]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * INET An implementation of the TCP/IP protocol suite for the LINUX | |
3 | * operating system. INET is implemented using the BSD Socket | |
4 | * interface as the means of communication with the user level. | |
5 | * | |
6 | * Implementation of the Transmission Control Protocol(TCP). | |
7 | * | |
8 | * Authors: Ross Biro | |
9 | * Fred N. van Kempen, <[email protected]> | |
10 | * Mark Evans, <[email protected]> | |
11 | * Corey Minyard <[email protected]> | |
12 | * Florian La Roche, <[email protected]> | |
13 | * Charles Hedrick, <[email protected]> | |
14 | * Linus Torvalds, <[email protected]> | |
15 | * Alan Cox, <[email protected]> | |
16 | * Matthew Dillon, <[email protected]> | |
17 | * Arnt Gulbrandsen, <[email protected]> | |
18 | * Jorge Cwik, <[email protected]> | |
19 | */ | |
20 | ||
21 | /* | |
22 | * Changes: Pedro Roque : Retransmit queue handled by TCP. | |
23 | * : Fragmentation on mtu decrease | |
24 | * : Segment collapse on retransmit | |
25 | * : AF independence | |
26 | * | |
27 | * Linus Torvalds : send_delayed_ack | |
28 | * David S. Miller : Charge memory using the right skb | |
29 | * during syn/ack processing. | |
30 | * David S. Miller : Output engine completely rewritten. | |
31 | * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. | |
32 | * Cacophonix Gaul : draft-minshall-nagle-01 | |
33 | * J Hadi Salim : ECN support | |
34 | * | |
35 | */ | |
36 | ||
37 | #include <net/tcp.h> | |
38 | ||
39 | #include <linux/compiler.h> | |
40 | #include <linux/module.h> | |
41 | ||
42 | /* People can turn this off for buggy TCP's found in printers etc. */ | |
43 | int sysctl_tcp_retrans_collapse __read_mostly = 1; | |
44 | ||
45 | /* People can turn this on to work with those rare, broken TCPs that | |
46 | * interpret the window field as a signed quantity. | |
47 | */ | |
48 | int sysctl_tcp_workaround_signed_windows __read_mostly = 0; | |
49 | ||
50 | /* This limits the percentage of the congestion window which we | |
51 | * will allow a single TSO frame to consume. Building TSO frames | |
52 | * which are too large can cause TCP streams to be bursty. | |
53 | */ | |
54 | int sysctl_tcp_tso_win_divisor __read_mostly = 3; | |
55 | ||
56 | int sysctl_tcp_mtu_probing __read_mostly = 0; | |
57 | int sysctl_tcp_base_mss __read_mostly = 512; | |
58 | ||
59 | /* By default, RFC2861 behavior. */ | |
60 | int sysctl_tcp_slow_start_after_idle __read_mostly = 1; | |
61 | ||
62 | static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) | |
63 | { | |
64 | struct tcp_sock *tp = tcp_sk(sk); | |
65 | unsigned int prior_packets = tp->packets_out; | |
66 | ||
67 | tcp_advance_send_head(sk, skb); | |
68 | tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; | |
69 | ||
70 | /* Don't override Nagle indefinately with F-RTO */ | |
71 | if (tp->frto_counter == 2) | |
72 | tp->frto_counter = 3; | |
73 | ||
74 | tp->packets_out += tcp_skb_pcount(skb); | |
75 | if (!prior_packets) | |
76 | inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, | |
77 | inet_csk(sk)->icsk_rto, TCP_RTO_MAX); | |
78 | } | |
79 | ||
80 | /* SND.NXT, if window was not shrunk. | |
81 | * If window has been shrunk, what should we make? It is not clear at all. | |
82 | * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( | |
83 | * Anything in between SND.UNA...SND.UNA+SND.WND also can be already | |
84 | * invalid. OK, let's make this for now: | |
85 | */ | |
86 | static inline __u32 tcp_acceptable_seq(struct sock *sk) | |
87 | { | |
88 | struct tcp_sock *tp = tcp_sk(sk); | |
89 | ||
90 | if (!before(tcp_wnd_end(tp), tp->snd_nxt)) | |
91 | return tp->snd_nxt; | |
92 | else | |
93 | return tcp_wnd_end(tp); | |
94 | } | |
95 | ||
96 | /* Calculate mss to advertise in SYN segment. | |
97 | * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: | |
98 | * | |
99 | * 1. It is independent of path mtu. | |
100 | * 2. Ideally, it is maximal possible segment size i.e. 65535-40. | |
101 | * 3. For IPv4 it is reasonable to calculate it from maximal MTU of | |
102 | * attached devices, because some buggy hosts are confused by | |
103 | * large MSS. | |
104 | * 4. We do not make 3, we advertise MSS, calculated from first | |
105 | * hop device mtu, but allow to raise it to ip_rt_min_advmss. | |
106 | * This may be overridden via information stored in routing table. | |
107 | * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, | |
108 | * probably even Jumbo". | |
109 | */ | |
110 | static __u16 tcp_advertise_mss(struct sock *sk) | |
111 | { | |
112 | struct tcp_sock *tp = tcp_sk(sk); | |
113 | struct dst_entry *dst = __sk_dst_get(sk); | |
114 | int mss = tp->advmss; | |
115 | ||
116 | if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) { | |
117 | mss = dst_metric(dst, RTAX_ADVMSS); | |
118 | tp->advmss = mss; | |
119 | } | |
120 | ||
121 | return (__u16)mss; | |
122 | } | |
123 | ||
124 | /* RFC2861. Reset CWND after idle period longer RTO to "restart window". | |
125 | * This is the first part of cwnd validation mechanism. */ | |
126 | static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst) | |
127 | { | |
128 | struct tcp_sock *tp = tcp_sk(sk); | |
129 | s32 delta = tcp_time_stamp - tp->lsndtime; | |
130 | u32 restart_cwnd = tcp_init_cwnd(tp, dst); | |
131 | u32 cwnd = tp->snd_cwnd; | |
132 | ||
133 | tcp_ca_event(sk, CA_EVENT_CWND_RESTART); | |
134 | ||
135 | tp->snd_ssthresh = tcp_current_ssthresh(sk); | |
136 | restart_cwnd = min(restart_cwnd, cwnd); | |
137 | ||
138 | while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) | |
139 | cwnd >>= 1; | |
140 | tp->snd_cwnd = max(cwnd, restart_cwnd); | |
141 | tp->snd_cwnd_stamp = tcp_time_stamp; | |
142 | tp->snd_cwnd_used = 0; | |
143 | } | |
144 | ||
145 | static void tcp_event_data_sent(struct tcp_sock *tp, | |
146 | struct sk_buff *skb, struct sock *sk) | |
147 | { | |
148 | struct inet_connection_sock *icsk = inet_csk(sk); | |
149 | const u32 now = tcp_time_stamp; | |
150 | ||
151 | if (sysctl_tcp_slow_start_after_idle && | |
152 | (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) | |
153 | tcp_cwnd_restart(sk, __sk_dst_get(sk)); | |
154 | ||
155 | tp->lsndtime = now; | |
156 | ||
157 | /* If it is a reply for ato after last received | |
158 | * packet, enter pingpong mode. | |
159 | */ | |
160 | if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) | |
161 | icsk->icsk_ack.pingpong = 1; | |
162 | } | |
163 | ||
164 | static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) | |
165 | { | |
166 | tcp_dec_quickack_mode(sk, pkts); | |
167 | inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); | |
168 | } | |
169 | ||
170 | /* Determine a window scaling and initial window to offer. | |
171 | * Based on the assumption that the given amount of space | |
172 | * will be offered. Store the results in the tp structure. | |
173 | * NOTE: for smooth operation initial space offering should | |
174 | * be a multiple of mss if possible. We assume here that mss >= 1. | |
175 | * This MUST be enforced by all callers. | |
176 | */ | |
177 | void tcp_select_initial_window(int __space, __u32 mss, | |
178 | __u32 *rcv_wnd, __u32 *window_clamp, | |
179 | int wscale_ok, __u8 *rcv_wscale) | |
180 | { | |
181 | unsigned int space = (__space < 0 ? 0 : __space); | |
182 | ||
183 | /* If no clamp set the clamp to the max possible scaled window */ | |
184 | if (*window_clamp == 0) | |
185 | (*window_clamp) = (65535 << 14); | |
186 | space = min(*window_clamp, space); | |
187 | ||
188 | /* Quantize space offering to a multiple of mss if possible. */ | |
189 | if (space > mss) | |
190 | space = (space / mss) * mss; | |
191 | ||
192 | /* NOTE: offering an initial window larger than 32767 | |
193 | * will break some buggy TCP stacks. If the admin tells us | |
194 | * it is likely we could be speaking with such a buggy stack | |
195 | * we will truncate our initial window offering to 32K-1 | |
196 | * unless the remote has sent us a window scaling option, | |
197 | * which we interpret as a sign the remote TCP is not | |
198 | * misinterpreting the window field as a signed quantity. | |
199 | */ | |
200 | if (sysctl_tcp_workaround_signed_windows) | |
201 | (*rcv_wnd) = min(space, MAX_TCP_WINDOW); | |
202 | else | |
203 | (*rcv_wnd) = space; | |
204 | ||
205 | (*rcv_wscale) = 0; | |
206 | if (wscale_ok) { | |
207 | /* Set window scaling on max possible window | |
208 | * See RFC1323 for an explanation of the limit to 14 | |
209 | */ | |
210 | space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); | |
211 | space = min_t(u32, space, *window_clamp); | |
212 | while (space > 65535 && (*rcv_wscale) < 14) { | |
213 | space >>= 1; | |
214 | (*rcv_wscale)++; | |
215 | } | |
216 | } | |
217 | ||
218 | /* Set initial window to value enough for senders, | |
219 | * following RFC2414. Senders, not following this RFC, | |
220 | * will be satisfied with 2. | |
221 | */ | |
222 | if (mss > (1 << *rcv_wscale)) { | |
223 | int init_cwnd = 4; | |
224 | if (mss > 1460 * 3) | |
225 | init_cwnd = 2; | |
226 | else if (mss > 1460) | |
227 | init_cwnd = 3; | |
228 | if (*rcv_wnd > init_cwnd * mss) | |
229 | *rcv_wnd = init_cwnd * mss; | |
230 | } | |
231 | ||
232 | /* Set the clamp no higher than max representable value */ | |
233 | (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); | |
234 | } | |
235 | ||
236 | /* Chose a new window to advertise, update state in tcp_sock for the | |
237 | * socket, and return result with RFC1323 scaling applied. The return | |
238 | * value can be stuffed directly into th->window for an outgoing | |
239 | * frame. | |
240 | */ | |
241 | static u16 tcp_select_window(struct sock *sk) | |
242 | { | |
243 | struct tcp_sock *tp = tcp_sk(sk); | |
244 | u32 cur_win = tcp_receive_window(tp); | |
245 | u32 new_win = __tcp_select_window(sk); | |
246 | ||
247 | /* Never shrink the offered window */ | |
248 | if (new_win < cur_win) { | |
249 | /* Danger Will Robinson! | |
250 | * Don't update rcv_wup/rcv_wnd here or else | |
251 | * we will not be able to advertise a zero | |
252 | * window in time. --DaveM | |
253 | * | |
254 | * Relax Will Robinson. | |
255 | */ | |
256 | new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); | |
257 | } | |
258 | tp->rcv_wnd = new_win; | |
259 | tp->rcv_wup = tp->rcv_nxt; | |
260 | ||
261 | /* Make sure we do not exceed the maximum possible | |
262 | * scaled window. | |
263 | */ | |
264 | if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) | |
265 | new_win = min(new_win, MAX_TCP_WINDOW); | |
266 | else | |
267 | new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); | |
268 | ||
269 | /* RFC1323 scaling applied */ | |
270 | new_win >>= tp->rx_opt.rcv_wscale; | |
271 | ||
272 | /* If we advertise zero window, disable fast path. */ | |
273 | if (new_win == 0) | |
274 | tp->pred_flags = 0; | |
275 | ||
276 | return new_win; | |
277 | } | |
278 | ||
279 | static inline void TCP_ECN_send_synack(struct tcp_sock *tp, struct sk_buff *skb) | |
280 | { | |
281 | TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_CWR; | |
282 | if (!(tp->ecn_flags & TCP_ECN_OK)) | |
283 | TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_ECE; | |
284 | } | |
285 | ||
