (mem_cgroup_wait_acct_move(mem_over_limit)) | |
2326 | goto retry; | |
2327 | ||
2328 | if (nr_retries--) | |
2329 | goto retry; | |
2330 | ||
2331 | if (gfp_mask & __GFP_NOFAIL) | |
2332 | goto bypass; | |
2333 | ||
2334 | if (fatal_signal_pending(current)) | |
2335 | goto bypass; | |
2336 | ||
2337 | mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages)); | |
2338 | nomem: | |
2339 | if (!(gfp_mask & __GFP_NOFAIL)) | |
2340 | return -ENOMEM; | |
2341 | bypass: | |
2342 | return -EINTR; | |
2343 | ||
2344 | done_restock: | |
2345 | css_get_many(&memcg->css, batch); | |
2346 | if (batch > nr_pages) | |
2347 | refill_stock(memcg, batch - nr_pages); | |
2348 | done: | |
2349 | return ret; | |
2350 | } | |
2351 | ||
2352 | static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) | |
2353 | { | |
2354 | if (mem_cgroup_is_root(memcg)) | |
2355 | return; | |
2356 | ||
2357 | page_counter_uncharge(&memcg->memory, nr_pages); | |
2358 | if (do_swap_account) | |
2359 | page_counter_uncharge(&memcg->memsw, nr_pages); | |
2360 | ||
2361 | css_put_many(&memcg->css, nr_pages); | |
2362 | } | |
2363 | ||
2364 | /* | |
2365 | * A helper function to get mem_cgroup from ID. must be called under | |
2366 | * rcu_read_lock(). The caller is responsible for calling | |
2367 | * css_tryget_online() if the mem_cgroup is used for charging. (dropping | |
2368 | * refcnt from swap can be called against removed memcg.) | |
2369 | */ | |
2370 | static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) | |
2371 | { | |
2372 | /* ID 0 is unused ID */ | |
2373 | if (!id) | |
2374 | return NULL; | |
2375 | return mem_cgroup_from_id(id); | |
2376 | } | |
2377 | ||
2378 | /* | |
2379 | * try_get_mem_cgroup_from_page - look up page's memcg association | |
2380 | * @page: the page | |
2381 | * | |
2382 | * Look up, get a css reference, and return the memcg that owns @page. | |
2383 | * | |
2384 | * The page must be locked to prevent racing with swap-in and page | |
2385 | * cache charges. If coming from an unlocked page table, the caller | |
2386 | * must ensure the page is on the LRU or this can race with charging. | |
2387 | */ | |
2388 | struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) | |
2389 | { | |
2390 | struct mem_cgroup *memcg; | |
2391 | unsigned short id; | |
2392 | swp_entry_t ent; | |
2393 | ||
2394 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
2395 | ||
2396 | memcg = page->mem_cgroup; | |
2397 | if (memcg) { | |
2398 | if (!css_tryget_online(&memcg->css)) | |
2399 | memcg = NULL; | |
2400 | } else if (PageSwapCache(page)) { | |
2401 | ent.val = page_private(page); | |
2402 | id = lookup_swap_cgroup_id(ent); | |
2403 | rcu_read_lock(); | |
2404 | memcg = mem_cgroup_lookup(id); | |
2405 | if (memcg && !css_tryget_online(&memcg->css)) | |
2406 | memcg = NULL; | |
2407 | rcu_read_unlock(); | |
2408 | } | |
2409 | return memcg; | |
2410 | } | |
2411 | ||
2412 | static void lock_page_lru(struct page *page, int *isolated) | |
2413 | { | |
2414 | struct zone *zone = page_zone(page); | |
2415 | ||
2416 | spin_lock_irq(&zone->lru_lock); | |
2417 | if (PageLRU(page)) { | |
2418 | struct lruvec *lruvec; | |
2419 | ||
2420 | lruvec = mem_cgroup_page_lruvec(page, zone); | |
2421 | ClearPageLRU(page); | |
2422 | del_page_from_lru_list(page, lruvec, page_lru(page)); | |
2423 | *isolated = 1; | |
2424 | } else | |
2425 | *isolated = 0; | |
2426 | } | |
2427 | ||
2428 | static void unlock_page_lru(struct page *page, int isolated) | |
2429 | { | |
2430 | struct zone *zone = page_zone(page); | |
2431 | ||
2432 | if (isolated) { | |
2433 | struct lruvec *lruvec; | |
2434 | ||
2435 | lruvec = mem_cgroup_page_lruvec(page, zone); | |
2436 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
2437 | SetPageLRU(page); | |
2438 | add_page_to_lru_list(page, lruvec, page_lru(page)); | |
2439 | } | |
2440 | spin_unlock_irq(&zone->lru_lock); | |
2441 | } | |
2442 | ||
2443 | static void commit_charge(struct page *page, struct mem_cgroup *memcg, | |
2444 | bool lrucare) | |
2445 | { | |
2446 | int isolated; | |
2447 | ||
2448 | VM_BUG_ON_PAGE(page->mem_cgroup, page); | |
2449 | ||
2450 | /* | |
2451 | * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page | |
2452 | * may already be on some other mem_cgroup's LRU. Take care of it. | |
2453 | */ | |
2454 | if (lrucare) | |
2455 | lock_page_lru(page, &isolated); | |
2456 | ||
2457 | /* | |
2458 | * Nobody should be changing or seriously looking at | |
2459 | * page->mem_cgroup at this point: | |
2460 | * | |
2461 | * - the page is uncharged | |
2462 | * | |
2463 | * - the page is off-LRU | |
2464 | * | |
2465 | * - an anonymous fault has exclusive page access, except for | |
2466 | * a locked page table | |
2467 | * | |
2468 | * - a page cache insertion, a swapin fault, or a migration | |
2469 | * have the page locked | |
2470 | */ | |
2471 | page->mem_cgroup = memcg; | |
2472 | ||
2473 | if (lrucare) | |
2474 | unlock_page_lru(page, isolated); | |
2475 | } | |
2476 | ||
2477 | #ifdef CONFIG_MEMCG_KMEM | |
2478 | /* | |
2479 | * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or | |
2480 | * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists. | |
2481 | */ | |
2482 | static DEFINE_MUTEX(memcg_slab_mutex); | |
2483 | ||
2484 | /* | |
2485 | * This is a bit cumbersome, but it is rarely used and avoids a backpointer | |
2486 | * in the memcg_cache_params struct. | |
2487 | */ | |
2488 | static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) | |
2489 | { | |
2490 | struct kmem_cache *cachep; | |
2491 | ||
2492 | VM_BUG_ON(p->is_root_cache); | |
2493 | cachep = p->root_cache; | |
2494 | return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg)); | |
2495 | } | |
2496 | ||
2497 | static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, | |
2498 | unsigned long nr_pages) | |
2499 | { | |
2500 | struct page_counter *counter; | |
2501 | int ret = 0; | |
2502 | ||
2503 | ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter); | |
2504 | if (ret < 0) | |
2505 | return ret; | |
2506 | ||
2507 | ret = try_charge(memcg, gfp, nr_pages); | |
2508 | if (ret == -EINTR) { | |
2509 | /* | |
2510 | * try_charge() chose to bypass to root due to OOM kill or | |
2511 | * fatal signal. Since our only options are to either fail | |
2512 | * the allocation or charge it to this cgroup, do it as a | |
2513 | * temporary condition. But we can't fail. From a kmem/slab | |
2514 | * perspective, the cache has already been selected, by | |
2515 | * mem_cgroup_kmem_get_cache(), so it is too late to change | |
2516 | * our minds. | |
2517 | * | |
2518 | * This condition will only trigger if the task entered | |
2519 | * memcg_charge_kmem in a sane state, but was OOM-killed | |
2520 | * during try_charge() above. Tasks that were already dying | |
2521 | * when the allocation triggers should have been already | |
2522 | * directed to the root cgroup in memcontrol.h | |
2523 | */ | |
2524 | page_counter_charge(&memcg->memory, nr_pages); | |
2525 | if (do_swap_account) | |
2526 | page_counter_charge(&memcg->memsw, nr_pages); | |
2527 | css_get_many(&memcg->css, nr_pages); | |
2528 | ret = 0; | |
2529 | } else if (ret) | |
2530 | page_counter_uncharge(&memcg->kmem, nr_pages); | |
2531 | ||
2532 | return ret; | |
2533 | } | |
2534 | ||
2535 | static void memcg_uncharge_kmem(struct mem_cgroup *memcg, | |
2536 | unsigned long nr_pages) | |
2537 | { | |
2538 | page_counter_uncharge(&memcg->memory, nr_pages); | |
2539 | if (do_swap_account) | |
2540 | page_counter_uncharge(&memcg->memsw, nr_pages); | |
2541 | ||
2542 | page_counter_uncharge(&memcg->kmem, nr_pages); | |
2543 | ||
2544 | css_put_many(&memcg->css, nr_pages); | |
2545 | } | |
2546 | ||
2547 | /* | |
2548 | * helper for acessing a memcg's index. It will be used as an index in the | |
2549 | * child cache array in kmem_cache, and also to derive its name. This function | |
2550 | * will return -1 when this is not a kmem-limited memcg. | |
2551 | */ | |
2552 | int memcg_cache_id(struct mem_cgroup *memcg) | |
2553 | { | |
2554 | return memcg ? memcg->kmemcg_id : -1; | |
2555 | } | |
2556 | ||
2557 | static int memcg_alloc_cache_id(void) | |
2558 | { | |
2559 | int id, size; | |
2560 | int err; | |
2561 | ||
2562 | id = ida_simple_get(&kmem_limited_groups, | |
2563 | 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); | |
2564 | if (id < 0) | |
2565 | return id; | |
2566 | ||
2567 | if (id < memcg_limited_groups_array_size) | |
2568 | return id; | |
2569 | ||
2570 | /* | |
2571 | * There's no space for the new id in memcg_caches arrays, | |
2572 | * so we have to grow them. | |
2573 | */ | |
2574 | ||
2575 | size = 2 * (id + 1); | |
2576 | if (size < MEMCG_CACHES_MIN_SIZE) | |
2577 | size = MEMCG_CACHES_MIN_SIZE; | |
2578 | else if (size > MEMCG_CACHES_MAX_SIZE) | |
2579 | size = MEMCG_CACHES_MAX_SIZE; | |
2580 | ||
2581 | mutex_lock(&memcg_slab_mutex); | |
2582 | err = memcg_update_all_caches(size); | |
2583 | mutex_unlock(&memcg_slab_mutex); | |
2584 | ||
2585 | if (err) { | |
2586 | ida_simple_remove(&kmem_limited_groups, id); | |
2587 | return err; | |
2588 | } | |
2589 | return id; | |
2590 | } | |
2591 | ||
2592 | static void memcg_free_cache_id(int id) | |
2593 | { | |
2594 | ida_simple_remove(&kmem_limited_groups, id); | |
2595 | } | |
2596 | ||
2597 | /* | |
2598 | * We should update the current array size iff all caches updates succeed. This | |
2599 | * can only be done from the slab side. The slab mutex needs to be held when | |
2600 | * calling this. | |
2601 | */ | |
2602 | void memcg_update_array_size(int num) | |
2603 | { | |
2604 | memcg_limited_groups_array_size = num; | |
2605 | } | |
2606 | ||
2607 | static void memcg_register_cache(struct mem_cgroup *memcg, | |
2608 | struct kmem_cache *root_cache) | |
2609 | { | |
2610 | static char memcg_name_buf[NAME_MAX + 1]; /* protected by | |
2611 | memcg_slab_mutex */ | |
2612 | struct kmem_cache *cachep; | |
2613 | int id; | |
2614 | ||
2615 | lockdep_assert_held(&memcg_slab_mutex); | |
2616 | ||
2617 | id = memcg_cache_id(memcg); | |
2618 | ||
2619 | /* | |
2620 | * Since per-memcg caches are created asynchronously on first | |
2621 | * allocation (see memcg_kmem_get_cache()), several threads can try to | |
2622 | * create the same cache, but only one of them may succeed. | |
2623 | */ | |
2624 | if (cache_from_memcg_idx(root_cache, id)) | |
2625 | return; | |
2626 | ||
2627 | cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1); | |
2628 | cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf); | |
2629 | /* | |
2630 | * If we could not create a memcg cache, do not complain, because | |
2631 | * that's not critical at all as we can always proceed with the root | |
2632 | * cache. | |
2633 | */ | |
2634 | if (!cachep) | |
2635 | return; | |
2636 | ||
2637 | css_get(&memcg->css); | |
2638 | list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); | |
2639 | ||
2640 | /* | |
2641 | * Since readers won't lock (see cache_from_memcg_idx()), we need a | |
2642 | * barrier here to ensure nobody will see the kmem_cache partially | |
2643 | * initialized. | |
2644 | */ | |
2645 | smp_wmb(); | |
2646 | ||
2647 | BUG_ON(root_cache->memcg_params->memcg_caches[id]); | |
2648 | root_cache->memcg_params->memcg_caches[id] = cachep; | |
2649 | } | |
2650 | ||
2651 | static void memcg_unregister_cache(struct kmem_cache *cachep) | |
2652 | { | |
2653 | struct kmem_cache *root_cache; | |
2654 | struct mem_cgroup *memcg; | |
2655 | int id; | |
2656 | ||
2657 | lockdep_assert_held(&memcg_slab_mutex); | |
2658 | ||
2659 | BUG_ON(is_root_cache(cachep)); | |
2660 | ||
2661 | root_cache = cachep->memcg_params->root_cache; | |
2662 | memcg = cachep->memcg_params->memcg; | |
2663 | id = memcg_cache_id(memcg); | |
2664 | ||
2665 | BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep); | |
2666 | root_cache->memcg_params->memcg_caches[id] = NULL; | |
2667 | ||
2668 | list_del(&cachep->memcg_params->list); | |
2669 | ||
2670 | kmem_cache_destroy(cachep); | |
2671 | ||
2672 | /* drop the reference taken in memcg_register_cache */ | |
2673 | css_put(&memcg->css); | |
2674 | } | |
2675 | ||
2676 | /* | |
2677 | * During the creation a new cache, we need to disable our accounting mechanism | |
2678 | * altogether. This is true even if we are not creating, but rather just | |
2679 | * enqueing new caches to be created. | |
2680 | * | |
2681 | * This is because that process will trigger allocations; some visible, like | |
2682 | * explicit kmallocs to auxiliary data structures, name strings and internal | |
2683 | * cache structures; some well concealed, like INIT_WORK() that can allocate | |
2684 | * objects during debug. | |
2685 | * | |
2686 | * If any allocation happens during memcg_kmem_get_cache, we will recurse back | |
2687 | * to it. This may not be a bounded recursion: since the first cache creation | |
2688 | * failed to complete (waiting on the allocation), we'll just try to create the | |
2689 | * cache again, failing at the same point. | |
2690 | * | |
2691 | * memcg_kmem_get_cache is prepared to abort after seeing a positive count of | |
2692 | * memcg_kmem_skip_account. So we enclose anything that might allocate memory | |
2693 | * inside the following two functions. | |
2694 | */ | |
2695 | static inline void memcg_stop_kmem_account(void) | |
2696 | { | |
2697 | VM_BUG_ON(!current->mm); | |
2698 | current->memcg_kmem_skip_account++; | |
2699 | } | |
2700 | ||
2701 | static inline void memcg_resume_kmem_account(void) | |
2702 | { | |
2703 | VM_BUG_ON(!current->mm); | |
2704 | current->memcg_kmem_skip_account--; | |
2705 | } | |
2706 | ||
2707 | int __memcg_cleanup_cache_params(struct kmem_cache *s) | |
2708 | { | |
2709 | struct kmem_cache *c; | |
2710 | int i, failed = 0; | |
2711 | ||
2712 | mutex_lock(&memcg_slab_mutex); | |
2713 | for_each_memcg_cache_index(i) { | |
2714 | c = cache_from_memcg_idx(s, i); | |
2715 | if (!c) | |
2716 | continue; | |
2717 | ||
2718 | memcg_unregister_cache(c); | |
2719 | ||
2720 | if (cache_from_memcg_idx(s, i)) | |
2721 | failed++; | |
2722 | } | |
2723 | mutex_unlock(&memcg_slab_mutex); | |
2724 | return failed; | |
2725 | } | |
2726 | ||
2727 | static void memcg_unregister_all_caches(struct mem_cgroup *memcg) | |
2728 | { | |
2729 | struct kmem_cache *cachep; | |
2730 | struct memcg_cache_params *params, *tmp; | |
2731 | ||
2732 | if (!memcg_kmem_is_active(memcg)) | |
2733 | return; | |
2734 | ||
2735 | mutex_lock(&memcg_slab_mutex); | |
2736 | list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) { | |
2737 | cachep = memcg_params_to_cache(params); | |
2738 | kmem_cache_shrink(cachep); | |
2739 | if (atomic_read(&cachep->memcg_params->nr_pages) == 0) | |
2740 | memcg_unregister_cache(cachep); | |
2741 | } | |
2742 | mutex_unlock(&memcg_slab_mutex); | |
2743 | } | |
2744 | ||
2745 | struct memcg_register_cache_work { | |
2746 | struct mem_cgroup *memcg; | |
2747 | struct kmem_cache *cachep; | |
2748 | struct work_struct work; | |
2749 | }; | |
2750 | ||
2751 | static void memcg_register_cache_func(struct work_struct *w) | |
2752 | { | |
2753 | struct memcg_register_cache_work *cw = | |
2754 | container_of(w, struct memcg_register_cache_work, work); | |
2755 | struct mem_cgroup *memcg = cw->memcg; | |
2756 | struct kmem_cache *cachep = cw->cachep; | |
2757 | ||
2758 | mutex_lock(&memcg_slab_mutex); | |
2759 | memcg_register_cache(memcg, cachep); | |
2760 | mutex_unlock(&memcg_slab_mutex); | |
2761 | ||
2762 | css_put(&memcg->css); | |
2763 | kfree(cw); | |
2764 | } | |
2765 | ||
2766 | /* | |
2767 | * Enqueue the creation of a per-memcg kmem_cache. | |
2768 | */ | |
2769 | static void __memcg_schedule_register_cache(struct mem_cgroup *memcg, | |
2770 | struct kmem_cache *cachep) | |
