]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Generic hugetlb support. | |
3 | * (C) William Irwin, April 2004 | |
4 | */ | |
5 | #include <linux/gfp.h> | |
6 | #include <linux/list.h> | |
7 | #include <linux/init.h> | |
8 | #include <linux/module.h> | |
9 | #include <linux/mm.h> | |
10 | #include <linux/sysctl.h> | |
11 | #include <linux/highmem.h> | |
12 | #include <linux/nodemask.h> | |
13 | #include <linux/pagemap.h> | |
14 | #include <linux/mempolicy.h> | |
15 | #include <linux/cpuset.h> | |
16 | #include <linux/mutex.h> | |
17 | ||
18 | #include <asm/page.h> | |
19 | #include <asm/pgtable.h> | |
20 | ||
21 | #include <linux/hugetlb.h> | |
22 | #include "internal.h" | |
23 | ||
24 | const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; | |
25 | static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages; | |
26 | static unsigned long surplus_huge_pages; | |
27 | unsigned long max_huge_pages; | |
28 | static struct list_head hugepage_freelists[MAX_NUMNODES]; | |
29 | static unsigned int nr_huge_pages_node[MAX_NUMNODES]; | |
30 | static unsigned int free_huge_pages_node[MAX_NUMNODES]; | |
31 | static unsigned int surplus_huge_pages_node[MAX_NUMNODES]; | |
32 | static gfp_t htlb_alloc_mask = GFP_HIGHUSER; | |
33 | unsigned long hugepages_treat_as_movable; | |
34 | int hugetlb_dynamic_pool; | |
35 | static int hugetlb_next_nid; | |
36 | ||
37 | /* | |
38 | * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages | |
39 | */ | |
40 | static DEFINE_SPINLOCK(hugetlb_lock); | |
41 | ||
42 | static void clear_huge_page(struct page *page, unsigned long addr) | |
43 | { | |
44 | int i; | |
45 | ||
46 | might_sleep(); | |
47 | for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) { | |
48 | cond_resched(); | |
49 | clear_user_highpage(page + i, addr + i * PAGE_SIZE); | |
50 | } | |
51 | } | |
52 | ||
53 | static void copy_huge_page(struct page *dst, struct page *src, | |
54 | unsigned long addr, struct vm_area_struct *vma) | |
55 | { | |
56 | int i; | |
57 | ||
58 | might_sleep(); | |
59 | for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) { | |
60 | cond_resched(); | |
61 | copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); | |
62 | } | |
63 | } | |
64 | ||
65 | static void enqueue_huge_page(struct page *page) | |
66 | { | |
67 | int nid = page_to_nid(page); | |
68 | list_add(&page->lru, &hugepage_freelists[nid]); | |
69 | free_huge_pages++; | |
70 | free_huge_pages_node[nid]++; | |
71 | } | |
72 | ||
73 | static struct page *dequeue_huge_page(struct vm_area_struct *vma, | |
74 | unsigned long address) | |
75 | { | |
76 | int nid; | |
77 | struct page *page = NULL; | |
78 | struct mempolicy *mpol; | |
79 | struct zonelist *zonelist = huge_zonelist(vma, address, | |
80 | htlb_alloc_mask, &mpol); | |
81 | struct zone **z; | |
82 | ||
83 | for (z = zonelist->zones; *z; z++) { | |
84 | nid = zone_to_nid(*z); | |
85 | if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) && | |
86 | !list_empty(&hugepage_freelists[nid])) { | |
87 | page = list_entry(hugepage_freelists[nid].next, | |
88 | struct page, lru); | |
89 | list_del(&page->lru); | |
90 | free_huge_pages--; | |
91 | free_huge_pages_node[nid]--; | |
92 | if (vma && vma->vm_flags & VM_MAYSHARE) | |
93 | resv_huge_pages--; | |
94 | break; | |
95 | } | |
96 | } | |
97 | mpol_free(mpol); /* unref if mpol !NULL */ | |
98 | return page; | |
99 | } | |
100 | ||
101 | static void update_and_free_page(struct page *page) | |
102 | { | |
103 | int i; | |
104 | nr_huge_pages--; | |
105 | nr_huge_pages_node[page_to_nid(page)]--; | |
106 | for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) { | |
107 | page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | | |
108 | 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | | |
109 | 1 << PG_private | 1<< PG_writeback); | |
110 | } | |
111 | set_compound_page_dtor(page, NULL); | |
112 | set_page_refcounted(page); | |
113 | __free_pages(page, HUGETLB_PAGE_ORDER); | |
114 | } | |
115 | ||
116 | static void free_huge_page(struct page *page) | |
117 | { | |
118 | int nid = page_to_nid(page); | |
119 | ||
120 | BUG_ON(page_count(page)); | |
121 | INIT_LIST_HEAD(&page->lru); | |
122 | ||
123 | spin_lock(&hugetlb_lock); | |
124 | if (surplus_huge_pages_node[nid]) { | |
125 | update_and_free_page(page); | |
126 | surplus_huge_pages--; | |
127 | surplus_huge_pages_node[nid]--; | |
128 | } else { | |
129 | enqueue_huge_page(page); | |
130 | } | |
131 | spin_unlock(&hugetlb_lock); | |
132 | } | |
133 | ||
134 | /* | |
135 | * Increment or decrement surplus_huge_pages. Keep node-specific counters | |
136 | * balanced by operating on them in a round-robin fashion. | |
137 | * Returns 1 if an adjustment was made. | |
