]> Git Repo - linux.git/blame_incremental - kernel/sched.c
sched: bias task wakeups to preferred semi-idle packages
[linux.git] / kernel / sched.c
... / ...
CommitLineData
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
38#include <linux/capability.h>
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
41#include <linux/debug_locks.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/proc_fs.h>
59#include <linux/seq_file.h>
60#include <linux/sysctl.h>
61#include <linux/syscalls.h>
62#include <linux/times.h>
63#include <linux/tsacct_kern.h>
64#include <linux/kprobes.h>
65#include <linux/delayacct.h>
66#include <linux/reciprocal_div.h>
67#include <linux/unistd.h>
68#include <linux/pagemap.h>
69#include <linux/hrtimer.h>
70#include <linux/tick.h>
71#include <linux/bootmem.h>
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
74#include <linux/ftrace.h>
75#include <trace/sched.h>
76
77#include <asm/tlb.h>
78#include <asm/irq_regs.h>
79
80#include "sched_cpupri.h"
81
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
101 * Helpers for converting nanosecond timing to jiffy resolution
102 */
103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
113 */
114#define DEF_TIMESLICE (100 * HZ / 1000)
115
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
127#ifdef CONFIG_SMP
128/*
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 */
132static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133{
134 return reciprocal_divide(load, sg->reciprocal_cpu_power);
135}
136
137/*
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
140 */
141static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142{
143 sg->__cpu_power += val;
144 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145}
146#endif
147
148static inline int rt_policy(int policy)
149{
150 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
151 return 1;
152 return 0;
153}
154
155static inline int task_has_rt_policy(struct task_struct *p)
156{
157 return rt_policy(p->policy);
158}
159
160/*
161 * This is the priority-queue data structure of the RT scheduling class:
162 */
163struct rt_prio_array {
164 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
165 struct list_head queue[MAX_RT_PRIO];
166};
167
168struct rt_bandwidth {
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock;
171 ktime_t rt_period;
172 u64 rt_runtime;
173 struct hrtimer rt_period_timer;
174};
175
176static struct rt_bandwidth def_rt_bandwidth;
177
178static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179
180static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181{
182 struct rt_bandwidth *rt_b =
183 container_of(timer, struct rt_bandwidth, rt_period_timer);
184 ktime_t now;
185 int overrun;
186 int idle = 0;
187
188 for (;;) {
189 now = hrtimer_cb_get_time(timer);
190 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191
192 if (!overrun)
193 break;
194
195 idle = do_sched_rt_period_timer(rt_b, overrun);
196 }
197
198 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
199}
200
201static
202void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203{
204 rt_b->rt_period = ns_to_ktime(period);
205 rt_b->rt_runtime = runtime;
206
207 spin_lock_init(&rt_b->rt_runtime_lock);
208
209 hrtimer_init(&rt_b->rt_period_timer,
210 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 rt_b->rt_period_timer.function = sched_rt_period_timer;
212 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
213}
214
215static inline int rt_bandwidth_enabled(void)
216{
217 return sysctl_sched_rt_runtime >= 0;
218}
219
220static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
221{
222 ktime_t now;
223
224 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
225 return;
226
227 if (hrtimer_active(&rt_b->rt_period_timer))
228 return;
229
230 spin_lock(&rt_b->rt_runtime_lock);
231 for (;;) {
232 if (hrtimer_active(&rt_b->rt_period_timer))
233 break;
234
235 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
236 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
237 hrtimer_start_expires(&rt_b->rt_period_timer,
238 HRTIMER_MODE_ABS);
239 }
240 spin_unlock(&rt_b->rt_runtime_lock);
241}
242
243#ifdef CONFIG_RT_GROUP_SCHED
244static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
245{
246 hrtimer_cancel(&rt_b->rt_period_timer);
247}
248#endif
249
250/*
251 * sched_domains_mutex serializes calls to arch_init_sched_domains,
252 * detach_destroy_domains and partition_sched_domains.
253 */
254static DEFINE_MUTEX(sched_domains_mutex);
255
256#ifdef CONFIG_GROUP_SCHED
257
258#include <linux/cgroup.h>
259
260struct cfs_rq;
261
262static LIST_HEAD(task_groups);
263
264/* task group related information */
265struct task_group {
266#ifdef CONFIG_CGROUP_SCHED
267 struct cgroup_subsys_state css;
268#endif
269
270#ifdef CONFIG_USER_SCHED
271 uid_t uid;
272#endif
273
274#ifdef CONFIG_FAIR_GROUP_SCHED
275 /* schedulable entities of this group on each cpu */
276 struct sched_entity **se;
277 /* runqueue "owned" by this group on each cpu */
278 struct cfs_rq **cfs_rq;
279 unsigned long shares;
280#endif
281
282#ifdef CONFIG_RT_GROUP_SCHED
283 struct sched_rt_entity **rt_se;
284 struct rt_rq **rt_rq;
285
286 struct rt_bandwidth rt_bandwidth;
287#endif
288
289 struct rcu_head rcu;
290 struct list_head list;
291
292 struct task_group *parent;
293 struct list_head siblings;
294 struct list_head children;
295};
296
297#ifdef CONFIG_USER_SCHED
298
299/* Helper function to pass uid information to create_sched_user() */
300void set_tg_uid(struct user_struct *user)
301{
302 user->tg->uid = user->uid;
303}
304
305/*
306 * Root task group.
307 * Every UID task group (including init_task_group aka UID-0) will
308 * be a child to this group.
309 */
310struct task_group root_task_group;
311
312#ifdef CONFIG_FAIR_GROUP_SCHED
313/* Default task group's sched entity on each cpu */
314static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
315/* Default task group's cfs_rq on each cpu */
316static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
317#endif /* CONFIG_FAIR_GROUP_SCHED */
318
319#ifdef CONFIG_RT_GROUP_SCHED
320static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
321static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
322#endif /* CONFIG_RT_GROUP_SCHED */
323#else /* !CONFIG_USER_SCHED */
324#define root_task_group init_task_group
325#endif /* CONFIG_USER_SCHED */
326
327/* task_group_lock serializes add/remove of task groups and also changes to
328 * a task group's cpu shares.
329 */
330static DEFINE_SPINLOCK(task_group_lock);
331
332#ifdef CONFIG_FAIR_GROUP_SCHED
333#ifdef CONFIG_USER_SCHED
334# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
335#else /* !CONFIG_USER_SCHED */
336# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
337#endif /* CONFIG_USER_SCHED */
338
339/*
340 * A weight of 0 or 1 can cause arithmetics problems.
341 * A weight of a cfs_rq is the sum of weights of which entities
342 * are queued on this cfs_rq, so a weight of a entity should not be
343 * too large, so as the shares value of a task group.
344 * (The default weight is 1024 - so there's no practical
345 * limitation from this.)
346 */
347#define MIN_SHARES 2
348#define MAX_SHARES (1UL << 18)
349
350static int init_task_group_load = INIT_TASK_GROUP_LOAD;
351#endif
352
353/* Default task group.
354 * Every task in system belong to this group at bootup.
355 */
356struct task_group init_task_group;
357
358/* return group to which a task belongs */
359static inline struct task_group *task_group(struct task_struct *p)
360{
361 struct task_group *tg;
362
363#ifdef CONFIG_USER_SCHED
364 tg = p->user->tg;
365#elif defined(CONFIG_CGROUP_SCHED)
366 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
367 struct task_group, css);
368#else
369 tg = &init_task_group;
370#endif
371 return tg;
372}
373
374/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
375static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
376{
377#ifdef CONFIG_FAIR_GROUP_SCHED
378 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
379 p->se.parent = task_group(p)->se[cpu];
380#endif
381
382#ifdef CONFIG_RT_GROUP_SCHED
383 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
384 p->rt.parent = task_group(p)->rt_se[cpu];
385#endif
386}
387
388#else
389
390static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
391static inline struct task_group *task_group(struct task_struct *p)
392{
393 return NULL;
394}
395
396#endif /* CONFIG_GROUP_SCHED */
397
398/* CFS-related fields in a runqueue */
399struct cfs_rq {
400 struct load_weight load;
401 unsigned long nr_running;
402
403 u64 exec_clock;
404 u64 min_vruntime;
405
406 struct rb_root tasks_timeline;
407 struct rb_node *rb_leftmost;
408
409 struct list_head tasks;
410 struct list_head *balance_iterator;
411
412 /*
413 * 'curr' points to currently running entity on this cfs_rq.
414 * It is set to NULL otherwise (i.e when none are currently running).
415 */
416 struct sched_entity *curr, *next, *last;
417
418 unsigned int nr_spread_over;
419
420#ifdef CONFIG_FAIR_GROUP_SCHED
421 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
422
423 /*
424 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
425 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
426 * (like users, containers etc.)
427 *
428 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
429 * list is used during load balance.
430 */
431 struct list_head leaf_cfs_rq_list;
432 struct task_group *tg; /* group that "owns" this runqueue */
433
434#ifdef CONFIG_SMP
435 /*
436 * the part of load.weight contributed by tasks
437 */
438 unsigned long task_weight;
439
440 /*
441 * h_load = weight * f(tg)
442 *
443 * Where f(tg) is the recursive weight fraction assigned to
444 * this group.
445 */
446 unsigned long h_load;
447
448 /*
449 * this cpu's part of tg->shares
450 */
451 unsigned long shares;
452
453 /*
454 * load.weight at the time we set shares
455 */
456 unsigned long rq_weight;
457#endif
458#endif
459};
460
461/* Real-Time classes' related field in a runqueue: */
462struct rt_rq {
463 struct rt_prio_array active;
464 unsigned long rt_nr_running;
465#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
466 int highest_prio; /* highest queued rt task prio */
467#endif
468#ifdef CONFIG_SMP
469 unsigned long rt_nr_migratory;
470 int overloaded;
471#endif
472 int rt_throttled;
473 u64 rt_time;
474 u64 rt_runtime;
475 /* Nests inside the rq lock: */
476 spinlock_t rt_runtime_lock;
477
478#ifdef CONFIG_RT_GROUP_SCHED
479 unsigned long rt_nr_boosted;
480
481 struct rq *rq;
482 struct list_head leaf_rt_rq_list;
483 struct task_group *tg;
484 struct sched_rt_entity *rt_se;
485#endif
486};
487
488#ifdef CONFIG_SMP
489
490/*
491 * We add the notion of a root-domain which will be used to define per-domain
492 * variables. Each exclusive cpuset essentially defines an island domain by
493 * fully partitioning the member cpus from any other cpuset. Whenever a new
494 * exclusive cpuset is created, we also create and attach a new root-domain
495 * object.
496 *
497 */
498struct root_domain {
499 atomic_t refcount;
500 cpumask_var_t span;
501 cpumask_var_t online;
502
503 /*
504 * The "RT overload" flag: it gets set if a CPU has more than
505 * one runnable RT task.
506 */
507 cpumask_var_t rto_mask;
508 atomic_t rto_count;
509#ifdef CONFIG_SMP
510 struct cpupri cpupri;
511#endif
512#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
513 /*
514 * Preferred wake up cpu nominated by sched_mc balance that will be
515 * used when most cpus are idle in the system indicating overall very
516 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
517 */
518 unsigned int sched_mc_preferred_wakeup_cpu;
519#endif
520};
521
522/*
523 * By default the system creates a single root-domain with all cpus as
524 * members (mimicking the global state we have today).
525 */
526static struct root_domain def_root_domain;
527
528#endif
529
530/*
531 * This is the main, per-CPU runqueue data structure.
532 *
533 * Locking rule: those places that want to lock multiple runqueues
534 * (such as the load balancing or the thread migration code), lock
535 * acquire operations must be ordered by ascending &runqueue.
536 */
537struct rq {
538 /* runqueue lock: */
539 spinlock_t lock;
540
541 /*
542 * nr_running and cpu_load should be in the same cacheline because
543 * remote CPUs use both these fields when doing load calculation.
544 */
545 unsigned long nr_running;
546 #define CPU_LOAD_IDX_MAX 5
547 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
548 unsigned char idle_at_tick;
549#ifdef CONFIG_NO_HZ
550 unsigned long last_tick_seen;
551 unsigned char in_nohz_recently;
552#endif
553 /* capture load from *all* tasks on this cpu: */
554 struct load_weight load;
555 unsigned long nr_load_updates;
556 u64 nr_switches;
557
558 struct cfs_rq cfs;
559 struct rt_rq rt;
560
561#ifdef CONFIG_FAIR_GROUP_SCHED
562 /* list of leaf cfs_rq on this cpu: */
563 struct list_head leaf_cfs_rq_list;
564#endif
565#ifdef CONFIG_RT_GROUP_SCHED
566 struct list_head leaf_rt_rq_list;
567#endif
568
569 /*
570 * This is part of a global counter where only the total sum
571 * over all CPUs matters. A task can increase this counter on
572 * one CPU and if it got migrated afterwards it may decrease
573 * it on another CPU. Always updated under the runqueue lock:
574 */
575 unsigned long nr_uninterruptible;
576
577 struct task_struct *curr, *idle;
578 unsigned long next_balance;
579 struct mm_struct *prev_mm;
580
581 u64 clock;
582
583 atomic_t nr_iowait;
584
585#ifdef CONFIG_SMP
586 struct root_domain *rd;
587 struct sched_domain *sd;
588
589 /* For active balancing */
590 int active_balance;
591 int push_cpu;
592 /* cpu of this runqueue: */
593 int cpu;
594 int online;
595
596 unsigned long avg_load_per_task;
597
598 struct task_struct *migration_thread;
599 struct list_head migration_queue;
600#endif
601
602#ifdef CONFIG_SCHED_HRTICK
603#ifdef CONFIG_SMP
604 int hrtick_csd_pending;
605 struct call_single_data hrtick_csd;
606#endif
607 struct hrtimer hrtick_timer;
608#endif
609
610#ifdef CONFIG_SCHEDSTATS
611 /* latency stats */
612 struct sched_info rq_sched_info;
613
614 /* sys_sched_yield() stats */
615 unsigned int yld_exp_empty;
616 unsigned int yld_act_empty;
617 unsigned int yld_both_empty;
618 unsigned int yld_count;
619
620 /* schedule() stats */
621 unsigned int sched_switch;
622 unsigned int sched_count;
623 unsigned int sched_goidle;
624
625 /* try_to_wake_up() stats */
626 unsigned int ttwu_count;
627 unsigned int ttwu_local;
628
629 /* BKL stats */
630 unsigned int bkl_count;
631#endif
632};
633
634static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
635
636static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
637{
638 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
639}
640
641static inline int cpu_of(struct rq *rq)
642{
643#ifdef CONFIG_SMP
644 return rq->cpu;
645#else
646 return 0;
647#endif
648}
649
650/*
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
652 * See detach_destroy_domains: synchronize_sched for details.
653 *
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
656 */
657#define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
659
660#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661#define this_rq() (&__get_cpu_var(runqueues))
662#define task_rq(p) cpu_rq(task_cpu(p))
663#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
664
665static inline void update_rq_clock(struct rq *rq)
666{
667 rq->clock = sched_clock_cpu(cpu_of(rq));
668}
669
670/*
671 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
672 */
673#ifdef CONFIG_SCHED_DEBUG
674# define const_debug __read_mostly
675#else
676# define const_debug static const
677#endif
678
679/**
680 * runqueue_is_locked
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
686int runqueue_is_locked(void)
687{
688 int cpu = get_cpu();
689 struct rq *rq = cpu_rq(cpu);
690 int ret;
691
692 ret = spin_is_locked(&rq->lock);
693 put_cpu();
694 return ret;
695}
696
697/*
698 * Debugging: various feature bits
699 */
700
701#define SCHED_FEAT(name, enabled) \
702 __SCHED_FEAT_##name ,
703
704enum {
705#include "sched_features.h"
706};
707
708#undef SCHED_FEAT
709
710#define SCHED_FEAT(name, enabled) \
711 (1UL << __SCHED_FEAT_##name) * enabled |
712
713const_debug unsigned int sysctl_sched_features =
714#include "sched_features.h"
715 0;
716
717#undef SCHED_FEAT
718
719#ifdef CONFIG_SCHED_DEBUG
720#define SCHED_FEAT(name, enabled) \
721 #name ,
722
723static __read_mostly char *sched_feat_names[] = {
724#include "sched_features.h"
725 NULL
726};
727
728#undef SCHED_FEAT
729
730static int sched_feat_show(struct seq_file *m, void *v)
731{
732 int i;
733
734 for (i = 0; sched_feat_names[i]; i++) {
735 if (!(sysctl_sched_features & (1UL << i)))
736 seq_puts(m, "NO_");
737 seq_printf(m, "%s ", sched_feat_names[i]);
738 }
739 seq_puts(m, "\n");
740
741 return 0;
742}
743
744static ssize_t
745sched_feat_write(struct file *filp, const char __user *ubuf,
746 size_t cnt, loff_t *ppos)
747{
748 char buf[64];
749 char *cmp = buf;
750 int neg = 0;
751 int i;
752
753 if (cnt > 63)
754 cnt = 63;
755
756 if (copy_from_user(&buf, ubuf, cnt))
757 return -EFAULT;
758
759 buf[cnt] = 0;
760
761 if (strncmp(buf, "NO_", 3) == 0) {
762 neg = 1;
763 cmp += 3;
764 }
765
766 for (i = 0; sched_feat_names[i]; i++) {
767 int len = strlen(sched_feat_names[i]);
768
769 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
770 if (neg)
771 sysctl_sched_features &= ~(1UL << i);
772 else
773 sysctl_sched_features |= (1UL << i);
774 break;
775 }
776 }
777
778 if (!sched_feat_names[i])
779 return -EINVAL;
780
781 filp->f_pos += cnt;
782
783 return cnt;
784}
785
786static int sched_feat_open(struct inode *inode, struct file *filp)
787{
788 return single_open(filp, sched_feat_show, NULL);
789}
790
791static struct file_operations sched_feat_fops = {
792 .open = sched_feat_open,
793 .write = sched_feat_write,
794 .read = seq_read,
795 .llseek = seq_lseek,
796 .release = single_release,
797};
798
799static __init int sched_init_debug(void)
800{
801 debugfs_create_file("sched_features", 0644, NULL, NULL,
802 &sched_feat_fops);
803
804 return 0;
805}
806late_initcall(sched_init_debug);
807
808#endif
809
810#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
811
812/*
813 * Number of tasks to iterate in a single balance run.
814 * Limited because this is done with IRQs disabled.
815 */
816const_debug unsigned int sysctl_sched_nr_migrate = 32;
817
818/*
819 * ratelimit for updating the group shares.
820 * default: 0.25ms
821 */
822unsigned int sysctl_sched_shares_ratelimit = 250000;
823
824/*
825 * Inject some fuzzyness into changing the per-cpu group shares
826 * this avoids remote rq-locks at the expense of fairness.
827 * default: 4
828 */
829unsigned int sysctl_sched_shares_thresh = 4;
830
831/*
832 * period over which we measure -rt task cpu usage in us.
833 * default: 1s
834 */
835unsigned int sysctl_sched_rt_period = 1000000;
836
837static __read_mostly int scheduler_running;
838
839/*
840 * part of the period that we allow rt tasks to run in us.
841 * default: 0.95s
842 */
843int sysctl_sched_rt_runtime = 950000;
844
845static inline u64 global_rt_period(void)
846{
847 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
848}
849
850static inline u64 global_rt_runtime(void)
851{
852 if (sysctl_sched_rt_runtime < 0)
853 return RUNTIME_INF;
854
855 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
856}
857
858#ifndef prepare_arch_switch
859# define prepare_arch_switch(next) do { } while (0)
860#endif
861#ifndef finish_arch_switch
862# define finish_arch_switch(prev) do { } while (0)
863#endif
864
865static inline int task_current(struct rq *rq, struct task_struct *p)
866{
867 return rq->curr == p;
868}
869
870#ifndef __ARCH_WANT_UNLOCKED_CTXSW
871static inline int task_running(struct rq *rq, struct task_struct *p)
872{
873 return task_current(rq, p);
874}
875
876static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
877{
878}
879
880static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
881{
882#ifdef CONFIG_DEBUG_SPINLOCK
883 /* this is a valid case when another task releases the spinlock */
884 rq->lock.owner = current;
885#endif
886 /*
887 * If we are tracking spinlock dependencies then we have to
888 * fix up the runqueue lock - which gets 'carried over' from
889 * prev into current:
890 */
891 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
892
893 spin_unlock_irq(&rq->lock);
894}
895
896#else /* __ARCH_WANT_UNLOCKED_CTXSW */
897static inline int task_running(struct rq *rq, struct task_struct *p)
898{
899#ifdef CONFIG_SMP
900 return p->oncpu;
901#else
902 return task_current(rq, p);
903#endif
904}
905
906static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
907{
908#ifdef CONFIG_SMP
909 /*
910 * We can optimise this out completely for !SMP, because the
911 * SMP rebalancing from interrupt is the only thing that cares
912 * here.
913 */
914 next->oncpu = 1;
915#endif
916#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
917 spin_unlock_irq(&rq->lock);
918#else
919 spin_unlock(&rq->lock);
920#endif
921}
922
923static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
924{
925#ifdef CONFIG_SMP
926 /*
927 * After ->oncpu is cleared, the task can be moved to a different CPU.
928 * We must ensure this doesn't happen until the switch is completely
929 * finished.
930 */
931 smp_wmb();
932 prev->oncpu = 0;
933#endif
934#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
935 local_irq_enable();
936#endif
937}
938#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
939
940/*
941 * __task_rq_lock - lock the runqueue a given task resides on.
942 * Must be called interrupts disabled.
943 */
944static inline struct rq *__task_rq_lock(struct task_struct *p)
945 __acquires(rq->lock)
946{
947 for (;;) {
948 struct rq *rq = task_rq(p);
949 spin_lock(&rq->lock);
950 if (likely(rq == task_rq(p)))
951 return rq;
952 spin_unlock(&rq->lock);
953 }
954}
955
956/*
957 * task_rq_lock - lock the runqueue a given task resides on and disable
958 * interrupts. Note the ordering: we can safely lookup the task_rq without
959 * explicitly disabling preemption.
960 */
961static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
962 __acquires(rq->lock)
963{
964 struct rq *rq;
965
966 for (;;) {
967 local_irq_save(*flags);
968 rq = task_rq(p);
969 spin_lock(&rq->lock);
970 if (likely(rq == task_rq(p)))
971 return rq;
972 spin_unlock_irqrestore(&rq->lock, *flags);
973 }
974}
975
976void task_rq_unlock_wait(struct task_struct *p)
977{
978 struct rq *rq = task_rq(p);
979
980 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
981 spin_unlock_wait(&rq->lock);
982}
983
984static void __task_rq_unlock(struct rq *rq)
985 __releases(rq->lock)
986{
987 spin_unlock(&rq->lock);
988}
989
990static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
991 __releases(rq->lock)
992{
993 spin_unlock_irqrestore(&rq->lock, *flags);
994}
995
996/*
997 * this_rq_lock - lock this runqueue and disable interrupts.
998 */
999static struct rq *this_rq_lock(void)
1000 __acquires(rq->lock)
1001{
1002 struct rq *rq;
1003
1004 local_irq_disable();
1005 rq = this_rq();
1006 spin_lock(&rq->lock);
1007
1008 return rq;
1009}
1010
1011#ifdef CONFIG_SCHED_HRTICK
1012/*
1013 * Use HR-timers to deliver accurate preemption points.
1014 *
1015 * Its all a bit involved since we cannot program an hrt while holding the
1016 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1017 * reschedule event.
1018 *
1019 * When we get rescheduled we reprogram the hrtick_timer outside of the
1020 * rq->lock.
1021 */
1022
1023/*
1024 * Use hrtick when:
1025 * - enabled by features
1026 * - hrtimer is actually high res
1027 */
1028static inline int hrtick_enabled(struct rq *rq)
1029{
1030 if (!sched_feat(HRTICK))
1031 return 0;
1032 if (!cpu_active(cpu_of(rq)))
1033 return 0;
1034 return hrtimer_is_hres_active(&rq->hrtick_timer);
1035}
1036
1037static void hrtick_clear(struct rq *rq)
1038{
1039 if (hrtimer_active(&rq->hrtick_timer))
1040 hrtimer_cancel(&rq->hrtick_timer);
1041}
1042
1043/*
1044 * High-resolution timer tick.
1045 * Runs from hardirq context with interrupts disabled.
1046 */
1047static enum hrtimer_restart hrtick(struct hrtimer *timer)
1048{
1049 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1050
1051 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1052
1053 spin_lock(&rq->lock);
1054 update_rq_clock(rq);
1055 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1056 spin_unlock(&rq->lock);
1057
1058 return HRTIMER_NORESTART;
1059}
1060
1061#ifdef CONFIG_SMP
1062/*
1063 * called from hardirq (IPI) context
1064 */
1065static void __hrtick_start(void *arg)
1066{
1067 struct rq *rq = arg;
1068
1069 spin_lock(&rq->lock);
1070 hrtimer_restart(&rq->hrtick_timer);
1071 rq->hrtick_csd_pending = 0;
1072 spin_unlock(&rq->lock);
1073}
1074
1075/*
1076 * Called to set the hrtick timer state.
1077 *
1078 * called with rq->lock held and irqs disabled
1079 */
1080static void hrtick_start(struct rq *rq, u64 delay)
1081{
1082 struct hrtimer *timer = &rq->hrtick_timer;
1083 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1084
1085 hrtimer_set_expires(timer, time);
1086
1087 if (rq == this_rq()) {
1088 hrtimer_restart(timer);
1089 } else if (!rq->hrtick_csd_pending) {
1090 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1091 rq->hrtick_csd_pending = 1;
1092 }
1093}
1094
1095static int
1096hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1097{
1098 int cpu = (int)(long)hcpu;
1099
1100 switch (action) {
1101 case CPU_UP_CANCELED:
1102 case CPU_UP_CANCELED_FROZEN:
1103 case CPU_DOWN_PREPARE:
1104 case CPU_DOWN_PREPARE_FROZEN:
1105 case CPU_DEAD:
1106 case CPU_DEAD_FROZEN:
1107 hrtick_clear(cpu_rq(cpu));
1108 return NOTIFY_OK;
1109 }
1110
1111 return NOTIFY_DONE;
1112}
1113
1114static __init void init_hrtick(void)
1115{
1116 hotcpu_notifier(hotplug_hrtick, 0);
1117}
1118#else
1119/*
1120 * Called to set the hrtick timer state.
1121 *
1122 * called with rq->lock held and irqs disabled
1123 */
1124static void hrtick_start(struct rq *rq, u64 delay)
1125{
1126 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1127}
1128
1129static inline void init_hrtick(void)
1130{
1131}
1132#endif /* CONFIG_SMP */
1133
1134static void init_rq_hrtick(struct rq *rq)
1135{
1136#ifdef CONFIG_SMP
1137 rq->hrtick_csd_pending = 0;
1138
1139 rq->hrtick_csd.flags = 0;
1140 rq->hrtick_csd.func = __hrtick_start;
1141 rq->hrtick_csd.info = rq;
1142#endif
1143
1144 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1145 rq->hrtick_timer.function = hrtick;
1146 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1147}
1148#else /* CONFIG_SCHED_HRTICK */
1149static inline void hrtick_clear(struct rq *rq)
1150{
1151}
1152
1153static inline void init_rq_hrtick(struct rq *rq)
1154{
1155}
1156
1157static inline void init_hrtick(void)
1158{
1159}
1160#endif /* CONFIG_SCHED_HRTICK */
1161
1162/*
1163 * resched_task - mark a task 'to be rescheduled now'.
1164 *
1165 * On UP this means the setting of the need_resched flag, on SMP it
1166 * might also involve a cross-CPU call to trigger the scheduler on
1167 * the target CPU.
1168 */
1169#ifdef CONFIG_SMP
1170
1171#ifndef tsk_is_polling
1172#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1173#endif
1174
1175static void resched_task(struct task_struct *p)
1176{
1177 int cpu;
1178
1179 assert_spin_locked(&task_rq(p)->lock);
1180
1181 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1182 return;
1183
1184 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1185
1186 cpu = task_cpu(p);
1187 if (cpu == smp_processor_id())
1188 return;
1189
1190 /* NEED_RESCHED must be visible before we test polling */
1191 smp_mb();
1192 if (!tsk_is_polling(p))
1193 smp_send_reschedule(cpu);
1194}
1195
1196static void resched_cpu(int cpu)
1197{
1198 struct rq *rq = cpu_rq(cpu);
1199 unsigned long flags;
1200
1201 if (!spin_trylock_irqsave(&rq->lock, flags))
1202 return;
1203 resched_task(cpu_curr(cpu));
1204 spin_unlock_irqrestore(&rq->lock, flags);
1205}
1206
1207#ifdef CONFIG_NO_HZ
1208/*
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1217 */
1218void wake_up_idle_cpu(int cpu)
1219{
1220 struct rq *rq = cpu_rq(cpu);
1221
1222 if (cpu == smp_processor_id())
1223 return;
1224
1225 /*
1226 * This is safe, as this function is called with the timer
1227 * wheel base lock of (cpu) held. When the CPU is on the way
1228 * to idle and has not yet set rq->curr to idle then it will
1229 * be serialized on the timer wheel base lock and take the new
1230 * timer into account automatically.
1231 */
1232 if (rq->curr != rq->idle)
1233 return;
1234
1235 /*
1236 * We can set TIF_RESCHED on the idle task of the other CPU
1237 * lockless. The worst case is that the other CPU runs the
1238 * idle task through an additional NOOP schedule()
1239 */
1240 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1241
1242 /* NEED_RESCHED must be visible before we test polling */
1243 smp_mb();
1244 if (!tsk_is_polling(rq->idle))
1245 smp_send_reschedule(cpu);
1246}
1247#endif /* CONFIG_NO_HZ */
1248
1249#else /* !CONFIG_SMP */
1250static void resched_task(struct task_struct *p)
1251{
1252 assert_spin_locked(&task_rq(p)->lock);
1253 set_tsk_need_resched(p);
1254}
1255#endif /* CONFIG_SMP */
1256
1257#if BITS_PER_LONG == 32
1258# define WMULT_CONST (~0UL)
1259#else
1260# define WMULT_CONST (1UL << 32)
1261#endif
1262
1263#define WMULT_SHIFT 32
1264
1265/*
1266 * Shift right and round:
1267 */
1268#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1269
1270/*
1271 * delta *= weight / lw
1272 */
1273static unsigned long
1274calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1275 struct load_weight *lw)
1276{
1277 u64 tmp;
1278
1279 if (!lw->inv_weight) {
1280 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1281 lw->inv_weight = 1;
1282 else
1283 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1284 / (lw->weight+1);
1285 }
1286
1287 tmp = (u64)delta_exec * weight;
1288 /*
1289 * Check whether we'd overflow the 64-bit multiplication:
1290 */
1291 if (unlikely(tmp > WMULT_CONST))
1292 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1293 WMULT_SHIFT/2);
1294 else
1295 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1296
1297 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1298}
1299
1300static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1301{
1302 lw->weight += inc;
1303 lw->inv_weight = 0;
1304}
1305
1306static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1307{
1308 lw->weight -= dec;
1309 lw->inv_weight = 0;
1310}
1311
1312/*
1313 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1314 * of tasks with abnormal "nice" values across CPUs the contribution that
1315 * each task makes to its run queue's load is weighted according to its
1316 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1317 * scaled version of the new time slice allocation that they receive on time
1318 * slice expiry etc.
1319 */
1320
1321#define WEIGHT_IDLEPRIO 2
1322#define WMULT_IDLEPRIO (1 << 31)
1323
1324/*
1325 * Nice levels are multiplicative, with a gentle 10% change for every
1326 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1327 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1328 * that remained on nice 0.
1329 *
1330 * The "10% effect" is relative and cumulative: from _any_ nice level,
1331 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1332 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1333 * If a task goes up by ~10% and another task goes down by ~10% then
1334 * the relative distance between them is ~25%.)
1335 */
1336static const int prio_to_weight[40] = {
1337 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1338 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1339 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1340 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1341 /* 0 */ 1024, 820, 655, 526, 423,
1342 /* 5 */ 335, 272, 215, 172, 137,
1343 /* 10 */ 110, 87, 70, 56, 45,
1344 /* 15 */ 36, 29, 23, 18, 15,
1345};
1346
1347/*
1348 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1349 *
1350 * In cases where the weight does not change often, we can use the
1351 * precalculated inverse to speed up arithmetics by turning divisions
1352 * into multiplications:
1353 */
1354static const u32 prio_to_wmult[40] = {
1355 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1356 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1357 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1358 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1359 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1360 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1361 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1362 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1363};
1364
1365static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1366
1367/*
1368 * runqueue iterator, to support SMP load-balancing between different
1369 * scheduling classes, without having to expose their internal data
1370 * structures to the load-balancing proper:
1371 */
1372struct rq_iterator {
1373 void *arg;
1374 struct task_struct *(*start)(void *);
1375 struct task_struct *(*next)(void *);
1376};
1377
1378#ifdef CONFIG_SMP
1379static unsigned long
1380balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1381 unsigned long max_load_move, struct sched_domain *sd,
1382 enum cpu_idle_type idle, int *all_pinned,
1383 int *this_best_prio, struct rq_iterator *iterator);
1384
1385static int
1386iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1387 struct sched_domain *sd, enum cpu_idle_type idle,
1388 struct rq_iterator *iterator);
1389#endif
1390
1391#ifdef CONFIG_CGROUP_CPUACCT
1392static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1393#else
1394static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1395#endif
1396
1397static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1398{
1399 update_load_add(&rq->load, load);
1400}
1401
1402static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1403{
1404 update_load_sub(&rq->load, load);
1405}
1406
1407#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1408typedef int (*tg_visitor)(struct task_group *, void *);
1409
1410/*
1411 * Iterate the full tree, calling @down when first entering a node and @up when
1412 * leaving it for the final time.