2771 | { | |
2772 | struct memcg_register_cache_work *cw; | |
2773 | ||
2774 | cw = kmalloc(sizeof(*cw), GFP_NOWAIT); | |
2775 | if (cw == NULL) { | |
2776 | css_put(&memcg->css); | |
2777 | return; | |
2778 | } | |
2779 | ||
2780 | cw->memcg = memcg; | |
2781 | cw->cachep = cachep; | |
2782 | ||
2783 | INIT_WORK(&cw->work, memcg_register_cache_func); | |
2784 | schedule_work(&cw->work); | |
2785 | } | |
2786 | ||
2787 | static void memcg_schedule_register_cache(struct mem_cgroup *memcg, | |
2788 | struct kmem_cache *cachep) | |
2789 | { | |
2790 | /* | |
2791 | * We need to stop accounting when we kmalloc, because if the | |
2792 | * corresponding kmalloc cache is not yet created, the first allocation | |
2793 | * in __memcg_schedule_register_cache will recurse. | |
2794 | * | |
2795 | * However, it is better to enclose the whole function. Depending on | |
2796 | * the debugging options enabled, INIT_WORK(), for instance, can | |
2797 | * trigger an allocation. This too, will make us recurse. Because at | |
2798 | * this point we can't allow ourselves back into memcg_kmem_get_cache, | |
2799 | * the safest choice is to do it like this, wrapping the whole function. | |
2800 | */ | |
2801 | memcg_stop_kmem_account(); | |
2802 | __memcg_schedule_register_cache(memcg, cachep); | |
2803 | memcg_resume_kmem_account(); | |
2804 | } | |
2805 | ||
2806 | int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order) | |
2807 | { | |
2808 | unsigned int nr_pages = 1 << order; | |
2809 | int res; | |
2810 | ||
2811 | res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages); | |
2812 | if (!res) | |
2813 | atomic_add(nr_pages, &cachep->memcg_params->nr_pages); | |
2814 | return res; | |
2815 | } | |
2816 | ||
2817 | void __memcg_uncharge_slab(struct kmem_cache *cachep, int order) | |
2818 | { | |
2819 | unsigned int nr_pages = 1 << order; | |
2820 | ||
2821 | memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages); | |
2822 | atomic_sub(nr_pages, &cachep->memcg_params->nr_pages); | |
2823 | } | |
2824 | ||
2825 | /* | |
2826 | * Return the kmem_cache we're supposed to use for a slab allocation. | |
2827 | * We try to use the current memcg's version of the cache. | |
2828 | * | |
2829 | * If the cache does not exist yet, if we are the first user of it, | |
2830 | * we either create it immediately, if possible, or create it asynchronously | |
2831 | * in a workqueue. | |
2832 | * In the latter case, we will let the current allocation go through with | |
2833 | * the original cache. | |
2834 | * | |
2835 | * Can't be called in interrupt context or from kernel threads. | |
2836 | * This function needs to be called with rcu_read_lock() held. | |
2837 | */ | |
2838 | struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, | |
2839 | gfp_t gfp) | |
2840 | { | |
2841 | struct mem_cgroup *memcg; | |
2842 | struct kmem_cache *memcg_cachep; | |
2843 | ||
2844 | VM_BUG_ON(!cachep->memcg_params); | |
2845 | VM_BUG_ON(!cachep->memcg_params->is_root_cache); | |
2846 | ||
2847 | if (current->memcg_kmem_skip_account) | |
2848 | return cachep; | |
2849 | ||
2850 | rcu_read_lock(); | |
2851 | memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); | |
2852 | ||
2853 | if (!memcg_kmem_is_active(memcg)) | |
2854 | goto out; | |
2855 | ||
2856 | memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg)); | |
2857 | if (likely(memcg_cachep)) { | |
2858 | cachep = memcg_cachep; | |
2859 | goto out; | |
2860 | } | |
2861 | ||
2862 | /* The corresponding put will be done in the workqueue. */ | |
2863 | if (!css_tryget_online(&memcg->css)) | |
2864 | goto out; | |
2865 | rcu_read_unlock(); | |
2866 | ||
2867 | /* | |
2868 | * If we are in a safe context (can wait, and not in interrupt | |
2869 | * context), we could be be predictable and return right away. | |
2870 | * This would guarantee that the allocation being performed | |
2871 | * already belongs in the new cache. | |
2872 | * | |
2873 | * However, there are some clashes that can arrive from locking. | |
2874 | * For instance, because we acquire the slab_mutex while doing | |
2875 | * memcg_create_kmem_cache, this means no further allocation | |
2876 | * could happen with the slab_mutex held. So it's better to | |
2877 | * defer everything. | |
2878 | */ | |
2879 | memcg_schedule_register_cache(memcg, cachep); | |
2880 | return cachep; | |
2881 | out: | |
2882 | rcu_read_unlock(); | |
2883 | return cachep; | |
2884 | } | |
2885 | ||
2886 | /* | |
2887 | * We need to verify if the allocation against current->mm->owner's memcg is | |
2888 | * possible for the given order. But the page is not allocated yet, so we'll | |
2889 | * need a further commit step to do the final arrangements. | |
2890 | * | |
2891 | * It is possible for the task to switch cgroups in this mean time, so at | |
2892 | * commit time, we can't rely on task conversion any longer. We'll then use | |
2893 | * the handle argument to return to the caller which cgroup we should commit | |
2894 | * against. We could also return the memcg directly and avoid the pointer | |
2895 | * passing, but a boolean return value gives better semantics considering | |
2896 | * the compiled-out case as well. | |
2897 | * | |
2898 | * Returning true means the allocation is possible. | |
2899 | */ | |
2900 | bool | |
2901 | __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) | |
2902 | { | |
2903 | struct mem_cgroup *memcg; | |
2904 | int ret; | |
2905 | ||
2906 | *_memcg = NULL; | |
2907 | ||
2908 | /* | |
2909 | * Disabling accounting is only relevant for some specific memcg | |
2910 | * internal allocations. Therefore we would initially not have such | |
2911 | * check here, since direct calls to the page allocator that are | |
2912 | * accounted to kmemcg (alloc_kmem_pages and friends) only happen | |
2913 | * outside memcg core. We are mostly concerned with cache allocations, | |
2914 | * and by having this test at memcg_kmem_get_cache, we are already able | |
2915 | * to relay the allocation to the root cache and bypass the memcg cache | |
2916 | * altogether. | |
2917 | * | |
2918 | * There is one exception, though: the SLUB allocator does not create | |
2919 | * large order caches, but rather service large kmallocs directly from | |
2920 | * the page allocator. Therefore, the following sequence when backed by | |
2921 | * the SLUB allocator: | |
2922 | * | |
2923 | * memcg_stop_kmem_account(); | |
2924 | * kmalloc(<large_number>) | |
2925 | * memcg_resume_kmem_account(); | |
2926 | * | |
2927 | * would effectively ignore the fact that we should skip accounting, | |
2928 | * since it will drive us directly to this function without passing | |
2929 | * through the cache selector memcg_kmem_get_cache. Such large | |
2930 | * allocations are extremely rare but can happen, for instance, for the | |
2931 | * cache arrays. We bring this test here. | |
2932 | */ | |
2933 | if (current->memcg_kmem_skip_account) | |
2934 | return true; | |
2935 | ||
2936 | memcg = get_mem_cgroup_from_mm(current->mm); | |
2937 | ||
2938 | if (!memcg_kmem_is_active(memcg)) { | |
2939 | css_put(&memcg->css); | |
2940 | return true; | |
2941 | } | |
2942 | ||
2943 | ret = memcg_charge_kmem(memcg, gfp, 1 << order); | |
2944 | if (!ret) | |
2945 | *_memcg = memcg; | |
2946 | ||
2947 | css_put(&memcg->css); | |
2948 | return (ret == 0); | |
2949 | } | |
2950 | ||
2951 | void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, | |
2952 | int order) | |
2953 | { | |
2954 | VM_BUG_ON(mem_cgroup_is_root(memcg)); | |
2955 | ||
2956 | /* The page allocation failed. Revert */ | |
2957 | if (!page) { | |
2958 | memcg_uncharge_kmem(memcg, 1 << order); | |
2959 | return; | |
2960 | } | |
2961 | page->mem_cgroup = memcg; | |
2962 | } | |
2963 | ||
2964 | void __memcg_kmem_uncharge_pages(struct page *page, int order) | |
2965 | { | |
2966 | struct mem_cgroup *memcg = page->mem_cgroup; | |
2967 | ||
2968 | if (!memcg) | |
2969 | return; | |
2970 | ||
2971 | VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); | |
2972 | ||
2973 | memcg_uncharge_kmem(memcg, 1 << order); | |
2974 | page->mem_cgroup = NULL; | |
2975 | } | |
2976 | #else | |
2977 | static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg) | |
2978 | { | |
2979 | } | |
2980 | #endif /* CONFIG_MEMCG_KMEM */ | |
2981 | ||
2982 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
2983 | ||
2984 | /* | |
2985 | * Because tail pages are not marked as "used", set it. We're under | |
2986 | * zone->lru_lock, 'splitting on pmd' and compound_lock. | |
2987 | * charge/uncharge will be never happen and move_account() is done under | |
2988 | * compound_lock(), so we don't have to take care of races. | |
2989 | */ | |
2990 | void mem_cgroup_split_huge_fixup(struct page *head) | |
2991 | { | |
2992 | int i; | |
2993 | ||
2994 | if (mem_cgroup_disabled()) | |
2995 | return; | |
2996 | ||
2997 | for (i = 1; i < HPAGE_PMD_NR; i++) | |
2998 | head[i].mem_cgroup = head->mem_cgroup; | |
2999 | ||
3000 | __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE], | |
3001 | HPAGE_PMD_NR); | |
3002 | } | |
3003 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | |
3004 | ||
3005 | /** | |
3006 | * mem_cgroup_move_account - move account of the page | |
3007 | * @page: the page | |
3008 | * @nr_pages: number of regular pages (>1 for huge pages) | |
3009 | * @from: mem_cgroup which the page is moved from. | |
3010 | * @to: mem_cgroup which the page is moved to. @from != @to. | |
3011 | * | |
3012 | * The caller must confirm following. | |
3013 | * - page is not on LRU (isolate_page() is useful.) | |
3014 | * - compound_lock is held when nr_pages > 1 | |
3015 | * | |
3016 | * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" | |
3017 | * from old cgroup. | |
3018 | */ | |
3019 | static int mem_cgroup_move_account(struct page *page, | |
3020 | unsigned int nr_pages, | |
3021 | struct mem_cgroup *from, | |
3022 | struct mem_cgroup *to) | |
3023 | { | |
3024 | unsigned long flags; | |
3025 | int ret; | |
3026 | ||
3027 | VM_BUG_ON(from == to); | |
3028 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
3029 | /* | |
3030 | * The page is isolated from LRU. So, collapse function | |
3031 | * will not handle this page. But page splitting can happen. | |
3032 | * Do this check under compound_page_lock(). The caller should | |
3033 | * hold it. | |
3034 | */ | |
3035 | ret = -EBUSY; | |
3036 | if (nr_pages > 1 && !PageTransHuge(page)) | |
3037 | goto out; | |
3038 | ||
3039 | /* | |
3040 | * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup | |
3041 | * of its source page while we change it: page migration takes | |
3042 | * both pages off the LRU, but page cache replacement doesn't. | |
3043 | */ | |
3044 | if (!trylock_page(page)) | |
3045 | goto out; | |
3046 | ||
3047 | ret = -EINVAL; | |
3048 | if (page->mem_cgroup != from) | |
3049 | goto out_unlock; | |
3050 | ||
3051 | spin_lock_irqsave(&from->move_lock, flags); | |
3052 | ||
3053 | if (!PageAnon(page) && page_mapped(page)) { | |
3054 | __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], | |
3055 | nr_pages); | |
3056 | __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], | |
3057 | nr_pages); | |
3058 | } | |
3059 | ||
3060 | if (PageWriteback(page)) { | |
3061 | __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], | |
3062 | nr_pages); | |
3063 | __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], | |
3064 | nr_pages); | |
3065 | } | |
3066 | ||
3067 | /* | |
3068 | * It is safe to change page->mem_cgroup here because the page | |
3069 | * is referenced, charged, and isolated - we can't race with | |
3070 | * uncharging, charging, migration, or LRU putback. | |
3071 | */ | |
3072 | ||
3073 | /* caller should have done css_get */ | |
3074 | page->mem_cgroup = to; | |
3075 | spin_unlock_irqrestore(&from->move_lock, flags); | |
3076 | ||
3077 | ret = 0; | |
3078 | ||
3079 | local_irq_disable(); | |
3080 | mem_cgroup_charge_statistics(to, page, nr_pages); | |
3081 | memcg_check_events(to, page); | |
3082 | mem_cgroup_charge_statistics(from, page, -nr_pages); | |
3083 | memcg_check_events(from, page); | |
3084 | local_irq_enable(); | |
3085 | out_unlock: | |
3086 | unlock_page(page); | |
3087 | out: | |
3088 | return ret; | |
3089 | } | |
3090 | ||
3091 | #ifdef CONFIG_MEMCG_SWAP | |
3092 | static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, | |
3093 | bool charge) | |
3094 | { | |
3095 | int val = (charge) ? 1 : -1; | |
3096 | this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); | |
3097 | } | |
3098 | ||
3099 | /** | |
3100 | * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. | |
3101 | * @entry: swap entry to be moved | |
3102 | * @from: mem_cgroup which the entry is moved from | |
3103 | * @to: mem_cgroup which the entry is moved to | |
3104 | * | |
3105 | * It succeeds only when the swap_cgroup's record for this entry is the same | |
3106 | * as the mem_cgroup's id of @from. | |
3107 | * | |
3108 | * Returns 0 on success, -EINVAL on failure. | |
3109 | * | |
3110 | * The caller must have charged to @to, IOW, called page_counter_charge() about | |
3111 | * both res and memsw, and called css_get(). | |
3112 | */ | |
3113 | static int mem_cgroup_move_swap_account(swp_entry_t entry, | |
3114 | struct mem_cgroup *from, struct mem_cgroup *to) | |
3115 | { | |
3116 | unsigned short old_id, new_id; | |
3117 | ||
3118 | old_id = mem_cgroup_id(from); | |
3119 | new_id = mem_cgroup_id(to); | |
3120 | ||
3121 | if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { | |
3122 | mem_cgroup_swap_statistics(from, false); | |
3123 | mem_cgroup_swap_statistics(to, true); | |
3124 | /* | |
3125 | * This function is only called from task migration context now. | |
3126 | * It postpones page_counter and refcount handling till the end | |
3127 | * of task migration(mem_cgroup_clear_mc()) for performance | |
3128 | * improvement. But we cannot postpone css_get(to) because if | |
3129 | * the process that has been moved to @to does swap-in, the | |
3130 | * refcount of @to might be decreased to 0. | |
3131 | * | |
3132 | * We are in attach() phase, so the cgroup is guaranteed to be | |
3133 | * alive, so we can just call css_get(). | |
3134 | */ | |
3135 | css_get(&to->css); | |
3136 | return 0; | |
3137 | } | |
3138 | return -EINVAL; | |
3139 | } | |
3140 | #else | |
3141 | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, | |
3142 | struct mem_cgroup *from, struct mem_cgroup *to) | |
3143 | { | |
3144 | return -EINVAL; | |
3145 | } | |
3146 | #endif | |
3147 | ||
3148 | static DEFINE_MUTEX(memcg_limit_mutex); | |
3149 | ||
3150 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, | |
3151 | unsigned long limit) | |
3152 | { | |
3153 | unsigned long curusage; | |
3154 | unsigned long oldusage; | |
3155 | bool enlarge = false; | |
3156 | int retry_count; | |
3157 | int ret; | |
3158 | ||
3159 | /* | |
3160 | * For keeping hierarchical_reclaim simple, how long we should retry | |
3161 | * is depends on callers. We set our retry-count to be function | |
3162 | * of # of children which we should visit in this loop. | |
3163 | */ | |
3164 | retry_count = MEM_CGROUP_RECLAIM_RETRIES * | |
3165 | mem_cgroup_count_children(memcg); | |
3166 | ||
3167 | oldusage = page_counter_read(&memcg->memory); | |
3168 | ||
3169 | do { | |
3170 | if (signal_pending(current)) { | |
3171 | ret = -EINTR; | |
3172 | break; | |
3173 | } | |
3174 | ||
3175 | mutex_lock(&memcg_limit_mutex); | |
3176 | if (limit > memcg->memsw.limit) { | |
3177 | mutex_unlock(&memcg_limit_mutex); | |
3178 | ret = -EINVAL; | |
3179 | break; | |
3180 | } | |
3181 | if (limit > memcg->memory.limit) | |
3182 | enlarge = true; | |
3183 | ret = page_counter_limit(&memcg->memory, limit); | |
3184 | mutex_unlock(&memcg_limit_mutex); | |