286 | static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb) | |
287 | { | |
288 | struct tcp_sock *tp = tcp_sk(sk); | |
289 | ||
290 | tp->ecn_flags = 0; | |
291 | if (sysctl_tcp_ecn) { | |
292 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ECE | TCPCB_FLAG_CWR; | |
293 | tp->ecn_flags = TCP_ECN_OK; | |
294 | } | |
295 | } | |
296 | ||
297 | static __inline__ void | |
298 | TCP_ECN_make_synack(struct request_sock *req, struct tcphdr *th) | |
299 | { | |
300 | if (inet_rsk(req)->ecn_ok) | |
301 | th->ece = 1; | |
302 | } | |
303 | ||
304 | static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb, | |
305 | int tcp_header_len) | |
306 | { | |
307 | struct tcp_sock *tp = tcp_sk(sk); | |
308 | ||
309 | if (tp->ecn_flags & TCP_ECN_OK) { | |
310 | /* Not-retransmitted data segment: set ECT and inject CWR. */ | |
311 | if (skb->len != tcp_header_len && | |
312 | !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { | |
313 | INET_ECN_xmit(sk); | |
314 | if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { | |
315 | tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; | |
316 | tcp_hdr(skb)->cwr = 1; | |
317 | skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; | |
318 | } | |
319 | } else { | |
320 | /* ACK or retransmitted segment: clear ECT|CE */ | |
321 | INET_ECN_dontxmit(sk); | |
322 | } | |
323 | if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) | |
324 | tcp_hdr(skb)->ece = 1; | |
325 | } | |
326 | } | |
327 | ||
328 | /* Constructs common control bits of non-data skb. If SYN/FIN is present, | |
329 | * auto increment end seqno. | |
330 | */ | |
331 | static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) | |
332 | { | |
333 | skb->csum = 0; | |
334 | ||
335 | TCP_SKB_CB(skb)->flags = flags; | |
336 | TCP_SKB_CB(skb)->sacked = 0; | |
337 | ||
338 | skb_shinfo(skb)->gso_segs = 1; | |
339 | skb_shinfo(skb)->gso_size = 0; | |
340 | skb_shinfo(skb)->gso_type = 0; | |
341 | ||
342 | TCP_SKB_CB(skb)->seq = seq; | |
343 | if (flags & (TCPCB_FLAG_SYN | TCPCB_FLAG_FIN)) | |
344 | seq++; | |
345 | TCP_SKB_CB(skb)->end_seq = seq; | |
346 | } | |
347 | ||
348 | #define OPTION_SACK_ADVERTISE (1 << 0) | |
349 | #define OPTION_TS (1 << 1) | |
350 | #define OPTION_MD5 (1 << 2) | |
351 | ||
352 | struct tcp_out_options { | |
353 | u8 options; /* bit field of OPTION_* */ | |
354 | u8 ws; /* window scale, 0 to disable */ | |
355 | u8 num_sack_blocks; /* number of SACK blocks to include */ | |
356 | u16 mss; /* 0 to disable */ | |
357 | __u32 tsval, tsecr; /* need to include OPTION_TS */ | |
358 | }; | |
359 | ||
360 | static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, | |
361 | const struct tcp_out_options *opts, | |
362 | __u8 **md5_hash) { | |
363 | if (unlikely(OPTION_MD5 & opts->options)) { | |
364 | *ptr++ = htonl((TCPOPT_NOP << 24) | | |
365 | (TCPOPT_NOP << 16) | | |
366 | (TCPOPT_MD5SIG << 8) | | |
367 | TCPOLEN_MD5SIG); | |
368 | *md5_hash = (__u8 *)ptr; | |
369 | ptr += 4; | |
370 | } else { | |
371 | *md5_hash = NULL; | |
372 | } | |
373 | ||
374 | if (likely(OPTION_TS & opts->options)) { | |
375 | if (unlikely(OPTION_SACK_ADVERTISE & opts->options)) { | |
376 | *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | | |
377 | (TCPOLEN_SACK_PERM << 16) | | |
378 | (TCPOPT_TIMESTAMP << 8) | | |
379 | TCPOLEN_TIMESTAMP); | |
380 | } else { | |
381 | *ptr++ = htonl((TCPOPT_NOP << 24) | | |
382 | (TCPOPT_NOP << 16) | | |
383 | (TCPOPT_TIMESTAMP << 8) | | |
384 | TCPOLEN_TIMESTAMP); | |
385 | } | |
386 | *ptr++ = htonl(opts->tsval); | |
387 | *ptr++ = htonl(opts->tsecr); | |
388 | } | |
389 | ||
390 | if (unlikely(opts->mss)) { | |
391 | *ptr++ = htonl((TCPOPT_MSS << 24) | | |
392 | (TCPOLEN_MSS << 16) | | |
393 | opts->mss); | |
394 | } | |
395 | ||
396 | if (unlikely(OPTION_SACK_ADVERTISE & opts->options && | |
397 | !(OPTION_TS & opts->options))) { | |
398 | *ptr++ = htonl((TCPOPT_NOP << 24) | | |
399 | (TCPOPT_NOP << 16) | | |
400 | (TCPOPT_SACK_PERM << 8) | | |
401 | TCPOLEN_SACK_PERM); | |
402 | } | |
403 | ||
404 | if (unlikely(opts->ws)) { | |
405 | *ptr++ = htonl((TCPOPT_NOP << 24) | | |
406 | (TCPOPT_WINDOW << 16) | | |
407 | (TCPOLEN_WINDOW << 8) | | |
408 | opts->ws); | |
409 | } | |
410 | ||
411 | if (unlikely(opts->num_sack_blocks)) { | |
412 | struct tcp_sack_block *sp = tp->rx_opt.dsack ? | |
413 | tp->duplicate_sack : tp->selective_acks; | |
414 | int this_sack; | |
415 | ||
416 | *ptr++ = htonl((TCPOPT_NOP << 24) | | |
417 | (TCPOPT_NOP << 16) | | |
418 | (TCPOPT_SACK << 8) | | |
419 | (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * | |
420 | TCPOLEN_SACK_PERBLOCK))); | |
421 | ||
422 | for (this_sack = 0; this_sack < opts->num_sack_blocks; | |
423 | ++this_sack) { | |
424 | *ptr++ = htonl(sp[this_sack].start_seq); | |
425 | *ptr++ = htonl(sp[this_sack].end_seq); | |
426 | } | |
427 | ||
428 | if (tp->rx_opt.dsack) { | |
429 | tp->rx_opt.dsack = 0; | |
430 | tp->rx_opt.eff_sacks--; | |
431 | } | |
432 | } | |
433 | } | |
434 | ||
435 | static unsigned tcp_syn_options(struct sock *sk, struct sk_buff *skb, | |
436 | struct tcp_out_options *opts, | |
437 | struct tcp_md5sig_key **md5) { | |
438 | struct tcp_sock *tp = tcp_sk(sk); | |
439 | unsigned size = 0; | |
440 | ||
441 | #ifdef CONFIG_TCP_MD5SIG | |
442 | *md5 = tp->af_specific->md5_lookup(sk, sk); | |
443 | if (*md5) { | |
444 | opts->options |= OPTION_MD5; | |
445 | size += TCPOLEN_MD5SIG_ALIGNED; | |
446 | } | |
447 | #else | |
448 | *md5 = NULL; | |
449 | #endif | |
450 | ||
451 | /* We always get an MSS option. The option bytes which will be seen in | |
452 | * normal data packets should timestamps be used, must be in the MSS | |
453 | * advertised. But we subtract them from tp->mss_cache so that | |
454 | * calculations in tcp_sendmsg are simpler etc. So account for this | |
455 | * fact here if necessary. If we don't do this correctly, as a | |
456 | * receiver we won't recognize data packets as being full sized when we | |
457 | * should, and thus we won't abide by the delayed ACK rules correctly. | |
458 | * SACKs don't matter, we never delay an ACK when we have any of those | |
459 | * going out. */ | |
460 | opts->mss = tcp_advertise_mss(sk); | |
461 | size += TCPOLEN_MSS_ALIGNED; | |
462 | ||
463 | if (likely(sysctl_tcp_timestamps && *md5 == NULL)) { | |
464 | opts->options |= OPTION_TS; | |
465 | opts->tsval = TCP_SKB_CB(skb)->when; | |
466 | opts->tsecr = tp->rx_opt.ts_recent; | |
467 | size += TCPOLEN_TSTAMP_ALIGNED; | |
468 | } | |
469 | if (likely(sysctl_tcp_window_scaling)) { | |
470 | opts->ws = tp->rx_opt.rcv_wscale; | |
471 | if(likely(opts->ws)) | |
472 | size += TCPOLEN_WSCALE_ALIGNED; | |
473 | } | |
474 | if (likely(sysctl_tcp_sack)) { | |
475 | opts->options |= OPTION_SACK_ADVERTISE; | |
476 | if (unlikely(!(OPTION_TS & opts->options))) | |
477 | size += TCPOLEN_SACKPERM_ALIGNED; | |
478 | } | |
479 | ||
480 | return size; | |
481 | } | |
482 | ||
483 | static unsigned tcp_synack_options(struct sock *sk, | |
484 | struct request_sock *req, | |
485 | unsigned mss, struct sk_buff *skb, | |
486 | struct tcp_out_options *opts, | |
487 | struct tcp_md5sig_key **md5) { | |
488 | unsigned size = 0; | |
489 | struct inet_request_sock *ireq = inet_rsk(req); | |
490 | char doing_ts; | |
491 | ||
492 | #ifdef CONFIG_TCP_MD5SIG | |
493 | *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req); | |
494 | if (*md5) { | |
495 | opts->options |= OPTION_MD5; | |
496 | size += TCPOLEN_MD5SIG_ALIGNED; | |
497 | } | |
498 | #else | |
499 | *md5 = NULL; | |
500 | #endif | |
501 | ||
502 | /* we can't fit any SACK blocks in a packet with MD5 + TS | |
503 | options. There was discussion about disabling SACK rather than TS in | |
504 | order to fit in better with old, buggy kernels, but that was deemed | |
505 | to be unnecessary. */ | |
506 | doing_ts = ireq->tstamp_ok && !(*md5 && ireq->sack_ok); | |
507 | ||
508 | opts->mss = mss; | |
509 | size += TCPOLEN_MSS_ALIGNED; | |
510 | ||
511 | if (likely(ireq->wscale_ok)) { | |
512 | opts->ws = ireq->rcv_wscale; | |
513 | if(likely(opts->ws)) | |
514 | size += TCPOLEN_WSCALE_ALIGNED; | |
515 | } | |
516 | if (likely(doing_ts)) { | |
517 | opts->options |= OPTION_TS; | |
518 | opts->tsval = TCP_SKB_CB(skb)->when; | |
519 | opts->tsecr = req->ts_recent; | |
520 | size += TCPOLEN_TSTAMP_ALIGNED; | |
521 | } | |
522 | if (likely(ireq->sack_ok)) { | |
523 | opts->options |= OPTION_SACK_ADVERTISE; | |
524 | if (unlikely(!doing_ts)) | |
525 | size += TCPOLEN_SACKPERM_ALIGNED; | |
526 | } | |
527 | ||
528 | return size; | |
529 | } | |
530 | ||
531 | static unsigned tcp_established_options(struct sock *sk, struct sk_buff *skb, | |
532 | struct tcp_out_options *opts, | |
533 | struct tcp_md5sig_key **md5) { | |
534 | struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL; | |
535 | struct tcp_sock *tp = tcp_sk(sk); | |
536 | unsigned size = 0; | |
537 | ||
538 | #ifdef CONFIG_TCP_MD5SIG | |
539 | *md5 = tp->af_specific->md5_lookup(sk, sk); | |
540 | if (unlikely(*md5)) { | |
541 | opts->options |= OPTION_MD5; | |
542 | size += TCPOLEN_MD5SIG_ALIGNED; | |
543 | } | |
544 | #else | |
545 | *md5 = NULL; | |
546 | #endif | |
547 | ||
548 | if (likely(tp->rx_opt.tstamp_ok)) { | |
549 | opts->options |= OPTION_TS; | |
550 | opts->tsval = tcb ? tcb->when : 0; | |
551 | opts->tsecr = tp->rx_opt.ts_recent; | |
552 | size += TCPOLEN_TSTAMP_ALIGNED; | |
553 | } | |
554 | ||
555 | if (unlikely(tp->rx_opt.eff_sacks)) { | |
556 | const unsigned remaining = MAX_TCP_OPTION_SPACE - size; | |
557 | opts->num_sack_blocks = | |
558 | min_t(unsigned, tp->rx_opt.eff_sacks, | |
559 | (remaining - TCPOLEN_SACK_BASE_ALIGNED) / | |
560 | TCPOLEN_SACK_PERBLOCK); | |
561 | size += TCPOLEN_SACK_BASE_ALIGNED + | |
562 | opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; | |
563 | } | |
564 | ||
565 | return size; | |
566 | } | |
567 | ||
568 | /* This routine actually transmits TCP packets queued in by | |
569 | * tcp_do_sendmsg(). This is used by both the initial | |
570 | * transmission and possible later retransmissions. | |
571 | * All SKB's seen here are completely headerless. It is our | |
572 | * job to build the TCP header, and pass the packet down to | |
573 | * IP so it can do the same plus pass the packet off to the | |
574 | * device. | |
575 | * | |
576 | * We are working here with either a clone of the original | |
577 | * SKB, or a fresh unique copy made by the retransmit engine. | |
578 | */ | |
579 | static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, | |
580 | gfp_t gfp_mask) | |
581 | { | |
582 | const struct inet_connection_sock *icsk = inet_csk(sk); | |
583 | struct inet_sock *inet; | |
584 | struct tcp_sock *tp; | |
585 | struct tcp_skb_cb *tcb; | |
586 | struct tcp_out_options opts; | |
587 | unsigned tcp_options_size, tcp_header_size; | |
588 | struct tcp_md5sig_key *md5; | |
589 | __u8 *md5_hash_location; | |
590 | struct tcphdr *th; | |
591 | int err; | |
592 | ||
593 | BUG_ON(!skb || !tcp_skb_pcount(skb)); | |
594 | ||
595 | /* If congestion control is doing timestamping, we must | |
596 | * take such a timestamp before we potentially clone/copy. | |
597 | */ | |
598 | if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP) | |
599 | __net_timestamp(skb); | |
600 | ||
