]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Memory merging support. | |
3 | * | |
4 | * This code enables dynamic sharing of identical pages found in different | |
5 | * memory areas, even if they are not shared by fork() | |
6 | * | |
7 | * Copyright (C) 2008-2009 Red Hat, Inc. | |
8 | * Authors: | |
9 | * Izik Eidus | |
10 | * Andrea Arcangeli | |
11 | * Chris Wright | |
12 | * Hugh Dickins | |
13 | * | |
14 | * This work is licensed under the terms of the GNU GPL, version 2. | |
15 | */ | |
16 | ||
17 | #include <linux/errno.h> | |
18 | #include <linux/mm.h> | |
19 | #include <linux/fs.h> | |
20 | #include <linux/mman.h> | |
21 | #include <linux/sched.h> | |
22 | #include <linux/sched/mm.h> | |
23 | #include <linux/sched/coredump.h> | |
24 | #include <linux/rwsem.h> | |
25 | #include <linux/pagemap.h> | |
26 | #include <linux/rmap.h> | |
27 | #include <linux/spinlock.h> | |
28 | #include <linux/jhash.h> | |
29 | #include <linux/delay.h> | |
30 | #include <linux/kthread.h> | |
31 | #include <linux/wait.h> | |
32 | #include <linux/slab.h> | |
33 | #include <linux/rbtree.h> | |
34 | #include <linux/memory.h> | |
35 | #include <linux/mmu_notifier.h> | |
36 | #include <linux/swap.h> | |
37 | #include <linux/ksm.h> | |
38 | #include <linux/hashtable.h> | |
39 | #include <linux/freezer.h> | |
40 | #include <linux/oom.h> | |
41 | #include <linux/numa.h> | |
42 | ||
43 | #include <asm/tlbflush.h> | |
44 | #include "internal.h" | |
45 | ||
46 | #ifdef CONFIG_NUMA | |
47 | #define NUMA(x) (x) | |
48 | #define DO_NUMA(x) do { (x); } while (0) | |
49 | #else | |
50 | #define NUMA(x) (0) | |
51 | #define DO_NUMA(x) do { } while (0) | |
52 | #endif | |
53 | ||
54 | /** | |
55 | * DOC: Overview | |
56 | * | |
57 | * A few notes about the KSM scanning process, | |
58 | * to make it easier to understand the data structures below: | |
59 | * | |
60 | * In order to reduce excessive scanning, KSM sorts the memory pages by their | |
61 | * contents into a data structure that holds pointers to the pages' locations. | |
62 | * | |
63 | * Since the contents of the pages may change at any moment, KSM cannot just | |
64 | * insert the pages into a normal sorted tree and expect it to find anything. | |
65 | * Therefore KSM uses two data structures - the stable and the unstable tree. | |
66 | * | |
67 | * The stable tree holds pointers to all the merged pages (ksm pages), sorted | |
68 | * by their contents. Because each such page is write-protected, searching on | |
69 | * this tree is fully assured to be working (except when pages are unmapped), | |
70 | * and therefore this tree is called the stable tree. | |
71 | * | |
72 | * The stable tree node includes information required for reverse | |
73 | * mapping from a KSM page to virtual addresses that map this page. | |
74 | * | |
75 | * In order to avoid large latencies of the rmap walks on KSM pages, | |
76 | * KSM maintains two types of nodes in the stable tree: | |
77 | * | |
78 | * * the regular nodes that keep the reverse mapping structures in a | |
79 | * linked list | |
80 | * * the "chains" that link nodes ("dups") that represent the same | |
81 | * write protected memory content, but each "dup" corresponds to a | |
82 | * different KSM page copy of that content | |
83 | * | |
84 | * Internally, the regular nodes, "dups" and "chains" are represented | |
85 | * using the same :c:type:`struct stable_node` structure. | |
86 | * | |
87 | * In addition to the stable tree, KSM uses a second data structure called the | |
88 | * unstable tree: this tree holds pointers to pages which have been found to | |
89 | * be "unchanged for a period of time". The unstable tree sorts these pages | |
90 | * by their contents, but since they are not write-protected, KSM cannot rely | |
91 | * upon the unstable tree to work correctly - the unstable tree is liable to | |
92 | * be corrupted as its contents are modified, and so it is called unstable. | |
93 | * | |
94 | * KSM solves this problem by several techniques: | |
95 | * | |
96 | * 1) The unstable tree is flushed every time KSM completes scanning all | |
97 | * memory areas, and then the tree is rebuilt again from the beginning. | |
98 | * 2) KSM will only insert into the unstable tree, pages whose hash value | |
99 | * has not changed since the previous scan of all memory areas. | |
100 | * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the | |
101 | * colors of the nodes and not on their contents, assuring that even when | |
102 | * the tree gets "corrupted" it won't get out of balance, so scanning time | |
103 | * remains the same (also, searching and inserting nodes in an rbtree uses | |
104 | * the same algorithm, so we have no overhead when we flush and rebuild). | |
105 | * 4) KSM never flushes the stable tree, which means that even if it were to | |
106 | * take 10 attempts to find a page in the unstable tree, once it is found, | |
107 | * it is secured in the stable tree. (When we scan a new page, we first | |
108 | * compare it against the stable tree, and then against the unstable tree.) | |
109 | * | |
110 | * If the merge_across_nodes tunable is unset, then KSM maintains multiple | |
111 | * stable trees and multiple unstable trees: one of each for each NUMA node. | |
112 | */ | |
113 | ||
114 | /** | |
115 | * struct mm_slot - ksm information per mm that is being scanned | |
116 | * @link: link to the mm_slots hash list | |
117 | * @mm_list: link into the mm_slots list, rooted in ksm_mm_head | |
118 | * @rmap_list: head for this mm_slot's singly-linked list of rmap_items | |
119 | * @mm: the mm that this information is valid for | |
120 | */ | |
121 | struct mm_slot { | |
122 | struct hlist_node link; | |
123 | struct list_head mm_list; | |
124 | struct rmap_item *rmap_list; | |
125 | struct mm_struct *mm; | |
126 | }; | |
127 | ||
128 | /** | |
129 | * struct ksm_scan - cursor for scanning | |
130 | * @mm_slot: the current mm_slot we are scanning | |
131 | * @address: the next address inside that to be scanned | |
132 | * @rmap_list: link to the next rmap to be scanned in the rmap_list | |
133 | * @seqnr: count of completed full scans (needed when removing unstable node) | |
134 | * | |
135 | * There is only the one ksm_scan instance of this cursor structure. | |
136 | */ | |
137 | struct ksm_scan { | |
138 | struct mm_slot *mm_slot; | |
139 | unsigned long address; | |
140 | struct rmap_item **rmap_list; | |
141 | unsigned long seqnr; | |
142 | }; | |
143 | ||
144 | /** | |
145 | * struct stable_node - node of the stable rbtree | |
146 | * @node: rb node of this ksm page in the stable tree | |
147 | * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list | |
148 | * @hlist_dup: linked into the stable_node->hlist with a stable_node chain | |
149 | * @list: linked into migrate_nodes, pending placement in the proper node tree | |
150 | * @hlist: hlist head of rmap_items using this ksm page | |
151 | * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) | |
152 | * @chain_prune_time: time of the last full garbage collection | |
153 | * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN | |
154 | * @nid: NUMA node id of stable tree in which linked (may not match kpfn) | |
155 | */ | |
156 | struct stable_node { | |
157 | union { | |
158 | struct rb_node node; /* when node of stable tree */ | |
159 | struct { /* when listed for migration */ | |
160 | struct list_head *head; | |
161 | struct { | |
162 | struct hlist_node hlist_dup; | |
163 | struct list_head list; | |
164 | }; | |
165 | }; | |
166 | }; | |
167 | struct hlist_head hlist; | |
168 | union { | |
169 | unsigned long kpfn; | |
170 | unsigned long chain_prune_time; | |
171 | }; | |
172 | /* | |
173 | * STABLE_NODE_CHAIN can be any negative number in | |
174 | * rmap_hlist_len negative range, but better not -1 to be able | |
175 | * to reliably detect underflows. | |
176 | */ | |
177 | #define STABLE_NODE_CHAIN -1024 | |
178 | int rmap_hlist_len; | |
179 | #ifdef CONFIG_NUMA | |
180 | int nid; | |
181 | #endif | |
182 | }; | |
183 | ||
184 | /** | |
185 | * struct rmap_item - reverse mapping item for virtual addresses | |
186 | * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list | |
187 | * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree | |
188 | * @nid: NUMA node id of unstable tree in which linked (may not match page) | |
189 | * @mm: the memory structure this rmap_item is pointing into | |
190 | * @address: the virtual address this rmap_item tracks (+ flags in low bits) | |
191 | * @oldchecksum: previous checksum of the page at that virtual address | |
192 | * @node: rb node of this rmap_item in the unstable tree | |
193 | * @head: pointer to stable_node heading this list in the stable tree | |
194 | * @hlist: link into hlist of rmap_items hanging off that stable_node | |
195 | */ | |
196 | struct rmap_item { | |
197 | struct rmap_item *rmap_list; | |
198 | union { | |
199 | struct anon_vma *anon_vma; /* when stable */ | |
200 | #ifdef CONFIG_NUMA | |
201 | int nid; /* when node of unstable tree */ | |
202 | #endif | |
203 | }; | |
204 | struct mm_struct *mm; | |
205 | unsigned long address; /* + low bits used for flags below */ | |
206 | unsigned int oldchecksum; /* when unstable */ | |
207 | union { | |
208 | struct rb_node node; /* when node of unstable tree */ | |
209 | struct { /* when listed from stable tree */ | |
210 | struct stable_node *head; | |
211 | struct hlist_node hlist; | |
212 | }; | |
213 | }; | |
214 | }; | |
215 | ||
216 | #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ | |
217 | #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ | |
218 | #define STABLE_FLAG 0x200 /* is listed from the stable tree */ | |
219 | #define KSM_FLAG_MASK (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG) | |
220 | /* to mask all the flags */ | |
221 | ||
222 | /* The stable and unstable tree heads */ | |
223 | static struct rb_root one_stable_tree[1] = { RB_ROOT }; | |
224 | static struct rb_root one_unstable_tree[1] = { RB_ROOT }; | |
225 | static struct rb_root *root_stable_tree = one_stable_tree; | |
226 | static struct rb_root *root_unstable_tree = one_unstable_tree; | |
227 | ||
228 | /* Recently migrated nodes of stable tree, pending proper placement */ | |
229 | static LIST_HEAD(migrate_nodes); | |
230 | #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) | |
231 | ||
232 | #define MM_SLOTS_HASH_BITS 10 | |
233 | static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); | |
234 | ||
235 | static struct mm_slot ksm_mm_head = { | |
236 | .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), | |
237 | }; | |
238 | static struct ksm_scan ksm_scan = { | |
239 | .mm_slot = &ksm_mm_head, | |
240 | }; | |
241 | ||
242 | static struct kmem_cache *rmap_item_cache; | |
243 | static struct kmem_cache *stable_node_cache; | |
244 | static struct kmem_cache *mm_slot_cache; | |
245 | ||
246 | /* The number of nodes in the stable tree */ | |
247 | static unsigned long ksm_pages_shared; | |
248 | ||
249 | /* The number of page slots additionally sharing those nodes */ | |
250 | static unsigned long ksm_pages_sharing; | |
251 | ||
252 | /* The number of nodes in the unstable tree */ | |
253 | static unsigned long ksm_pages_unshared; | |
254 | ||
255 | /* The number of rmap_items in use: to calculate pages_volatile */ | |
256 | static unsigned long ksm_rmap_items; | |
257 | ||
258 | /* The number of stable_node chains */ | |
259 | static unsigned long ksm_stable_node_chains; | |
260 | ||
261 | /* The number of stable_node dups linked to the stable_node chains */ | |
262 | static unsigned long ksm_stable_node_dups; | |
263 | ||
264 | /* Delay in pruning stale stable_node_dups in the stable_node_chains */ | |
265 | static int ksm_stable_node_chains_prune_millisecs = 2000; | |
266 | ||
267 | /* Maximum number of page slots sharing a stable node */ | |
268 | static int ksm_max_page_sharing = 256; | |
269 | ||
270 | /* Number of pages ksmd should scan in one batch */ | |
271 | static unsigned int ksm_thread_pages_to_scan = 100; | |
272 | ||
273 | /* Milliseconds ksmd should sleep between batches */ | |
274 | static unsigned int ksm_thread_sleep_millisecs = 20; | |
275 | ||
276 | /* Checksum of an empty (zeroed) page */ | |
277 | static unsigned int zero_checksum __read_mostly; | |
278 | ||
279 | /* Whether to merge empty (zeroed) pages with actual zero pages */ | |
280 | static bool ksm_use_zero_pages __read_mostly; | |
281 | ||
282 | #ifdef CONFIG_NUMA | |
283 | /* Zeroed when merging across nodes is not allowed */ | |
284 | static unsigned int ksm_merge_across_nodes = 1; | |
285 | static int ksm_nr_node_ids = 1; | |
286 | #else | |
287 | #define ksm_merge_across_nodes 1U | |
288 | #define ksm_nr_node_ids 1 | |
289 | #endif | |
290 | ||
291 | #define KSM_RUN_STOP 0 | |
292 | #define KSM_RUN_MERGE 1 | |
293 | #define KSM_RUN_UNMERGE 2 | |
294 | #define KSM_RUN_OFFLINE 4 | |
295 | static unsigned long ksm_run = KSM_RUN_STOP; | |
296 | static void wait_while_offlining(void); | |
297 | ||
298 | static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); | |
299 | static DEFINE_MUTEX(ksm_thread_mutex); | |
300 | static DEFINE_SPINLOCK(ksm_mmlist_lock); | |
301 | ||
302 | #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ | |
303 | sizeof(struct __struct), __alignof__(struct __struct),\ | |
304 | (__flags), NULL) | |
305 | ||
306 | static int __init ksm_slab_init(void) | |
307 | { | |
308 | rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); | |
309 | if (!rmap_item_cache) | |
310 | goto out; | |
311 | ||
312 | stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); | |
313 | if (!stable_node_cache) | |
314 | goto out_free1; | |
315 | ||
316 | mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); | |
317 | if (!mm_slot_cache) | |
318 | goto out_free2; | |
319 | ||
320 | return 0; | |
321 | ||
322 | out_free2: | |
323 | kmem_cache_destroy(stable_node_cache); | |
324 | out_free1: | |
325 | kmem_cache_destroy(rmap_item_cache); | |
326 | out: | |
327 | return -ENOMEM; | |
328 | } | |
329 | ||
330 | static void __init ksm_slab_free(void) | |
331 | { | |
332 | kmem_cache_destroy(mm_slot_cache); | |
333 | kmem_cache_destroy(stable_node_cache); | |
334 | kmem_cache_destroy(rmap_item_cache); | |
335 | mm_slot_cache = NULL; | |
336 | } | |
337 | ||
338 | static __always_inline bool is_stable_node_chain(struct stable_node *chain) | |
339 | { | |
340 | return chain->rmap_hlist_len == STABLE_NODE_CHAIN; | |
341 | } | |
342 | ||
343 | static __always_inline bool is_stable_node_dup(struct stable_node *dup) | |
344 | { | |
345 | return dup->head == STABLE_NODE_DUP_HEAD; | |
346 | } | |
347 | ||
348 | static inline void stable_node_chain_add_dup(struct stable_node *dup, | |