3185 | ||
3186 | if (!ret) | |
3187 | break; | |
3188 | ||
3189 | try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); | |
3190 | ||
3191 | curusage = page_counter_read(&memcg->memory); | |
3192 | /* Usage is reduced ? */ | |
3193 | if (curusage >= oldusage) | |
3194 | retry_count--; | |
3195 | else | |
3196 | oldusage = curusage; | |
3197 | } while (retry_count); | |
3198 | ||
3199 | if (!ret && enlarge) | |
3200 | memcg_oom_recover(memcg); | |
3201 | ||
3202 | return ret; | |
3203 | } | |
3204 | ||
3205 | static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, | |
3206 | unsigned long limit) | |
3207 | { | |
3208 | unsigned long curusage; | |
3209 | unsigned long oldusage; | |
3210 | bool enlarge = false; | |
3211 | int retry_count; | |
3212 | int ret; | |
3213 | ||
3214 | /* see mem_cgroup_resize_res_limit */ | |
3215 | retry_count = MEM_CGROUP_RECLAIM_RETRIES * | |
3216 | mem_cgroup_count_children(memcg); | |
3217 | ||
3218 | oldusage = page_counter_read(&memcg->memsw); | |
3219 | ||
3220 | do { | |
3221 | if (signal_pending(current)) { | |
3222 | ret = -EINTR; | |
3223 | break; | |
3224 | } | |
3225 | ||
3226 | mutex_lock(&memcg_limit_mutex); | |
3227 | if (limit < memcg->memory.limit) { | |
3228 | mutex_unlock(&memcg_limit_mutex); | |
3229 | ret = -EINVAL; | |
3230 | break; | |
3231 | } | |
3232 | if (limit > memcg->memsw.limit) | |
3233 | enlarge = true; | |
3234 | ret = page_counter_limit(&memcg->memsw, limit); | |
3235 | mutex_unlock(&memcg_limit_mutex); | |
3236 | ||
3237 | if (!ret) | |
3238 | break; | |
3239 | ||
3240 | try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); | |
3241 | ||
3242 | curusage = page_counter_read(&memcg->memsw); | |
3243 | /* Usage is reduced ? */ | |
3244 | if (curusage >= oldusage) | |
3245 | retry_count--; | |
3246 | else | |
3247 | oldusage = curusage; | |
3248 | } while (retry_count); | |
3249 | ||
3250 | if (!ret && enlarge) | |
3251 | memcg_oom_recover(memcg); | |
3252 | ||
3253 | return ret; | |
3254 | } | |
3255 | ||
3256 | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, | |
3257 | gfp_t gfp_mask, | |
3258 | unsigned long *total_scanned) | |
3259 | { | |
3260 | unsigned long nr_reclaimed = 0; | |
3261 | struct mem_cgroup_per_zone *mz, *next_mz = NULL; | |
3262 | unsigned long reclaimed; | |
3263 | int loop = 0; | |
3264 | struct mem_cgroup_tree_per_zone *mctz; | |
3265 | unsigned long excess; | |
3266 | unsigned long nr_scanned; | |
3267 | ||
3268 | if (order > 0) | |
3269 | return 0; | |
3270 | ||
3271 | mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); | |
3272 | /* | |
3273 | * This loop can run a while, specially if mem_cgroup's continuously | |
3274 | * keep exceeding their soft limit and putting the system under | |
3275 | * pressure | |
3276 | */ | |
3277 | do { | |
3278 | if (next_mz) | |
3279 | mz = next_mz; | |
3280 | else | |
3281 | mz = mem_cgroup_largest_soft_limit_node(mctz); | |
3282 | if (!mz) | |
3283 | break; | |
3284 | ||
3285 | nr_scanned = 0; | |
3286 | reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, | |
3287 | gfp_mask, &nr_scanned); | |
3288 | nr_reclaimed += reclaimed; | |
3289 | *total_scanned += nr_scanned; | |
3290 | spin_lock_irq(&mctz->lock); | |
3291 | __mem_cgroup_remove_exceeded(mz, mctz); | |
3292 | ||
3293 | /* | |
3294 | * If we failed to reclaim anything from this memory cgroup | |
3295 | * it is time to move on to the next cgroup | |
3296 | */ | |
3297 | next_mz = NULL; | |
3298 | if (!reclaimed) | |
3299 | next_mz = __mem_cgroup_largest_soft_limit_node(mctz); | |
3300 | ||
3301 | excess = soft_limit_excess(mz->memcg); | |
3302 | /* | |
3303 | * One school of thought says that we should not add | |
3304 | * back the node to the tree if reclaim returns 0. | |
3305 | * But our reclaim could return 0, simply because due | |
3306 | * to priority we are exposing a smaller subset of | |
3307 | * memory to reclaim from. Consider this as a longer | |
3308 | * term TODO. | |
3309 | */ | |
3310 | /* If excess == 0, no tree ops */ | |
3311 | __mem_cgroup_insert_exceeded(mz, mctz, excess); | |
3312 | spin_unlock_irq(&mctz->lock); | |
3313 | css_put(&mz->memcg->css); | |
3314 | loop++; | |
3315 | /* | |
3316 | * Could not reclaim anything and there are no more | |
3317 | * mem cgroups to try or we seem to be looping without | |
3318 | * reclaiming anything. | |
3319 | */ | |
3320 | if (!nr_reclaimed && | |
3321 | (next_mz == NULL || | |
3322 | loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) | |
3323 | break; | |
3324 | } while (!nr_reclaimed); | |
3325 | if (next_mz) | |
3326 | css_put(&next_mz->memcg->css); | |
3327 | return nr_reclaimed; | |
3328 | } | |
3329 | ||
3330 | /* | |
3331 | * Test whether @memcg has children, dead or alive. Note that this | |
3332 | * function doesn't care whether @memcg has use_hierarchy enabled and | |
3333 | * returns %true if there are child csses according to the cgroup | |
3334 | * hierarchy. Testing use_hierarchy is the caller's responsiblity. | |
3335 | */ | |
3336 | static inline bool memcg_has_children(struct mem_cgroup *memcg) | |
3337 | { | |
3338 | bool ret; | |
3339 | ||
3340 | /* | |
3341 | * The lock does not prevent addition or deletion of children, but | |
3342 | * it prevents a new child from being initialized based on this | |
3343 | * parent in css_online(), so it's enough to decide whether | |
3344 | * hierarchically inherited attributes can still be changed or not. | |
3345 | */ | |
3346 | lockdep_assert_held(&memcg_create_mutex); | |
3347 | ||
3348 | rcu_read_lock(); | |
3349 | ret = css_next_child(NULL, &memcg->css); | |
3350 | rcu_read_unlock(); | |
3351 | return ret; | |
3352 | } | |
3353 | ||
3354 | /* | |
3355 | * Reclaims as many pages from the given memcg as possible and moves | |
3356 | * the rest to the parent. | |
3357 | * | |
3358 | * Caller is responsible for holding css reference for memcg. | |
3359 | */ | |
3360 | static int mem_cgroup_force_empty(struct mem_cgroup *memcg) | |
3361 | { | |
3362 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | |
3363 | ||
3364 | /* we call try-to-free pages for make this cgroup empty */ | |
3365 | lru_add_drain_all(); | |
3366 | /* try to free all pages in this cgroup */ | |
3367 | while (nr_retries && page_counter_read(&memcg->memory)) { | |
3368 | int progress; | |
3369 | ||
3370 | if (signal_pending(current)) | |
3371 | return -EINTR; | |
3372 | ||
3373 | progress = try_to_free_mem_cgroup_pages(memcg, 1, | |
3374 | GFP_KERNEL, true); | |
3375 | if (!progress) { | |
3376 | nr_retries--; | |
3377 | /* maybe some writeback is necessary */ | |
3378 | congestion_wait(BLK_RW_ASYNC, HZ/10); | |
3379 | } | |
3380 | ||
3381 | } | |
3382 | ||
3383 | return 0; | |
3384 | } | |
3385 | ||
3386 | static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, | |
3387 | char *buf, size_t nbytes, | |
3388 | loff_t off) | |
3389 | { | |
3390 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
3391 | ||
3392 | if (mem_cgroup_is_root(memcg)) | |
3393 | return -EINVAL; | |
3394 | return mem_cgroup_force_empty(memcg) ?: nbytes; | |
3395 | } | |
3396 | ||
3397 | static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, | |
3398 | struct cftype *cft) | |
3399 | { | |
3400 | return mem_cgroup_from_css(css)->use_hierarchy; | |
3401 | } | |
3402 | ||
3403 | static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, | |
3404 | struct cftype *cft, u64 val) | |
3405 | { | |
3406 | int retval = 0; | |
3407 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
3408 | struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); | |
3409 | ||
3410 | mutex_lock(&memcg_create_mutex); | |
3411 | ||
3412 | if (memcg->use_hierarchy == val) | |
3413 | goto out; | |
3414 | ||
3415 | /* | |
3416 | * If parent's use_hierarchy is set, we can't make any modifications | |
3417 | * in the child subtrees. If it is unset, then the change can | |
3418 | * occur, provided the current cgroup has no children. | |
3419 | * | |
3420 | * For the root cgroup, parent_mem is NULL, we allow value to be | |
3421 | * set if there are no children. | |
3422 | */ | |
3423 | if ((!parent_memcg || !parent_memcg->use_hierarchy) && | |
3424 | (val == 1 || val == 0)) { | |
3425 | if (!memcg_has_children(memcg)) | |
3426 | memcg->use_hierarchy = val; | |
3427 | else | |
3428 | retval = -EBUSY; | |
3429 | } else | |
3430 | retval = -EINVAL; | |
3431 | ||
3432 | out: | |
3433 | mutex_unlock(&memcg_create_mutex); | |
3434 | ||
3435 | return retval; | |
3436 | } | |
3437 | ||
3438 | static unsigned long tree_stat(struct mem_cgroup *memcg, | |
3439 | enum mem_cgroup_stat_index idx) | |
3440 | { | |
3441 | struct mem_cgroup *iter; | |
3442 | long val = 0; | |
3443 | ||
3444 | /* Per-cpu values can be negative, use a signed accumulator */ | |
3445 | for_each_mem_cgroup_tree(iter, memcg) | |
3446 | val += mem_cgroup_read_stat(iter, idx); | |
3447 | ||
3448 | if (val < 0) /* race ? */ | |
3449 | val = 0; | |
3450 | return val; | |
3451 | } | |
3452 | ||
3453 | static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) | |
3454 | { | |
3455 | u64 val; | |
3456 | ||
3457 | if (mem_cgroup_is_root(memcg)) { | |
3458 | val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE); | |
3459 | val += tree_stat(memcg, MEM_CGROUP_STAT_RSS); | |
3460 | if (swap) | |
3461 | val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP); | |
3462 | } else { | |
3463 | if (!swap) | |
3464 | val = page_counter_read(&memcg->memory); | |
3465 | else | |
3466 | val = page_counter_read(&memcg->memsw); | |
3467 | } | |
3468 | return val << PAGE_SHIFT; | |
3469 | } | |
3470 | ||
3471 | enum { | |
3472 | RES_USAGE, | |
3473 | RES_LIMIT, | |
3474 | RES_MAX_USAGE, | |
3475 | RES_FAILCNT, | |
3476 | RES_SOFT_LIMIT, | |
3477 | }; | |
3478 | ||
3479 | static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, | |
3480 | struct cftype *cft) | |
3481 | { | |
3482 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
3483 | struct page_counter *counter; | |
3484 | ||
3485 | switch (MEMFILE_TYPE(cft->private)) { | |
3486 | case _MEM: | |
3487 | counter = &memcg->memory; | |
3488 | break; | |
3489 | case _MEMSWAP: | |
3490 | counter = &memcg->memsw; | |
3491 | break; | |
3492 | case _KMEM: | |
3493 | counter = &memcg->kmem; | |
3494 | break; | |
3495 | default: | |
3496 | BUG(); | |
3497 | } | |
3498 | ||
3499 | switch (MEMFILE_ATTR(cft->private)) { | |
3500 | case RES_USAGE: | |
3501 | if (counter == &memcg->memory) | |
3502 | return mem_cgroup_usage(memcg, false); | |
3503 | if (counter == &memcg->memsw) | |
3504 | return mem_cgroup_usage(memcg, true); | |
3505 | return (u64)page_counter_read(counter) * PAGE_SIZE; | |
3506 | case RES_LIMIT: | |
3507 | return (u64)counter->limit * PAGE_SIZE; | |
3508 | case RES_MAX_USAGE: | |
3509 | return (u64)counter->watermark * PAGE_SIZE; | |
3510 | case RES_FAILCNT: | |
3511 | return counter->failcnt; | |
3512 | case RES_SOFT_LIMIT: | |
3513 | return (u64)memcg->soft_limit * PAGE_SIZE; | |
3514 | default: | |
3515 | BUG(); | |
3516 | } | |
3517 | } | |
3518 | ||
3519 | #ifdef CONFIG_MEMCG_KMEM | |
3520 | static int memcg_activate_kmem(struct mem_cgroup *memcg, | |
3521 | unsigned long nr_pages) | |
3522 | { | |
3523 | int err = 0; | |
3524 | int memcg_id; | |
3525 | ||
3526 | if (memcg_kmem_is_active(memcg)) | |
3527 | return 0; | |
3528 | ||
3529 | /* | |
3530 | * For simplicity, we won't allow this to be disabled. It also can't | |
3531 | * be changed if the cgroup has children already, or if tasks had | |
3532 | * already joined. | |
3533 | * | |
3534 | * If tasks join before we set the limit, a person looking at | |
3535 | * kmem.usage_in_bytes will have no way to determine when it took | |
3536 | * place, which makes the value quite meaningless. | |
3537 | * | |
3538 | * After it first became limited, changes in the value of the limit are | |
3539 | * of course permitted. | |
3540 | */ | |
3541 | mutex_lock(&memcg_create_mutex); | |
3542 | if (cgroup_has_tasks(memcg->css.cgroup) || | |
3543 | (memcg->use_hierarchy && memcg_has_children(memcg))) | |
3544 | err = -EBUSY; | |
3545 | mutex_unlock(&memcg_create_mutex); | |
3546 | if (err) | |
3547 | goto out; | |
3548 | ||
3549 | memcg_id = memcg_alloc_cache_id(); | |
3550 | if (memcg_id < 0) { | |
3551 | err = memcg_id; | |
3552 | goto out; | |
3553 | } | |
3554 | ||
3555 | /* | |
3556 | * We couldn't have accounted to this cgroup, because it hasn't got | |
3557 | * activated yet, so this should succeed. | |
3558 | */ | |
3559 | err = page_counter_limit(&memcg->kmem, nr_pages); | |
3560 | VM_BUG_ON(err); | |
3561 | ||
3562 | static_key_slow_inc(&memcg_kmem_enabled_key); | |
3563 | /* | |
3564 | * A memory cgroup is considered kmem-active as soon as it gets | |
3565 | * kmemcg_id. Setting the id after enabling static branching will | |
3566 | * guarantee no one starts accounting before all call sites are | |
3567 | * patched. | |
3568 | */ | |
3569 | memcg->kmemcg_id = memcg_id; | |
3570 | out: | |
3571 | return err; | |
3572 | } | |
3573 | ||
3574 | static int memcg_update_kmem_limit(struct mem_cgroup *memcg, | |
3575 | unsigned long limit) | |
3576 | { | |
3577 | int ret; | |
3578 | ||
3579 | mutex_lock(&memcg_limit_mutex); | |
3580 | if (!memcg_kmem_is_active(memcg)) | |
3581 | ret = memcg_activate_kmem(memcg, limit); | |
3582 | else | |
3583 | ret = page_counter_limit(&memcg->kmem, limit); | |
3584 | mutex_unlock(&memcg_limit_mutex); | |
3585 | return ret; | |
3586 | } | |
3587 | ||
3588 | static int memcg_propagate_kmem(struct mem_cgroup *memcg) | |
3589 | { | |
3590 | int ret = 0; | |
3591 | struct mem_cgroup *parent = parent_mem_cgroup(memcg); | |
3592 | ||
3593 | if (!parent) | |
3594 | return 0; | |
3595 | ||
3596 | mutex_lock(&memcg_limit_mutex); | |
3597 | /* | |
3598 | * If the parent cgroup is not kmem-active now, it cannot be activated | |
3599 | * after this point, because it has at least one child already. | |
3600 | */ | |
3601 | if (memcg_kmem_is_active(parent)) | |
3602 | ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX); | |
3603 | mutex_unlock(&memcg_limit_mutex); | |
3604 | return ret; | |
3605 | } | |
3606 | #else | |
3607 | static int memcg_update_kmem_limit(struct mem_cgroup *memcg, | |
3608 | unsigned long limit) | |
3609 | { | |
3610 | return -EINVAL; | |
3611 | } | |
3612 | #endif /* CONFIG_MEMCG_KMEM */ | |
3613 | ||
3614 | /* | |
3615 | * The user of this function is... | |
3616 | * RES_LIMIT. | |
3617 | */ | |
3618 | static ssize_t mem_cgroup_write(struct kernfs_open_file *of, | |
3619 | char *buf, size_t nbytes, loff_t off) | |
3620 | { | |
3621 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
3622 | unsigned long nr_pages; | |
3623 | int ret; | |
3624 | ||
3625 | buf = strstrip(buf); | |
3626 | ret = page_counter_memparse(buf, &nr_pages); | |
3627 | if (ret) | |
3628 | return ret; | |
3629 | ||
3630 | switch (MEMFILE_ATTR(of_cft(of)->private)) { | |
3631 | case RES_LIMIT: | |
3632 | if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ | |
3633 | ret = -EINVAL; | |
3634 | break; | |
3635 | } | |
3636 | switch (MEMFILE_TYPE(of_cft(of)->private)) { | |
3637 | case _MEM: | |
3638 | ret = mem_cgroup_resize_limit(memcg, nr_pages); | |
3639 | break; | |
3640 | case _MEMSWAP: | |
3641 | ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); | |
3642 | break; | |
3643 | case _KMEM: | |
3644 | ret = memcg_update_kmem_limit(memcg, nr_pages); | |
3645 | break; | |
3646 | } | |
3647 | break; | |
3648 | case RES_SOFT_LIMIT: | |
3649 | memcg->soft_limit = nr_pages; | |
3650 | ret = 0; | |
3651 | break; | |
3652 | } | |
3653 | return ret ?: nbytes; | |
3654 | } | |
3655 | ||
3656 | static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, | |
3657 | size_t nbytes, loff_t off) | |
3658 | { | |