601 | if (likely(clone_it)) { | |
602 | if (unlikely(skb_cloned(skb))) | |
603 | skb = pskb_copy(skb, gfp_mask); | |
604 | else | |
605 | skb = skb_clone(skb, gfp_mask); | |
606 | if (unlikely(!skb)) | |
607 | return -ENOBUFS; | |
608 | } | |
609 | ||
610 | inet = inet_sk(sk); | |
611 | tp = tcp_sk(sk); | |
612 | tcb = TCP_SKB_CB(skb); | |
613 | memset(&opts, 0, sizeof(opts)); | |
614 | ||
615 | if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) | |
616 | tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); | |
617 | else | |
618 | tcp_options_size = tcp_established_options(sk, skb, &opts, | |
619 | &md5); | |
620 | tcp_header_size = tcp_options_size + sizeof(struct tcphdr); | |
621 | ||
622 | if (tcp_packets_in_flight(tp) == 0) | |
623 | tcp_ca_event(sk, CA_EVENT_TX_START); | |
624 | ||
625 | skb_push(skb, tcp_header_size); | |
626 | skb_reset_transport_header(skb); | |
627 | skb_set_owner_w(skb, sk); | |
628 | ||
629 | /* Build TCP header and checksum it. */ | |
630 | th = tcp_hdr(skb); | |
631 | th->source = inet->sport; | |
632 | th->dest = inet->dport; | |
633 | th->seq = htonl(tcb->seq); | |
634 | th->ack_seq = htonl(tp->rcv_nxt); | |
635 | *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | | |
636 | tcb->flags); | |
637 | ||
638 | if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) { | |
639 | /* RFC1323: The window in SYN & SYN/ACK segments | |
640 | * is never scaled. | |
641 | */ | |
642 | th->window = htons(min(tp->rcv_wnd, 65535U)); | |
643 | } else { | |
644 | th->window = htons(tcp_select_window(sk)); | |
645 | } | |
646 | th->check = 0; | |
647 | th->urg_ptr = 0; | |
648 | ||
649 | if (unlikely(tp->urg_mode && | |
650 | between(tp->snd_up, tcb->seq + 1, tcb->seq + 0xFFFF))) { | |
651 | th->urg_ptr = htons(tp->snd_up - tcb->seq); | |
652 | th->urg = 1; | |
653 | } | |
654 | ||
655 | tcp_options_write((__be32 *)(th + 1), tp, &opts, &md5_hash_location); | |
656 | if (likely((tcb->flags & TCPCB_FLAG_SYN) == 0)) | |
657 | TCP_ECN_send(sk, skb, tcp_header_size); | |
658 | ||
659 | #ifdef CONFIG_TCP_MD5SIG | |
660 | /* Calculate the MD5 hash, as we have all we need now */ | |
661 | if (md5) { | |
662 | sk->sk_route_caps &= ~NETIF_F_GSO_MASK; | |
663 | tp->af_specific->calc_md5_hash(md5_hash_location, | |
664 | md5, sk, NULL, skb); | |
665 | } | |
666 | #endif | |
667 | ||
668 | icsk->icsk_af_ops->send_check(sk, skb->len, skb); | |
669 | ||
670 | if (likely(tcb->flags & TCPCB_FLAG_ACK)) | |
671 | tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); | |
672 | ||
673 | if (skb->len != tcp_header_size) | |
674 | tcp_event_data_sent(tp, skb, sk); | |
675 | ||
676 | if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) | |
677 | TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); | |
678 | ||
679 | err = icsk->icsk_af_ops->queue_xmit(skb, 0); | |
680 | if (likely(err <= 0)) | |
681 | return err; | |
682 | ||
683 | tcp_enter_cwr(sk, 1); | |
684 | ||
685 | return net_xmit_eval(err); | |
686 | } | |
687 | ||
688 | /* This routine just queue's the buffer | |
689 | * | |
690 | * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, | |
691 | * otherwise socket can stall. | |
692 | */ | |
693 | static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) | |
694 | { | |
695 | struct tcp_sock *tp = tcp_sk(sk); | |
696 | ||
697 | /* Advance write_seq and place onto the write_queue. */ | |
698 | tp->write_seq = TCP_SKB_CB(skb)->end_seq; | |
699 | skb_header_release(skb); | |
700 | tcp_add_write_queue_tail(sk, skb); | |
701 | sk->sk_wmem_queued += skb->truesize; | |
702 | sk_mem_charge(sk, skb->truesize); | |
703 | } | |
704 | ||
705 | static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb, | |
706 | unsigned int mss_now) | |
707 | { | |
708 | if (skb->len <= mss_now || !sk_can_gso(sk)) { | |
709 | /* Avoid the costly divide in the normal | |
710 | * non-TSO case. | |
711 | */ | |
712 | skb_shinfo(skb)->gso_segs = 1; | |
713 | skb_shinfo(skb)->gso_size = 0; | |
714 | skb_shinfo(skb)->gso_type = 0; | |
715 | } else { | |
716 | skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now); | |
717 | skb_shinfo(skb)->gso_size = mss_now; | |
718 | skb_shinfo(skb)->gso_type = sk->sk_gso_type; | |
719 | } | |
720 | } | |
721 | ||
722 | /* When a modification to fackets out becomes necessary, we need to check | |
723 | * skb is counted to fackets_out or not. | |
724 | */ | |
725 | static void tcp_adjust_fackets_out(struct sock *sk, struct sk_buff *skb, | |
726 | int decr) | |
727 | { | |
728 | struct tcp_sock *tp = tcp_sk(sk); | |
729 | ||
730 | if (!tp->sacked_out || tcp_is_reno(tp)) | |
731 | return; | |
732 | ||
733 | if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) | |
734 | tp->fackets_out -= decr; | |
735 | } | |
736 | ||
737 | /* Function to create two new TCP segments. Shrinks the given segment | |
738 | * to the specified size and appends a new segment with the rest of the | |
739 | * packet to the list. This won't be called frequently, I hope. | |
740 | * Remember, these are still headerless SKBs at this point. | |
741 | */ | |
742 | int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, | |
743 | unsigned int mss_now) | |
744 | { | |
745 | struct tcp_sock *tp = tcp_sk(sk); | |
746 | struct sk_buff *buff; | |
747 | int nsize, old_factor; | |
748 | int nlen; | |
749 | u16 flags; | |
750 | ||
751 | BUG_ON(len > skb->len); | |
752 | ||
753 | tcp_clear_retrans_hints_partial(tp); | |
754 | nsize = skb_headlen(skb) - len; | |
755 | if (nsize < 0) | |
756 | nsize = 0; | |
757 | ||
758 | if (skb_cloned(skb) && | |
759 | skb_is_nonlinear(skb) && | |
760 | pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) | |
761 | return -ENOMEM; | |
762 | ||
763 | /* Get a new skb... force flag on. */ | |
764 | buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); | |
765 | if (buff == NULL) | |
766 | return -ENOMEM; /* We'll just try again later. */ | |
767 | ||
768 | sk->sk_wmem_queued += buff->truesize; | |
769 | sk_mem_charge(sk, buff->truesize); | |
770 | nlen = skb->len - len - nsize; | |
771 | buff->truesize += nlen; | |
772 | skb->truesize -= nlen; | |
773 | ||
774 | /* Correct the sequence numbers. */ | |
775 | TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; | |
776 | TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; | |
777 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; | |
778 | ||
779 | /* PSH and FIN should only be set in the second packet. */ | |
780 | flags = TCP_SKB_CB(skb)->flags; | |
781 | TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH); | |
782 | TCP_SKB_CB(buff)->flags = flags; | |
783 | TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; | |
784 | ||
785 | if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { | |
786 | /* Copy and checksum data tail into the new buffer. */ | |
787 | buff->csum = csum_partial_copy_nocheck(skb->data + len, | |
788 | skb_put(buff, nsize), | |
789 | nsize, 0); | |
790 | ||
791 | skb_trim(skb, len); | |
792 | ||
793 | skb->csum = csum_block_sub(skb->csum, buff->csum, len); | |
794 | } else { | |
795 | skb->ip_summed = CHECKSUM_PARTIAL; | |
796 | skb_split(skb, buff, len); | |
797 | } | |
798 | ||
799 | buff->ip_summed = skb->ip_summed; | |
800 | ||
801 | /* Looks stupid, but our code really uses when of | |
802 | * skbs, which it never sent before. --ANK | |
803 | */ | |
804 | TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; | |
805 | buff->tstamp = skb->tstamp; | |
806 | ||
807 | old_factor = tcp_skb_pcount(skb); | |
808 | ||
809 | /* Fix up tso_factor for both original and new SKB. */ | |
810 | tcp_set_skb_tso_segs(sk, skb, mss_now); | |
811 | tcp_set_skb_tso_segs(sk, buff, mss_now); | |
812 | ||
813 | /* If this packet has been sent out already, we must | |
814 | * adjust the various packet counters. | |
815 | */ | |
816 | if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { | |
817 | int diff = old_factor - tcp_skb_pcount(skb) - | |
818 | tcp_skb_pcount(buff); | |
819 | ||
820 | tp->packets_out -= diff; | |
821 | ||
822 | if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) | |
823 | tp->sacked_out -= diff; | |
824 | if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) | |
825 | tp->retrans_out -= diff; | |
826 | ||
827 | if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) | |
828 | tp->lost_out -= diff; | |
829 | ||
830 | /* Adjust Reno SACK estimate. */ | |
831 | if (tcp_is_reno(tp) && diff > 0) { | |
832 | tcp_dec_pcount_approx_int(&tp->sacked_out, diff); | |
833 | tcp_verify_left_out(tp); | |
834 | } | |
835 | tcp_adjust_fackets_out(sk, skb, diff); | |
836 | } | |
837 | ||
838 | /* Link BUFF into the send queue. */ | |
839 | skb_header_release(buff); | |
840 | tcp_insert_write_queue_after(skb, buff, sk); | |
841 | ||
842 | return 0; | |
843 | } | |
844 | ||
845 | /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c | |
846 | * eventually). The difference is that pulled data not copied, but | |
847 | * immediately discarded. | |
848 | */ | |
849 | static void __pskb_trim_head(struct sk_buff *skb, int len) | |
850 | { | |
851 | int i, k, eat; | |
852 | ||
853 | eat = len; | |
854 | k = 0; | |
855 | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | |
856 | if (skb_shinfo(skb)->frags[i].size <= eat) { | |
857 | put_page(skb_shinfo(skb)->frags[i].page); | |
858 | eat -= skb_shinfo(skb)->frags[i].size; | |
859 | } else { | |
860 | skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; | |
861 | if (eat) { | |
862 | skb_shinfo(skb)->frags[k].page_offset += eat; | |
863 | skb_shinfo(skb)->frags[k].size -= eat; | |
864 | eat = 0; | |
865 | } | |
866 | k++; | |
867 | } | |
868 | } | |
869 | skb_shinfo(skb)->nr_frags = k; | |
870 | ||
871 | skb_reset_tail_pointer(skb); | |
872 | skb->data_len -= len; | |
873 | skb->len = skb->data_len; | |
874 | } | |
875 | ||
876 | int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) | |
877 | { | |
878 | if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) | |
879 | return -ENOMEM; | |
880 | ||
881 | /* If len == headlen, we avoid __skb_pull to preserve alignment. */ | |
882 | if (unlikely(len < skb_headlen(skb))) | |
883 | __skb_pull(skb, len); | |
884 | else | |
885 | __pskb_trim_head(skb, len - skb_headlen(skb)); | |
886 | ||
887 | TCP_SKB_CB(skb)->seq += len; | |
888 | skb->ip_summed = CHECKSUM_PARTIAL; | |
889 | ||
890 | skb->truesize -= len; | |
891 | sk->sk_wmem_queued -= len; | |
892 | sk_mem_uncharge(sk, len); | |
893 | sock_set_flag(sk, SOCK_QUEUE_SHRUNK); | |
894 | ||
895 | /* Any change of skb->len requires recalculation of tso | |
896 | * factor and mss. | |
897 | */ | |
898 | if (tcp_skb_pcount(skb) > 1) | |
899 | tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1)); | |
900 | ||
901 | return 0; | |
902 | } | |
903 | ||
904 | /* Not accounting for SACKs here. */ | |
905 | int tcp_mtu_to_mss(struct sock *sk, int pmtu) | |
906 | { | |
907 | struct tcp_sock *tp = tcp_sk(sk); | |
908 | struct inet_connection_sock *icsk = inet_csk(sk); | |
909 | int mss_now; | |
910 | ||
911 | /* Calculate base mss without TCP options: | |
912 | It is MMS_S - sizeof(tcphdr) of rfc1122 | |
913 | */ | |
914 | mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); | |
915 | ||
916 | /* Clamp it (mss_clamp does not include tcp options) */ | |