1413 */
1414static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1415{
1416 struct task_group *parent, *child;
1417 int ret;
1418
1419 rcu_read_lock();
1420 parent = &root_task_group;
1421down:
1422 ret = (*down)(parent, data);
1423 if (ret)
1424 goto out_unlock;
1425 list_for_each_entry_rcu(child, &parent->children, siblings) {
1426 parent = child;
1427 goto down;
1428
1429up:
1430 continue;
1431 }
1432 ret = (*up)(parent, data);
1433 if (ret)
1434 goto out_unlock;
1435
1436 child = parent;
1437 parent = parent->parent;
1438 if (parent)
1439 goto up;
1440out_unlock:
1441 rcu_read_unlock();
1442
1443 return ret;
1444}
1445
1446static int tg_nop(struct task_group *tg, void *data)
1447{
1448 return 0;
1449}
1450#endif
1451
1452#ifdef CONFIG_SMP
1453static unsigned long source_load(int cpu, int type);
1454static unsigned long target_load(int cpu, int type);
1455static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1456
1457static unsigned long cpu_avg_load_per_task(int cpu)
1458{
1459 struct rq *rq = cpu_rq(cpu);
1460 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1461
1462 if (nr_running)
1463 rq->avg_load_per_task = rq->load.weight / nr_running;
1464 else
1465 rq->avg_load_per_task = 0;
1466
1467 return rq->avg_load_per_task;
1468}
1469
1470#ifdef CONFIG_FAIR_GROUP_SCHED
1471
1472static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1473
1474/*
1475 * Calculate and set the cpu's group shares.
1476 */
1477static void
1478update_group_shares_cpu(struct task_group *tg, int cpu,
1479 unsigned long sd_shares, unsigned long sd_rq_weight)
1480{
1481 unsigned long shares;
1482 unsigned long rq_weight;
1483
1484 if (!tg->se[cpu])
1485 return;
1486
1487 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1488
1489 /*
1490 * \Sum shares * rq_weight
1491 * shares = -----------------------
1492 * \Sum rq_weight
1493 *
1494 */
1495 shares = (sd_shares * rq_weight) / sd_rq_weight;
1496 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1497
1498 if (abs(shares - tg->se[cpu]->load.weight) >
1499 sysctl_sched_shares_thresh) {
1500 struct rq *rq = cpu_rq(cpu);
1501 unsigned long flags;
1502
1503 spin_lock_irqsave(&rq->lock, flags);
1504 tg->cfs_rq[cpu]->shares = shares;
1505
1506 __set_se_shares(tg->se[cpu], shares);
1507 spin_unlock_irqrestore(&rq->lock, flags);
1508 }
1509}
1510
1511/*
1512 * Re-compute the task group their per cpu shares over the given domain.
1513 * This needs to be done in a bottom-up fashion because the rq weight of a
1514 * parent group depends on the shares of its child groups.
1515 */
1516static int tg_shares_up(struct task_group *tg, void *data)
1517{
1518 unsigned long weight, rq_weight = 0;
1519 unsigned long shares = 0;
1520 struct sched_domain *sd = data;
1521 int i;
1522
1523 for_each_cpu(i, sched_domain_span(sd)) {
1524 /*
1525 * If there are currently no tasks on the cpu pretend there
1526 * is one of average load so that when a new task gets to
1527 * run here it will not get delayed by group starvation.
1528 */
1529 weight = tg->cfs_rq[i]->load.weight;
1530 if (!weight)
1531 weight = NICE_0_LOAD;
1532
1533 tg->cfs_rq[i]->rq_weight = weight;
1534 rq_weight += weight;
1535 shares += tg->cfs_rq[i]->shares;
1536 }
1537
1538 if ((!shares && rq_weight) || shares > tg->shares)
1539 shares = tg->shares;
1540
1541 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1542 shares = tg->shares;
1543
1544 for_each_cpu(i, sched_domain_span(sd))
1545 update_group_shares_cpu(tg, i, shares, rq_weight);
1546
1547 return 0;
1548}
1549
1550/*
1551 * Compute the cpu's hierarchical load factor for each task group.
1552 * This needs to be done in a top-down fashion because the load of a child
1553 * group is a fraction of its parents load.
1554 */
1555static int tg_load_down(struct task_group *tg, void *data)
1556{
1557 unsigned long load;
1558 long cpu = (long)data;
1559
1560 if (!tg->parent) {
1561 load = cpu_rq(cpu)->load.weight;
1562 } else {
1563 load = tg->parent->cfs_rq[cpu]->h_load;
1564 load *= tg->cfs_rq[cpu]->shares;
1565 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1566 }
1567
1568 tg->cfs_rq[cpu]->h_load = load;
1569
1570 return 0;
1571}
1572
1573static void update_shares(struct sched_domain *sd)
1574{
1575 u64 now = cpu_clock(raw_smp_processor_id());
1576 s64 elapsed = now - sd->last_update;
1577
1578 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1579 sd->last_update = now;
1580 walk_tg_tree(tg_nop, tg_shares_up, sd);
1581 }
1582}
1583
1584static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1585{
1586 spin_unlock(&rq->lock);
1587 update_shares(sd);
1588 spin_lock(&rq->lock);
1589}
1590
1591static void update_h_load(long cpu)
1592{
1593 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1594}
1595
1596#else
1597
1598static inline void update_shares(struct sched_domain *sd)
1599{
1600}
1601
1602static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1603{
1604}
1605
1606#endif
1607
1608/*
1609 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1610 */
1611static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1612 __releases(this_rq->lock)
1613 __acquires(busiest->lock)
1614 __acquires(this_rq->lock)
1615{
1616 int ret = 0;
1617
1618 if (unlikely(!irqs_disabled())) {
1619 /* printk() doesn't work good under rq->lock */
1620 spin_unlock(&this_rq->lock);
1621 BUG_ON(1);
1622 }
1623 if (unlikely(!spin_trylock(&busiest->lock))) {
1624 if (busiest < this_rq) {
1625 spin_unlock(&this_rq->lock);
1626 spin_lock(&busiest->lock);
1627 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1628 ret = 1;
1629 } else
1630 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1631 }
1632 return ret;
1633}
1634
1635static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1636 __releases(busiest->lock)
1637{
1638 spin_unlock(&busiest->lock);
1639 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1640}
1641#endif
1642
1643#ifdef CONFIG_FAIR_GROUP_SCHED
1644static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1645{
1646#ifdef CONFIG_SMP
1647 cfs_rq->shares = shares;
1648#endif
1649}
1650#endif
1651
1652#include "sched_stats.h"
1653#include "sched_idletask.c"
1654#include "sched_fair.c"
1655#include "sched_rt.c"
1656#ifdef CONFIG_SCHED_DEBUG
1657# include "sched_debug.c"
1658#endif
1659
1660#define sched_class_highest (&rt_sched_class)
1661#define for_each_class(class) \
1662 for (class = sched_class_highest; class; class = class->next)
1663
1664static void inc_nr_running(struct rq *rq)
1665{
1666 rq->nr_running++;
1667}
1668
1669static void dec_nr_running(struct rq *rq)
1670{
1671 rq->nr_running--;
1672}
1673
1674static void set_load_weight(struct task_struct *p)
1675{
1676 if (task_has_rt_policy(p)) {
1677 p->se.load.weight = prio_to_weight[0] * 2;
1678 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1679 return;
1680 }
1681
1682 /*
1683 * SCHED_IDLE tasks get minimal weight:
1684 */
1685 if (p->policy == SCHED_IDLE) {
1686 p->se.load.weight = WEIGHT_IDLEPRIO;
1687 p->se.load.inv_weight = WMULT_IDLEPRIO;
1688 return;
1689 }
1690
1691 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1692 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1693}
1694
1695static void update_avg(u64 *avg, u64 sample)
1696{
1697 s64 diff = sample - *avg;
1698 *avg += diff >> 3;
1699}
1700
1701static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1702{
1703 sched_info_queued(p);
1704 p->sched_class->enqueue_task(rq, p, wakeup);
1705 p->se.on_rq = 1;
1706}
1707
1708static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1709{
1710 if (sleep && p->se.last_wakeup) {
1711 update_avg(&p->se.avg_overlap,
1712 p->se.sum_exec_runtime - p->se.last_wakeup);
1713 p->se.last_wakeup = 0;
1714 }
1715
1716 sched_info_dequeued(p);
1717 p->sched_class->dequeue_task(rq, p, sleep);
1718 p->se.on_rq = 0;
1719}
1720
1721/*
1722 * __normal_prio - return the priority that is based on the static prio
1723 */
1724static inline int __normal_prio(struct task_struct *p)
1725{
1726 return p->static_prio;
1727}
1728
1729/*
1730 * Calculate the expected normal priority: i.e. priority
1731 * without taking RT-inheritance into account. Might be
1732 * boosted by interactivity modifiers. Changes upon fork,
1733 * setprio syscalls, and whenever the interactivity
1734 * estimator recalculates.
1735 */
1736static inline int normal_prio(struct task_struct *p)
1737{
1738 int prio;
1739
1740 if (task_has_rt_policy(p))
1741 prio = MAX_RT_PRIO-1 - p->rt_priority;
1742 else
1743 prio = __normal_prio(p);
1744 return prio;
1745}
1746
1747/*
1748 * Calculate the current priority, i.e. the priority
1749 * taken into account by the scheduler. This value might
1750 * be boosted by RT tasks, or might be boosted by
1751 * interactivity modifiers. Will be RT if the task got
1752 * RT-boosted. If not then it returns p->normal_prio.
1753 */
1754static int effective_prio(struct task_struct *p)
1755{
1756 p->normal_prio = normal_prio(p);
1757 /*
1758 * If we are RT tasks or we were boosted to RT priority,
1759 * keep the priority unchanged. Otherwise, update priority
1760 * to the normal priority:
1761 */
1762 if (!rt_prio(p->prio))
1763 return p->normal_prio;
1764 return p->prio;
1765}
1766
1767/*
1768 * activate_task - move a task to the runqueue.
1769 */
1770static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1771{
1772 if (task_contributes_to_load(p))
1773 rq->nr_uninterruptible--;
1774
1775 enqueue_task(rq, p, wakeup);
1776 inc_nr_running(rq);
1777}
1778
1779/*
1780 * deactivate_task - remove a task from the runqueue.
1781 */
1782static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1783{
1784 if (task_contributes_to_load(p))
1785 rq->nr_uninterruptible++;
1786
1787 dequeue_task(rq, p, sleep);
1788 dec_nr_running(rq);
1789}
1790
1791/**
1792 * task_curr - is this task currently executing on a CPU?
1793 * @p: the task in question.
1794 */
1795inline int task_curr(const struct task_struct *p)
1796{
1797 return cpu_curr(task_cpu(p)) == p;
1798}
1799
1800static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1801{
1802 set_task_rq(p, cpu);
1803#ifdef CONFIG_SMP
1804 /*
1805 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1806 * successfuly executed on another CPU. We must ensure that updates of
1807 * per-task data have been completed by this moment.
1808 */
1809 smp_wmb();
1810 task_thread_info(p)->cpu = cpu;
1811#endif
1812}
1813
1814static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1815 const struct sched_class *prev_class,
1816 int oldprio, int running)
1817{
1818 if (prev_class != p->sched_class) {
1819 if (prev_class->switched_from)
1820 prev_class->switched_from(rq, p, running);
1821 p->sched_class->switched_to(rq, p, running);
1822 } else
1823 p->sched_class->prio_changed(rq, p, oldprio, running);
1824}
1825
1826#ifdef CONFIG_SMP
1827
1828/* Used instead of source_load when we know the type == 0 */
1829static unsigned long weighted_cpuload(const int cpu)
1830{
1831 return cpu_rq(cpu)->load.weight;
1832}
1833
1834/*
1835 * Is this task likely cache-hot:
1836 */
1837static int
1838task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1839{
1840 s64 delta;
1841
1842 /*
1843 * Buddy candidates are cache hot:
1844 */
1845 if (sched_feat(CACHE_HOT_BUDDY) &&
1846 (&p->se == cfs_rq_of(&p->se)->next ||
1847 &p->se == cfs_rq_of(&p->se)->last))
1848 return 1;
1849
1850 if (p->sched_class != &fair_sched_class)
1851 return 0;
1852
1853 if (sysctl_sched_migration_cost == -1)
1854 return 1;
1855 if (sysctl_sched_migration_cost == 0)
1856 return 0;
1857
1858 delta = now - p->se.exec_start;
1859
1860 return delta < (s64)sysctl_sched_migration_cost;
1861}
1862
1863
1864void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1865{
1866 int old_cpu = task_cpu(p);
1867 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1868 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1869 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1870 u64 clock_offset;
1871
1872 clock_offset = old_rq->clock - new_rq->clock;
1873
1874#ifdef CONFIG_SCHEDSTATS
1875 if (p->se.wait_start)
1876 p->se.wait_start -= clock_offset;
1877 if (p->se.sleep_start)
1878 p->se.sleep_start -= clock_offset;
1879 if (p->se.block_start)
1880 p->se.block_start -= clock_offset;
1881 if (old_cpu != new_cpu) {
1882 schedstat_inc(p, se.nr_migrations);
1883 if (task_hot(p, old_rq->clock, NULL))
1884 schedstat_inc(p, se.nr_forced2_migrations);
1885 }
1886#endif
1887 p->se.vruntime -= old_cfsrq->min_vruntime -
1888 new_cfsrq->min_vruntime;
1889
1890 __set_task_cpu(p, new_cpu);
1891}
1892
1893struct migration_req {
1894 struct list_head list;
1895
1896 struct task_struct *task;
1897 int dest_cpu;
1898
1899 struct completion done;
1900};
1901
1902/*
1903 * The task's runqueue lock must be held.
1904 * Returns true if you have to wait for migration thread.
1905 */
1906static int
1907migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1908{
1909 struct rq *rq = task_rq(p);
1910
1911 /*
1912 * If the task is not on a runqueue (and not running), then
1913 * it is sufficient to simply update the task's cpu field.
1914 */
1915 if (!p->se.on_rq && !task_running(rq, p)) {
1916 set_task_cpu(p, dest_cpu);
1917 return 0;
1918 }
1919
1920 init_completion(&req->done);
1921 req->task = p;
1922 req->dest_cpu = dest_cpu;
1923 list_add(&req->list, &rq->migration_queue);
1924
1925 return 1;
1926}
1927
1928/*
1929 * wait_task_inactive - wait for a thread to unschedule.
1930 *
1931 * If @match_state is nonzero, it's the @p->state value just checked and
1932 * not expected to change. If it changes, i.e. @p might have woken up,
1933 * then return zero. When we succeed in waiting for @p to be off its CPU,
1934 * we return a positive number (its total switch count). If a second call
1935 * a short while later returns the same number, the caller can be sure that
1936 * @p has remained unscheduled the whole time.
1937 *
1938 * The caller must ensure that the task *will* unschedule sometime soon,
1939 * else this function might spin for a *long* time. This function can't
1940 * be called with interrupts off, or it may introduce deadlock with
1941 * smp_call_function() if an IPI is sent by the same process we are
1942 * waiting to become inactive.
1943 */
1944unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1945{
1946 unsigned long flags;
1947 int running, on_rq;
1948 unsigned long ncsw;
1949 struct rq *rq;
1950
1951 for (;;) {
1952 /*
1953 * We do the initial early heuristics without holding
1954 * any task-queue locks at all. We'll only try to get
1955 * the runqueue lock when things look like they will
1956 * work out!
1957 */
1958 rq = task_rq(p);
1959
1960 /*
1961 * If the task is actively running on another CPU
1962 * still, just relax and busy-wait without holding
1963 * any locks.
1964 *
1965 * NOTE! Since we don't hold any locks, it's not
1966 * even sure that "rq" stays as the right runqueue!
1967 * But we don't care, since "task_running()" will
1968 * return false if the runqueue has changed and p
1969 * is actually now running somewhere else!
1970 */
1971 while (task_running(rq, p)) {
1972 if (match_state && unlikely(p->state != match_state))
1973 return 0;
1974 cpu_relax();
1975 }
1976
1977 /*
1978 * Ok, time to look more closely! We need the rq
1979 * lock now, to be *sure*. If we're wrong, we'll
1980 * just go back and repeat.
1981 */
1982 rq = task_rq_lock(p, &flags);
1983 trace_sched_wait_task(rq, p);
1984 running = task_running(rq, p);
1985 on_rq = p->se.on_rq;
1986 ncsw = 0;
1987 if (!match_state || p->state == match_state)
1988 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1989 task_rq_unlock(rq, &flags);
1990
1991 /*
1992 * If it changed from the expected state, bail out now.
1993 */
1994 if (unlikely(!ncsw))
1995 break;
1996
1997 /*
1998 * Was it really running after all now that we
1999 * checked with the proper locks actually held?
2000 *
2001 * Oops. Go back and try again..
2002 */
2003 if (unlikely(running)) {
2004 cpu_relax();
2005 continue;
2006 }
2007
2008 /*
2009 * It's not enough that it's not actively running,
2010 * it must be off the runqueue _entirely_, and not
2011 * preempted!
2012 *
2013 * So if it wa still runnable (but just not actively
2014 * running right now), it's preempted, and we should
2015 * yield - it could be a while.
2016 */
2017 if (unlikely(on_rq)) {
2018 schedule_timeout_uninterruptible(1);
2019 continue;
2020 }
2021
2022 /*
2023 * Ahh, all good. It wasn't running, and it wasn't
2024 * runnable, which means that it will never become
2025 * running in the future either. We're all done!
2026 */
2027 break;
2028 }
2029
2030 return ncsw;
2031}
2032
2033/***
2034 * kick_process - kick a running thread to enter/exit the kernel
2035 * @p: the to-be-kicked thread
2036 *
2037 * Cause a process which is running on another CPU to enter
2038 * kernel-mode, without any delay. (to get signals handled.)
2039 *
2040 * NOTE: this function doesnt have to take the runqueue lock,
2041 * because all it wants to ensure is that the remote task enters
2042 * the kernel. If the IPI races and the task has been migrated
2043 * to another CPU then no harm is done and the purpose has been
2044 * achieved as well.
2045 */
2046void kick_process(struct task_struct *p)
2047{
2048 int cpu;
2049
2050 preempt_disable();
2051 cpu = task_cpu(p);
2052 if ((cpu != smp_processor_id()) && task_curr(p))
2053 smp_send_reschedule(cpu);
2054 preempt_enable();
2055}
2056
2057/*
2058 * Return a low guess at the load of a migration-source cpu weighted
2059 * according to the scheduling class and "nice" value.
2060 *
2061 * We want to under-estimate the load of migration sources, to
2062 * balance conservatively.
2063 */
2064static unsigned long source_load(int cpu, int type)
2065{
2066 struct rq *rq = cpu_rq(cpu);
2067 unsigned long total = weighted_cpuload(cpu);
2068
2069 if (type == 0 || !sched_feat(LB_BIAS))
2070 return total;
2071
2072 return min(rq->cpu_load[type-1], total);
2073}
2074
2075/*
2076 * Return a high guess at the load of a migration-target cpu weighted
2077 * according to the scheduling class and "nice" value.
2078 */
2079static unsigned long target_load(int cpu, int type)
2080{
2081 struct rq *rq = cpu_rq(cpu);
2082 unsigned long total = weighted_cpuload(cpu);
2083
2084 if (type == 0 || !sched_feat(LB_BIAS))
2085 return total;
2086
2087 return max(rq->cpu_load[type-1], total);
2088}
2089
2090/*
2091 * find_idlest_group finds and returns the least busy CPU group within the
2092 * domain.
2093 */
2094static struct sched_group *
2095find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2096{
2097 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2098 unsigned long min_load = ULONG_MAX, this_load = 0;
2099 int load_idx = sd->forkexec_idx;
2100 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2101
2102 do {
2103 unsigned long load, avg_load;
2104 int local_group;
2105 int i;
2106
2107 /* Skip over this group if it has no CPUs allowed */
2108 if (!cpumask_intersects(sched_group_cpus(group),
2109 &p->cpus_allowed))
2110 continue;
2111
2112 local_group = cpumask_test_cpu(this_cpu,
2113 sched_group_cpus(group));
2114
2115 /* Tally up the load of all CPUs in the group */
2116 avg_load = 0;
2117
2118 for_each_cpu(i, sched_group_cpus(group)) {
2119 /* Bias balancing toward cpus of our domain */
2120 if (local_group)
2121 load = source_load(i, load_idx);
2122 else
2123 load = target_load(i, load_idx);
2124
2125 avg_load += load;
2126 }
2127
2128 /* Adjust by relative CPU power of the group */
2129 avg_load = sg_div_cpu_power(group,
2130 avg_load * SCHED_LOAD_SCALE);
2131
2132 if (local_group) {
2133 this_load = avg_load;
2134 this = group;
2135 } else if (avg_load < min_load) {
2136 min_load = avg_load;
2137 idlest = group;
2138 }
2139 } while (group = group->next, group != sd->groups);
2140
2141 if (!idlest || 100*this_load < imbalance*min_load)
2142 return NULL;
2143 return idlest;
2144}
2145
2146/*
2147 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2148 */
2149static int
2150find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2151{
2152 unsigned long load, min_load = ULONG_MAX;
2153 int idlest = -1;
2154 int i;
2155
2156 /* Traverse only the allowed CPUs */
2157 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2158 load = weighted_cpuload(i);
2159
2160 if (load < min_load || (load == min_load && i == this_cpu)) {
2161 min_load = load;
2162 idlest = i;
2163 }
2164 }
2165
2166 return idlest;
2167}
2168
2169/*
2170 * sched_balance_self: balance the current task (running on cpu) in domains
2171 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2172 * SD_BALANCE_EXEC.
2173 *
2174 * Balance, ie. select the least loaded group.
2175 *
2176 * Returns the target CPU number, or the same CPU if no balancing is needed.
2177 *
2178 * preempt must be disabled.
2179 */
2180static int sched_balance_self(int cpu, int flag)
2181{
2182 struct task_struct *t = current;
2183 struct sched_domain *tmp, *sd = NULL;
2184
2185 for_each_domain(cpu, tmp) {
2186 /*
2187 * If power savings logic is enabled for a domain, stop there.
2188 */
2189 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2190 break;
2191 if (tmp->flags & flag)
2192 sd = tmp;
2193 }
2194
2195 if (sd)
2196 update_shares(sd);
2197
2198 while (sd) {
2199 struct sched_group *group;
2200 int new_cpu, weight;
2201
2202 if (!(sd->flags & flag)) {
2203 sd = sd->child;
2204 continue;
2205 }
2206
2207 group = find_idlest_group(sd, t, cpu);
2208 if (!group) {
2209 sd = sd->child;
2210 continue;
2211 }
2212
2213 new_cpu = find_idlest_cpu(group, t, cpu);
2214 if (new_cpu == -1 || new_cpu == cpu) {
2215 /* Now try balancing at a lower domain level of cpu */
2216 sd = sd->child;
2217 continue;
2218 }
2219
2220 /* Now try balancing at a lower domain level of new_cpu */
2221 cpu = new_cpu;
2222 weight = cpumask_weight(sched_domain_span(sd));
2223 sd = NULL;
2224 for_each_domain(cpu, tmp) {
2225 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2226 break;
2227 if (tmp->flags & flag)
2228 sd = tmp;
2229 }
2230 /* while loop will break here if sd == NULL */
2231 }
2232
2233 return cpu;
2234}
2235
2236#endif /* CONFIG_SMP */
2237
2238/***
2239 * try_to_wake_up - wake up a thread
2240 * @p: the to-be-woken-up thread
2241 * @state: the mask of task states that can be woken
2242 * @sync: do a synchronous wakeup?
2243 *
2244 * Put it on the run-queue if it's not already there. The "current"
2245 * thread is always on the run-queue (except when the actual
2246 * re-schedule is in progress), and as such you're allowed to do
2247 * the simpler "current->state = TASK_RUNNING" to mark yourself
2248 * runnable without the overhead of this.
2249 *
2250 * returns failure only if the task is already active.
2251 */
2252static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2253{
2254 int cpu, orig_cpu, this_cpu, success = 0;
2255 unsigned long flags;
2256 long old_state;
2257 struct rq *rq;
2258
2259 if (!sched_feat(SYNC_WAKEUPS))
2260 sync = 0;
2261
2262#ifdef CONFIG_SMP
2263 if (sched_feat(LB_WAKEUP_UPDATE)) {
2264 struct sched_domain *sd;
2265
2266 this_cpu = raw_smp_processor_id();
2267 cpu = task_cpu(p);
2268
2269 for_each_domain(this_cpu, sd) {
2270 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2271 update_shares(sd);
2272 break;
2273 }
2274 }
2275 }
2276#endif
2277
2278 smp_wmb();
2279 rq = task_rq_lock(p, &flags);
2280 old_state = p->state;
2281 if (!(old_state & state))
2282 goto out;
2283
2284 if (p->se.on_rq)
2285 goto out_running;
2286
2287 cpu = task_cpu(p);
2288 orig_cpu = cpu;
2289 this_cpu = smp_processor_id();
2290
2291#ifdef CONFIG_SMP
2292 if (unlikely(task_running(rq, p)))
2293 goto out_activate;
2294
2295 cpu = p->sched_class->select_task_rq(p, sync);
2296 if (cpu != orig_cpu) {
2297 set_task_cpu(p, cpu);
2298 task_rq_unlock(rq, &flags);
2299 /* might preempt at this point */
2300 rq = task_rq_lock(p, &flags);
2301 old_state = p->state;
2302 if (!(old_state & state))
2303 goto out;
2304 if (p->se.on_rq)
2305 goto out_running;
2306
2307 this_cpu = smp_processor_id();
2308 cpu = task_cpu(p);
2309 }
2310
2311#ifdef CONFIG_SCHEDSTATS
2312 schedstat_inc(rq, ttwu_count);
2313 if (cpu == this_cpu)
2314 schedstat_inc(rq, ttwu_local);
2315 else {
2316 struct sched_domain *sd;
2317 for_each_domain(this_cpu, sd) {
2318 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2319 schedstat_inc(sd, ttwu_wake_remote);
2320 break;
2321 }
2322 }
2323 }
2324#endif /* CONFIG_SCHEDSTATS */
2325
2326out_activate:
2327#endif /* CONFIG_SMP */
2328 schedstat_inc(p, se.nr_wakeups);
2329 if (sync)
2330 schedstat_inc(p, se.nr_wakeups_sync);
2331 if (orig_cpu != cpu)
2332 schedstat_inc(p, se.nr_wakeups_migrate);
2333 if (cpu == this_cpu)
2334 schedstat_inc(p, se.nr_wakeups_local);
2335 else
2336 schedstat_inc(p, se.nr_wakeups_remote);
2337 update_rq_clock(rq);
2338 activate_task(rq, p, 1);
2339 success = 1;
2340
2341out_running:
2342 trace_sched_wakeup(rq, p);
2343 check_preempt_curr(rq, p, sync);
2344
2345 p->state = TASK_RUNNING;
2346#ifdef CONFIG_SMP
2347 if (p->sched_class->task_wake_up)
2348 p->sched_class->task_wake_up(rq, p);
2349#endif
2350out:
2351 current->se.last_wakeup = current->se.sum_exec_runtime;
2352
2353 task_rq_unlock(rq, &flags);
2354
2355 return success;
2356}
2357
2358int wake_up_process(struct task_struct *p)
2359{
2360 return try_to_wake_up(p, TASK_ALL, 0);
2361}
2362EXPORT_SYMBOL(wake_up_process);
2363
2364int wake_up_state(struct task_struct *p, unsigned int state)
2365{
2366 return try_to_wake_up(p, state, 0);
2367}
2368
2369/*
2370 * Perform scheduler related setup for a newly forked process p.
2371 * p is forked by current.
2372 *
2373 * __sched_fork() is basic setup used by init_idle() too:
2374 */
2375static void __sched_fork(struct task_struct *p)
2376{
2377 p->se.exec_start = 0;
2378 p->se.sum_exec_runtime = 0;
2379 p->se.prev_sum_exec_runtime = 0;
2380 p->se.last_wakeup = 0;
2381 p->se.avg_overlap = 0;
2382
2383#ifdef CONFIG_SCHEDSTATS
2384 p->se.wait_start = 0;
2385 p->se.sum_sleep_runtime = 0;
2386 p->se.sleep_start = 0;
2387 p->se.block_start = 0;
2388 p->se.sleep_max = 0;
2389 p->se.block_max = 0;
2390 p->se.exec_max = 0;
2391 p->se.slice_max = 0;
2392 p->se.wait_max = 0;
2393#endif
2394
2395 INIT_LIST_HEAD(&p->rt.run_list);
2396 p->se.on_rq = 0;
2397 INIT_LIST_HEAD(&p->se.group_node);
2398
2399#ifdef CONFIG_PREEMPT_NOTIFIERS
2400 INIT_HLIST_HEAD(&p->preempt_notifiers);
2401#endif
2402
2403 /*
2404 * We mark the process as running here, but have not actually
2405 * inserted it onto the runqueue yet. This guarantees that
2406 * nobody will actually run it, and a signal or other external
2407 * event cannot wake it up and insert it on the runqueue either.
2408 */
2409 p->state = TASK_RUNNING;
2410}
2411
2412/*
2413 * fork()/clone()-time setup:
2414 */
2415void sched_fork(struct task_struct *p, int clone_flags)
2416{
2417 int cpu = get_cpu();
2418
2419 __sched_fork(p);
2420
2421#ifdef CONFIG_SMP
2422 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2423#endif
2424 set_task_cpu(p, cpu);
2425
2426 /*
2427 * Make sure we do not leak PI boosting priority to the child:
2428 */
2429 p->prio = current->normal_prio;
2430 if (!rt_prio(p->prio))
2431 p->sched_class = &fair_sched_class;
2432
2433#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2434 if (likely(sched_info_on()))
2435 memset(&p->sched_info, 0, sizeof(p->sched_info));
2436#endif
2437#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2438 p->oncpu = 0;
2439#endif
2440#ifdef CONFIG_PREEMPT
2441 /* Want to start with kernel preemption disabled. */
2442 task_thread_info(p)->preempt_count = 1;
2443#endif
2444 put_cpu();
2445}
2446
2447/*
2448 * wake_up_new_task - wake up a newly created task for the first time.
2449 *
2450 * This function will do some initial scheduler statistics housekeeping
2451 * that must be done for every newly created context, then puts the task
2452 * on the runqueue and wakes it.
2453 */
2454void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2455{
2456 unsigned long flags;
2457 struct rq *rq;
2458
2459 rq = task_rq_lock(p, &flags);
2460 BUG_ON(p->state != TASK_RUNNING);
2461 update_rq_clock(rq);
2462
2463 p->prio = effective_prio(p);
2464
2465 if (!p->sched_class->task_new || !current->se.on_rq) {
2466 activate_task(rq, p, 0);
2467 } else {
2468 /*
2469 * Let the scheduling class do new task startup
2470 * management (if any):
2471 */
2472 p->sched_class->task_new(rq, p);
2473 inc_nr_running(rq);
2474 }
2475 trace_sched_wakeup_new(rq, p);
2476 check_preempt_curr(rq, p, 0);
2477#ifdef CONFIG_SMP
2478 if (p->sched_class->task_wake_up)
2479 p->sched_class->task_wake_up(rq, p);
2480#endif
2481 task_rq_unlock(rq, &flags);
2482}
2483
2484#ifdef CONFIG_PREEMPT_NOTIFIERS
2485
2486/**
2487 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2488 * @notifier: notifier struct to register
2489 */
2490void preempt_notifier_register(struct preempt_notifier *notifier)
2491{
2492 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2493}
2494EXPORT_SYMBOL_GPL(preempt_notifier_register);
2495
2496/**
2497 * preempt_notifier_unregister - no longer interested in preemption notifications
2498 * @notifier: notifier struct to unregister
2499 *
2500 * This is safe to call from within a preemption notifier.
2501 */
2502void preempt_notifier_unregister(struct preempt_notifier *notifier)
2503{
2504 hlist_del(&notifier->link);
2505}
2506EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2507
2508static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2509{
2510 struct preempt_notifier *notifier;
2511 struct hlist_node *node;
2512
2513 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2514 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2515}
2516
2517static void
2518fire_sched_out_preempt_notifiers(struct task_struct *curr,
2519 struct task_struct *next)
2520{
2521 struct preempt_notifier *notifier;
2522 struct hlist_node *node;
2523
2524 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2525 notifier->ops->sched_out(notifier, next);
2526}
2527
2528#else /* !CONFIG_PREEMPT_NOTIFIERS */
2529
2530static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2531{
2532}
2533
2534static void
2535fire_sched_out_preempt_notifiers(struct task_struct *curr,
2536 struct task_struct *next)
2537{
2538}
2539
2540#endif /* CONFIG_PREEMPT_NOTIFIERS */
2541
2542/**
2543 * prepare_task_switch - prepare to switch tasks
2544 * @rq: the runqueue preparing to switch
2545 * @prev: the current task that is being switched out
2546 * @next: the task we are going to switch to.
2547 *
2548 * This is called with the rq lock held and interrupts off. It must
2549 * be paired with a subsequent finish_task_switch after the context
2550 * switch.
2551 *
2552 * prepare_task_switch sets up locking and calls architecture specific
2553 * hooks.
2554 */
2555static inline void
2556prepare_task_switch(struct rq *rq, struct task_struct *prev,
2557 struct task_struct *next)
2558{
2559 fire_sched_out_preempt_notifiers(prev, next);
2560 prepare_lock_switch(rq, next);
2561 prepare_arch_switch(next);
2562}
2563
2564/**
2565 * finish_task_switch - clean up after a task-switch
2566 * @rq: runqueue associated with task-switch
2567 * @prev: the thread we just switched away from.
2568 *
2569 * finish_task_switch must be called after the context switch, paired
2570 * with a prepare_task_switch call before the context switch.
2571 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2572 * and do any other architecture-specific cleanup actions.
2573 *
2574 * Note that we may have delayed dropping an mm in context_switch(). If
2575 * so, we finish that here outside of the runqueue lock. (Doing it
2576 * with the lock held can cause deadlocks; see schedule() for
2577 * details.)