3659 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
3660 | struct page_counter *counter; | |
3661 | ||
3662 | switch (MEMFILE_TYPE(of_cft(of)->private)) { | |
3663 | case _MEM: | |
3664 | counter = &memcg->memory; | |
3665 | break; | |
3666 | case _MEMSWAP: | |
3667 | counter = &memcg->memsw; | |
3668 | break; | |
3669 | case _KMEM: | |
3670 | counter = &memcg->kmem; | |
3671 | break; | |
3672 | default: | |
3673 | BUG(); | |
3674 | } | |
3675 | ||
3676 | switch (MEMFILE_ATTR(of_cft(of)->private)) { | |
3677 | case RES_MAX_USAGE: | |
3678 | page_counter_reset_watermark(counter); | |
3679 | break; | |
3680 | case RES_FAILCNT: | |
3681 | counter->failcnt = 0; | |
3682 | break; | |
3683 | default: | |
3684 | BUG(); | |
3685 | } | |
3686 | ||
3687 | return nbytes; | |
3688 | } | |
3689 | ||
3690 | static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, | |
3691 | struct cftype *cft) | |
3692 | { | |
3693 | return mem_cgroup_from_css(css)->move_charge_at_immigrate; | |
3694 | } | |
3695 | ||
3696 | #ifdef CONFIG_MMU | |
3697 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, | |
3698 | struct cftype *cft, u64 val) | |
3699 | { | |
3700 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
3701 | ||
3702 | if (val >= (1 << NR_MOVE_TYPE)) | |
3703 | return -EINVAL; | |
3704 | ||
3705 | /* | |
3706 | * No kind of locking is needed in here, because ->can_attach() will | |
3707 | * check this value once in the beginning of the process, and then carry | |
3708 | * on with stale data. This means that changes to this value will only | |
3709 | * affect task migrations starting after the change. | |
3710 | */ | |
3711 | memcg->move_charge_at_immigrate = val; | |
3712 | return 0; | |
3713 | } | |
3714 | #else | |
3715 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, | |
3716 | struct cftype *cft, u64 val) | |
3717 | { | |
3718 | return -ENOSYS; | |
3719 | } | |
3720 | #endif | |
3721 | ||
3722 | #ifdef CONFIG_NUMA | |
3723 | static int memcg_numa_stat_show(struct seq_file *m, void *v) | |
3724 | { | |
3725 | struct numa_stat { | |
3726 | const char *name; | |
3727 | unsigned int lru_mask; | |
3728 | }; | |
3729 | ||
3730 | static const struct numa_stat stats[] = { | |
3731 | { "total", LRU_ALL }, | |
3732 | { "file", LRU_ALL_FILE }, | |
3733 | { "anon", LRU_ALL_ANON }, | |
3734 | { "unevictable", BIT(LRU_UNEVICTABLE) }, | |
3735 | }; | |
3736 | const struct numa_stat *stat; | |
3737 | int nid; | |
3738 | unsigned long nr; | |
3739 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
3740 | ||
3741 | for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { | |
3742 | nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); | |
3743 | seq_printf(m, "%s=%lu", stat->name, nr); | |
3744 | for_each_node_state(nid, N_MEMORY) { | |
3745 | nr = mem_cgroup_node_nr_lru_pages(memcg, nid, | |
3746 | stat->lru_mask); | |
3747 | seq_printf(m, " N%d=%lu", nid, nr); | |
3748 | } | |
3749 | seq_putc(m, '\n'); | |
3750 | } | |
3751 | ||
3752 | for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { | |
3753 | struct mem_cgroup *iter; | |
3754 | ||
3755 | nr = 0; | |
3756 | for_each_mem_cgroup_tree(iter, memcg) | |
3757 | nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); | |
3758 | seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); | |
3759 | for_each_node_state(nid, N_MEMORY) { | |
3760 | nr = 0; | |
3761 | for_each_mem_cgroup_tree(iter, memcg) | |
3762 | nr += mem_cgroup_node_nr_lru_pages( | |
3763 | iter, nid, stat->lru_mask); | |
3764 | seq_printf(m, " N%d=%lu", nid, nr); | |
3765 | } | |
3766 | seq_putc(m, '\n'); | |
3767 | } | |
3768 | ||
3769 | return 0; | |
3770 | } | |
3771 | #endif /* CONFIG_NUMA */ | |
3772 | ||
3773 | static inline void mem_cgroup_lru_names_not_uptodate(void) | |
3774 | { | |
3775 | BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); | |
3776 | } | |
3777 | ||
3778 | static int memcg_stat_show(struct seq_file *m, void *v) | |
3779 | { | |
3780 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
3781 | unsigned long memory, memsw; | |
3782 | struct mem_cgroup *mi; | |
3783 | unsigned int i; | |
3784 | ||
3785 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | |
3786 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) | |
3787 | continue; | |
3788 | seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], | |
3789 | mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); | |
3790 | } | |
3791 | ||
3792 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) | |
3793 | seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], | |
3794 | mem_cgroup_read_events(memcg, i)); | |
3795 | ||
3796 | for (i = 0; i < NR_LRU_LISTS; i++) | |
3797 | seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], | |
3798 | mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); | |
3799 | ||
3800 | /* Hierarchical information */ | |
3801 | memory = memsw = PAGE_COUNTER_MAX; | |
3802 | for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { | |
3803 | memory = min(memory, mi->memory.limit); | |
3804 | memsw = min(memsw, mi->memsw.limit); | |
3805 | } | |
3806 | seq_printf(m, "hierarchical_memory_limit %llu\n", | |
3807 | (u64)memory * PAGE_SIZE); | |
3808 | if (do_swap_account) | |
3809 | seq_printf(m, "hierarchical_memsw_limit %llu\n", | |
3810 | (u64)memsw * PAGE_SIZE); | |
3811 | ||
3812 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | |
3813 | long long val = 0; | |
3814 | ||
3815 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) | |
3816 | continue; | |
3817 | for_each_mem_cgroup_tree(mi, memcg) | |
3818 | val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; | |
3819 | seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); | |
3820 | } | |
3821 | ||
3822 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { | |
3823 | unsigned long long val = 0; | |
3824 | ||
3825 | for_each_mem_cgroup_tree(mi, memcg) | |
3826 | val += mem_cgroup_read_events(mi, i); | |
3827 | seq_printf(m, "total_%s %llu\n", | |
3828 | mem_cgroup_events_names[i], val); | |
3829 | } | |
3830 | ||
3831 | for (i = 0; i < NR_LRU_LISTS; i++) { | |
3832 | unsigned long long val = 0; | |
3833 | ||
3834 | for_each_mem_cgroup_tree(mi, memcg) | |
3835 | val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; | |
3836 | seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); | |
3837 | } | |
3838 | ||
3839 | #ifdef CONFIG_DEBUG_VM | |
3840 | { | |
3841 | int nid, zid; | |
3842 | struct mem_cgroup_per_zone *mz; | |
3843 | struct zone_reclaim_stat *rstat; | |
3844 | unsigned long recent_rotated[2] = {0, 0}; | |
3845 | unsigned long recent_scanned[2] = {0, 0}; | |
3846 | ||
3847 | for_each_online_node(nid) | |
3848 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
3849 | mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; | |
3850 | rstat = &mz->lruvec.reclaim_stat; | |
3851 | ||
3852 | recent_rotated[0] += rstat->recent_rotated[0]; | |
3853 | recent_rotated[1] += rstat->recent_rotated[1]; | |
3854 | recent_scanned[0] += rstat->recent_scanned[0]; | |
3855 | recent_scanned[1] += rstat->recent_scanned[1]; | |
3856 | } | |
3857 | seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); | |
3858 | seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); | |
3859 | seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); | |
3860 | seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); | |
3861 | } | |
3862 | #endif | |
3863 | ||
3864 | return 0; | |
3865 | } | |
3866 | ||
3867 | static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, | |
3868 | struct cftype *cft) | |
3869 | { | |
3870 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
3871 | ||
3872 | return mem_cgroup_swappiness(memcg); | |
3873 | } | |
3874 | ||
3875 | static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, | |
3876 | struct cftype *cft, u64 val) | |
3877 | { | |
3878 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
3879 | ||
3880 | if (val > 100) | |
3881 | return -EINVAL; | |
3882 | ||
3883 | if (css->parent) | |
3884 | memcg->swappiness = val; | |
3885 | else | |
3886 | vm_swappiness = val; | |
3887 | ||
3888 | return 0; | |
3889 | } | |
3890 | ||
3891 | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) | |
3892 | { | |
3893 | struct mem_cgroup_threshold_ary *t; | |
3894 | unsigned long usage; | |
3895 | int i; | |
3896 | ||
3897 | rcu_read_lock(); | |
3898 | if (!swap) | |
3899 | t = rcu_dereference(memcg->thresholds.primary); | |
3900 | else | |
3901 | t = rcu_dereference(memcg->memsw_thresholds.primary); | |
3902 | ||
3903 | if (!t) | |
3904 | goto unlock; | |
3905 | ||
3906 | usage = mem_cgroup_usage(memcg, swap); | |
3907 | ||
3908 | /* | |
3909 | * current_threshold points to threshold just below or equal to usage. | |
3910 | * If it's not true, a threshold was crossed after last | |
3911 | * call of __mem_cgroup_threshold(). | |
3912 | */ | |
3913 | i = t->current_threshold; | |
3914 | ||
3915 | /* | |
3916 | * Iterate backward over array of thresholds starting from | |
3917 | * current_threshold and check if a threshold is crossed. | |
3918 | * If none of thresholds below usage is crossed, we read | |
3919 | * only one element of the array here. | |
3920 | */ | |
3921 | for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) | |
3922 | eventfd_signal(t->entries[i].eventfd, 1); | |
3923 | ||
3924 | /* i = current_threshold + 1 */ | |
3925 | i++; | |
3926 | ||
3927 | /* | |
3928 | * Iterate forward over array of thresholds starting from | |
3929 | * current_threshold+1 and check if a threshold is crossed. | |
3930 | * If none of thresholds above usage is crossed, we read | |
3931 | * only one element of the array here. | |
3932 | */ | |
3933 | for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) | |
3934 | eventfd_signal(t->entries[i].eventfd, 1); | |
3935 | ||
3936 | /* Update current_threshold */ | |
3937 | t->current_threshold = i - 1; | |
3938 | unlock: | |
3939 | rcu_read_unlock(); | |
3940 | } | |
3941 | ||
3942 | static void mem_cgroup_threshold(struct mem_cgroup *memcg) | |
3943 | { | |
3944 | while (memcg) { | |
3945 | __mem_cgroup_threshold(memcg, false); | |
3946 | if (do_swap_account) | |
3947 | __mem_cgroup_threshold(memcg, true); | |
3948 | ||
3949 | memcg = parent_mem_cgroup(memcg); | |
3950 | } | |
3951 | } | |
3952 | ||
3953 | static int compare_thresholds(const void *a, const void *b) | |
3954 | { | |
3955 | const struct mem_cgroup_threshold *_a = a; | |
3956 | const struct mem_cgroup_threshold *_b = b; | |
3957 | ||
3958 | if (_a->threshold > _b->threshold) | |
3959 | return 1; | |
3960 | ||
3961 | if (_a->threshold < _b->threshold) | |
3962 | return -1; | |
3963 | ||
3964 | return 0; | |
3965 | } | |
3966 | ||
3967 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) | |
3968 | { | |
3969 | struct mem_cgroup_eventfd_list *ev; | |
3970 | ||
3971 | spin_lock(&memcg_oom_lock); | |
3972 | ||
3973 | list_for_each_entry(ev, &memcg->oom_notify, list) | |
3974 | eventfd_signal(ev->eventfd, 1); | |
3975 | ||
3976 | spin_unlock(&memcg_oom_lock); | |
3977 | return 0; | |
3978 | } | |
3979 | ||
3980 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) | |
3981 | { | |
3982 | struct mem_cgroup *iter; | |
3983 | ||
3984 | for_each_mem_cgroup_tree(iter, memcg) | |
3985 | mem_cgroup_oom_notify_cb(iter); | |
3986 | } | |
3987 | ||
3988 | static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, | |
3989 | struct eventfd_ctx *eventfd, const char *args, enum res_type type) | |
3990 | { | |
3991 | struct mem_cgroup_thresholds *thresholds; | |
3992 | struct mem_cgroup_threshold_ary *new; | |
3993 | unsigned long threshold; | |
3994 | unsigned long usage; | |
3995 | int i, size, ret; | |
3996 | ||
3997 | ret = page_counter_memparse(args, &threshold); | |
3998 | if (ret) | |
3999 | return ret; | |
4000 | ||
4001 | mutex_lock(&memcg->thresholds_lock); | |
4002 | ||
4003 | if (type == _MEM) { | |
4004 | thresholds = &memcg->thresholds; | |
4005 | usage = mem_cgroup_usage(memcg, false); | |
4006 | } else if (type == _MEMSWAP) { | |
4007 | thresholds = &memcg->memsw_thresholds; | |
4008 | usage = mem_cgroup_usage(memcg, true); | |
4009 | } else | |
4010 | BUG(); | |
4011 | ||
4012 | /* Check if a threshold crossed before adding a new one */ | |
4013 | if (thresholds->primary) | |
4014 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | |
4015 | ||
4016 | size = thresholds->primary ? thresholds->primary->size + 1 : 1; | |
4017 | ||
4018 | /* Allocate memory for new array of thresholds */ | |
4019 | new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), | |
4020 | GFP_KERNEL); | |
4021 | if (!new) { | |
4022 | ret = -ENOMEM; | |
4023 | goto unlock; | |
4024 | } | |
4025 | new->size = size; | |
4026 | ||
4027 | /* Copy thresholds (if any) to new array */ | |
4028 | if (thresholds->primary) { | |
4029 | memcpy(new->entries, thresholds->primary->entries, (size - 1) * | |
4030 | sizeof(struct mem_cgroup_threshold)); | |
4031 | } | |
4032 | ||
4033 | /* Add new threshold */ | |
4034 | new->entries[size - 1].eventfd = eventfd; | |
4035 | new->entries[size - 1].threshold = threshold; | |
4036 | ||
4037 | /* Sort thresholds. Registering of new threshold isn't time-critical */ | |
4038 | sort(new->entries, size, sizeof(struct mem_cgroup_threshold), | |
4039 | compare_thresholds, NULL); | |
4040 | ||
4041 | /* Find current threshold */ | |
4042 | new->current_threshold = -1; | |
4043 | for (i = 0; i < size; i++) { | |
4044 | if (new->entries[i].threshold <= usage) { | |
4045 | /* | |
4046 | * new->current_threshold will not be used until | |
4047 | * rcu_assign_pointer(), so it's safe to increment | |
4048 | * it here. | |
4049 | */ | |
4050 | ++new->current_threshold; | |
4051 | } else | |
4052 | break; | |
4053 | } | |
4054 | ||
4055 | /* Free old spare buffer and save old primary buffer as spare */ | |
4056 | kfree(thresholds->spare); | |
4057 | thresholds->spare = thresholds->primary; | |
4058 | ||
4059 | rcu_assign_pointer(thresholds->primary, new); | |
4060 | ||
4061 | /* To be sure that nobody uses thresholds */ | |
4062 | synchronize_rcu(); | |
4063 | ||
4064 | unlock: | |
4065 | mutex_unlock(&memcg->thresholds_lock); | |
4066 | ||
4067 | return ret; | |
4068 | } | |
4069 | ||
4070 | static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, | |
4071 | struct eventfd_ctx *eventfd, const char *args) | |
4072 | { | |
4073 | return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); | |
4074 | } | |
4075 | ||
4076 | static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, | |
4077 | struct eventfd_ctx *eventfd, const char *args) | |
4078 | { | |
4079 | return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); | |
4080 | } | |
4081 | ||
4082 | static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | |
4083 | struct eventfd_ctx *eventfd, enum res_type type) | |
4084 | { | |
4085 | struct mem_cgroup_thresholds *thresholds; | |
4086 | struct mem_cgroup_threshold_ary *new; | |
4087 | unsigned long usage; | |
4088 | int i, j, size; | |
4089 | ||
4090 | mutex_lock(&memcg->thresholds_lock); | |
4091 | ||
4092 | if (type == _MEM) { | |
4093 | thresholds = &memcg->thresholds; | |
4094 | usage = mem_cgroup_usage(memcg, false); | |
4095 | } else if (type == _MEMSWAP) { | |
4096 | thresholds = &memcg->memsw_thresholds; | |
4097 | usage = mem_cgroup_usage(memcg, true); | |
4098 | } else | |
4099 | BUG(); | |
4100 | ||
4101 | if (!thresholds->primary) | |
4102 | goto unlock; | |
4103 | ||
4104 | /* Check if a threshold crossed before removing */ | |
4105 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | |
4106 | ||
4107 | /* Calculate new number of threshold */ | |
4108 | size = 0; | |
4109 | for (i = 0; i < thresholds->primary->size; i++) { | |
4110 | if (thresholds->primary->entries[i].eventfd != eventfd) | |
4111 | size++; | |