138 | */ | |
139 | static int adjust_pool_surplus(int delta) | |
140 | { | |
141 | static int prev_nid; | |
142 | int nid = prev_nid; | |
143 | int ret = 0; | |
144 | ||
145 | VM_BUG_ON(delta != -1 && delta != 1); | |
146 | do { | |
147 | nid = next_node(nid, node_online_map); | |
148 | if (nid == MAX_NUMNODES) | |
149 | nid = first_node(node_online_map); | |
150 | ||
151 | /* To shrink on this node, there must be a surplus page */ | |
152 | if (delta < 0 && !surplus_huge_pages_node[nid]) | |
153 | continue; | |
154 | /* Surplus cannot exceed the total number of pages */ | |
155 | if (delta > 0 && surplus_huge_pages_node[nid] >= | |
156 | nr_huge_pages_node[nid]) | |
157 | continue; | |
158 | ||
159 | surplus_huge_pages += delta; | |
160 | surplus_huge_pages_node[nid] += delta; | |
161 | ret = 1; | |
162 | break; | |
163 | } while (nid != prev_nid); | |
164 | ||
165 | prev_nid = nid; | |
166 | return ret; | |
167 | } | |
168 | ||
169 | static struct page *alloc_fresh_huge_page_node(int nid) | |
170 | { | |
171 | struct page *page; | |
172 | ||
173 | page = alloc_pages_node(nid, | |
174 | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN, | |
175 | HUGETLB_PAGE_ORDER); | |
176 | if (page) { | |
177 | set_compound_page_dtor(page, free_huge_page); | |
178 | spin_lock(&hugetlb_lock); | |
179 | nr_huge_pages++; | |
180 | nr_huge_pages_node[nid]++; | |
181 | spin_unlock(&hugetlb_lock); | |
182 | put_page(page); /* free it into the hugepage allocator */ | |
183 | } | |
184 | ||
185 | return page; | |
186 | } | |
187 | ||
188 | static int alloc_fresh_huge_page(void) | |
189 | { | |
190 | struct page *page; | |
191 | int start_nid; | |
192 | int next_nid; | |
193 | int ret = 0; | |
194 | ||
195 | start_nid = hugetlb_next_nid; | |
196 | ||
197 | do { | |
198 | page = alloc_fresh_huge_page_node(hugetlb_next_nid); | |
199 | if (page) | |
200 | ret = 1; | |
201 | /* | |
202 | * Use a helper variable to find the next node and then | |
203 | * copy it back to hugetlb_next_nid afterwards: | |
204 | * otherwise there's a window in which a racer might | |
205 | * pass invalid nid MAX_NUMNODES to alloc_pages_node. | |
206 | * But we don't need to use a spin_lock here: it really | |
207 | * doesn't matter if occasionally a racer chooses the | |
208 | * same nid as we do. Move nid forward in the mask even | |
209 | * if we just successfully allocated a hugepage so that | |
210 | * the next caller gets hugepages on the next node. | |
211 | */ | |
212 | next_nid = next_node(hugetlb_next_nid, node_online_map); | |
213 | if (next_nid == MAX_NUMNODES) | |
214 | next_nid = first_node(node_online_map); | |
215 | hugetlb_next_nid = next_nid; | |
216 | } while (!page && hugetlb_next_nid != start_nid); | |
217 | ||
218 | return ret; | |
219 | } | |
220 | ||
221 | static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, | |
222 | unsigned long address) | |
223 | { | |
224 | struct page *page; | |
225 | ||
226 | /* Check if the dynamic pool is enabled */ | |
227 | if (!hugetlb_dynamic_pool) | |
228 | return NULL; | |
229 | ||
230 | page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN, | |
231 | HUGETLB_PAGE_ORDER); | |
232 | if (page) { | |
233 | set_compound_page_dtor(page, free_huge_page); | |
234 | spin_lock(&hugetlb_lock); | |
235 | nr_huge_pages++; | |
236 | nr_huge_pages_node[page_to_nid(page)]++; | |
237 | surplus_huge_pages++; | |
238 | surplus_huge_pages_node[page_to_nid(page)]++; | |
239 | spin_unlock(&hugetlb_lock); | |
240 | } | |
241 | ||
242 | return page; | |
243 | } | |
244 | ||
245 | /* | |
246 | * Increase the hugetlb pool such that it can accomodate a reservation | |
247 | * of size 'delta'. | |
248 | */ | |
249 | static int gather_surplus_pages(int delta) | |
250 | { | |
251 | struct list_head surplus_list; | |
252 | struct page *page, *tmp; | |
253 | int ret, i; | |
254 | int needed, allocated; | |
255 | ||
256 | needed = (resv_huge_pages + delta) - free_huge_pages; | |
257 | if (needed <= 0) | |
258 | return 0; | |
259 | ||
260 | allocated = 0; | |
261 | INIT_LIST_HEAD(&surplus_list); | |
262 | ||
263 | ret = -ENOMEM; | |
264 | retry: | |
265 | spin_unlock(&hugetlb_lock); | |
266 | for (i = 0; i < needed; i++) { | |
267 | page = alloc_buddy_huge_page(NULL, 0); | |
268 | if (!page) { | |
269 | /* | |
270 | * We were not able to allocate enough pages to | |
271 | * satisfy the entire reservation so we free what | |
272 | * we've allocated so far. | |
273 | */ | |
274 | spin_lock(&hugetlb_lock); | |
275 | needed = 0; | |
276 | goto free; | |
277 | } | |
278 | ||
279 | list_add(&page->lru, &surplus_list); | |
280 | } | |
281 | allocated += needed; | |
282 | ||
283 | /* | |
284 | * After retaking hugetlb_lock, we need to recalculate 'needed' | |