2578 */
2579static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2580 __releases(rq->lock)
2581{
2582 struct mm_struct *mm = rq->prev_mm;
2583 long prev_state;
2584
2585 rq->prev_mm = NULL;
2586
2587 /*
2588 * A task struct has one reference for the use as "current".
2589 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2590 * schedule one last time. The schedule call will never return, and
2591 * the scheduled task must drop that reference.
2592 * The test for TASK_DEAD must occur while the runqueue locks are
2593 * still held, otherwise prev could be scheduled on another cpu, die
2594 * there before we look at prev->state, and then the reference would
2595 * be dropped twice.
2596 * Manfred Spraul <[email protected]>
2597 */
2598 prev_state = prev->state;
2599 finish_arch_switch(prev);
2600 finish_lock_switch(rq, prev);
2601#ifdef CONFIG_SMP
2602 if (current->sched_class->post_schedule)
2603 current->sched_class->post_schedule(rq);
2604#endif
2605
2606 fire_sched_in_preempt_notifiers(current);
2607 if (mm)
2608 mmdrop(mm);
2609 if (unlikely(prev_state == TASK_DEAD)) {
2610 /*
2611 * Remove function-return probe instances associated with this
2612 * task and put them back on the free list.
2613 */
2614 kprobe_flush_task(prev);
2615 put_task_struct(prev);
2616 }
2617}
2618
2619/**
2620 * schedule_tail - first thing a freshly forked thread must call.
2621 * @prev: the thread we just switched away from.
2622 */
2623asmlinkage void schedule_tail(struct task_struct *prev)
2624 __releases(rq->lock)
2625{
2626 struct rq *rq = this_rq();
2627
2628 finish_task_switch(rq, prev);
2629#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2630 /* In this case, finish_task_switch does not reenable preemption */
2631 preempt_enable();
2632#endif
2633 if (current->set_child_tid)
2634 put_user(task_pid_vnr(current), current->set_child_tid);
2635}
2636
2637/*
2638 * context_switch - switch to the new MM and the new
2639 * thread's register state.
2640 */
2641static inline void
2642context_switch(struct rq *rq, struct task_struct *prev,
2643 struct task_struct *next)
2644{
2645 struct mm_struct *mm, *oldmm;
2646
2647 prepare_task_switch(rq, prev, next);
2648 trace_sched_switch(rq, prev, next);
2649 mm = next->mm;
2650 oldmm = prev->active_mm;
2651 /*
2652 * For paravirt, this is coupled with an exit in switch_to to
2653 * combine the page table reload and the switch backend into
2654 * one hypercall.
2655 */
2656 arch_enter_lazy_cpu_mode();
2657
2658 if (unlikely(!mm)) {
2659 next->active_mm = oldmm;
2660 atomic_inc(&oldmm->mm_count);
2661 enter_lazy_tlb(oldmm, next);
2662 } else
2663 switch_mm(oldmm, mm, next);
2664
2665 if (unlikely(!prev->mm)) {
2666 prev->active_mm = NULL;
2667 rq->prev_mm = oldmm;
2668 }
2669 /*
2670 * Since the runqueue lock will be released by the next
2671 * task (which is an invalid locking op but in the case
2672 * of the scheduler it's an obvious special-case), so we
2673 * do an early lockdep release here:
2674 */
2675#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2676 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2677#endif
2678
2679 /* Here we just switch the register state and the stack. */
2680 switch_to(prev, next, prev);
2681
2682 barrier();
2683 /*
2684 * this_rq must be evaluated again because prev may have moved
2685 * CPUs since it called schedule(), thus the 'rq' on its stack
2686 * frame will be invalid.
2687 */
2688 finish_task_switch(this_rq(), prev);
2689}
2690
2691/*
2692 * nr_running, nr_uninterruptible and nr_context_switches:
2693 *
2694 * externally visible scheduler statistics: current number of runnable
2695 * threads, current number of uninterruptible-sleeping threads, total
2696 * number of context switches performed since bootup.
2697 */
2698unsigned long nr_running(void)
2699{
2700 unsigned long i, sum = 0;
2701
2702 for_each_online_cpu(i)
2703 sum += cpu_rq(i)->nr_running;
2704
2705 return sum;
2706}
2707
2708unsigned long nr_uninterruptible(void)
2709{
2710 unsigned long i, sum = 0;
2711
2712 for_each_possible_cpu(i)
2713 sum += cpu_rq(i)->nr_uninterruptible;
2714
2715 /*
2716 * Since we read the counters lockless, it might be slightly
2717 * inaccurate. Do not allow it to go below zero though:
2718 */
2719 if (unlikely((long)sum < 0))
2720 sum = 0;
2721
2722 return sum;
2723}
2724
2725unsigned long long nr_context_switches(void)
2726{
2727 int i;
2728 unsigned long long sum = 0;
2729
2730 for_each_possible_cpu(i)
2731 sum += cpu_rq(i)->nr_switches;
2732
2733 return sum;
2734}
2735
2736unsigned long nr_iowait(void)
2737{
2738 unsigned long i, sum = 0;
2739
2740 for_each_possible_cpu(i)
2741 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2742
2743 return sum;
2744}
2745
2746unsigned long nr_active(void)
2747{
2748 unsigned long i, running = 0, uninterruptible = 0;
2749
2750 for_each_online_cpu(i) {
2751 running += cpu_rq(i)->nr_running;
2752 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2753 }
2754
2755 if (unlikely((long)uninterruptible < 0))
2756 uninterruptible = 0;
2757
2758 return running + uninterruptible;
2759}
2760
2761/*
2762 * Update rq->cpu_load[] statistics. This function is usually called every
2763 * scheduler tick (TICK_NSEC).
2764 */
2765static void update_cpu_load(struct rq *this_rq)
2766{
2767 unsigned long this_load = this_rq->load.weight;
2768 int i, scale;
2769
2770 this_rq->nr_load_updates++;
2771
2772 /* Update our load: */
2773 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2774 unsigned long old_load, new_load;
2775
2776 /* scale is effectively 1 << i now, and >> i divides by scale */
2777
2778 old_load = this_rq->cpu_load[i];
2779 new_load = this_load;
2780 /*
2781 * Round up the averaging division if load is increasing. This
2782 * prevents us from getting stuck on 9 if the load is 10, for
2783 * example.
2784 */
2785 if (new_load > old_load)
2786 new_load += scale-1;
2787 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2788 }
2789}
2790
2791#ifdef CONFIG_SMP
2792
2793/*
2794 * double_rq_lock - safely lock two runqueues
2795 *
2796 * Note this does not disable interrupts like task_rq_lock,
2797 * you need to do so manually before calling.
2798 */
2799static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2800 __acquires(rq1->lock)
2801 __acquires(rq2->lock)
2802{
2803 BUG_ON(!irqs_disabled());
2804 if (rq1 == rq2) {
2805 spin_lock(&rq1->lock);
2806 __acquire(rq2->lock); /* Fake it out ;) */
2807 } else {
2808 if (rq1 < rq2) {
2809 spin_lock(&rq1->lock);
2810 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2811 } else {
2812 spin_lock(&rq2->lock);
2813 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2814 }
2815 }
2816 update_rq_clock(rq1);
2817 update_rq_clock(rq2);
2818}
2819
2820/*
2821 * double_rq_unlock - safely unlock two runqueues
2822 *
2823 * Note this does not restore interrupts like task_rq_unlock,
2824 * you need to do so manually after calling.
2825 */
2826static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2827 __releases(rq1->lock)
2828 __releases(rq2->lock)
2829{
2830 spin_unlock(&rq1->lock);
2831 if (rq1 != rq2)
2832 spin_unlock(&rq2->lock);
2833 else
2834 __release(rq2->lock);
2835}
2836
2837/*
2838 * If dest_cpu is allowed for this process, migrate the task to it.
2839 * This is accomplished by forcing the cpu_allowed mask to only
2840 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2841 * the cpu_allowed mask is restored.
2842 */
2843static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2844{
2845 struct migration_req req;
2846 unsigned long flags;
2847 struct rq *rq;
2848
2849 rq = task_rq_lock(p, &flags);
2850 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2851 || unlikely(!cpu_active(dest_cpu)))
2852 goto out;
2853
2854 trace_sched_migrate_task(rq, p, dest_cpu);
2855 /* force the process onto the specified CPU */
2856 if (migrate_task(p, dest_cpu, &req)) {
2857 /* Need to wait for migration thread (might exit: take ref). */
2858 struct task_struct *mt = rq->migration_thread;
2859
2860 get_task_struct(mt);
2861 task_rq_unlock(rq, &flags);
2862 wake_up_process(mt);
2863 put_task_struct(mt);
2864 wait_for_completion(&req.done);
2865
2866 return;
2867 }
2868out:
2869 task_rq_unlock(rq, &flags);
2870}
2871
2872/*
2873 * sched_exec - execve() is a valuable balancing opportunity, because at
2874 * this point the task has the smallest effective memory and cache footprint.
2875 */
2876void sched_exec(void)
2877{
2878 int new_cpu, this_cpu = get_cpu();
2879 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2880 put_cpu();
2881 if (new_cpu != this_cpu)
2882 sched_migrate_task(current, new_cpu);
2883}
2884
2885/*
2886 * pull_task - move a task from a remote runqueue to the local runqueue.
2887 * Both runqueues must be locked.
2888 */
2889static void pull_task(struct rq *src_rq, struct task_struct *p,
2890 struct rq *this_rq, int this_cpu)
2891{
2892 deactivate_task(src_rq, p, 0);
2893 set_task_cpu(p, this_cpu);
2894 activate_task(this_rq, p, 0);
2895 /*
2896 * Note that idle threads have a prio of MAX_PRIO, for this test
2897 * to be always true for them.
2898 */
2899 check_preempt_curr(this_rq, p, 0);
2900}
2901
2902/*
2903 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2904 */
2905static
2906int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2907 struct sched_domain *sd, enum cpu_idle_type idle,
2908 int *all_pinned)
2909{
2910 /*
2911 * We do not migrate tasks that are:
2912 * 1) running (obviously), or
2913 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2914 * 3) are cache-hot on their current CPU.
2915 */
2916 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2917 schedstat_inc(p, se.nr_failed_migrations_affine);
2918 return 0;
2919 }
2920 *all_pinned = 0;
2921
2922 if (task_running(rq, p)) {
2923 schedstat_inc(p, se.nr_failed_migrations_running);
2924 return 0;
2925 }
2926
2927 /*
2928 * Aggressive migration if:
2929 * 1) task is cache cold, or
2930 * 2) too many balance attempts have failed.
2931 */
2932
2933 if (!task_hot(p, rq->clock, sd) ||
2934 sd->nr_balance_failed > sd->cache_nice_tries) {
2935#ifdef CONFIG_SCHEDSTATS
2936 if (task_hot(p, rq->clock, sd)) {
2937 schedstat_inc(sd, lb_hot_gained[idle]);
2938 schedstat_inc(p, se.nr_forced_migrations);
2939 }
2940#endif
2941 return 1;
2942 }
2943
2944 if (task_hot(p, rq->clock, sd)) {
2945 schedstat_inc(p, se.nr_failed_migrations_hot);
2946 return 0;
2947 }
2948 return 1;
2949}
2950
2951static unsigned long
2952balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2953 unsigned long max_load_move, struct sched_domain *sd,
2954 enum cpu_idle_type idle, int *all_pinned,
2955 int *this_best_prio, struct rq_iterator *iterator)
2956{
2957 int loops = 0, pulled = 0, pinned = 0;
2958 struct task_struct *p;
2959 long rem_load_move = max_load_move;
2960
2961 if (max_load_move == 0)
2962 goto out;
2963
2964 pinned = 1;
2965
2966 /*
2967 * Start the load-balancing iterator:
2968 */
2969 p = iterator->start(iterator->arg);
2970next:
2971 if (!p || loops++ > sysctl_sched_nr_migrate)
2972 goto out;
2973
2974 if ((p->se.load.weight >> 1) > rem_load_move ||
2975 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2976 p = iterator->next(iterator->arg);
2977 goto next;
2978 }
2979
2980 pull_task(busiest, p, this_rq, this_cpu);
2981 pulled++;
2982 rem_load_move -= p->se.load.weight;
2983
2984 /*
2985 * We only want to steal up to the prescribed amount of weighted load.
2986 */
2987 if (rem_load_move > 0) {
2988 if (p->prio < *this_best_prio)
2989 *this_best_prio = p->prio;
2990 p = iterator->next(iterator->arg);
2991 goto next;
2992 }
2993out:
2994 /*
2995 * Right now, this is one of only two places pull_task() is called,
2996 * so we can safely collect pull_task() stats here rather than
2997 * inside pull_task().
2998 */
2999 schedstat_add(sd, lb_gained[idle], pulled);
3000
3001 if (all_pinned)
3002 *all_pinned = pinned;
3003
3004 return max_load_move - rem_load_move;
3005}
3006
3007/*
3008 * move_tasks tries to move up to max_load_move weighted load from busiest to
3009 * this_rq, as part of a balancing operation within domain "sd".
3010 * Returns 1 if successful and 0 otherwise.
3011 *
3012 * Called with both runqueues locked.
3013 */
3014static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3015 unsigned long max_load_move,
3016 struct sched_domain *sd, enum cpu_idle_type idle,
3017 int *all_pinned)
3018{
3019 const struct sched_class *class = sched_class_highest;
3020 unsigned long total_load_moved = 0;
3021 int this_best_prio = this_rq->curr->prio;
3022
3023 do {
3024 total_load_moved +=
3025 class->load_balance(this_rq, this_cpu, busiest,
3026 max_load_move - total_load_moved,
3027 sd, idle, all_pinned, &this_best_prio);
3028 class = class->next;
3029
3030 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3031 break;
3032
3033 } while (class && max_load_move > total_load_moved);
3034
3035 return total_load_moved > 0;
3036}
3037
3038static int
3039iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3040 struct sched_domain *sd, enum cpu_idle_type idle,
3041 struct rq_iterator *iterator)
3042{
3043 struct task_struct *p = iterator->start(iterator->arg);
3044 int pinned = 0;
3045
3046 while (p) {
3047 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3048 pull_task(busiest, p, this_rq, this_cpu);
3049 /*
3050 * Right now, this is only the second place pull_task()
3051 * is called, so we can safely collect pull_task()
3052 * stats here rather than inside pull_task().
3053 */
3054 schedstat_inc(sd, lb_gained[idle]);
3055
3056 return 1;
3057 }
3058 p = iterator->next(iterator->arg);
3059 }
3060
3061 return 0;
3062}
3063
3064/*
3065 * move_one_task tries to move exactly one task from busiest to this_rq, as
3066 * part of active balancing operations within "domain".
3067 * Returns 1 if successful and 0 otherwise.
3068 *
3069 * Called with both runqueues locked.
3070 */
3071static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3072 struct sched_domain *sd, enum cpu_idle_type idle)
3073{
3074 const struct sched_class *class;
3075
3076 for (class = sched_class_highest; class; class = class->next)
3077 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3078 return 1;
3079
3080 return 0;
3081}
3082
3083/*
3084 * find_busiest_group finds and returns the busiest CPU group within the
3085 * domain. It calculates and returns the amount of weighted load which
3086 * should be moved to restore balance via the imbalance parameter.
3087 */
3088static struct sched_group *
3089find_busiest_group(struct sched_domain *sd, int this_cpu,
3090 unsigned long *imbalance, enum cpu_idle_type idle,
3091 int *sd_idle, const struct cpumask *cpus, int *balance)
3092{
3093 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3094 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3095 unsigned long max_pull;
3096 unsigned long busiest_load_per_task, busiest_nr_running;
3097 unsigned long this_load_per_task, this_nr_running;
3098 int load_idx, group_imb = 0;
3099#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3100 int power_savings_balance = 1;
3101 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3102 unsigned long min_nr_running = ULONG_MAX;
3103 struct sched_group *group_min = NULL, *group_leader = NULL;
3104#endif
3105
3106 max_load = this_load = total_load = total_pwr = 0;
3107 busiest_load_per_task = busiest_nr_running = 0;
3108 this_load_per_task = this_nr_running = 0;
3109
3110 if (idle == CPU_NOT_IDLE)
3111 load_idx = sd->busy_idx;
3112 else if (idle == CPU_NEWLY_IDLE)
3113 load_idx = sd->newidle_idx;
3114 else
3115 load_idx = sd->idle_idx;
3116
3117 do {
3118 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3119 int local_group;
3120 int i;
3121 int __group_imb = 0;
3122 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3123 unsigned long sum_nr_running, sum_weighted_load;
3124 unsigned long sum_avg_load_per_task;
3125 unsigned long avg_load_per_task;
3126
3127 local_group = cpumask_test_cpu(this_cpu,
3128 sched_group_cpus(group));
3129
3130 if (local_group)
3131 balance_cpu = cpumask_first(sched_group_cpus(group));
3132
3133 /* Tally up the load of all CPUs in the group */
3134 sum_weighted_load = sum_nr_running = avg_load = 0;
3135 sum_avg_load_per_task = avg_load_per_task = 0;
3136
3137 max_cpu_load = 0;
3138 min_cpu_load = ~0UL;
3139
3140 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3141 struct rq *rq = cpu_rq(i);
3142
3143 if (*sd_idle && rq->nr_running)
3144 *sd_idle = 0;
3145
3146 /* Bias balancing toward cpus of our domain */
3147 if (local_group) {
3148 if (idle_cpu(i) && !first_idle_cpu) {
3149 first_idle_cpu = 1;
3150 balance_cpu = i;
3151 }
3152
3153 load = target_load(i, load_idx);
3154 } else {
3155 load = source_load(i, load_idx);
3156 if (load > max_cpu_load)
3157 max_cpu_load = load;
3158 if (min_cpu_load > load)
3159 min_cpu_load = load;
3160 }
3161
3162 avg_load += load;
3163 sum_nr_running += rq->nr_running;
3164 sum_weighted_load += weighted_cpuload(i);
3165
3166 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3167 }
3168
3169 /*
3170 * First idle cpu or the first cpu(busiest) in this sched group
3171 * is eligible for doing load balancing at this and above
3172 * domains. In the newly idle case, we will allow all the cpu's
3173 * to do the newly idle load balance.
3174 */
3175 if (idle != CPU_NEWLY_IDLE && local_group &&
3176 balance_cpu != this_cpu && balance) {
3177 *balance = 0;
3178 goto ret;
3179 }
3180
3181 total_load += avg_load;
3182 total_pwr += group->__cpu_power;
3183
3184 /* Adjust by relative CPU power of the group */
3185 avg_load = sg_div_cpu_power(group,
3186 avg_load * SCHED_LOAD_SCALE);
3187
3188
3189 /*
3190 * Consider the group unbalanced when the imbalance is larger
3191 * than the average weight of two tasks.
3192 *
3193 * APZ: with cgroup the avg task weight can vary wildly and
3194 * might not be a suitable number - should we keep a
3195 * normalized nr_running number somewhere that negates
3196 * the hierarchy?
3197 */
3198 avg_load_per_task = sg_div_cpu_power(group,
3199 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3200
3201 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3202 __group_imb = 1;
3203
3204 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3205
3206 if (local_group) {
3207 this_load = avg_load;
3208 this = group;
3209 this_nr_running = sum_nr_running;
3210 this_load_per_task = sum_weighted_load;
3211 } else if (avg_load > max_load &&
3212 (sum_nr_running > group_capacity || __group_imb)) {
3213 max_load = avg_load;
3214 busiest = group;
3215 busiest_nr_running = sum_nr_running;
3216 busiest_load_per_task = sum_weighted_load;
3217 group_imb = __group_imb;
3218 }
3219
3220#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3221 /*
3222 * Busy processors will not participate in power savings
3223 * balance.
3224 */
3225 if (idle == CPU_NOT_IDLE ||
3226 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3227 goto group_next;
3228
3229 /*
3230 * If the local group is idle or completely loaded
3231 * no need to do power savings balance at this domain
3232 */
3233 if (local_group && (this_nr_running >= group_capacity ||
3234 !this_nr_running))
3235 power_savings_balance = 0;
3236
3237 /*
3238 * If a group is already running at full capacity or idle,
3239 * don't include that group in power savings calculations
3240 */
3241 if (!power_savings_balance || sum_nr_running >= group_capacity
3242 || !sum_nr_running)
3243 goto group_next;
3244
3245 /*
3246 * Calculate the group which has the least non-idle load.
3247 * This is the group from where we need to pick up the load
3248 * for saving power
3249 */
3250 if ((sum_nr_running < min_nr_running) ||
3251 (sum_nr_running == min_nr_running &&
3252 cpumask_first(sched_group_cpus(group)) >
3253 cpumask_first(sched_group_cpus(group_min)))) {
3254 group_min = group;
3255 min_nr_running = sum_nr_running;
3256 min_load_per_task = sum_weighted_load /
3257 sum_nr_running;
3258 }
3259
3260 /*
3261 * Calculate the group which is almost near its
3262 * capacity but still has some space to pick up some load
3263 * from other group and save more power
3264 */
3265 if (sum_nr_running <= group_capacity - 1) {
3266 if (sum_nr_running > leader_nr_running ||
3267 (sum_nr_running == leader_nr_running &&
3268 cpumask_first(sched_group_cpus(group)) <
3269 cpumask_first(sched_group_cpus(group_leader)))) {
3270 group_leader = group;
3271 leader_nr_running = sum_nr_running;
3272 }
3273 }
3274group_next:
3275#endif
3276 group = group->next;
3277 } while (group != sd->groups);
3278
3279 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3280 goto out_balanced;
3281
3282 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3283
3284 if (this_load >= avg_load ||
3285 100*max_load <= sd->imbalance_pct*this_load)
3286 goto out_balanced;
3287
3288 busiest_load_per_task /= busiest_nr_running;
3289 if (group_imb)
3290 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3291
3292 /*
3293 * We're trying to get all the cpus to the average_load, so we don't
3294 * want to push ourselves above the average load, nor do we wish to
3295 * reduce the max loaded cpu below the average load, as either of these
3296 * actions would just result in more rebalancing later, and ping-pong
3297 * tasks around. Thus we look for the minimum possible imbalance.
3298 * Negative imbalances (*we* are more loaded than anyone else) will
3299 * be counted as no imbalance for these purposes -- we can't fix that
3300 * by pulling tasks to us. Be careful of negative numbers as they'll
3301 * appear as very large values with unsigned longs.
3302 */
3303 if (max_load <= busiest_load_per_task)
3304 goto out_balanced;
3305
3306 /*
3307 * In the presence of smp nice balancing, certain scenarios can have
3308 * max load less than avg load(as we skip the groups at or below
3309 * its cpu_power, while calculating max_load..)
3310 */
3311 if (max_load < avg_load) {
3312 *imbalance = 0;
3313 goto small_imbalance;
3314 }
3315
3316 /* Don't want to pull so many tasks that a group would go idle */
3317 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3318
3319 /* How much load to actually move to equalise the imbalance */
3320 *imbalance = min(max_pull * busiest->__cpu_power,
3321 (avg_load - this_load) * this->__cpu_power)
3322 / SCHED_LOAD_SCALE;
3323
3324 /*
3325 * if *imbalance is less than the average load per runnable task
3326 * there is no gaurantee that any tasks will be moved so we'll have
3327 * a think about bumping its value to force at least one task to be
3328 * moved
3329 */
3330 if (*imbalance < busiest_load_per_task) {
3331 unsigned long tmp, pwr_now, pwr_move;
3332 unsigned int imbn;
3333
3334small_imbalance:
3335 pwr_move = pwr_now = 0;
3336 imbn = 2;
3337 if (this_nr_running) {
3338 this_load_per_task /= this_nr_running;
3339 if (busiest_load_per_task > this_load_per_task)
3340 imbn = 1;
3341 } else
3342 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3343
3344 if (max_load - this_load + busiest_load_per_task >=
3345 busiest_load_per_task * imbn) {
3346 *imbalance = busiest_load_per_task;
3347 return busiest;
3348 }
3349
3350 /*
3351 * OK, we don't have enough imbalance to justify moving tasks,
3352 * however we may be able to increase total CPU power used by
3353 * moving them.
3354 */
3355
3356 pwr_now += busiest->__cpu_power *
3357 min(busiest_load_per_task, max_load);
3358 pwr_now += this->__cpu_power *
3359 min(this_load_per_task, this_load);
3360 pwr_now /= SCHED_LOAD_SCALE;
3361
3362 /* Amount of load we'd subtract */
3363 tmp = sg_div_cpu_power(busiest,
3364 busiest_load_per_task * SCHED_LOAD_SCALE);
3365 if (max_load > tmp)
3366 pwr_move += busiest->__cpu_power *
3367 min(busiest_load_per_task, max_load - tmp);
3368
3369 /* Amount of load we'd add */
3370 if (max_load * busiest->__cpu_power <
3371 busiest_load_per_task * SCHED_LOAD_SCALE)
3372 tmp = sg_div_cpu_power(this,
3373 max_load * busiest->__cpu_power);
3374 else
3375 tmp = sg_div_cpu_power(this,
3376 busiest_load_per_task * SCHED_LOAD_SCALE);
3377 pwr_move += this->__cpu_power *
3378 min(this_load_per_task, this_load + tmp);
3379 pwr_move /= SCHED_LOAD_SCALE;
3380
3381 /* Move if we gain throughput */
3382 if (pwr_move > pwr_now)
3383 *imbalance = busiest_load_per_task;
3384 }
3385
3386 return busiest;
3387
3388out_balanced:
3389#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3390 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3391 goto ret;
3392
3393 if (this == group_leader && group_leader != group_min) {
3394 *imbalance = min_load_per_task;
3395 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3396 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3397 first_cpu(group_leader->cpumask);
3398 }
3399 return group_min;
3400 }
3401#endif
3402ret:
3403 *imbalance = 0;
3404 return NULL;
3405}
3406
3407/*
3408 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3409 */
3410static struct rq *
3411find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3412 unsigned long imbalance, const struct cpumask *cpus)
3413{
3414 struct rq *busiest = NULL, *rq;
3415 unsigned long max_load = 0;
3416 int i;
3417
3418 for_each_cpu(i, sched_group_cpus(group)) {
3419 unsigned long wl;
3420
3421 if (!cpumask_test_cpu(i, cpus))
3422 continue;
3423
3424 rq = cpu_rq(i);
3425 wl = weighted_cpuload(i);
3426
3427 if (rq->nr_running == 1 && wl > imbalance)
3428 continue;
3429
3430 if (wl > max_load) {
3431 max_load = wl;
3432 busiest = rq;
3433 }
3434 }
3435
3436 return busiest;
3437}
3438
3439/*
3440 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3441 * so long as it is large enough.
3442 */
3443#define MAX_PINNED_INTERVAL 512
3444
3445/*
3446 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3447 * tasks if there is an imbalance.
3448 */
3449static int load_balance(int this_cpu, struct rq *this_rq,
3450 struct sched_domain *sd, enum cpu_idle_type idle,
3451 int *balance, struct cpumask *cpus)
3452{
3453 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3454 struct sched_group *group;
3455 unsigned long imbalance;
3456 struct rq *busiest;
3457 unsigned long flags;
3458
3459 cpumask_setall(cpus);
3460
3461 /*
3462 * When power savings policy is enabled for the parent domain, idle
3463 * sibling can pick up load irrespective of busy siblings. In this case,
3464 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3465 * portraying it as CPU_NOT_IDLE.
3466 */
3467 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3468 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3469 sd_idle = 1;
3470
3471 schedstat_inc(sd, lb_count[idle]);
3472
3473redo:
3474 update_shares(sd);
3475 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3476 cpus, balance);
3477
3478 if (*balance == 0)
3479 goto out_balanced;
3480
3481 if (!group) {
3482 schedstat_inc(sd, lb_nobusyg[idle]);
3483 goto out_balanced;
3484 }
3485
3486 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3487 if (!busiest) {
3488 schedstat_inc(sd, lb_nobusyq[idle]);
3489 goto out_balanced;
3490 }
3491
3492 BUG_ON(busiest == this_rq);
3493
3494 schedstat_add(sd, lb_imbalance[idle], imbalance);
3495
3496 ld_moved = 0;
3497 if (busiest->nr_running > 1) {
3498 /*
3499 * Attempt to move tasks. If find_busiest_group has found
3500 * an imbalance but busiest->nr_running <= 1, the group is
3501 * still unbalanced. ld_moved simply stays zero, so it is
3502 * correctly treated as an imbalance.
3503 */
3504 local_irq_save(flags);
3505 double_rq_lock(this_rq, busiest);
3506 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3507 imbalance, sd, idle, &all_pinned);
3508 double_rq_unlock(this_rq, busiest);
3509 local_irq_restore(flags);
3510
3511 /*
3512 * some other cpu did the load balance for us.
3513 */
3514 if (ld_moved && this_cpu != smp_processor_id())
3515 resched_cpu(this_cpu);
3516
3517 /* All tasks on this runqueue were pinned by CPU affinity */
3518 if (unlikely(all_pinned)) {
3519 cpumask_clear_cpu(cpu_of(busiest), cpus);
3520 if (!cpumask_empty(cpus))
3521 goto redo;
3522 goto out_balanced;
3523 }
3524 }
3525
3526 if (!ld_moved) {
3527 schedstat_inc(sd, lb_failed[idle]);
3528 sd->nr_balance_failed++;
3529
3530 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3531
3532 spin_lock_irqsave(&busiest->lock, flags);
3533
3534 /* don't kick the migration_thread, if the curr
3535 * task on busiest cpu can't be moved to this_cpu
3536 */
3537 if (!cpumask_test_cpu(this_cpu,
3538 &busiest->curr->cpus_allowed)) {
3539 spin_unlock_irqrestore(&busiest->lock, flags);
3540 all_pinned = 1;
3541 goto out_one_pinned;
3542 }
3543
3544 if (!busiest->active_balance) {
3545 busiest->active_balance = 1;
3546 busiest->push_cpu = this_cpu;
3547 active_balance = 1;
3548 }
3549 spin_unlock_irqrestore(&busiest->lock, flags);
3550 if (active_balance)
3551 wake_up_process(busiest->migration_thread);
3552
3553 /*
3554 * We've kicked active balancing, reset the failure
3555 * counter.
3556 */
3557 sd->nr_balance_failed = sd->cache_nice_tries+1;
3558 }
3559 } else
3560 sd->nr_balance_failed = 0;
3561
3562 if (likely(!active_balance)) {
3563 /* We were unbalanced, so reset the balancing interval */
3564 sd->balance_interval = sd->min_interval;
3565 } else {
3566 /*
3567 * If we've begun active balancing, start to back off. This
3568 * case may not be covered by the all_pinned logic if there
3569 * is only 1 task on the busy runqueue (because we don't call
3570 * move_tasks).
3571 */
3572 if (sd->balance_interval < sd->max_interval)
3573 sd->balance_interval *= 2;
3574 }
3575
3576 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3577 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3578 ld_moved = -1;
3579
3580 goto out;
3581
3582out_balanced:
3583 schedstat_inc(sd, lb_balanced[idle]);
3584
3585 sd->nr_balance_failed = 0;
3586
3587out_one_pinned:
3588 /* tune up the balancing interval */
3589 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3590 (sd->balance_interval < sd->max_interval))
3591 sd->balance_interval *= 2;
3592
3593 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3594 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3595 ld_moved = -1;
3596 else
3597 ld_moved = 0;
3598out:
3599 if (ld_moved)
3600 update_shares(sd);
3601 return ld_moved;
3602}
3603
3604/*
3605 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3606 * tasks if there is an imbalance.
3607 *
3608 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3609 * this_rq is locked.
3610 */
3611static int
3612load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3613 struct cpumask *cpus)
3614{
3615 struct sched_group *group;
3616 struct rq *busiest = NULL;
3617 unsigned long imbalance;
3618 int ld_moved = 0;
3619 int sd_idle = 0;
3620 int all_pinned = 0;
3621
3622 cpumask_setall(cpus);
3623
3624 /*
3625 * When power savings policy is enabled for the parent domain, idle
3626 * sibling can pick up load irrespective of busy siblings. In this case,
3627 * let the state of idle sibling percolate up as IDLE, instead of
3628 * portraying it as CPU_NOT_IDLE.
3629 */
3630 if (sd->flags & SD_SHARE_CPUPOWER &&
3631 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3632 sd_idle = 1;
3633
3634 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3635redo:
3636 update_shares_locked(this_rq, sd);
3637 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3638 &sd_idle, cpus, NULL);
3639 if (!group) {
3640 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3641 goto out_balanced;
3642 }
3643
3644 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3645 if (!busiest) {
3646 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3647 goto out_balanced;
3648 }
3649
3650 BUG_ON(busiest == this_rq);
3651
3652 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3653
3654 ld_moved = 0;
3655 if (busiest->nr_running > 1) {
3656 /* Attempt to move tasks */
3657 double_lock_balance(this_rq, busiest);
3658 /* this_rq->clock is already updated */
3659 update_rq_clock(busiest);
3660 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3661 imbalance, sd, CPU_NEWLY_IDLE,
3662 &all_pinned);
3663 double_unlock_balance(this_rq, busiest);
3664
3665 if (unlikely(all_pinned)) {
3666 cpumask_clear_cpu(cpu_of(busiest), cpus);
3667 if (!cpumask_empty(cpus))
3668 goto redo;
3669 }
3670 }
3671
3672 if (!ld_moved) {
3673 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3674 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3675 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3676 return -1;
3677 } else
3678 sd->nr_balance_failed = 0;
3679
3680 update_shares_locked(this_rq, sd);
3681 return ld_moved;
3682
3683out_balanced:
3684 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3685 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3686 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3687 return -1;
3688 sd->nr_balance_failed = 0;
3689
3690 return 0;
3691}
3692
3693/*
3694 * idle_balance is called by schedule() if this_cpu is about to become
3695 * idle. Attempts to pull tasks from other CPUs.