349 | struct stable_node *chain) | |
350 | { | |
351 | VM_BUG_ON(is_stable_node_dup(dup)); | |
352 | dup->head = STABLE_NODE_DUP_HEAD; | |
353 | VM_BUG_ON(!is_stable_node_chain(chain)); | |
354 | hlist_add_head(&dup->hlist_dup, &chain->hlist); | |
355 | ksm_stable_node_dups++; | |
356 | } | |
357 | ||
358 | static inline void __stable_node_dup_del(struct stable_node *dup) | |
359 | { | |
360 | VM_BUG_ON(!is_stable_node_dup(dup)); | |
361 | hlist_del(&dup->hlist_dup); | |
362 | ksm_stable_node_dups--; | |
363 | } | |
364 | ||
365 | static inline void stable_node_dup_del(struct stable_node *dup) | |
366 | { | |
367 | VM_BUG_ON(is_stable_node_chain(dup)); | |
368 | if (is_stable_node_dup(dup)) | |
369 | __stable_node_dup_del(dup); | |
370 | else | |
371 | rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); | |
372 | #ifdef CONFIG_DEBUG_VM | |
373 | dup->head = NULL; | |
374 | #endif | |
375 | } | |
376 | ||
377 | static inline struct rmap_item *alloc_rmap_item(void) | |
378 | { | |
379 | struct rmap_item *rmap_item; | |
380 | ||
381 | rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | | |
382 | __GFP_NORETRY | __GFP_NOWARN); | |
383 | if (rmap_item) | |
384 | ksm_rmap_items++; | |
385 | return rmap_item; | |
386 | } | |
387 | ||
388 | static inline void free_rmap_item(struct rmap_item *rmap_item) | |
389 | { | |
390 | ksm_rmap_items--; | |
391 | rmap_item->mm = NULL; /* debug safety */ | |
392 | kmem_cache_free(rmap_item_cache, rmap_item); | |
393 | } | |
394 | ||
395 | static inline struct stable_node *alloc_stable_node(void) | |
396 | { | |
397 | /* | |
398 | * The allocation can take too long with GFP_KERNEL when memory is under | |
399 | * pressure, which may lead to hung task warnings. Adding __GFP_HIGH | |
400 | * grants access to memory reserves, helping to avoid this problem. | |
401 | */ | |
402 | return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); | |
403 | } | |
404 | ||
405 | static inline void free_stable_node(struct stable_node *stable_node) | |
406 | { | |
407 | VM_BUG_ON(stable_node->rmap_hlist_len && | |
408 | !is_stable_node_chain(stable_node)); | |
409 | kmem_cache_free(stable_node_cache, stable_node); | |
410 | } | |
411 | ||
412 | static inline struct mm_slot *alloc_mm_slot(void) | |
413 | { | |
414 | if (!mm_slot_cache) /* initialization failed */ | |
415 | return NULL; | |
416 | return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); | |
417 | } | |
418 | ||
419 | static inline void free_mm_slot(struct mm_slot *mm_slot) | |
420 | { | |
421 | kmem_cache_free(mm_slot_cache, mm_slot); | |
422 | } | |
423 | ||
424 | static struct mm_slot *get_mm_slot(struct mm_struct *mm) | |
425 | { | |
426 | struct mm_slot *slot; | |
427 | ||
428 | hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) | |
429 | if (slot->mm == mm) | |
430 | return slot; | |
431 | ||
432 | return NULL; | |
433 | } | |
434 | ||
435 | static void insert_to_mm_slots_hash(struct mm_struct *mm, | |
436 | struct mm_slot *mm_slot) | |
437 | { | |
438 | mm_slot->mm = mm; | |
439 | hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); | |
440 | } | |
441 | ||
442 | /* | |
443 | * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's | |
444 | * page tables after it has passed through ksm_exit() - which, if necessary, | |
445 | * takes mmap_sem briefly to serialize against them. ksm_exit() does not set | |
446 | * a special flag: they can just back out as soon as mm_users goes to zero. | |
447 | * ksm_test_exit() is used throughout to make this test for exit: in some | |
448 | * places for correctness, in some places just to avoid unnecessary work. | |
449 | */ | |
450 | static inline bool ksm_test_exit(struct mm_struct *mm) | |
451 | { | |
452 | return atomic_read(&mm->mm_users) == 0; | |
453 | } | |
454 | ||
455 | /* | |
456 | * We use break_ksm to break COW on a ksm page: it's a stripped down | |
457 | * | |
458 | * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1) | |
459 | * put_page(page); | |
460 | * | |
461 | * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, | |
462 | * in case the application has unmapped and remapped mm,addr meanwhile. | |
463 | * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP | |
464 | * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. | |
465 | * | |
466 | * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context | |
467 | * of the process that owns 'vma'. We also do not want to enforce | |
468 | * protection keys here anyway. | |
469 | */ | |
470 | static int break_ksm(struct vm_area_struct *vma, unsigned long addr) | |
471 | { | |
472 | struct page *page; | |
473 | vm_fault_t ret = 0; | |
474 | ||
475 | do { | |
476 | cond_resched(); | |
477 | page = follow_page(vma, addr, | |
478 | FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); | |
479 | if (IS_ERR_OR_NULL(page)) | |
480 | break; | |
481 | if (PageKsm(page)) | |
482 | ret = handle_mm_fault(vma, addr, | |
483 | FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE); | |
484 | else | |
485 | ret = VM_FAULT_WRITE; | |
486 | put_page(page); | |
487 | } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); | |
488 | /* | |
489 | * We must loop because handle_mm_fault() may back out if there's | |
490 | * any difficulty e.g. if pte accessed bit gets updated concurrently. | |
491 | * | |
492 | * VM_FAULT_WRITE is what we have been hoping for: it indicates that | |
493 | * COW has been broken, even if the vma does not permit VM_WRITE; | |
494 | * but note that a concurrent fault might break PageKsm for us. | |
495 | * | |
496 | * VM_FAULT_SIGBUS could occur if we race with truncation of the | |
497 | * backing file, which also invalidates anonymous pages: that's | |
498 | * okay, that truncation will have unmapped the PageKsm for us. | |
499 | * | |
500 | * VM_FAULT_OOM: at the time of writing (late July 2009), setting | |
501 | * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the | |
502 | * current task has TIF_MEMDIE set, and will be OOM killed on return | |
503 | * to user; and ksmd, having no mm, would never be chosen for that. | |
504 | * | |
505 | * But if the mm is in a limited mem_cgroup, then the fault may fail | |
506 | * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and | |
507 | * even ksmd can fail in this way - though it's usually breaking ksm | |
508 | * just to undo a merge it made a moment before, so unlikely to oom. | |
509 | * | |
510 | * That's a pity: we might therefore have more kernel pages allocated | |
511 | * than we're counting as nodes in the stable tree; but ksm_do_scan | |
512 | * will retry to break_cow on each pass, so should recover the page | |
513 | * in due course. The important thing is to not let VM_MERGEABLE | |
514 | * be cleared while any such pages might remain in the area. | |
515 | */ | |
516 | return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; | |
517 | } | |
518 | ||
519 | static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, | |
520 | unsigned long addr) | |
521 | { | |
522 | struct vm_area_struct *vma; | |
523 | if (ksm_test_exit(mm)) | |
524 | return NULL; | |
525 | vma = find_vma(mm, addr); | |
526 | if (!vma || vma->vm_start > addr) | |
527 | return NULL; | |
528 | if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) | |
529 | return NULL; | |
530 | return vma; | |
531 | } | |
532 | ||
533 | static void break_cow(struct rmap_item *rmap_item) | |
534 | { | |
535 | struct mm_struct *mm = rmap_item->mm; | |
536 | unsigned long addr = rmap_item->address; | |
537 | struct vm_area_struct *vma; | |
538 | ||
539 | /* | |
540 | * It is not an accident that whenever we want to break COW | |
541 | * to undo, we also need to drop a reference to the anon_vma. | |
542 | */ | |
543 | put_anon_vma(rmap_item->anon_vma); | |
544 | ||
545 | down_read(&mm->mmap_sem); | |
546 | vma = find_mergeable_vma(mm, addr); | |
547 | if (vma) | |
548 | break_ksm(vma, addr); | |
549 | up_read(&mm->mmap_sem); | |
550 | } | |
551 | ||
552 | static struct page *get_mergeable_page(struct rmap_item *rmap_item) | |
553 | { | |
554 | struct mm_struct *mm = rmap_item->mm; | |
555 | unsigned long addr = rmap_item->address; | |
556 | struct vm_area_struct *vma; | |
557 | struct page *page; | |
558 | ||
559 | down_read(&mm->mmap_sem); | |
560 | vma = find_mergeable_vma(mm, addr); | |
561 | if (!vma) | |
562 | goto out; | |
563 | ||
564 | page = follow_page(vma, addr, FOLL_GET); | |
565 | if (IS_ERR_OR_NULL(page)) | |
566 | goto out; | |
567 | if (PageAnon(page)) { | |
568 | flush_anon_page(vma, page, addr); | |
569 | flush_dcache_page(page); | |
570 | } else { | |
571 | put_page(page); | |
572 | out: | |
573 | page = NULL; | |
574 | } | |
575 | up_read(&mm->mmap_sem); | |
576 | return page; | |
577 | } | |
578 | ||
579 | /* | |
580 | * This helper is used for getting right index into array of tree roots. | |
581 | * When merge_across_nodes knob is set to 1, there are only two rb-trees for | |
582 | * stable and unstable pages from all nodes with roots in index 0. Otherwise, | |
583 | * every node has its own stable and unstable tree. | |
584 | */ | |
585 | static inline int get_kpfn_nid(unsigned long kpfn) | |
586 | { | |
587 | return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); | |
588 | } | |
589 | ||
590 | static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, | |
591 | struct rb_root *root) | |
592 | { | |
593 | struct stable_node *chain = alloc_stable_node(); | |
594 | VM_BUG_ON(is_stable_node_chain(dup)); | |
595 | if (likely(chain)) { | |
596 | INIT_HLIST_HEAD(&chain->hlist); | |
597 | chain->chain_prune_time = jiffies; | |
598 | chain->rmap_hlist_len = STABLE_NODE_CHAIN; | |
599 | #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) | |
600 | chain->nid = -1; /* debug */ | |
601 | #endif | |
602 | ksm_stable_node_chains++; | |
603 | ||
604 | /* | |
605 | * Put the stable node chain in the first dimension of | |
606 | * the stable tree and at the same time remove the old | |
607 | * stable node. | |
608 | */ | |
609 | rb_replace_node(&dup->node, &chain->node, root); | |
610 | ||
611 | /* | |
612 | * Move the old stable node to the second dimension | |
613 | * queued in the hlist_dup. The invariant is that all | |
614 | * dup stable_nodes in the chain->hlist point to pages | |
615 | * that are wrprotected and have the exact same | |
616 | * content. | |
617 | */ | |
618 | stable_node_chain_add_dup(dup, chain); | |
619 | } | |
620 | return chain; | |
621 | } | |
622 | ||
623 | static inline void free_stable_node_chain(struct stable_node *chain, | |
624 | struct rb_root *root) | |
625 | { | |
626 | rb_erase(&chain->node, root); | |
627 | free_stable_node(chain); | |
628 | ksm_stable_node_chains--; | |
629 | } | |
630 | ||
631 | static void remove_node_from_stable_tree(struct stable_node *stable_node) | |
632 | { | |
633 | struct rmap_item *rmap_item; | |
634 | ||
635 | /* check it's not STABLE_NODE_CHAIN or negative */ | |
636 | BUG_ON(stable_node->rmap_hlist_len < 0); | |
637 | ||
638 | hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { | |
639 | if (rmap_item->hlist.next) | |
640 | ksm_pages_sharing--; | |
641 | else | |
642 | ksm_pages_shared--; | |
643 | VM_BUG_ON(stable_node->rmap_hlist_len <= 0); | |
644 | stable_node->rmap_hlist_len--; | |
645 | put_anon_vma(rmap_item->anon_vma); | |
646 | rmap_item->address &= PAGE_MASK; | |
647 | cond_resched(); | |
648 | } | |
649 | ||
650 | /* | |
651 | * We need the second aligned pointer of the migrate_nodes | |
652 | * list_head to stay clear from the rb_parent_color union | |
653 | * (aligned and different than any node) and also different | |
654 | * from &migrate_nodes. This will verify that future list.h changes | |
655 | * don't break STABLE_NODE_DUP_HEAD. | |
656 | */ | |
657 | #if GCC_VERSION >= 40903 /* only recent gcc can handle it */ | |
658 | BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); | |
659 | BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); | |
660 | #endif | |
661 | ||
662 | if (stable_node->head == &migrate_nodes) | |
663 | list_del(&stable_node->list); | |
664 | else | |
665 | stable_node_dup_del(stable_node); | |
666 | free_stable_node(stable_node); | |
667 | } | |
668 | ||
669 | /* | |
670 | * get_ksm_page: checks if the page indicated by the stable node | |
671 | * is still its ksm page, despite having held no reference to it. | |
672 | * In which case we can trust the content of the page, and it | |
673 | * returns the gotten page; but if the page has now been zapped, | |
674 | * remove the stale node from the stable tree and return NULL. | |
675 | * But beware, the stable node's page might be being migrated. | |
676 | * | |
677 | * You would expect the stable_node to hold a reference to the ksm page. | |
678 | * But if it increments the page's count, swapping out has to wait for | |
679 | * ksmd to come around again before it can free the page, which may take | |
680 | * seconds or even minutes: much too unresponsive. So instead we use a | |
681 | * "keyhole reference": access to the ksm page from the stable node peeps | |
682 | * out through its keyhole to see if that page still holds the right key, | |
683 | * pointing back to this stable node. This relies on freeing a PageAnon | |
684 | * page to reset its page->mapping to NULL, and relies on no other use of | |
685 | * a page to put something that might look like our key in page->mapping. | |
686 | * is on its way to being freed; but it is an anomaly to bear in mind. | |
687 | */ | |
688 | static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it) | |
689 | { | |
690 | struct page *page; | |
691 | void *expected_mapping; | |
692 | unsigned long kpfn; | |
693 | ||
694 | expected_mapping = (void *)((unsigned long)stable_node | | |
695 | PAGE_MAPPING_KSM); | |
696 | again: | |
697 | kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ | |
698 | page = pfn_to_page(kpfn); | |
699 | if (READ_ONCE(page->mapping) != expected_mapping) | |
700 | goto stale; | |
701 | ||
702 | /* | |
703 | * We cannot do anything with the page while its refcount is 0. | |
704 | * Usually 0 means free, or tail of a higher-order page: in which | |
705 | * case this node is no longer referenced, and should be freed; | |
706 | * however, it might mean that the page is under page_ref_freeze(). | |
707 | * The __remove_mapping() case is easy, again the node is now stale; | |
708 | * but if page is swapcache in migrate_page_move_mapping(), it might | |
709 | * still be our page, in which case it's essential to keep the node. | |
710 | */ | |
711 | while (!get_page_unless_zero(page)) { | |
712 | /* | |
713 | * Another check for page->mapping != expected_mapping would | |
714 | * work here too. We have chosen the !PageSwapCache test to | |