285 | * because either resv_huge_pages or free_huge_pages may have changed. | |
286 | */ | |
287 | spin_lock(&hugetlb_lock); | |
288 | needed = (resv_huge_pages + delta) - (free_huge_pages + allocated); | |
289 | if (needed > 0) | |
290 | goto retry; | |
291 | ||
292 | /* | |
293 | * The surplus_list now contains _at_least_ the number of extra pages | |
294 | * needed to accomodate the reservation. Add the appropriate number | |
295 | * of pages to the hugetlb pool and free the extras back to the buddy | |
296 | * allocator. | |
297 | */ | |
298 | needed += allocated; | |
299 | ret = 0; | |
300 | free: | |
301 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { | |
302 | list_del(&page->lru); | |
303 | if ((--needed) >= 0) | |
304 | enqueue_huge_page(page); | |
305 | else { | |
306 | /* | |
307 | * Decrement the refcount and free the page using its | |
308 | * destructor. This must be done with hugetlb_lock | |
309 | * unlocked which is safe because free_huge_page takes | |
310 | * hugetlb_lock before deciding how to free the page. | |
311 | */ | |
312 | spin_unlock(&hugetlb_lock); | |
313 | put_page(page); | |
314 | spin_lock(&hugetlb_lock); | |
315 | } | |
316 | } | |
317 | ||
318 | return ret; | |
319 | } | |
320 | ||
321 | /* | |
322 | * When releasing a hugetlb pool reservation, any surplus pages that were | |
323 | * allocated to satisfy the reservation must be explicitly freed if they were | |
324 | * never used. | |
325 | */ | |
326 | void return_unused_surplus_pages(unsigned long unused_resv_pages) | |
327 | { | |
328 | static int nid = -1; | |
329 | struct page *page; | |
330 | unsigned long nr_pages; | |
331 | ||
332 | nr_pages = min(unused_resv_pages, surplus_huge_pages); | |
333 | ||
334 | while (nr_pages) { | |
335 | nid = next_node(nid, node_online_map); | |
336 | if (nid == MAX_NUMNODES) | |
337 | nid = first_node(node_online_map); | |
338 | ||
339 | if (!surplus_huge_pages_node[nid]) | |
340 | continue; | |
341 | ||
342 | if (!list_empty(&hugepage_freelists[nid])) { | |
343 | page = list_entry(hugepage_freelists[nid].next, | |
344 | struct page, lru); | |
345 | list_del(&page->lru); | |
346 | update_and_free_page(page); | |
347 | free_huge_pages--; | |
348 | free_huge_pages_node[nid]--; | |
349 | surplus_huge_pages--; | |
350 | surplus_huge_pages_node[nid]--; | |
351 | nr_pages--; | |
352 | } | |
353 | } | |
354 | } | |
355 | ||
356 | static struct page *alloc_huge_page(struct vm_area_struct *vma, | |
357 | unsigned long addr) | |
358 | { | |
359 | struct page *page = NULL; | |
360 | int use_reserved_page = vma->vm_flags & VM_MAYSHARE; | |
361 | ||
362 | spin_lock(&hugetlb_lock); | |
363 | if (!use_reserved_page && (free_huge_pages <= resv_huge_pages)) | |
364 | goto fail; | |
365 | ||
366 | page = dequeue_huge_page(vma, addr); | |
367 | if (!page) | |
368 | goto fail; | |
369 | ||
370 | spin_unlock(&hugetlb_lock); | |
371 | set_page_refcounted(page); | |
372 | return page; | |
373 | ||
374 | fail: | |
375 | spin_unlock(&hugetlb_lock); | |
376 | ||
377 | /* | |
378 | * Private mappings do not use reserved huge pages so the allocation | |
379 | * may have failed due to an undersized hugetlb pool. Try to grab a | |
380 | * surplus huge page from the buddy allocator. | |
381 | */ | |
382 | if (!use_reserved_page) | |
383 | page = alloc_buddy_huge_page(vma, addr); | |
384 | ||
385 | return page; | |
386 | } | |
387 | ||
388 | static int __init hugetlb_init(void) | |
389 | { | |
390 | unsigned long i; | |
391 | ||
392 | if (HPAGE_SHIFT == 0) | |
393 | return 0; | |
394 | ||
395 | for (i = 0; i < MAX_NUMNODES; ++i) | |
396 | INIT_LIST_HEAD(&hugepage_freelists[i]); | |
397 | ||
398 | hugetlb_next_nid = first_node(node_online_map); | |
399 | ||
400 | for (i = 0; i < max_huge_pages; ++i) { | |
401 | if (!alloc_fresh_huge_page()) | |
402 | break; | |
403 | } | |
404 | max_huge_pages = free_huge_pages = nr_huge_pages = i; | |
405 | printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages); | |
406 | return 0; | |
407 | } | |
408 | module_init(hugetlb_init); | |
409 | ||
410 | static int __init hugetlb_setup(char *s) | |
411 | { | |
412 | if (sscanf(s, "%lu", &max_huge_pages) <= 0) | |
413 | max_huge_pages = 0; | |
414 | return 1; | |
415 | } | |
416 | __setup("hugepages=", hugetlb_setup); | |
417 | ||
418 | static unsigned int cpuset_mems_nr(unsigned int *array) | |
419 | { | |
420 | int node; | |
421 | unsigned int nr = 0; | |
422 | ||
423 | for_each_node_mask(node, cpuset_current_mems_allowed) | |
424 | nr += array[node]; | |
425 | ||
426 | return nr; | |
427 | } | |
428 | ||
429 | #ifdef CONFIG_SYSCTL | |
430 | #ifdef CONFIG_HIGHMEM | |
431 | static void try_to_free_low(unsigned long count) | |