4112 | } | |
4113 | ||
4114 | new = thresholds->spare; | |
4115 | ||
4116 | /* Set thresholds array to NULL if we don't have thresholds */ | |
4117 | if (!size) { | |
4118 | kfree(new); | |
4119 | new = NULL; | |
4120 | goto swap_buffers; | |
4121 | } | |
4122 | ||
4123 | new->size = size; | |
4124 | ||
4125 | /* Copy thresholds and find current threshold */ | |
4126 | new->current_threshold = -1; | |
4127 | for (i = 0, j = 0; i < thresholds->primary->size; i++) { | |
4128 | if (thresholds->primary->entries[i].eventfd == eventfd) | |
4129 | continue; | |
4130 | ||
4131 | new->entries[j] = thresholds->primary->entries[i]; | |
4132 | if (new->entries[j].threshold <= usage) { | |
4133 | /* | |
4134 | * new->current_threshold will not be used | |
4135 | * until rcu_assign_pointer(), so it's safe to increment | |
4136 | * it here. | |
4137 | */ | |
4138 | ++new->current_threshold; | |
4139 | } | |
4140 | j++; | |
4141 | } | |
4142 | ||
4143 | swap_buffers: | |
4144 | /* Swap primary and spare array */ | |
4145 | thresholds->spare = thresholds->primary; | |
4146 | /* If all events are unregistered, free the spare array */ | |
4147 | if (!new) { | |
4148 | kfree(thresholds->spare); | |
4149 | thresholds->spare = NULL; | |
4150 | } | |
4151 | ||
4152 | rcu_assign_pointer(thresholds->primary, new); | |
4153 | ||
4154 | /* To be sure that nobody uses thresholds */ | |
4155 | synchronize_rcu(); | |
4156 | unlock: | |
4157 | mutex_unlock(&memcg->thresholds_lock); | |
4158 | } | |
4159 | ||
4160 | static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | |
4161 | struct eventfd_ctx *eventfd) | |
4162 | { | |
4163 | return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); | |
4164 | } | |
4165 | ||
4166 | static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | |
4167 | struct eventfd_ctx *eventfd) | |
4168 | { | |
4169 | return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); | |
4170 | } | |
4171 | ||
4172 | static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, | |
4173 | struct eventfd_ctx *eventfd, const char *args) | |
4174 | { | |
4175 | struct mem_cgroup_eventfd_list *event; | |
4176 | ||
4177 | event = kmalloc(sizeof(*event), GFP_KERNEL); | |
4178 | if (!event) | |
4179 | return -ENOMEM; | |
4180 | ||
4181 | spin_lock(&memcg_oom_lock); | |
4182 | ||
4183 | event->eventfd = eventfd; | |
4184 | list_add(&event->list, &memcg->oom_notify); | |
4185 | ||
4186 | /* already in OOM ? */ | |
4187 | if (atomic_read(&memcg->under_oom)) | |
4188 | eventfd_signal(eventfd, 1); | |
4189 | spin_unlock(&memcg_oom_lock); | |
4190 | ||
4191 | return 0; | |
4192 | } | |
4193 | ||
4194 | static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, | |
4195 | struct eventfd_ctx *eventfd) | |
4196 | { | |
4197 | struct mem_cgroup_eventfd_list *ev, *tmp; | |
4198 | ||
4199 | spin_lock(&memcg_oom_lock); | |
4200 | ||
4201 | list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { | |
4202 | if (ev->eventfd == eventfd) { | |
4203 | list_del(&ev->list); | |
4204 | kfree(ev); | |
4205 | } | |
4206 | } | |
4207 | ||
4208 | spin_unlock(&memcg_oom_lock); | |
4209 | } | |
4210 | ||
4211 | static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) | |
4212 | { | |
4213 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); | |
4214 | ||
4215 | seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); | |
4216 | seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom)); | |
4217 | return 0; | |
4218 | } | |
4219 | ||
4220 | static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, | |
4221 | struct cftype *cft, u64 val) | |
4222 | { | |
4223 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
4224 | ||
4225 | /* cannot set to root cgroup and only 0 and 1 are allowed */ | |
4226 | if (!css->parent || !((val == 0) || (val == 1))) | |
4227 | return -EINVAL; | |
4228 | ||
4229 | memcg->oom_kill_disable = val; | |
4230 | if (!val) | |
4231 | memcg_oom_recover(memcg); | |
4232 | ||
4233 | return 0; | |
4234 | } | |
4235 | ||
4236 | #ifdef CONFIG_MEMCG_KMEM | |
4237 | static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) | |
4238 | { | |
4239 | int ret; | |
4240 | ||
4241 | ret = memcg_propagate_kmem(memcg); | |
4242 | if (ret) | |
4243 | return ret; | |
4244 | ||
4245 | return mem_cgroup_sockets_init(memcg, ss); | |
4246 | } | |
4247 | ||
4248 | static void memcg_destroy_kmem(struct mem_cgroup *memcg) | |
4249 | { | |
4250 | mem_cgroup_sockets_destroy(memcg); | |
4251 | } | |
4252 | #else | |
4253 | static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) | |
4254 | { | |
4255 | return 0; | |
4256 | } | |
4257 | ||
4258 | static void memcg_destroy_kmem(struct mem_cgroup *memcg) | |
4259 | { | |
4260 | } | |
4261 | #endif | |
4262 | ||
4263 | /* | |
4264 | * DO NOT USE IN NEW FILES. | |
4265 | * | |
4266 | * "cgroup.event_control" implementation. | |
4267 | * | |
4268 | * This is way over-engineered. It tries to support fully configurable | |
4269 | * events for each user. Such level of flexibility is completely | |
4270 | * unnecessary especially in the light of the planned unified hierarchy. | |
4271 | * | |
4272 | * Please deprecate this and replace with something simpler if at all | |
4273 | * possible. | |
4274 | */ | |
4275 | ||
4276 | /* | |
4277 | * Unregister event and free resources. | |
4278 | * | |
4279 | * Gets called from workqueue. | |
4280 | */ | |
4281 | static void memcg_event_remove(struct work_struct *work) | |
4282 | { | |
4283 | struct mem_cgroup_event *event = | |
4284 | container_of(work, struct mem_cgroup_event, remove); | |
4285 | struct mem_cgroup *memcg = event->memcg; | |
4286 | ||
4287 | remove_wait_queue(event->wqh, &event->wait); | |
4288 | ||
4289 | event->unregister_event(memcg, event->eventfd); | |
4290 | ||
4291 | /* Notify userspace the event is going away. */ | |
4292 | eventfd_signal(event->eventfd, 1); | |
4293 | ||
4294 | eventfd_ctx_put(event->eventfd); | |
4295 | kfree(event); | |
4296 | css_put(&memcg->css); | |
4297 | } | |
4298 | ||
4299 | /* | |
4300 | * Gets called on POLLHUP on eventfd when user closes it. | |
4301 | * | |
4302 | * Called with wqh->lock held and interrupts disabled. | |
4303 | */ | |
4304 | static int memcg_event_wake(wait_queue_t *wait, unsigned mode, | |
4305 | int sync, void *key) | |
4306 | { | |
4307 | struct mem_cgroup_event *event = | |
4308 | container_of(wait, struct mem_cgroup_event, wait); | |
4309 | struct mem_cgroup *memcg = event->memcg; | |
4310 | unsigned long flags = (unsigned long)key; | |
4311 | ||
4312 | if (flags & POLLHUP) { | |
4313 | /* | |
4314 | * If the event has been detached at cgroup removal, we | |
4315 | * can simply return knowing the other side will cleanup | |
4316 | * for us. | |
4317 | * | |
4318 | * We can't race against event freeing since the other | |
4319 | * side will require wqh->lock via remove_wait_queue(), | |
4320 | * which we hold. | |
4321 | */ | |
4322 | spin_lock(&memcg->event_list_lock); | |
4323 | if (!list_empty(&event->list)) { | |
4324 | list_del_init(&event->list); | |
4325 | /* | |
4326 | * We are in atomic context, but cgroup_event_remove() | |
4327 | * may sleep, so we have to call it in workqueue. | |
4328 | */ | |
4329 | schedule_work(&event->remove); | |
4330 | } | |
4331 | spin_unlock(&memcg->event_list_lock); | |
4332 | } | |
4333 | ||
4334 | return 0; | |
4335 | } | |
4336 | ||
4337 | static void memcg_event_ptable_queue_proc(struct file *file, | |
4338 | wait_queue_head_t *wqh, poll_table *pt) | |
4339 | { | |
4340 | struct mem_cgroup_event *event = | |
4341 | container_of(pt, struct mem_cgroup_event, pt); | |
4342 | ||
4343 | event->wqh = wqh; | |
4344 | add_wait_queue(wqh, &event->wait); | |
4345 | } | |
4346 | ||
4347 | /* | |
4348 | * DO NOT USE IN NEW FILES. | |
4349 | * | |
4350 | * Parse input and register new cgroup event handler. | |
4351 | * | |
4352 | * Input must be in format '<event_fd> <control_fd> <args>'. | |
4353 | * Interpretation of args is defined by control file implementation. | |
4354 | */ | |
4355 | static ssize_t memcg_write_event_control(struct kernfs_open_file *of, | |
4356 | char *buf, size_t nbytes, loff_t off) | |
4357 | { | |
4358 | struct cgroup_subsys_state *css = of_css(of); | |
4359 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
4360 | struct mem_cgroup_event *event; | |
4361 | struct cgroup_subsys_state *cfile_css; | |
4362 | unsigned int efd, cfd; | |
4363 | struct fd efile; | |
4364 | struct fd cfile; | |
4365 | const char *name; | |
4366 | char *endp; | |
4367 | int ret; | |
4368 | ||
4369 | buf = strstrip(buf); | |
4370 | ||
4371 | efd = simple_strtoul(buf, &endp, 10); | |
4372 | if (*endp != ' ') | |
4373 | return -EINVAL; | |
4374 | buf = endp + 1; | |
4375 | ||
4376 | cfd = simple_strtoul(buf, &endp, 10); | |
4377 | if ((*endp != ' ') && (*endp != '\0')) | |
4378 | return -EINVAL; | |
4379 | buf = endp + 1; | |
4380 | ||
4381 | event = kzalloc(sizeof(*event), GFP_KERNEL); | |
4382 | if (!event) | |
4383 | return -ENOMEM; | |
4384 | ||
4385 | event->memcg = memcg; | |
4386 | INIT_LIST_HEAD(&event->list); | |
4387 | init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); | |
4388 | init_waitqueue_func_entry(&event->wait, memcg_event_wake); | |
4389 | INIT_WORK(&event->remove, memcg_event_remove); | |
4390 | ||
4391 | efile = fdget(efd); | |
4392 | if (!efile.file) { | |
4393 | ret = -EBADF; | |
4394 | goto out_kfree; | |
4395 | } | |
4396 | ||
4397 | event->eventfd = eventfd_ctx_fileget(efile.file); | |
4398 | if (IS_ERR(event->eventfd)) { | |
4399 | ret = PTR_ERR(event->eventfd); | |
4400 | goto out_put_efile; | |
4401 | } | |
4402 | ||
4403 | cfile = fdget(cfd); | |
4404 | if (!cfile.file) { | |
4405 | ret = -EBADF; | |
4406 | goto out_put_eventfd; | |
4407 | } | |
4408 | ||
4409 | /* the process need read permission on control file */ | |
4410 | /* AV: shouldn't we check that it's been opened for read instead? */ | |
4411 | ret = inode_permission(file_inode(cfile.file), MAY_READ); | |
4412 | if (ret < 0) | |
4413 | goto out_put_cfile; | |
4414 | ||
4415 | /* | |
4416 | * Determine the event callbacks and set them in @event. This used | |
4417 | * to be done via struct cftype but cgroup core no longer knows | |
4418 | * about these events. The following is crude but the whole thing | |
4419 | * is for compatibility anyway. | |
4420 | * | |
4421 | * DO NOT ADD NEW FILES. | |
4422 | */ | |
4423 | name = cfile.file->f_path.dentry->d_name.name; | |
4424 | ||
4425 | if (!strcmp(name, "memory.usage_in_bytes")) { | |
4426 | event->register_event = mem_cgroup_usage_register_event; | |
4427 | event->unregister_event = mem_cgroup_usage_unregister_event; | |
4428 | } else if (!strcmp(name, "memory.oom_control")) { | |
4429 | event->register_event = mem_cgroup_oom_register_event; | |
4430 | event->unregister_event = mem_cgroup_oom_unregister_event; | |
4431 | } else if (!strcmp(name, "memory.pressure_level")) { | |
4432 | event->register_event = vmpressure_register_event; | |
4433 | event->unregister_event = vmpressure_unregister_event; | |
4434 | } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { | |
4435 | event->register_event = memsw_cgroup_usage_register_event; | |
4436 | event->unregister_event = memsw_cgroup_usage_unregister_event; | |
4437 | } else { | |
4438 | ret = -EINVAL; | |
4439 | goto out_put_cfile; | |
4440 | } | |
4441 | ||
4442 | /* | |
4443 | * Verify @cfile should belong to @css. Also, remaining events are | |
4444 | * automatically removed on cgroup destruction but the removal is | |
4445 | * asynchronous, so take an extra ref on @css. | |
4446 | */ | |
4447 | cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, | |
4448 | &memory_cgrp_subsys); | |
4449 | ret = -EINVAL; | |
4450 | if (IS_ERR(cfile_css)) | |
4451 | goto out_put_cfile; | |
4452 | if (cfile_css != css) { | |
4453 | css_put(cfile_css); | |
4454 | goto out_put_cfile; | |
4455 | } | |
4456 | ||
4457 | ret = event->register_event(memcg, event->eventfd, buf); | |
4458 | if (ret) | |
4459 | goto out_put_css; | |
4460 | ||
4461 | efile.file->f_op->poll(efile.file, &event->pt); | |
4462 | ||
4463 | spin_lock(&memcg->event_list_lock); | |
4464 | list_add(&event->list, &memcg->event_list); | |
4465 | spin_unlock(&memcg->event_list_lock); | |
4466 | ||
4467 | fdput(cfile); | |
4468 | fdput(efile); | |
4469 | ||
4470 | return nbytes; | |
4471 | ||
4472 | out_put_css: | |
4473 | css_put(css); | |
4474 | out_put_cfile: | |
4475 | fdput(cfile); | |
4476 | out_put_eventfd: | |
4477 | eventfd_ctx_put(event->eventfd); | |
4478 | out_put_efile: | |
4479 | fdput(efile); | |
4480 | out_kfree: | |
4481 | kfree(event); | |
4482 | ||
4483 | return ret; | |
4484 | } | |
4485 | ||
4486 | static struct cftype mem_cgroup_files[] = { | |
4487 | { | |
4488 | .name = "usage_in_bytes", | |
4489 | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), | |
4490 | .read_u64 = mem_cgroup_read_u64, | |
4491 | }, | |
4492 | { | |
4493 | .name = "max_usage_in_bytes", | |
4494 | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), | |
4495 | .write = mem_cgroup_reset, | |
4496 | .read_u64 = mem_cgroup_read_u64, | |
4497 | }, | |
4498 | { | |
4499 | .name = "limit_in_bytes", | |
4500 | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), | |
4501 | .write = mem_cgroup_write, | |
4502 | .read_u64 = mem_cgroup_read_u64, | |
4503 | }, | |
4504 | { | |
4505 | .name = "soft_limit_in_bytes", | |
4506 | .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), | |
4507 | .write = mem_cgroup_write, | |
4508 | .read_u64 = mem_cgroup_read_u64, | |
4509 | }, | |
4510 | { | |
4511 | .name = "failcnt", | |
4512 | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), | |
4513 | .write = mem_cgroup_reset, | |
4514 | .read_u64 = mem_cgroup_read_u64, | |
4515 | }, | |
4516 | { | |
4517 | .name = "stat", | |
4518 | .seq_show = memcg_stat_show, | |
4519 | }, | |
4520 | { | |
4521 | .name = "force_empty", | |
4522 | .write = mem_cgroup_force_empty_write, | |
4523 | }, | |
4524 | { | |
4525 | .name = "use_hierarchy", | |
4526 | .write_u64 = mem_cgroup_hierarchy_write, | |
4527 | .read_u64 = mem_cgroup_hierarchy_read, | |
4528 | }, | |
4529 | { | |
4530 | .name = "cgroup.event_control", /* XXX: for compat */ | |
4531 | .write = memcg_write_event_control, | |
4532 | .flags = CFTYPE_NO_PREFIX, | |
4533 | .mode = S_IWUGO, | |
4534 | }, | |
4535 | { | |
4536 | .name = "swappiness", | |
4537 | .read_u64 = mem_cgroup_swappiness_read, | |
4538 | .write_u64 = mem_cgroup_swappiness_write, | |
4539 | }, | |
4540 | { | |
4541 | .name = "move_charge_at_immigrate", | |
4542 | .read_u64 = mem_cgroup_move_charge_read, | |
4543 | .write_u64 = mem_cgroup_move_charge_write, | |
4544 | }, | |
4545 | { | |
4546 | .name = "oom_control", | |
4547 | .seq_show = mem_cgroup_oom_control_read, | |
4548 | .write_u64 = mem_cgroup_oom_control_write, | |
4549 | .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), | |
4550 | }, | |
4551 | { | |
4552 | .name = "pressure_level", | |
4553 | }, | |
4554 | #ifdef CONFIG_NUMA | |
4555 | { | |
4556 | .name = "numa_stat", | |
4557 | .seq_show = memcg_numa_stat_show, | |
4558 | }, | |
4559 | #endif | |
4560 | #ifdef CONFIG_MEMCG_KMEM | |
4561 | { | |
4562 | .name = "kmem.limit_in_bytes", | |
4563 | .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), | |
4564 | .write = mem_cgroup_write, | |
4565 | .read_u64 = mem_cgroup_read_u64, | |
4566 | }, | |
4567 | { | |
4568 | .name = "kmem.usage_in_bytes", | |
4569 | .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), | |
4570 | .read_u64 = mem_cgroup_read_u64, | |
4571 | }, | |
4572 | { | |
4573 | .name = "kmem.failcnt", | |
4574 | .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), | |
4575 | .write = mem_cgroup_reset, | |
4576 | .read_u64 = mem_cgroup_read_u64, | |
4577 | }, | |