715 | * optimize the common case, when the page is or is about to | |
716 | * be freed: PageSwapCache is cleared (under spin_lock_irq) | |
717 | * in the ref_freeze section of __remove_mapping(); but Anon | |
718 | * page->mapping reset to NULL later, in free_pages_prepare(). | |
719 | */ | |
720 | if (!PageSwapCache(page)) | |
721 | goto stale; | |
722 | cpu_relax(); | |
723 | } | |
724 | ||
725 | if (READ_ONCE(page->mapping) != expected_mapping) { | |
726 | put_page(page); | |
727 | goto stale; | |
728 | } | |
729 | ||
730 | if (lock_it) { | |
731 | lock_page(page); | |
732 | if (READ_ONCE(page->mapping) != expected_mapping) { | |
733 | unlock_page(page); | |
734 | put_page(page); | |
735 | goto stale; | |
736 | } | |
737 | } | |
738 | return page; | |
739 | ||
740 | stale: | |
741 | /* | |
742 | * We come here from above when page->mapping or !PageSwapCache | |
743 | * suggests that the node is stale; but it might be under migration. | |
744 | * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), | |
745 | * before checking whether node->kpfn has been changed. | |
746 | */ | |
747 | smp_rmb(); | |
748 | if (READ_ONCE(stable_node->kpfn) != kpfn) | |
749 | goto again; | |
750 | remove_node_from_stable_tree(stable_node); | |
751 | return NULL; | |
752 | } | |
753 | ||
754 | /* | |
755 | * Removing rmap_item from stable or unstable tree. | |
756 | * This function will clean the information from the stable/unstable tree. | |
757 | */ | |
758 | static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) | |
759 | { | |
760 | if (rmap_item->address & STABLE_FLAG) { | |
761 | struct stable_node *stable_node; | |
762 | struct page *page; | |
763 | ||
764 | stable_node = rmap_item->head; | |
765 | page = get_ksm_page(stable_node, true); | |
766 | if (!page) | |
767 | goto out; | |
768 | ||
769 | hlist_del(&rmap_item->hlist); | |
770 | unlock_page(page); | |
771 | put_page(page); | |
772 | ||
773 | if (!hlist_empty(&stable_node->hlist)) | |
774 | ksm_pages_sharing--; | |
775 | else | |
776 | ksm_pages_shared--; | |
777 | VM_BUG_ON(stable_node->rmap_hlist_len <= 0); | |
778 | stable_node->rmap_hlist_len--; | |
779 | ||
780 | put_anon_vma(rmap_item->anon_vma); | |
781 | rmap_item->address &= PAGE_MASK; | |
782 | ||
783 | } else if (rmap_item->address & UNSTABLE_FLAG) { | |
784 | unsigned char age; | |
785 | /* | |
786 | * Usually ksmd can and must skip the rb_erase, because | |
787 | * root_unstable_tree was already reset to RB_ROOT. | |
788 | * But be careful when an mm is exiting: do the rb_erase | |
789 | * if this rmap_item was inserted by this scan, rather | |
790 | * than left over from before. | |
791 | */ | |
792 | age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); | |
793 | BUG_ON(age > 1); | |
794 | if (!age) | |
795 | rb_erase(&rmap_item->node, | |
796 | root_unstable_tree + NUMA(rmap_item->nid)); | |
797 | ksm_pages_unshared--; | |
798 | rmap_item->address &= PAGE_MASK; | |
799 | } | |
800 | out: | |
801 | cond_resched(); /* we're called from many long loops */ | |
802 | } | |
803 | ||
804 | static void remove_trailing_rmap_items(struct mm_slot *mm_slot, | |
805 | struct rmap_item **rmap_list) | |
806 | { | |
807 | while (*rmap_list) { | |
808 | struct rmap_item *rmap_item = *rmap_list; | |
809 | *rmap_list = rmap_item->rmap_list; | |
810 | remove_rmap_item_from_tree(rmap_item); | |
811 | free_rmap_item(rmap_item); | |
812 | } | |
813 | } | |
814 | ||
815 | /* | |
816 | * Though it's very tempting to unmerge rmap_items from stable tree rather | |
817 | * than check every pte of a given vma, the locking doesn't quite work for | |
818 | * that - an rmap_item is assigned to the stable tree after inserting ksm | |
819 | * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing | |
820 | * rmap_items from parent to child at fork time (so as not to waste time | |
821 | * if exit comes before the next scan reaches it). | |
822 | * | |
823 | * Similarly, although we'd like to remove rmap_items (so updating counts | |
824 | * and freeing memory) when unmerging an area, it's easier to leave that | |
825 | * to the next pass of ksmd - consider, for example, how ksmd might be | |
826 | * in cmp_and_merge_page on one of the rmap_items we would be removing. | |
827 | */ | |
828 | static int unmerge_ksm_pages(struct vm_area_struct *vma, | |
829 | unsigned long start, unsigned long end) | |
830 | { | |
831 | unsigned long addr; | |
832 | int err = 0; | |
833 | ||
834 | for (addr = start; addr < end && !err; addr += PAGE_SIZE) { | |
835 | if (ksm_test_exit(vma->vm_mm)) | |
836 | break; | |
837 | if (signal_pending(current)) | |
838 | err = -ERESTARTSYS; | |
839 | else | |
840 | err = break_ksm(vma, addr); | |
841 | } | |
842 | return err; | |
843 | } | |
844 | ||
845 | static inline struct stable_node *page_stable_node(struct page *page) | |
846 | { | |
847 | return PageKsm(page) ? page_rmapping(page) : NULL; | |
848 | } | |
849 | ||
850 | static inline void set_page_stable_node(struct page *page, | |
851 | struct stable_node *stable_node) | |
852 | { | |
853 | page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); | |
854 | } | |
855 | ||
856 | #ifdef CONFIG_SYSFS | |
857 | /* | |
858 | * Only called through the sysfs control interface: | |
859 | */ | |
860 | static int remove_stable_node(struct stable_node *stable_node) | |
861 | { | |
862 | struct page *page; | |
863 | int err; | |
864 | ||
865 | page = get_ksm_page(stable_node, true); | |
866 | if (!page) { | |
867 | /* | |
868 | * get_ksm_page did remove_node_from_stable_tree itself. | |
869 | */ | |
870 | return 0; | |
871 | } | |
872 | ||
873 | if (WARN_ON_ONCE(page_mapped(page))) { | |
874 | /* | |
875 | * This should not happen: but if it does, just refuse to let | |
876 | * merge_across_nodes be switched - there is no need to panic. | |
877 | */ | |
878 | err = -EBUSY; | |
879 | } else { | |
880 | /* | |
881 | * The stable node did not yet appear stale to get_ksm_page(), | |
882 | * since that allows for an unmapped ksm page to be recognized | |
883 | * right up until it is freed; but the node is safe to remove. | |
884 | * This page might be in a pagevec waiting to be freed, | |
885 | * or it might be PageSwapCache (perhaps under writeback), | |
886 | * or it might have been removed from swapcache a moment ago. | |
887 | */ | |
888 | set_page_stable_node(page, NULL); | |
889 | remove_node_from_stable_tree(stable_node); | |
890 | err = 0; | |
891 | } | |
892 | ||
893 | unlock_page(page); | |
894 | put_page(page); | |
895 | return err; | |
896 | } | |
897 | ||
898 | static int remove_stable_node_chain(struct stable_node *stable_node, | |
899 | struct rb_root *root) | |
900 | { | |
901 | struct stable_node *dup; | |
902 | struct hlist_node *hlist_safe; | |
903 | ||
904 | if (!is_stable_node_chain(stable_node)) { | |
905 | VM_BUG_ON(is_stable_node_dup(stable_node)); | |
906 | if (remove_stable_node(stable_node)) | |
907 | return true; | |
908 | else | |
909 | return false; | |
910 | } | |
911 | ||
912 | hlist_for_each_entry_safe(dup, hlist_safe, | |
913 | &stable_node->hlist, hlist_dup) { | |
914 | VM_BUG_ON(!is_stable_node_dup(dup)); | |
915 | if (remove_stable_node(dup)) | |
916 | return true; | |
917 | } | |
918 | BUG_ON(!hlist_empty(&stable_node->hlist)); | |
919 | free_stable_node_chain(stable_node, root); | |
920 | return false; | |
921 | } | |
922 | ||
923 | static int remove_all_stable_nodes(void) | |
924 | { | |
925 | struct stable_node *stable_node, *next; | |
926 | int nid; | |
927 | int err = 0; | |
928 | ||
929 | for (nid = 0; nid < ksm_nr_node_ids; nid++) { | |
930 | while (root_stable_tree[nid].rb_node) { | |
931 | stable_node = rb_entry(root_stable_tree[nid].rb_node, | |
932 | struct stable_node, node); | |
933 | if (remove_stable_node_chain(stable_node, | |
934 | root_stable_tree + nid)) { | |
935 | err = -EBUSY; | |
936 | break; /* proceed to next nid */ | |
937 | } | |
938 | cond_resched(); | |
939 | } | |
940 | } | |
941 | list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { | |
942 | if (remove_stable_node(stable_node)) | |
943 | err = -EBUSY; | |
944 | cond_resched(); | |
945 | } | |
946 | return err; | |
947 | } | |
948 | ||
949 | static int unmerge_and_remove_all_rmap_items(void) | |
950 | { | |
951 | struct mm_slot *mm_slot; | |
952 | struct mm_struct *mm; | |
953 | struct vm_area_struct *vma; | |
954 | int err = 0; | |
955 | ||
956 | spin_lock(&ksm_mmlist_lock); | |
957 | ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, | |
958 | struct mm_slot, mm_list); | |
959 | spin_unlock(&ksm_mmlist_lock); | |
960 | ||
961 | for (mm_slot = ksm_scan.mm_slot; | |
962 | mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { | |
963 | mm = mm_slot->mm; | |
964 | down_read(&mm->mmap_sem); | |
965 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | |
966 | if (ksm_test_exit(mm)) | |
967 | break; | |
968 | if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) | |
969 | continue; | |
970 | err = unmerge_ksm_pages(vma, | |
971 | vma->vm_start, vma->vm_end); | |
972 | if (err) | |
973 | goto error; | |
974 | } | |
975 | ||
976 | remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); | |
977 | up_read(&mm->mmap_sem); | |
978 | ||
979 | spin_lock(&ksm_mmlist_lock); | |
980 | ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, | |
981 | struct mm_slot, mm_list); | |
982 | if (ksm_test_exit(mm)) { | |
983 | hash_del(&mm_slot->link); | |
984 | list_del(&mm_slot->mm_list); | |
985 | spin_unlock(&ksm_mmlist_lock); | |
986 | ||
987 | free_mm_slot(mm_slot); | |
988 | clear_bit(MMF_VM_MERGEABLE, &mm->flags); | |
989 | mmdrop(mm); | |
990 | } else | |
991 | spin_unlock(&ksm_mmlist_lock); | |
992 | } | |
993 | ||
994 | /* Clean up stable nodes, but don't worry if some are still busy */ | |
995 | remove_all_stable_nodes(); | |
996 | ksm_scan.seqnr = 0; | |
997 | return 0; | |
998 | ||
999 | error: | |
1000 | up_read(&mm->mmap_sem); | |
1001 | spin_lock(&ksm_mmlist_lock); | |
1002 | ksm_scan.mm_slot = &ksm_mm_head; | |
1003 | spin_unlock(&ksm_mmlist_lock); | |
1004 | return err; | |
1005 | } | |
1006 | #endif /* CONFIG_SYSFS */ | |
1007 | ||
1008 | static u32 calc_checksum(struct page *page) | |
1009 | { | |
1010 | u32 checksum; | |
1011 | void *addr = kmap_atomic(page); | |
1012 | checksum = jhash2(addr, PAGE_SIZE / 4, 17); | |
1013 | kunmap_atomic(addr); | |
1014 | return checksum; | |
1015 | } | |
1016 | ||
1017 | static int memcmp_pages(struct page *page1, struct page *page2) | |
1018 | { | |
1019 | char *addr1, *addr2; | |
1020 | int ret; | |
1021 | ||
1022 | addr1 = kmap_atomic(page1); | |
1023 | addr2 = kmap_atomic(page2); | |
1024 | ret = memcmp(addr1, addr2, PAGE_SIZE); | |
1025 | kunmap_atomic(addr2); | |
1026 | kunmap_atomic(addr1); | |
1027 | return ret; | |
1028 | } | |
1029 | ||
1030 | static inline int pages_identical(struct page *page1, struct page *page2) | |
1031 | { | |
1032 | return !memcmp_pages(page1, page2); | |
1033 | } | |
1034 | ||
1035 | static int write_protect_page(struct vm_area_struct *vma, struct page *page, | |
1036 | pte_t *orig_pte) | |
1037 | { | |
1038 | struct mm_struct *mm = vma->vm_mm; | |
1039 | struct page_vma_mapped_walk pvmw = { | |
1040 | .page = page, | |
1041 | .vma = vma, | |
1042 | }; | |
1043 | int swapped; | |
1044 | int err = -EFAULT; | |
1045 | unsigned long mmun_start; /* For mmu_notifiers */ | |
1046 | unsigned long mmun_end; /* For mmu_notifiers */ | |
1047 | ||
1048 | pvmw.address = page_address_in_vma(page, vma); | |
1049 | if (pvmw.address == -EFAULT) | |
1050 | goto out; | |
1051 | ||
1052 | BUG_ON(PageTransCompound(page)); | |
1053 | ||
1054 | mmun_start = pvmw.address; | |
1055 | mmun_end = pvmw.address + PAGE_SIZE; | |
1056 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | |
1057 | ||
1058 | if (!page_vma_mapped_walk(&pvmw)) | |
1059 | goto out_mn; | |
1060 | if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) | |
1061 | goto out_unlock; | |
1062 | ||
1063 | if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || | |
1064 | (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || | |
1065 | mm_tlb_flush_pending(mm)) { | |
1066 | pte_t entry; | |
1067 | ||
1068 | swapped = PageSwapCache(page); | |
1069 | flush_cache_page(vma, pvmw.address, page_to_pfn(page)); | |
1070 | /* | |
1071 | * Ok this is tricky, when get_user_pages_fast() run it doesn't | |
1072 | * take any lock, therefore the check that we are going to make | |
1073 | * with the pagecount against the mapcount is racey and | |
1074 | * O_DIRECT can happen right after the check. | |
1075 | * So we clear the pte and flush the tlb before the check | |
1076 | * this assure us that no O_DIRECT can happen after the check | |
1077 | * or in the middle of the check. | |
1078 | * | |
1079 | * No need to notify as we are downgrading page table to read | |
1080 | * only not changing it to point to a new page. | |
1081 | * | |
1082 | * See Documentation/vm/mmu_notifier.rst | |
1083 | */ | |
1084 | entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); | |
1085 | /* | |
1086 | * Check that no O_DIRECT or similar I/O is in progress on the | |
1087 | * page | |
1088 | */ | |
1089 | if (page_mapcount(page) + 1 + swapped != page_count(page)) { | |
1090 | set_pte_at(mm, pvmw.address, pvmw.pte, entry); | |
1091 | goto out_unlock; | |
1092 | } | |
1093 | if (pte_dirty(entry)) | |
1094 | set_page_dirty(page); | |
1095 | ||
1096 | if (pte_protnone(entry)) | |
1097 | entry = pte_mkclean(pte_clear_savedwrite(entry)); | |
1098 | else | |
1099 | entry = pte_mkclean(pte_wrprotect(entry)); | |
1100 | set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); | |
1101 | } | |
1102 | *orig_pte = *pvmw.pte; | |
1103 | err = 0; | |
1104 | ||
1105 | out_unlock: | |
1106 | page_vma_mapped_walk_done(&pvmw); | |
1107 | out_mn: | |
1108 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | |
1109 | out: | |
1110 | return err; | |
1111 | } | |
1112 | ||
1113 | /** | |
1114 | * replace_page - replace page in vma by new ksm page | |
1115 | * @vma: vma that holds the pte pointing to page | |
1116 | * @page: the page we are replacing by kpage | |
1117 | * @kpage: the ksm page we replace page by | |
1118 | * @orig_pte: the original value of the pte | |
1119 | * | |
1120 | * Returns 0 on success, -EFAULT on failure. | |
1121 | */ | |
1122 | static int replace_page(struct vm_area_struct *vma, struct page *page, | |
1123 | struct page *kpage, pte_t orig_pte) | |
1124 | { | |
1125 | struct mm_struct *mm = vma->vm_mm; | |
1126 | pmd_t *pmd; | |
1127 | pte_t *ptep; | |
1128 | pte_t newpte; | |
1129 | spinlock_t *ptl; | |
1130 | unsigned long addr; | |
1131 | int err = -EFAULT; | |
1132 | unsigned long mmun_start; /* For mmu_notifiers */ | |