917 | if (mss_now > tp->rx_opt.mss_clamp) | |
918 | mss_now = tp->rx_opt.mss_clamp; | |
919 | ||
920 | /* Now subtract optional transport overhead */ | |
921 | mss_now -= icsk->icsk_ext_hdr_len; | |
922 | ||
923 | /* Then reserve room for full set of TCP options and 8 bytes of data */ | |
924 | if (mss_now < 48) | |
925 | mss_now = 48; | |
926 | ||
927 | /* Now subtract TCP options size, not including SACKs */ | |
928 | mss_now -= tp->tcp_header_len - sizeof(struct tcphdr); | |
929 | ||
930 | return mss_now; | |
931 | } | |
932 | ||
933 | /* Inverse of above */ | |
934 | int tcp_mss_to_mtu(struct sock *sk, int mss) | |
935 | { | |
936 | struct tcp_sock *tp = tcp_sk(sk); | |
937 | struct inet_connection_sock *icsk = inet_csk(sk); | |
938 | int mtu; | |
939 | ||
940 | mtu = mss + | |
941 | tp->tcp_header_len + | |
942 | icsk->icsk_ext_hdr_len + | |
943 | icsk->icsk_af_ops->net_header_len; | |
944 | ||
945 | return mtu; | |
946 | } | |
947 | ||
948 | void tcp_mtup_init(struct sock *sk) | |
949 | { | |
950 | struct tcp_sock *tp = tcp_sk(sk); | |
951 | struct inet_connection_sock *icsk = inet_csk(sk); | |
952 | ||
953 | icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1; | |
954 | icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + | |
955 | icsk->icsk_af_ops->net_header_len; | |
956 | icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss); | |
957 | icsk->icsk_mtup.probe_size = 0; | |
958 | } | |
959 | ||
960 | /* Bound MSS / TSO packet size with the half of the window */ | |
961 | static int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) | |
962 | { | |
963 | if (tp->max_window && pktsize > (tp->max_window >> 1)) | |
964 | return max(tp->max_window >> 1, 68U - tp->tcp_header_len); | |
965 | else | |
966 | return pktsize; | |
967 | } | |
968 | ||
969 | /* This function synchronize snd mss to current pmtu/exthdr set. | |
970 | ||
971 | tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts | |
972 | for TCP options, but includes only bare TCP header. | |
973 | ||
974 | tp->rx_opt.mss_clamp is mss negotiated at connection setup. | |
975 | It is minimum of user_mss and mss received with SYN. | |
976 | It also does not include TCP options. | |
977 | ||
978 | inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. | |
979 | ||
980 | tp->mss_cache is current effective sending mss, including | |
981 | all tcp options except for SACKs. It is evaluated, | |
982 | taking into account current pmtu, but never exceeds | |
983 | tp->rx_opt.mss_clamp. | |
984 | ||
985 | NOTE1. rfc1122 clearly states that advertised MSS | |
986 | DOES NOT include either tcp or ip options. | |
987 | ||
988 | NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache | |
989 | are READ ONLY outside this function. --ANK (980731) | |
990 | */ | |
991 | unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) | |
992 | { | |
993 | struct tcp_sock *tp = tcp_sk(sk); | |
994 | struct inet_connection_sock *icsk = inet_csk(sk); | |
995 | int mss_now; | |
996 | ||
997 | if (icsk->icsk_mtup.search_high > pmtu) | |
998 | icsk->icsk_mtup.search_high = pmtu; | |
999 | ||
1000 | mss_now = tcp_mtu_to_mss(sk, pmtu); | |
1001 | mss_now = tcp_bound_to_half_wnd(tp, mss_now); | |
1002 | ||
1003 | /* And store cached results */ | |
1004 | icsk->icsk_pmtu_cookie = pmtu; | |
1005 | if (icsk->icsk_mtup.enabled) | |
1006 | mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); | |
1007 | tp->mss_cache = mss_now; | |
1008 | ||
1009 | return mss_now; | |
1010 | } | |
1011 | ||
1012 | /* Compute the current effective MSS, taking SACKs and IP options, | |
1013 | * and even PMTU discovery events into account. | |
1014 | * | |
1015 | * LARGESEND note: !urg_mode is overkill, only frames up to snd_up | |
1016 | * cannot be large. However, taking into account rare use of URG, this | |
1017 | * is not a big flaw. | |
1018 | */ | |
1019 | unsigned int tcp_current_mss(struct sock *sk, int large_allowed) | |
1020 | { | |
1021 | struct tcp_sock *tp = tcp_sk(sk); | |
1022 | struct dst_entry *dst = __sk_dst_get(sk); | |
1023 | u32 mss_now; | |
1024 | u16 xmit_size_goal; | |
1025 | int doing_tso = 0; | |
1026 | unsigned header_len; | |
1027 | struct tcp_out_options opts; | |
1028 | struct tcp_md5sig_key *md5; | |
1029 | ||
1030 | mss_now = tp->mss_cache; | |
1031 | ||
1032 | if (large_allowed && sk_can_gso(sk) && !tp->urg_mode) | |
1033 | doing_tso = 1; | |
1034 | ||
1035 | if (dst) { | |
1036 | u32 mtu = dst_mtu(dst); | |
1037 | if (mtu != inet_csk(sk)->icsk_pmtu_cookie) | |
1038 | mss_now = tcp_sync_mss(sk, mtu); | |
1039 | } | |
1040 | ||
1041 | header_len = tcp_established_options(sk, NULL, &opts, &md5) + | |
1042 | sizeof(struct tcphdr); | |
1043 | /* The mss_cache is sized based on tp->tcp_header_len, which assumes | |
1044 | * some common options. If this is an odd packet (because we have SACK | |
1045 | * blocks etc) then our calculated header_len will be different, and | |
1046 | * we have to adjust mss_now correspondingly */ | |
1047 | if (header_len != tp->tcp_header_len) { | |
1048 | int delta = (int) header_len - tp->tcp_header_len; | |
1049 | mss_now -= delta; | |
1050 | } | |
1051 | ||
1052 | xmit_size_goal = mss_now; | |
1053 | ||
1054 | if (doing_tso) { | |
1055 | xmit_size_goal = ((sk->sk_gso_max_size - 1) - | |
1056 | inet_csk(sk)->icsk_af_ops->net_header_len - | |
1057 | inet_csk(sk)->icsk_ext_hdr_len - | |
1058 | tp->tcp_header_len); | |
1059 | ||
1060 | xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); | |
1061 | xmit_size_goal -= (xmit_size_goal % mss_now); | |
1062 | } | |
1063 | tp->xmit_size_goal = xmit_size_goal; | |
1064 | ||
1065 | return mss_now; | |
1066 | } | |
1067 | ||
1068 | /* Congestion window validation. (RFC2861) */ | |
1069 | static void tcp_cwnd_validate(struct sock *sk) | |
1070 | { | |
1071 | struct tcp_sock *tp = tcp_sk(sk); | |
1072 | ||
1073 | if (tp->packets_out >= tp->snd_cwnd) { | |
1074 | /* Network is feed fully. */ | |
1075 | tp->snd_cwnd_used = 0; | |
1076 | tp->snd_cwnd_stamp = tcp_time_stamp; | |
1077 | } else { | |
1078 | /* Network starves. */ | |
1079 | if (tp->packets_out > tp->snd_cwnd_used) | |
1080 | tp->snd_cwnd_used = tp->packets_out; | |
1081 | ||
1082 | if (sysctl_tcp_slow_start_after_idle && | |
1083 | (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) | |
1084 | tcp_cwnd_application_limited(sk); | |
1085 | } | |
1086 | } | |
1087 | ||
1088 | /* Returns the portion of skb which can be sent right away without | |
1089 | * introducing MSS oddities to segment boundaries. In rare cases where | |
1090 | * mss_now != mss_cache, we will request caller to create a small skb | |
1091 | * per input skb which could be mostly avoided here (if desired). | |
1092 | * | |
1093 | * We explicitly want to create a request for splitting write queue tail | |
1094 | * to a small skb for Nagle purposes while avoiding unnecessary modulos, | |
1095 | * thus all the complexity (cwnd_len is always MSS multiple which we | |
1096 | * return whenever allowed by the other factors). Basically we need the | |
1097 | * modulo only when the receiver window alone is the limiting factor or | |
1098 | * when we would be allowed to send the split-due-to-Nagle skb fully. | |
1099 | */ | |
1100 | static unsigned int tcp_mss_split_point(struct sock *sk, struct sk_buff *skb, | |
1101 | unsigned int mss_now, unsigned int cwnd) | |
1102 | { | |
1103 | struct tcp_sock *tp = tcp_sk(sk); | |
1104 | u32 needed, window, cwnd_len; | |
1105 | ||
1106 | window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; | |
1107 | cwnd_len = mss_now * cwnd; | |
1108 | ||
1109 | if (likely(cwnd_len <= window && skb != tcp_write_queue_tail(sk))) | |
1110 | return cwnd_len; | |
1111 | ||
1112 | needed = min(skb->len, window); | |
1113 | ||
1114 | if (cwnd_len <= needed) | |
1115 | return cwnd_len; | |
1116 | ||
1117 | return needed - needed % mss_now; | |
1118 | } | |
1119 | ||
1120 | /* Can at least one segment of SKB be sent right now, according to the | |
1121 | * congestion window rules? If so, return how many segments are allowed. | |
1122 | */ | |
1123 | static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, | |
1124 | struct sk_buff *skb) | |
1125 | { | |
1126 | u32 in_flight, cwnd; | |
1127 | ||
1128 | /* Don't be strict about the congestion window for the final FIN. */ | |
1129 | if ((TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) && | |
1130 | tcp_skb_pcount(skb) == 1) | |
1131 | return 1; | |
1132 | ||
1133 | in_flight = tcp_packets_in_flight(tp); | |
1134 | cwnd = tp->snd_cwnd; | |
1135 | if (in_flight < cwnd) | |
1136 | return (cwnd - in_flight); | |
1137 | ||
1138 | return 0; | |
1139 | } | |
1140 | ||
1141 | /* This must be invoked the first time we consider transmitting | |
1142 | * SKB onto the wire. | |
1143 | */ | |
1144 | static int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb, | |
1145 | unsigned int mss_now) | |
1146 | { | |
1147 | int tso_segs = tcp_skb_pcount(skb); | |
1148 | ||
1149 | if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { | |
1150 | tcp_set_skb_tso_segs(sk, skb, mss_now); | |
1151 | tso_segs = tcp_skb_pcount(skb); | |
1152 | } | |
1153 | return tso_segs; | |
1154 | } | |
1155 | ||
1156 | static inline int tcp_minshall_check(const struct tcp_sock *tp) | |
1157 | { | |
1158 | return after(tp->snd_sml,tp->snd_una) && | |
1159 | !after(tp->snd_sml, tp->snd_nxt); | |
1160 | } | |
1161 | ||
1162 | /* Return 0, if packet can be sent now without violation Nagle's rules: | |
1163 | * 1. It is full sized. | |
1164 | * 2. Or it contains FIN. (already checked by caller) | |
1165 | * 3. Or TCP_NODELAY was set. | |
1166 | * 4. Or TCP_CORK is not set, and all sent packets are ACKed. | |
1167 | * With Minshall's modification: all sent small packets are ACKed. | |
1168 | */ | |
1169 | static inline int tcp_nagle_check(const struct tcp_sock *tp, | |
1170 | const struct sk_buff *skb, | |
1171 | unsigned mss_now, int nonagle) | |
1172 | { | |
1173 | return (skb->len < mss_now && | |
1174 | ((nonagle & TCP_NAGLE_CORK) || | |
1175 | (!nonagle && tp->packets_out && tcp_minshall_check(tp)))); | |
1176 | } | |
1177 | ||
1178 | /* Return non-zero if the Nagle test allows this packet to be | |
1179 | * sent now. | |
1180 | */ | |
1181 | static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb, | |
1182 | unsigned int cur_mss, int nonagle) | |
1183 | { | |
1184 | /* Nagle rule does not apply to frames, which sit in the middle of the | |
1185 | * write_queue (they have no chances to get new data). | |
1186 | * | |
1187 | * This is implemented in the callers, where they modify the 'nonagle' | |
1188 | * argument based upon the location of SKB in the send queue. | |
1189 | */ | |
1190 | if (nonagle & TCP_NAGLE_PUSH) | |
1191 | return 1; | |
1192 | ||
1193 | /* Don't use the nagle rule for urgent data (or for the final FIN). | |
1194 | * Nagle can be ignored during F-RTO too (see RFC4138). | |
1195 | */ | |
1196 | if (tp->urg_mode || (tp->frto_counter == 2) || | |
1197 | (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)) | |
1198 | return 1; | |
1199 | ||
1200 | if (!tcp_nagle_check(tp, skb, cur_mss, nonagle)) | |
1201 | return 1; | |
1202 | ||
1203 | return 0; | |
1204 | } | |
1205 | ||
1206 | /* Does at least the first segment of SKB fit into the send window? */ | |