3696 */
3697static void idle_balance(int this_cpu, struct rq *this_rq)
3698{
3699 struct sched_domain *sd;
3700 int pulled_task = 0;
3701 unsigned long next_balance = jiffies + HZ;
3702 cpumask_var_t tmpmask;
3703
3704 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3705 return;
3706
3707 for_each_domain(this_cpu, sd) {
3708 unsigned long interval;
3709
3710 if (!(sd->flags & SD_LOAD_BALANCE))
3711 continue;
3712
3713 if (sd->flags & SD_BALANCE_NEWIDLE)
3714 /* If we've pulled tasks over stop searching: */
3715 pulled_task = load_balance_newidle(this_cpu, this_rq,
3716 sd, tmpmask);
3717
3718 interval = msecs_to_jiffies(sd->balance_interval);
3719 if (time_after(next_balance, sd->last_balance + interval))
3720 next_balance = sd->last_balance + interval;
3721 if (pulled_task)
3722 break;
3723 }
3724 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3725 /*
3726 * We are going idle. next_balance may be set based on
3727 * a busy processor. So reset next_balance.
3728 */
3729 this_rq->next_balance = next_balance;
3730 }
3731 free_cpumask_var(tmpmask);
3732}
3733
3734/*
3735 * active_load_balance is run by migration threads. It pushes running tasks
3736 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3737 * running on each physical CPU where possible, and avoids physical /
3738 * logical imbalances.
3739 *
3740 * Called with busiest_rq locked.
3741 */
3742static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3743{
3744 int target_cpu = busiest_rq->push_cpu;
3745 struct sched_domain *sd;
3746 struct rq *target_rq;
3747
3748 /* Is there any task to move? */
3749 if (busiest_rq->nr_running <= 1)
3750 return;
3751
3752 target_rq = cpu_rq(target_cpu);
3753
3754 /*
3755 * This condition is "impossible", if it occurs
3756 * we need to fix it. Originally reported by
3757 * Bjorn Helgaas on a 128-cpu setup.
3758 */
3759 BUG_ON(busiest_rq == target_rq);
3760
3761 /* move a task from busiest_rq to target_rq */
3762 double_lock_balance(busiest_rq, target_rq);
3763 update_rq_clock(busiest_rq);
3764 update_rq_clock(target_rq);
3765
3766 /* Search for an sd spanning us and the target CPU. */
3767 for_each_domain(target_cpu, sd) {
3768 if ((sd->flags & SD_LOAD_BALANCE) &&
3769 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3770 break;
3771 }
3772
3773 if (likely(sd)) {
3774 schedstat_inc(sd, alb_count);
3775
3776 if (move_one_task(target_rq, target_cpu, busiest_rq,
3777 sd, CPU_IDLE))
3778 schedstat_inc(sd, alb_pushed);
3779 else
3780 schedstat_inc(sd, alb_failed);
3781 }
3782 double_unlock_balance(busiest_rq, target_rq);
3783}
3784
3785#ifdef CONFIG_NO_HZ
3786static struct {
3787 atomic_t load_balancer;
3788 cpumask_var_t cpu_mask;
3789} nohz ____cacheline_aligned = {
3790 .load_balancer = ATOMIC_INIT(-1),
3791};
3792
3793/*
3794 * This routine will try to nominate the ilb (idle load balancing)
3795 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3796 * load balancing on behalf of all those cpus. If all the cpus in the system
3797 * go into this tickless mode, then there will be no ilb owner (as there is
3798 * no need for one) and all the cpus will sleep till the next wakeup event
3799 * arrives...
3800 *
3801 * For the ilb owner, tick is not stopped. And this tick will be used
3802 * for idle load balancing. ilb owner will still be part of
3803 * nohz.cpu_mask..
3804 *
3805 * While stopping the tick, this cpu will become the ilb owner if there
3806 * is no other owner. And will be the owner till that cpu becomes busy
3807 * or if all cpus in the system stop their ticks at which point
3808 * there is no need for ilb owner.
3809 *
3810 * When the ilb owner becomes busy, it nominates another owner, during the
3811 * next busy scheduler_tick()
3812 */
3813int select_nohz_load_balancer(int stop_tick)
3814{
3815 int cpu = smp_processor_id();
3816
3817 if (stop_tick) {
3818 cpumask_set_cpu(cpu, nohz.cpu_mask);
3819 cpu_rq(cpu)->in_nohz_recently = 1;
3820
3821 /*
3822 * If we are going offline and still the leader, give up!
3823 */
3824 if (!cpu_active(cpu) &&
3825 atomic_read(&nohz.load_balancer) == cpu) {
3826 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3827 BUG();
3828 return 0;
3829 }
3830
3831 /* time for ilb owner also to sleep */
3832 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3833 if (atomic_read(&nohz.load_balancer) == cpu)
3834 atomic_set(&nohz.load_balancer, -1);
3835 return 0;
3836 }
3837
3838 if (atomic_read(&nohz.load_balancer) == -1) {
3839 /* make me the ilb owner */
3840 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3841 return 1;
3842 } else if (atomic_read(&nohz.load_balancer) == cpu)
3843 return 1;
3844 } else {
3845 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3846 return 0;
3847
3848 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3849
3850 if (atomic_read(&nohz.load_balancer) == cpu)
3851 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3852 BUG();
3853 }
3854 return 0;
3855}
3856#endif
3857
3858static DEFINE_SPINLOCK(balancing);
3859
3860/*
3861 * It checks each scheduling domain to see if it is due to be balanced,
3862 * and initiates a balancing operation if so.
3863 *
3864 * Balancing parameters are set up in arch_init_sched_domains.
3865 */
3866static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3867{
3868 int balance = 1;
3869 struct rq *rq = cpu_rq(cpu);
3870 unsigned long interval;
3871 struct sched_domain *sd;
3872 /* Earliest time when we have to do rebalance again */
3873 unsigned long next_balance = jiffies + 60*HZ;
3874 int update_next_balance = 0;
3875 int need_serialize;
3876 cpumask_var_t tmp;
3877
3878 /* Fails alloc? Rebalancing probably not a priority right now. */
3879 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3880 return;
3881
3882 for_each_domain(cpu, sd) {
3883 if (!(sd->flags & SD_LOAD_BALANCE))
3884 continue;
3885
3886 interval = sd->balance_interval;
3887 if (idle != CPU_IDLE)
3888 interval *= sd->busy_factor;
3889
3890 /* scale ms to jiffies */
3891 interval = msecs_to_jiffies(interval);
3892 if (unlikely(!interval))
3893 interval = 1;
3894 if (interval > HZ*NR_CPUS/10)
3895 interval = HZ*NR_CPUS/10;
3896
3897 need_serialize = sd->flags & SD_SERIALIZE;
3898
3899 if (need_serialize) {
3900 if (!spin_trylock(&balancing))
3901 goto out;
3902 }
3903
3904 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3905 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
3906 /*
3907 * We've pulled tasks over so either we're no
3908 * longer idle, or one of our SMT siblings is
3909 * not idle.
3910 */
3911 idle = CPU_NOT_IDLE;
3912 }
3913 sd->last_balance = jiffies;
3914 }
3915 if (need_serialize)
3916 spin_unlock(&balancing);
3917out:
3918 if (time_after(next_balance, sd->last_balance + interval)) {
3919 next_balance = sd->last_balance + interval;
3920 update_next_balance = 1;
3921 }
3922
3923 /*
3924 * Stop the load balance at this level. There is another
3925 * CPU in our sched group which is doing load balancing more
3926 * actively.
3927 */
3928 if (!balance)
3929 break;
3930 }
3931
3932 /*
3933 * next_balance will be updated only when there is a need.
3934 * When the cpu is attached to null domain for ex, it will not be
3935 * updated.
3936 */
3937 if (likely(update_next_balance))
3938 rq->next_balance = next_balance;
3939
3940 free_cpumask_var(tmp);
3941}
3942
3943/*
3944 * run_rebalance_domains is triggered when needed from the scheduler tick.
3945 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3946 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3947 */
3948static void run_rebalance_domains(struct softirq_action *h)
3949{
3950 int this_cpu = smp_processor_id();
3951 struct rq *this_rq = cpu_rq(this_cpu);
3952 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3953 CPU_IDLE : CPU_NOT_IDLE;
3954
3955 rebalance_domains(this_cpu, idle);
3956
3957#ifdef CONFIG_NO_HZ
3958 /*
3959 * If this cpu is the owner for idle load balancing, then do the
3960 * balancing on behalf of the other idle cpus whose ticks are
3961 * stopped.
3962 */
3963 if (this_rq->idle_at_tick &&
3964 atomic_read(&nohz.load_balancer) == this_cpu) {
3965 struct rq *rq;
3966 int balance_cpu;
3967
3968 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3969 if (balance_cpu == this_cpu)
3970 continue;
3971
3972 /*
3973 * If this cpu gets work to do, stop the load balancing
3974 * work being done for other cpus. Next load
3975 * balancing owner will pick it up.
3976 */
3977 if (need_resched())
3978 break;
3979
3980 rebalance_domains(balance_cpu, CPU_IDLE);
3981
3982 rq = cpu_rq(balance_cpu);
3983 if (time_after(this_rq->next_balance, rq->next_balance))
3984 this_rq->next_balance = rq->next_balance;
3985 }
3986 }
3987#endif
3988}
3989
3990/*
3991 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3992 *
3993 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3994 * idle load balancing owner or decide to stop the periodic load balancing,
3995 * if the whole system is idle.
3996 */
3997static inline void trigger_load_balance(struct rq *rq, int cpu)
3998{
3999#ifdef CONFIG_NO_HZ
4000 /*
4001 * If we were in the nohz mode recently and busy at the current
4002 * scheduler tick, then check if we need to nominate new idle
4003 * load balancer.
4004 */
4005 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4006 rq->in_nohz_recently = 0;
4007
4008 if (atomic_read(&nohz.load_balancer) == cpu) {
4009 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4010 atomic_set(&nohz.load_balancer, -1);
4011 }
4012
4013 if (atomic_read(&nohz.load_balancer) == -1) {
4014 /*
4015 * simple selection for now: Nominate the
4016 * first cpu in the nohz list to be the next
4017 * ilb owner.
4018 *
4019 * TBD: Traverse the sched domains and nominate
4020 * the nearest cpu in the nohz.cpu_mask.
4021 */
4022 int ilb = cpumask_first(nohz.cpu_mask);
4023
4024 if (ilb < nr_cpu_ids)
4025 resched_cpu(ilb);
4026 }
4027 }
4028
4029 /*
4030 * If this cpu is idle and doing idle load balancing for all the
4031 * cpus with ticks stopped, is it time for that to stop?
4032 */
4033 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4034 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4035 resched_cpu(cpu);
4036 return;
4037 }
4038
4039 /*
4040 * If this cpu is idle and the idle load balancing is done by
4041 * someone else, then no need raise the SCHED_SOFTIRQ
4042 */
4043 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4044 cpumask_test_cpu(cpu, nohz.cpu_mask))
4045 return;
4046#endif
4047 if (time_after_eq(jiffies, rq->next_balance))
4048 raise_softirq(SCHED_SOFTIRQ);
4049}
4050
4051#else /* CONFIG_SMP */
4052
4053/*
4054 * on UP we do not need to balance between CPUs:
4055 */
4056static inline void idle_balance(int cpu, struct rq *rq)
4057{
4058}
4059
4060#endif
4061
4062DEFINE_PER_CPU(struct kernel_stat, kstat);
4063
4064EXPORT_PER_CPU_SYMBOL(kstat);
4065
4066/*
4067 * Return any ns on the sched_clock that have not yet been banked in
4068 * @p in case that task is currently running.
4069 */
4070unsigned long long task_delta_exec(struct task_struct *p)
4071{
4072 unsigned long flags;
4073 struct rq *rq;
4074 u64 ns = 0;
4075
4076 rq = task_rq_lock(p, &flags);
4077
4078 if (task_current(rq, p)) {
4079 u64 delta_exec;
4080
4081 update_rq_clock(rq);
4082 delta_exec = rq->clock - p->se.exec_start;
4083 if ((s64)delta_exec > 0)
4084 ns = delta_exec;
4085 }
4086
4087 task_rq_unlock(rq, &flags);
4088
4089 return ns;
4090}
4091
4092/*
4093 * Account user cpu time to a process.
4094 * @p: the process that the cpu time gets accounted to
4095 * @cputime: the cpu time spent in user space since the last update
4096 */
4097void account_user_time(struct task_struct *p, cputime_t cputime)
4098{
4099 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4100 cputime64_t tmp;
4101
4102 p->utime = cputime_add(p->utime, cputime);
4103 account_group_user_time(p, cputime);
4104
4105 /* Add user time to cpustat. */
4106 tmp = cputime_to_cputime64(cputime);
4107 if (TASK_NICE(p) > 0)
4108 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4109 else
4110 cpustat->user = cputime64_add(cpustat->user, tmp);
4111 /* Account for user time used */
4112 acct_update_integrals(p);
4113}
4114
4115/*
4116 * Account guest cpu time to a process.
4117 * @p: the process that the cpu time gets accounted to
4118 * @cputime: the cpu time spent in virtual machine since the last update
4119 */
4120static void account_guest_time(struct task_struct *p, cputime_t cputime)
4121{
4122 cputime64_t tmp;
4123 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4124
4125 tmp = cputime_to_cputime64(cputime);
4126
4127 p->utime = cputime_add(p->utime, cputime);
4128 account_group_user_time(p, cputime);
4129 p->gtime = cputime_add(p->gtime, cputime);
4130
4131 cpustat->user = cputime64_add(cpustat->user, tmp);
4132 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4133}
4134
4135/*
4136 * Account scaled user cpu time to a process.
4137 * @p: the process that the cpu time gets accounted to
4138 * @cputime: the cpu time spent in user space since the last update
4139 */
4140void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4141{
4142 p->utimescaled = cputime_add(p->utimescaled, cputime);
4143}
4144
4145/*
4146 * Account system cpu time to a process.
4147 * @p: the process that the cpu time gets accounted to
4148 * @hardirq_offset: the offset to subtract from hardirq_count()
4149 * @cputime: the cpu time spent in kernel space since the last update
4150 */
4151void account_system_time(struct task_struct *p, int hardirq_offset,
4152 cputime_t cputime)
4153{
4154 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4155 struct rq *rq = this_rq();
4156 cputime64_t tmp;
4157
4158 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4159 account_guest_time(p, cputime);
4160 return;
4161 }
4162
4163 p->stime = cputime_add(p->stime, cputime);
4164 account_group_system_time(p, cputime);
4165
4166 /* Add system time to cpustat. */
4167 tmp = cputime_to_cputime64(cputime);
4168 if (hardirq_count() - hardirq_offset)
4169 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4170 else if (softirq_count())
4171 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4172 else if (p != rq->idle)
4173 cpustat->system = cputime64_add(cpustat->system, tmp);
4174 else if (atomic_read(&rq->nr_iowait) > 0)
4175 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4176 else
4177 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4178 /* Account for system time used */
4179 acct_update_integrals(p);
4180}
4181
4182/*
4183 * Account scaled system cpu time to a process.
4184 * @p: the process that the cpu time gets accounted to
4185 * @hardirq_offset: the offset to subtract from hardirq_count()
4186 * @cputime: the cpu time spent in kernel space since the last update
4187 */
4188void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4189{
4190 p->stimescaled = cputime_add(p->stimescaled, cputime);
4191}
4192
4193/*
4194 * Account for involuntary wait time.
4195 * @p: the process from which the cpu time has been stolen
4196 * @steal: the cpu time spent in involuntary wait
4197 */
4198void account_steal_time(struct task_struct *p, cputime_t steal)
4199{
4200 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4201 cputime64_t tmp = cputime_to_cputime64(steal);
4202 struct rq *rq = this_rq();
4203
4204 if (p == rq->idle) {
4205 p->stime = cputime_add(p->stime, steal);
4206 if (atomic_read(&rq->nr_iowait) > 0)
4207 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4208 else
4209 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4210 } else
4211 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4212}
4213
4214/*
4215 * Use precise platform statistics if available:
4216 */
4217#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4218cputime_t task_utime(struct task_struct *p)
4219{
4220 return p->utime;
4221}
4222
4223cputime_t task_stime(struct task_struct *p)
4224{
4225 return p->stime;
4226}
4227#else
4228cputime_t task_utime(struct task_struct *p)
4229{
4230 clock_t utime = cputime_to_clock_t(p->utime),
4231 total = utime + cputime_to_clock_t(p->stime);
4232 u64 temp;
4233
4234 /*
4235 * Use CFS's precise accounting:
4236 */
4237 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4238
4239 if (total) {
4240 temp *= utime;
4241 do_div(temp, total);
4242 }
4243 utime = (clock_t)temp;
4244
4245 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4246 return p->prev_utime;
4247}
4248
4249cputime_t task_stime(struct task_struct *p)
4250{
4251 clock_t stime;
4252
4253 /*
4254 * Use CFS's precise accounting. (we subtract utime from
4255 * the total, to make sure the total observed by userspace
4256 * grows monotonically - apps rely on that):
4257 */
4258 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4259 cputime_to_clock_t(task_utime(p));
4260
4261 if (stime >= 0)
4262 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4263
4264 return p->prev_stime;
4265}
4266#endif
4267
4268inline cputime_t task_gtime(struct task_struct *p)
4269{
4270 return p->gtime;
4271}
4272
4273/*
4274 * This function gets called by the timer code, with HZ frequency.
4275 * We call it with interrupts disabled.
4276 *
4277 * It also gets called by the fork code, when changing the parent's
4278 * timeslices.
4279 */
4280void scheduler_tick(void)
4281{
4282 int cpu = smp_processor_id();
4283 struct rq *rq = cpu_rq(cpu);
4284 struct task_struct *curr = rq->curr;
4285
4286 sched_clock_tick();
4287
4288 spin_lock(&rq->lock);
4289 update_rq_clock(rq);
4290 update_cpu_load(rq);
4291 curr->sched_class->task_tick(rq, curr, 0);
4292 spin_unlock(&rq->lock);
4293
4294#ifdef CONFIG_SMP
4295 rq->idle_at_tick = idle_cpu(cpu);
4296 trigger_load_balance(rq, cpu);
4297#endif
4298}
4299
4300#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4301 defined(CONFIG_PREEMPT_TRACER))
4302
4303static inline unsigned long get_parent_ip(unsigned long addr)
4304{
4305 if (in_lock_functions(addr)) {
4306 addr = CALLER_ADDR2;
4307 if (in_lock_functions(addr))
4308 addr = CALLER_ADDR3;
4309 }
4310 return addr;
4311}
4312
4313void __kprobes add_preempt_count(int val)
4314{
4315#ifdef CONFIG_DEBUG_PREEMPT
4316 /*
4317 * Underflow?
4318 */
4319 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4320 return;
4321#endif
4322 preempt_count() += val;
4323#ifdef CONFIG_DEBUG_PREEMPT
4324 /*
4325 * Spinlock count overflowing soon?
4326 */
4327 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4328 PREEMPT_MASK - 10);
4329#endif
4330 if (preempt_count() == val)
4331 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4332}
4333EXPORT_SYMBOL(add_preempt_count);
4334
4335void __kprobes sub_preempt_count(int val)
4336{
4337#ifdef CONFIG_DEBUG_PREEMPT
4338 /*
4339 * Underflow?
4340 */
4341 if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
4342 return;
4343 /*
4344 * Is the spinlock portion underflowing?
4345 */
4346 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4347 !(preempt_count() & PREEMPT_MASK)))
4348 return;
4349#endif
4350
4351 if (preempt_count() == val)
4352 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4353 preempt_count() -= val;
4354}
4355EXPORT_SYMBOL(sub_preempt_count);
4356
4357#endif
4358
4359/*
4360 * Print scheduling while atomic bug:
4361 */
4362static noinline void __schedule_bug(struct task_struct *prev)
4363{
4364 struct pt_regs *regs = get_irq_regs();
4365
4366 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4367 prev->comm, prev->pid, preempt_count());
4368
4369 debug_show_held_locks(prev);
4370 print_modules();
4371 if (irqs_disabled())
4372 print_irqtrace_events(prev);
4373
4374 if (regs)
4375 show_regs(regs);
4376 else
4377 dump_stack();
4378}
4379
4380/*
4381 * Various schedule()-time debugging checks and statistics:
4382 */
4383static inline void schedule_debug(struct task_struct *prev)
4384{
4385 /*
4386 * Test if we are atomic. Since do_exit() needs to call into
4387 * schedule() atomically, we ignore that path for now.
4388 * Otherwise, whine if we are scheduling when we should not be.
4389 */
4390 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4391 __schedule_bug(prev);
4392
4393 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4394
4395 schedstat_inc(this_rq(), sched_count);
4396#ifdef CONFIG_SCHEDSTATS
4397 if (unlikely(prev->lock_depth >= 0)) {
4398 schedstat_inc(this_rq(), bkl_count);
4399 schedstat_inc(prev, sched_info.bkl_count);
4400 }
4401#endif
4402}
4403
4404/*
4405 * Pick up the highest-prio task:
4406 */
4407static inline struct task_struct *
4408pick_next_task(struct rq *rq, struct task_struct *prev)
4409{
4410 const struct sched_class *class;
4411 struct task_struct *p;
4412
4413 /*
4414 * Optimization: we know that if all tasks are in
4415 * the fair class we can call that function directly:
4416 */
4417 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4418 p = fair_sched_class.pick_next_task(rq);
4419 if (likely(p))
4420 return p;
4421 }
4422
4423 class = sched_class_highest;
4424 for ( ; ; ) {
4425 p = class->pick_next_task(rq);
4426 if (p)
4427 return p;
4428 /*
4429 * Will never be NULL as the idle class always
4430 * returns a non-NULL p:
4431 */
4432 class = class->next;
4433 }
4434}
4435
4436/*
4437 * schedule() is the main scheduler function.
4438 */
4439asmlinkage void __sched schedule(void)
4440{
4441 struct task_struct *prev, *next;
4442 unsigned long *switch_count;
4443 struct rq *rq;
4444 int cpu;
4445
4446need_resched:
4447 preempt_disable();
4448 cpu = smp_processor_id();
4449 rq = cpu_rq(cpu);
4450 rcu_qsctr_inc(cpu);
4451 prev = rq->curr;
4452 switch_count = &prev->nivcsw;
4453
4454 release_kernel_lock(prev);
4455need_resched_nonpreemptible:
4456
4457 schedule_debug(prev);
4458
4459 if (sched_feat(HRTICK))
4460 hrtick_clear(rq);
4461
4462 spin_lock_irq(&rq->lock);
4463 update_rq_clock(rq);
4464 clear_tsk_need_resched(prev);
4465
4466 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4467 if (unlikely(signal_pending_state(prev->state, prev)))
4468 prev->state = TASK_RUNNING;
4469 else
4470 deactivate_task(rq, prev, 1);
4471 switch_count = &prev->nvcsw;
4472 }
4473
4474#ifdef CONFIG_SMP
4475 if (prev->sched_class->pre_schedule)
4476 prev->sched_class->pre_schedule(rq, prev);
4477#endif
4478
4479 if (unlikely(!rq->nr_running))
4480 idle_balance(cpu, rq);
4481
4482 prev->sched_class->put_prev_task(rq, prev);
4483 next = pick_next_task(rq, prev);
4484
4485 if (likely(prev != next)) {
4486 sched_info_switch(prev, next);
4487
4488 rq->nr_switches++;
4489 rq->curr = next;
4490 ++*switch_count;
4491
4492 context_switch(rq, prev, next); /* unlocks the rq */
4493 /*
4494 * the context switch might have flipped the stack from under
4495 * us, hence refresh the local variables.
4496 */
4497 cpu = smp_processor_id();
4498 rq = cpu_rq(cpu);
4499 } else
4500 spin_unlock_irq(&rq->lock);
4501
4502 if (unlikely(reacquire_kernel_lock(current) < 0))
4503 goto need_resched_nonpreemptible;
4504
4505 preempt_enable_no_resched();
4506 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4507 goto need_resched;
4508}
4509EXPORT_SYMBOL(schedule);
4510
4511#ifdef CONFIG_PREEMPT
4512/*
4513 * this is the entry point to schedule() from in-kernel preemption
4514 * off of preempt_enable. Kernel preemptions off return from interrupt
4515 * occur there and call schedule directly.
4516 */
4517asmlinkage void __sched preempt_schedule(void)
4518{
4519 struct thread_info *ti = current_thread_info();
4520
4521 /*
4522 * If there is a non-zero preempt_count or interrupts are disabled,
4523 * we do not want to preempt the current task. Just return..
4524 */
4525 if (likely(ti->preempt_count || irqs_disabled()))
4526 return;
4527
4528 do {
4529 add_preempt_count(PREEMPT_ACTIVE);
4530 schedule();
4531 sub_preempt_count(PREEMPT_ACTIVE);
4532
4533 /*
4534 * Check again in case we missed a preemption opportunity
4535 * between schedule and now.
4536 */
4537 barrier();
4538 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4539}
4540EXPORT_SYMBOL(preempt_schedule);
4541
4542/*
4543 * this is the entry point to schedule() from kernel preemption
4544 * off of irq context.
4545 * Note, that this is called and return with irqs disabled. This will
4546 * protect us against recursive calling from irq.
4547 */
4548asmlinkage void __sched preempt_schedule_irq(void)
4549{
4550 struct thread_info *ti = current_thread_info();
4551
4552 /* Catch callers which need to be fixed */
4553 BUG_ON(ti->preempt_count || !irqs_disabled());
4554
4555 do {
4556 add_preempt_count(PREEMPT_ACTIVE);
4557 local_irq_enable();
4558 schedule();
4559 local_irq_disable();
4560 sub_preempt_count(PREEMPT_ACTIVE);
4561
4562 /*
4563 * Check again in case we missed a preemption opportunity
4564 * between schedule and now.
4565 */
4566 barrier();
4567 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4568}
4569
4570#endif /* CONFIG_PREEMPT */
4571
4572int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4573 void *key)
4574{
4575 return try_to_wake_up(curr->private, mode, sync);
4576}
4577EXPORT_SYMBOL(default_wake_function);
4578
4579/*
4580 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4581 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4582 * number) then we wake all the non-exclusive tasks and one exclusive task.
4583 *
4584 * There are circumstances in which we can try to wake a task which has already
4585 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4586 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4587 */
4588static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4589 int nr_exclusive, int sync, void *key)
4590{
4591 wait_queue_t *curr, *next;
4592
4593 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4594 unsigned flags = curr->flags;
4595
4596 if (curr->func(curr, mode, sync, key) &&
4597 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4598 break;
4599 }
4600}
4601
4602/**
4603 * __wake_up - wake up threads blocked on a waitqueue.
4604 * @q: the waitqueue
4605 * @mode: which threads
4606 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4607 * @key: is directly passed to the wakeup function
4608 */
4609void __wake_up(wait_queue_head_t *q, unsigned int mode,
4610 int nr_exclusive, void *key)
4611{
4612 unsigned long flags;
4613
4614 spin_lock_irqsave(&q->lock, flags);
4615 __wake_up_common(q, mode, nr_exclusive, 0, key);
4616 spin_unlock_irqrestore(&q->lock, flags);
4617}
4618EXPORT_SYMBOL(__wake_up);
4619
4620/*
4621 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4622 */
4623void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4624{
4625 __wake_up_common(q, mode, 1, 0, NULL);
4626}
4627
4628/**
4629 * __wake_up_sync - wake up threads blocked on a waitqueue.
4630 * @q: the waitqueue
4631 * @mode: which threads
4632 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4633 *
4634 * The sync wakeup differs that the waker knows that it will schedule
4635 * away soon, so while the target thread will be woken up, it will not
4636 * be migrated to another CPU - ie. the two threads are 'synchronized'
4637 * with each other. This can prevent needless bouncing between CPUs.
4638 *
4639 * On UP it can prevent extra preemption.
4640 */
4641void
4642__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4643{
4644 unsigned long flags;
4645 int sync = 1;
4646
4647 if (unlikely(!q))
4648 return;
4649
4650 if (unlikely(!nr_exclusive))
4651 sync = 0;
4652
4653 spin_lock_irqsave(&q->lock, flags);
4654 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4655 spin_unlock_irqrestore(&q->lock, flags);
4656}
4657EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4658
4659/**
4660 * complete: - signals a single thread waiting on this completion
4661 * @x: holds the state of this particular completion
4662 *
4663 * This will wake up a single thread waiting on this completion. Threads will be
4664 * awakened in the same order in which they were queued.
4665 *
4666 * See also complete_all(), wait_for_completion() and related routines.
4667 */
4668void complete(struct completion *x)
4669{
4670 unsigned long flags;
4671
4672 spin_lock_irqsave(&x->wait.lock, flags);
4673 x->done++;
4674 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4675 spin_unlock_irqrestore(&x->wait.lock, flags);
4676}
4677EXPORT_SYMBOL(complete);
4678
4679/**
4680 * complete_all: - signals all threads waiting on this completion
4681 * @x: holds the state of this particular completion
4682 *
4683 * This will wake up all threads waiting on this particular completion event.
4684 */
4685void complete_all(struct completion *x)
4686{
4687 unsigned long flags;
4688
4689 spin_lock_irqsave(&x->wait.lock, flags);
4690 x->done += UINT_MAX/2;
4691 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4692 spin_unlock_irqrestore(&x->wait.lock, flags);
4693}
4694EXPORT_SYMBOL(complete_all);
4695
4696static inline long __sched
4697do_wait_for_common(struct completion *x, long timeout, int state)
4698{
4699 if (!x->done) {
4700 DECLARE_WAITQUEUE(wait, current);
4701
4702 wait.flags |= WQ_FLAG_EXCLUSIVE;
4703 __add_wait_queue_tail(&x->wait, &wait);
4704 do {
4705 if (signal_pending_state(state, current)) {
4706 timeout = -ERESTARTSYS;
4707 break;
4708 }
4709 __set_current_state(state);
4710 spin_unlock_irq(&x->wait.lock);
4711 timeout = schedule_timeout(timeout);
4712 spin_lock_irq(&x->wait.lock);
4713 } while (!x->done && timeout);
4714 __remove_wait_queue(&x->wait, &wait);
4715 if (!x->done)
4716 return timeout;
4717 }
4718 x->done--;
4719 return timeout ?: 1;
4720}
4721
4722static long __sched
4723wait_for_common(struct completion *x, long timeout, int state)
4724{
4725 might_sleep();
4726
4727 spin_lock_irq(&x->wait.lock);
4728 timeout = do_wait_for_common(x, timeout, state);
4729 spin_unlock_irq(&x->wait.lock);
4730 return timeout;
4731}
4732
4733/**
4734 * wait_for_completion: - waits for completion of a task
4735 * @x: holds the state of this particular completion
4736 *
4737 * This waits to be signaled for completion of a specific task. It is NOT
4738 * interruptible and there is no timeout.
4739 *
4740 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4741 * and interrupt capability. Also see complete().
4742 */
4743void __sched wait_for_completion(struct completion *x)
4744{
4745 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4746}
4747EXPORT_SYMBOL(wait_for_completion);
4748
4749/**
4750 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4751 * @x: holds the state of this particular completion
4752 * @timeout: timeout value in jiffies
4753 *
4754 * This waits for either a completion of a specific task to be signaled or for a
4755 * specified timeout to expire. The timeout is in jiffies. It is not
4756 * interruptible.
4757 */
4758unsigned long __sched
4759wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4760{
4761 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4762}
4763EXPORT_SYMBOL(wait_for_completion_timeout);
4764
4765/**
4766 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4767 * @x: holds the state of this particular completion
4768 *
4769 * This waits for completion of a specific task to be signaled. It is
4770 * interruptible.
4771 */
4772int __sched wait_for_completion_interruptible(struct completion *x)
4773{
4774 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4775 if (t == -ERESTARTSYS)
4776 return t;
4777 return 0;
4778}
4779EXPORT_SYMBOL(wait_for_completion_interruptible);
4780
4781/**
4782 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4783 * @x: holds the state of this particular completion
4784 * @timeout: timeout value in jiffies
4785 *
4786 * This waits for either a completion of a specific task to be signaled or for a
4787 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4788 */
4789unsigned long __sched
4790wait_for_completion_interruptible_timeout(struct completion *x,
4791 unsigned long timeout)
4792{
4793 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4794}
4795EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4796
4797/**
4798 * wait_for_completion_killable: - waits for completion of a task (killable)
4799 * @x: holds the state of this particular completion
4800 *
4801 * This waits to be signaled for completion of a specific task. It can be
4802 * interrupted by a kill signal.
4803 */
4804int __sched wait_for_completion_killable(struct completion *x)
4805{
4806 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4807 if (t == -ERESTARTSYS)
4808 return t;
4809 return 0;
4810}
4811EXPORT_SYMBOL(wait_for_completion_killable);
4812
4813/**
4814 * try_wait_for_completion - try to decrement a completion without blocking
4815 * @x: completion structure
4816 *
4817 * Returns: 0 if a decrement cannot be done without blocking
4818 * 1 if a decrement succeeded.
4819 *
4820 * If a completion is being used as a counting completion,
4821 * attempt to decrement the counter without blocking. This
4822 * enables us to avoid waiting if the resource the completion
4823 * is protecting is not available.
4824 */
4825bool try_wait_for_completion(struct completion *x)
4826{
4827 int ret = 1;
4828
4829 spin_lock_irq(&x->wait.lock);
4830 if (!x->done)
4831 ret = 0;
4832 else
4833 x->done--;
4834 spin_unlock_irq(&x->wait.lock);
4835 return ret;
4836}
4837EXPORT_SYMBOL(try_wait_for_completion);
4838
4839/**
4840 * completion_done - Test to see if a completion has any waiters
4841 * @x: completion structure
4842 *
4843 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4844 * 1 if there are no waiters.