432 | { | |
433 | int i; | |
434 | ||
435 | for (i = 0; i < MAX_NUMNODES; ++i) { | |
436 | struct page *page, *next; | |
437 | list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) { | |
438 | if (count >= nr_huge_pages) | |
439 | return; | |
440 | if (PageHighMem(page)) | |
441 | continue; | |
442 | list_del(&page->lru); | |
443 | update_and_free_page(page); | |
444 | free_huge_pages--; | |
445 | free_huge_pages_node[page_to_nid(page)]--; | |
446 | } | |
447 | } | |
448 | } | |
449 | #else | |
450 | static inline void try_to_free_low(unsigned long count) | |
451 | { | |
452 | } | |
453 | #endif | |
454 | ||
455 | #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages) | |
456 | static unsigned long set_max_huge_pages(unsigned long count) | |
457 | { | |
458 | unsigned long min_count, ret; | |
459 | ||
460 | /* | |
461 | * Increase the pool size | |
462 | * First take pages out of surplus state. Then make up the | |
463 | * remaining difference by allocating fresh huge pages. | |
464 | */ | |
465 | spin_lock(&hugetlb_lock); | |
466 | while (surplus_huge_pages && count > persistent_huge_pages) { | |
467 | if (!adjust_pool_surplus(-1)) | |
468 | break; | |
469 | } | |
470 | ||
471 | while (count > persistent_huge_pages) { | |
472 | int ret; | |
473 | /* | |
474 | * If this allocation races such that we no longer need the | |
475 | * page, free_huge_page will handle it by freeing the page | |
476 | * and reducing the surplus. | |
477 | */ | |
478 | spin_unlock(&hugetlb_lock); | |
479 | ret = alloc_fresh_huge_page(); | |
480 | spin_lock(&hugetlb_lock); | |
481 | if (!ret) | |
482 | goto out; | |
483 | ||
484 | } | |
485 | ||
486 | /* | |
487 | * Decrease the pool size | |
488 | * First return free pages to the buddy allocator (being careful | |
489 | * to keep enough around to satisfy reservations). Then place | |
490 | * pages into surplus state as needed so the pool will shrink | |
491 | * to the desired size as pages become free. | |
492 | */ | |
493 | min_count = resv_huge_pages + nr_huge_pages - free_huge_pages; | |
494 | min_count = max(count, min_count); | |
495 | try_to_free_low(min_count); | |
496 | while (min_count < persistent_huge_pages) { | |
497 | struct page *page = dequeue_huge_page(NULL, 0); | |
498 | if (!page) | |
499 | break; | |
500 | update_and_free_page(page); | |
501 | } | |
502 | while (count < persistent_huge_pages) { | |
503 | if (!adjust_pool_surplus(1)) | |
504 | break; | |
505 | } | |
506 | out: | |
507 | ret = persistent_huge_pages; | |
508 | spin_unlock(&hugetlb_lock); | |
509 | return ret; | |
510 | } | |
511 | ||
512 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, | |
513 | struct file *file, void __user *buffer, | |
514 | size_t *length, loff_t *ppos) | |
515 | { | |
516 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); | |
517 | max_huge_pages = set_max_huge_pages(max_huge_pages); | |
518 | return 0; | |
519 | } | |
520 | ||
521 | int hugetlb_treat_movable_handler(struct ctl_table *table, int write, | |
522 | struct file *file, void __user *buffer, | |
523 | size_t *length, loff_t *ppos) | |
524 | { | |
525 | proc_dointvec(table, write, file, buffer, length, ppos); | |
526 | if (hugepages_treat_as_movable) | |
527 | htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; | |
528 | else | |
529 | htlb_alloc_mask = GFP_HIGHUSER; | |
530 | return 0; | |
531 | } | |
532 | ||
533 | #endif /* CONFIG_SYSCTL */ | |
534 | ||
535 | int hugetlb_report_meminfo(char *buf) | |
536 | { | |
537 | return sprintf(buf, | |
538 | "HugePages_Total: %5lu\n" | |
539 | "HugePages_Free: %5lu\n" | |
540 | "HugePages_Rsvd: %5lu\n" | |
541 | "HugePages_Surp: %5lu\n" | |
542 | "Hugepagesize: %5lu kB\n", | |
543 | nr_huge_pages, | |
544 | free_huge_pages, | |
545 | resv_huge_pages, | |
546 | surplus_huge_pages, | |
547 | HPAGE_SIZE/1024); | |
548 | } | |
549 | ||
550 | int hugetlb_report_node_meminfo(int nid, char *buf) | |
551 | { | |
552 | return sprintf(buf, | |
553 | "Node %d HugePages_Total: %5u\n" | |
554 | "Node %d HugePages_Free: %5u\n", | |
555 | nid, nr_huge_pages_node[nid], | |
556 | nid, free_huge_pages_node[nid]); | |
557 | } | |
558 | ||
559 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ | |
560 | unsigned long hugetlb_total_pages(void) | |
561 | { | |
562 | return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE); | |
563 | } | |
564 | ||
565 | /* | |
566 | * We cannot handle pagefaults against hugetlb pages at all. They cause | |
567 | * handle_mm_fault() to try to instantiate regular-sized pages in the | |
568 | * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get | |
569 | * this far. | |
570 | */ | |
571 | static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | |
572 | { | |
573 | BUG(); | |
574 | return 0; | |
575 | } | |
576 | ||
577 | struct vm_operations_struct hugetlb_vm_ops = { | |
578 | .fault = hugetlb_vm_op_fault, | |
579 | }; | |
580 | ||
581 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, | |
582 | int writable) | |
583 | { | |
584 | pte_t entry; | |
585 | ||
586 | if (writable) { | |
587 | entry = | |
588 | pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); | |
589 | } else { | |
590 | entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot)); | |
591 | } | |
592 | entry = pte_mkyoung(entry); | |
593 | entry = pte_mkhuge(entry); | |
594 | ||
595 | return entry; | |
596 | } | |
597 | ||
598 | static void set_huge_ptep_writable(struct vm_area_struct *vma, | |
599 | unsigned long address, pte_t *ptep) | |
600 | { | |
601 | pte_t entry; | |
602 | ||
603 | entry = pte_mkwrite(pte_mkdirty(*ptep)); | |
604 | if (ptep_set_access_flags(vma, address, ptep, entry, 1)) { | |
605 | update_mmu_cache(vma, address, entry); | |
606 | } | |
607 | } | |
608 | ||
609 | ||
610 | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, | |
611 | struct vm_area_struct *vma) | |
612 | { | |
613 | pte_t *src_pte, *dst_pte, entry; | |
614 | struct page *ptepage; | |
615 | unsigned long addr; | |
616 | int cow; | |
617 | ||
618 | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | |
619 | ||
620 | for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) { | |
621 | src_pte = huge_pte_offset(src, addr); | |
622 | if (!src_pte) | |
623 | continue; | |
624 | dst_pte = huge_pte_alloc(dst, addr); | |
625 | if (!dst_pte) | |
626 | goto nomem; | |
627 | spin_lock(&dst->page_table_lock); | |
628 | spin_lock(&src->page_table_lock); | |
629 | if (!pte_none(*src_pte)) { | |
630 | if (cow) | |
631 | ptep_set_wrprotect(src, addr, src_pte); | |
632 | entry = *src_pte; | |
633 | ptepage = pte_page(entry); | |
634 | get_page(ptepage); | |
635 | set_huge_pte_at(dst, addr, dst_pte, entry); | |
636 | } | |
637 | spin_unlock(&src->page_table_lock); | |
638 | spin_unlock(&dst->page_table_lock); | |
639 | } | |
640 | return 0; | |
641 | ||
642 | nomem: | |
643 | return -ENOMEM; | |
644 | } | |
645 | ||
646 | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |
647 | unsigned long end) | |
648 | { | |
649 | struct mm_struct *mm = vma->vm_mm; | |
650 | unsigned long address; | |
651 | pte_t *ptep; | |
652 | pte_t pte; | |
653 | struct page *page; | |
654 | struct page *tmp; | |
655 | /* | |
656 | * A page gathering list, protected by per file i_mmap_lock. The | |
657 | * lock is used to avoid list corruption from multiple unmapping | |
658 | * of the same page since we are using page->lru. | |
659 | */ | |
660 | LIST_HEAD(page_list); | |
661 | ||
662 | WARN_ON(!is_vm_hugetlb_page(vma)); | |
663 | BUG_ON(start & ~HPAGE_MASK); | |
664 | BUG_ON(end & ~HPAGE_MASK); | |
665 | ||
666 | spin_lock(&mm->page_table_lock); | |
667 | for (address = start; address < end; address += HPAGE_SIZE) { | |
668 | ptep = huge_pte_offset(mm, address); | |
669 | if (!ptep) | |
670 | continue; | |
671 | ||
672 | if (huge_pmd_unshare(mm, &address, ptep)) | |
673 | continue; | |
674 | ||
675 | pte = huge_ptep_get_and_clear(mm, address, ptep); | |
676 | if (pte_none(pte)) | |
677 | continue; | |
678 | ||
679 | page = pte_page(pte); | |
680 | if (pte_dirty(pte)) | |
681 | set_page_dirty(page); | |
682 | list_add(&page->lru, &page_list); | |
683 | } | |
684 | spin_unlock(&mm->page_table_lock); | |
685 | flush_tlb_range(vma, start, end); | |
686 | list_for_each_entry_safe(page, tmp, &page_list, lru) { | |
687 | list_del(&page->lru); | |
688 | put_page(page); | |
689 | } | |
690 | } | |
691 | ||
692 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |
693 | unsigned long end) | |
694 | { | |
695 | /* | |
696 | * It is undesirable to test vma->vm_file as it should be non-null | |
697 | * for valid hugetlb area. However, vm_file will be NULL in the error | |
698 | * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails, | |
699 | * do_mmap_pgoff() nullifies vma->vm_file before calling this function | |
700 | * to clean up. Since no pte has actually been setup, it is safe to | |
701 | * do nothing in this case. | |
702 | */ | |
703 | if (vma->vm_file) { | |
704 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); | |
705 | __unmap_hugepage_range(vma, start, end); | |
706 | spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); | |
707 | } | |
708 | } | |
709 | ||
710 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | |
711 | unsigned long address, pte_t *ptep, pte_t pte) | |
712 | { | |
713 | struct page *old_page, *new_page; | |
714 | int avoidcopy; | |
715 | ||
716 | old_page = pte_page(pte); | |
717 | ||