4578 | { | |
4579 | .name = "kmem.max_usage_in_bytes", | |
4580 | .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), | |
4581 | .write = mem_cgroup_reset, | |
4582 | .read_u64 = mem_cgroup_read_u64, | |
4583 | }, | |
4584 | #ifdef CONFIG_SLABINFO | |
4585 | { | |
4586 | .name = "kmem.slabinfo", | |
4587 | .seq_start = slab_start, | |
4588 | .seq_next = slab_next, | |
4589 | .seq_stop = slab_stop, | |
4590 | .seq_show = memcg_slab_show, | |
4591 | }, | |
4592 | #endif | |
4593 | #endif | |
4594 | { }, /* terminate */ | |
4595 | }; | |
4596 | ||
4597 | #ifdef CONFIG_MEMCG_SWAP | |
4598 | static struct cftype memsw_cgroup_files[] = { | |
4599 | { | |
4600 | .name = "memsw.usage_in_bytes", | |
4601 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | |
4602 | .read_u64 = mem_cgroup_read_u64, | |
4603 | }, | |
4604 | { | |
4605 | .name = "memsw.max_usage_in_bytes", | |
4606 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | |
4607 | .write = mem_cgroup_reset, | |
4608 | .read_u64 = mem_cgroup_read_u64, | |
4609 | }, | |
4610 | { | |
4611 | .name = "memsw.limit_in_bytes", | |
4612 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | |
4613 | .write = mem_cgroup_write, | |
4614 | .read_u64 = mem_cgroup_read_u64, | |
4615 | }, | |
4616 | { | |
4617 | .name = "memsw.failcnt", | |
4618 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | |
4619 | .write = mem_cgroup_reset, | |
4620 | .read_u64 = mem_cgroup_read_u64, | |
4621 | }, | |
4622 | { }, /* terminate */ | |
4623 | }; | |
4624 | #endif | |
4625 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) | |
4626 | { | |
4627 | struct mem_cgroup_per_node *pn; | |
4628 | struct mem_cgroup_per_zone *mz; | |
4629 | int zone, tmp = node; | |
4630 | /* | |
4631 | * This routine is called against possible nodes. | |
4632 | * But it's BUG to call kmalloc() against offline node. | |
4633 | * | |
4634 | * TODO: this routine can waste much memory for nodes which will | |
4635 | * never be onlined. It's better to use memory hotplug callback | |
4636 | * function. | |
4637 | */ | |
4638 | if (!node_state(node, N_NORMAL_MEMORY)) | |
4639 | tmp = -1; | |
4640 | pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); | |
4641 | if (!pn) | |
4642 | return 1; | |
4643 | ||
4644 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | |
4645 | mz = &pn->zoneinfo[zone]; | |
4646 | lruvec_init(&mz->lruvec); | |
4647 | mz->usage_in_excess = 0; | |
4648 | mz->on_tree = false; | |
4649 | mz->memcg = memcg; | |
4650 | } | |
4651 | memcg->nodeinfo[node] = pn; | |
4652 | return 0; | |
4653 | } | |
4654 | ||
4655 | static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) | |
4656 | { | |
4657 | kfree(memcg->nodeinfo[node]); | |
4658 | } | |
4659 | ||
4660 | static struct mem_cgroup *mem_cgroup_alloc(void) | |
4661 | { | |
4662 | struct mem_cgroup *memcg; | |
4663 | size_t size; | |
4664 | ||
4665 | size = sizeof(struct mem_cgroup); | |
4666 | size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); | |
4667 | ||
4668 | memcg = kzalloc(size, GFP_KERNEL); | |
4669 | if (!memcg) | |
4670 | return NULL; | |
4671 | ||
4672 | memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); | |
4673 | if (!memcg->stat) | |
4674 | goto out_free; | |
4675 | spin_lock_init(&memcg->pcp_counter_lock); | |
4676 | return memcg; | |
4677 | ||
4678 | out_free: | |
4679 | kfree(memcg); | |
4680 | return NULL; | |
4681 | } | |
4682 | ||
4683 | /* | |
4684 | * At destroying mem_cgroup, references from swap_cgroup can remain. | |
4685 | * (scanning all at force_empty is too costly...) | |
4686 | * | |
4687 | * Instead of clearing all references at force_empty, we remember | |
4688 | * the number of reference from swap_cgroup and free mem_cgroup when | |
4689 | * it goes down to 0. | |
4690 | * | |
4691 | * Removal of cgroup itself succeeds regardless of refs from swap. | |
4692 | */ | |
4693 | ||
4694 | static void __mem_cgroup_free(struct mem_cgroup *memcg) | |
4695 | { | |
4696 | int node; | |
4697 | ||
4698 | mem_cgroup_remove_from_trees(memcg); | |
4699 | ||
4700 | for_each_node(node) | |
4701 | free_mem_cgroup_per_zone_info(memcg, node); | |
4702 | ||
4703 | free_percpu(memcg->stat); | |
4704 | ||
4705 | disarm_static_keys(memcg); | |
4706 | kfree(memcg); | |
4707 | } | |
4708 | ||
4709 | /* | |
4710 | * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. | |
4711 | */ | |
4712 | struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) | |
4713 | { | |
4714 | if (!memcg->memory.parent) | |
4715 | return NULL; | |
4716 | return mem_cgroup_from_counter(memcg->memory.parent, memory); | |
4717 | } | |
4718 | EXPORT_SYMBOL(parent_mem_cgroup); | |
4719 | ||
4720 | static void __init mem_cgroup_soft_limit_tree_init(void) | |
4721 | { | |
4722 | struct mem_cgroup_tree_per_node *rtpn; | |
4723 | struct mem_cgroup_tree_per_zone *rtpz; | |
4724 | int tmp, node, zone; | |
4725 | ||
4726 | for_each_node(node) { | |
4727 | tmp = node; | |
4728 | if (!node_state(node, N_NORMAL_MEMORY)) | |
4729 | tmp = -1; | |
4730 | rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); | |
4731 | BUG_ON(!rtpn); | |
4732 | ||
4733 | soft_limit_tree.rb_tree_per_node[node] = rtpn; | |
4734 | ||
4735 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | |
4736 | rtpz = &rtpn->rb_tree_per_zone[zone]; | |
4737 | rtpz->rb_root = RB_ROOT; | |
4738 | spin_lock_init(&rtpz->lock); | |
4739 | } | |
4740 | } | |
4741 | } | |
4742 | ||
4743 | static struct cgroup_subsys_state * __ref | |
4744 | mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) | |
4745 | { | |
4746 | struct mem_cgroup *memcg; | |
4747 | long error = -ENOMEM; | |
4748 | int node; | |
4749 | ||
4750 | memcg = mem_cgroup_alloc(); | |
4751 | if (!memcg) | |
4752 | return ERR_PTR(error); | |
4753 | ||
4754 | for_each_node(node) | |
4755 | if (alloc_mem_cgroup_per_zone_info(memcg, node)) | |
4756 | goto free_out; | |
4757 | ||
4758 | /* root ? */ | |
4759 | if (parent_css == NULL) { | |
4760 | root_mem_cgroup = memcg; | |
4761 | page_counter_init(&memcg->memory, NULL); | |
4762 | page_counter_init(&memcg->memsw, NULL); | |
4763 | page_counter_init(&memcg->kmem, NULL); | |
4764 | } | |
4765 | ||
4766 | memcg->last_scanned_node = MAX_NUMNODES; | |
4767 | INIT_LIST_HEAD(&memcg->oom_notify); | |
4768 | memcg->move_charge_at_immigrate = 0; | |
4769 | mutex_init(&memcg->thresholds_lock); | |
4770 | spin_lock_init(&memcg->move_lock); | |
4771 | vmpressure_init(&memcg->vmpressure); | |
4772 | INIT_LIST_HEAD(&memcg->event_list); | |
4773 | spin_lock_init(&memcg->event_list_lock); | |
4774 | #ifdef CONFIG_MEMCG_KMEM | |
4775 | memcg->kmemcg_id = -1; | |
4776 | INIT_LIST_HEAD(&memcg->memcg_slab_caches); | |
4777 | #endif | |
4778 | ||
4779 | return &memcg->css; | |
4780 | ||
4781 | free_out: | |
4782 | __mem_cgroup_free(memcg); | |
4783 | return ERR_PTR(error); | |
4784 | } | |
4785 | ||
4786 | static int | |
4787 | mem_cgroup_css_online(struct cgroup_subsys_state *css) | |
4788 | { | |
4789 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
4790 | struct mem_cgroup *parent = mem_cgroup_from_css(css->parent); | |
4791 | int ret; | |
4792 | ||
4793 | if (css->id > MEM_CGROUP_ID_MAX) | |
4794 | return -ENOSPC; | |
4795 | ||
4796 | if (!parent) | |
4797 | return 0; | |
4798 | ||
4799 | mutex_lock(&memcg_create_mutex); | |
4800 | ||
4801 | memcg->use_hierarchy = parent->use_hierarchy; | |
4802 | memcg->oom_kill_disable = parent->oom_kill_disable; | |
4803 | memcg->swappiness = mem_cgroup_swappiness(parent); | |
4804 | ||
4805 | if (parent->use_hierarchy) { | |
4806 | page_counter_init(&memcg->memory, &parent->memory); | |
4807 | page_counter_init(&memcg->memsw, &parent->memsw); | |
4808 | page_counter_init(&memcg->kmem, &parent->kmem); | |
4809 | ||
4810 | /* | |
4811 | * No need to take a reference to the parent because cgroup | |
4812 | * core guarantees its existence. | |
4813 | */ | |
4814 | } else { | |
4815 | page_counter_init(&memcg->memory, NULL); | |
4816 | page_counter_init(&memcg->memsw, NULL); | |
4817 | page_counter_init(&memcg->kmem, NULL); | |
4818 | /* | |
4819 | * Deeper hierachy with use_hierarchy == false doesn't make | |
4820 | * much sense so let cgroup subsystem know about this | |
4821 | * unfortunate state in our controller. | |
4822 | */ | |
4823 | if (parent != root_mem_cgroup) | |
4824 | memory_cgrp_subsys.broken_hierarchy = true; | |
4825 | } | |
4826 | mutex_unlock(&memcg_create_mutex); | |
4827 | ||
4828 | ret = memcg_init_kmem(memcg, &memory_cgrp_subsys); | |
4829 | if (ret) | |
4830 | return ret; | |
4831 | ||
4832 | /* | |
4833 | * Make sure the memcg is initialized: mem_cgroup_iter() | |
4834 | * orders reading memcg->initialized against its callers | |
4835 | * reading the memcg members. | |
4836 | */ | |
4837 | smp_store_release(&memcg->initialized, 1); | |
4838 | ||
4839 | return 0; | |
4840 | } | |
4841 | ||
4842 | static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) | |
4843 | { | |
4844 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
4845 | struct mem_cgroup_event *event, *tmp; | |
4846 | ||
4847 | /* | |
4848 | * Unregister events and notify userspace. | |
4849 | * Notify userspace about cgroup removing only after rmdir of cgroup | |
4850 | * directory to avoid race between userspace and kernelspace. | |
4851 | */ | |
4852 | spin_lock(&memcg->event_list_lock); | |
4853 | list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { | |
4854 | list_del_init(&event->list); | |
4855 | schedule_work(&event->remove); | |
4856 | } | |
4857 | spin_unlock(&memcg->event_list_lock); | |
4858 | ||
4859 | memcg_unregister_all_caches(memcg); | |
4860 | vmpressure_cleanup(&memcg->vmpressure); | |
4861 | } | |
4862 | ||
4863 | static void mem_cgroup_css_free(struct cgroup_subsys_state *css) | |
4864 | { | |
4865 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
4866 | ||
4867 | memcg_destroy_kmem(memcg); | |
4868 | __mem_cgroup_free(memcg); | |
4869 | } | |
4870 | ||
4871 | /** | |
4872 | * mem_cgroup_css_reset - reset the states of a mem_cgroup | |
4873 | * @css: the target css | |
4874 | * | |
4875 | * Reset the states of the mem_cgroup associated with @css. This is | |
4876 | * invoked when the userland requests disabling on the default hierarchy | |
4877 | * but the memcg is pinned through dependency. The memcg should stop | |
4878 | * applying policies and should revert to the vanilla state as it may be | |
4879 | * made visible again. | |
4880 | * | |
4881 | * The current implementation only resets the essential configurations. | |
4882 | * This needs to be expanded to cover all the visible parts. | |
4883 | */ | |
4884 | static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) | |
4885 | { | |
4886 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
4887 | ||
4888 | mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX); | |
4889 | mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX); | |
4890 | memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX); | |
4891 | memcg->soft_limit = 0; | |
4892 | } | |
4893 | ||
4894 | #ifdef CONFIG_MMU | |
4895 | /* Handlers for move charge at task migration. */ | |
4896 | static int mem_cgroup_do_precharge(unsigned long count) | |
4897 | { | |
4898 | int ret; | |
4899 | ||
4900 | /* Try a single bulk charge without reclaim first */ | |
4901 | ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count); | |
4902 | if (!ret) { | |
4903 | mc.precharge += count; | |
4904 | return ret; | |
4905 | } | |
4906 | if (ret == -EINTR) { | |
4907 | cancel_charge(root_mem_cgroup, count); | |
4908 | return ret; | |
4909 | } | |
4910 | ||
4911 | /* Try charges one by one with reclaim */ | |
4912 | while (count--) { | |
4913 | ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1); | |
4914 | /* | |
4915 | * In case of failure, any residual charges against | |
4916 | * mc.to will be dropped by mem_cgroup_clear_mc() | |
4917 | * later on. However, cancel any charges that are | |
4918 | * bypassed to root right away or they'll be lost. | |
4919 | */ | |
4920 | if (ret == -EINTR) | |
4921 | cancel_charge(root_mem_cgroup, 1); | |
4922 | if (ret) | |
4923 | return ret; | |
4924 | mc.precharge++; | |
4925 | cond_resched(); | |
4926 | } | |
4927 | return 0; | |
4928 | } | |
4929 | ||
4930 | /** | |
4931 | * get_mctgt_type - get target type of moving charge | |
4932 | * @vma: the vma the pte to be checked belongs | |
4933 | * @addr: the address corresponding to the pte to be checked | |
4934 | * @ptent: the pte to be checked | |
4935 | * @target: the pointer the target page or swap ent will be stored(can be NULL) | |
4936 | * | |
4937 | * Returns | |
4938 | * 0(MC_TARGET_NONE): if the pte is not a target for move charge. | |
4939 | * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for | |
4940 | * move charge. if @target is not NULL, the page is stored in target->page | |
4941 | * with extra refcnt got(Callers should handle it). | |
4942 | * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a | |
4943 | * target for charge migration. if @target is not NULL, the entry is stored | |
4944 | * in target->ent. | |
4945 | * | |
4946 | * Called with pte lock held. | |
4947 | */ | |
4948 | union mc_target { | |
4949 | struct page *page; | |
4950 | swp_entry_t ent; | |
4951 | }; | |
4952 | ||
4953 | enum mc_target_type { | |
4954 | MC_TARGET_NONE = 0, | |
4955 | MC_TARGET_PAGE, | |
4956 | MC_TARGET_SWAP, | |
4957 | }; | |
4958 | ||
4959 | static struct page *mc_handle_present_pte(struct vm_area_struct *vma, | |
4960 | unsigned long addr, pte_t ptent) | |
4961 | { | |
4962 | struct page *page = vm_normal_page(vma, addr, ptent); | |
4963 | ||
4964 | if (!page || !page_mapped(page)) | |
4965 | return NULL; | |
4966 | if (PageAnon(page)) { | |
4967 | /* we don't move shared anon */ | |
4968 | if (!move_anon()) | |
4969 | return NULL; | |
4970 | } else if (!move_file()) | |
4971 | /* we ignore mapcount for file pages */ | |
4972 | return NULL; | |
4973 | if (!get_page_unless_zero(page)) | |
4974 | return NULL; | |
4975 | ||
4976 | return page; | |
4977 | } | |
4978 | ||
4979 | #ifdef CONFIG_SWAP | |
4980 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | |
4981 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
4982 | { | |
4983 | struct page *page = NULL; | |
4984 | swp_entry_t ent = pte_to_swp_entry(ptent); | |
4985 | ||
4986 | if (!move_anon() || non_swap_entry(ent)) | |
4987 | return NULL; | |
4988 | /* | |
4989 | * Because lookup_swap_cache() updates some statistics counter, | |
4990 | * we call find_get_page() with swapper_space directly. | |
4991 | */ | |
4992 | page = find_get_page(swap_address_space(ent), ent.val); | |
4993 | if (do_swap_account) | |
4994 | entry->val = ent.val; | |
4995 | ||
4996 | return page; | |
4997 | } | |
4998 | #else | |
4999 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | |
5000 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
5001 | { | |
5002 | return NULL; | |
5003 | } | |
5004 | #endif | |
5005 | ||
5006 | static struct page *mc_handle_file_pte(struct vm_area_struct *vma, | |
5007 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
5008 | { | |
5009 | struct page *page = NULL; | |
5010 | struct address_space *mapping; | |
5011 | pgoff_t pgoff; | |
5012 | ||
5013 | if (!vma->vm_file) /* anonymous vma */ | |
5014 | return NULL; | |
5015 | if (!move_file()) | |
5016 | return NULL; | |
5017 | ||
5018 | mapping = vma->vm_file->f_mapping; | |
5019 | if (pte_none(ptent)) | |
5020 | pgoff = linear_page_index(vma, addr); | |
5021 | else /* pte_file(ptent) is true */ | |
5022 | pgoff = pte_to_pgoff(ptent); | |
5023 | ||
5024 | /* page is moved even if it's not RSS of this task(page-faulted). */ | |
5025 | #ifdef CONFIG_SWAP | |
5026 | /* shmem/tmpfs may report page out on swap: account for that too. */ | |