4845 *
4846 */
4847bool completion_done(struct completion *x)
4848{
4849 int ret = 1;
4850
4851 spin_lock_irq(&x->wait.lock);
4852 if (!x->done)
4853 ret = 0;
4854 spin_unlock_irq(&x->wait.lock);
4855 return ret;
4856}
4857EXPORT_SYMBOL(completion_done);
4858
4859static long __sched
4860sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4861{
4862 unsigned long flags;
4863 wait_queue_t wait;
4864
4865 init_waitqueue_entry(&wait, current);
4866
4867 __set_current_state(state);
4868
4869 spin_lock_irqsave(&q->lock, flags);
4870 __add_wait_queue(q, &wait);
4871 spin_unlock(&q->lock);
4872 timeout = schedule_timeout(timeout);
4873 spin_lock_irq(&q->lock);
4874 __remove_wait_queue(q, &wait);
4875 spin_unlock_irqrestore(&q->lock, flags);
4876
4877 return timeout;
4878}
4879
4880void __sched interruptible_sleep_on(wait_queue_head_t *q)
4881{
4882 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4883}
4884EXPORT_SYMBOL(interruptible_sleep_on);
4885
4886long __sched
4887interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4888{
4889 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4890}
4891EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4892
4893void __sched sleep_on(wait_queue_head_t *q)
4894{
4895 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4896}
4897EXPORT_SYMBOL(sleep_on);
4898
4899long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4900{
4901 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4902}
4903EXPORT_SYMBOL(sleep_on_timeout);
4904
4905#ifdef CONFIG_RT_MUTEXES
4906
4907/*
4908 * rt_mutex_setprio - set the current priority of a task
4909 * @p: task
4910 * @prio: prio value (kernel-internal form)
4911 *
4912 * This function changes the 'effective' priority of a task. It does
4913 * not touch ->normal_prio like __setscheduler().
4914 *
4915 * Used by the rt_mutex code to implement priority inheritance logic.
4916 */
4917void rt_mutex_setprio(struct task_struct *p, int prio)
4918{
4919 unsigned long flags;
4920 int oldprio, on_rq, running;
4921 struct rq *rq;
4922 const struct sched_class *prev_class = p->sched_class;
4923
4924 BUG_ON(prio < 0 || prio > MAX_PRIO);
4925
4926 rq = task_rq_lock(p, &flags);
4927 update_rq_clock(rq);
4928
4929 oldprio = p->prio;
4930 on_rq = p->se.on_rq;
4931 running = task_current(rq, p);
4932 if (on_rq)
4933 dequeue_task(rq, p, 0);
4934 if (running)
4935 p->sched_class->put_prev_task(rq, p);
4936
4937 if (rt_prio(prio))
4938 p->sched_class = &rt_sched_class;
4939 else
4940 p->sched_class = &fair_sched_class;
4941
4942 p->prio = prio;
4943
4944 if (running)
4945 p->sched_class->set_curr_task(rq);
4946 if (on_rq) {
4947 enqueue_task(rq, p, 0);
4948
4949 check_class_changed(rq, p, prev_class, oldprio, running);
4950 }
4951 task_rq_unlock(rq, &flags);
4952}
4953
4954#endif
4955
4956void set_user_nice(struct task_struct *p, long nice)
4957{
4958 int old_prio, delta, on_rq;
4959 unsigned long flags;
4960 struct rq *rq;
4961
4962 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4963 return;
4964 /*
4965 * We have to be careful, if called from sys_setpriority(),
4966 * the task might be in the middle of scheduling on another CPU.
4967 */
4968 rq = task_rq_lock(p, &flags);
4969 update_rq_clock(rq);
4970 /*
4971 * The RT priorities are set via sched_setscheduler(), but we still
4972 * allow the 'normal' nice value to be set - but as expected
4973 * it wont have any effect on scheduling until the task is
4974 * SCHED_FIFO/SCHED_RR:
4975 */
4976 if (task_has_rt_policy(p)) {
4977 p->static_prio = NICE_TO_PRIO(nice);
4978 goto out_unlock;
4979 }
4980 on_rq = p->se.on_rq;
4981 if (on_rq)
4982 dequeue_task(rq, p, 0);
4983
4984 p->static_prio = NICE_TO_PRIO(nice);
4985 set_load_weight(p);
4986 old_prio = p->prio;
4987 p->prio = effective_prio(p);
4988 delta = p->prio - old_prio;
4989
4990 if (on_rq) {
4991 enqueue_task(rq, p, 0);
4992 /*
4993 * If the task increased its priority or is running and
4994 * lowered its priority, then reschedule its CPU:
4995 */
4996 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4997 resched_task(rq->curr);
4998 }
4999out_unlock:
5000 task_rq_unlock(rq, &flags);
5001}
5002EXPORT_SYMBOL(set_user_nice);
5003
5004/*
5005 * can_nice - check if a task can reduce its nice value
5006 * @p: task
5007 * @nice: nice value
5008 */
5009int can_nice(const struct task_struct *p, const int nice)
5010{
5011 /* convert nice value [19,-20] to rlimit style value [1,40] */
5012 int nice_rlim = 20 - nice;
5013
5014 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5015 capable(CAP_SYS_NICE));
5016}
5017
5018#ifdef __ARCH_WANT_SYS_NICE
5019
5020/*
5021 * sys_nice - change the priority of the current process.
5022 * @increment: priority increment
5023 *
5024 * sys_setpriority is a more generic, but much slower function that
5025 * does similar things.
5026 */
5027asmlinkage long sys_nice(int increment)
5028{
5029 long nice, retval;
5030
5031 /*
5032 * Setpriority might change our priority at the same moment.
5033 * We don't have to worry. Conceptually one call occurs first
5034 * and we have a single winner.
5035 */
5036 if (increment < -40)
5037 increment = -40;
5038 if (increment > 40)
5039 increment = 40;
5040
5041 nice = PRIO_TO_NICE(current->static_prio) + increment;
5042 if (nice < -20)
5043 nice = -20;
5044 if (nice > 19)
5045 nice = 19;
5046
5047 if (increment < 0 && !can_nice(current, nice))
5048 return -EPERM;
5049
5050 retval = security_task_setnice(current, nice);
5051 if (retval)
5052 return retval;
5053
5054 set_user_nice(current, nice);
5055 return 0;
5056}
5057
5058#endif
5059
5060/**
5061 * task_prio - return the priority value of a given task.
5062 * @p: the task in question.
5063 *
5064 * This is the priority value as seen by users in /proc.
5065 * RT tasks are offset by -200. Normal tasks are centered
5066 * around 0, value goes from -16 to +15.
5067 */
5068int task_prio(const struct task_struct *p)
5069{
5070 return p->prio - MAX_RT_PRIO;
5071}
5072
5073/**
5074 * task_nice - return the nice value of a given task.
5075 * @p: the task in question.
5076 */
5077int task_nice(const struct task_struct *p)
5078{
5079 return TASK_NICE(p);
5080}
5081EXPORT_SYMBOL(task_nice);
5082
5083/**
5084 * idle_cpu - is a given cpu idle currently?
5085 * @cpu: the processor in question.
5086 */
5087int idle_cpu(int cpu)
5088{
5089 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5090}
5091
5092/**
5093 * idle_task - return the idle task for a given cpu.
5094 * @cpu: the processor in question.
5095 */
5096struct task_struct *idle_task(int cpu)
5097{
5098 return cpu_rq(cpu)->idle;
5099}
5100
5101/**
5102 * find_process_by_pid - find a process with a matching PID value.
5103 * @pid: the pid in question.
5104 */
5105static struct task_struct *find_process_by_pid(pid_t pid)
5106{
5107 return pid ? find_task_by_vpid(pid) : current;
5108}
5109
5110/* Actually do priority change: must hold rq lock. */
5111static void
5112__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5113{
5114 BUG_ON(p->se.on_rq);
5115
5116 p->policy = policy;
5117 switch (p->policy) {
5118 case SCHED_NORMAL:
5119 case SCHED_BATCH:
5120 case SCHED_IDLE:
5121 p->sched_class = &fair_sched_class;
5122 break;
5123 case SCHED_FIFO:
5124 case SCHED_RR:
5125 p->sched_class = &rt_sched_class;
5126 break;
5127 }
5128
5129 p->rt_priority = prio;
5130 p->normal_prio = normal_prio(p);
5131 /* we are holding p->pi_lock already */
5132 p->prio = rt_mutex_getprio(p);
5133 set_load_weight(p);
5134}
5135
5136static int __sched_setscheduler(struct task_struct *p, int policy,
5137 struct sched_param *param, bool user)
5138{
5139 int retval, oldprio, oldpolicy = -1, on_rq, running;
5140 unsigned long flags;
5141 const struct sched_class *prev_class = p->sched_class;
5142 struct rq *rq;
5143
5144 /* may grab non-irq protected spin_locks */
5145 BUG_ON(in_interrupt());
5146recheck:
5147 /* double check policy once rq lock held */
5148 if (policy < 0)
5149 policy = oldpolicy = p->policy;
5150 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5151 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5152 policy != SCHED_IDLE)
5153 return -EINVAL;
5154 /*
5155 * Valid priorities for SCHED_FIFO and SCHED_RR are
5156 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5157 * SCHED_BATCH and SCHED_IDLE is 0.
5158 */
5159 if (param->sched_priority < 0 ||
5160 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5161 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5162 return -EINVAL;
5163 if (rt_policy(policy) != (param->sched_priority != 0))
5164 return -EINVAL;
5165
5166 /*
5167 * Allow unprivileged RT tasks to decrease priority:
5168 */
5169 if (user && !capable(CAP_SYS_NICE)) {
5170 if (rt_policy(policy)) {
5171 unsigned long rlim_rtprio;
5172
5173 if (!lock_task_sighand(p, &flags))
5174 return -ESRCH;
5175 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5176 unlock_task_sighand(p, &flags);
5177
5178 /* can't set/change the rt policy */
5179 if (policy != p->policy && !rlim_rtprio)
5180 return -EPERM;
5181
5182 /* can't increase priority */
5183 if (param->sched_priority > p->rt_priority &&
5184 param->sched_priority > rlim_rtprio)
5185 return -EPERM;
5186 }
5187 /*
5188 * Like positive nice levels, dont allow tasks to
5189 * move out of SCHED_IDLE either:
5190 */
5191 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5192 return -EPERM;
5193
5194 /* can't change other user's priorities */
5195 if ((current->euid != p->euid) &&
5196 (current->euid != p->uid))
5197 return -EPERM;
5198 }
5199
5200 if (user) {
5201#ifdef CONFIG_RT_GROUP_SCHED
5202 /*
5203 * Do not allow realtime tasks into groups that have no runtime
5204 * assigned.
5205 */
5206 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5207 task_group(p)->rt_bandwidth.rt_runtime == 0)
5208 return -EPERM;
5209#endif
5210
5211 retval = security_task_setscheduler(p, policy, param);
5212 if (retval)
5213 return retval;
5214 }
5215
5216 /*
5217 * make sure no PI-waiters arrive (or leave) while we are
5218 * changing the priority of the task:
5219 */
5220 spin_lock_irqsave(&p->pi_lock, flags);
5221 /*
5222 * To be able to change p->policy safely, the apropriate
5223 * runqueue lock must be held.
5224 */
5225 rq = __task_rq_lock(p);
5226 /* recheck policy now with rq lock held */
5227 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5228 policy = oldpolicy = -1;
5229 __task_rq_unlock(rq);
5230 spin_unlock_irqrestore(&p->pi_lock, flags);
5231 goto recheck;
5232 }
5233 update_rq_clock(rq);
5234 on_rq = p->se.on_rq;
5235 running = task_current(rq, p);
5236 if (on_rq)
5237 deactivate_task(rq, p, 0);
5238 if (running)
5239 p->sched_class->put_prev_task(rq, p);
5240
5241 oldprio = p->prio;
5242 __setscheduler(rq, p, policy, param->sched_priority);
5243
5244 if (running)
5245 p->sched_class->set_curr_task(rq);
5246 if (on_rq) {
5247 activate_task(rq, p, 0);
5248
5249 check_class_changed(rq, p, prev_class, oldprio, running);
5250 }
5251 __task_rq_unlock(rq);
5252 spin_unlock_irqrestore(&p->pi_lock, flags);
5253
5254 rt_mutex_adjust_pi(p);
5255
5256 return 0;
5257}
5258
5259/**
5260 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5261 * @p: the task in question.
5262 * @policy: new policy.
5263 * @param: structure containing the new RT priority.
5264 *
5265 * NOTE that the task may be already dead.
5266 */
5267int sched_setscheduler(struct task_struct *p, int policy,
5268 struct sched_param *param)
5269{
5270 return __sched_setscheduler(p, policy, param, true);
5271}
5272EXPORT_SYMBOL_GPL(sched_setscheduler);
5273
5274/**
5275 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5276 * @p: the task in question.
5277 * @policy: new policy.
5278 * @param: structure containing the new RT priority.
5279 *
5280 * Just like sched_setscheduler, only don't bother checking if the
5281 * current context has permission. For example, this is needed in
5282 * stop_machine(): we create temporary high priority worker threads,
5283 * but our caller might not have that capability.
5284 */
5285int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5286 struct sched_param *param)
5287{
5288 return __sched_setscheduler(p, policy, param, false);
5289}
5290
5291static int
5292do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5293{
5294 struct sched_param lparam;
5295 struct task_struct *p;
5296 int retval;
5297
5298 if (!param || pid < 0)
5299 return -EINVAL;
5300 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5301 return -EFAULT;
5302
5303 rcu_read_lock();
5304 retval = -ESRCH;
5305 p = find_process_by_pid(pid);
5306 if (p != NULL)
5307 retval = sched_setscheduler(p, policy, &lparam);
5308 rcu_read_unlock();
5309
5310 return retval;
5311}
5312
5313/**
5314 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5315 * @pid: the pid in question.
5316 * @policy: new policy.
5317 * @param: structure containing the new RT priority.
5318 */
5319asmlinkage long
5320sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5321{
5322 /* negative values for policy are not valid */
5323 if (policy < 0)
5324 return -EINVAL;
5325
5326 return do_sched_setscheduler(pid, policy, param);
5327}
5328
5329/**
5330 * sys_sched_setparam - set/change the RT priority of a thread
5331 * @pid: the pid in question.
5332 * @param: structure containing the new RT priority.
5333 */
5334asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5335{
5336 return do_sched_setscheduler(pid, -1, param);
5337}
5338
5339/**
5340 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5341 * @pid: the pid in question.
5342 */
5343asmlinkage long sys_sched_getscheduler(pid_t pid)
5344{
5345 struct task_struct *p;
5346 int retval;
5347
5348 if (pid < 0)
5349 return -EINVAL;
5350
5351 retval = -ESRCH;
5352 read_lock(&tasklist_lock);
5353 p = find_process_by_pid(pid);
5354 if (p) {
5355 retval = security_task_getscheduler(p);
5356 if (!retval)
5357 retval = p->policy;
5358 }
5359 read_unlock(&tasklist_lock);
5360 return retval;
5361}
5362
5363/**
5364 * sys_sched_getscheduler - get the RT priority of a thread
5365 * @pid: the pid in question.
5366 * @param: structure containing the RT priority.
5367 */
5368asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5369{
5370 struct sched_param lp;
5371 struct task_struct *p;
5372 int retval;
5373
5374 if (!param || pid < 0)
5375 return -EINVAL;
5376
5377 read_lock(&tasklist_lock);
5378 p = find_process_by_pid(pid);
5379 retval = -ESRCH;
5380 if (!p)
5381 goto out_unlock;
5382
5383 retval = security_task_getscheduler(p);
5384 if (retval)
5385 goto out_unlock;
5386
5387 lp.sched_priority = p->rt_priority;
5388 read_unlock(&tasklist_lock);
5389
5390 /*
5391 * This one might sleep, we cannot do it with a spinlock held ...
5392 */
5393 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5394
5395 return retval;
5396
5397out_unlock:
5398 read_unlock(&tasklist_lock);
5399 return retval;
5400}
5401
5402long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5403{
5404 cpumask_var_t cpus_allowed, new_mask;
5405 struct task_struct *p;
5406 int retval;
5407
5408 get_online_cpus();
5409 read_lock(&tasklist_lock);
5410
5411 p = find_process_by_pid(pid);
5412 if (!p) {
5413 read_unlock(&tasklist_lock);
5414 put_online_cpus();
5415 return -ESRCH;
5416 }
5417
5418 /*
5419 * It is not safe to call set_cpus_allowed with the
5420 * tasklist_lock held. We will bump the task_struct's
5421 * usage count and then drop tasklist_lock.
5422 */
5423 get_task_struct(p);
5424 read_unlock(&tasklist_lock);
5425
5426 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5427 retval = -ENOMEM;
5428 goto out_put_task;
5429 }
5430 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5431 retval = -ENOMEM;
5432 goto out_free_cpus_allowed;
5433 }
5434 retval = -EPERM;
5435 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5436 !capable(CAP_SYS_NICE))
5437 goto out_unlock;
5438
5439 retval = security_task_setscheduler(p, 0, NULL);
5440 if (retval)
5441 goto out_unlock;
5442
5443 cpuset_cpus_allowed(p, cpus_allowed);
5444 cpumask_and(new_mask, in_mask, cpus_allowed);
5445 again:
5446 retval = set_cpus_allowed_ptr(p, new_mask);
5447
5448 if (!retval) {
5449 cpuset_cpus_allowed(p, cpus_allowed);
5450 if (!cpumask_subset(new_mask, cpus_allowed)) {
5451 /*
5452 * We must have raced with a concurrent cpuset
5453 * update. Just reset the cpus_allowed to the
5454 * cpuset's cpus_allowed
5455 */
5456 cpumask_copy(new_mask, cpus_allowed);
5457 goto again;
5458 }
5459 }
5460out_unlock:
5461 free_cpumask_var(new_mask);
5462out_free_cpus_allowed:
5463 free_cpumask_var(cpus_allowed);
5464out_put_task:
5465 put_task_struct(p);
5466 put_online_cpus();
5467 return retval;
5468}
5469
5470static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5471 struct cpumask *new_mask)
5472{
5473 if (len < cpumask_size())
5474 cpumask_clear(new_mask);
5475 else if (len > cpumask_size())
5476 len = cpumask_size();
5477
5478 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5479}
5480
5481/**
5482 * sys_sched_setaffinity - set the cpu affinity of a process
5483 * @pid: pid of the process
5484 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5485 * @user_mask_ptr: user-space pointer to the new cpu mask
5486 */
5487asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5488 unsigned long __user *user_mask_ptr)
5489{
5490 cpumask_var_t new_mask;
5491 int retval;
5492
5493 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5494 return -ENOMEM;
5495
5496 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5497 if (retval == 0)
5498 retval = sched_setaffinity(pid, new_mask);
5499 free_cpumask_var(new_mask);
5500 return retval;
5501}
5502
5503long sched_getaffinity(pid_t pid, struct cpumask *mask)
5504{
5505 struct task_struct *p;
5506 int retval;
5507
5508 get_online_cpus();
5509 read_lock(&tasklist_lock);
5510
5511 retval = -ESRCH;
5512 p = find_process_by_pid(pid);
5513 if (!p)
5514 goto out_unlock;
5515
5516 retval = security_task_getscheduler(p);
5517 if (retval)
5518 goto out_unlock;
5519
5520 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5521
5522out_unlock:
5523 read_unlock(&tasklist_lock);
5524 put_online_cpus();
5525
5526 return retval;
5527}
5528
5529/**
5530 * sys_sched_getaffinity - get the cpu affinity of a process
5531 * @pid: pid of the process
5532 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5533 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5534 */
5535asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5536 unsigned long __user *user_mask_ptr)
5537{
5538 int ret;
5539 cpumask_var_t mask;
5540
5541 if (len < cpumask_size())
5542 return -EINVAL;
5543
5544 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5545 return -ENOMEM;
5546
5547 ret = sched_getaffinity(pid, mask);
5548 if (ret == 0) {
5549 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5550 ret = -EFAULT;
5551 else
5552 ret = cpumask_size();
5553 }
5554 free_cpumask_var(mask);
5555
5556 return ret;
5557}
5558
5559/**
5560 * sys_sched_yield - yield the current processor to other threads.
5561 *
5562 * This function yields the current CPU to other tasks. If there are no
5563 * other threads running on this CPU then this function will return.
5564 */
5565asmlinkage long sys_sched_yield(void)
5566{
5567 struct rq *rq = this_rq_lock();
5568
5569 schedstat_inc(rq, yld_count);
5570 current->sched_class->yield_task(rq);
5571
5572 /*
5573 * Since we are going to call schedule() anyway, there's
5574 * no need to preempt or enable interrupts:
5575 */
5576 __release(rq->lock);
5577 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5578 _raw_spin_unlock(&rq->lock);
5579 preempt_enable_no_resched();
5580
5581 schedule();
5582
5583 return 0;
5584}
5585
5586static void __cond_resched(void)
5587{
5588#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5589 __might_sleep(__FILE__, __LINE__);
5590#endif
5591 /*
5592 * The BKS might be reacquired before we have dropped
5593 * PREEMPT_ACTIVE, which could trigger a second
5594 * cond_resched() call.
5595 */
5596 do {
5597 add_preempt_count(PREEMPT_ACTIVE);
5598 schedule();
5599 sub_preempt_count(PREEMPT_ACTIVE);
5600 } while (need_resched());
5601}
5602
5603int __sched _cond_resched(void)
5604{
5605 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5606 system_state == SYSTEM_RUNNING) {
5607 __cond_resched();
5608 return 1;
5609 }
5610 return 0;
5611}
5612EXPORT_SYMBOL(_cond_resched);
5613
5614/*
5615 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5616 * call schedule, and on return reacquire the lock.
5617 *
5618 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5619 * operations here to prevent schedule() from being called twice (once via
5620 * spin_unlock(), once by hand).
5621 */
5622int cond_resched_lock(spinlock_t *lock)
5623{
5624 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5625 int ret = 0;
5626
5627 if (spin_needbreak(lock) || resched) {
5628 spin_unlock(lock);
5629 if (resched && need_resched())
5630 __cond_resched();
5631 else
5632 cpu_relax();
5633 ret = 1;
5634 spin_lock(lock);
5635 }
5636 return ret;
5637}
5638EXPORT_SYMBOL(cond_resched_lock);
5639
5640int __sched cond_resched_softirq(void)
5641{
5642 BUG_ON(!in_softirq());
5643
5644 if (need_resched() && system_state == SYSTEM_RUNNING) {
5645 local_bh_enable();
5646 __cond_resched();
5647 local_bh_disable();
5648 return 1;
5649 }
5650 return 0;
5651}
5652EXPORT_SYMBOL(cond_resched_softirq);
5653
5654/**
5655 * yield - yield the current processor to other threads.
5656 *
5657 * This is a shortcut for kernel-space yielding - it marks the
5658 * thread runnable and calls sys_sched_yield().
5659 */
5660void __sched yield(void)
5661{
5662 set_current_state(TASK_RUNNING);
5663 sys_sched_yield();
5664}
5665EXPORT_SYMBOL(yield);
5666
5667/*
5668 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5669 * that process accounting knows that this is a task in IO wait state.
5670 *
5671 * But don't do that if it is a deliberate, throttling IO wait (this task
5672 * has set its backing_dev_info: the queue against which it should throttle)
5673 */
5674void __sched io_schedule(void)
5675{
5676 struct rq *rq = &__raw_get_cpu_var(runqueues);
5677
5678 delayacct_blkio_start();
5679 atomic_inc(&rq->nr_iowait);
5680 schedule();
5681 atomic_dec(&rq->nr_iowait);
5682 delayacct_blkio_end();
5683}
5684EXPORT_SYMBOL(io_schedule);
5685
5686long __sched io_schedule_timeout(long timeout)
5687{
5688 struct rq *rq = &__raw_get_cpu_var(runqueues);
5689 long ret;
5690
5691 delayacct_blkio_start();
5692 atomic_inc(&rq->nr_iowait);
5693 ret = schedule_timeout(timeout);
5694 atomic_dec(&rq->nr_iowait);
5695 delayacct_blkio_end();
5696 return ret;
5697}
5698
5699/**
5700 * sys_sched_get_priority_max - return maximum RT priority.
5701 * @policy: scheduling class.
5702 *
5703 * this syscall returns the maximum rt_priority that can be used
5704 * by a given scheduling class.
5705 */
5706asmlinkage long sys_sched_get_priority_max(int policy)
5707{
5708 int ret = -EINVAL;
5709
5710 switch (policy) {
5711 case SCHED_FIFO:
5712 case SCHED_RR:
5713 ret = MAX_USER_RT_PRIO-1;
5714 break;
5715 case SCHED_NORMAL:
5716 case SCHED_BATCH:
5717 case SCHED_IDLE:
5718 ret = 0;
5719 break;
5720 }
5721 return ret;
5722}
5723
5724/**
5725 * sys_sched_get_priority_min - return minimum RT priority.
5726 * @policy: scheduling class.
5727 *
5728 * this syscall returns the minimum rt_priority that can be used
5729 * by a given scheduling class.
5730 */
5731asmlinkage long sys_sched_get_priority_min(int policy)
5732{
5733 int ret = -EINVAL;
5734
5735 switch (policy) {
5736 case SCHED_FIFO:
5737 case SCHED_RR:
5738 ret = 1;
5739 break;
5740 case SCHED_NORMAL:
5741 case SCHED_BATCH:
5742 case SCHED_IDLE:
5743 ret = 0;
5744 }
5745 return ret;
5746}
5747
5748/**
5749 * sys_sched_rr_get_interval - return the default timeslice of a process.
5750 * @pid: pid of the process.
5751 * @interval: userspace pointer to the timeslice value.
5752 *
5753 * this syscall writes the default timeslice value of a given process
5754 * into the user-space timespec buffer. A value of '0' means infinity.
5755 */
5756asmlinkage
5757long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5758{
5759 struct task_struct *p;
5760 unsigned int time_slice;
5761 int retval;
5762 struct timespec t;
5763
5764 if (pid < 0)
5765 return -EINVAL;
5766
5767 retval = -ESRCH;
5768 read_lock(&tasklist_lock);
5769 p = find_process_by_pid(pid);
5770 if (!p)
5771 goto out_unlock;
5772
5773 retval = security_task_getscheduler(p);
5774 if (retval)
5775 goto out_unlock;
5776
5777 /*
5778 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5779 * tasks that are on an otherwise idle runqueue:
5780 */
5781 time_slice = 0;
5782 if (p->policy == SCHED_RR) {
5783 time_slice = DEF_TIMESLICE;
5784 } else if (p->policy != SCHED_FIFO) {
5785 struct sched_entity *se = &p->se;
5786 unsigned long flags;
5787 struct rq *rq;
5788
5789 rq = task_rq_lock(p, &flags);
5790 if (rq->cfs.load.weight)
5791 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5792 task_rq_unlock(rq, &flags);
5793 }
5794 read_unlock(&tasklist_lock);
5795 jiffies_to_timespec(time_slice, &t);
5796 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5797 return retval;
5798
5799out_unlock:
5800 read_unlock(&tasklist_lock);
5801 return retval;
5802}
5803
5804static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5805
5806void sched_show_task(struct task_struct *p)
5807{
5808 unsigned long free = 0;
5809 unsigned state;
5810
5811 state = p->state ? __ffs(p->state) + 1 : 0;
5812 printk(KERN_INFO "%-13.13s %c", p->comm,
5813 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5814#if BITS_PER_LONG == 32
5815 if (state == TASK_RUNNING)
5816 printk(KERN_CONT " running ");
5817 else
5818 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5819#else
5820 if (state == TASK_RUNNING)
5821 printk(KERN_CONT " running task ");
5822 else
5823 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5824#endif
5825#ifdef CONFIG_DEBUG_STACK_USAGE
5826 {
5827 unsigned long *n = end_of_stack(p);
5828 while (!*n)
5829 n++;
5830 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5831 }
5832#endif
5833 printk(KERN_CONT "%5lu %5d %6d\n", free,
5834 task_pid_nr(p), task_pid_nr(p->real_parent));
5835
5836 show_stack(p, NULL);
5837}
5838
5839void show_state_filter(unsigned long state_filter)
5840{
5841 struct task_struct *g, *p;
5842
5843#if BITS_PER_LONG == 32
5844 printk(KERN_INFO
5845 " task PC stack pid father\n");
5846#else
5847 printk(KERN_INFO
5848 " task PC stack pid father\n");
5849#endif
5850 read_lock(&tasklist_lock);
5851 do_each_thread(g, p) {
5852 /*
5853 * reset the NMI-timeout, listing all files on a slow
5854 * console might take alot of time:
5855 */
5856 touch_nmi_watchdog();
5857 if (!state_filter || (p->state & state_filter))
5858 sched_show_task(p);
5859 } while_each_thread(g, p);
5860
5861 touch_all_softlockup_watchdogs();
5862
5863#ifdef CONFIG_SCHED_DEBUG
5864 sysrq_sched_debug_show();
5865#endif
5866 read_unlock(&tasklist_lock);
5867 /*
5868 * Only show locks if all tasks are dumped:
5869 */
5870 if (state_filter == -1)
5871 debug_show_all_locks();
5872}
5873
5874void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5875{
5876 idle->sched_class = &idle_sched_class;
5877}
5878
5879/**
5880 * init_idle - set up an idle thread for a given CPU
5881 * @idle: task in question
5882 * @cpu: cpu the idle task belongs to
5883 *
5884 * NOTE: this function does not set the idle thread's NEED_RESCHED
5885 * flag, to make booting more robust.
5886 */
5887void __cpuinit init_idle(struct task_struct *idle, int cpu)
5888{
5889 struct rq *rq = cpu_rq(cpu);
5890 unsigned long flags;
5891
5892 spin_lock_irqsave(&rq->lock, flags);
5893
5894 __sched_fork(idle);
5895 idle->se.exec_start = sched_clock();
5896
5897 idle->prio = idle->normal_prio = MAX_PRIO;
5898 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5899 __set_task_cpu(idle, cpu);
5900
5901 rq->curr = rq->idle = idle;
5902#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5903 idle->oncpu = 1;
5904#endif
5905 spin_unlock_irqrestore(&rq->lock, flags);
5906
5907 /* Set the preempt count _outside_ the spinlocks! */
5908#if defined(CONFIG_PREEMPT)
5909 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5910#else
5911 task_thread_info(idle)->preempt_count = 0;
5912#endif
5913 /*
5914 * The idle tasks have their own, simple scheduling class:
5915 */
5916 idle->sched_class = &idle_sched_class;
5917 ftrace_graph_init_task(idle);
5918}
5919
5920/*
5921 * In a system that switches off the HZ timer nohz_cpu_mask
5922 * indicates which cpus entered this state. This is used
5923 * in the rcu update to wait only for active cpus. For system
5924 * which do not switch off the HZ timer nohz_cpu_mask should
5925 * always be CPU_BITS_NONE.
5926 */
5927cpumask_var_t nohz_cpu_mask;
5928
5929/*
5930 * Increase the granularity value when there are more CPUs,
5931 * because with more CPUs the 'effective latency' as visible
5932 * to users decreases. But the relationship is not linear,
5933 * so pick a second-best guess by going with the log2 of the
5934 * number of CPUs.
5935 *
5936 * This idea comes from the SD scheduler of Con Kolivas:
5937 */
5938static inline void sched_init_granularity(void)
5939{
5940 unsigned int factor = 1 + ilog2(num_online_cpus());
5941 const unsigned long limit = 200000000;
5942
5943 sysctl_sched_min_granularity *= factor;
5944 if (sysctl_sched_min_granularity > limit)
5945 sysctl_sched_min_granularity = limit;
5946
5947 sysctl_sched_latency *= factor;
5948 if (sysctl_sched_latency > limit)
5949 sysctl_sched_latency = limit;
5950
5951 sysctl_sched_wakeup_granularity *= factor;
5952
5953 sysctl_sched_shares_ratelimit *= factor;
5954}
5955
5956#ifdef CONFIG_SMP
5957/*
5958 * This is how migration works:
5959 *
5960 * 1) we queue a struct migration_req structure in the source CPU's
5961 * runqueue and wake up that CPU's migration thread.
5962 * 2) we down() the locked semaphore => thread blocks.
5963 * 3) migration thread wakes up (implicitly it forces the migrated
5964 * thread off the CPU)
5965 * 4) it gets the migration request and checks whether the migrated
5966 * task is still in the wrong runqueue.
5967 * 5) if it's in the wrong runqueue then the migration thread removes
5968 * it and puts it into the right queue.
5969 * 6) migration thread up()s the semaphore.
5970 * 7) we wake up and the migration is done.
5971 */
5972
5973/*
5974 * Change a given task's CPU affinity. Migrate the thread to a
5975 * proper CPU and schedule it away if the CPU it's executing on
5976 * is removed from the allowed bitmask.
5977 *
5978 * NOTE: the caller must have a valid reference to the task, the
5979 * task must not exit() & deallocate itself prematurely. The
5980 * call is not atomic; no spinlocks may be held.
5981 */
5982int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5983{
5984 struct migration_req req;
5985 unsigned long flags;
5986 struct rq *rq;
5987 int ret = 0;
5988
5989 rq = task_rq_lock(p, &flags);
5990 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
5991 ret = -EINVAL;
5992 goto out;
5993 }
5994
5995 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5996 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5997 ret = -EINVAL;
5998 goto out;
5999 }
6000
6001 if (p->sched_class->set_cpus_allowed)
6002 p->sched_class->set_cpus_allowed(p, new_mask);
6003 else {
6004 cpumask_copy(&p->cpus_allowed, new_mask);
6005 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6006 }
6007
6008 /* Can the task run on the task's current CPU? If so, we're done */
6009 if (cpumask_test_cpu(task_cpu(p), new_mask))
6010 goto out;
6011
6012 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6013 /* Need help from migration thread: drop lock and wait. */
6014 task_rq_unlock(rq, &flags);
6015 wake_up_process(rq->migration_thread);
6016 wait_for_completion(&req.done);
6017 tlb_migrate_finish(p->mm);
6018 return 0;
6019 }
6020out:
6021 task_rq_unlock(rq, &flags);
6022
6023 return ret;
6024}
6025EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6026
6027/*
6028 * Move (not current) task off this cpu, onto dest cpu. We're doing
6029 * this because either it can't run here any more (set_cpus_allowed()
6030 * away from this CPU, or CPU going down), or because we're
6031 * attempting to rebalance this task on exec (sched_exec).