718 | /* If no-one else is actually using this page, avoid the copy | |
719 | * and just make the page writable */ | |
720 | avoidcopy = (page_count(old_page) == 1); | |
721 | if (avoidcopy) { | |
722 | set_huge_ptep_writable(vma, address, ptep); | |
723 | return 0; | |
724 | } | |
725 | ||
726 | page_cache_get(old_page); | |
727 | new_page = alloc_huge_page(vma, address); | |
728 | ||
729 | if (!new_page) { | |
730 | page_cache_release(old_page); | |
731 | return VM_FAULT_OOM; | |
732 | } | |
733 | ||
734 | spin_unlock(&mm->page_table_lock); | |
735 | copy_huge_page(new_page, old_page, address, vma); | |
736 | spin_lock(&mm->page_table_lock); | |
737 | ||
738 | ptep = huge_pte_offset(mm, address & HPAGE_MASK); | |
739 | if (likely(pte_same(*ptep, pte))) { | |
740 | /* Break COW */ | |
741 | set_huge_pte_at(mm, address, ptep, | |
742 | make_huge_pte(vma, new_page, 1)); | |
743 | /* Make the old page be freed below */ | |
744 | new_page = old_page; | |
745 | } | |
746 | page_cache_release(new_page); | |
747 | page_cache_release(old_page); | |
748 | return 0; | |
749 | } | |
750 | ||
751 | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | |
752 | unsigned long address, pte_t *ptep, int write_access) | |
753 | { | |
754 | int ret = VM_FAULT_SIGBUS; | |
755 | unsigned long idx; | |
756 | unsigned long size; | |
757 | struct page *page; | |
758 | struct address_space *mapping; | |
759 | pte_t new_pte; | |
760 | ||
761 | mapping = vma->vm_file->f_mapping; | |
762 | idx = ((address - vma->vm_start) >> HPAGE_SHIFT) | |
763 | + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT)); | |
764 | ||
765 | /* | |
766 | * Use page lock to guard against racing truncation | |
767 | * before we get page_table_lock. | |
768 | */ | |
769 | retry: | |
770 | page = find_lock_page(mapping, idx); | |
771 | if (!page) { | |
772 | size = i_size_read(mapping->host) >> HPAGE_SHIFT; | |
773 | if (idx >= size) | |
774 | goto out; | |
775 | if (hugetlb_get_quota(mapping)) | |
776 | goto out; | |
777 | page = alloc_huge_page(vma, address); | |
778 | if (!page) { | |
779 | hugetlb_put_quota(mapping); | |
780 | ret = VM_FAULT_OOM; | |
781 | goto out; | |
782 | } | |
783 | clear_huge_page(page, address); | |
784 | ||
785 | if (vma->vm_flags & VM_SHARED) { | |
786 | int err; | |
787 | ||
788 | err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); | |
789 | if (err) { | |
790 | put_page(page); | |
791 | hugetlb_put_quota(mapping); | |
792 | if (err == -EEXIST) | |
793 | goto retry; | |
794 | goto out; | |
795 | } | |
796 | } else | |
797 | lock_page(page); | |
798 | } | |
799 | ||
800 | spin_lock(&mm->page_table_lock); | |
801 | size = i_size_read(mapping->host) >> HPAGE_SHIFT; | |
802 | if (idx >= size) | |
803 | goto backout; | |
804 | ||
805 | ret = 0; | |
806 | if (!pte_none(*ptep)) | |
807 | goto backout; | |
808 | ||
809 | new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) | |
810 | && (vma->vm_flags & VM_SHARED))); | |
811 | set_huge_pte_at(mm, address, ptep, new_pte); | |
812 | ||
813 | if (write_access && !(vma->vm_flags & VM_SHARED)) { | |
814 | /* Optimization, do the COW without a second fault */ | |
815 | ret = hugetlb_cow(mm, vma, address, ptep, new_pte); | |
816 | } | |
817 | ||
818 | spin_unlock(&mm->page_table_lock); | |
819 | unlock_page(page); | |
820 | out: | |
821 | return ret; | |
822 | ||
823 | backout: | |
824 | spin_unlock(&mm->page_table_lock); | |
825 | hugetlb_put_quota(mapping); | |
826 | unlock_page(page); | |
827 | put_page(page); | |
828 | goto out; | |
829 | } | |
830 | ||
831 | int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |
832 | unsigned long address, int write_access) | |
833 | { | |
834 | pte_t *ptep; | |
835 | pte_t entry; | |
836 | int ret; | |
837 | static DEFINE_MUTEX(hugetlb_instantiation_mutex); | |
838 | ||
839 | ptep = huge_pte_alloc(mm, address); | |
840 | if (!ptep) | |
841 | return VM_FAULT_OOM; | |
842 | ||
843 | /* | |
844 | * Serialize hugepage allocation and instantiation, so that we don't | |
845 | * get spurious allocation failures if two CPUs race to instantiate | |
846 | * the same page in the page cache. | |
847 | */ | |
848 | mutex_lock(&hugetlb_instantiation_mutex); | |
849 | entry = *ptep; | |
850 | if (pte_none(entry)) { | |
851 | ret = hugetlb_no_page(mm, vma, address, ptep, write_access); | |
852 | mutex_unlock(&hugetlb_instantiation_mutex); | |
853 | return ret; | |
854 | } | |
855 | ||
856 | ret = 0; | |
857 | ||
858 | spin_lock(&mm->page_table_lock); | |
859 | /* Check for a racing update before calling hugetlb_cow */ | |
860 | if (likely(pte_same(entry, *ptep))) | |
861 | if (write_access && !pte_write(entry)) | |
862 | ret = hugetlb_cow(mm, vma, address, ptep, entry); | |