1133 | unsigned long mmun_end; /* For mmu_notifiers */ | |
1134 | ||
1135 | addr = page_address_in_vma(page, vma); | |
1136 | if (addr == -EFAULT) | |
1137 | goto out; | |
1138 | ||
1139 | pmd = mm_find_pmd(mm, addr); | |
1140 | if (!pmd) | |
1141 | goto out; | |
1142 | ||
1143 | mmun_start = addr; | |
1144 | mmun_end = addr + PAGE_SIZE; | |
1145 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | |
1146 | ||
1147 | ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); | |
1148 | if (!pte_same(*ptep, orig_pte)) { | |
1149 | pte_unmap_unlock(ptep, ptl); | |
1150 | goto out_mn; | |
1151 | } | |
1152 | ||
1153 | /* | |
1154 | * No need to check ksm_use_zero_pages here: we can only have a | |
1155 | * zero_page here if ksm_use_zero_pages was enabled alreaady. | |
1156 | */ | |
1157 | if (!is_zero_pfn(page_to_pfn(kpage))) { | |
1158 | get_page(kpage); | |
1159 | page_add_anon_rmap(kpage, vma, addr, false); | |
1160 | newpte = mk_pte(kpage, vma->vm_page_prot); | |
1161 | } else { | |
1162 | newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), | |
1163 | vma->vm_page_prot)); | |
1164 | /* | |
1165 | * We're replacing an anonymous page with a zero page, which is | |
1166 | * not anonymous. We need to do proper accounting otherwise we | |
1167 | * will get wrong values in /proc, and a BUG message in dmesg | |
1168 | * when tearing down the mm. | |
1169 | */ | |
1170 | dec_mm_counter(mm, MM_ANONPAGES); | |
1171 | } | |
1172 | ||
1173 | flush_cache_page(vma, addr, pte_pfn(*ptep)); | |
1174 | /* | |
1175 | * No need to notify as we are replacing a read only page with another | |
1176 | * read only page with the same content. | |
1177 | * | |
1178 | * See Documentation/vm/mmu_notifier.rst | |
1179 | */ | |
1180 | ptep_clear_flush(vma, addr, ptep); | |
1181 | set_pte_at_notify(mm, addr, ptep, newpte); | |
1182 | ||
1183 | page_remove_rmap(page, false); | |
1184 | if (!page_mapped(page)) | |
1185 | try_to_free_swap(page); | |
1186 | put_page(page); | |
1187 | ||
1188 | pte_unmap_unlock(ptep, ptl); | |
1189 | err = 0; | |
1190 | out_mn: | |
1191 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | |
1192 | out: | |
1193 | return err; | |
1194 | } | |
1195 | ||
1196 | /* | |
1197 | * try_to_merge_one_page - take two pages and merge them into one | |
1198 | * @vma: the vma that holds the pte pointing to page | |
1199 | * @page: the PageAnon page that we want to replace with kpage | |
1200 | * @kpage: the PageKsm page that we want to map instead of page, | |
1201 | * or NULL the first time when we want to use page as kpage. | |
1202 | * | |
1203 | * This function returns 0 if the pages were merged, -EFAULT otherwise. | |
1204 | */ | |
1205 | static int try_to_merge_one_page(struct vm_area_struct *vma, | |
1206 | struct page *page, struct page *kpage) | |
1207 | { | |
1208 | pte_t orig_pte = __pte(0); | |
1209 | int err = -EFAULT; | |
1210 | ||
1211 | if (page == kpage) /* ksm page forked */ | |
1212 | return 0; | |
1213 | ||
1214 | if (!PageAnon(page)) | |
1215 | goto out; | |
1216 | ||
1217 | /* | |
1218 | * We need the page lock to read a stable PageSwapCache in | |
1219 | * write_protect_page(). We use trylock_page() instead of | |
1220 | * lock_page() because we don't want to wait here - we | |
1221 | * prefer to continue scanning and merging different pages, | |
1222 | * then come back to this page when it is unlocked. | |
1223 | */ | |
1224 | if (!trylock_page(page)) | |
1225 | goto out; | |
1226 | ||
1227 | if (PageTransCompound(page)) { | |
1228 | if (split_huge_page(page)) | |
1229 | goto out_unlock; | |
1230 | } | |
1231 | ||
1232 | /* | |
1233 | * If this anonymous page is mapped only here, its pte may need | |
1234 | * to be write-protected. If it's mapped elsewhere, all of its | |
1235 | * ptes are necessarily already write-protected. But in either | |
1236 | * case, we need to lock and check page_count is not raised. | |
1237 | */ | |
1238 | if (write_protect_page(vma, page, &orig_pte) == 0) { | |
1239 | if (!kpage) { | |
1240 | /* | |
1241 | * While we hold page lock, upgrade page from | |
1242 | * PageAnon+anon_vma to PageKsm+NULL stable_node: | |
1243 | * stable_tree_insert() will update stable_node. | |
1244 | */ | |
1245 | set_page_stable_node(page, NULL); | |
1246 | mark_page_accessed(page); | |
1247 | /* | |
1248 | * Page reclaim just frees a clean page with no dirty | |
1249 | * ptes: make sure that the ksm page would be swapped. | |
1250 | */ | |
1251 | if (!PageDirty(page)) | |
1252 | SetPageDirty(page); | |
1253 | err = 0; | |
1254 | } else if (pages_identical(page, kpage)) | |
1255 | err = replace_page(vma, page, kpage, orig_pte); | |
1256 | } | |
1257 | ||
1258 | if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { | |
1259 | munlock_vma_page(page); | |
1260 | if (!PageMlocked(kpage)) { | |
1261 | unlock_page(page); | |
1262 | lock_page(kpage); | |
1263 | mlock_vma_page(kpage); | |
1264 | page = kpage; /* for final unlock */ | |
1265 | } | |
1266 | } | |
1267 | ||
1268 | out_unlock: | |
1269 | unlock_page(page); | |
1270 | out: | |
1271 | return err; | |
1272 | } | |
1273 | ||
1274 | /* | |
1275 | * try_to_merge_with_ksm_page - like try_to_merge_two_pages, | |
1276 | * but no new kernel page is allocated: kpage must already be a ksm page. | |
1277 | * | |
1278 | * This function returns 0 if the pages were merged, -EFAULT otherwise. | |
1279 | */ | |
1280 | static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, | |
1281 | struct page *page, struct page *kpage) | |
1282 | { | |
1283 | struct mm_struct *mm = rmap_item->mm; | |
1284 | struct vm_area_struct *vma; | |
1285 | int err = -EFAULT; | |
1286 | ||
1287 | down_read(&mm->mmap_sem); | |
1288 | vma = find_mergeable_vma(mm, rmap_item->address); | |
1289 | if (!vma) | |
1290 | goto out; | |
1291 | ||
1292 | err = try_to_merge_one_page(vma, page, kpage); | |
1293 | if (err) | |
1294 | goto out; | |
1295 | ||
1296 | /* Unstable nid is in union with stable anon_vma: remove first */ | |
1297 | remove_rmap_item_from_tree(rmap_item); | |
1298 | ||
1299 | /* Must get reference to anon_vma while still holding mmap_sem */ | |
1300 | rmap_item->anon_vma = vma->anon_vma; | |
1301 | get_anon_vma(vma->anon_vma); | |
1302 | out: | |
1303 | up_read(&mm->mmap_sem); | |
1304 | return err; | |
1305 | } | |
1306 | ||
1307 | /* | |
1308 | * try_to_merge_two_pages - take two identical pages and prepare them | |
1309 | * to be merged into one page. | |
1310 | * | |
1311 | * This function returns the kpage if we successfully merged two identical | |
1312 | * pages into one ksm page, NULL otherwise. | |
1313 | * | |
1314 | * Note that this function upgrades page to ksm page: if one of the pages | |
1315 | * is already a ksm page, try_to_merge_with_ksm_page should be used. | |
1316 | */ | |
1317 | static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, | |
1318 | struct page *page, | |
1319 | struct rmap_item *tree_rmap_item, | |
1320 | struct page *tree_page) | |
1321 | { | |
1322 | int err; | |
1323 | ||
1324 | err = try_to_merge_with_ksm_page(rmap_item, page, NULL); | |
1325 | if (!err) { | |
1326 | err = try_to_merge_with_ksm_page(tree_rmap_item, | |
1327 | tree_page, page); | |
1328 | /* | |
1329 | * If that fails, we have a ksm page with only one pte | |
1330 | * pointing to it: so break it. | |
1331 | */ | |
1332 | if (err) | |
1333 | break_cow(rmap_item); | |
1334 | } | |
1335 | return err ? NULL : page; | |
1336 | } | |
1337 | ||
1338 | static __always_inline | |
1339 | bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) | |
1340 | { | |
1341 | VM_BUG_ON(stable_node->rmap_hlist_len < 0); | |
1342 | /* | |
1343 | * Check that at least one mapping still exists, otherwise | |
1344 | * there's no much point to merge and share with this | |
1345 | * stable_node, as the underlying tree_page of the other | |
1346 | * sharer is going to be freed soon. | |
1347 | */ | |
1348 | return stable_node->rmap_hlist_len && | |
1349 | stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; | |
1350 | } | |
1351 | ||
1352 | static __always_inline | |
1353 | bool is_page_sharing_candidate(struct stable_node *stable_node) | |
1354 | { | |
1355 | return __is_page_sharing_candidate(stable_node, 0); | |
1356 | } | |
1357 | ||
1358 | static struct page *stable_node_dup(struct stable_node **_stable_node_dup, | |
1359 | struct stable_node **_stable_node, | |
1360 | struct rb_root *root, | |
1361 | bool prune_stale_stable_nodes) | |
1362 | { | |
1363 | struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; | |
1364 | struct hlist_node *hlist_safe; | |
1365 | struct page *_tree_page, *tree_page = NULL; | |
1366 | int nr = 0; | |
1367 | int found_rmap_hlist_len; | |
1368 | ||
1369 | if (!prune_stale_stable_nodes || | |
1370 | time_before(jiffies, stable_node->chain_prune_time + | |
1371 | msecs_to_jiffies( | |
1372 | ksm_stable_node_chains_prune_millisecs))) | |
1373 | prune_stale_stable_nodes = false; | |
1374 | else | |
1375 | stable_node->chain_prune_time = jiffies; | |
1376 | ||
1377 | hlist_for_each_entry_safe(dup, hlist_safe, | |
1378 | &stable_node->hlist, hlist_dup) { | |
1379 | cond_resched(); | |
1380 | /* | |
1381 | * We must walk all stable_node_dup to prune the stale | |
1382 | * stable nodes during lookup. | |
1383 | * | |
1384 | * get_ksm_page can drop the nodes from the | |
1385 | * stable_node->hlist if they point to freed pages | |
1386 | * (that's why we do a _safe walk). The "dup" | |
1387 | * stable_node parameter itself will be freed from | |
1388 | * under us if it returns NULL. | |
1389 | */ | |
1390 | _tree_page = get_ksm_page(dup, false); | |
1391 | if (!_tree_page) | |
1392 | continue; | |
1393 | nr += 1; | |
1394 | if (is_page_sharing_candidate(dup)) { | |
1395 | if (!found || | |
1396 | dup->rmap_hlist_len > found_rmap_hlist_len) { | |
1397 | if (found) | |
1398 | put_page(tree_page); | |
1399 | found = dup; | |
1400 | found_rmap_hlist_len = found->rmap_hlist_len; | |
1401 | tree_page = _tree_page; | |
1402 | ||
1403 | /* skip put_page for found dup */ | |
1404 | if (!prune_stale_stable_nodes) | |
1405 | break; | |
1406 | continue; | |
1407 | } | |
1408 | } | |
1409 | put_page(_tree_page); | |
1410 | } | |
1411 | ||
1412 | if (found) { | |
1413 | /* | |
1414 | * nr is counting all dups in the chain only if | |
1415 | * prune_stale_stable_nodes is true, otherwise we may | |
1416 | * break the loop at nr == 1 even if there are | |
1417 | * multiple entries. | |
1418 | */ | |
1419 | if (prune_stale_stable_nodes && nr == 1) { | |
1420 | /* | |
1421 | * If there's not just one entry it would | |
1422 | * corrupt memory, better BUG_ON. In KSM | |
1423 | * context with no lock held it's not even | |
1424 | * fatal. | |
1425 | */ | |
1426 | BUG_ON(stable_node->hlist.first->next); | |
1427 | ||
1428 | /* | |
1429 | * There's just one entry and it is below the | |
1430 | * deduplication limit so drop the chain. | |
1431 | */ | |
1432 | rb_replace_node(&stable_node->node, &found->node, | |
1433 | root); | |
1434 | free_stable_node(stable_node); | |
1435 | ksm_stable_node_chains--; | |
1436 | ksm_stable_node_dups--; | |
1437 | /* | |
1438 | * NOTE: the caller depends on the stable_node | |
1439 | * to be equal to stable_node_dup if the chain | |
1440 | * was collapsed. | |
1441 | */ | |
1442 | *_stable_node = found; | |
1443 | /* | |
1444 | * Just for robustneess as stable_node is | |
1445 | * otherwise left as a stable pointer, the | |
1446 | * compiler shall optimize it away at build | |
1447 | * time. | |
1448 | */ | |
1449 | stable_node = NULL; | |
1450 | } else if (stable_node->hlist.first != &found->hlist_dup && | |
1451 | __is_page_sharing_candidate(found, 1)) { | |
1452 | /* | |
1453 | * If the found stable_node dup can accept one | |
1454 | * more future merge (in addition to the one | |
1455 | * that is underway) and is not at the head of | |
1456 | * the chain, put it there so next search will | |
1457 | * be quicker in the !prune_stale_stable_nodes | |
1458 | * case. | |
1459 | * | |
1460 | * NOTE: it would be inaccurate to use nr > 1 | |
1461 | * instead of checking the hlist.first pointer | |
1462 | * directly, because in the | |
1463 | * prune_stale_stable_nodes case "nr" isn't | |
1464 | * the position of the found dup in the chain, | |
1465 | * but the total number of dups in the chain. | |
1466 | */ | |
1467 | hlist_del(&found->hlist_dup); | |
1468 | hlist_add_head(&found->hlist_dup, | |
1469 | &stable_node->hlist); | |
1470 | } | |
1471 | } | |
1472 | ||
1473 | *_stable_node_dup = found; | |
1474 | return tree_page; | |
1475 | } | |
1476 | ||
1477 | static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, | |
1478 | struct rb_root *root) | |
1479 | { | |
1480 | if (!is_stable_node_chain(stable_node)) | |
1481 | return stable_node; | |
1482 | if (hlist_empty(&stable_node->hlist)) { | |
1483 | free_stable_node_chain(stable_node, root); | |
1484 | return NULL; | |
1485 | } | |
1486 | return hlist_entry(stable_node->hlist.first, | |
1487 | typeof(*stable_node), hlist_dup); | |
1488 | } | |
1489 | ||
1490 | /* | |
1491 | * Like for get_ksm_page, this function can free the *_stable_node and | |
1492 | * *_stable_node_dup if the returned tree_page is NULL. | |
1493 | * | |
1494 | * It can also free and overwrite *_stable_node with the found | |
1495 | * stable_node_dup if the chain is collapsed (in which case | |
1496 | * *_stable_node will be equal to *_stable_node_dup like if the chain | |
1497 | * never existed). It's up to the caller to verify tree_page is not | |
1498 | * NULL before dereferencing *_stable_node or *_stable_node_dup. | |
1499 | * | |
1500 | * *_stable_node_dup is really a second output parameter of this | |
1501 | * function and will be overwritten in all cases, the caller doesn't | |
1502 | * need to initialize it. | |
1503 | */ | |
1504 | static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, | |
1505 | struct stable_node **_stable_node, | |
1506 | struct rb_root *root, | |
1507 | bool prune_stale_stable_nodes) | |
1508 | { | |
1509 | struct stable_node *stable_node = *_stable_node; | |
1510 | if (!is_stable_node_chain(stable_node)) { | |
1511 | if (is_page_sharing_candidate(stable_node)) { | |
1512 | *_stable_node_dup = stable_node; | |
1513 | return get_ksm_page(stable_node, false); | |
1514 | } | |
1515 | /* | |
1516 | * _stable_node_dup set to NULL means the stable_node | |
1517 | * reached the ksm_max_page_sharing limit. | |
1518 | */ | |
1519 | *_stable_node_dup = NULL; | |
1520 | return NULL; | |
1521 | } | |
1522 | return stable_node_dup(_stable_node_dup, _stable_node, root, | |
1523 | prune_stale_stable_nodes); | |
1524 | } | |
1525 | ||
1526 | static __always_inline struct page *chain_prune(struct stable_node **s_n_d, | |