6032 *
6033 * So we race with normal scheduler movements, but that's OK, as long
6034 * as the task is no longer on this CPU.
6035 *
6036 * Returns non-zero if task was successfully migrated.
6037 */
6038static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6039{
6040 struct rq *rq_dest, *rq_src;
6041 int ret = 0, on_rq;
6042
6043 if (unlikely(!cpu_active(dest_cpu)))
6044 return ret;
6045
6046 rq_src = cpu_rq(src_cpu);
6047 rq_dest = cpu_rq(dest_cpu);
6048
6049 double_rq_lock(rq_src, rq_dest);
6050 /* Already moved. */
6051 if (task_cpu(p) != src_cpu)
6052 goto done;
6053 /* Affinity changed (again). */
6054 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6055 goto fail;
6056
6057 on_rq = p->se.on_rq;
6058 if (on_rq)
6059 deactivate_task(rq_src, p, 0);
6060
6061 set_task_cpu(p, dest_cpu);
6062 if (on_rq) {
6063 activate_task(rq_dest, p, 0);
6064 check_preempt_curr(rq_dest, p, 0);
6065 }
6066done:
6067 ret = 1;
6068fail:
6069 double_rq_unlock(rq_src, rq_dest);
6070 return ret;
6071}
6072
6073/*
6074 * migration_thread - this is a highprio system thread that performs
6075 * thread migration by bumping thread off CPU then 'pushing' onto
6076 * another runqueue.
6077 */
6078static int migration_thread(void *data)
6079{
6080 int cpu = (long)data;
6081 struct rq *rq;
6082
6083 rq = cpu_rq(cpu);
6084 BUG_ON(rq->migration_thread != current);
6085
6086 set_current_state(TASK_INTERRUPTIBLE);
6087 while (!kthread_should_stop()) {
6088 struct migration_req *req;
6089 struct list_head *head;
6090
6091 spin_lock_irq(&rq->lock);
6092
6093 if (cpu_is_offline(cpu)) {
6094 spin_unlock_irq(&rq->lock);
6095 goto wait_to_die;
6096 }
6097
6098 if (rq->active_balance) {
6099 active_load_balance(rq, cpu);
6100 rq->active_balance = 0;
6101 }
6102
6103 head = &rq->migration_queue;
6104
6105 if (list_empty(head)) {
6106 spin_unlock_irq(&rq->lock);
6107 schedule();
6108 set_current_state(TASK_INTERRUPTIBLE);
6109 continue;
6110 }
6111 req = list_entry(head->next, struct migration_req, list);
6112 list_del_init(head->next);
6113
6114 spin_unlock(&rq->lock);
6115 __migrate_task(req->task, cpu, req->dest_cpu);
6116 local_irq_enable();
6117
6118 complete(&req->done);
6119 }
6120 __set_current_state(TASK_RUNNING);
6121 return 0;
6122
6123wait_to_die:
6124 /* Wait for kthread_stop */
6125 set_current_state(TASK_INTERRUPTIBLE);
6126 while (!kthread_should_stop()) {
6127 schedule();
6128 set_current_state(TASK_INTERRUPTIBLE);
6129 }
6130 __set_current_state(TASK_RUNNING);
6131 return 0;
6132}
6133
6134#ifdef CONFIG_HOTPLUG_CPU
6135
6136static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6137{
6138 int ret;
6139
6140 local_irq_disable();
6141 ret = __migrate_task(p, src_cpu, dest_cpu);
6142 local_irq_enable();
6143 return ret;
6144}
6145
6146/*
6147 * Figure out where task on dead CPU should go, use force if necessary.
6148 */
6149static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6150{
6151 int dest_cpu;
6152 /* FIXME: Use cpumask_of_node here. */
6153 cpumask_t _nodemask = node_to_cpumask(cpu_to_node(dead_cpu));
6154 const struct cpumask *nodemask = &_nodemask;
6155
6156again:
6157 /* Look for allowed, online CPU in same node. */
6158 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6159 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6160 goto move;
6161
6162 /* Any allowed, online CPU? */
6163 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6164 if (dest_cpu < nr_cpu_ids)
6165 goto move;
6166
6167 /* No more Mr. Nice Guy. */
6168 if (dest_cpu >= nr_cpu_ids) {
6169 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6170 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6171
6172 /*
6173 * Don't tell them about moving exiting tasks or
6174 * kernel threads (both mm NULL), since they never
6175 * leave kernel.
6176 */
6177 if (p->mm && printk_ratelimit()) {
6178 printk(KERN_INFO "process %d (%s) no "
6179 "longer affine to cpu%d\n",
6180 task_pid_nr(p), p->comm, dead_cpu);
6181 }
6182 }
6183
6184move:
6185 /* It can have affinity changed while we were choosing. */
6186 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6187 goto again;
6188}
6189
6190/*
6191 * While a dead CPU has no uninterruptible tasks queued at this point,
6192 * it might still have a nonzero ->nr_uninterruptible counter, because
6193 * for performance reasons the counter is not stricly tracking tasks to
6194 * their home CPUs. So we just add the counter to another CPU's counter,
6195 * to keep the global sum constant after CPU-down:
6196 */
6197static void migrate_nr_uninterruptible(struct rq *rq_src)
6198{
6199 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6200 unsigned long flags;
6201
6202 local_irq_save(flags);
6203 double_rq_lock(rq_src, rq_dest);
6204 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6205 rq_src->nr_uninterruptible = 0;
6206 double_rq_unlock(rq_src, rq_dest);
6207 local_irq_restore(flags);
6208}
6209
6210/* Run through task list and migrate tasks from the dead cpu. */
6211static void migrate_live_tasks(int src_cpu)
6212{
6213 struct task_struct *p, *t;
6214
6215 read_lock(&tasklist_lock);
6216
6217 do_each_thread(t, p) {
6218 if (p == current)
6219 continue;
6220
6221 if (task_cpu(p) == src_cpu)
6222 move_task_off_dead_cpu(src_cpu, p);
6223 } while_each_thread(t, p);
6224
6225 read_unlock(&tasklist_lock);
6226}
6227
6228/*
6229 * Schedules idle task to be the next runnable task on current CPU.
6230 * It does so by boosting its priority to highest possible.
6231 * Used by CPU offline code.
6232 */
6233void sched_idle_next(void)
6234{
6235 int this_cpu = smp_processor_id();
6236 struct rq *rq = cpu_rq(this_cpu);
6237 struct task_struct *p = rq->idle;
6238 unsigned long flags;
6239
6240 /* cpu has to be offline */
6241 BUG_ON(cpu_online(this_cpu));
6242
6243 /*
6244 * Strictly not necessary since rest of the CPUs are stopped by now
6245 * and interrupts disabled on the current cpu.
6246 */
6247 spin_lock_irqsave(&rq->lock, flags);
6248
6249 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6250
6251 update_rq_clock(rq);
6252 activate_task(rq, p, 0);
6253
6254 spin_unlock_irqrestore(&rq->lock, flags);
6255}
6256
6257/*
6258 * Ensures that the idle task is using init_mm right before its cpu goes
6259 * offline.
6260 */
6261void idle_task_exit(void)
6262{
6263 struct mm_struct *mm = current->active_mm;
6264
6265 BUG_ON(cpu_online(smp_processor_id()));
6266
6267 if (mm != &init_mm)
6268 switch_mm(mm, &init_mm, current);
6269 mmdrop(mm);
6270}
6271
6272/* called under rq->lock with disabled interrupts */
6273static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6274{
6275 struct rq *rq = cpu_rq(dead_cpu);
6276
6277 /* Must be exiting, otherwise would be on tasklist. */
6278 BUG_ON(!p->exit_state);
6279
6280 /* Cannot have done final schedule yet: would have vanished. */
6281 BUG_ON(p->state == TASK_DEAD);
6282
6283 get_task_struct(p);
6284
6285 /*
6286 * Drop lock around migration; if someone else moves it,
6287 * that's OK. No task can be added to this CPU, so iteration is
6288 * fine.
6289 */
6290 spin_unlock_irq(&rq->lock);
6291 move_task_off_dead_cpu(dead_cpu, p);
6292 spin_lock_irq(&rq->lock);
6293
6294 put_task_struct(p);
6295}
6296
6297/* release_task() removes task from tasklist, so we won't find dead tasks. */
6298static void migrate_dead_tasks(unsigned int dead_cpu)
6299{
6300 struct rq *rq = cpu_rq(dead_cpu);
6301 struct task_struct *next;
6302
6303 for ( ; ; ) {
6304 if (!rq->nr_running)
6305 break;
6306 update_rq_clock(rq);
6307 next = pick_next_task(rq, rq->curr);
6308 if (!next)
6309 break;
6310 next->sched_class->put_prev_task(rq, next);
6311 migrate_dead(dead_cpu, next);
6312
6313 }
6314}
6315#endif /* CONFIG_HOTPLUG_CPU */
6316
6317#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6318
6319static struct ctl_table sd_ctl_dir[] = {
6320 {
6321 .procname = "sched_domain",
6322 .mode = 0555,
6323 },
6324 {0, },
6325};
6326
6327static struct ctl_table sd_ctl_root[] = {
6328 {
6329 .ctl_name = CTL_KERN,
6330 .procname = "kernel",
6331 .mode = 0555,
6332 .child = sd_ctl_dir,
6333 },
6334 {0, },
6335};
6336
6337static struct ctl_table *sd_alloc_ctl_entry(int n)
6338{
6339 struct ctl_table *entry =
6340 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6341
6342 return entry;
6343}
6344
6345static void sd_free_ctl_entry(struct ctl_table **tablep)
6346{
6347 struct ctl_table *entry;
6348
6349 /*
6350 * In the intermediate directories, both the child directory and
6351 * procname are dynamically allocated and could fail but the mode
6352 * will always be set. In the lowest directory the names are
6353 * static strings and all have proc handlers.
6354 */
6355 for (entry = *tablep; entry->mode; entry++) {
6356 if (entry->child)
6357 sd_free_ctl_entry(&entry->child);
6358 if (entry->proc_handler == NULL)
6359 kfree(entry->procname);
6360 }
6361
6362 kfree(*tablep);
6363 *tablep = NULL;
6364}
6365
6366static void
6367set_table_entry(struct ctl_table *entry,
6368 const char *procname, void *data, int maxlen,
6369 mode_t mode, proc_handler *proc_handler)
6370{
6371 entry->procname = procname;
6372 entry->data = data;
6373 entry->maxlen = maxlen;
6374 entry->mode = mode;
6375 entry->proc_handler = proc_handler;
6376}
6377
6378static struct ctl_table *
6379sd_alloc_ctl_domain_table(struct sched_domain *sd)
6380{
6381 struct ctl_table *table = sd_alloc_ctl_entry(13);
6382
6383 if (table == NULL)
6384 return NULL;
6385
6386 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6387 sizeof(long), 0644, proc_doulongvec_minmax);
6388 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6389 sizeof(long), 0644, proc_doulongvec_minmax);
6390 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6391 sizeof(int), 0644, proc_dointvec_minmax);
6392 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6393 sizeof(int), 0644, proc_dointvec_minmax);
6394 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6395 sizeof(int), 0644, proc_dointvec_minmax);
6396 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6397 sizeof(int), 0644, proc_dointvec_minmax);
6398 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6399 sizeof(int), 0644, proc_dointvec_minmax);
6400 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6401 sizeof(int), 0644, proc_dointvec_minmax);
6402 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6403 sizeof(int), 0644, proc_dointvec_minmax);
6404 set_table_entry(&table[9], "cache_nice_tries",
6405 &sd->cache_nice_tries,
6406 sizeof(int), 0644, proc_dointvec_minmax);
6407 set_table_entry(&table[10], "flags", &sd->flags,
6408 sizeof(int), 0644, proc_dointvec_minmax);
6409 set_table_entry(&table[11], "name", sd->name,
6410 CORENAME_MAX_SIZE, 0444, proc_dostring);
6411 /* &table[12] is terminator */
6412
6413 return table;
6414}
6415
6416static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6417{
6418 struct ctl_table *entry, *table;
6419 struct sched_domain *sd;
6420 int domain_num = 0, i;
6421 char buf[32];
6422
6423 for_each_domain(cpu, sd)
6424 domain_num++;
6425 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6426 if (table == NULL)
6427 return NULL;
6428
6429 i = 0;
6430 for_each_domain(cpu, sd) {
6431 snprintf(buf, 32, "domain%d", i);
6432 entry->procname = kstrdup(buf, GFP_KERNEL);
6433 entry->mode = 0555;
6434 entry->child = sd_alloc_ctl_domain_table(sd);
6435 entry++;
6436 i++;
6437 }
6438 return table;
6439}
6440
6441static struct ctl_table_header *sd_sysctl_header;
6442static void register_sched_domain_sysctl(void)
6443{
6444 int i, cpu_num = num_online_cpus();
6445 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6446 char buf[32];
6447
6448 WARN_ON(sd_ctl_dir[0].child);
6449 sd_ctl_dir[0].child = entry;
6450
6451 if (entry == NULL)
6452 return;
6453
6454 for_each_online_cpu(i) {
6455 snprintf(buf, 32, "cpu%d", i);
6456 entry->procname = kstrdup(buf, GFP_KERNEL);
6457 entry->mode = 0555;
6458 entry->child = sd_alloc_ctl_cpu_table(i);
6459 entry++;
6460 }
6461
6462 WARN_ON(sd_sysctl_header);
6463 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6464}
6465
6466/* may be called multiple times per register */
6467static void unregister_sched_domain_sysctl(void)
6468{
6469 if (sd_sysctl_header)
6470 unregister_sysctl_table(sd_sysctl_header);
6471 sd_sysctl_header = NULL;
6472 if (sd_ctl_dir[0].child)
6473 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6474}
6475#else
6476static void register_sched_domain_sysctl(void)
6477{
6478}
6479static void unregister_sched_domain_sysctl(void)
6480{
6481}
6482#endif
6483
6484static void set_rq_online(struct rq *rq)
6485{
6486 if (!rq->online) {
6487 const struct sched_class *class;
6488
6489 cpumask_set_cpu(rq->cpu, rq->rd->online);
6490 rq->online = 1;
6491
6492 for_each_class(class) {
6493 if (class->rq_online)
6494 class->rq_online(rq);
6495 }
6496 }
6497}
6498
6499static void set_rq_offline(struct rq *rq)
6500{
6501 if (rq->online) {
6502 const struct sched_class *class;
6503
6504 for_each_class(class) {
6505 if (class->rq_offline)
6506 class->rq_offline(rq);
6507 }
6508
6509 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6510 rq->online = 0;
6511 }
6512}
6513
6514/*
6515 * migration_call - callback that gets triggered when a CPU is added.
6516 * Here we can start up the necessary migration thread for the new CPU.
6517 */
6518static int __cpuinit
6519migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6520{
6521 struct task_struct *p;
6522 int cpu = (long)hcpu;
6523 unsigned long flags;
6524 struct rq *rq;
6525
6526 switch (action) {
6527
6528 case CPU_UP_PREPARE:
6529 case CPU_UP_PREPARE_FROZEN:
6530 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6531 if (IS_ERR(p))
6532 return NOTIFY_BAD;
6533 kthread_bind(p, cpu);
6534 /* Must be high prio: stop_machine expects to yield to it. */
6535 rq = task_rq_lock(p, &flags);
6536 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6537 task_rq_unlock(rq, &flags);
6538 cpu_rq(cpu)->migration_thread = p;
6539 break;
6540
6541 case CPU_ONLINE:
6542 case CPU_ONLINE_FROZEN:
6543 /* Strictly unnecessary, as first user will wake it. */
6544 wake_up_process(cpu_rq(cpu)->migration_thread);
6545
6546 /* Update our root-domain */
6547 rq = cpu_rq(cpu);
6548 spin_lock_irqsave(&rq->lock, flags);
6549 if (rq->rd) {
6550 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6551
6552 set_rq_online(rq);
6553 }
6554 spin_unlock_irqrestore(&rq->lock, flags);
6555 break;
6556
6557#ifdef CONFIG_HOTPLUG_CPU
6558 case CPU_UP_CANCELED:
6559 case CPU_UP_CANCELED_FROZEN:
6560 if (!cpu_rq(cpu)->migration_thread)
6561 break;
6562 /* Unbind it from offline cpu so it can run. Fall thru. */
6563 kthread_bind(cpu_rq(cpu)->migration_thread,
6564 cpumask_any(cpu_online_mask));
6565 kthread_stop(cpu_rq(cpu)->migration_thread);
6566 cpu_rq(cpu)->migration_thread = NULL;
6567 break;
6568
6569 case CPU_DEAD:
6570 case CPU_DEAD_FROZEN:
6571 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6572 migrate_live_tasks(cpu);
6573 rq = cpu_rq(cpu);
6574 kthread_stop(rq->migration_thread);
6575 rq->migration_thread = NULL;
6576 /* Idle task back to normal (off runqueue, low prio) */
6577 spin_lock_irq(&rq->lock);
6578 update_rq_clock(rq);
6579 deactivate_task(rq, rq->idle, 0);
6580 rq->idle->static_prio = MAX_PRIO;
6581 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6582 rq->idle->sched_class = &idle_sched_class;
6583 migrate_dead_tasks(cpu);
6584 spin_unlock_irq(&rq->lock);
6585 cpuset_unlock();
6586 migrate_nr_uninterruptible(rq);
6587 BUG_ON(rq->nr_running != 0);
6588
6589 /*
6590 * No need to migrate the tasks: it was best-effort if
6591 * they didn't take sched_hotcpu_mutex. Just wake up
6592 * the requestors.
6593 */
6594 spin_lock_irq(&rq->lock);
6595 while (!list_empty(&rq->migration_queue)) {
6596 struct migration_req *req;
6597
6598 req = list_entry(rq->migration_queue.next,
6599 struct migration_req, list);
6600 list_del_init(&req->list);
6601 spin_unlock_irq(&rq->lock);
6602 complete(&req->done);
6603 spin_lock_irq(&rq->lock);
6604 }
6605 spin_unlock_irq(&rq->lock);
6606 break;
6607
6608 case CPU_DYING:
6609 case CPU_DYING_FROZEN:
6610 /* Update our root-domain */
6611 rq = cpu_rq(cpu);
6612 spin_lock_irqsave(&rq->lock, flags);
6613 if (rq->rd) {
6614 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6615 set_rq_offline(rq);
6616 }
6617 spin_unlock_irqrestore(&rq->lock, flags);
6618 break;
6619#endif
6620 }
6621 return NOTIFY_OK;
6622}
6623
6624/* Register at highest priority so that task migration (migrate_all_tasks)
6625 * happens before everything else.
6626 */
6627static struct notifier_block __cpuinitdata migration_notifier = {
6628 .notifier_call = migration_call,
6629 .priority = 10
6630};
6631
6632static int __init migration_init(void)
6633{
6634 void *cpu = (void *)(long)smp_processor_id();
6635 int err;
6636
6637 /* Start one for the boot CPU: */
6638 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6639 BUG_ON(err == NOTIFY_BAD);
6640 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6641 register_cpu_notifier(&migration_notifier);
6642
6643 return err;
6644}
6645early_initcall(migration_init);
6646#endif
6647
6648#ifdef CONFIG_SMP
6649
6650#ifdef CONFIG_SCHED_DEBUG
6651
6652static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6653 struct cpumask *groupmask)
6654{
6655 struct sched_group *group = sd->groups;
6656 char str[256];
6657
6658 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6659 cpumask_clear(groupmask);
6660
6661 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6662
6663 if (!(sd->flags & SD_LOAD_BALANCE)) {
6664 printk("does not load-balance\n");
6665 if (sd->parent)
6666 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6667 " has parent");
6668 return -1;
6669 }
6670
6671 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6672
6673 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6674 printk(KERN_ERR "ERROR: domain->span does not contain "
6675 "CPU%d\n", cpu);
6676 }
6677 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6678 printk(KERN_ERR "ERROR: domain->groups does not contain"
6679 " CPU%d\n", cpu);
6680 }
6681
6682 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6683 do {
6684 if (!group) {
6685 printk("\n");
6686 printk(KERN_ERR "ERROR: group is NULL\n");
6687 break;
6688 }
6689
6690 if (!group->__cpu_power) {
6691 printk(KERN_CONT "\n");
6692 printk(KERN_ERR "ERROR: domain->cpu_power not "
6693 "set\n");
6694 break;
6695 }
6696
6697 if (!cpumask_weight(sched_group_cpus(group))) {
6698 printk(KERN_CONT "\n");
6699 printk(KERN_ERR "ERROR: empty group\n");
6700 break;
6701 }
6702
6703 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6704 printk(KERN_CONT "\n");
6705 printk(KERN_ERR "ERROR: repeated CPUs\n");
6706 break;
6707 }
6708
6709 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6710
6711 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6712 printk(KERN_CONT " %s", str);
6713
6714 group = group->next;
6715 } while (group != sd->groups);
6716 printk(KERN_CONT "\n");
6717
6718 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6719 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6720
6721 if (sd->parent &&
6722 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6723 printk(KERN_ERR "ERROR: parent span is not a superset "
6724 "of domain->span\n");
6725 return 0;
6726}
6727
6728static void sched_domain_debug(struct sched_domain *sd, int cpu)
6729{
6730 cpumask_var_t groupmask;
6731 int level = 0;
6732
6733 if (!sd) {
6734 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6735 return;
6736 }
6737
6738 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6739
6740 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6741 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6742 return;
6743 }
6744
6745 for (;;) {
6746 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6747 break;
6748 level++;
6749 sd = sd->parent;
6750 if (!sd)
6751 break;
6752 }
6753 free_cpumask_var(groupmask);
6754}
6755#else /* !CONFIG_SCHED_DEBUG */
6756# define sched_domain_debug(sd, cpu) do { } while (0)
6757#endif /* CONFIG_SCHED_DEBUG */
6758
6759static int sd_degenerate(struct sched_domain *sd)
6760{
6761 if (cpumask_weight(sched_domain_span(sd)) == 1)
6762 return 1;
6763
6764 /* Following flags need at least 2 groups */
6765 if (sd->flags & (SD_LOAD_BALANCE |
6766 SD_BALANCE_NEWIDLE |
6767 SD_BALANCE_FORK |
6768 SD_BALANCE_EXEC |
6769 SD_SHARE_CPUPOWER |
6770 SD_SHARE_PKG_RESOURCES)) {
6771 if (sd->groups != sd->groups->next)
6772 return 0;
6773 }
6774
6775 /* Following flags don't use groups */
6776 if (sd->flags & (SD_WAKE_IDLE |
6777 SD_WAKE_AFFINE |
6778 SD_WAKE_BALANCE))
6779 return 0;
6780
6781 return 1;
6782}
6783
6784static int
6785sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6786{
6787 unsigned long cflags = sd->flags, pflags = parent->flags;
6788
6789 if (sd_degenerate(parent))
6790 return 1;
6791
6792 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6793 return 0;
6794
6795 /* Does parent contain flags not in child? */
6796 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6797 if (cflags & SD_WAKE_AFFINE)
6798 pflags &= ~SD_WAKE_BALANCE;
6799 /* Flags needing groups don't count if only 1 group in parent */
6800 if (parent->groups == parent->groups->next) {
6801 pflags &= ~(SD_LOAD_BALANCE |
6802 SD_BALANCE_NEWIDLE |
6803 SD_BALANCE_FORK |
6804 SD_BALANCE_EXEC |
6805 SD_SHARE_CPUPOWER |
6806 SD_SHARE_PKG_RESOURCES);
6807 if (nr_node_ids == 1)
6808 pflags &= ~SD_SERIALIZE;
6809 }
6810 if (~cflags & pflags)
6811 return 0;
6812
6813 return 1;
6814}
6815
6816static void free_rootdomain(struct root_domain *rd)
6817{
6818 cpupri_cleanup(&rd->cpupri);
6819
6820 free_cpumask_var(rd->rto_mask);
6821 free_cpumask_var(rd->online);
6822 free_cpumask_var(rd->span);
6823 kfree(rd);
6824}
6825
6826static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6827{
6828 unsigned long flags;
6829
6830 spin_lock_irqsave(&rq->lock, flags);
6831
6832 if (rq->rd) {
6833 struct root_domain *old_rd = rq->rd;
6834
6835 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6836 set_rq_offline(rq);
6837
6838 cpumask_clear_cpu(rq->cpu, old_rd->span);
6839
6840 if (atomic_dec_and_test(&old_rd->refcount))
6841 free_rootdomain(old_rd);
6842 }
6843
6844 atomic_inc(&rd->refcount);
6845 rq->rd = rd;
6846
6847 cpumask_set_cpu(rq->cpu, rd->span);
6848 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
6849 set_rq_online(rq);
6850
6851 spin_unlock_irqrestore(&rq->lock, flags);
6852}
6853
6854static int init_rootdomain(struct root_domain *rd, bool bootmem)
6855{
6856 memset(rd, 0, sizeof(*rd));
6857
6858 if (bootmem) {
6859 alloc_bootmem_cpumask_var(&def_root_domain.span);
6860 alloc_bootmem_cpumask_var(&def_root_domain.online);
6861 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
6862 cpupri_init(&rd->cpupri, true);
6863 return 0;
6864 }
6865
6866 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6867 goto free_rd;
6868 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6869 goto free_span;
6870 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6871 goto free_online;
6872
6873 if (cpupri_init(&rd->cpupri, false) != 0)
6874 goto free_rto_mask;
6875 return 0;
6876
6877free_rto_mask:
6878 free_cpumask_var(rd->rto_mask);
6879free_online:
6880 free_cpumask_var(rd->online);
6881free_span:
6882 free_cpumask_var(rd->span);
6883free_rd:
6884 kfree(rd);
6885 return -ENOMEM;
6886}
6887
6888static void init_defrootdomain(void)
6889{
6890 init_rootdomain(&def_root_domain, true);
6891
6892 atomic_set(&def_root_domain.refcount, 1);
6893}
6894
6895static struct root_domain *alloc_rootdomain(void)
6896{
6897 struct root_domain *rd;
6898
6899 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6900 if (!rd)
6901 return NULL;
6902
6903 if (init_rootdomain(rd, false) != 0) {
6904 kfree(rd);
6905 return NULL;
6906 }
6907
6908 return rd;
6909}
6910
6911/*
6912 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6913 * hold the hotplug lock.
6914 */
6915static void
6916cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6917{
6918 struct rq *rq = cpu_rq(cpu);
6919 struct sched_domain *tmp;
6920
6921 /* Remove the sched domains which do not contribute to scheduling. */
6922 for (tmp = sd; tmp; ) {
6923 struct sched_domain *parent = tmp->parent;
6924 if (!parent)
6925 break;
6926
6927 if (sd_parent_degenerate(tmp, parent)) {
6928 tmp->parent = parent->parent;
6929 if (parent->parent)
6930 parent->parent->child = tmp;
6931 } else
6932 tmp = tmp->parent;
6933 }
6934
6935 if (sd && sd_degenerate(sd)) {
6936 sd = sd->parent;
6937 if (sd)
6938 sd->child = NULL;
6939 }
6940
6941 sched_domain_debug(sd, cpu);
6942
6943 rq_attach_root(rq, rd);
6944 rcu_assign_pointer(rq->sd, sd);
6945}
6946
6947/* cpus with isolated domains */
6948static cpumask_var_t cpu_isolated_map;
6949
6950/* Setup the mask of cpus configured for isolated domains */
6951static int __init isolated_cpu_setup(char *str)
6952{
6953 cpulist_parse(str, cpu_isolated_map);
6954 return 1;
6955}
6956
6957__setup("isolcpus=", isolated_cpu_setup);
6958
6959/*
6960 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6961 * to a function which identifies what group(along with sched group) a CPU
6962 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6963 * (due to the fact that we keep track of groups covered with a struct cpumask).
6964 *
6965 * init_sched_build_groups will build a circular linked list of the groups
6966 * covered by the given span, and will set each group's ->cpumask correctly,
6967 * and ->cpu_power to 0.
6968 */
6969static void
6970init_sched_build_groups(const struct cpumask *span,
6971 const struct cpumask *cpu_map,
6972 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6973 struct sched_group **sg,
6974 struct cpumask *tmpmask),
6975 struct cpumask *covered, struct cpumask *tmpmask)
6976{
6977 struct sched_group *first = NULL, *last = NULL;
6978 int i;
6979
6980 cpumask_clear(covered);
6981
6982 for_each_cpu(i, span) {
6983 struct sched_group *sg;
6984 int group = group_fn(i, cpu_map, &sg, tmpmask);
6985 int j;
6986
6987 if (cpumask_test_cpu(i, covered))
6988 continue;
6989
6990 cpumask_clear(sched_group_cpus(sg));
6991 sg->__cpu_power = 0;
6992
6993 for_each_cpu(j, span) {
6994 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6995 continue;
6996
6997 cpumask_set_cpu(j, covered);
6998 cpumask_set_cpu(j, sched_group_cpus(sg));
6999 }
7000 if (!first)
7001 first = sg;
7002 if (last)
7003 last->next = sg;
7004 last = sg;
7005 }
7006 last->next = first;
7007}
7008
7009#define SD_NODES_PER_DOMAIN 16
7010
7011#ifdef CONFIG_NUMA
7012
7013/**
7014 * find_next_best_node - find the next node to include in a sched_domain
7015 * @node: node whose sched_domain we're building
7016 * @used_nodes: nodes already in the sched_domain
7017 *
7018 * Find the next node to include in a given scheduling domain. Simply
7019 * finds the closest node not already in the @used_nodes map.
7020 *
7021 * Should use nodemask_t.
7022 */
7023static int find_next_best_node(int node, nodemask_t *used_nodes)
7024{
7025 int i, n, val, min_val, best_node = 0;
7026
7027 min_val = INT_MAX;
7028
7029 for (i = 0; i < nr_node_ids; i++) {
7030 /* Start at @node */
7031 n = (node + i) % nr_node_ids;
7032
7033 if (!nr_cpus_node(n))
7034 continue;
7035
7036 /* Skip already used nodes */
7037 if (node_isset(n, *used_nodes))
7038 continue;
7039
7040 /* Simple min distance search */
7041 val = node_distance(node, n);
7042
7043 if (val < min_val) {
7044 min_val = val;
7045 best_node = n;
7046 }
7047 }
7048
7049 node_set(best_node, *used_nodes);
7050 return best_node;
7051}
7052
7053/**
7054 * sched_domain_node_span - get a cpumask for a node's sched_domain
7055 * @node: node whose cpumask we're constructing
7056 * @span: resulting cpumask
7057 *
7058 * Given a node, construct a good cpumask for its sched_domain to span. It
7059 * should be one that prevents unnecessary balancing, but also spreads tasks
7060 * out optimally.
7061 */
7062static void sched_domain_node_span(int node, struct cpumask *span)
7063{
7064 nodemask_t used_nodes;
7065 /* FIXME: use cpumask_of_node() */
7066 node_to_cpumask_ptr(nodemask, node);
7067 int i;
7068
7069 cpus_clear(*span);
7070 nodes_clear(used_nodes);
7071
7072 cpus_or(*span, *span, *nodemask);
7073 node_set(node, used_nodes);
7074
7075 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7076 int next_node = find_next_best_node(node, &used_nodes);
7077
7078 node_to_cpumask_ptr_next(nodemask, next_node);
7079 cpus_or(*span, *span, *nodemask);
7080 }
7081}
7082#endif /* CONFIG_NUMA */
7083
7084int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7085
7086/*
7087 * The cpus mask in sched_group and sched_domain hangs off the end.
7088 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7089 * for nr_cpu_ids < CONFIG_NR_CPUS.
7090 */
7091struct static_sched_group {
7092 struct sched_group sg;
7093 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7094};
7095
7096struct static_sched_domain {
7097 struct sched_domain sd;
7098 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7099};
7100
7101/*
7102 * SMT sched-domains:
7103 */
7104#ifdef CONFIG_SCHED_SMT
7105static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7106static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7107
7108static int
7109cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7110 struct sched_group **sg, struct cpumask *unused)
7111{
7112 if (sg)
7113 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7114 return cpu;
7115}
7116#endif /* CONFIG_SCHED_SMT */
7117
7118/*
7119 * multi-core sched-domains:
7120 */
7121#ifdef CONFIG_SCHED_MC
7122static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7123static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7124#endif /* CONFIG_SCHED_MC */
7125
7126#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7127static int
7128cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7129 struct sched_group **sg, struct cpumask *mask)
7130{
7131 int group;
7132
7133 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7134 group = cpumask_first(mask);
7135 if (sg)
7136 *sg = &per_cpu(sched_group_core, group).sg;
7137 return group;
7138}
7139#elif defined(CONFIG_SCHED_MC)
7140static int
7141cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7142 struct sched_group **sg, struct cpumask *unused)
7143{
7144 if (sg)
7145 *sg = &per_cpu(sched_group_core, cpu).sg;
7146 return cpu;
7147}
7148#endif
7149
7150static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7151static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7152
7153static int
7154cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7155 struct sched_group **sg, struct cpumask *mask)
7156{
7157 int group;
7158#ifdef CONFIG_SCHED_MC
7159 /* FIXME: Use cpu_coregroup_mask. */
7160 *mask = cpu_coregroup_map(cpu);
7161 cpus_and(*mask, *mask, *cpu_map);
7162 group = cpumask_first(mask);
7163#elif defined(CONFIG_SCHED_SMT)
7164 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7165 group = cpumask_first(mask);
7166#else
7167 group = cpu;
7168#endif
7169 if (sg)
7170 *sg = &per_cpu(sched_group_phys, group).sg;
7171 return group;
7172}
7173
7174#ifdef CONFIG_NUMA
7175/*
7176 * The init_sched_build_groups can't handle what we want to do with node
7177 * groups, so roll our own. Now each node has its own list of groups which
7178 * gets dynamically allocated.