5027 | if (shmem_mapping(mapping)) { | |
5028 | page = find_get_entry(mapping, pgoff); | |
5029 | if (radix_tree_exceptional_entry(page)) { | |
5030 | swp_entry_t swp = radix_to_swp_entry(page); | |
5031 | if (do_swap_account) | |
5032 | *entry = swp; | |
5033 | page = find_get_page(swap_address_space(swp), swp.val); | |
5034 | } | |
5035 | } else | |
5036 | page = find_get_page(mapping, pgoff); | |
5037 | #else | |
5038 | page = find_get_page(mapping, pgoff); | |
5039 | #endif | |
5040 | return page; | |
5041 | } | |
5042 | ||
5043 | static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, | |
5044 | unsigned long addr, pte_t ptent, union mc_target *target) | |
5045 | { | |
5046 | struct page *page = NULL; | |
5047 | enum mc_target_type ret = MC_TARGET_NONE; | |
5048 | swp_entry_t ent = { .val = 0 }; | |
5049 | ||
5050 | if (pte_present(ptent)) | |
5051 | page = mc_handle_present_pte(vma, addr, ptent); | |
5052 | else if (is_swap_pte(ptent)) | |
5053 | page = mc_handle_swap_pte(vma, addr, ptent, &ent); | |
5054 | else if (pte_none(ptent) || pte_file(ptent)) | |
5055 | page = mc_handle_file_pte(vma, addr, ptent, &ent); | |
5056 | ||
5057 | if (!page && !ent.val) | |
5058 | return ret; | |
5059 | if (page) { | |
5060 | /* | |
5061 | * Do only loose check w/o serialization. | |
5062 | * mem_cgroup_move_account() checks the page is valid or | |
5063 | * not under LRU exclusion. | |
5064 | */ | |
5065 | if (page->mem_cgroup == mc.from) { | |
5066 | ret = MC_TARGET_PAGE; | |
5067 | if (target) | |
5068 | target->page = page; | |
5069 | } | |
5070 | if (!ret || !target) | |
5071 | put_page(page); | |
5072 | } | |
5073 | /* There is a swap entry and a page doesn't exist or isn't charged */ | |
5074 | if (ent.val && !ret && | |
5075 | mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { | |
5076 | ret = MC_TARGET_SWAP; | |
5077 | if (target) | |
5078 | target->ent = ent; | |
5079 | } | |
5080 | return ret; | |
5081 | } | |
5082 | ||
5083 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
5084 | /* | |
5085 | * We don't consider swapping or file mapped pages because THP does not | |
5086 | * support them for now. | |
5087 | * Caller should make sure that pmd_trans_huge(pmd) is true. | |
5088 | */ | |
5089 | static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | |
5090 | unsigned long addr, pmd_t pmd, union mc_target *target) | |
5091 | { | |
5092 | struct page *page = NULL; | |
5093 | enum mc_target_type ret = MC_TARGET_NONE; | |
5094 | ||
5095 | page = pmd_page(pmd); | |
5096 | VM_BUG_ON_PAGE(!page || !PageHead(page), page); | |
5097 | if (!move_anon()) | |
5098 | return ret; | |
5099 | if (page->mem_cgroup == mc.from) { | |
5100 | ret = MC_TARGET_PAGE; | |
5101 | if (target) { | |
5102 | get_page(page); | |
5103 | target->page = page; | |
5104 | } | |
5105 | } | |
5106 | return ret; | |
5107 | } | |
5108 | #else | |
5109 | static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | |
5110 | unsigned long addr, pmd_t pmd, union mc_target *target) | |
5111 | { | |
5112 | return MC_TARGET_NONE; | |
5113 | } | |
5114 | #endif | |
5115 | ||
5116 | static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, | |
5117 | unsigned long addr, unsigned long end, | |
5118 | struct mm_walk *walk) | |
5119 | { | |
5120 | struct vm_area_struct *vma = walk->private; | |
5121 | pte_t *pte; | |
5122 | spinlock_t *ptl; | |
5123 | ||
5124 | if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { | |
5125 | if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) | |
5126 | mc.precharge += HPAGE_PMD_NR; | |
5127 | spin_unlock(ptl); | |
5128 | return 0; | |
5129 | } | |
5130 | ||
5131 | if (pmd_trans_unstable(pmd)) | |
5132 | return 0; | |
5133 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | |
5134 | for (; addr != end; pte++, addr += PAGE_SIZE) | |
5135 | if (get_mctgt_type(vma, addr, *pte, NULL)) | |
5136 | mc.precharge++; /* increment precharge temporarily */ | |
5137 | pte_unmap_unlock(pte - 1, ptl); | |
5138 | cond_resched(); | |
5139 | ||
5140 | return 0; | |
5141 | } | |
5142 | ||
5143 | static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) | |
5144 | { | |
5145 | unsigned long precharge; | |
5146 | struct vm_area_struct *vma; | |
5147 | ||
5148 | down_read(&mm->mmap_sem); | |
5149 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | |
5150 | struct mm_walk mem_cgroup_count_precharge_walk = { | |
5151 | .pmd_entry = mem_cgroup_count_precharge_pte_range, | |
5152 | .mm = mm, | |
5153 | .private = vma, | |
5154 | }; | |
5155 | if (is_vm_hugetlb_page(vma)) | |
5156 | continue; | |
5157 | walk_page_range(vma->vm_start, vma->vm_end, | |
5158 | &mem_cgroup_count_precharge_walk); | |
5159 | } | |
5160 | up_read(&mm->mmap_sem); | |
5161 | ||
5162 | precharge = mc.precharge; | |
5163 | mc.precharge = 0; | |
5164 | ||
5165 | return precharge; | |
5166 | } | |
5167 | ||
5168 | static int mem_cgroup_precharge_mc(struct mm_struct *mm) | |
5169 | { | |
5170 | unsigned long precharge = mem_cgroup_count_precharge(mm); | |
5171 | ||
5172 | VM_BUG_ON(mc.moving_task); | |
5173 | mc.moving_task = current; | |
5174 | return mem_cgroup_do_precharge(precharge); | |
5175 | } | |
5176 | ||
5177 | /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ | |
5178 | static void __mem_cgroup_clear_mc(void) | |
5179 | { | |
5180 | struct mem_cgroup *from = mc.from; | |
5181 | struct mem_cgroup *to = mc.to; | |
5182 | ||
5183 | /* we must uncharge all the leftover precharges from mc.to */ | |
5184 | if (mc.precharge) { | |
5185 | cancel_charge(mc.to, mc.precharge); | |
5186 | mc.precharge = 0; | |
5187 | } | |
5188 | /* | |
5189 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so | |
5190 | * we must uncharge here. | |
5191 | */ | |
5192 | if (mc.moved_charge) { | |
5193 | cancel_charge(mc.from, mc.moved_charge); | |
5194 | mc.moved_charge = 0; | |
5195 | } | |
5196 | /* we must fixup refcnts and charges */ | |
5197 | if (mc.moved_swap) { | |
5198 | /* uncharge swap account from the old cgroup */ | |
5199 | if (!mem_cgroup_is_root(mc.from)) | |
5200 | page_counter_uncharge(&mc.from->memsw, mc.moved_swap); | |
5201 | ||
5202 | /* | |
5203 | * we charged both to->memory and to->memsw, so we | |
5204 | * should uncharge to->memory. | |
5205 | */ | |
5206 | if (!mem_cgroup_is_root(mc.to)) | |
5207 | page_counter_uncharge(&mc.to->memory, mc.moved_swap); | |
5208 | ||
5209 | css_put_many(&mc.from->css, mc.moved_swap); | |
5210 | ||
5211 | /* we've already done css_get(mc.to) */ | |
5212 | mc.moved_swap = 0; | |
5213 | } | |
5214 | memcg_oom_recover(from); | |
5215 | memcg_oom_recover(to); | |
5216 | wake_up_all(&mc.waitq); | |
5217 | } | |
5218 | ||
5219 | static void mem_cgroup_clear_mc(void) | |
5220 | { | |
5221 | /* | |
5222 | * we must clear moving_task before waking up waiters at the end of | |
5223 | * task migration. | |
5224 | */ | |
5225 | mc.moving_task = NULL; | |
5226 | __mem_cgroup_clear_mc(); | |
5227 | spin_lock(&mc.lock); | |
5228 | mc.from = NULL; | |
5229 | mc.to = NULL; | |
5230 | spin_unlock(&mc.lock); | |
5231 | } | |
5232 | ||
5233 | static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, | |
5234 | struct cgroup_taskset *tset) | |
5235 | { | |
5236 | struct task_struct *p = cgroup_taskset_first(tset); | |
5237 | int ret = 0; | |
5238 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
5239 | unsigned long move_charge_at_immigrate; | |
5240 | ||
5241 | /* | |
5242 | * We are now commited to this value whatever it is. Changes in this | |
5243 | * tunable will only affect upcoming migrations, not the current one. | |
5244 | * So we need to save it, and keep it going. | |
5245 | */ | |
5246 | move_charge_at_immigrate = memcg->move_charge_at_immigrate; | |
5247 | if (move_charge_at_immigrate) { | |
5248 | struct mm_struct *mm; | |
5249 | struct mem_cgroup *from = mem_cgroup_from_task(p); | |
5250 | ||
5251 | VM_BUG_ON(from == memcg); | |
5252 | ||
5253 | mm = get_task_mm(p); | |
5254 | if (!mm) | |
5255 | return 0; | |
5256 | /* We move charges only when we move a owner of the mm */ | |
5257 | if (mm->owner == p) { | |
5258 | VM_BUG_ON(mc.from); | |
5259 | VM_BUG_ON(mc.to); | |
5260 | VM_BUG_ON(mc.precharge); | |
5261 | VM_BUG_ON(mc.moved_charge); | |
5262 | VM_BUG_ON(mc.moved_swap); | |
5263 | ||
5264 | spin_lock(&mc.lock); | |
5265 | mc.from = from; | |
5266 | mc.to = memcg; | |
5267 | mc.immigrate_flags = move_charge_at_immigrate; | |
5268 | spin_unlock(&mc.lock); | |
5269 | /* We set mc.moving_task later */ | |
5270 | ||
5271 | ret = mem_cgroup_precharge_mc(mm); | |
5272 | if (ret) | |
5273 | mem_cgroup_clear_mc(); | |
5274 | } | |
5275 | mmput(mm); | |
5276 | } | |
5277 | return ret; | |
5278 | } | |
5279 | ||
5280 | static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, | |
5281 | struct cgroup_taskset *tset) | |
5282 | { | |
5283 | if (mc.to) | |
5284 | mem_cgroup_clear_mc(); | |
5285 | } | |
5286 | ||
5287 | static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, | |
5288 | unsigned long addr, unsigned long end, | |
5289 | struct mm_walk *walk) | |
5290 | { | |
5291 | int ret = 0; | |
5292 | struct vm_area_struct *vma = walk->private; | |
5293 | pte_t *pte; | |
5294 | spinlock_t *ptl; | |
5295 | enum mc_target_type target_type; | |
5296 | union mc_target target; | |
5297 | struct page *page; | |
5298 | ||
5299 | /* | |
5300 | * We don't take compound_lock() here but no race with splitting thp | |
5301 | * happens because: | |
5302 | * - if pmd_trans_huge_lock() returns 1, the relevant thp is not | |
5303 | * under splitting, which means there's no concurrent thp split, | |
5304 | * - if another thread runs into split_huge_page() just after we | |
5305 | * entered this if-block, the thread must wait for page table lock | |
5306 | * to be unlocked in __split_huge_page_splitting(), where the main | |
5307 | * part of thp split is not executed yet. | |
5308 | */ | |
5309 | if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { | |
5310 | if (mc.precharge < HPAGE_PMD_NR) { | |
5311 | spin_unlock(ptl); | |
5312 | return 0; | |
5313 | } | |
5314 | target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); | |
5315 | if (target_type == MC_TARGET_PAGE) { | |
5316 | page = target.page; | |
5317 | if (!isolate_lru_page(page)) { | |
5318 | if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, | |
5319 | mc.from, mc.to)) { | |
5320 | mc.precharge -= HPAGE_PMD_NR; | |
5321 | mc.moved_charge += HPAGE_PMD_NR; | |
5322 | } | |
5323 | putback_lru_page(page); | |
5324 | } | |
5325 | put_page(page); | |
5326 | } | |
5327 | spin_unlock(ptl); | |
5328 | return 0; | |
5329 | } | |
5330 | ||
5331 | if (pmd_trans_unstable(pmd)) | |
5332 | return 0; | |
5333 | retry: | |
5334 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | |
5335 | for (; addr != end; addr += PAGE_SIZE) { | |
5336 | pte_t ptent = *(pte++); | |
5337 | swp_entry_t ent; | |
5338 | ||
5339 | if (!mc.precharge) | |
5340 | break; | |
5341 | ||
5342 | switch (get_mctgt_type(vma, addr, ptent, &target)) { | |
5343 | case MC_TARGET_PAGE: | |
5344 | page = target.page; | |
5345 | if (isolate_lru_page(page)) | |
5346 | goto put; | |
5347 | if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) { | |
5348 | mc.precharge--; | |
5349 | /* we uncharge from mc.from later. */ | |
5350 | mc.moved_charge++; | |
5351 | } | |
5352 | putback_lru_page(page); | |
5353 | put: /* get_mctgt_type() gets the page */ | |
5354 | put_page(page); | |
5355 | break; | |
5356 | case MC_TARGET_SWAP: | |
5357 | ent = target.ent; | |
5358 | if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { | |
5359 | mc.precharge--; | |
5360 | /* we fixup refcnts and charges later. */ | |
5361 | mc.moved_swap++; | |
5362 | } | |
5363 | break; | |
5364 | default: | |
5365 | break; | |
5366 | } | |
5367 | } | |
5368 | pte_unmap_unlock(pte - 1, ptl); | |
5369 | cond_resched(); | |
5370 | ||
5371 | if (addr != end) { | |
5372 | /* | |
5373 | * We have consumed all precharges we got in can_attach(). | |
5374 | * We try charge one by one, but don't do any additional | |
5375 | * charges to mc.to if we have failed in charge once in attach() | |
5376 | * phase. | |
5377 | */ | |
5378 | ret = mem_cgroup_do_precharge(1); | |
5379 | if (!ret) | |
5380 | goto retry; | |
5381 | } | |
5382 | ||
5383 | return ret; | |
5384 | } | |
5385 | ||
5386 | static void mem_cgroup_move_charge(struct mm_struct *mm) | |
5387 | { | |
5388 | struct vm_area_struct *vma; | |
5389 | ||
5390 | lru_add_drain_all(); | |
5391 | /* | |
5392 | * Signal mem_cgroup_begin_page_stat() to take the memcg's | |
5393 | * move_lock while we're moving its pages to another memcg. | |
5394 | * Then wait for already started RCU-only updates to finish. | |
5395 | */ | |
5396 | atomic_inc(&mc.from->moving_account); | |
5397 | synchronize_rcu(); | |
5398 | retry: | |
5399 | if (unlikely(!down_read_trylock(&mm->mmap_sem))) { | |
5400 | /* | |
5401 | * Someone who are holding the mmap_sem might be waiting in | |
5402 | * waitq. So we cancel all extra charges, wake up all waiters, | |
5403 | * and retry. Because we cancel precharges, we might not be able | |
5404 | * to move enough charges, but moving charge is a best-effort | |
5405 | * feature anyway, so it wouldn't be a big problem. | |
5406 | */ | |
5407 | __mem_cgroup_clear_mc(); | |
5408 | cond_resched(); | |
5409 | goto retry; | |
5410 | } | |
5411 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | |
5412 | int ret; | |
5413 | struct mm_walk mem_cgroup_move_charge_walk = { | |
5414 | .pmd_entry = mem_cgroup_move_charge_pte_range, | |
5415 | .mm = mm, | |
5416 | .private = vma, | |
5417 | }; | |
5418 | if (is_vm_hugetlb_page(vma)) | |
5419 | continue; | |
5420 | ret = walk_page_range(vma->vm_start, vma->vm_end, | |
5421 | &mem_cgroup_move_charge_walk); | |
5422 | if (ret) | |
5423 | /* | |
5424 | * means we have consumed all precharges and failed in | |
5425 | * doing additional charge. Just abandon here. | |
5426 | */ | |
5427 | break; | |
5428 | } | |
5429 | up_read(&mm->mmap_sem); | |
5430 | atomic_dec(&mc.from->moving_account); | |
5431 | } | |
5432 | ||
5433 | static void mem_cgroup_move_task(struct cgroup_subsys_state *css, | |
5434 | struct cgroup_taskset *tset) | |
5435 | { | |
5436 | struct task_struct *p = cgroup_taskset_first(tset); | |
5437 | struct mm_struct *mm = get_task_mm(p); | |
5438 | ||
5439 | if (mm) { | |
5440 | if (mc.to) | |
5441 | mem_cgroup_move_charge(mm); | |
5442 | mmput(mm); | |
5443 | } | |
5444 | if (mc.to) | |
5445 | mem_cgroup_clear_mc(); | |
5446 | } | |
5447 | #else /* !CONFIG_MMU */ | |
5448 | static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, | |
5449 | struct cgroup_taskset *tset) | |
5450 | { | |
5451 | return 0; | |
5452 | } | |
5453 | static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, | |
5454 | struct cgroup_taskset *tset) | |
5455 | { | |
5456 | } | |
5457 | static void mem_cgroup_move_task(struct cgroup_subsys_state *css, | |
5458 | struct cgroup_taskset *tset) | |
5459 | { | |
5460 | } | |
5461 | #endif | |
5462 | ||
5463 | /* | |
5464 | * Cgroup retains root cgroups across [un]mount cycles making it necessary | |
5465 | * to verify whether we're attached to the default hierarchy on each mount | |
5466 | * attempt. | |
5467 | */ | |
5468 | static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) | |
5469 | { | |
5470 | /* | |
5471 | * use_hierarchy is forced on the default hierarchy. cgroup core | |
5472 | * guarantees that @root doesn't have any children, so turning it | |
5473 | * on for the root memcg is enough. | |
5474 | */ | |
5475 | if (cgroup_on_dfl(root_css->cgroup)) | |
5476 | mem_cgroup_from_css(root_css)->use_hierarchy = true; | |
5477 | } | |
5478 | ||
5479 | struct cgroup_subsys memory_cgrp_subsys = { | |
5480 | .css_alloc = mem_cgroup_css_alloc, | |