1527 | struct stable_node **s_n, | |
1528 | struct rb_root *root) | |
1529 | { | |
1530 | return __stable_node_chain(s_n_d, s_n, root, true); | |
1531 | } | |
1532 | ||
1533 | static __always_inline struct page *chain(struct stable_node **s_n_d, | |
1534 | struct stable_node *s_n, | |
1535 | struct rb_root *root) | |
1536 | { | |
1537 | struct stable_node *old_stable_node = s_n; | |
1538 | struct page *tree_page; | |
1539 | ||
1540 | tree_page = __stable_node_chain(s_n_d, &s_n, root, false); | |
1541 | /* not pruning dups so s_n cannot have changed */ | |
1542 | VM_BUG_ON(s_n != old_stable_node); | |
1543 | return tree_page; | |
1544 | } | |
1545 | ||
1546 | /* | |
1547 | * stable_tree_search - search for page inside the stable tree | |
1548 | * | |
1549 | * This function checks if there is a page inside the stable tree | |
1550 | * with identical content to the page that we are scanning right now. | |
1551 | * | |
1552 | * This function returns the stable tree node of identical content if found, | |
1553 | * NULL otherwise. | |
1554 | */ | |
1555 | static struct page *stable_tree_search(struct page *page) | |
1556 | { | |
1557 | int nid; | |
1558 | struct rb_root *root; | |
1559 | struct rb_node **new; | |
1560 | struct rb_node *parent; | |
1561 | struct stable_node *stable_node, *stable_node_dup, *stable_node_any; | |
1562 | struct stable_node *page_node; | |
1563 | ||
1564 | page_node = page_stable_node(page); | |
1565 | if (page_node && page_node->head != &migrate_nodes) { | |
1566 | /* ksm page forked */ | |
1567 | get_page(page); | |
1568 | return page; | |
1569 | } | |
1570 | ||
1571 | nid = get_kpfn_nid(page_to_pfn(page)); | |
1572 | root = root_stable_tree + nid; | |
1573 | again: | |
1574 | new = &root->rb_node; | |
1575 | parent = NULL; | |
1576 | ||
1577 | while (*new) { | |
1578 | struct page *tree_page; | |
1579 | int ret; | |
1580 | ||
1581 | cond_resched(); | |
1582 | stable_node = rb_entry(*new, struct stable_node, node); | |
1583 | stable_node_any = NULL; | |
1584 | tree_page = chain_prune(&stable_node_dup, &stable_node, root); | |
1585 | /* | |
1586 | * NOTE: stable_node may have been freed by | |
1587 | * chain_prune() if the returned stable_node_dup is | |
1588 | * not NULL. stable_node_dup may have been inserted in | |
1589 | * the rbtree instead as a regular stable_node (in | |
1590 | * order to collapse the stable_node chain if a single | |
1591 | * stable_node dup was found in it). In such case the | |
1592 | * stable_node is overwritten by the calleee to point | |
1593 | * to the stable_node_dup that was collapsed in the | |
1594 | * stable rbtree and stable_node will be equal to | |
1595 | * stable_node_dup like if the chain never existed. | |
1596 | */ | |
1597 | if (!stable_node_dup) { | |
1598 | /* | |
1599 | * Either all stable_node dups were full in | |
1600 | * this stable_node chain, or this chain was | |
1601 | * empty and should be rb_erased. | |
1602 | */ | |
1603 | stable_node_any = stable_node_dup_any(stable_node, | |
1604 | root); | |
1605 | if (!stable_node_any) { | |
1606 | /* rb_erase just run */ | |
1607 | goto again; | |
1608 | } | |
1609 | /* | |
1610 | * Take any of the stable_node dups page of | |
1611 | * this stable_node chain to let the tree walk | |
1612 | * continue. All KSM pages belonging to the | |
1613 | * stable_node dups in a stable_node chain | |
1614 | * have the same content and they're | |
1615 | * wrprotected at all times. Any will work | |
1616 | * fine to continue the walk. | |
1617 | */ | |
1618 | tree_page = get_ksm_page(stable_node_any, false); | |
1619 | } | |
1620 | VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); | |
1621 | if (!tree_page) { | |
1622 | /* | |
1623 | * If we walked over a stale stable_node, | |
1624 | * get_ksm_page() will call rb_erase() and it | |
1625 | * may rebalance the tree from under us. So | |
1626 | * restart the search from scratch. Returning | |
1627 | * NULL would be safe too, but we'd generate | |
1628 | * false negative insertions just because some | |
1629 | * stable_node was stale. | |
1630 | */ | |
1631 | goto again; | |
1632 | } | |
1633 | ||
1634 | ret = memcmp_pages(page, tree_page); | |
1635 | put_page(tree_page); | |
1636 | ||
1637 | parent = *new; | |
1638 | if (ret < 0) | |
1639 | new = &parent->rb_left; | |
1640 | else if (ret > 0) | |
1641 | new = &parent->rb_right; | |
1642 | else { | |
1643 | if (page_node) { | |
1644 | VM_BUG_ON(page_node->head != &migrate_nodes); | |
1645 | /* | |
1646 | * Test if the migrated page should be merged | |
1647 | * into a stable node dup. If the mapcount is | |
1648 | * 1 we can migrate it with another KSM page | |
1649 | * without adding it to the chain. | |
1650 | */ | |
1651 | if (page_mapcount(page) > 1) | |
1652 | goto chain_append; | |
1653 | } | |
1654 | ||
1655 | if (!stable_node_dup) { | |
1656 | /* | |
1657 | * If the stable_node is a chain and | |
1658 | * we got a payload match in memcmp | |
1659 | * but we cannot merge the scanned | |
1660 | * page in any of the existing | |
1661 | * stable_node dups because they're | |
1662 | * all full, we need to wait the | |
1663 | * scanned page to find itself a match | |
1664 | * in the unstable tree to create a | |
1665 | * brand new KSM page to add later to | |
1666 | * the dups of this stable_node. | |
1667 | */ | |
1668 | return NULL; | |
1669 | } | |
1670 | ||
1671 | /* | |
1672 | * Lock and unlock the stable_node's page (which | |
1673 | * might already have been migrated) so that page | |
1674 | * migration is sure to notice its raised count. | |
1675 | * It would be more elegant to return stable_node | |
1676 | * than kpage, but that involves more changes. | |
1677 | */ | |
1678 | tree_page = get_ksm_page(stable_node_dup, true); | |
1679 | if (unlikely(!tree_page)) | |
1680 | /* | |
1681 | * The tree may have been rebalanced, | |
1682 | * so re-evaluate parent and new. | |
1683 | */ | |
1684 | goto again; | |
1685 | unlock_page(tree_page); | |
1686 | ||
1687 | if (get_kpfn_nid(stable_node_dup->kpfn) != | |
1688 | NUMA(stable_node_dup->nid)) { | |
1689 | put_page(tree_page); | |
1690 | goto replace; | |
1691 | } | |
1692 | return tree_page; | |
1693 | } | |
1694 | } | |
1695 | ||
1696 | if (!page_node) | |
1697 | return NULL; | |
1698 | ||
1699 | list_del(&page_node->list); | |
1700 | DO_NUMA(page_node->nid = nid); | |
1701 | rb_link_node(&page_node->node, parent, new); | |
1702 | rb_insert_color(&page_node->node, root); | |
1703 | out: | |
1704 | if (is_page_sharing_candidate(page_node)) { | |
1705 | get_page(page); | |
1706 | return page; | |
1707 | } else | |
1708 | return NULL; | |
1709 | ||
1710 | replace: | |
1711 | /* | |
1712 | * If stable_node was a chain and chain_prune collapsed it, | |
1713 | * stable_node has been updated to be the new regular | |
1714 | * stable_node. A collapse of the chain is indistinguishable | |
1715 | * from the case there was no chain in the stable | |
1716 | * rbtree. Otherwise stable_node is the chain and | |
1717 | * stable_node_dup is the dup to replace. | |
1718 | */ | |
1719 | if (stable_node_dup == stable_node) { | |
1720 | VM_BUG_ON(is_stable_node_chain(stable_node_dup)); | |
1721 | VM_BUG_ON(is_stable_node_dup(stable_node_dup)); | |
1722 | /* there is no chain */ | |
1723 | if (page_node) { | |
1724 | VM_BUG_ON(page_node->head != &migrate_nodes); | |
1725 | list_del(&page_node->list); | |
1726 | DO_NUMA(page_node->nid = nid); | |
1727 | rb_replace_node(&stable_node_dup->node, | |
1728 | &page_node->node, | |
1729 | root); | |
1730 | if (is_page_sharing_candidate(page_node)) | |
1731 | get_page(page); | |
1732 | else | |
1733 | page = NULL; | |
1734 | } else { | |
1735 | rb_erase(&stable_node_dup->node, root); | |
1736 | page = NULL; | |
1737 | } | |
1738 | } else { | |
1739 | VM_BUG_ON(!is_stable_node_chain(stable_node)); | |
1740 | __stable_node_dup_del(stable_node_dup); | |
1741 | if (page_node) { | |
1742 | VM_BUG_ON(page_node->head != &migrate_nodes); | |
1743 | list_del(&page_node->list); | |
1744 | DO_NUMA(page_node->nid = nid); | |
1745 | stable_node_chain_add_dup(page_node, stable_node); | |
1746 | if (is_page_sharing_candidate(page_node)) | |
1747 | get_page(page); | |
1748 | else | |
1749 | page = NULL; | |
1750 | } else { | |
1751 | page = NULL; | |
1752 | } | |
1753 | } | |
1754 | stable_node_dup->head = &migrate_nodes; | |
1755 | list_add(&stable_node_dup->list, stable_node_dup->head); | |
1756 | return page; | |
1757 | ||
1758 | chain_append: | |
1759 | /* stable_node_dup could be null if it reached the limit */ | |
1760 | if (!stable_node_dup) | |
1761 | stable_node_dup = stable_node_any; | |
1762 | /* | |
1763 | * If stable_node was a chain and chain_prune collapsed it, | |
1764 | * stable_node has been updated to be the new regular | |
1765 | * stable_node. A collapse of the chain is indistinguishable | |
1766 | * from the case there was no chain in the stable | |
1767 | * rbtree. Otherwise stable_node is the chain and | |
1768 | * stable_node_dup is the dup to replace. | |
1769 | */ | |
1770 | if (stable_node_dup == stable_node) { | |
1771 | VM_BUG_ON(is_stable_node_chain(stable_node_dup)); | |
1772 | VM_BUG_ON(is_stable_node_dup(stable_node_dup)); | |
1773 | /* chain is missing so create it */ | |
1774 | stable_node = alloc_stable_node_chain(stable_node_dup, | |
1775 | root); | |
1776 | if (!stable_node) | |
1777 | return NULL; | |
1778 | } | |
1779 | /* | |
1780 | * Add this stable_node dup that was | |
1781 | * migrated to the stable_node chain | |
1782 | * of the current nid for this page | |
1783 | * content. | |
1784 | */ | |
1785 | VM_BUG_ON(!is_stable_node_chain(stable_node)); | |
1786 | VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); | |
1787 | VM_BUG_ON(page_node->head != &migrate_nodes); | |
1788 | list_del(&page_node->list); | |
1789 | DO_NUMA(page_node->nid = nid); | |
1790 | stable_node_chain_add_dup(page_node, stable_node); | |
1791 | goto out; | |
1792 | } | |
1793 | ||
1794 | /* | |
1795 | * stable_tree_insert - insert stable tree node pointing to new ksm page | |
1796 | * into the stable tree. | |
1797 | * | |
1798 | * This function returns the stable tree node just allocated on success, | |
1799 | * NULL otherwise. | |
1800 | */ | |
1801 | static struct stable_node *stable_tree_insert(struct page *kpage) | |
1802 | { | |
1803 | int nid; | |
1804 | unsigned long kpfn; | |
1805 | struct rb_root *root; | |
1806 | struct rb_node **new; | |
1807 | struct rb_node *parent; | |
1808 | struct stable_node *stable_node, *stable_node_dup, *stable_node_any; | |
1809 | bool need_chain = false; | |
1810 | ||
1811 | kpfn = page_to_pfn(kpage); | |
1812 | nid = get_kpfn_nid(kpfn); | |
1813 | root = root_stable_tree + nid; | |
1814 | again: | |
1815 | parent = NULL; | |
1816 | new = &root->rb_node; | |
1817 | ||
1818 | while (*new) { | |
1819 | struct page *tree_page; | |
1820 | int ret; | |
1821 | ||
1822 | cond_resched(); | |
1823 | stable_node = rb_entry(*new, struct stable_node, node); | |
1824 | stable_node_any = NULL; | |
1825 | tree_page = chain(&stable_node_dup, stable_node, root); | |
1826 | if (!stable_node_dup) { | |
1827 | /* | |
1828 | * Either all stable_node dups were full in | |
1829 | * this stable_node chain, or this chain was | |
1830 | * empty and should be rb_erased. | |
1831 | */ | |
1832 | stable_node_any = stable_node_dup_any(stable_node, | |
1833 | root); | |
1834 | if (!stable_node_any) { | |
1835 | /* rb_erase just run */ | |
1836 | goto again; | |
1837 | } | |
1838 | /* | |
1839 | * Take any of the stable_node dups page of | |
1840 | * this stable_node chain to let the tree walk | |
1841 | * continue. All KSM pages belonging to the | |
1842 | * stable_node dups in a stable_node chain | |
1843 | * have the same content and they're | |
1844 | * wrprotected at all times. Any will work | |
1845 | * fine to continue the walk. | |
1846 | */ | |
1847 | tree_page = get_ksm_page(stable_node_any, false); | |
1848 | } | |
1849 | VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); | |
1850 | if (!tree_page) { | |
1851 | /* | |
1852 | * If we walked over a stale stable_node, | |
1853 | * get_ksm_page() will call rb_erase() and it | |
1854 | * may rebalance the tree from under us. So | |
1855 | * restart the search from scratch. Returning | |
1856 | * NULL would be safe too, but we'd generate | |
1857 | * false negative insertions just because some | |
1858 | * stable_node was stale. | |
1859 | */ | |
1860 | goto again; | |
1861 | } | |
1862 | ||
1863 | ret = memcmp_pages(kpage, tree_page); | |
1864 | put_page(tree_page); | |
1865 | ||
1866 | parent = *new; | |
1867 | if (ret < 0) | |
1868 | new = &parent->rb_left; | |
1869 | else if (ret > 0) | |
1870 | new = &parent->rb_right; | |
1871 | else { | |
1872 | need_chain = true; | |
1873 | break; | |
1874 | } | |
1875 | } | |
1876 | ||
1877 | stable_node_dup = alloc_stable_node(); | |
1878 | if (!stable_node_dup) | |
1879 | return NULL; | |
1880 | ||
1881 | INIT_HLIST_HEAD(&stable_node_dup->hlist); | |
1882 | stable_node_dup->kpfn = kpfn; | |
1883 | set_page_stable_node(kpage, stable_node_dup); | |
1884 | stable_node_dup->rmap_hlist_len = 0; | |
1885 | DO_NUMA(stable_node_dup->nid = nid); | |
1886 | if (!need_chain) { | |
1887 | rb_link_node(&stable_node_dup->node, parent, new); | |
1888 | rb_insert_color(&stable_node_dup->node, root); | |
1889 | } else { | |
1890 | if (!is_stable_node_chain(stable_node)) { | |
1891 | struct stable_node *orig = stable_node; | |
1892 | /* chain is missing so create it */ | |
1893 | stable_node = alloc_stable_node_chain(orig, root); | |
1894 | if (!stable_node) { | |
1895 | free_stable_node(stable_node_dup); | |
1896 | return NULL; | |
1897 | } | |
1898 | } | |
1899 | stable_node_chain_add_dup(stable_node_dup, stable_node); | |
1900 | } | |
1901 | ||
1902 | return stable_node_dup; | |
1903 | } | |
1904 | ||
1905 | /* | |
1906 | * unstable_tree_search_insert - search for identical page, | |
1907 | * else insert rmap_item into the unstable tree. | |
1908 | * | |
1909 | * This function searches for a page in the unstable tree identical to the | |
1910 | * page currently being scanned; and if no identical page is found in the | |
1911 | * tree, we insert rmap_item as a new object into the unstable tree. | |
1912 | * | |
1913 | * This function returns pointer to rmap_item found to be identical | |
1914 | * to the currently scanned page, NULL otherwise. | |
1915 | * | |
1916 | * This function does both searching and inserting, because they share | |
1917 | * the same walking algorithm in an rbtree. | |
1918 | */ | |
1919 | static | |
1920 | struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, | |
1921 | struct page *page, | |
1922 | struct page **tree_pagep) | |