7179 */
7180static DEFINE_PER_CPU(struct sched_domain, node_domains);
7181static struct sched_group ***sched_group_nodes_bycpu;
7182
7183static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7184static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7185
7186static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7187 struct sched_group **sg,
7188 struct cpumask *nodemask)
7189{
7190 int group;
7191 /* FIXME: use cpumask_of_node */
7192 node_to_cpumask_ptr(pnodemask, cpu_to_node(cpu));
7193
7194 cpumask_and(nodemask, pnodemask, cpu_map);
7195 group = cpumask_first(nodemask);
7196
7197 if (sg)
7198 *sg = &per_cpu(sched_group_allnodes, group).sg;
7199 return group;
7200}
7201
7202static void init_numa_sched_groups_power(struct sched_group *group_head)
7203{
7204 struct sched_group *sg = group_head;
7205 int j;
7206
7207 if (!sg)
7208 return;
7209 do {
7210 for_each_cpu(j, sched_group_cpus(sg)) {
7211 struct sched_domain *sd;
7212
7213 sd = &per_cpu(phys_domains, j).sd;
7214 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7215 /*
7216 * Only add "power" once for each
7217 * physical package.
7218 */
7219 continue;
7220 }
7221
7222 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7223 }
7224 sg = sg->next;
7225 } while (sg != group_head);
7226}
7227#endif /* CONFIG_NUMA */
7228
7229#ifdef CONFIG_NUMA
7230/* Free memory allocated for various sched_group structures */
7231static void free_sched_groups(const struct cpumask *cpu_map,
7232 struct cpumask *nodemask)
7233{
7234 int cpu, i;
7235
7236 for_each_cpu(cpu, cpu_map) {
7237 struct sched_group **sched_group_nodes
7238 = sched_group_nodes_bycpu[cpu];
7239
7240 if (!sched_group_nodes)
7241 continue;
7242
7243 for (i = 0; i < nr_node_ids; i++) {
7244 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7245 /* FIXME: Use cpumask_of_node */
7246 node_to_cpumask_ptr(pnodemask, i);
7247
7248 cpus_and(*nodemask, *pnodemask, *cpu_map);
7249 if (cpumask_empty(nodemask))
7250 continue;
7251
7252 if (sg == NULL)
7253 continue;
7254 sg = sg->next;
7255next_sg:
7256 oldsg = sg;
7257 sg = sg->next;
7258 kfree(oldsg);
7259 if (oldsg != sched_group_nodes[i])
7260 goto next_sg;
7261 }
7262 kfree(sched_group_nodes);
7263 sched_group_nodes_bycpu[cpu] = NULL;
7264 }
7265}
7266#else /* !CONFIG_NUMA */
7267static void free_sched_groups(const struct cpumask *cpu_map,
7268 struct cpumask *nodemask)
7269{
7270}
7271#endif /* CONFIG_NUMA */
7272
7273/*
7274 * Initialize sched groups cpu_power.
7275 *
7276 * cpu_power indicates the capacity of sched group, which is used while
7277 * distributing the load between different sched groups in a sched domain.
7278 * Typically cpu_power for all the groups in a sched domain will be same unless
7279 * there are asymmetries in the topology. If there are asymmetries, group
7280 * having more cpu_power will pickup more load compared to the group having
7281 * less cpu_power.
7282 *
7283 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7284 * the maximum number of tasks a group can handle in the presence of other idle
7285 * or lightly loaded groups in the same sched domain.
7286 */
7287static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7288{
7289 struct sched_domain *child;
7290 struct sched_group *group;
7291
7292 WARN_ON(!sd || !sd->groups);
7293
7294 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7295 return;
7296
7297 child = sd->child;
7298
7299 sd->groups->__cpu_power = 0;
7300
7301 /*
7302 * For perf policy, if the groups in child domain share resources
7303 * (for example cores sharing some portions of the cache hierarchy
7304 * or SMT), then set this domain groups cpu_power such that each group
7305 * can handle only one task, when there are other idle groups in the
7306 * same sched domain.
7307 */
7308 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7309 (child->flags &
7310 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7311 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7312 return;
7313 }
7314
7315 /*
7316 * add cpu_power of each child group to this groups cpu_power
7317 */
7318 group = child->groups;
7319 do {
7320 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7321 group = group->next;
7322 } while (group != child->groups);
7323}
7324
7325/*
7326 * Initializers for schedule domains
7327 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7328 */
7329
7330#ifdef CONFIG_SCHED_DEBUG
7331# define SD_INIT_NAME(sd, type) sd->name = #type
7332#else
7333# define SD_INIT_NAME(sd, type) do { } while (0)
7334#endif
7335
7336#define SD_INIT(sd, type) sd_init_##type(sd)
7337
7338#define SD_INIT_FUNC(type) \
7339static noinline void sd_init_##type(struct sched_domain *sd) \
7340{ \
7341 memset(sd, 0, sizeof(*sd)); \
7342 *sd = SD_##type##_INIT; \
7343 sd->level = SD_LV_##type; \
7344 SD_INIT_NAME(sd, type); \
7345}
7346
7347SD_INIT_FUNC(CPU)
7348#ifdef CONFIG_NUMA
7349 SD_INIT_FUNC(ALLNODES)
7350 SD_INIT_FUNC(NODE)
7351#endif
7352#ifdef CONFIG_SCHED_SMT
7353 SD_INIT_FUNC(SIBLING)
7354#endif
7355#ifdef CONFIG_SCHED_MC
7356 SD_INIT_FUNC(MC)
7357#endif
7358
7359static int default_relax_domain_level = -1;
7360
7361static int __init setup_relax_domain_level(char *str)
7362{
7363 unsigned long val;
7364
7365 val = simple_strtoul(str, NULL, 0);
7366 if (val < SD_LV_MAX)
7367 default_relax_domain_level = val;
7368
7369 return 1;
7370}
7371__setup("relax_domain_level=", setup_relax_domain_level);
7372
7373static void set_domain_attribute(struct sched_domain *sd,
7374 struct sched_domain_attr *attr)
7375{
7376 int request;
7377
7378 if (!attr || attr->relax_domain_level < 0) {
7379 if (default_relax_domain_level < 0)
7380 return;
7381 else
7382 request = default_relax_domain_level;
7383 } else
7384 request = attr->relax_domain_level;
7385 if (request < sd->level) {
7386 /* turn off idle balance on this domain */
7387 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7388 } else {
7389 /* turn on idle balance on this domain */
7390 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7391 }
7392}
7393
7394/*
7395 * Build sched domains for a given set of cpus and attach the sched domains
7396 * to the individual cpus
7397 */
7398static int __build_sched_domains(const struct cpumask *cpu_map,
7399 struct sched_domain_attr *attr)
7400{
7401 int i, err = -ENOMEM;
7402 struct root_domain *rd;
7403 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7404 tmpmask;
7405#ifdef CONFIG_NUMA
7406 cpumask_var_t domainspan, covered, notcovered;
7407 struct sched_group **sched_group_nodes = NULL;
7408 int sd_allnodes = 0;
7409
7410 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7411 goto out;
7412 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7413 goto free_domainspan;
7414 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7415 goto free_covered;
7416#endif
7417
7418 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7419 goto free_notcovered;
7420 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7421 goto free_nodemask;
7422 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7423 goto free_this_sibling_map;
7424 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7425 goto free_this_core_map;
7426 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7427 goto free_send_covered;
7428
7429#ifdef CONFIG_NUMA
7430 /*
7431 * Allocate the per-node list of sched groups
7432 */
7433 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7434 GFP_KERNEL);
7435 if (!sched_group_nodes) {
7436 printk(KERN_WARNING "Can not alloc sched group node list\n");
7437 goto free_tmpmask;
7438 }
7439#endif
7440
7441 rd = alloc_rootdomain();
7442 if (!rd) {
7443 printk(KERN_WARNING "Cannot alloc root domain\n");
7444 goto free_sched_groups;
7445 }
7446
7447#ifdef CONFIG_NUMA
7448 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7449#endif
7450
7451 /*
7452 * Set up domains for cpus specified by the cpu_map.
7453 */
7454 for_each_cpu(i, cpu_map) {
7455 struct sched_domain *sd = NULL, *p;
7456
7457 /* FIXME: use cpumask_of_node */
7458 *nodemask = node_to_cpumask(cpu_to_node(i));
7459 cpus_and(*nodemask, *nodemask, *cpu_map);
7460
7461#ifdef CONFIG_NUMA
7462 if (cpumask_weight(cpu_map) >
7463 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7464 sd = &per_cpu(allnodes_domains, i);
7465 SD_INIT(sd, ALLNODES);
7466 set_domain_attribute(sd, attr);
7467 cpumask_copy(sched_domain_span(sd), cpu_map);
7468 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7469 p = sd;
7470 sd_allnodes = 1;
7471 } else
7472 p = NULL;
7473
7474 sd = &per_cpu(node_domains, i);
7475 SD_INIT(sd, NODE);
7476 set_domain_attribute(sd, attr);
7477 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7478 sd->parent = p;
7479 if (p)
7480 p->child = sd;
7481 cpumask_and(sched_domain_span(sd),
7482 sched_domain_span(sd), cpu_map);
7483#endif
7484
7485 p = sd;
7486 sd = &per_cpu(phys_domains, i).sd;
7487 SD_INIT(sd, CPU);
7488 set_domain_attribute(sd, attr);
7489 cpumask_copy(sched_domain_span(sd), nodemask);
7490 sd->parent = p;
7491 if (p)
7492 p->child = sd;
7493 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7494
7495#ifdef CONFIG_SCHED_MC
7496 p = sd;
7497 sd = &per_cpu(core_domains, i).sd;
7498 SD_INIT(sd, MC);
7499 set_domain_attribute(sd, attr);
7500 *sched_domain_span(sd) = cpu_coregroup_map(i);
7501 cpumask_and(sched_domain_span(sd),
7502 sched_domain_span(sd), cpu_map);
7503 sd->parent = p;
7504 p->child = sd;
7505 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7506#endif
7507
7508#ifdef CONFIG_SCHED_SMT
7509 p = sd;
7510 sd = &per_cpu(cpu_domains, i).sd;
7511 SD_INIT(sd, SIBLING);
7512 set_domain_attribute(sd, attr);
7513 cpumask_and(sched_domain_span(sd),
7514 &per_cpu(cpu_sibling_map, i), cpu_map);
7515 sd->parent = p;
7516 p->child = sd;
7517 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7518#endif
7519 }
7520
7521#ifdef CONFIG_SCHED_SMT
7522 /* Set up CPU (sibling) groups */
7523 for_each_cpu(i, cpu_map) {
7524 cpumask_and(this_sibling_map,
7525 &per_cpu(cpu_sibling_map, i), cpu_map);
7526 if (i != cpumask_first(this_sibling_map))
7527 continue;
7528
7529 init_sched_build_groups(this_sibling_map, cpu_map,
7530 &cpu_to_cpu_group,
7531 send_covered, tmpmask);
7532 }
7533#endif
7534
7535#ifdef CONFIG_SCHED_MC
7536 /* Set up multi-core groups */
7537 for_each_cpu(i, cpu_map) {
7538 /* FIXME: Use cpu_coregroup_mask */
7539 *this_core_map = cpu_coregroup_map(i);
7540 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7541 if (i != cpumask_first(this_core_map))
7542 continue;
7543
7544 init_sched_build_groups(this_core_map, cpu_map,
7545 &cpu_to_core_group,
7546 send_covered, tmpmask);
7547 }
7548#endif
7549
7550 /* Set up physical groups */
7551 for (i = 0; i < nr_node_ids; i++) {
7552 /* FIXME: Use cpumask_of_node */
7553 *nodemask = node_to_cpumask(i);
7554 cpus_and(*nodemask, *nodemask, *cpu_map);
7555 if (cpumask_empty(nodemask))
7556 continue;
7557
7558 init_sched_build_groups(nodemask, cpu_map,
7559 &cpu_to_phys_group,
7560 send_covered, tmpmask);
7561 }
7562
7563#ifdef CONFIG_NUMA
7564 /* Set up node groups */
7565 if (sd_allnodes) {
7566 init_sched_build_groups(cpu_map, cpu_map,
7567 &cpu_to_allnodes_group,
7568 send_covered, tmpmask);
7569 }
7570
7571 for (i = 0; i < nr_node_ids; i++) {
7572 /* Set up node groups */
7573 struct sched_group *sg, *prev;
7574 int j;
7575
7576 /* FIXME: Use cpumask_of_node */
7577 *nodemask = node_to_cpumask(i);
7578 cpumask_clear(covered);
7579
7580 cpus_and(*nodemask, *nodemask, *cpu_map);
7581 if (cpumask_empty(nodemask)) {
7582 sched_group_nodes[i] = NULL;
7583 continue;
7584 }
7585
7586 sched_domain_node_span(i, domainspan);
7587 cpumask_and(domainspan, domainspan, cpu_map);
7588
7589 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7590 GFP_KERNEL, i);
7591 if (!sg) {
7592 printk(KERN_WARNING "Can not alloc domain group for "
7593 "node %d\n", i);
7594 goto error;
7595 }
7596 sched_group_nodes[i] = sg;
7597 for_each_cpu(j, nodemask) {
7598 struct sched_domain *sd;
7599
7600 sd = &per_cpu(node_domains, j);
7601 sd->groups = sg;
7602 }
7603 sg->__cpu_power = 0;
7604 cpumask_copy(sched_group_cpus(sg), nodemask);
7605 sg->next = sg;
7606 cpumask_or(covered, covered, nodemask);
7607 prev = sg;
7608
7609 for (j = 0; j < nr_node_ids; j++) {
7610 int n = (i + j) % nr_node_ids;
7611 /* FIXME: Use cpumask_of_node */
7612 node_to_cpumask_ptr(pnodemask, n);
7613
7614 cpumask_complement(notcovered, covered);
7615 cpumask_and(tmpmask, notcovered, cpu_map);
7616 cpumask_and(tmpmask, tmpmask, domainspan);
7617 if (cpumask_empty(tmpmask))
7618 break;
7619
7620 cpumask_and(tmpmask, tmpmask, pnodemask);
7621 if (cpumask_empty(tmpmask))
7622 continue;
7623
7624 sg = kmalloc_node(sizeof(struct sched_group) +
7625 cpumask_size(),
7626 GFP_KERNEL, i);
7627 if (!sg) {
7628 printk(KERN_WARNING
7629 "Can not alloc domain group for node %d\n", j);
7630 goto error;
7631 }
7632 sg->__cpu_power = 0;
7633 cpumask_copy(sched_group_cpus(sg), tmpmask);
7634 sg->next = prev->next;
7635 cpumask_or(covered, covered, tmpmask);
7636 prev->next = sg;
7637 prev = sg;
7638 }
7639 }
7640#endif
7641
7642 /* Calculate CPU power for physical packages and nodes */
7643#ifdef CONFIG_SCHED_SMT
7644 for_each_cpu(i, cpu_map) {
7645 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
7646
7647 init_sched_groups_power(i, sd);
7648 }
7649#endif
7650#ifdef CONFIG_SCHED_MC
7651 for_each_cpu(i, cpu_map) {
7652 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
7653
7654 init_sched_groups_power(i, sd);
7655 }
7656#endif
7657
7658 for_each_cpu(i, cpu_map) {
7659 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
7660
7661 init_sched_groups_power(i, sd);
7662 }
7663
7664#ifdef CONFIG_NUMA
7665 for (i = 0; i < nr_node_ids; i++)
7666 init_numa_sched_groups_power(sched_group_nodes[i]);
7667
7668 if (sd_allnodes) {
7669 struct sched_group *sg;
7670
7671 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7672 tmpmask);
7673 init_numa_sched_groups_power(sg);
7674 }
7675#endif
7676
7677 /* Attach the domains */
7678 for_each_cpu(i, cpu_map) {
7679 struct sched_domain *sd;
7680#ifdef CONFIG_SCHED_SMT
7681 sd = &per_cpu(cpu_domains, i).sd;
7682#elif defined(CONFIG_SCHED_MC)
7683 sd = &per_cpu(core_domains, i).sd;
7684#else
7685 sd = &per_cpu(phys_domains, i).sd;
7686#endif
7687 cpu_attach_domain(sd, rd, i);
7688 }
7689
7690 err = 0;
7691
7692free_tmpmask:
7693 free_cpumask_var(tmpmask);
7694free_send_covered:
7695 free_cpumask_var(send_covered);
7696free_this_core_map:
7697 free_cpumask_var(this_core_map);
7698free_this_sibling_map:
7699 free_cpumask_var(this_sibling_map);
7700free_nodemask:
7701 free_cpumask_var(nodemask);
7702free_notcovered:
7703#ifdef CONFIG_NUMA
7704 free_cpumask_var(notcovered);
7705free_covered:
7706 free_cpumask_var(covered);
7707free_domainspan:
7708 free_cpumask_var(domainspan);
7709out:
7710#endif
7711 return err;
7712
7713free_sched_groups:
7714#ifdef CONFIG_NUMA
7715 kfree(sched_group_nodes);
7716#endif
7717 goto free_tmpmask;
7718
7719#ifdef CONFIG_NUMA
7720error:
7721 free_sched_groups(cpu_map, tmpmask);
7722 free_rootdomain(rd);
7723 goto free_tmpmask;
7724#endif
7725}
7726
7727static int build_sched_domains(const struct cpumask *cpu_map)
7728{
7729 return __build_sched_domains(cpu_map, NULL);
7730}
7731
7732static struct cpumask *doms_cur; /* current sched domains */
7733static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7734static struct sched_domain_attr *dattr_cur;
7735 /* attribues of custom domains in 'doms_cur' */
7736
7737/*
7738 * Special case: If a kmalloc of a doms_cur partition (array of
7739 * cpumask) fails, then fallback to a single sched domain,
7740 * as determined by the single cpumask fallback_doms.
7741 */
7742static cpumask_var_t fallback_doms;
7743
7744/*
7745 * arch_update_cpu_topology lets virtualized architectures update the
7746 * cpu core maps. It is supposed to return 1 if the topology changed
7747 * or 0 if it stayed the same.
7748 */
7749int __attribute__((weak)) arch_update_cpu_topology(void)
7750{
7751 return 0;
7752}
7753
7754/*
7755 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7756 * For now this just excludes isolated cpus, but could be used to
7757 * exclude other special cases in the future.
7758 */
7759static int arch_init_sched_domains(const struct cpumask *cpu_map)
7760{
7761 int err;
7762
7763 arch_update_cpu_topology();
7764 ndoms_cur = 1;
7765 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
7766 if (!doms_cur)
7767 doms_cur = fallback_doms;
7768 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7769 dattr_cur = NULL;
7770 err = build_sched_domains(doms_cur);
7771 register_sched_domain_sysctl();
7772
7773 return err;
7774}
7775
7776static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7777 struct cpumask *tmpmask)
7778{
7779 free_sched_groups(cpu_map, tmpmask);
7780}
7781
7782/*
7783 * Detach sched domains from a group of cpus specified in cpu_map
7784 * These cpus will now be attached to the NULL domain
7785 */
7786static void detach_destroy_domains(const struct cpumask *cpu_map)
7787{
7788 /* Save because hotplug lock held. */
7789 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7790 int i;
7791
7792 for_each_cpu(i, cpu_map)
7793 cpu_attach_domain(NULL, &def_root_domain, i);
7794 synchronize_sched();
7795 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7796}
7797
7798/* handle null as "default" */
7799static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7800 struct sched_domain_attr *new, int idx_new)
7801{
7802 struct sched_domain_attr tmp;
7803
7804 /* fast path */
7805 if (!new && !cur)
7806 return 1;
7807
7808 tmp = SD_ATTR_INIT;
7809 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7810 new ? (new + idx_new) : &tmp,
7811 sizeof(struct sched_domain_attr));
7812}
7813
7814/*
7815 * Partition sched domains as specified by the 'ndoms_new'
7816 * cpumasks in the array doms_new[] of cpumasks. This compares
7817 * doms_new[] to the current sched domain partitioning, doms_cur[].
7818 * It destroys each deleted domain and builds each new domain.
7819 *
7820 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7821 * The masks don't intersect (don't overlap.) We should setup one
7822 * sched domain for each mask. CPUs not in any of the cpumasks will
7823 * not be load balanced. If the same cpumask appears both in the
7824 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7825 * it as it is.
7826 *
7827 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7828 * ownership of it and will kfree it when done with it. If the caller
7829 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7830 * ndoms_new == 1, and partition_sched_domains() will fallback to
7831 * the single partition 'fallback_doms', it also forces the domains
7832 * to be rebuilt.
7833 *
7834 * If doms_new == NULL it will be replaced with cpu_online_mask.
7835 * ndoms_new == 0 is a special case for destroying existing domains,
7836 * and it will not create the default domain.
7837 *
7838 * Call with hotplug lock held
7839 */
7840/* FIXME: Change to struct cpumask *doms_new[] */
7841void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
7842 struct sched_domain_attr *dattr_new)
7843{
7844 int i, j, n;
7845 int new_topology;
7846
7847 mutex_lock(&sched_domains_mutex);
7848
7849 /* always unregister in case we don't destroy any domains */
7850 unregister_sched_domain_sysctl();
7851
7852 /* Let architecture update cpu core mappings. */
7853 new_topology = arch_update_cpu_topology();
7854
7855 n = doms_new ? ndoms_new : 0;
7856
7857 /* Destroy deleted domains */
7858 for (i = 0; i < ndoms_cur; i++) {
7859 for (j = 0; j < n && !new_topology; j++) {
7860 if (cpumask_equal(&doms_cur[i], &doms_new[j])
7861 && dattrs_equal(dattr_cur, i, dattr_new, j))
7862 goto match1;
7863 }
7864 /* no match - a current sched domain not in new doms_new[] */
7865 detach_destroy_domains(doms_cur + i);
7866match1:
7867 ;
7868 }
7869
7870 if (doms_new == NULL) {
7871 ndoms_cur = 0;
7872 doms_new = fallback_doms;
7873 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
7874 WARN_ON_ONCE(dattr_new);
7875 }
7876
7877 /* Build new domains */
7878 for (i = 0; i < ndoms_new; i++) {
7879 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7880 if (cpumask_equal(&doms_new[i], &doms_cur[j])
7881 && dattrs_equal(dattr_new, i, dattr_cur, j))
7882 goto match2;
7883 }
7884 /* no match - add a new doms_new */
7885 __build_sched_domains(doms_new + i,
7886 dattr_new ? dattr_new + i : NULL);
7887match2:
7888 ;
7889 }
7890
7891 /* Remember the new sched domains */
7892 if (doms_cur != fallback_doms)
7893 kfree(doms_cur);
7894 kfree(dattr_cur); /* kfree(NULL) is safe */
7895 doms_cur = doms_new;
7896 dattr_cur = dattr_new;
7897 ndoms_cur = ndoms_new;
7898
7899 register_sched_domain_sysctl();
7900
7901 mutex_unlock(&sched_domains_mutex);
7902}
7903
7904#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7905int arch_reinit_sched_domains(void)
7906{
7907 get_online_cpus();
7908
7909 /* Destroy domains first to force the rebuild */
7910 partition_sched_domains(0, NULL, NULL);
7911
7912 rebuild_sched_domains();
7913 put_online_cpus();
7914
7915 return 0;
7916}
7917
7918static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7919{
7920 int ret;
7921 unsigned int level = 0;
7922
7923 if (sscanf(buf, "%u", &level) != 1)
7924 return -EINVAL;
7925
7926 /*
7927 * level is always be positive so don't check for
7928 * level < POWERSAVINGS_BALANCE_NONE which is 0
7929 * What happens on 0 or 1 byte write,
7930 * need to check for count as well?
7931 */
7932
7933 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7934 return -EINVAL;
7935
7936 if (smt)
7937 sched_smt_power_savings = level;
7938 else
7939 sched_mc_power_savings = level;
7940
7941 ret = arch_reinit_sched_domains();
7942
7943 return ret ? ret : count;
7944}
7945
7946#ifdef CONFIG_SCHED_MC
7947static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7948 char *page)
7949{
7950 return sprintf(page, "%u\n", sched_mc_power_savings);
7951}
7952static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7953 const char *buf, size_t count)
7954{
7955 return sched_power_savings_store(buf, count, 0);
7956}
7957static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7958 sched_mc_power_savings_show,
7959 sched_mc_power_savings_store);
7960#endif
7961
7962#ifdef CONFIG_SCHED_SMT
7963static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7964 char *page)
7965{
7966 return sprintf(page, "%u\n", sched_smt_power_savings);
7967}
7968static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7969 const char *buf, size_t count)
7970{
7971 return sched_power_savings_store(buf, count, 1);
7972}
7973static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7974 sched_smt_power_savings_show,
7975 sched_smt_power_savings_store);
7976#endif
7977
7978int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7979{
7980 int err = 0;
7981
7982#ifdef CONFIG_SCHED_SMT
7983 if (smt_capable())
7984 err = sysfs_create_file(&cls->kset.kobj,
7985 &attr_sched_smt_power_savings.attr);
7986#endif
7987#ifdef CONFIG_SCHED_MC
7988 if (!err && mc_capable())
7989 err = sysfs_create_file(&cls->kset.kobj,
7990 &attr_sched_mc_power_savings.attr);
7991#endif
7992 return err;
7993}
7994#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7995
7996#ifndef CONFIG_CPUSETS
7997/*
7998 * Add online and remove offline CPUs from the scheduler domains.
7999 * When cpusets are enabled they take over this function.
8000 */
8001static int update_sched_domains(struct notifier_block *nfb,
8002 unsigned long action, void *hcpu)
8003{
8004 switch (action) {
8005 case CPU_ONLINE:
8006 case CPU_ONLINE_FROZEN:
8007 case CPU_DEAD:
8008 case CPU_DEAD_FROZEN:
8009 partition_sched_domains(1, NULL, NULL);
8010 return NOTIFY_OK;
8011
8012 default:
8013 return NOTIFY_DONE;
8014 }
8015}
8016#endif
8017
8018static int update_runtime(struct notifier_block *nfb,
8019 unsigned long action, void *hcpu)
8020{
8021 int cpu = (int)(long)hcpu;
8022
8023 switch (action) {
8024 case CPU_DOWN_PREPARE:
8025 case CPU_DOWN_PREPARE_FROZEN:
8026 disable_runtime(cpu_rq(cpu));
8027 return NOTIFY_OK;
8028
8029 case CPU_DOWN_FAILED:
8030 case CPU_DOWN_FAILED_FROZEN:
8031 case CPU_ONLINE:
8032 case CPU_ONLINE_FROZEN:
8033 enable_runtime(cpu_rq(cpu));
8034 return NOTIFY_OK;
8035
8036 default:
8037 return NOTIFY_DONE;
8038 }
8039}
8040
8041void __init sched_init_smp(void)
8042{
8043 cpumask_var_t non_isolated_cpus;
8044
8045 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8046
8047#if defined(CONFIG_NUMA)
8048 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8049 GFP_KERNEL);
8050 BUG_ON(sched_group_nodes_bycpu == NULL);
8051#endif
8052 get_online_cpus();
8053 mutex_lock(&sched_domains_mutex);
8054 arch_init_sched_domains(cpu_online_mask);
8055 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8056 if (cpumask_empty(non_isolated_cpus))
8057 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8058 mutex_unlock(&sched_domains_mutex);
8059 put_online_cpus();
8060
8061#ifndef CONFIG_CPUSETS
8062 /* XXX: Theoretical race here - CPU may be hotplugged now */
8063 hotcpu_notifier(update_sched_domains, 0);
8064#endif
8065
8066 /* RT runtime code needs to handle some hotplug events */
8067 hotcpu_notifier(update_runtime, 0);
8068
8069 init_hrtick();
8070
8071 /* Move init over to a non-isolated CPU */
8072 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8073 BUG();
8074 sched_init_granularity();
8075 free_cpumask_var(non_isolated_cpus);
8076
8077 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8078 init_sched_rt_class();
8079}
8080#else
8081void __init sched_init_smp(void)
8082{
8083 sched_init_granularity();
8084}
8085#endif /* CONFIG_SMP */
8086
8087int in_sched_functions(unsigned long addr)
8088{
8089 return in_lock_functions(addr) ||
8090 (addr >= (unsigned long)__sched_text_start
8091 && addr < (unsigned long)__sched_text_end);
8092}
8093
8094static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8095{
8096 cfs_rq->tasks_timeline = RB_ROOT;
8097 INIT_LIST_HEAD(&cfs_rq->tasks);
8098#ifdef CONFIG_FAIR_GROUP_SCHED
8099 cfs_rq->rq = rq;
8100#endif
8101 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8102}
8103
8104static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8105{
8106 struct rt_prio_array *array;
8107 int i;
8108
8109 array = &rt_rq->active;
8110 for (i = 0; i < MAX_RT_PRIO; i++) {
8111 INIT_LIST_HEAD(array->queue + i);
8112 __clear_bit(i, array->bitmap);
8113 }
8114 /* delimiter for bitsearch: */
8115 __set_bit(MAX_RT_PRIO, array->bitmap);
8116
8117#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8118 rt_rq->highest_prio = MAX_RT_PRIO;
8119#endif
8120#ifdef CONFIG_SMP
8121 rt_rq->rt_nr_migratory = 0;
8122 rt_rq->overloaded = 0;
8123#endif
8124
8125 rt_rq->rt_time = 0;
8126 rt_rq->rt_throttled = 0;
8127 rt_rq->rt_runtime = 0;
8128 spin_lock_init(&rt_rq->rt_runtime_lock);
8129
8130#ifdef CONFIG_RT_GROUP_SCHED
8131 rt_rq->rt_nr_boosted = 0;
8132 rt_rq->rq = rq;
8133#endif
8134}
8135
8136#ifdef CONFIG_FAIR_GROUP_SCHED
8137static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8138 struct sched_entity *se, int cpu, int add,
8139 struct sched_entity *parent)
8140{
8141 struct rq *rq = cpu_rq(cpu);
8142 tg->cfs_rq[cpu] = cfs_rq;
8143 init_cfs_rq(cfs_rq, rq);
8144 cfs_rq->tg = tg;
8145 if (add)
8146 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8147
8148 tg->se[cpu] = se;
8149 /* se could be NULL for init_task_group */
8150 if (!se)
8151 return;
8152
8153 if (!parent)
8154 se->cfs_rq = &rq->cfs;
8155 else
8156 se->cfs_rq = parent->my_q;
8157
8158 se->my_q = cfs_rq;
8159 se->load.weight = tg->shares;
8160 se->load.inv_weight = 0;
8161 se->parent = parent;
8162}
8163#endif
8164
8165#ifdef CONFIG_RT_GROUP_SCHED
8166static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8167 struct sched_rt_entity *rt_se, int cpu, int add,
8168 struct sched_rt_entity *parent)
8169{
8170 struct rq *rq = cpu_rq(cpu);
8171
8172 tg->rt_rq[cpu] = rt_rq;
8173 init_rt_rq(rt_rq, rq);
8174 rt_rq->tg = tg;
8175 rt_rq->rt_se = rt_se;
8176 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8177 if (add)
8178 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8179
8180 tg->rt_se[cpu] = rt_se;
8181 if (!rt_se)
8182 return;
8183
8184 if (!parent)
8185 rt_se->rt_rq = &rq->rt;
8186 else
8187 rt_se->rt_rq = parent->my_q;
8188
8189 rt_se->my_q = rt_rq;
8190 rt_se->parent = parent;
8191 INIT_LIST_HEAD(&rt_se->run_list);
8192}
8193#endif
8194
8195void __init sched_init(void)
8196{
8197 int i, j;
8198 unsigned long alloc_size = 0, ptr;
8199
8200#ifdef CONFIG_FAIR_GROUP_SCHED
8201 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8202#endif
8203#ifdef CONFIG_RT_GROUP_SCHED
8204 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8205#endif
8206#ifdef CONFIG_USER_SCHED
8207 alloc_size *= 2;
8208#endif
8209 /*
8210 * As sched_init() is called before page_alloc is setup,
8211 * we use alloc_bootmem().
8212 */
8213 if (alloc_size) {
8214 ptr = (unsigned long)alloc_bootmem(alloc_size);
8215
8216#ifdef CONFIG_FAIR_GROUP_SCHED
8217 init_task_group.se = (struct sched_entity **)ptr;
8218 ptr += nr_cpu_ids * sizeof(void **);
8219
8220 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8221 ptr += nr_cpu_ids * sizeof(void **);
8222
8223#ifdef CONFIG_USER_SCHED
8224 root_task_group.se = (struct sched_entity **)ptr;
8225 ptr += nr_cpu_ids * sizeof(void **);
8226
8227 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8228 ptr += nr_cpu_ids * sizeof(void **);
8229#endif /* CONFIG_USER_SCHED */
8230#endif /* CONFIG_FAIR_GROUP_SCHED */
8231#ifdef CONFIG_RT_GROUP_SCHED
8232 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8233 ptr += nr_cpu_ids * sizeof(void **);
8234
8235 init_task_group.rt_rq = (struct rt_rq **)ptr;
8236 ptr += nr_cpu_ids * sizeof(void **);
8237
8238#ifdef CONFIG_USER_SCHED
8239 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8240 ptr += nr_cpu_ids * sizeof(void **);
8241
8242 root_task_group.rt_rq = (struct rt_rq **)ptr;
8243 ptr += nr_cpu_ids * sizeof(void **);
8244#endif /* CONFIG_USER_SCHED */
8245#endif /* CONFIG_RT_GROUP_SCHED */
8246 }
8247
8248#ifdef CONFIG_SMP
8249 init_defrootdomain();
8250#endif
8251
8252 init_rt_bandwidth(&def_rt_bandwidth,
8253 global_rt_period(), global_rt_runtime());
8254
8255#ifdef CONFIG_RT_GROUP_SCHED
8256 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8257 global_rt_period(), global_rt_runtime());
8258#ifdef CONFIG_USER_SCHED
8259 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8260 global_rt_period(), RUNTIME_INF);
8261#endif /* CONFIG_USER_SCHED */
8262#endif /* CONFIG_RT_GROUP_SCHED */
8263
8264#ifdef CONFIG_GROUP_SCHED
8265 list_add(&init_task_group.list, &task_groups);
8266 INIT_LIST_HEAD(&init_task_group.children);
8267
8268#ifdef CONFIG_USER_SCHED
8269 INIT_LIST_HEAD(&root_task_group.children);
8270 init_task_group.parent = &root_task_group;
8271 list_add(&init_task_group.siblings, &root_task_group.children);
8272#endif /* CONFIG_USER_SCHED */
8273#endif /* CONFIG_GROUP_SCHED */
8274
8275 for_each_possible_cpu(i) {
8276 struct rq *rq;
8277
8278 rq = cpu_rq(i);
8279 spin_lock_init(&rq->lock);
8280 rq->nr_running = 0;
8281 init_cfs_rq(&rq->cfs, rq);
8282 init_rt_rq(&rq->rt, rq);
8283#ifdef CONFIG_FAIR_GROUP_SCHED
8284 init_task_group.shares = init_task_group_load;
8285 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8286#ifdef CONFIG_CGROUP_SCHED
8287 /*
8288 * How much cpu bandwidth does init_task_group get?