1207 | static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, | |
1208 | unsigned int cur_mss) | |
1209 | { | |
1210 | u32 end_seq = TCP_SKB_CB(skb)->end_seq; | |
1211 | ||
1212 | if (skb->len > cur_mss) | |
1213 | end_seq = TCP_SKB_CB(skb)->seq + cur_mss; | |
1214 | ||
1215 | return !after(end_seq, tcp_wnd_end(tp)); | |
1216 | } | |
1217 | ||
1218 | /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) | |
1219 | * should be put on the wire right now. If so, it returns the number of | |
1220 | * packets allowed by the congestion window. | |
1221 | */ | |
1222 | static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb, | |
1223 | unsigned int cur_mss, int nonagle) | |
1224 | { | |
1225 | struct tcp_sock *tp = tcp_sk(sk); | |
1226 | unsigned int cwnd_quota; | |
1227 | ||
1228 | tcp_init_tso_segs(sk, skb, cur_mss); | |
1229 | ||
1230 | if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) | |
1231 | return 0; | |
1232 | ||
1233 | cwnd_quota = tcp_cwnd_test(tp, skb); | |
1234 | if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) | |
1235 | cwnd_quota = 0; | |
1236 | ||
1237 | return cwnd_quota; | |
1238 | } | |
1239 | ||
1240 | int tcp_may_send_now(struct sock *sk) | |
1241 | { | |
1242 | struct tcp_sock *tp = tcp_sk(sk); | |
1243 | struct sk_buff *skb = tcp_send_head(sk); | |
1244 | ||
1245 | return (skb && | |
1246 | tcp_snd_test(sk, skb, tcp_current_mss(sk, 1), | |
1247 | (tcp_skb_is_last(sk, skb) ? | |
1248 | tp->nonagle : TCP_NAGLE_PUSH))); | |
1249 | } | |
1250 | ||
1251 | /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet | |
1252 | * which is put after SKB on the list. It is very much like | |
1253 | * tcp_fragment() except that it may make several kinds of assumptions | |
1254 | * in order to speed up the splitting operation. In particular, we | |
1255 | * know that all the data is in scatter-gather pages, and that the | |
1256 | * packet has never been sent out before (and thus is not cloned). | |
1257 | */ | |
1258 | static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, | |
1259 | unsigned int mss_now) | |
1260 | { | |
1261 | struct sk_buff *buff; | |
1262 | int nlen = skb->len - len; | |
1263 | u16 flags; | |
1264 | ||
1265 | /* All of a TSO frame must be composed of paged data. */ | |
1266 | if (skb->len != skb->data_len) | |
1267 | return tcp_fragment(sk, skb, len, mss_now); | |
1268 | ||
1269 | buff = sk_stream_alloc_skb(sk, 0, GFP_ATOMIC); | |
1270 | if (unlikely(buff == NULL)) | |
1271 | return -ENOMEM; | |
1272 | ||
1273 | sk->sk_wmem_queued += buff->truesize; | |
1274 | sk_mem_charge(sk, buff->truesize); | |
1275 | buff->truesize += nlen; | |
1276 | skb->truesize -= nlen; | |
1277 | ||
1278 | /* Correct the sequence numbers. */ | |
1279 | TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; | |
1280 | TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; | |
1281 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; | |
1282 | ||
1283 | /* PSH and FIN should only be set in the second packet. */ | |
1284 | flags = TCP_SKB_CB(skb)->flags; | |
1285 | TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH); | |
1286 | TCP_SKB_CB(buff)->flags = flags; | |
1287 | ||
1288 | /* This packet was never sent out yet, so no SACK bits. */ | |
1289 | TCP_SKB_CB(buff)->sacked = 0; | |
1290 | ||
1291 | buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; | |
1292 | skb_split(skb, buff, len); | |
1293 | ||
1294 | /* Fix up tso_factor for both original and new SKB. */ | |
1295 | tcp_set_skb_tso_segs(sk, skb, mss_now); | |
1296 | tcp_set_skb_tso_segs(sk, buff, mss_now); | |
1297 | ||
1298 | /* Link BUFF into the send queue. */ | |
1299 | skb_header_release(buff); | |
1300 | tcp_insert_write_queue_after(skb, buff, sk); | |
1301 | ||
1302 | return 0; | |
1303 | } | |
1304 | ||
1305 | /* Try to defer sending, if possible, in order to minimize the amount | |
1306 | * of TSO splitting we do. View it as a kind of TSO Nagle test. | |
1307 | * | |
1308 | * This algorithm is from John Heffner. | |
1309 | */ | |
1310 | static int tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb) | |
1311 | { | |
1312 | struct tcp_sock *tp = tcp_sk(sk); | |
1313 | const struct inet_connection_sock *icsk = inet_csk(sk); | |
1314 | u32 send_win, cong_win, limit, in_flight; | |
1315 | ||
1316 | if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) | |
1317 | goto send_now; | |
1318 | ||
1319 | if (icsk->icsk_ca_state != TCP_CA_Open) | |
1320 | goto send_now; | |
1321 | ||
1322 | /* Defer for less than two clock ticks. */ | |
1323 | if (tp->tso_deferred && | |
1324 | ((jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1) | |
1325 | goto send_now; | |
1326 | ||
1327 | in_flight = tcp_packets_in_flight(tp); | |
1328 | ||
1329 | BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); | |
1330 | ||
1331 | send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; | |
1332 | ||
1333 | /* From in_flight test above, we know that cwnd > in_flight. */ | |
1334 | cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; | |
1335 | ||
1336 | limit = min(send_win, cong_win); | |
1337 | ||
1338 | /* If a full-sized TSO skb can be sent, do it. */ | |
1339 | if (limit >= sk->sk_gso_max_size) | |
1340 | goto send_now; | |
1341 | ||
1342 | if (sysctl_tcp_tso_win_divisor) { | |
1343 | u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); | |
1344 | ||
1345 | /* If at least some fraction of a window is available, | |
1346 | * just use it. | |
1347 | */ | |
1348 | chunk /= sysctl_tcp_tso_win_divisor; | |
1349 | if (limit >= chunk) | |
1350 | goto send_now; | |
1351 | } else { | |
1352 | /* Different approach, try not to defer past a single | |
1353 | * ACK. Receiver should ACK every other full sized | |
1354 | * frame, so if we have space for more than 3 frames | |
1355 | * then send now. | |
1356 | */ | |
1357 | if (limit > tcp_max_burst(tp) * tp->mss_cache) | |
1358 | goto send_now; | |
1359 | } | |
1360 | ||
1361 | /* Ok, it looks like it is advisable to defer. */ | |
1362 | tp->tso_deferred = 1 | (jiffies << 1); | |
1363 | ||
1364 | return 1; | |
1365 | ||
1366 | send_now: | |
1367 | tp->tso_deferred = 0; | |
1368 | return 0; | |
1369 | } | |
1370 | ||
1371 | /* Create a new MTU probe if we are ready. | |
1372 | * Returns 0 if we should wait to probe (no cwnd available), | |
1373 | * 1 if a probe was sent, | |
1374 | * -1 otherwise | |
1375 | */ | |
1376 | static int tcp_mtu_probe(struct sock *sk) | |
1377 | { | |
1378 | struct tcp_sock *tp = tcp_sk(sk); | |
1379 | struct inet_connection_sock *icsk = inet_csk(sk); | |
1380 | struct sk_buff *skb, *nskb, *next; | |
1381 | int len; | |
1382 | int probe_size; | |
1383 | int size_needed; | |
1384 | int copy; | |
1385 | int mss_now; | |
1386 | ||
1387 | /* Not currently probing/verifying, | |
1388 | * not in recovery, | |
1389 | * have enough cwnd, and | |
1390 | * not SACKing (the variable headers throw things off) */ | |
1391 | if (!icsk->icsk_mtup.enabled || | |
1392 | icsk->icsk_mtup.probe_size || | |
1393 | inet_csk(sk)->icsk_ca_state != TCP_CA_Open || | |
1394 | tp->snd_cwnd < 11 || | |
1395 | tp->rx_opt.eff_sacks) | |
1396 | return -1; | |
1397 | ||
1398 | /* Very simple search strategy: just double the MSS. */ | |
1399 | mss_now = tcp_current_mss(sk, 0); | |
1400 | probe_size = 2 * tp->mss_cache; | |
1401 | size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; | |
1402 | if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { | |
1403 | /* TODO: set timer for probe_converge_event */ | |
1404 | return -1; | |
1405 | } | |
1406 | ||
1407 | /* Have enough data in the send queue to probe? */ | |
1408 | if (tp->write_seq - tp->snd_nxt < size_needed) | |
1409 | return -1; | |
1410 | ||
1411 | if (tp->snd_wnd < size_needed) | |
1412 | return -1; | |
1413 | if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) | |
1414 | return 0; | |
1415 | ||
1416 | /* Do we need to wait to drain cwnd? With none in flight, don't stall */ | |
1417 | if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { | |
1418 | if (!tcp_packets_in_flight(tp)) | |
1419 | return -1; | |
1420 | else | |
1421 | return 0; | |
1422 | } | |
1423 | ||
1424 | /* We're allowed to probe. Build it now. */ | |
1425 | if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) | |
1426 | return -1; | |
1427 | sk->sk_wmem_queued += nskb->truesize; | |
1428 | sk_mem_charge(sk, nskb->truesize); | |
1429 | ||
1430 | skb = tcp_send_head(sk); | |
1431 | ||
1432 | TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; | |
1433 | TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; | |
1434 | TCP_SKB_CB(nskb)->flags = TCPCB_FLAG_ACK; | |
1435 | TCP_SKB_CB(nskb)->sacked = 0; | |
1436 | nskb->csum = 0; | |
1437 | nskb->ip_summed = skb->ip_summed; | |
1438 | ||
1439 | tcp_insert_write_queue_before(nskb, skb, sk); | |
1440 | ||
1441 | len = 0; | |
1442 | tcp_for_write_queue_from_safe(skb, next, sk) { | |
1443 | copy = min_t(int, skb->len, probe_size - len); | |
1444 | if (nskb->ip_summed) | |
1445 | skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); | |
1446 | else | |
1447 | nskb->csum = skb_copy_and_csum_bits(skb, 0, | |
1448 | skb_put(nskb, copy), | |
1449 | copy, nskb->csum); | |
1450 | ||
1451 | if (skb->len <= copy) { | |
1452 | /* We've eaten all the data from this skb. | |
1453 | * Throw it away. */ | |
1454 | TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags; | |
1455 | tcp_unlink_write_queue(skb, sk); | |
1456 | sk_wmem_free_skb(sk, skb); | |
1457 | } else { | |
1458 | TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags & | |
1459 | ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); | |
1460 | if (!skb_shinfo(skb)->nr_frags) { | |
1461 | skb_pull(skb, copy); | |
1462 | if (skb->ip_summed != CHECKSUM_PARTIAL) | |
1463 | skb->csum = csum_partial(skb->data, | |
1464 | skb->len, 0); | |
1465 | } else { | |
1466 | __pskb_trim_head(skb, copy); | |
1467 | tcp_set_skb_tso_segs(sk, skb, mss_now); | |
1468 | } | |
1469 | TCP_SKB_CB(skb)->seq += copy; | |
1470 | } | |
1471 | ||
1472 | len += copy; | |
1473 | ||
1474 | if (len >= probe_size) | |
1475 | break; | |
1476 | } | |
1477 | tcp_init_tso_segs(sk, nskb, nskb->len); | |
1478 | ||
1479 | /* We're ready to send. If this fails, the probe will | |
1480 | * be resegmented into mss-sized pieces by tcp_write_xmit(). */ | |
1481 | TCP_SKB_CB(nskb)->when = tcp_time_stamp; | |
1482 | if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { | |
1483 | /* Decrement cwnd here because we are sending | |
1484 | * effectively two packets. */ | |
1485 | tp->snd_cwnd--; | |
1486 | tcp_event_new_data_sent(sk, nskb); | |
1487 | ||
1488 | icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); | |
1489 | tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; | |
1490 | tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; | |
1491 | ||
1492 | return 1; | |
1493 | } | |
1494 | ||
1495 | return -1; | |
1496 | } | |
1497 | ||
1498 | /* This routine writes packets to the network. It advances the | |
1499 | * send_head. This happens as incoming acks open up the remote | |
1500 | * window for us. | |
1501 | * | |
1502 | * Returns 1, if no segments are in flight and we have queued segments, but | |