863 | spin_unlock(&mm->page_table_lock); | |
864 | mutex_unlock(&hugetlb_instantiation_mutex); | |
865 | ||
866 | return ret; | |
867 | } | |
868 | ||
869 | int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | |
870 | struct page **pages, struct vm_area_struct **vmas, | |
871 | unsigned long *position, int *length, int i) | |
872 | { | |
873 | unsigned long pfn_offset; | |
874 | unsigned long vaddr = *position; | |
875 | int remainder = *length; | |
876 | ||
877 | spin_lock(&mm->page_table_lock); | |
878 | while (vaddr < vma->vm_end && remainder) { | |
879 | pte_t *pte; | |
880 | struct page *page; | |
881 | ||
882 | /* | |
883 | * Some archs (sparc64, sh*) have multiple pte_ts to | |
884 | * each hugepage. We have to make * sure we get the | |
885 | * first, for the page indexing below to work. | |
886 | */ | |
887 | pte = huge_pte_offset(mm, vaddr & HPAGE_MASK); | |
888 | ||
889 | if (!pte || pte_none(*pte)) { | |
890 | int ret; | |
891 | ||
892 | spin_unlock(&mm->page_table_lock); | |
893 | ret = hugetlb_fault(mm, vma, vaddr, 0); | |
894 | spin_lock(&mm->page_table_lock); | |
895 | if (!(ret & VM_FAULT_ERROR)) | |
896 | continue; | |
897 | ||
898 | remainder = 0; | |
899 | if (!i) | |
900 | i = -EFAULT; | |
901 | break; | |
902 | } | |
903 | ||
904 | pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT; | |
905 | page = pte_page(*pte); | |
906 | same_page: | |
907 | if (pages) { | |
908 | get_page(page); | |
909 | pages[i] = page + pfn_offset; | |
910 | } | |
911 | ||
912 | if (vmas) | |
913 | vmas[i] = vma; | |
914 | ||
915 | vaddr += PAGE_SIZE; | |
916 | ++pfn_offset; | |
917 | --remainder; | |
918 | ++i; | |
919 | if (vaddr < vma->vm_end && remainder && | |
920 | pfn_offset < HPAGE_SIZE/PAGE_SIZE) { | |
921 | /* | |
922 | * We use pfn_offset to avoid touching the pageframes | |
923 | * of this compound page. | |
924 | */ | |
925 | goto same_page; | |
926 | } | |
927 | } | |
928 | spin_unlock(&mm->page_table_lock); | |
929 | *length = remainder; | |
930 | *position = vaddr; | |
931 | ||
932 | return i; | |
933 | } | |
934 | ||
935 | void hugetlb_change_protection(struct vm_area_struct *vma, | |
936 | unsigned long address, unsigned long end, pgprot_t newprot) | |
937 | { | |
938 | struct mm_struct *mm = vma->vm_mm; | |
939 | unsigned long start = address; | |
940 | pte_t *ptep; | |
941 | pte_t pte; | |
942 | ||
943 | BUG_ON(address >= end); | |
944 | flush_cache_range(vma, address, end); | |
945 | ||
946 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); | |
947 | spin_lock(&mm->page_table_lock); | |
948 | for (; address < end; address += HPAGE_SIZE) { | |
949 | ptep = huge_pte_offset(mm, address); | |
950 | if (!ptep) | |
951 | continue; | |
952 | if (huge_pmd_unshare(mm, &address, ptep)) | |
953 | continue; | |
954 | if (!pte_none(*ptep)) { | |
955 | pte = huge_ptep_get_and_clear(mm, address, ptep); | |
956 | pte = pte_mkhuge(pte_modify(pte, newprot)); | |
957 | set_huge_pte_at(mm, address, ptep, pte); | |
958 | } | |
959 | } | |
960 | spin_unlock(&mm->page_table_lock); | |
961 | spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); | |
962 | ||
963 | flush_tlb_range(vma, start, end); | |
964 | } | |
965 | ||
966 | struct file_region { | |
967 | struct list_head link; | |
968 | long from; | |
969 | long to; | |
970 | }; | |
971 | ||
972 | static long region_add(struct list_head *head, long f, long t) | |
973 | { | |
974 | struct file_region *rg, *nrg, *trg; | |
975 | ||
976 | /* Locate the region we are either in or before. */ | |
977 | list_for_each_entry(rg, head, link) | |
978 | if (f <= rg->to) | |
979 | break; | |
980 | ||
981 | /* Round our left edge to the current segment if it encloses us. */ | |
982 | if (f > rg->from) | |
983 | f = rg->from; | |
984 | ||
985 | /* Check for and consume any regions we now overlap with. */ | |
986 | nrg = rg; | |
987 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | |
988 | if (&rg->link == head) | |
989 | break; | |
990 | if (rg->from > t) | |
991 | break; | |
992 | ||
993 | /* If this area reaches higher then extend our area to | |
994 | * include it completely. If this is not the first area | |
995 | * which we intend to reuse, free it. */ | |
996 | if (rg->to > t) | |
997 | t = rg->to; | |
998 | if (rg != nrg) { | |
999 | list_del(&rg->link); | |
1000 | kfree(rg); | |
1001 | } | |
1002 | } | |
1003 | nrg->from = f; | |
1004 | nrg->to = t; | |
1005 | return 0; | |
1006 | } | |
1007 | ||
1008 | static long region_chg(struct list_head *head, long f, long t) | |
1009 | { | |
1010 | struct file_region *rg, *nrg; | |
1011 | long chg = 0; | |
1012 | ||
1013 | /* Locate the region we are before or in. */ | |
1014 | list_for_each_entry(rg, head, link) | |