1923 | { | |
1924 | struct rb_node **new; | |
1925 | struct rb_root *root; | |
1926 | struct rb_node *parent = NULL; | |
1927 | int nid; | |
1928 | ||
1929 | nid = get_kpfn_nid(page_to_pfn(page)); | |
1930 | root = root_unstable_tree + nid; | |
1931 | new = &root->rb_node; | |
1932 | ||
1933 | while (*new) { | |
1934 | struct rmap_item *tree_rmap_item; | |
1935 | struct page *tree_page; | |
1936 | int ret; | |
1937 | ||
1938 | cond_resched(); | |
1939 | tree_rmap_item = rb_entry(*new, struct rmap_item, node); | |
1940 | tree_page = get_mergeable_page(tree_rmap_item); | |
1941 | if (!tree_page) | |
1942 | return NULL; | |
1943 | ||
1944 | /* | |
1945 | * Don't substitute a ksm page for a forked page. | |
1946 | */ | |
1947 | if (page == tree_page) { | |
1948 | put_page(tree_page); | |
1949 | return NULL; | |
1950 | } | |
1951 | ||
1952 | ret = memcmp_pages(page, tree_page); | |
1953 | ||
1954 | parent = *new; | |
1955 | if (ret < 0) { | |
1956 | put_page(tree_page); | |
1957 | new = &parent->rb_left; | |
1958 | } else if (ret > 0) { | |
1959 | put_page(tree_page); | |
1960 | new = &parent->rb_right; | |
1961 | } else if (!ksm_merge_across_nodes && | |
1962 | page_to_nid(tree_page) != nid) { | |
1963 | /* | |
1964 | * If tree_page has been migrated to another NUMA node, | |
1965 | * it will be flushed out and put in the right unstable | |
1966 | * tree next time: only merge with it when across_nodes. | |
1967 | */ | |
1968 | put_page(tree_page); | |
1969 | return NULL; | |
1970 | } else { | |
1971 | *tree_pagep = tree_page; | |
1972 | return tree_rmap_item; | |
1973 | } | |
1974 | } | |
1975 | ||
1976 | rmap_item->address |= UNSTABLE_FLAG; | |
1977 | rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); | |
1978 | DO_NUMA(rmap_item->nid = nid); | |
1979 | rb_link_node(&rmap_item->node, parent, new); | |
1980 | rb_insert_color(&rmap_item->node, root); | |
1981 | ||
1982 | ksm_pages_unshared++; | |
1983 | return NULL; | |
1984 | } | |
1985 | ||
1986 | /* | |
1987 | * stable_tree_append - add another rmap_item to the linked list of | |
1988 | * rmap_items hanging off a given node of the stable tree, all sharing | |
1989 | * the same ksm page. | |
1990 | */ | |
1991 | static void stable_tree_append(struct rmap_item *rmap_item, | |
1992 | struct stable_node *stable_node, | |
1993 | bool max_page_sharing_bypass) | |
1994 | { | |
1995 | /* | |
1996 | * rmap won't find this mapping if we don't insert the | |
1997 | * rmap_item in the right stable_node | |
1998 | * duplicate. page_migration could break later if rmap breaks, | |
1999 | * so we can as well crash here. We really need to check for | |
2000 | * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check | |
2001 | * for other negative values as an undeflow if detected here | |
2002 | * for the first time (and not when decreasing rmap_hlist_len) | |
2003 | * would be sign of memory corruption in the stable_node. | |
2004 | */ | |
2005 | BUG_ON(stable_node->rmap_hlist_len < 0); | |
2006 | ||
2007 | stable_node->rmap_hlist_len++; | |
2008 | if (!max_page_sharing_bypass) | |
2009 | /* possibly non fatal but unexpected overflow, only warn */ | |
2010 | WARN_ON_ONCE(stable_node->rmap_hlist_len > | |
2011 | ksm_max_page_sharing); | |
2012 | ||
2013 | rmap_item->head = stable_node; | |
2014 | rmap_item->address |= STABLE_FLAG; | |
2015 | hlist_add_head(&rmap_item->hlist, &stable_node->hlist); | |
2016 | ||
2017 | if (rmap_item->hlist.next) | |
2018 | ksm_pages_sharing++; | |
2019 | else | |
2020 | ksm_pages_shared++; | |
2021 | } | |
2022 | ||
2023 | /* | |
2024 | * cmp_and_merge_page - first see if page can be merged into the stable tree; | |
2025 | * if not, compare checksum to previous and if it's the same, see if page can | |
2026 | * be inserted into the unstable tree, or merged with a page already there and | |
2027 | * both transferred to the stable tree. | |
2028 | * | |
2029 | * @page: the page that we are searching identical page to. | |
2030 | * @rmap_item: the reverse mapping into the virtual address of this page | |
2031 | */ | |
2032 | static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) | |
2033 | { | |
2034 | struct mm_struct *mm = rmap_item->mm; | |
2035 | struct rmap_item *tree_rmap_item; | |
2036 | struct page *tree_page = NULL; | |
2037 | struct stable_node *stable_node; | |
2038 | struct page *kpage; | |
2039 | unsigned int checksum; | |
2040 | int err; | |
2041 | bool max_page_sharing_bypass = false; | |
2042 | ||
2043 | stable_node = page_stable_node(page); | |
2044 | if (stable_node) { | |
2045 | if (stable_node->head != &migrate_nodes && | |
2046 | get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != | |
2047 | NUMA(stable_node->nid)) { | |
2048 | stable_node_dup_del(stable_node); | |
2049 | stable_node->head = &migrate_nodes; | |
2050 | list_add(&stable_node->list, stable_node->head); | |
2051 | } | |
2052 | if (stable_node->head != &migrate_nodes && | |
2053 | rmap_item->head == stable_node) | |
2054 | return; | |
2055 | /* | |
2056 | * If it's a KSM fork, allow it to go over the sharing limit | |
2057 | * without warnings. | |
2058 | */ | |
2059 | if (!is_page_sharing_candidate(stable_node)) | |
2060 | max_page_sharing_bypass = true; | |
2061 | } | |
2062 | ||
2063 | /* We first start with searching the page inside the stable tree */ | |
2064 | kpage = stable_tree_search(page); | |
2065 | if (kpage == page && rmap_item->head == stable_node) { | |
2066 | put_page(kpage); | |
2067 | return; | |
2068 | } | |
2069 | ||
2070 | remove_rmap_item_from_tree(rmap_item); | |
2071 | ||
2072 | if (kpage) { | |
2073 | err = try_to_merge_with_ksm_page(rmap_item, page, kpage); | |
2074 | if (!err) { | |
2075 | /* | |
2076 | * The page was successfully merged: | |
2077 | * add its rmap_item to the stable tree. | |
2078 | */ | |
2079 | lock_page(kpage); | |
2080 | stable_tree_append(rmap_item, page_stable_node(kpage), | |
2081 | max_page_sharing_bypass); | |
2082 | unlock_page(kpage); | |
2083 | } | |
2084 | put_page(kpage); | |
2085 | return; | |
2086 | } | |
2087 | ||
2088 | /* | |
2089 | * If the hash value of the page has changed from the last time | |
2090 | * we calculated it, this page is changing frequently: therefore we | |
2091 | * don't want to insert it in the unstable tree, and we don't want | |
2092 | * to waste our time searching for something identical to it there. | |
2093 | */ | |
2094 | checksum = calc_checksum(page); | |
2095 | if (rmap_item->oldchecksum != checksum) { | |
2096 | rmap_item->oldchecksum = checksum; | |
2097 | return; | |
2098 | } | |
2099 | ||
2100 | /* | |
2101 | * Same checksum as an empty page. We attempt to merge it with the | |
2102 | * appropriate zero page if the user enabled this via sysfs. | |
2103 | */ | |
2104 | if (ksm_use_zero_pages && (checksum == zero_checksum)) { | |
2105 | struct vm_area_struct *vma; | |
2106 | ||
2107 | down_read(&mm->mmap_sem); | |
2108 | vma = find_mergeable_vma(mm, rmap_item->address); | |
2109 | err = try_to_merge_one_page(vma, page, | |
2110 | ZERO_PAGE(rmap_item->address)); | |
2111 | up_read(&mm->mmap_sem); | |
2112 | /* | |
2113 | * In case of failure, the page was not really empty, so we | |
2114 | * need to continue. Otherwise we're done. | |
2115 | */ | |
2116 | if (!err) | |
2117 | return; | |
2118 | } | |
2119 | tree_rmap_item = | |
2120 | unstable_tree_search_insert(rmap_item, page, &tree_page); | |
2121 | if (tree_rmap_item) { | |
2122 | bool split; | |
2123 | ||
2124 | kpage = try_to_merge_two_pages(rmap_item, page, | |
2125 | tree_rmap_item, tree_page); | |
2126 | /* | |
2127 | * If both pages we tried to merge belong to the same compound | |
2128 | * page, then we actually ended up increasing the reference | |
2129 | * count of the same compound page twice, and split_huge_page | |
2130 | * failed. | |
2131 | * Here we set a flag if that happened, and we use it later to | |
2132 | * try split_huge_page again. Since we call put_page right | |
2133 | * afterwards, the reference count will be correct and | |
2134 | * split_huge_page should succeed. | |
2135 | */ | |
2136 | split = PageTransCompound(page) | |
2137 | && compound_head(page) == compound_head(tree_page); | |
2138 | put_page(tree_page); | |
2139 | if (kpage) { | |
2140 | /* | |
2141 | * The pages were successfully merged: insert new | |
2142 | * node in the stable tree and add both rmap_items. | |
2143 | */ | |
2144 | lock_page(kpage); | |
2145 | stable_node = stable_tree_insert(kpage); | |
2146 | if (stable_node) { | |
2147 | stable_tree_append(tree_rmap_item, stable_node, | |
2148 | false); | |
2149 | stable_tree_append(rmap_item, stable_node, | |
2150 | false); | |
2151 | } | |
2152 | unlock_page(kpage); | |
2153 | ||
2154 | /* | |
2155 | * If we fail to insert the page into the stable tree, | |
2156 | * we will have 2 virtual addresses that are pointing | |
2157 | * to a ksm page left outside the stable tree, | |
2158 | * in which case we need to break_cow on both. | |
2159 | */ | |
2160 | if (!stable_node) { | |
2161 | break_cow(tree_rmap_item); | |
2162 | break_cow(rmap_item); | |
2163 | } | |
2164 | } else if (split) { | |
2165 | /* | |
2166 | * We are here if we tried to merge two pages and | |
2167 | * failed because they both belonged to the same | |
2168 | * compound page. We will split the page now, but no | |
2169 | * merging will take place. | |
2170 | * We do not want to add the cost of a full lock; if | |
2171 | * the page is locked, it is better to skip it and | |
2172 | * perhaps try again later. | |
2173 | */ | |
2174 | if (!trylock_page(page)) | |
2175 | return; | |
2176 | split_huge_page(page); | |
2177 | unlock_page(page); | |
2178 | } | |
2179 | } | |
2180 | } | |
2181 | ||
2182 | static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, | |
2183 | struct rmap_item **rmap_list, | |
2184 | unsigned long addr) | |
2185 | { | |
2186 | struct rmap_item *rmap_item; | |
2187 | ||
2188 | while (*rmap_list) { | |
2189 | rmap_item = *rmap_list; | |
2190 | if ((rmap_item->address & PAGE_MASK) == addr) | |
2191 | return rmap_item; | |
2192 | if (rmap_item->address > addr) | |
2193 | break; | |
2194 | *rmap_list = rmap_item->rmap_list; | |
2195 | remove_rmap_item_from_tree(rmap_item); | |
2196 | free_rmap_item(rmap_item); | |
2197 | } | |
2198 | ||
2199 | rmap_item = alloc_rmap_item(); | |
2200 | if (rmap_item) { | |
2201 | /* It has already been zeroed */ | |
2202 | rmap_item->mm = mm_slot->mm; | |
2203 | rmap_item->address = addr; | |
2204 | rmap_item->rmap_list = *rmap_list; | |
2205 | *rmap_list = rmap_item; | |
2206 | } | |
2207 | return rmap_item; | |
2208 | } | |
2209 | ||
2210 | static struct rmap_item *scan_get_next_rmap_item(struct page **page) | |
2211 | { | |
2212 | struct mm_struct *mm; | |
2213 | struct mm_slot *slot; | |
2214 | struct vm_area_struct *vma; | |
2215 | struct rmap_item *rmap_item; | |
2216 | int nid; | |
2217 | ||
2218 | if (list_empty(&ksm_mm_head.mm_list)) | |
2219 | return NULL; | |
2220 | ||
2221 | slot = ksm_scan.mm_slot; | |
2222 | if (slot == &ksm_mm_head) { | |
2223 | /* | |
2224 | * A number of pages can hang around indefinitely on per-cpu | |
2225 | * pagevecs, raised page count preventing write_protect_page | |
2226 | * from merging them. Though it doesn't really matter much, | |
2227 | * it is puzzling to see some stuck in pages_volatile until | |
2228 | * other activity jostles them out, and they also prevented | |
2229 | * LTP's KSM test from succeeding deterministically; so drain | |
2230 | * them here (here rather than on entry to ksm_do_scan(), | |
2231 | * so we don't IPI too often when pages_to_scan is set low). | |
2232 | */ | |
2233 | lru_add_drain_all(); | |
2234 | ||
2235 | /* | |
2236 | * Whereas stale stable_nodes on the stable_tree itself | |
2237 | * get pruned in the regular course of stable_tree_search(), | |
2238 | * those moved out to the migrate_nodes list can accumulate: | |
2239 | * so prune them once before each full scan. | |
2240 | */ | |
2241 | if (!ksm_merge_across_nodes) { | |
2242 | struct stable_node *stable_node, *next; | |
2243 | struct page *page; | |
2244 | ||
2245 | list_for_each_entry_safe(stable_node, next, | |
2246 | &migrate_nodes, list) { | |
2247 | page = get_ksm_page(stable_node, false); | |
2248 | if (page) | |
2249 | put_page(page); | |
2250 | cond_resched(); | |
2251 | } | |
2252 | } | |
2253 | ||
2254 | for (nid = 0; nid < ksm_nr_node_ids; nid++) | |
2255 | root_unstable_tree[nid] = RB_ROOT; | |
2256 | ||
2257 | spin_lock(&ksm_mmlist_lock); | |
2258 | slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); | |
2259 | ksm_scan.mm_slot = slot; | |
2260 | spin_unlock(&ksm_mmlist_lock); | |
2261 | /* | |
2262 | * Although we tested list_empty() above, a racing __ksm_exit | |
2263 | * of the last mm on the list may have removed it since then. | |
2264 | */ | |
2265 | if (slot == &ksm_mm_head) | |
2266 | return NULL; | |
2267 | next_mm: | |
2268 | ksm_scan.address = 0; | |
2269 | ksm_scan.rmap_list = &slot->rmap_list; | |
2270 | } | |
2271 | ||
2272 | mm = slot->mm; | |
2273 | down_read(&mm->mmap_sem); | |
2274 | if (ksm_test_exit(mm)) | |
2275 | vma = NULL; | |
2276 | else | |
2277 | vma = find_vma(mm, ksm_scan.address); | |
2278 | ||
2279 | for (; vma; vma = vma->vm_next) { | |
2280 | if (!(vma->vm_flags & VM_MERGEABLE)) | |
2281 | continue; | |
2282 | if (ksm_scan.address < vma->vm_start) | |
2283 | ksm_scan.address = vma->vm_start; | |
2284 | if (!vma->anon_vma) | |
2285 | ksm_scan.address = vma->vm_end; | |
2286 | ||
2287 | while (ksm_scan.address < vma->vm_end) { | |
2288 | if (ksm_test_exit(mm)) | |
2289 | break; | |
2290 | *page = follow_page(vma, ksm_scan.address, FOLL_GET); | |
2291 | if (IS_ERR_OR_NULL(*page)) { | |
2292 | ksm_scan.address += PAGE_SIZE; | |
2293 | cond_resched(); | |
2294 | continue; | |
2295 | } | |
2296 | if (PageAnon(*page)) { | |
2297 | flush_anon_page(vma, *page, ksm_scan.address); | |
2298 | flush_dcache_page(*page); | |
2299 | rmap_item = get_next_rmap_item(slot, | |
2300 | ksm_scan.rmap_list, ksm_scan.address); | |
2301 | if (rmap_item) { | |
2302 | ksm_scan.rmap_list = | |
2303 | &rmap_item->rmap_list; | |
2304 | ksm_scan.address += PAGE_SIZE; | |
2305 | } else | |
2306 | put_page(*page); | |
2307 | up_read(&mm->mmap_sem); | |
2308 | return rmap_item; | |
2309 | } | |
2310 | put_page(*page); | |
2311 | ksm_scan.address += PAGE_SIZE; | |
2312 | cond_resched(); | |
2313 | } | |
2314 | } | |
2315 | ||
2316 | if (ksm_test_exit(mm)) { | |
2317 | ksm_scan.address = 0; | |
2318 | ksm_scan.rmap_list = &slot->rmap_list; | |
2319 | } | |
2320 | /* | |
2321 | * Nuke all the rmap_items that are above this current rmap: | |
2322 | * because there were no VM_MERGEABLE vmas with such addresses. | |
2323 | */ | |