1503 | * cannot send anything now because of SWS or another problem. | |
1504 | */ | |
1505 | static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle) | |
1506 | { | |
1507 | struct tcp_sock *tp = tcp_sk(sk); | |
1508 | struct sk_buff *skb; | |
1509 | unsigned int tso_segs, sent_pkts; | |
1510 | int cwnd_quota; | |
1511 | int result; | |
1512 | ||
1513 | /* If we are closed, the bytes will have to remain here. | |
1514 | * In time closedown will finish, we empty the write queue and all | |
1515 | * will be happy. | |
1516 | */ | |
1517 | if (unlikely(sk->sk_state == TCP_CLOSE)) | |
1518 | return 0; | |
1519 | ||
1520 | sent_pkts = 0; | |
1521 | ||
1522 | /* Do MTU probing. */ | |
1523 | if ((result = tcp_mtu_probe(sk)) == 0) { | |
1524 | return 0; | |
1525 | } else if (result > 0) { | |
1526 | sent_pkts = 1; | |
1527 | } | |
1528 | ||
1529 | while ((skb = tcp_send_head(sk))) { | |
1530 | unsigned int limit; | |
1531 | ||
1532 | tso_segs = tcp_init_tso_segs(sk, skb, mss_now); | |
1533 | BUG_ON(!tso_segs); | |
1534 | ||
1535 | cwnd_quota = tcp_cwnd_test(tp, skb); | |
1536 | if (!cwnd_quota) | |
1537 | break; | |
1538 | ||
1539 | if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) | |
1540 | break; | |
1541 | ||
1542 | if (tso_segs == 1) { | |
1543 | if (unlikely(!tcp_nagle_test(tp, skb, mss_now, | |
1544 | (tcp_skb_is_last(sk, skb) ? | |
1545 | nonagle : TCP_NAGLE_PUSH)))) | |
1546 | break; | |
1547 | } else { | |
1548 | if (tcp_tso_should_defer(sk, skb)) | |
1549 | break; | |
1550 | } | |
1551 | ||
1552 | limit = mss_now; | |
1553 | if (tso_segs > 1) | |
1554 | limit = tcp_mss_split_point(sk, skb, mss_now, | |
1555 | cwnd_quota); | |
1556 | ||
1557 | if (skb->len > limit && | |
1558 | unlikely(tso_fragment(sk, skb, limit, mss_now))) | |
1559 | break; | |
1560 | ||
1561 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | |
1562 | ||
1563 | if (unlikely(tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC))) | |
1564 | break; | |
1565 | ||
1566 | /* Advance the send_head. This one is sent out. | |
1567 | * This call will increment packets_out. | |
1568 | */ | |
1569 | tcp_event_new_data_sent(sk, skb); | |
1570 | ||
1571 | tcp_minshall_update(tp, mss_now, skb); | |
1572 | sent_pkts++; | |
1573 | } | |
1574 | ||
1575 | if (likely(sent_pkts)) { | |
1576 | tcp_cwnd_validate(sk); | |
1577 | return 0; | |
1578 | } | |
1579 | return !tp->packets_out && tcp_send_head(sk); | |
1580 | } | |
1581 | ||
1582 | /* Push out any pending frames which were held back due to | |
1583 | * TCP_CORK or attempt at coalescing tiny packets. | |
1584 | * The socket must be locked by the caller. | |
1585 | */ | |
1586 | void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, | |
1587 | int nonagle) | |
1588 | { | |
1589 | struct sk_buff *skb = tcp_send_head(sk); | |
1590 | ||
1591 | if (skb) { | |
1592 | if (tcp_write_xmit(sk, cur_mss, nonagle)) | |
1593 | tcp_check_probe_timer(sk); | |
1594 | } | |
1595 | } | |
1596 | ||
1597 | /* Send _single_ skb sitting at the send head. This function requires | |
1598 | * true push pending frames to setup probe timer etc. | |
1599 | */ | |
1600 | void tcp_push_one(struct sock *sk, unsigned int mss_now) | |
1601 | { | |
1602 | struct sk_buff *skb = tcp_send_head(sk); | |
1603 | unsigned int tso_segs, cwnd_quota; | |
1604 | ||
1605 | BUG_ON(!skb || skb->len < mss_now); | |
1606 | ||
1607 | tso_segs = tcp_init_tso_segs(sk, skb, mss_now); | |
1608 | cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH); | |
1609 | ||
1610 | if (likely(cwnd_quota)) { | |
1611 | unsigned int limit; | |
1612 | ||
1613 | BUG_ON(!tso_segs); | |
1614 | ||
1615 | limit = mss_now; | |
1616 | if (tso_segs > 1) | |
1617 | limit = tcp_mss_split_point(sk, skb, mss_now, | |
1618 | cwnd_quota); | |
1619 | ||
1620 | if (skb->len > limit && | |
1621 | unlikely(tso_fragment(sk, skb, limit, mss_now))) | |
1622 | return; | |
1623 | ||
1624 | /* Send it out now. */ | |
1625 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | |
1626 | ||
1627 | if (likely(!tcp_transmit_skb(sk, skb, 1, sk->sk_allocation))) { | |
1628 | tcp_event_new_data_sent(sk, skb); | |
1629 | tcp_cwnd_validate(sk); | |
1630 | return; | |
1631 | } | |
1632 | } | |
1633 | } | |
1634 | ||
1635 | /* This function returns the amount that we can raise the | |
1636 | * usable window based on the following constraints | |
1637 | * | |
1638 | * 1. The window can never be shrunk once it is offered (RFC 793) | |
1639 | * 2. We limit memory per socket | |
1640 | * | |
1641 | * RFC 1122: | |
1642 | * "the suggested [SWS] avoidance algorithm for the receiver is to keep | |
1643 | * RECV.NEXT + RCV.WIN fixed until: | |
1644 | * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" | |
1645 | * | |
1646 | * i.e. don't raise the right edge of the window until you can raise | |
1647 | * it at least MSS bytes. | |
1648 | * | |
1649 | * Unfortunately, the recommended algorithm breaks header prediction, | |
1650 | * since header prediction assumes th->window stays fixed. | |
1651 | * | |
1652 | * Strictly speaking, keeping th->window fixed violates the receiver | |
1653 | * side SWS prevention criteria. The problem is that under this rule | |
1654 | * a stream of single byte packets will cause the right side of the | |
1655 | * window to always advance by a single byte. | |
1656 | * | |
1657 | * Of course, if the sender implements sender side SWS prevention | |
1658 | * then this will not be a problem. | |
1659 | * | |
1660 | * BSD seems to make the following compromise: | |
1661 | * | |
1662 | * If the free space is less than the 1/4 of the maximum | |
1663 | * space available and the free space is less than 1/2 mss, | |
1664 | * then set the window to 0. | |
1665 | * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] | |
1666 | * Otherwise, just prevent the window from shrinking | |
1667 | * and from being larger than the largest representable value. | |
1668 | * | |
1669 | * This prevents incremental opening of the window in the regime | |
1670 | * where TCP is limited by the speed of the reader side taking | |
1671 | * data out of the TCP receive queue. It does nothing about | |
1672 | * those cases where the window is constrained on the sender side | |
1673 | * because the pipeline is full. | |
1674 | * | |
1675 | * BSD also seems to "accidentally" limit itself to windows that are a | |
1676 | * multiple of MSS, at least until the free space gets quite small. | |
1677 | * This would appear to be a side effect of the mbuf implementation. | |
1678 | * Combining these two algorithms results in the observed behavior | |
1679 | * of having a fixed window size at almost all times. | |
1680 | * | |
1681 | * Below we obtain similar behavior by forcing the offered window to | |
1682 | * a multiple of the mss when it is feasible to do so. | |
1683 | * | |
1684 | * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. | |
1685 | * Regular options like TIMESTAMP are taken into account. | |
1686 | */ | |
1687 | u32 __tcp_select_window(struct sock *sk) | |
1688 | { | |
1689 | struct inet_connection_sock *icsk = inet_csk(sk); | |
1690 | struct tcp_sock *tp = tcp_sk(sk); | |
1691 | /* MSS for the peer's data. Previous versions used mss_clamp | |
1692 | * here. I don't know if the value based on our guesses | |
1693 | * of peer's MSS is better for the performance. It's more correct | |
1694 | * but may be worse for the performance because of rcv_mss | |
1695 | * fluctuations. --SAW 1998/11/1 | |
1696 | */ | |
1697 | int mss = icsk->icsk_ack.rcv_mss; | |
1698 | int free_space = tcp_space(sk); | |
1699 | int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); | |
1700 | int window; | |
1701 | ||
1702 | if (mss > full_space) | |
1703 | mss = full_space; | |
1704 | ||
1705 | if (free_space < (full_space >> 1)) { | |
1706 | icsk->icsk_ack.quick = 0; | |
1707 | ||
1708 | if (tcp_memory_pressure) | |
1709 | tp->rcv_ssthresh = min(tp->rcv_ssthresh, | |
1710 | 4U * tp->advmss); | |
1711 | ||
1712 | if (free_space < mss) | |
1713 | return 0; | |
1714 | } | |
1715 | ||
1716 | if (free_space > tp->rcv_ssthresh) | |
1717 | free_space = tp->rcv_ssthresh; | |
1718 | ||
1719 | /* Don't do rounding if we are using window scaling, since the | |
1720 | * scaled window will not line up with the MSS boundary anyway. | |
1721 | */ | |
1722 | window = tp->rcv_wnd; | |
1723 | if (tp->rx_opt.rcv_wscale) { | |
1724 | window = free_space; | |
1725 | ||
1726 | /* Advertise enough space so that it won't get scaled away. | |
1727 | * Import case: prevent zero window announcement if | |
1728 | * 1<<rcv_wscale > mss. | |
1729 | */ | |
1730 | if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) | |
1731 | window = (((window >> tp->rx_opt.rcv_wscale) + 1) | |
1732 | << tp->rx_opt.rcv_wscale); | |
1733 | } else { | |
1734 | /* Get the largest window that is a nice multiple of mss. | |
1735 | * Window clamp already applied above. | |
1736 | * If our current window offering is within 1 mss of the | |
1737 | * free space we just keep it. This prevents the divide | |
1738 | * and multiply from happening most of the time. | |
1739 | * We also don't do any window rounding when the free space | |
1740 | * is too small. | |
1741 | */ | |
1742 | if (window <= free_space - mss || window > free_space) | |
1743 | window = (free_space / mss) * mss; | |
1744 | else if (mss == full_space && | |
1745 | free_space > window + (full_space >> 1)) | |
1746 | window = free_space; | |
1747 | } | |
1748 | ||
1749 | return window; | |
1750 | } | |
1751 | ||
1752 | /* Attempt to collapse two adjacent SKB's during retransmission. */ | |
1753 | static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, | |
1754 | int mss_now) | |
1755 | { | |
1756 | struct tcp_sock *tp = tcp_sk(sk); | |
1757 | struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); | |
1758 | int skb_size, next_skb_size; | |
1759 | u16 flags; | |
1760 | ||
1761 | /* The first test we must make is that neither of these two | |
1762 | * SKB's are still referenced by someone else. | |
1763 | */ | |
1764 | if (skb_cloned(skb) || skb_cloned(next_skb)) | |
1765 | return; | |
1766 | ||
1767 | skb_size = skb->len; | |
1768 | next_skb_size = next_skb->len; | |
1769 | flags = TCP_SKB_CB(skb)->flags; | |
1770 | ||
1771 | /* Also punt if next skb has been SACK'd. */ | |
1772 | if (TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED) | |
1773 | return; | |
1774 | ||
1775 | /* Next skb is out of window. */ | |
1776 | if (after(TCP_SKB_CB(next_skb)->end_seq, tcp_wnd_end(tp))) | |
1777 | return; | |
1778 | ||
1779 | /* Punt if not enough space exists in the first SKB for | |
1780 | * the data in the second, or the total combined payload | |
1781 | * would exceed the MSS. | |
1782 | */ | |
1783 | if ((next_skb_size > skb_tailroom(skb)) || | |
1784 | ((skb_size + next_skb_size) > mss_now)) | |
1785 | return; | |
1786 | ||
1787 | BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); | |
1788 | ||
1789 | tcp_highest_sack_combine(sk, next_skb, skb); | |
1790 | ||
1791 | /* Ok. We will be able to collapse the packet. */ | |
1792 | tcp_unlink_write_queue(next_skb, sk); | |
1793 | ||
1794 | skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), | |
1795 | next_skb_size); | |
1796 | ||
1797 | if (next_skb->ip_summed == CHECKSUM_PARTIAL) | |