1015 | if (f <= rg->to) | |
1016 | break; | |
1017 | ||
1018 | /* If we are below the current region then a new region is required. | |
1019 | * Subtle, allocate a new region at the position but make it zero | |
1020 | * size such that we can guarantee to record the reservation. */ | |
1021 | if (&rg->link == head || t < rg->from) { | |
1022 | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | |
1023 | if (!nrg) | |
1024 | return -ENOMEM; | |
1025 | nrg->from = f; | |
1026 | nrg->to = f; | |
1027 | INIT_LIST_HEAD(&nrg->link); | |
1028 | list_add(&nrg->link, rg->link.prev); | |
1029 | ||
1030 | return t - f; | |
1031 | } | |
1032 | ||
1033 | /* Round our left edge to the current segment if it encloses us. */ | |
1034 | if (f > rg->from) | |
1035 | f = rg->from; | |
1036 | chg = t - f; | |
1037 | ||
1038 | /* Check for and consume any regions we now overlap with. */ | |
1039 | list_for_each_entry(rg, rg->link.prev, link) { | |
1040 | if (&rg->link == head) | |
1041 | break; | |
1042 | if (rg->from > t) | |
1043 | return chg; | |
1044 | ||
1045 | /* We overlap with this area, if it extends futher than | |
1046 | * us then we must extend ourselves. Account for its | |
1047 | * existing reservation. */ | |
1048 | if (rg->to > t) { | |
1049 | chg += rg->to - t; | |
1050 | t = rg->to; | |
1051 | } | |
1052 | chg -= rg->to - rg->from; | |
1053 | } | |
1054 | return chg; | |
1055 | } | |
1056 | ||
1057 | static long region_truncate(struct list_head *head, long end) | |
1058 | { | |
1059 | struct file_region *rg, *trg; | |
1060 | long chg = 0; | |
1061 | ||
1062 | /* Locate the region we are either in or before. */ | |
1063 | list_for_each_entry(rg, head, link) | |
1064 | if (end <= rg->to) | |
1065 | break; | |
1066 | if (&rg->link == head) | |
1067 | return 0; | |
1068 | ||
1069 | /* If we are in the middle of a region then adjust it. */ | |
1070 | if (end > rg->from) { | |
1071 | chg = rg->to - end; | |
1072 | rg->to = end; | |
1073 | rg = list_entry(rg->link.next, typeof(*rg), link); | |
1074 | } | |
1075 | ||
1076 | /* Drop any remaining regions. */ | |
1077 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | |
1078 | if (&rg->link == head) | |
1079 | break; | |
1080 | chg += rg->to - rg->from; | |
1081 | list_del(&rg->link); | |
1082 | kfree(rg); | |
1083 | } | |
1084 | return chg; | |
1085 | } | |
1086 | ||
1087 | static int hugetlb_acct_memory(long delta) | |
1088 | { | |
1089 | int ret = -ENOMEM; | |
1090 | ||
1091 | spin_lock(&hugetlb_lock); | |
1092 | /* | |
1093 | * When cpuset is configured, it breaks the strict hugetlb page | |
1094 | * reservation as the accounting is done on a global variable. Such | |
1095 | * reservation is completely rubbish in the presence of cpuset because | |
1096 | * the reservation is not checked against page availability for the | |
1097 | * current cpuset. Application can still potentially OOM'ed by kernel | |
1098 | * with lack of free htlb page in cpuset that the task is in. | |
1099 | * Attempt to enforce strict accounting with cpuset is almost | |
1100 | * impossible (or too ugly) because cpuset is too fluid that | |
1101 | * task or memory node can be dynamically moved between cpusets. | |
1102 | * | |
1103 | * The change of semantics for shared hugetlb mapping with cpuset is | |
1104 | * undesirable. However, in order to preserve some of the semantics, | |
1105 | * we fall back to check against current free page availability as | |
1106 | * a best attempt and hopefully to minimize the impact of changing | |
1107 | * semantics that cpuset has. | |
1108 | */ | |
1109 | if (delta > 0) { | |
1110 | if (gather_surplus_pages(delta) < 0) | |
1111 | goto out; | |
1112 | ||
1113 | if (delta > cpuset_mems_nr(free_huge_pages_node)) | |
1114 | goto out; | |
1115 | } | |
1116 | ||
1117 | ret = 0; | |
1118 | resv_huge_pages += delta; | |
1119 | if (delta < 0) | |
1120 | return_unused_surplus_pages((unsigned long) -delta); | |
1121 | ||
1122 | out: | |
1123 | spin_unlock(&hugetlb_lock); | |
1124 | return ret; | |
1125 | } | |
1126 | ||
1127 | int hugetlb_reserve_pages(struct inode *inode, long from, long to) | |
1128 | { | |
1129 | long ret, chg; | |
1130 | ||
1131 | chg = region_chg(&inode->i_mapping->private_list, from, to); | |
1132 | if (chg < 0) | |
1133 | return chg; | |
1134 | ||
1135 | ret = hugetlb_acct_memory(chg); | |
1136 | if (ret < 0) | |
1137 | return ret; | |
1138 | region_add(&inode->i_mapping->private_list, from, to); | |
1139 | return 0; | |
1140 | } | |
1141 | ||
1142 | void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) | |
1143 | { | |
1144 | long chg = region_truncate(&inode->i_mapping->private_list, offset); | |
1145 | hugetlb_acct_memory(freed - chg); | |
1146 | } |