5481 | .css_online = mem_cgroup_css_online, | |
5482 | .css_offline = mem_cgroup_css_offline, | |
5483 | .css_free = mem_cgroup_css_free, | |
5484 | .css_reset = mem_cgroup_css_reset, | |
5485 | .can_attach = mem_cgroup_can_attach, | |
5486 | .cancel_attach = mem_cgroup_cancel_attach, | |
5487 | .attach = mem_cgroup_move_task, | |
5488 | .bind = mem_cgroup_bind, | |
5489 | .legacy_cftypes = mem_cgroup_files, | |
5490 | .early_init = 0, | |
5491 | }; | |
5492 | ||
5493 | #ifdef CONFIG_MEMCG_SWAP | |
5494 | static int __init enable_swap_account(char *s) | |
5495 | { | |
5496 | if (!strcmp(s, "1")) | |
5497 | really_do_swap_account = 1; | |
5498 | else if (!strcmp(s, "0")) | |
5499 | really_do_swap_account = 0; | |
5500 | return 1; | |
5501 | } | |
5502 | __setup("swapaccount=", enable_swap_account); | |
5503 | ||
5504 | static void __init memsw_file_init(void) | |
5505 | { | |
5506 | WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, | |
5507 | memsw_cgroup_files)); | |
5508 | } | |
5509 | ||
5510 | static void __init enable_swap_cgroup(void) | |
5511 | { | |
5512 | if (!mem_cgroup_disabled() && really_do_swap_account) { | |
5513 | do_swap_account = 1; | |
5514 | memsw_file_init(); | |
5515 | } | |
5516 | } | |
5517 | ||
5518 | #else | |
5519 | static void __init enable_swap_cgroup(void) | |
5520 | { | |
5521 | } | |
5522 | #endif | |
5523 | ||
5524 | #ifdef CONFIG_MEMCG_SWAP | |
5525 | /** | |
5526 | * mem_cgroup_swapout - transfer a memsw charge to swap | |
5527 | * @page: page whose memsw charge to transfer | |
5528 | * @entry: swap entry to move the charge to | |
5529 | * | |
5530 | * Transfer the memsw charge of @page to @entry. | |
5531 | */ | |
5532 | void mem_cgroup_swapout(struct page *page, swp_entry_t entry) | |
5533 | { | |
5534 | struct mem_cgroup *memcg; | |
5535 | unsigned short oldid; | |
5536 | ||
5537 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
5538 | VM_BUG_ON_PAGE(page_count(page), page); | |
5539 | ||
5540 | if (!do_swap_account) | |
5541 | return; | |
5542 | ||
5543 | memcg = page->mem_cgroup; | |
5544 | ||
5545 | /* Readahead page, never charged */ | |
5546 | if (!memcg) | |
5547 | return; | |
5548 | ||
5549 | oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); | |
5550 | VM_BUG_ON_PAGE(oldid, page); | |
5551 | mem_cgroup_swap_statistics(memcg, true); | |
5552 | ||
5553 | page->mem_cgroup = NULL; | |
5554 | ||
5555 | if (!mem_cgroup_is_root(memcg)) | |
5556 | page_counter_uncharge(&memcg->memory, 1); | |
5557 | ||
5558 | /* XXX: caller holds IRQ-safe mapping->tree_lock */ | |
5559 | VM_BUG_ON(!irqs_disabled()); | |
5560 | ||
5561 | mem_cgroup_charge_statistics(memcg, page, -1); | |
5562 | memcg_check_events(memcg, page); | |
5563 | } | |
5564 | ||
5565 | /** | |
5566 | * mem_cgroup_uncharge_swap - uncharge a swap entry | |
5567 | * @entry: swap entry to uncharge | |
5568 | * | |
5569 | * Drop the memsw charge associated with @entry. | |
5570 | */ | |
5571 | void mem_cgroup_uncharge_swap(swp_entry_t entry) | |
5572 | { | |
5573 | struct mem_cgroup *memcg; | |
5574 | unsigned short id; | |
5575 | ||
5576 | if (!do_swap_account) | |
5577 | return; | |
5578 | ||
5579 | id = swap_cgroup_record(entry, 0); | |
5580 | rcu_read_lock(); | |
5581 | memcg = mem_cgroup_lookup(id); | |
5582 | if (memcg) { | |
5583 | if (!mem_cgroup_is_root(memcg)) | |
5584 | page_counter_uncharge(&memcg->memsw, 1); | |
5585 | mem_cgroup_swap_statistics(memcg, false); | |
5586 | css_put(&memcg->css); | |
5587 | } | |
5588 | rcu_read_unlock(); | |
5589 | } | |
5590 | #endif | |
5591 | ||
5592 | /** | |
5593 | * mem_cgroup_try_charge - try charging a page | |
5594 | * @page: page to charge | |
5595 | * @mm: mm context of the victim | |
5596 | * @gfp_mask: reclaim mode | |
5597 | * @memcgp: charged memcg return | |
5598 | * | |
5599 | * Try to charge @page to the memcg that @mm belongs to, reclaiming | |
5600 | * pages according to @gfp_mask if necessary. | |
5601 | * | |
5602 | * Returns 0 on success, with *@memcgp pointing to the charged memcg. | |
5603 | * Otherwise, an error code is returned. | |
5604 | * | |
5605 | * After page->mapping has been set up, the caller must finalize the | |
5606 | * charge with mem_cgroup_commit_charge(). Or abort the transaction | |
5607 | * with mem_cgroup_cancel_charge() in case page instantiation fails. | |
5608 | */ | |
5609 | int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, | |
5610 | gfp_t gfp_mask, struct mem_cgroup **memcgp) | |
5611 | { | |
5612 | struct mem_cgroup *memcg = NULL; | |
5613 | unsigned int nr_pages = 1; | |
5614 | int ret = 0; | |
5615 | ||
5616 | if (mem_cgroup_disabled()) | |
5617 | goto out; | |
5618 | ||
5619 | if (PageSwapCache(page)) { | |
5620 | /* | |
5621 | * Every swap fault against a single page tries to charge the | |
5622 | * page, bail as early as possible. shmem_unuse() encounters | |
5623 | * already charged pages, too. The USED bit is protected by | |
5624 | * the page lock, which serializes swap cache removal, which | |
5625 | * in turn serializes uncharging. | |
5626 | */ | |
5627 | if (page->mem_cgroup) | |
5628 | goto out; | |
5629 | } | |
5630 | ||
5631 | if (PageTransHuge(page)) { | |
5632 | nr_pages <<= compound_order(page); | |
5633 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
5634 | } | |
5635 | ||
5636 | if (do_swap_account && PageSwapCache(page)) | |
5637 | memcg = try_get_mem_cgroup_from_page(page); | |
5638 | if (!memcg) | |
5639 | memcg = get_mem_cgroup_from_mm(mm); | |
5640 | ||
5641 | ret = try_charge(memcg, gfp_mask, nr_pages); | |
5642 | ||
5643 | css_put(&memcg->css); | |
5644 | ||
5645 | if (ret == -EINTR) { | |
5646 | memcg = root_mem_cgroup; | |
5647 | ret = 0; | |
5648 | } | |
5649 | out: | |
5650 | *memcgp = memcg; | |
5651 | return ret; | |
5652 | } | |
5653 | ||
5654 | /** | |
5655 | * mem_cgroup_commit_charge - commit a page charge | |
5656 | * @page: page to charge | |
5657 | * @memcg: memcg to charge the page to | |
5658 | * @lrucare: page might be on LRU already | |
5659 | * | |
5660 | * Finalize a charge transaction started by mem_cgroup_try_charge(), | |
5661 | * after page->mapping has been set up. This must happen atomically | |
5662 | * as part of the page instantiation, i.e. under the page table lock | |
5663 | * for anonymous pages, under the page lock for page and swap cache. | |
5664 | * | |
5665 | * In addition, the page must not be on the LRU during the commit, to | |
5666 | * prevent racing with task migration. If it might be, use @lrucare. | |
5667 | * | |
5668 | * Use mem_cgroup_cancel_charge() to cancel the transaction instead. | |
5669 | */ | |
5670 | void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, | |
5671 | bool lrucare) | |
5672 | { | |
5673 | unsigned int nr_pages = 1; | |
5674 | ||
5675 | VM_BUG_ON_PAGE(!page->mapping, page); | |
5676 | VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); | |
5677 | ||
5678 | if (mem_cgroup_disabled()) | |
5679 | return; | |
5680 | /* | |
5681 | * Swap faults will attempt to charge the same page multiple | |
5682 | * times. But reuse_swap_page() might have removed the page | |
5683 | * from swapcache already, so we can't check PageSwapCache(). | |
5684 | */ | |
5685 | if (!memcg) | |
5686 | return; | |
5687 | ||
5688 | commit_charge(page, memcg, lrucare); | |
5689 | ||
5690 | if (PageTransHuge(page)) { | |
5691 | nr_pages <<= compound_order(page); | |
5692 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
5693 | } | |
5694 | ||
5695 | local_irq_disable(); | |
5696 | mem_cgroup_charge_statistics(memcg, page, nr_pages); | |
5697 | memcg_check_events(memcg, page); | |
5698 | local_irq_enable(); | |
5699 | ||
5700 | if (do_swap_account && PageSwapCache(page)) { | |
5701 | swp_entry_t entry = { .val = page_private(page) }; | |
5702 | /* | |
5703 | * The swap entry might not get freed for a long time, | |
5704 | * let's not wait for it. The page already received a | |
5705 | * memory+swap charge, drop the swap entry duplicate. | |
5706 | */ | |
5707 | mem_cgroup_uncharge_swap(entry); | |
5708 | } | |
5709 | } | |
5710 | ||
5711 | /** | |
5712 | * mem_cgroup_cancel_charge - cancel a page charge | |
5713 | * @page: page to charge | |
5714 | * @memcg: memcg to charge the page to | |
5715 | * | |
5716 | * Cancel a charge transaction started by mem_cgroup_try_charge(). | |
5717 | */ | |
5718 | void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg) | |
5719 | { | |
5720 | unsigned int nr_pages = 1; | |
5721 | ||
5722 | if (mem_cgroup_disabled()) | |
5723 | return; | |
5724 | /* | |
5725 | * Swap faults will attempt to charge the same page multiple | |
5726 | * times. But reuse_swap_page() might have removed the page | |
5727 | * from swapcache already, so we can't check PageSwapCache(). | |
5728 | */ | |
5729 | if (!memcg) | |
5730 | return; | |
5731 | ||
5732 | if (PageTransHuge(page)) { | |
5733 | nr_pages <<= compound_order(page); | |
5734 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
5735 | } | |
5736 | ||
5737 | cancel_charge(memcg, nr_pages); | |
5738 | } | |
5739 | ||
5740 | static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, | |
5741 | unsigned long nr_anon, unsigned long nr_file, | |
5742 | unsigned long nr_huge, struct page *dummy_page) | |
5743 | { | |
5744 | unsigned long nr_pages = nr_anon + nr_file; | |
5745 | unsigned long flags; | |
5746 | ||
5747 | if (!mem_cgroup_is_root(memcg)) { | |
5748 | page_counter_uncharge(&memcg->memory, nr_pages); | |
5749 | if (do_swap_account) | |
5750 | page_counter_uncharge(&memcg->memsw, nr_pages); | |
5751 | memcg_oom_recover(memcg); | |
5752 | } | |
5753 | ||
5754 | local_irq_save(flags); | |
5755 | __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); | |
5756 | __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); | |
5757 | __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); | |
5758 | __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); | |
5759 | __this_cpu_add(memcg->stat->nr_page_events, nr_pages); | |
5760 | memcg_check_events(memcg, dummy_page); | |
5761 | local_irq_restore(flags); | |
5762 | ||
5763 | if (!mem_cgroup_is_root(memcg)) | |
5764 | css_put_many(&memcg->css, nr_pages); | |
5765 | } | |
5766 | ||
5767 | static void uncharge_list(struct list_head *page_list) | |
5768 | { | |
5769 | struct mem_cgroup *memcg = NULL; | |
5770 | unsigned long nr_anon = 0; | |
5771 | unsigned long nr_file = 0; | |
5772 | unsigned long nr_huge = 0; | |
5773 | unsigned long pgpgout = 0; | |
5774 | struct list_head *next; | |
5775 | struct page *page; | |
5776 | ||
5777 | next = page_list->next; | |
5778 | do { | |
5779 | unsigned int nr_pages = 1; | |
5780 | ||
5781 | page = list_entry(next, struct page, lru); | |
5782 | next = page->lru.next; | |
5783 | ||
5784 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
5785 | VM_BUG_ON_PAGE(page_count(page), page); | |
5786 | ||
5787 | if (!page->mem_cgroup) | |
5788 | continue; | |
5789 | ||
5790 | /* | |
5791 | * Nobody should be changing or seriously looking at | |
5792 | * page->mem_cgroup at this point, we have fully | |
5793 | * exclusive access to the page. | |
5794 | */ | |
5795 | ||
5796 | if (memcg != page->mem_cgroup) { | |
5797 | if (memcg) { | |
5798 | uncharge_batch(memcg, pgpgout, nr_anon, nr_file, | |
5799 | nr_huge, page); | |
5800 | pgpgout = nr_anon = nr_file = nr_huge = 0; | |
5801 | } | |
5802 | memcg = page->mem_cgroup; | |
5803 | } | |
5804 | ||
5805 | if (PageTransHuge(page)) { | |
5806 | nr_pages <<= compound_order(page); | |
5807 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
5808 | nr_huge += nr_pages; | |
5809 | } | |
5810 | ||
5811 | if (PageAnon(page)) | |
5812 | nr_anon += nr_pages; | |
5813 | else | |
5814 | nr_file += nr_pages; | |
5815 | ||
5816 | page->mem_cgroup = NULL; | |
5817 | ||
5818 | pgpgout++; | |
5819 | } while (next != page_list); | |
5820 | ||
5821 | if (memcg) | |
5822 | uncharge_batch(memcg, pgpgout, nr_anon, nr_file, | |
5823 | nr_huge, page); | |
5824 | } | |
5825 | ||
5826 | /** | |
5827 | * mem_cgroup_uncharge - uncharge a page | |
5828 | * @page: page to uncharge | |
5829 | * | |
5830 | * Uncharge a page previously charged with mem_cgroup_try_charge() and | |
5831 | * mem_cgroup_commit_charge(). | |
5832 | */ | |
5833 | void mem_cgroup_uncharge(struct page *page) | |
5834 | { | |
5835 | if (mem_cgroup_disabled()) | |
5836 | return; | |
5837 | ||
5838 | /* Don't touch page->lru of any random page, pre-check: */ | |
5839 | if (!page->mem_cgroup) | |
5840 | return; | |
5841 | ||
5842 | INIT_LIST_HEAD(&page->lru); | |
5843 | uncharge_list(&page->lru); | |
5844 | } | |
5845 | ||
5846 | /** | |
5847 | * mem_cgroup_uncharge_list - uncharge a list of page | |
5848 | * @page_list: list of pages to uncharge | |
5849 | * | |
5850 | * Uncharge a list of pages previously charged with | |
5851 | * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). | |
5852 | */ | |
5853 | void mem_cgroup_uncharge_list(struct list_head *page_list) | |
5854 | { | |
5855 | if (mem_cgroup_disabled()) | |
5856 | return; | |
5857 | ||
5858 | if (!list_empty(page_list)) | |
5859 | uncharge_list(page_list); | |
5860 | } | |
5861 | ||
5862 | /** | |
5863 | * mem_cgroup_migrate - migrate a charge to another page | |
5864 | * @oldpage: currently charged page | |
5865 | * @newpage: page to transfer the charge to | |
5866 | * @lrucare: both pages might be on the LRU already | |
5867 | * | |
5868 | * Migrate the charge from @oldpage to @newpage. | |
5869 | * | |
5870 | * Both pages must be locked, @newpage->mapping must be set up. | |
5871 | */ | |
5872 | void mem_cgroup_migrate(struct page *oldpage, struct page *newpage, | |
5873 | bool lrucare) | |
5874 | { | |
5875 | struct mem_cgroup *memcg; | |
5876 | int isolated; | |
5877 | ||
5878 | VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); | |
5879 | VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); | |
5880 | VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage); | |
5881 | VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage); | |
5882 | VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); | |
5883 | VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), | |
5884 | newpage); | |
5885 | ||
5886 | if (mem_cgroup_disabled()) | |
5887 | return; | |
5888 | ||
5889 | /* Page cache replacement: new page already charged? */ | |
5890 | if (newpage->mem_cgroup) | |
5891 | return; | |
5892 | ||
5893 | /* | |
5894 | * Swapcache readahead pages can get migrated before being | |
5895 | * charged, and migration from compaction can happen to an | |
5896 | * uncharged page when the PFN walker finds a page that | |
5897 | * reclaim just put back on the LRU but has not released yet. | |
5898 | */ | |
5899 | memcg = oldpage->mem_cgroup; | |
5900 | if (!memcg) | |
5901 | return; | |
5902 | ||
5903 | if (lrucare) | |
5904 | lock_page_lru(oldpage, &isolated); | |
5905 | ||
5906 | oldpage->mem_cgroup = NULL; | |
5907 | ||
5908 | if (lrucare) | |
5909 | unlock_page_lru(oldpage, isolated); | |
5910 | ||
5911 | commit_charge(newpage, memcg, lrucare); | |
5912 | } | |
5913 | ||
5914 | /* | |
5915 | * subsys_initcall() for memory controller. | |
5916 | * | |
5917 | * Some parts like hotcpu_notifier() have to be initialized from this context | |
5918 | * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically | |
5919 | * everything that doesn't depend on a specific mem_cgroup structure should | |
5920 | * be initialized from here. | |
5921 | */ | |
5922 | static int __init mem_cgroup_init(void) | |
5923 | { | |
5924 | hotcpu_notifier(memcg_cpu_hotplug_callback, 0); | |
5925 | enable_swap_cgroup(); | |
5926 | mem_cgroup_soft_limit_tree_init(); | |
5927 | memcg_stock_init(); | |
5928 | return 0; | |
5929 | } | |
5930 | subsys_initcall(mem_cgroup_init); |