1798 | skb->ip_summed = CHECKSUM_PARTIAL; | |
1799 | ||
1800 | if (skb->ip_summed != CHECKSUM_PARTIAL) | |
1801 | skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); | |
1802 | ||
1803 | /* Update sequence range on original skb. */ | |
1804 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; | |
1805 | ||
1806 | /* Merge over control information. */ | |
1807 | flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */ | |
1808 | TCP_SKB_CB(skb)->flags = flags; | |
1809 | ||
1810 | /* All done, get rid of second SKB and account for it so | |
1811 | * packet counting does not break. | |
1812 | */ | |
1813 | TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; | |
1814 | if (TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_RETRANS) | |
1815 | tp->retrans_out -= tcp_skb_pcount(next_skb); | |
1816 | if (TCP_SKB_CB(next_skb)->sacked & TCPCB_LOST) | |
1817 | tp->lost_out -= tcp_skb_pcount(next_skb); | |
1818 | /* Reno case is special. Sigh... */ | |
1819 | if (tcp_is_reno(tp) && tp->sacked_out) | |
1820 | tcp_dec_pcount_approx(&tp->sacked_out, next_skb); | |
1821 | ||
1822 | tcp_adjust_fackets_out(sk, next_skb, tcp_skb_pcount(next_skb)); | |
1823 | tp->packets_out -= tcp_skb_pcount(next_skb); | |
1824 | ||
1825 | /* changed transmit queue under us so clear hints */ | |
1826 | tcp_clear_retrans_hints_partial(tp); | |
1827 | if (next_skb == tp->retransmit_skb_hint) | |
1828 | tp->retransmit_skb_hint = skb; | |
1829 | ||
1830 | sk_wmem_free_skb(sk, next_skb); | |
1831 | } | |
1832 | ||
1833 | /* Do a simple retransmit without using the backoff mechanisms in | |
1834 | * tcp_timer. This is used for path mtu discovery. | |
1835 | * The socket is already locked here. | |
1836 | */ | |
1837 | void tcp_simple_retransmit(struct sock *sk) | |
1838 | { | |
1839 | const struct inet_connection_sock *icsk = inet_csk(sk); | |
1840 | struct tcp_sock *tp = tcp_sk(sk); | |
1841 | struct sk_buff *skb; | |
1842 | unsigned int mss = tcp_current_mss(sk, 0); | |
1843 | u32 prior_lost = tp->lost_out; | |
1844 | ||
1845 | tcp_for_write_queue(skb, sk) { | |
1846 | if (skb == tcp_send_head(sk)) | |
1847 | break; | |
1848 | if (skb->len > mss && | |
1849 | !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { | |
1850 | if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { | |
1851 | TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; | |
1852 | tp->retrans_out -= tcp_skb_pcount(skb); | |
1853 | } | |
1854 | tcp_skb_mark_lost_uncond_verify(tp, skb); | |
1855 | } | |
1856 | } | |
1857 | ||
1858 | tcp_clear_retrans_hints_partial(tp); | |
1859 | ||
1860 | if (prior_lost == tp->lost_out) | |
1861 | return; | |
1862 | ||
1863 | if (tcp_is_reno(tp)) | |
1864 | tcp_limit_reno_sacked(tp); | |
1865 | ||
1866 | tcp_verify_left_out(tp); | |
1867 | ||
1868 | /* Don't muck with the congestion window here. | |
1869 | * Reason is that we do not increase amount of _data_ | |
1870 | * in network, but units changed and effective | |
1871 | * cwnd/ssthresh really reduced now. | |
1872 | */ | |
1873 | if (icsk->icsk_ca_state != TCP_CA_Loss) { | |
1874 | tp->high_seq = tp->snd_nxt; | |
1875 | tp->snd_ssthresh = tcp_current_ssthresh(sk); | |
1876 | tp->prior_ssthresh = 0; | |
1877 | tp->undo_marker = 0; | |
1878 | tcp_set_ca_state(sk, TCP_CA_Loss); | |
1879 | } | |
1880 | tcp_xmit_retransmit_queue(sk); | |
1881 | } | |
1882 | ||
1883 | /* This retransmits one SKB. Policy decisions and retransmit queue | |
1884 | * state updates are done by the caller. Returns non-zero if an | |
1885 | * error occurred which prevented the send. | |
1886 | */ | |
1887 | int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) | |
1888 | { | |
1889 | struct tcp_sock *tp = tcp_sk(sk); | |
1890 | struct inet_connection_sock *icsk = inet_csk(sk); | |
1891 | unsigned int cur_mss; | |
1892 | int err; | |
1893 | ||
1894 | /* Inconslusive MTU probe */ | |
1895 | if (icsk->icsk_mtup.probe_size) { | |
1896 | icsk->icsk_mtup.probe_size = 0; | |
1897 | } | |
1898 | ||
1899 | /* Do not sent more than we queued. 1/4 is reserved for possible | |
1900 | * copying overhead: fragmentation, tunneling, mangling etc. | |
1901 | */ | |
1902 | if (atomic_read(&sk->sk_wmem_alloc) > | |
1903 | min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) | |
1904 | return -EAGAIN; | |
1905 | ||
1906 | if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { | |
1907 | if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) | |
1908 | BUG(); | |
1909 | if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) | |
1910 | return -ENOMEM; | |
1911 | } | |
1912 | ||
1913 | if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) | |
1914 | return -EHOSTUNREACH; /* Routing failure or similar. */ | |
1915 | ||
1916 | cur_mss = tcp_current_mss(sk, 0); | |
1917 | ||
1918 | /* If receiver has shrunk his window, and skb is out of | |
1919 | * new window, do not retransmit it. The exception is the | |
1920 | * case, when window is shrunk to zero. In this case | |
1921 | * our retransmit serves as a zero window probe. | |
1922 | */ | |
1923 | if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) | |
1924 | && TCP_SKB_CB(skb)->seq != tp->snd_una) | |
1925 | return -EAGAIN; | |
1926 | ||
1927 | if (skb->len > cur_mss) { | |
1928 | if (tcp_fragment(sk, skb, cur_mss, cur_mss)) | |
1929 | return -ENOMEM; /* We'll try again later. */ | |
1930 | } | |
1931 | ||
1932 | /* Collapse two adjacent packets if worthwhile and we can. */ | |
1933 | if (!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) && | |
1934 | (skb->len < (cur_mss >> 1)) && | |
1935 | (!tcp_skb_is_last(sk, skb)) && | |
1936 | (tcp_write_queue_next(sk, skb) != tcp_send_head(sk)) && | |
1937 | (skb_shinfo(skb)->nr_frags == 0 && | |
1938 | skb_shinfo(tcp_write_queue_next(sk, skb))->nr_frags == 0) && | |
1939 | (tcp_skb_pcount(skb) == 1 && | |
1940 | tcp_skb_pcount(tcp_write_queue_next(sk, skb)) == 1) && | |
1941 | (sysctl_tcp_retrans_collapse != 0)) | |
1942 | tcp_retrans_try_collapse(sk, skb, cur_mss); | |
1943 | ||
1944 | /* Some Solaris stacks overoptimize and ignore the FIN on a | |
1945 | * retransmit when old data is attached. So strip it off | |
1946 | * since it is cheap to do so and saves bytes on the network. | |
1947 | */ | |
1948 | if (skb->len > 0 && | |
1949 | (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) && | |
1950 | tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { | |
1951 | if (!pskb_trim(skb, 0)) { | |
1952 | /* Reuse, even though it does some unnecessary work */ | |
1953 | tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1, | |
1954 | TCP_SKB_CB(skb)->flags); | |
1955 | skb->ip_summed = CHECKSUM_NONE; | |
1956 | } | |
1957 | } | |
1958 | ||
1959 | /* Make a copy, if the first transmission SKB clone we made | |
1960 | * is still in somebody's hands, else make a clone. | |
1961 | */ | |
1962 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | |
1963 | ||
1964 | err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); | |
1965 | ||
1966 | if (err == 0) { | |
1967 | /* Update global TCP statistics. */ | |
1968 | TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); | |
1969 | ||
1970 | tp->total_retrans++; | |
1971 | ||
1972 | #if FASTRETRANS_DEBUG > 0 | |
1973 | if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { | |
1974 | if (net_ratelimit()) | |
1975 | printk(KERN_DEBUG "retrans_out leaked.\n"); | |
1976 | } | |
1977 | #endif | |
1978 | if (!tp->retrans_out) | |
1979 | tp->lost_retrans_low = tp->snd_nxt; | |
1980 | TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; | |
1981 | tp->retrans_out += tcp_skb_pcount(skb); | |
1982 | ||
1983 | /* Save stamp of the first retransmit. */ | |
1984 | if (!tp->retrans_stamp) | |
1985 | tp->retrans_stamp = TCP_SKB_CB(skb)->when; | |
1986 | ||
1987 | tp->undo_retrans++; | |
1988 | ||
1989 | /* snd_nxt is stored to detect loss of retransmitted segment, | |
1990 | * see tcp_input.c tcp_sacktag_write_queue(). | |
1991 | */ | |
1992 | TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; | |
1993 | } | |
1994 | return err; | |
1995 | } | |
1996 | ||
1997 | static int tcp_can_forward_retransmit(struct sock *sk) | |
1998 | { | |
1999 | const struct inet_connection_sock *icsk = inet_csk(sk); | |
2000 | struct tcp_sock *tp = tcp_sk(sk); | |
2001 | ||
2002 | /* Forward retransmissions are possible only during Recovery. */ | |
2003 | if (icsk->icsk_ca_state != TCP_CA_Recovery) | |
2004 | return 0; | |
2005 | ||
2006 | /* No forward retransmissions in Reno are possible. */ | |
2007 | if (tcp_is_reno(tp)) | |
2008 | return 0; | |
2009 | ||
2010 | /* Yeah, we have to make difficult choice between forward transmission | |
2011 | * and retransmission... Both ways have their merits... | |
2012 | * | |
2013 | * For now we do not retransmit anything, while we have some new | |
2014 | * segments to send. In the other cases, follow rule 3 for | |
2015 | * NextSeg() specified in RFC3517. | |
2016 | */ | |
2017 | ||
2018 | if (tcp_may_send_now(sk)) | |
2019 | return 0; | |
2020 | ||
2021 | return 1; | |
2022 | } | |
2023 | ||
2024 | /* This gets called after a retransmit timeout, and the initially | |
2025 | * retransmitted data is acknowledged. It tries to continue | |
2026 | * resending the rest of the retransmit queue, until either | |
2027 | * we've sent it all or the congestion window limit is reached. | |
2028 | * If doing SACK, the first ACK which comes back for a timeout | |
2029 | * based retransmit packet might feed us FACK information again. | |
2030 | * If so, we use it to avoid unnecessarily retransmissions. | |
2031 | */ | |
2032 | void tcp_xmit_retransmit_queue(struct sock *sk) | |
2033 | { | |
2034 | const struct inet_connection_sock *icsk = inet_csk(sk); | |
2035 | struct tcp_sock *tp = tcp_sk(sk); | |
2036 | struct sk_buff *skb; | |
2037 | struct sk_buff *hole = NULL; | |
2038 | u32 last_lost; | |
2039 | int mib_idx; | |
2040 | int fwd_rexmitting = 0; | |
2041 | ||
2042 | if (!tp->lost_out) | |
2043 | tp->retransmit_high = tp->snd_una; | |
2044 | ||
2045 | if (tp->retransmit_skb_hint) { | |
2046 | skb = tp->retransmit_skb_hint; | |
2047 | last_lost = TCP_SKB_CB(skb)->end_seq; | |
2048 | if (after(last_lost, tp->retransmit_high)) | |
2049 | last_lost = tp->retransmit_high; | |
2050 | } else { | |
2051 | skb = tcp_write_queue_head(sk); | |
2052 | last_lost = tp->snd_una; | |
2053 | } | |
2054 | ||
2055 | /* First pass: retransmit lost packets. */ | |
2056 | tcp_for_write_queue_from(skb, sk) { | |
2057 | __u8 sacked = TCP_SKB_CB(skb)->sacked; | |
2058 | ||
2059 | if (skb == tcp_send_head(sk)) | |
2060 | break; | |
2061 | /* we could do better than to assign each time */ | |
2062 | if (hole == NULL) | |
2063 | tp->retransmit_skb_hint = skb; | |
2064 | ||
2065 | /* Assume this retransmit will generate | |
2066 | * only one packet for congestion window | |
2067 | * calculation purposes. This works because | |
2068 | * tcp_retransmit_skb() will chop up the | |
2069 | * packet to be MSS sized and all the | |
2070 | * packet counting works out. | |
2071 | */ | |
2072 | if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) | |
2073 | return; | |
2074 | ||
2075 | if (fwd_rexmitting) { | |
2076 | begin_fwd: | |
2077 | if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) | |