2324 | remove_trailing_rmap_items(slot, ksm_scan.rmap_list); | |
2325 | ||
2326 | spin_lock(&ksm_mmlist_lock); | |
2327 | ksm_scan.mm_slot = list_entry(slot->mm_list.next, | |
2328 | struct mm_slot, mm_list); | |
2329 | if (ksm_scan.address == 0) { | |
2330 | /* | |
2331 | * We've completed a full scan of all vmas, holding mmap_sem | |
2332 | * throughout, and found no VM_MERGEABLE: so do the same as | |
2333 | * __ksm_exit does to remove this mm from all our lists now. | |
2334 | * This applies either when cleaning up after __ksm_exit | |
2335 | * (but beware: we can reach here even before __ksm_exit), | |
2336 | * or when all VM_MERGEABLE areas have been unmapped (and | |
2337 | * mmap_sem then protects against race with MADV_MERGEABLE). | |
2338 | */ | |
2339 | hash_del(&slot->link); | |
2340 | list_del(&slot->mm_list); | |
2341 | spin_unlock(&ksm_mmlist_lock); | |
2342 | ||
2343 | free_mm_slot(slot); | |
2344 | clear_bit(MMF_VM_MERGEABLE, &mm->flags); | |
2345 | up_read(&mm->mmap_sem); | |
2346 | mmdrop(mm); | |
2347 | } else { | |
2348 | up_read(&mm->mmap_sem); | |
2349 | /* | |
2350 | * up_read(&mm->mmap_sem) first because after | |
2351 | * spin_unlock(&ksm_mmlist_lock) run, the "mm" may | |
2352 | * already have been freed under us by __ksm_exit() | |
2353 | * because the "mm_slot" is still hashed and | |
2354 | * ksm_scan.mm_slot doesn't point to it anymore. | |
2355 | */ | |
2356 | spin_unlock(&ksm_mmlist_lock); | |
2357 | } | |
2358 | ||
2359 | /* Repeat until we've completed scanning the whole list */ | |
2360 | slot = ksm_scan.mm_slot; | |
2361 | if (slot != &ksm_mm_head) | |
2362 | goto next_mm; | |
2363 | ||
2364 | ksm_scan.seqnr++; | |
2365 | return NULL; | |
2366 | } | |
2367 | ||
2368 | /** | |
2369 | * ksm_do_scan - the ksm scanner main worker function. | |
2370 | * @scan_npages: number of pages we want to scan before we return. | |
2371 | */ | |
2372 | static void ksm_do_scan(unsigned int scan_npages) | |
2373 | { | |
2374 | struct rmap_item *rmap_item; | |
2375 | struct page *uninitialized_var(page); | |
2376 | ||
2377 | while (scan_npages-- && likely(!freezing(current))) { | |
2378 | cond_resched(); | |
2379 | rmap_item = scan_get_next_rmap_item(&page); | |
2380 | if (!rmap_item) | |
2381 | return; | |
2382 | cmp_and_merge_page(page, rmap_item); | |
2383 | put_page(page); | |
2384 | } | |
2385 | } | |
2386 | ||
2387 | static int ksmd_should_run(void) | |
2388 | { | |
2389 | return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); | |
2390 | } | |
2391 | ||
2392 | static int ksm_scan_thread(void *nothing) | |
2393 | { | |
2394 | set_freezable(); | |
2395 | set_user_nice(current, 5); | |
2396 | ||
2397 | while (!kthread_should_stop()) { | |
2398 | mutex_lock(&ksm_thread_mutex); | |
2399 | wait_while_offlining(); | |
2400 | if (ksmd_should_run()) | |
2401 | ksm_do_scan(ksm_thread_pages_to_scan); | |
2402 | mutex_unlock(&ksm_thread_mutex); | |
2403 | ||
2404 | try_to_freeze(); | |
2405 | ||
2406 | if (ksmd_should_run()) { | |
2407 | schedule_timeout_interruptible( | |
2408 | msecs_to_jiffies(ksm_thread_sleep_millisecs)); | |
2409 | } else { | |
2410 | wait_event_freezable(ksm_thread_wait, | |
2411 | ksmd_should_run() || kthread_should_stop()); | |
2412 | } | |
2413 | } | |
2414 | return 0; | |
2415 | } | |
2416 | ||
2417 | int ksm_madvise(struct vm_area_struct *vma, unsigned long start, | |
2418 | unsigned long end, int advice, unsigned long *vm_flags) | |
2419 | { | |
2420 | struct mm_struct *mm = vma->vm_mm; | |
2421 | int err; | |
2422 | ||
2423 | switch (advice) { | |
2424 | case MADV_MERGEABLE: | |
2425 | /* | |
2426 | * Be somewhat over-protective for now! | |
2427 | */ | |
2428 | if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | | |
2429 | VM_PFNMAP | VM_IO | VM_DONTEXPAND | | |
2430 | VM_HUGETLB | VM_MIXEDMAP)) | |
2431 | return 0; /* just ignore the advice */ | |
2432 | ||
2433 | if (vma_is_dax(vma)) | |
2434 | return 0; | |
2435 | ||
2436 | #ifdef VM_SAO | |
2437 | if (*vm_flags & VM_SAO) | |
2438 | return 0; | |
2439 | #endif | |
2440 | #ifdef VM_SPARC_ADI | |
2441 | if (*vm_flags & VM_SPARC_ADI) | |
2442 | return 0; | |
2443 | #endif | |
2444 | ||
2445 | if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { | |
2446 | err = __ksm_enter(mm); | |
2447 | if (err) | |
2448 | return err; | |
2449 | } | |
2450 | ||
2451 | *vm_flags |= VM_MERGEABLE; | |
2452 | break; | |
2453 | ||
2454 | case MADV_UNMERGEABLE: | |
2455 | if (!(*vm_flags & VM_MERGEABLE)) | |
2456 | return 0; /* just ignore the advice */ | |
2457 | ||
2458 | if (vma->anon_vma) { | |
2459 | err = unmerge_ksm_pages(vma, start, end); | |
2460 | if (err) | |
2461 | return err; | |
2462 | } | |
2463 | ||
2464 | *vm_flags &= ~VM_MERGEABLE; | |
2465 | break; | |
2466 | } | |
2467 | ||
2468 | return 0; | |
2469 | } | |
2470 | ||
2471 | int __ksm_enter(struct mm_struct *mm) | |
2472 | { | |
2473 | struct mm_slot *mm_slot; | |
2474 | int needs_wakeup; | |
2475 | ||
2476 | mm_slot = alloc_mm_slot(); | |
2477 | if (!mm_slot) | |
2478 | return -ENOMEM; | |
2479 | ||
2480 | /* Check ksm_run too? Would need tighter locking */ | |
2481 | needs_wakeup = list_empty(&ksm_mm_head.mm_list); | |
2482 | ||
2483 | spin_lock(&ksm_mmlist_lock); | |
2484 | insert_to_mm_slots_hash(mm, mm_slot); | |
2485 | /* | |
2486 | * When KSM_RUN_MERGE (or KSM_RUN_STOP), | |
2487 | * insert just behind the scanning cursor, to let the area settle | |
2488 | * down a little; when fork is followed by immediate exec, we don't | |
2489 | * want ksmd to waste time setting up and tearing down an rmap_list. | |
2490 | * | |
2491 | * But when KSM_RUN_UNMERGE, it's important to insert ahead of its | |
2492 | * scanning cursor, otherwise KSM pages in newly forked mms will be | |
2493 | * missed: then we might as well insert at the end of the list. | |
2494 | */ | |
2495 | if (ksm_run & KSM_RUN_UNMERGE) | |
2496 | list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); | |
2497 | else | |
2498 | list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); | |
2499 | spin_unlock(&ksm_mmlist_lock); | |
2500 | ||
2501 | set_bit(MMF_VM_MERGEABLE, &mm->flags); | |
2502 | mmgrab(mm); | |
2503 | ||
2504 | if (needs_wakeup) | |
2505 | wake_up_interruptible(&ksm_thread_wait); | |
2506 | ||
2507 | return 0; | |
2508 | } | |
2509 | ||
2510 | void __ksm_exit(struct mm_struct *mm) | |
2511 | { | |
2512 | struct mm_slot *mm_slot; | |
2513 | int easy_to_free = 0; | |
2514 | ||
2515 | /* | |
2516 | * This process is exiting: if it's straightforward (as is the | |
2517 | * case when ksmd was never running), free mm_slot immediately. | |
2518 | * But if it's at the cursor or has rmap_items linked to it, use | |
2519 | * mmap_sem to synchronize with any break_cows before pagetables | |
2520 | * are freed, and leave the mm_slot on the list for ksmd to free. | |
2521 | * Beware: ksm may already have noticed it exiting and freed the slot. | |
2522 | */ | |
2523 | ||
2524 | spin_lock(&ksm_mmlist_lock); | |
2525 | mm_slot = get_mm_slot(mm); | |
2526 | if (mm_slot && ksm_scan.mm_slot != mm_slot) { | |
2527 | if (!mm_slot->rmap_list) { | |
2528 | hash_del(&mm_slot->link); | |
2529 | list_del(&mm_slot->mm_list); | |
2530 | easy_to_free = 1; | |
2531 | } else { | |
2532 | list_move(&mm_slot->mm_list, | |
2533 | &ksm_scan.mm_slot->mm_list); | |
2534 | } | |
2535 | } | |
2536 | spin_unlock(&ksm_mmlist_lock); | |
2537 | ||
2538 | if (easy_to_free) { | |
2539 | free_mm_slot(mm_slot); | |
2540 | clear_bit(MMF_VM_MERGEABLE, &mm->flags); | |
2541 | mmdrop(mm); | |
2542 | } else if (mm_slot) { | |
2543 | down_write(&mm->mmap_sem); | |
2544 | up_write(&mm->mmap_sem); | |
2545 | } | |
2546 | } | |
2547 | ||
2548 | struct page *ksm_might_need_to_copy(struct page *page, | |
2549 | struct vm_area_struct *vma, unsigned long address) | |
2550 | { | |
2551 | struct anon_vma *anon_vma = page_anon_vma(page); | |
2552 | struct page *new_page; | |
2553 | ||
2554 | if (PageKsm(page)) { | |
2555 | if (page_stable_node(page) && | |
2556 | !(ksm_run & KSM_RUN_UNMERGE)) | |
2557 | return page; /* no need to copy it */ | |
2558 | } else if (!anon_vma) { | |
2559 | return page; /* no need to copy it */ | |
2560 | } else if (anon_vma->root == vma->anon_vma->root && | |
2561 | page->index == linear_page_index(vma, address)) { | |
2562 | return page; /* still no need to copy it */ | |
2563 | } | |
2564 | if (!PageUptodate(page)) | |
2565 | return page; /* let do_swap_page report the error */ | |
2566 | ||
2567 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); | |
2568 | if (new_page) { | |
2569 | copy_user_highpage(new_page, page, address, vma); | |
2570 | ||
2571 | SetPageDirty(new_page); | |
2572 | __SetPageUptodate(new_page); | |
2573 | __SetPageLocked(new_page); | |
2574 | } | |
2575 | ||
2576 | return new_page; | |
2577 | } | |
2578 | ||
2579 | void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) | |
2580 | { | |
2581 | struct stable_node *stable_node; | |
2582 | struct rmap_item *rmap_item; | |
2583 | int search_new_forks = 0; | |
2584 | ||
2585 | VM_BUG_ON_PAGE(!PageKsm(page), page); | |
2586 | ||
2587 | /* | |
2588 | * Rely on the page lock to protect against concurrent modifications | |
2589 | * to that page's node of the stable tree. | |
2590 | */ | |
2591 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
2592 | ||
2593 | stable_node = page_stable_node(page); | |
2594 | if (!stable_node) | |
2595 | return; | |
2596 | again: | |
2597 | hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { | |
2598 | struct anon_vma *anon_vma = rmap_item->anon_vma; | |
2599 | struct anon_vma_chain *vmac; | |
2600 | struct vm_area_struct *vma; | |
2601 | ||
2602 | cond_resched(); | |
2603 | anon_vma_lock_read(anon_vma); | |
2604 | anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, | |
2605 | 0, ULONG_MAX) { | |
2606 | unsigned long addr; | |
2607 | ||
2608 | cond_resched(); | |
2609 | vma = vmac->vma; | |
2610 | ||
2611 | /* Ignore the stable/unstable/sqnr flags */ | |
2612 | addr = rmap_item->address & ~KSM_FLAG_MASK; | |
2613 | ||
2614 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
2615 | continue; | |
2616 | /* | |
2617 | * Initially we examine only the vma which covers this | |
2618 | * rmap_item; but later, if there is still work to do, | |
2619 | * we examine covering vmas in other mms: in case they | |
2620 | * were forked from the original since ksmd passed. | |
2621 | */ | |
2622 | if ((rmap_item->mm == vma->vm_mm) == search_new_forks) | |
2623 | continue; | |
2624 | ||
2625 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) | |
2626 | continue; | |
2627 | ||
2628 | if (!rwc->rmap_one(page, vma, addr, rwc->arg)) { | |
2629 | anon_vma_unlock_read(anon_vma); | |
2630 | return; | |
2631 | } | |
2632 | if (rwc->done && rwc->done(page)) { | |
2633 | anon_vma_unlock_read(anon_vma); | |
2634 | return; | |
2635 | } | |
2636 | } | |
2637 | anon_vma_unlock_read(anon_vma); | |
2638 | } | |
2639 | if (!search_new_forks++) | |
2640 | goto again; | |
2641 | } | |
2642 | ||
2643 | #ifdef CONFIG_MIGRATION | |
2644 | void ksm_migrate_page(struct page *newpage, struct page *oldpage) | |
2645 | { | |
2646 | struct stable_node *stable_node; | |
2647 | ||
2648 | VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); | |
2649 | VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); | |
2650 | VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); | |
2651 | ||
2652 | stable_node = page_stable_node(newpage); | |
2653 | if (stable_node) { | |
2654 | VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); | |
2655 | stable_node->kpfn = page_to_pfn(newpage); | |
2656 | /* | |
2657 | * newpage->mapping was set in advance; now we need smp_wmb() | |
2658 | * to make sure that the new stable_node->kpfn is visible | |
2659 | * to get_ksm_page() before it can see that oldpage->mapping | |
2660 | * has gone stale (or that PageSwapCache has been cleared). | |
2661 | */ | |
2662 | smp_wmb(); | |
2663 | set_page_stable_node(oldpage, NULL); | |
2664 | } | |
2665 | } | |
2666 | #endif /* CONFIG_MIGRATION */ | |
2667 | ||
2668 | #ifdef CONFIG_MEMORY_HOTREMOVE | |
2669 | static void wait_while_offlining(void) | |
2670 | { | |
2671 | while (ksm_run & KSM_RUN_OFFLINE) { | |
2672 | mutex_unlock(&ksm_thread_mutex); | |
2673 | wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), | |
2674 | TASK_UNINTERRUPTIBLE); | |
2675 | mutex_lock(&ksm_thread_mutex); | |
2676 | } | |
2677 | } | |
2678 | ||
2679 | static bool stable_node_dup_remove_range(struct stable_node *stable_node, | |
2680 | unsigned long start_pfn, | |
2681 | unsigned long end_pfn) | |
2682 | { | |
2683 | if (stable_node->kpfn >= start_pfn && | |
2684 | stable_node->kpfn < end_pfn) { | |
2685 | /* | |
2686 | * Don't get_ksm_page, page has already gone: | |
2687 | * which is why we keep kpfn instead of page* | |
2688 | */ | |
2689 | remove_node_from_stable_tree(stable_node); | |
2690 | return true; | |
2691 | } | |
2692 | return false; | |
2693 | } | |
2694 | ||
2695 | static bool stable_node_chain_remove_range(struct stable_node *stable_node, | |
2696 | unsigned long start_pfn, | |
2697 | unsigned long end_pfn, | |
2698 | struct rb_root *root) | |
2699 | { | |
2700 | struct stable_node *dup; | |
2701 | struct hlist_node *hlist_safe; | |
2702 | ||
2703 | if (!is_stable_node_chain(stable_node)) { | |
2704 | VM_BUG_ON(is_stable_node_dup(stable_node)); | |
2705 | return stable_node_dup_remove_range(stable_node, start_pfn, | |
2706 | end_pfn); | |
2707 | } | |
2708 | ||
2709 | hlist_for_each_entry_safe(dup, hlist_safe, | |
2710 | &stable_node->hlist, hlist_dup) { | |
2711 | VM_BUG_ON(!is_stable_node_dup(dup)); | |
2712 | stable_node_dup_remove_range(dup, start_pfn, end_pfn); | |
2713 | } | |
2714 | if (hlist_empty(&stable_node->hlist)) { | |
2715 | free_stable_node_chain(stable_node, root); | |
2716 | return true; /* notify caller that tree was rebalanced */ | |
2717 | } else | |
2718 | return false; | |
2719 | } | |
2720 | ||
2721 | static void ksm_check_stable_tree(unsigned long start_pfn, | |
2722 | unsigned long end_pfn) | |
2723 | { | |
2724 | struct stable_node *stable_node, *next; | |
2725 | struct rb_node *node; | |
2726 | int nid; | |
2727 | ||
2728 | for (nid = 0; nid < ksm_nr_node_ids; nid++) { | |
2729 | node = rb_first(root_stable_tree + nid); | |
2730 | while (node) { | |
2731 | stable_node = rb_entry(node, struct stable_node, node); | |
2732 | if (stable_node_chain_remove_range(stable_node, | |
2733 | start_pfn, end_pfn, | |
2734 | root_stable_tree + | |
2735 | nid)) | |
2736 | node = rb_first(root_stable_tree + nid); | |
2737 | else | |
2738 | node = rb_next(node); | |
2739 | cond_resched(); | |
2740 | } | |
2741 | } | |
2742 | list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { | |
2743 | if (stable_node->kpfn >= start_pfn && | |
2744 | stable_node->kpfn < end_pfn) | |
2745 | remove_node_from_stable_tree(stable_node); | |
2746 | cond_resched(); | |
2747 | } | |
2748 | } | |
2749 | ||
2750 | static int ksm_memory_callback(struct notifier_block *self, | |
2751 | unsigned long action, void *arg) | |
2752 | { | |
2753 | struct memory_notify *mn = arg; | |
2754 | ||
2755 | switch (action) { | |
2756 | case MEM_GOING_OFFLINE: | |
2757 | /* | |
2758 | * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() | |
2759 | * and remove_all_stable_nodes() while memory is going offline: | |
2760 | * it is unsafe for them to touch the stable tree at this time. | |
2761 | * But unmerge_ksm_pages(), rmap lookups and other entry points | |
2762 | * which do not need the ksm_thread_mutex are all safe. | |
2763 | */ | |
2764 | mutex_lock(&ksm_thread_mutex); | |
2765 | ksm_run |= KSM_RUN_OFFLINE; | |
2766 | mutex_unlock(&ksm_thread_mutex); | |
2767 | break; | |
2768 | ||
2769 | case MEM_OFFLINE: | |
2770 | /* | |
2771 | * Most of the work is done by page migration; but there might | |
2772 | * be a few stable_nodes left over, still pointing to struct | |
2773 | * pages which have been offlined: prune those from the tree, | |
2774 | * otherwise get_ksm_page() might later try to access a | |
2775 | * non-existent struct page. | |
2776 | */ | |
2777 | ksm_check_stable_tree(mn->start_pfn, | |
2778 | mn->start_pfn + mn->nr_pages); | |
2779 | /* fallthrough */ | |
2780 | ||
2781 | case MEM_CANCEL_OFFLINE: | |
2782 | mutex_lock(&ksm_thread_mutex); | |
2783 | ksm_run &= ~KSM_RUN_OFFLINE; | |
2784 | mutex_unlock(&ksm_thread_mutex); | |
2785 | ||
2786 | smp_mb(); /* wake_up_bit advises this */ | |
2787 | wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); | |
2788 | break; | |
2789 | } | |
2790 | return NOTIFY_OK; | |
2791 | } | |
2792 | #else | |
2793 | static void wait_while_offlining(void) | |
2794 | { | |
2795 | } | |
2796 | #endif /* CONFIG_MEMORY_HOTREMOVE */ | |
2797 | ||
2798 | #ifdef CONFIG_SYSFS | |
2799 | /* | |
2800 | * This all compiles without CONFIG_SYSFS, but is a waste of space. | |
2801 | */ | |
2802 | ||
2803 | #define KSM_ATTR_RO(_name) \ | |
2804 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | |
2805 | #define KSM_ATTR(_name) \ | |
2806 | static struct kobj_attribute _name##_attr = \ | |
2807 | __ATTR(_name, 0644, _name##_show, _name##_store) | |
2808 | ||
2809 | static ssize_t sleep_millisecs_show(struct kobject *kobj, | |
2810 | struct kobj_attribute *attr, char *buf) | |
2811 | { | |
2812 | return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); | |
2813 | } | |
2814 | ||
2815 | static ssize_t sleep_millisecs_store(struct kobject *kobj, | |
2816 | struct kobj_attribute *attr, | |
2817 | const char *buf, size_t count) | |
2818 | { | |
2819 | unsigned long msecs; | |
2820 | int err; | |
2821 | ||
2822 | err = kstrtoul(buf, 10, &msecs); | |
2823 | if (err || msecs > UINT_MAX) | |
2824 | return -EINVAL; | |
2825 | ||
2826 | ksm_thread_sleep_millisecs = msecs; | |
2827 | ||
2828 | return count; | |
2829 | } | |
2830 | KSM_ATTR(sleep_millisecs); | |
2831 | ||
2832 | static ssize_t pages_to_scan_show(struct kobject *kobj, | |
2833 | struct kobj_attribute *attr, char *buf) | |
2834 | { | |
2835 | return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); | |
2836 | } | |
2837 | ||
2838 | static ssize_t pages_to_scan_store(struct kobject *kobj, | |
2839 | struct kobj_attribute *attr, | |
2840 | const char *buf, size_t count) | |
2841 | { | |
2842 | int err; | |
2843 | unsigned long nr_pages; | |
2844 | ||
2845 | err = kstrtoul(buf, 10, &nr_pages); | |
2846 | if (err || nr_pages > UINT_MAX) | |
2847 | return -EINVAL; | |
2848 | ||
2849 | ksm_thread_pages_to_scan = nr_pages; | |
2850 | ||
2851 | return count; | |
2852 | } | |
2853 | KSM_ATTR(pages_to_scan); | |
2854 | ||
2855 | static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, | |
2856 | char *buf) | |
2857 | { | |
2858 | return sprintf(buf, "%lu\n", ksm_run); | |
2859 | } | |
2860 | ||
2861 | static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, | |
2862 | const char *buf, size_t count) | |
2863 | { | |
2864 | int err; | |
2865 | unsigned long flags; | |
2866 | ||
2867 | err = kstrtoul(buf, 10, &flags); | |
2868 | if (err || flags > UINT_MAX) | |
2869 | return -EINVAL; | |
2870 | if (flags > KSM_RUN_UNMERGE) | |
2871 | return -EINVAL; | |
2872 | ||
2873 | /* | |
2874 | * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. | |
2875 | * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, | |
2876 | * breaking COW to free the pages_shared (but leaves mm_slots | |
2877 | * on the list for when ksmd may be set running again). | |
2878 | */ | |
2879 | ||
2880 | mutex_lock(&ksm_thread_mutex); | |
2881 | wait_while_offlining(); | |
2882 | if (ksm_run != flags) { | |
2883 | ksm_run = flags; | |
2884 | if (flags & KSM_RUN_UNMERGE) { | |
2885 | set_current_oom_origin(); | |
2886 | err = unmerge_and_remove_all_rmap_items(); | |
2887 | clear_current_oom_origin(); | |
2888 | if (err) { | |
2889 | ksm_run = KSM_RUN_STOP; | |
2890 | count = err; | |
2891 | } | |
2892 | } | |
2893 | } | |
2894 | mutex_unlock(&ksm_thread_mutex); | |
2895 | ||
2896 | if (flags & KSM_RUN_MERGE) | |
2897 | wake_up_interruptible(&ksm_thread_wait); | |
2898 | ||
2899 | return count; | |
2900 | } | |
2901 | KSM_ATTR(run); | |
2902 | ||
2903 | #ifdef CONFIG_NUMA | |
2904 | static ssize_t merge_across_nodes_show(struct kobject *kobj, | |
2905 | struct kobj_attribute *attr, char *buf) | |
2906 | { | |
2907 | return sprintf(buf, "%u\n", ksm_merge_across_nodes); | |
2908 | } | |
2909 | ||
2910 | static ssize_t merge_across_nodes_store(struct kobject *kobj, | |
2911 | struct kobj_attribute *attr, | |
2912 | const char *buf, size_t count) | |
2913 | { | |
2914 | int err; | |
2915 | unsigned long knob; | |
2916 | ||
2917 | err = kstrtoul(buf, 10, &knob); | |
2918 | if (err) | |
2919 | return err; | |
2920 | if (knob > 1) | |
2921 | return -EINVAL; | |
2922 | ||
2923 | mutex_lock(&ksm_thread_mutex); | |
2924 | wait_while_offlining(); | |
2925 | if (ksm_merge_across_nodes != knob) { | |
2926 | if (ksm_pages_shared || remove_all_stable_nodes()) | |
2927 | err = -EBUSY; | |
2928 | else if (root_stable_tree == one_stable_tree) { | |
2929 | struct rb_root *buf; | |
2930 | /* | |
2931 | * This is the first time that we switch away from the | |
2932 | * default of merging across nodes: must now allocate | |
2933 | * a buffer to hold as many roots as may be needed. | |
2934 | * Allocate stable and unstable together: | |
2935 | * MAXSMP NODES_SHIFT 10 will use 16kB. | |
2936 | */ | |
2937 | buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), | |
2938 | GFP_KERNEL); | |
2939 | /* Let us assume that RB_ROOT is NULL is zero */ | |
2940 | if (!buf) | |
2941 | err = -ENOMEM; | |
2942 | else { | |
2943 | root_stable_tree = buf; | |
2944 | root_unstable_tree = buf + nr_node_ids; | |
2945 | /* Stable tree is empty but not the unstable */ | |
2946 | root_unstable_tree[0] = one_unstable_tree[0]; | |
2947 | } | |
2948 | } | |
2949 | if (!err) { | |
2950 | ksm_merge_across_nodes = knob; | |
2951 | ksm_nr_node_ids = knob ? 1 : nr_node_ids; | |
2952 | } | |
2953 | } | |
2954 | mutex_unlock(&ksm_thread_mutex); | |
2955 | ||
2956 | return err ? err : count; | |
2957 | } | |
2958 | KSM_ATTR(merge_across_nodes); | |
2959 | #endif | |
2960 | ||
2961 | static ssize_t use_zero_pages_show(struct kobject *kobj, | |
2962 | struct kobj_attribute *attr, char *buf) | |
2963 | { | |
2964 | return sprintf(buf, "%u\n", ksm_use_zero_pages); | |
2965 | } | |
2966 | static ssize_t use_zero_pages_store(struct kobject *kobj, | |
2967 | struct kobj_attribute *attr, | |
2968 | const char *buf, size_t count) | |
2969 | { | |
2970 | int err; | |
2971 | bool value; | |
2972 | ||
2973 | err = kstrtobool(buf, &value); | |
2974 | if (err) | |
2975 | return -EINVAL; | |
2976 | ||
2977 | ksm_use_zero_pages = value; | |
2978 | ||
2979 | return count; | |
2980 | } | |
2981 | KSM_ATTR(use_zero_pages); | |
2982 | ||
2983 | static ssize_t max_page_sharing_show(struct kobject *kobj, | |
2984 | struct kobj_attribute *attr, char *buf) | |
2985 | { | |
2986 | return sprintf(buf, "%u\n", ksm_max_page_sharing); | |
2987 | } | |
2988 | ||
2989 | static ssize_t max_page_sharing_store(struct kobject *kobj, | |
2990 | struct kobj_attribute *attr, | |
2991 | const char *buf, size_t count) | |
2992 | { | |
2993 | int err; | |
2994 | int knob; | |
2995 | ||
2996 | err = kstrtoint(buf, 10, &knob); | |
2997 | if (err) | |
2998 | return err; | |
2999 | /* | |
3000 | * When a KSM page is created it is shared by 2 mappings. This | |
3001 | * being a signed comparison, it implicitly verifies it's not | |
3002 | * negative. | |
3003 | */ | |
3004 | if (knob < 2) | |
3005 | return -EINVAL; | |
3006 | ||
3007 | if (READ_ONCE(ksm_max_page_sharing) == knob) | |
3008 | return count; | |
3009 | ||
3010 | mutex_lock(&ksm_thread_mutex); | |
3011 | wait_while_offlining(); | |
3012 | if (ksm_max_page_sharing != knob) { | |
3013 | if (ksm_pages_shared || remove_all_stable_nodes()) | |
3014 | err = -EBUSY; | |
3015 | else | |
3016 | ksm_max_page_sharing = knob; | |
3017 | } | |
3018 | mutex_unlock(&ksm_thread_mutex); | |
3019 | ||
3020 | return err ? err : count; | |
3021 | } | |
3022 | KSM_ATTR(max_page_sharing); | |
3023 | ||
3024 | static ssize_t pages_shared_show(struct kobject *kobj, | |
3025 | struct kobj_attribute *attr, char *buf) | |
3026 | { | |
3027 | return sprintf(buf, "%lu\n", ksm_pages_shared); | |
3028 | } | |
3029 | KSM_ATTR_RO(pages_shared); | |
3030 | ||
3031 | static ssize_t pages_sharing_show(struct kobject *kobj, | |
3032 | struct kobj_attribute *attr, char *buf) | |
3033 | { | |
3034 | return sprintf(buf, "%lu\n", ksm_pages_sharing); | |
3035 | } | |
3036 | KSM_ATTR_RO(pages_sharing); | |
3037 | ||
3038 | static ssize_t pages_unshared_show(struct kobject *kobj, | |
3039 | struct kobj_attribute *attr, char *buf) | |
3040 | { | |
3041 | return sprintf(buf, "%lu\n", ksm_pages_unshared); | |
3042 | } | |
3043 | KSM_ATTR_RO(pages_unshared); | |
3044 | ||
3045 | static ssize_t pages_volatile_show(struct kobject *kobj, | |
3046 | struct kobj_attribute *attr, char *buf) | |
3047 | { | |
3048 | long ksm_pages_volatile; | |
3049 | ||
3050 | ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared | |
3051 | - ksm_pages_sharing - ksm_pages_unshared; | |
3052 | /* | |
3053 | * It was not worth any locking to calculate that statistic, | |
3054 | * but it might therefore sometimes be negative: conceal that. | |
3055 | */ | |
3056 | if (ksm_pages_volatile < 0) | |
3057 | ksm_pages_volatile = 0; | |
3058 | return sprintf(buf, "%ld\n", ksm_pages_volatile); | |
3059 | } | |
3060 | KSM_ATTR_RO(pages_volatile); | |
3061 | ||
3062 | static ssize_t stable_node_dups_show(struct kobject *kobj, | |
3063 | struct kobj_attribute *attr, char *buf) | |
3064 | { | |
3065 | return sprintf(buf, "%lu\n", ksm_stable_node_dups); | |
3066 | } | |
3067 | KSM_ATTR_RO(stable_node_dups); | |
3068 | ||
3069 | static ssize_t stable_node_chains_show(struct kobject *kobj, | |
3070 | struct kobj_attribute *attr, char *buf) | |
3071 | { | |
3072 | return sprintf(buf, "%lu\n", ksm_stable_node_chains); | |
3073 | } | |
3074 | KSM_ATTR_RO(stable_node_chains); | |
3075 | ||
3076 | static ssize_t | |
3077 | stable_node_chains_prune_millisecs_show(struct kobject *kobj, | |
3078 | struct kobj_attribute *attr, | |
3079 | char *buf) | |
3080 | { | |
3081 | return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); | |
3082 | } | |
3083 | ||
3084 | static ssize_t | |
3085 | stable_node_chains_prune_millisecs_store(struct kobject *kobj, | |
3086 | struct kobj_attribute *attr, | |
3087 | const char *buf, size_t count) | |
3088 | { | |
3089 | unsigned long msecs; | |
3090 | int err; | |
3091 | ||
3092 | err = kstrtoul(buf, 10, &msecs); | |
3093 | if (err || msecs > UINT_MAX) | |
3094 | return -EINVAL; | |
3095 | ||
3096 | ksm_stable_node_chains_prune_millisecs = msecs; | |
3097 | ||
3098 | return count; | |
3099 | } | |
3100 | KSM_ATTR(stable_node_chains_prune_millisecs); | |
3101 | ||
3102 | static ssize_t full_scans_show(struct kobject *kobj, | |
3103 | struct kobj_attribute *attr, char *buf) | |
3104 | { | |
3105 | return sprintf(buf, "%lu\n", ksm_scan.seqnr); | |
3106 | } | |
3107 | KSM_ATTR_RO(full_scans); | |
3108 | ||
3109 | static struct attribute *ksm_attrs[] = { | |
3110 | &sleep_millisecs_attr.attr, | |
3111 | &pages_to_scan_attr.attr, | |
3112 | &run_attr.attr, | |
3113 | &pages_shared_attr.attr, | |
3114 | &pages_sharing_attr.attr, | |
3115 | &pages_unshared_attr.attr, | |
3116 | &pages_volatile_attr.attr, | |
3117 | &full_scans_attr.attr, | |
3118 | #ifdef CONFIG_NUMA | |
3119 | &merge_across_nodes_attr.attr, | |
3120 | #endif | |
3121 | &max_page_sharing_attr.attr, | |
3122 | &stable_node_chains_attr.attr, | |
3123 | &stable_node_dups_attr.attr, | |
3124 | &stable_node_chains_prune_millisecs_attr.attr, | |
3125 | &use_zero_pages_attr.attr, | |
3126 | NULL, | |
3127 | }; | |
3128 | ||
3129 | static const struct attribute_group ksm_attr_group = { | |
3130 | .attrs = ksm_attrs, | |
3131 | .name = "ksm", | |
3132 | }; | |
3133 | #endif /* CONFIG_SYSFS */ | |
3134 | ||
3135 | static int __init ksm_init(void) | |
3136 | { | |
3137 | struct task_struct *ksm_thread; | |
3138 | int err; | |
3139 | ||
3140 | /* The correct value depends on page size and endianness */ | |
3141 | zero_checksum = calc_checksum(ZERO_PAGE(0)); | |
3142 | /* Default to false for backwards compatibility */ | |
3143 | ksm_use_zero_pages = false; | |
3144 | ||
3145 | err = ksm_slab_init(); | |
3146 | if (err) | |
3147 | goto out; | |
3148 | ||
3149 | ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); | |
3150 | if (IS_ERR(ksm_thread)) { | |
3151 | pr_err("ksm: creating kthread failed\n"); | |
3152 | err = PTR_ERR(ksm_thread); | |
3153 | goto out_free; | |
3154 | } | |
3155 | ||
3156 | #ifdef CONFIG_SYSFS | |
3157 | err = sysfs_create_group(mm_kobj, &ksm_attr_group); | |
3158 | if (err) { | |
3159 | pr_err("ksm: register sysfs failed\n"); | |
3160 | kthread_stop(ksm_thread); | |
3161 | goto out_free; | |
3162 | } | |
3163 | #else | |
3164 | ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ | |
3165 | ||
3166 | #endif /* CONFIG_SYSFS */ | |
3167 | ||
3168 | #ifdef CONFIG_MEMORY_HOTREMOVE | |
3169 | /* There is no significance to this priority 100 */ | |
3170 | hotplug_memory_notifier(ksm_memory_callback, 100); | |
3171 | #endif | |
3172 | return 0; | |
3173 | ||
3174 | out_free: | |
3175 | ksm_slab_free(); | |
3176 | out: | |
3177 | return err; | |
3178 | } | |
3179 | subsys_initcall(ksm_init); |