8289 *
8290 * In case of task-groups formed thr' the cgroup filesystem, it
8291 * gets 100% of the cpu resources in the system. This overall
8292 * system cpu resource is divided among the tasks of
8293 * init_task_group and its child task-groups in a fair manner,
8294 * based on each entity's (task or task-group's) weight
8295 * (se->load.weight).
8296 *
8297 * In other words, if init_task_group has 10 tasks of weight
8298 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8299 * then A0's share of the cpu resource is:
8300 *
8301 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8302 *
8303 * We achieve this by letting init_task_group's tasks sit
8304 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8305 */
8306 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8307#elif defined CONFIG_USER_SCHED
8308 root_task_group.shares = NICE_0_LOAD;
8309 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8310 /*
8311 * In case of task-groups formed thr' the user id of tasks,
8312 * init_task_group represents tasks belonging to root user.
8313 * Hence it forms a sibling of all subsequent groups formed.
8314 * In this case, init_task_group gets only a fraction of overall
8315 * system cpu resource, based on the weight assigned to root
8316 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8317 * by letting tasks of init_task_group sit in a separate cfs_rq
8318 * (init_cfs_rq) and having one entity represent this group of
8319 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8320 */
8321 init_tg_cfs_entry(&init_task_group,
8322 &per_cpu(init_cfs_rq, i),
8323 &per_cpu(init_sched_entity, i), i, 1,
8324 root_task_group.se[i]);
8325
8326#endif
8327#endif /* CONFIG_FAIR_GROUP_SCHED */
8328
8329 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8330#ifdef CONFIG_RT_GROUP_SCHED
8331 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8332#ifdef CONFIG_CGROUP_SCHED
8333 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8334#elif defined CONFIG_USER_SCHED
8335 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8336 init_tg_rt_entry(&init_task_group,
8337 &per_cpu(init_rt_rq, i),
8338 &per_cpu(init_sched_rt_entity, i), i, 1,
8339 root_task_group.rt_se[i]);
8340#endif
8341#endif
8342
8343 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8344 rq->cpu_load[j] = 0;
8345#ifdef CONFIG_SMP
8346 rq->sd = NULL;
8347 rq->rd = NULL;
8348 rq->active_balance = 0;
8349 rq->next_balance = jiffies;
8350 rq->push_cpu = 0;
8351 rq->cpu = i;
8352 rq->online = 0;
8353 rq->migration_thread = NULL;
8354 INIT_LIST_HEAD(&rq->migration_queue);
8355 rq_attach_root(rq, &def_root_domain);
8356#endif
8357 init_rq_hrtick(rq);
8358 atomic_set(&rq->nr_iowait, 0);
8359 }
8360
8361 set_load_weight(&init_task);
8362
8363#ifdef CONFIG_PREEMPT_NOTIFIERS
8364 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8365#endif
8366
8367#ifdef CONFIG_SMP
8368 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8369#endif
8370
8371#ifdef CONFIG_RT_MUTEXES
8372 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8373#endif
8374
8375 /*
8376 * The boot idle thread does lazy MMU switching as well:
8377 */
8378 atomic_inc(&init_mm.mm_count);
8379 enter_lazy_tlb(&init_mm, current);
8380
8381 /*
8382 * Make us the idle thread. Technically, schedule() should not be
8383 * called from this thread, however somewhere below it might be,
8384 * but because we are the idle thread, we just pick up running again
8385 * when this runqueue becomes "idle".
8386 */
8387 init_idle(current, smp_processor_id());
8388 /*
8389 * During early bootup we pretend to be a normal task:
8390 */
8391 current->sched_class = &fair_sched_class;
8392
8393 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8394 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8395#ifdef CONFIG_SMP
8396#ifdef CONFIG_NO_HZ
8397 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8398#endif
8399 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8400#endif /* SMP */
8401
8402 scheduler_running = 1;
8403}
8404
8405#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8406void __might_sleep(char *file, int line)
8407{
8408#ifdef in_atomic
8409 static unsigned long prev_jiffy; /* ratelimiting */
8410
8411 if ((!in_atomic() && !irqs_disabled()) ||
8412 system_state != SYSTEM_RUNNING || oops_in_progress)
8413 return;
8414 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8415 return;
8416 prev_jiffy = jiffies;
8417
8418 printk(KERN_ERR
8419 "BUG: sleeping function called from invalid context at %s:%d\n",
8420 file, line);
8421 printk(KERN_ERR
8422 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8423 in_atomic(), irqs_disabled(),
8424 current->pid, current->comm);
8425
8426 debug_show_held_locks(current);
8427 if (irqs_disabled())
8428 print_irqtrace_events(current);
8429 dump_stack();
8430#endif
8431}
8432EXPORT_SYMBOL(__might_sleep);
8433#endif
8434
8435#ifdef CONFIG_MAGIC_SYSRQ
8436static void normalize_task(struct rq *rq, struct task_struct *p)
8437{
8438 int on_rq;
8439
8440 update_rq_clock(rq);
8441 on_rq = p->se.on_rq;
8442 if (on_rq)
8443 deactivate_task(rq, p, 0);
8444 __setscheduler(rq, p, SCHED_NORMAL, 0);
8445 if (on_rq) {
8446 activate_task(rq, p, 0);
8447 resched_task(rq->curr);
8448 }
8449}
8450
8451void normalize_rt_tasks(void)
8452{
8453 struct task_struct *g, *p;
8454 unsigned long flags;
8455 struct rq *rq;
8456
8457 read_lock_irqsave(&tasklist_lock, flags);
8458 do_each_thread(g, p) {
8459 /*
8460 * Only normalize user tasks:
8461 */
8462 if (!p->mm)
8463 continue;
8464
8465 p->se.exec_start = 0;
8466#ifdef CONFIG_SCHEDSTATS
8467 p->se.wait_start = 0;
8468 p->se.sleep_start = 0;
8469 p->se.block_start = 0;
8470#endif
8471
8472 if (!rt_task(p)) {
8473 /*
8474 * Renice negative nice level userspace
8475 * tasks back to 0:
8476 */
8477 if (TASK_NICE(p) < 0 && p->mm)
8478 set_user_nice(p, 0);
8479 continue;
8480 }
8481
8482 spin_lock(&p->pi_lock);
8483 rq = __task_rq_lock(p);
8484
8485 normalize_task(rq, p);
8486
8487 __task_rq_unlock(rq);
8488 spin_unlock(&p->pi_lock);
8489 } while_each_thread(g, p);
8490
8491 read_unlock_irqrestore(&tasklist_lock, flags);
8492}
8493
8494#endif /* CONFIG_MAGIC_SYSRQ */
8495
8496#ifdef CONFIG_IA64
8497/*
8498 * These functions are only useful for the IA64 MCA handling.
8499 *
8500 * They can only be called when the whole system has been
8501 * stopped - every CPU needs to be quiescent, and no scheduling
8502 * activity can take place. Using them for anything else would
8503 * be a serious bug, and as a result, they aren't even visible
8504 * under any other configuration.
8505 */
8506
8507/**
8508 * curr_task - return the current task for a given cpu.
8509 * @cpu: the processor in question.
8510 *
8511 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8512 */
8513struct task_struct *curr_task(int cpu)
8514{
8515 return cpu_curr(cpu);
8516}
8517
8518/**
8519 * set_curr_task - set the current task for a given cpu.
8520 * @cpu: the processor in question.
8521 * @p: the task pointer to set.
8522 *
8523 * Description: This function must only be used when non-maskable interrupts
8524 * are serviced on a separate stack. It allows the architecture to switch the
8525 * notion of the current task on a cpu in a non-blocking manner. This function
8526 * must be called with all CPU's synchronized, and interrupts disabled, the
8527 * and caller must save the original value of the current task (see
8528 * curr_task() above) and restore that value before reenabling interrupts and
8529 * re-starting the system.
8530 *
8531 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8532 */
8533void set_curr_task(int cpu, struct task_struct *p)
8534{
8535 cpu_curr(cpu) = p;
8536}
8537
8538#endif
8539
8540#ifdef CONFIG_FAIR_GROUP_SCHED
8541static void free_fair_sched_group(struct task_group *tg)
8542{
8543 int i;
8544
8545 for_each_possible_cpu(i) {
8546 if (tg->cfs_rq)
8547 kfree(tg->cfs_rq[i]);
8548 if (tg->se)
8549 kfree(tg->se[i]);
8550 }
8551
8552 kfree(tg->cfs_rq);
8553 kfree(tg->se);
8554}
8555
8556static
8557int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8558{
8559 struct cfs_rq *cfs_rq;
8560 struct sched_entity *se;
8561 struct rq *rq;
8562 int i;
8563
8564 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8565 if (!tg->cfs_rq)
8566 goto err;
8567 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8568 if (!tg->se)
8569 goto err;
8570
8571 tg->shares = NICE_0_LOAD;
8572
8573 for_each_possible_cpu(i) {
8574 rq = cpu_rq(i);
8575
8576 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8577 GFP_KERNEL, cpu_to_node(i));
8578 if (!cfs_rq)
8579 goto err;
8580
8581 se = kzalloc_node(sizeof(struct sched_entity),
8582 GFP_KERNEL, cpu_to_node(i));
8583 if (!se)
8584 goto err;
8585
8586 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8587 }
8588
8589 return 1;
8590
8591 err:
8592 return 0;
8593}
8594
8595static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8596{
8597 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8598 &cpu_rq(cpu)->leaf_cfs_rq_list);
8599}
8600
8601static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8602{
8603 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8604}
8605#else /* !CONFG_FAIR_GROUP_SCHED */
8606static inline void free_fair_sched_group(struct task_group *tg)
8607{
8608}
8609
8610static inline
8611int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8612{
8613 return 1;
8614}
8615
8616static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8617{
8618}
8619
8620static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8621{
8622}
8623#endif /* CONFIG_FAIR_GROUP_SCHED */
8624
8625#ifdef CONFIG_RT_GROUP_SCHED
8626static void free_rt_sched_group(struct task_group *tg)
8627{
8628 int i;
8629
8630 destroy_rt_bandwidth(&tg->rt_bandwidth);
8631
8632 for_each_possible_cpu(i) {
8633 if (tg->rt_rq)
8634 kfree(tg->rt_rq[i]);
8635 if (tg->rt_se)
8636 kfree(tg->rt_se[i]);
8637 }
8638
8639 kfree(tg->rt_rq);
8640 kfree(tg->rt_se);
8641}
8642
8643static
8644int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8645{
8646 struct rt_rq *rt_rq;
8647 struct sched_rt_entity *rt_se;
8648 struct rq *rq;
8649 int i;
8650
8651 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8652 if (!tg->rt_rq)
8653 goto err;
8654 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8655 if (!tg->rt_se)
8656 goto err;
8657
8658 init_rt_bandwidth(&tg->rt_bandwidth,
8659 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8660
8661 for_each_possible_cpu(i) {
8662 rq = cpu_rq(i);
8663
8664 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8665 GFP_KERNEL, cpu_to_node(i));
8666 if (!rt_rq)
8667 goto err;
8668
8669 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8670 GFP_KERNEL, cpu_to_node(i));
8671 if (!rt_se)
8672 goto err;
8673
8674 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8675 }
8676
8677 return 1;
8678
8679 err:
8680 return 0;
8681}
8682
8683static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8684{
8685 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8686 &cpu_rq(cpu)->leaf_rt_rq_list);
8687}
8688
8689static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8690{
8691 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8692}
8693#else /* !CONFIG_RT_GROUP_SCHED */
8694static inline void free_rt_sched_group(struct task_group *tg)
8695{
8696}
8697
8698static inline
8699int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8700{
8701 return 1;
8702}
8703
8704static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8705{
8706}
8707
8708static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8709{
8710}
8711#endif /* CONFIG_RT_GROUP_SCHED */
8712
8713#ifdef CONFIG_GROUP_SCHED
8714static void free_sched_group(struct task_group *tg)
8715{
8716 free_fair_sched_group(tg);
8717 free_rt_sched_group(tg);
8718 kfree(tg);
8719}
8720
8721/* allocate runqueue etc for a new task group */
8722struct task_group *sched_create_group(struct task_group *parent)
8723{
8724 struct task_group *tg;
8725 unsigned long flags;
8726 int i;
8727
8728 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8729 if (!tg)
8730 return ERR_PTR(-ENOMEM);
8731
8732 if (!alloc_fair_sched_group(tg, parent))
8733 goto err;
8734
8735 if (!alloc_rt_sched_group(tg, parent))
8736 goto err;
8737
8738 spin_lock_irqsave(&task_group_lock, flags);
8739 for_each_possible_cpu(i) {
8740 register_fair_sched_group(tg, i);
8741 register_rt_sched_group(tg, i);
8742 }
8743 list_add_rcu(&tg->list, &task_groups);
8744
8745 WARN_ON(!parent); /* root should already exist */
8746
8747 tg->parent = parent;
8748 INIT_LIST_HEAD(&tg->children);
8749 list_add_rcu(&tg->siblings, &parent->children);
8750 spin_unlock_irqrestore(&task_group_lock, flags);
8751
8752 return tg;
8753
8754err:
8755 free_sched_group(tg);
8756 return ERR_PTR(-ENOMEM);
8757}
8758
8759/* rcu callback to free various structures associated with a task group */
8760static void free_sched_group_rcu(struct rcu_head *rhp)
8761{
8762 /* now it should be safe to free those cfs_rqs */
8763 free_sched_group(container_of(rhp, struct task_group, rcu));
8764}
8765
8766/* Destroy runqueue etc associated with a task group */
8767void sched_destroy_group(struct task_group *tg)
8768{
8769 unsigned long flags;
8770 int i;
8771
8772 spin_lock_irqsave(&task_group_lock, flags);
8773 for_each_possible_cpu(i) {
8774 unregister_fair_sched_group(tg, i);
8775 unregister_rt_sched_group(tg, i);
8776 }
8777 list_del_rcu(&tg->list);
8778 list_del_rcu(&tg->siblings);
8779 spin_unlock_irqrestore(&task_group_lock, flags);
8780
8781 /* wait for possible concurrent references to cfs_rqs complete */
8782 call_rcu(&tg->rcu, free_sched_group_rcu);
8783}
8784
8785/* change task's runqueue when it moves between groups.
8786 * The caller of this function should have put the task in its new group
8787 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8788 * reflect its new group.
8789 */
8790void sched_move_task(struct task_struct *tsk)
8791{
8792 int on_rq, running;
8793 unsigned long flags;
8794 struct rq *rq;
8795
8796 rq = task_rq_lock(tsk, &flags);
8797
8798 update_rq_clock(rq);
8799
8800 running = task_current(rq, tsk);
8801 on_rq = tsk->se.on_rq;
8802
8803 if (on_rq)
8804 dequeue_task(rq, tsk, 0);
8805 if (unlikely(running))
8806 tsk->sched_class->put_prev_task(rq, tsk);
8807
8808 set_task_rq(tsk, task_cpu(tsk));
8809
8810#ifdef CONFIG_FAIR_GROUP_SCHED
8811 if (tsk->sched_class->moved_group)
8812 tsk->sched_class->moved_group(tsk);
8813#endif
8814
8815 if (unlikely(running))
8816 tsk->sched_class->set_curr_task(rq);
8817 if (on_rq)
8818 enqueue_task(rq, tsk, 0);
8819
8820 task_rq_unlock(rq, &flags);
8821}
8822#endif /* CONFIG_GROUP_SCHED */
8823
8824#ifdef CONFIG_FAIR_GROUP_SCHED
8825static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8826{
8827 struct cfs_rq *cfs_rq = se->cfs_rq;
8828 int on_rq;
8829
8830 on_rq = se->on_rq;
8831 if (on_rq)
8832 dequeue_entity(cfs_rq, se, 0);
8833
8834 se->load.weight = shares;
8835 se->load.inv_weight = 0;
8836
8837 if (on_rq)
8838 enqueue_entity(cfs_rq, se, 0);
8839}
8840
8841static void set_se_shares(struct sched_entity *se, unsigned long shares)
8842{
8843 struct cfs_rq *cfs_rq = se->cfs_rq;
8844 struct rq *rq = cfs_rq->rq;
8845 unsigned long flags;
8846
8847 spin_lock_irqsave(&rq->lock, flags);
8848 __set_se_shares(se, shares);
8849 spin_unlock_irqrestore(&rq->lock, flags);
8850}
8851
8852static DEFINE_MUTEX(shares_mutex);
8853
8854int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8855{
8856 int i;
8857 unsigned long flags;
8858
8859 /*
8860 * We can't change the weight of the root cgroup.
8861 */
8862 if (!tg->se[0])
8863 return -EINVAL;
8864
8865 if (shares < MIN_SHARES)
8866 shares = MIN_SHARES;
8867 else if (shares > MAX_SHARES)
8868 shares = MAX_SHARES;
8869
8870 mutex_lock(&shares_mutex);
8871 if (tg->shares == shares)
8872 goto done;
8873
8874 spin_lock_irqsave(&task_group_lock, flags);
8875 for_each_possible_cpu(i)
8876 unregister_fair_sched_group(tg, i);
8877 list_del_rcu(&tg->siblings);
8878 spin_unlock_irqrestore(&task_group_lock, flags);
8879
8880 /* wait for any ongoing reference to this group to finish */
8881 synchronize_sched();
8882
8883 /*
8884 * Now we are free to modify the group's share on each cpu
8885 * w/o tripping rebalance_share or load_balance_fair.
8886 */
8887 tg->shares = shares;
8888 for_each_possible_cpu(i) {
8889 /*
8890 * force a rebalance
8891 */
8892 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8893 set_se_shares(tg->se[i], shares);
8894 }
8895
8896 /*
8897 * Enable load balance activity on this group, by inserting it back on
8898 * each cpu's rq->leaf_cfs_rq_list.
8899 */
8900 spin_lock_irqsave(&task_group_lock, flags);
8901 for_each_possible_cpu(i)
8902 register_fair_sched_group(tg, i);
8903 list_add_rcu(&tg->siblings, &tg->parent->children);
8904 spin_unlock_irqrestore(&task_group_lock, flags);
8905done:
8906 mutex_unlock(&shares_mutex);
8907 return 0;
8908}
8909
8910unsigned long sched_group_shares(struct task_group *tg)
8911{
8912 return tg->shares;
8913}
8914#endif
8915
8916#ifdef CONFIG_RT_GROUP_SCHED
8917/*
8918 * Ensure that the real time constraints are schedulable.
8919 */
8920static DEFINE_MUTEX(rt_constraints_mutex);
8921
8922static unsigned long to_ratio(u64 period, u64 runtime)
8923{
8924 if (runtime == RUNTIME_INF)
8925 return 1ULL << 20;
8926
8927 return div64_u64(runtime << 20, period);
8928}
8929
8930/* Must be called with tasklist_lock held */
8931static inline int tg_has_rt_tasks(struct task_group *tg)
8932{
8933 struct task_struct *g, *p;
8934
8935 do_each_thread(g, p) {
8936 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8937 return 1;
8938 } while_each_thread(g, p);
8939
8940 return 0;
8941}
8942
8943struct rt_schedulable_data {
8944 struct task_group *tg;
8945 u64 rt_period;
8946 u64 rt_runtime;
8947};
8948
8949static int tg_schedulable(struct task_group *tg, void *data)
8950{
8951 struct rt_schedulable_data *d = data;
8952 struct task_group *child;
8953 unsigned long total, sum = 0;
8954 u64 period, runtime;
8955
8956 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8957 runtime = tg->rt_bandwidth.rt_runtime;
8958
8959 if (tg == d->tg) {
8960 period = d->rt_period;
8961 runtime = d->rt_runtime;
8962 }
8963
8964 /*
8965 * Cannot have more runtime than the period.
8966 */
8967 if (runtime > period && runtime != RUNTIME_INF)
8968 return -EINVAL;
8969
8970 /*
8971 * Ensure we don't starve existing RT tasks.
8972 */
8973 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8974 return -EBUSY;
8975
8976 total = to_ratio(period, runtime);
8977
8978 /*
8979 * Nobody can have more than the global setting allows.
8980 */
8981 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8982 return -EINVAL;
8983
8984 /*
8985 * The sum of our children's runtime should not exceed our own.
8986 */
8987 list_for_each_entry_rcu(child, &tg->children, siblings) {
8988 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8989 runtime = child->rt_bandwidth.rt_runtime;
8990
8991 if (child == d->tg) {
8992 period = d->rt_period;
8993 runtime = d->rt_runtime;
8994 }
8995
8996 sum += to_ratio(period, runtime);
8997 }
8998
8999 if (sum > total)
9000 return -EINVAL;
9001
9002 return 0;
9003}
9004
9005static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9006{
9007 struct rt_schedulable_data data = {
9008 .tg = tg,
9009 .rt_period = period,
9010 .rt_runtime = runtime,
9011 };
9012
9013 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9014}
9015
9016static int tg_set_bandwidth(struct task_group *tg,
9017 u64 rt_period, u64 rt_runtime)
9018{
9019 int i, err = 0;
9020
9021 mutex_lock(&rt_constraints_mutex);
9022 read_lock(&tasklist_lock);
9023 err = __rt_schedulable(tg, rt_period, rt_runtime);
9024 if (err)
9025 goto unlock;
9026
9027 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9028 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9029 tg->rt_bandwidth.rt_runtime = rt_runtime;
9030
9031 for_each_possible_cpu(i) {
9032 struct rt_rq *rt_rq = tg->rt_rq[i];
9033
9034 spin_lock(&rt_rq->rt_runtime_lock);
9035 rt_rq->rt_runtime = rt_runtime;
9036 spin_unlock(&rt_rq->rt_runtime_lock);
9037 }
9038 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9039 unlock:
9040 read_unlock(&tasklist_lock);
9041 mutex_unlock(&rt_constraints_mutex);
9042
9043 return err;
9044}
9045
9046int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9047{
9048 u64 rt_runtime, rt_period;
9049
9050 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9051 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9052 if (rt_runtime_us < 0)
9053 rt_runtime = RUNTIME_INF;
9054
9055 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9056}
9057
9058long sched_group_rt_runtime(struct task_group *tg)
9059{
9060 u64 rt_runtime_us;
9061
9062 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9063 return -1;
9064
9065 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9066 do_div(rt_runtime_us, NSEC_PER_USEC);
9067 return rt_runtime_us;
9068}
9069
9070int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9071{
9072 u64 rt_runtime, rt_period;
9073
9074 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9075 rt_runtime = tg->rt_bandwidth.rt_runtime;
9076
9077 if (rt_period == 0)
9078 return -EINVAL;
9079
9080 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9081}
9082
9083long sched_group_rt_period(struct task_group *tg)
9084{
9085 u64 rt_period_us;
9086
9087 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9088 do_div(rt_period_us, NSEC_PER_USEC);
9089 return rt_period_us;
9090}
9091
9092static int sched_rt_global_constraints(void)
9093{
9094 u64 runtime, period;
9095 int ret = 0;
9096
9097 if (sysctl_sched_rt_period <= 0)
9098 return -EINVAL;
9099
9100 runtime = global_rt_runtime();
9101 period = global_rt_period();
9102
9103 /*
9104 * Sanity check on the sysctl variables.
9105 */
9106 if (runtime > period && runtime != RUNTIME_INF)
9107 return -EINVAL;
9108
9109 mutex_lock(&rt_constraints_mutex);
9110 read_lock(&tasklist_lock);
9111 ret = __rt_schedulable(NULL, 0, 0);
9112 read_unlock(&tasklist_lock);
9113 mutex_unlock(&rt_constraints_mutex);
9114
9115 return ret;
9116}
9117#else /* !CONFIG_RT_GROUP_SCHED */
9118static int sched_rt_global_constraints(void)
9119{
9120 unsigned long flags;
9121 int i;
9122
9123 if (sysctl_sched_rt_period <= 0)
9124 return -EINVAL;
9125
9126 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9127 for_each_possible_cpu(i) {
9128 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9129
9130 spin_lock(&rt_rq->rt_runtime_lock);
9131 rt_rq->rt_runtime = global_rt_runtime();
9132 spin_unlock(&rt_rq->rt_runtime_lock);
9133 }
9134 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9135
9136 return 0;
9137}
9138#endif /* CONFIG_RT_GROUP_SCHED */
9139
9140int sched_rt_handler(struct ctl_table *table, int write,
9141 struct file *filp, void __user *buffer, size_t *lenp,
9142 loff_t *ppos)
9143{
9144 int ret;
9145 int old_period, old_runtime;
9146 static DEFINE_MUTEX(mutex);
9147
9148 mutex_lock(&mutex);
9149 old_period = sysctl_sched_rt_period;
9150 old_runtime = sysctl_sched_rt_runtime;
9151
9152 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9153
9154 if (!ret && write) {
9155 ret = sched_rt_global_constraints();
9156 if (ret) {
9157 sysctl_sched_rt_period = old_period;
9158 sysctl_sched_rt_runtime = old_runtime;
9159 } else {
9160 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9161 def_rt_bandwidth.rt_period =
9162 ns_to_ktime(global_rt_period());
9163 }
9164 }
9165 mutex_unlock(&mutex);
9166
9167 return ret;
9168}
9169
9170#ifdef CONFIG_CGROUP_SCHED
9171
9172/* return corresponding task_group object of a cgroup */
9173static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9174{
9175 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9176 struct task_group, css);
9177}
9178
9179static struct cgroup_subsys_state *
9180cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9181{
9182 struct task_group *tg, *parent;
9183
9184 if (!cgrp->parent) {
9185 /* This is early initialization for the top cgroup */
9186 return &init_task_group.css;
9187 }
9188
9189 parent = cgroup_tg(cgrp->parent);
9190 tg = sched_create_group(parent);
9191 if (IS_ERR(tg))
9192 return ERR_PTR(-ENOMEM);
9193
9194 return &tg->css;
9195}
9196
9197static void
9198cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9199{
9200 struct task_group *tg = cgroup_tg(cgrp);
9201
9202 sched_destroy_group(tg);
9203}
9204
9205static int
9206cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9207 struct task_struct *tsk)
9208{
9209#ifdef CONFIG_RT_GROUP_SCHED
9210 /* Don't accept realtime tasks when there is no way for them to run */
9211 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9212 return -EINVAL;
9213#else
9214 /* We don't support RT-tasks being in separate groups */
9215 if (tsk->sched_class != &fair_sched_class)
9216 return -EINVAL;
9217#endif
9218
9219 return 0;
9220}
9221
9222static void
9223cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9224 struct cgroup *old_cont, struct task_struct *tsk)
9225{
9226 sched_move_task(tsk);
9227}
9228
9229#ifdef CONFIG_FAIR_GROUP_SCHED
9230static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9231 u64 shareval)
9232{
9233 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9234}
9235
9236static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9237{
9238 struct task_group *tg = cgroup_tg(cgrp);
9239
9240 return (u64) tg->shares;
9241}
9242#endif /* CONFIG_FAIR_GROUP_SCHED */
9243
9244#ifdef CONFIG_RT_GROUP_SCHED
9245static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9246 s64 val)
9247{
9248 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9249}
9250
9251static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9252{
9253 return sched_group_rt_runtime(cgroup_tg(cgrp));
9254}
9255
9256static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9257 u64 rt_period_us)
9258{
9259 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9260}
9261
9262static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9263{
9264 return sched_group_rt_period(cgroup_tg(cgrp));
9265}
9266#endif /* CONFIG_RT_GROUP_SCHED */
9267
9268static struct cftype cpu_files[] = {
9269#ifdef CONFIG_FAIR_GROUP_SCHED
9270 {
9271 .name = "shares",
9272 .read_u64 = cpu_shares_read_u64,
9273 .write_u64 = cpu_shares_write_u64,
9274 },
9275#endif
9276#ifdef CONFIG_RT_GROUP_SCHED
9277 {
9278 .name = "rt_runtime_us",
9279 .read_s64 = cpu_rt_runtime_read,
9280 .write_s64 = cpu_rt_runtime_write,
9281 },
9282 {
9283 .name = "rt_period_us",
9284 .read_u64 = cpu_rt_period_read_uint,
9285 .write_u64 = cpu_rt_period_write_uint,
9286 },
9287#endif
9288};
9289
9290static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9291{
9292 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9293}
9294
9295struct cgroup_subsys cpu_cgroup_subsys = {
9296 .name = "cpu",
9297 .create = cpu_cgroup_create,
9298 .destroy = cpu_cgroup_destroy,
9299 .can_attach = cpu_cgroup_can_attach,
9300 .attach = cpu_cgroup_attach,
9301 .populate = cpu_cgroup_populate,
9302 .subsys_id = cpu_cgroup_subsys_id,
9303 .early_init = 1,
9304};
9305
9306#endif /* CONFIG_CGROUP_SCHED */
9307
9308#ifdef CONFIG_CGROUP_CPUACCT
9309
9310/*
9311 * CPU accounting code for task groups.
9312 *
9313 * Based on the work by Paul Menage ([email protected]) and Balbir Singh
9314 * ([email protected]).
9315 */
9316
9317/* track cpu usage of a group of tasks and its child groups */
9318struct cpuacct {
9319 struct cgroup_subsys_state css;
9320 /* cpuusage holds pointer to a u64-type object on every cpu */
9321 u64 *cpuusage;
9322 struct cpuacct *parent;
9323};
9324
9325struct cgroup_subsys cpuacct_subsys;
9326
9327/* return cpu accounting group corresponding to this container */
9328static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9329{
9330 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9331 struct cpuacct, css);
9332}
9333
9334/* return cpu accounting group to which this task belongs */
9335static inline struct cpuacct *task_ca(struct task_struct *tsk)
9336{
9337 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9338 struct cpuacct, css);
9339}
9340
9341/* create a new cpu accounting group */
9342static struct cgroup_subsys_state *cpuacct_create(
9343 struct cgroup_subsys *ss, struct cgroup *cgrp)
9344{
9345 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9346
9347 if (!ca)
9348 return ERR_PTR(-ENOMEM);
9349
9350 ca->cpuusage = alloc_percpu(u64);
9351 if (!ca->cpuusage) {
9352 kfree(ca);
9353 return ERR_PTR(-ENOMEM);
9354 }
9355
9356 if (cgrp->parent)
9357 ca->parent = cgroup_ca(cgrp->parent);
9358
9359 return &ca->css;
9360}
9361
9362/* destroy an existing cpu accounting group */
9363static void
9364cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9365{
9366 struct cpuacct *ca = cgroup_ca(cgrp);
9367
9368 free_percpu(ca->cpuusage);
9369 kfree(ca);
9370}
9371
9372/* return total cpu usage (in nanoseconds) of a group */
9373static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9374{
9375 struct cpuacct *ca = cgroup_ca(cgrp);
9376 u64 totalcpuusage = 0;
9377 int i;
9378
9379 for_each_possible_cpu(i) {
9380 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9381
9382 /*
9383 * Take rq->lock to make 64-bit addition safe on 32-bit
9384 * platforms.
9385 */
9386 spin_lock_irq(&cpu_rq(i)->lock);
9387 totalcpuusage += *cpuusage;
9388 spin_unlock_irq(&cpu_rq(i)->lock);
9389 }
9390
9391 return totalcpuusage;
9392}
9393
9394static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9395 u64 reset)
9396{
9397 struct cpuacct *ca = cgroup_ca(cgrp);
9398 int err = 0;
9399 int i;
9400
9401 if (reset) {
9402 err = -EINVAL;
9403 goto out;
9404 }
9405
9406 for_each_possible_cpu(i) {
9407 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9408
9409 spin_lock_irq(&cpu_rq(i)->lock);
9410 *cpuusage = 0;
9411 spin_unlock_irq(&cpu_rq(i)->lock);
9412 }
9413out:
9414 return err;
9415}
9416
9417static struct cftype files[] = {
9418 {
9419 .name = "usage",
9420 .read_u64 = cpuusage_read,
9421 .write_u64 = cpuusage_write,
9422 },
9423};
9424
9425static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9426{
9427 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9428}
9429
9430/*
9431 * charge this task's execution time to its accounting group.
9432 *
9433 * called with rq->lock held.
9434 */
9435static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9436{
9437 struct cpuacct *ca;
9438 int cpu;
9439
9440 if (!cpuacct_subsys.active)
9441 return;
9442
9443 cpu = task_cpu(tsk);
9444 ca = task_ca(tsk);
9445
9446 for (; ca; ca = ca->parent) {
9447 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9448 *cpuusage += cputime;
9449 }
9450}
9451
9452struct cgroup_subsys cpuacct_subsys = {
9453 .name = "cpuacct",
9454 .create = cpuacct_create,
9455 .destroy = cpuacct_destroy,
9456 .populate = cpuacct_populate,
9457 .subsys_id = cpuacct_subsys_id,
9458};
9459#endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.160526 seconds and 4 git commands to generate.