2078 | break; | |
2079 | mib_idx = LINUX_MIB_TCPFORWARDRETRANS; | |
2080 | ||
2081 | } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { | |
2082 | tp->retransmit_high = last_lost; | |
2083 | if (!tcp_can_forward_retransmit(sk)) | |
2084 | break; | |
2085 | /* Backtrack if necessary to non-L'ed skb */ | |
2086 | if (hole != NULL) { | |
2087 | skb = hole; | |
2088 | hole = NULL; | |
2089 | } | |
2090 | fwd_rexmitting = 1; | |
2091 | goto begin_fwd; | |
2092 | ||
2093 | } else if (!(sacked & TCPCB_LOST)) { | |
2094 | if (hole == NULL && !(sacked & TCPCB_SACKED_RETRANS)) | |
2095 | hole = skb; | |
2096 | continue; | |
2097 | ||
2098 | } else { | |
2099 | last_lost = TCP_SKB_CB(skb)->end_seq; | |
2100 | if (icsk->icsk_ca_state != TCP_CA_Loss) | |
2101 | mib_idx = LINUX_MIB_TCPFASTRETRANS; | |
2102 | else | |
2103 | mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; | |
2104 | } | |
2105 | ||
2106 | if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) | |
2107 | continue; | |
2108 | ||
2109 | if (tcp_retransmit_skb(sk, skb)) | |
2110 | return; | |
2111 | NET_INC_STATS_BH(sock_net(sk), mib_idx); | |
2112 | ||
2113 | if (skb == tcp_write_queue_head(sk)) | |
2114 | inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, | |
2115 | inet_csk(sk)->icsk_rto, | |
2116 | TCP_RTO_MAX); | |
2117 | } | |
2118 | } | |
2119 | ||
2120 | /* Send a fin. The caller locks the socket for us. This cannot be | |
2121 | * allowed to fail queueing a FIN frame under any circumstances. | |
2122 | */ | |
2123 | void tcp_send_fin(struct sock *sk) | |
2124 | { | |
2125 | struct tcp_sock *tp = tcp_sk(sk); | |
2126 | struct sk_buff *skb = tcp_write_queue_tail(sk); | |
2127 | int mss_now; | |
2128 | ||
2129 | /* Optimization, tack on the FIN if we have a queue of | |
2130 | * unsent frames. But be careful about outgoing SACKS | |
2131 | * and IP options. | |
2132 | */ | |
2133 | mss_now = tcp_current_mss(sk, 1); | |
2134 | ||
2135 | if (tcp_send_head(sk) != NULL) { | |
2136 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN; | |
2137 | TCP_SKB_CB(skb)->end_seq++; | |
2138 | tp->write_seq++; | |
2139 | } else { | |
2140 | /* Socket is locked, keep trying until memory is available. */ | |
2141 | for (;;) { | |
2142 | skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL); | |
2143 | if (skb) | |
2144 | break; | |
2145 | yield(); | |
2146 | } | |
2147 | ||
2148 | /* Reserve space for headers and prepare control bits. */ | |
2149 | skb_reserve(skb, MAX_TCP_HEADER); | |
2150 | /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ | |
2151 | tcp_init_nondata_skb(skb, tp->write_seq, | |
2152 | TCPCB_FLAG_ACK | TCPCB_FLAG_FIN); | |
2153 | tcp_queue_skb(sk, skb); | |
2154 | } | |
2155 | __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF); | |
2156 | } | |
2157 | ||
2158 | /* We get here when a process closes a file descriptor (either due to | |
2159 | * an explicit close() or as a byproduct of exit()'ing) and there | |
2160 | * was unread data in the receive queue. This behavior is recommended | |
2161 | * by RFC 2525, section 2.17. -DaveM | |
2162 | */ | |
2163 | void tcp_send_active_reset(struct sock *sk, gfp_t priority) | |
2164 | { | |
2165 | struct sk_buff *skb; | |
2166 | ||
2167 | /* NOTE: No TCP options attached and we never retransmit this. */ | |
2168 | skb = alloc_skb(MAX_TCP_HEADER, priority); | |
2169 | if (!skb) { | |
2170 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); | |
2171 | return; | |
2172 | } | |
2173 | ||
2174 | /* Reserve space for headers and prepare control bits. */ | |
2175 | skb_reserve(skb, MAX_TCP_HEADER); | |
2176 | tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), | |
2177 | TCPCB_FLAG_ACK | TCPCB_FLAG_RST); | |
2178 | /* Send it off. */ | |
2179 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | |
2180 | if (tcp_transmit_skb(sk, skb, 0, priority)) | |
2181 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); | |
2182 | ||
2183 | TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); | |
2184 | } | |
2185 | ||
2186 | /* WARNING: This routine must only be called when we have already sent | |
2187 | * a SYN packet that crossed the incoming SYN that caused this routine | |
2188 | * to get called. If this assumption fails then the initial rcv_wnd | |
2189 | * and rcv_wscale values will not be correct. | |
2190 | */ | |
2191 | int tcp_send_synack(struct sock *sk) | |
2192 | { | |
2193 | struct sk_buff *skb; | |
2194 | ||
2195 | skb = tcp_write_queue_head(sk); | |
2196 | if (skb == NULL || !(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN)) { | |
2197 | printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n"); | |
2198 | return -EFAULT; | |
2199 | } | |
2200 | if (!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_ACK)) { | |
2201 | if (skb_cloned(skb)) { | |
2202 | struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); | |
2203 | if (nskb == NULL) | |
2204 | return -ENOMEM; | |
2205 | tcp_unlink_write_queue(skb, sk); | |
2206 | skb_header_release(nskb); | |
2207 | __tcp_add_write_queue_head(sk, nskb); | |
2208 | sk_wmem_free_skb(sk, skb); | |
2209 | sk->sk_wmem_queued += nskb->truesize; | |
2210 | sk_mem_charge(sk, nskb->truesize); | |
2211 | skb = nskb; | |
2212 | } | |
2213 | ||
2214 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK; | |
2215 | TCP_ECN_send_synack(tcp_sk(sk), skb); | |
2216 | } | |
2217 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | |
2218 | return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); | |
2219 | } | |
2220 | ||
2221 | /* | |
2222 | * Prepare a SYN-ACK. | |
2223 | */ | |
2224 | struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, | |
2225 | struct request_sock *req) | |
2226 | { | |
2227 | struct inet_request_sock *ireq = inet_rsk(req); | |
2228 | struct tcp_sock *tp = tcp_sk(sk); | |
2229 | struct tcphdr *th; | |
2230 | int tcp_header_size; | |
2231 | struct tcp_out_options opts; | |
2232 | struct sk_buff *skb; | |
2233 | struct tcp_md5sig_key *md5; | |
2234 | __u8 *md5_hash_location; | |
2235 | int mss; | |
2236 | ||
2237 | skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC); | |
2238 | if (skb == NULL) | |
2239 | return NULL; | |
2240 | ||
2241 | /* Reserve space for headers. */ | |
2242 | skb_reserve(skb, MAX_TCP_HEADER); | |
2243 | ||
2244 | skb->dst = dst_clone(dst); | |
2245 | ||
2246 | mss = dst_metric(dst, RTAX_ADVMSS); | |
2247 | if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss) | |
2248 | mss = tp->rx_opt.user_mss; | |
2249 | ||
2250 | if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ | |
2251 | __u8 rcv_wscale; | |
2252 | /* Set this up on the first call only */ | |
2253 | req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); | |
2254 | /* tcp_full_space because it is guaranteed to be the first packet */ | |
2255 | tcp_select_initial_window(tcp_full_space(sk), | |
2256 | mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), | |
2257 | &req->rcv_wnd, | |
2258 | &req->window_clamp, | |
2259 | ireq->wscale_ok, | |
2260 | &rcv_wscale); | |
2261 | ireq->rcv_wscale = rcv_wscale; | |
2262 | } | |
2263 | ||
2264 | memset(&opts, 0, sizeof(opts)); | |
2265 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | |
2266 | tcp_header_size = tcp_synack_options(sk, req, mss, | |
2267 | skb, &opts, &md5) + | |
2268 | sizeof(struct tcphdr); | |
2269 | ||
2270 | skb_push(skb, tcp_header_size); | |
2271 | skb_reset_transport_header(skb); | |
2272 | ||
2273 | th = tcp_hdr(skb); | |
2274 | memset(th, 0, sizeof(struct tcphdr)); | |
2275 | th->syn = 1; | |
2276 | th->ack = 1; | |
2277 | TCP_ECN_make_synack(req, th); | |
2278 | th->source = ireq->loc_port; | |
2279 | th->dest = ireq->rmt_port; | |
2280 | /* Setting of flags are superfluous here for callers (and ECE is | |
2281 | * not even correctly set) | |
2282 | */ | |
2283 | tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, | |
2284 | TCPCB_FLAG_SYN | TCPCB_FLAG_ACK); | |
2285 | th->seq = htonl(TCP_SKB_CB(skb)->seq); | |
2286 | th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1); | |
2287 | ||
2288 | /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ | |
2289 | th->window = htons(min(req->rcv_wnd, 65535U)); | |
2290 | #ifdef CONFIG_SYN_COOKIES | |
2291 | if (unlikely(req->cookie_ts)) | |
2292 | TCP_SKB_CB(skb)->when = cookie_init_timestamp(req); | |
2293 | else | |
2294 | #endif | |
2295 | tcp_options_write((__be32 *)(th + 1), tp, &opts, &md5_hash_location); | |
2296 | th->doff = (tcp_header_size >> 2); | |
2297 | TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); | |
2298 | ||
2299 | #ifdef CONFIG_TCP_MD5SIG | |
2300 | /* Okay, we have all we need - do the md5 hash if needed */ | |
2301 | if (md5) { | |
2302 | tp->af_specific->calc_md5_hash(md5_hash_location, | |
2303 | md5, NULL, req, skb); | |
2304 | } | |
2305 | #endif | |
2306 | ||
2307 | return skb; | |
2308 | } | |
2309 | ||
2310 | /* | |
2311 | * Do all connect socket setups that can be done AF independent. | |
2312 | */ | |
2313 | static void tcp_connect_init(struct sock *sk) | |
2314 | { | |
2315 | struct dst_entry *dst = __sk_dst_get(sk); | |
2316 | struct tcp_sock *tp = tcp_sk(sk); | |
2317 | __u8 rcv_wscale; | |
2318 | ||
2319 | /* We'll fix this up when we get a response from the other end. | |
2320 | * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. | |
2321 | */ | |
2322 | tp->tcp_header_len = sizeof(struct tcphdr) + | |
2323 | (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); | |
2324 | ||
2325 | #ifdef CONFIG_TCP_MD5SIG | |
2326 | if (tp->af_specific->md5_lookup(sk, sk) != NULL) | |
2327 | tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; | |
2328 | #endif | |
2329 | ||
2330 | /* If user gave his TCP_MAXSEG, record it to clamp */ | |
2331 | if (tp->rx_opt.user_mss) | |
2332 | tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; | |
2333 | tp->max_window = 0; | |
2334 | tcp_mtup_init(sk); | |
2335 | tcp_sync_mss(sk, dst_mtu(dst)); | |
2336 | ||
2337 | if (!tp->window_clamp) | |
2338 | tp->window_clamp = dst_metric(dst, RTAX_WINDOW); | |
2339 | tp->advmss = dst_metric(dst, RTAX_ADVMSS); | |
2340 | if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) | |
2341 | tp->advmss = tp->rx_opt.user_mss; | |
2342 | ||
2343 | tcp_initialize_rcv_mss(sk); | |
2344 | ||
2345 | tcp_select_initial_window(tcp_full_space(sk), | |
2346 | tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), | |
2347 | &tp->rcv_wnd, | |
2348 | &tp->window_clamp, | |
2349 | sysctl_tcp_window_scaling, | |
2350 | &rcv_wscale); | |
2351 | ||
2352 | tp->rx_opt.rcv_wscale = rcv_wscale; | |
2353 | tp->rcv_ssthresh = tp->rcv_wnd; | |
2354 | ||
2355 | sk->sk_err = 0; | |
2356 | sock_reset_flag(sk, SOCK_DONE); | |
2357 | tp->snd_wnd = 0; | |
2358 | tcp_init_wl(tp, tp->write_seq, 0); | |
2359 | tp->snd_una = tp->write_seq; | |
2360 | tp->snd_sml = tp->write_seq; | |
2361 | tp->rcv_nxt = 0; | |
2362 | tp->rcv_wup = 0; | |
2363 | tp->copied_seq = 0; | |
2364 | ||
2365 | inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; | |
2366 | inet_csk(sk)->icsk_retransmits = 0; | |
2367 | tcp_clear_retrans(tp); | |
2368 | } | |
2369 | ||
2370 | /* | |
2371 | * Build a SYN and send it off. | |
2372 | */ | |
2373 | int tcp_connect(struct sock *sk) | |
2374 | { | |
2375 | struct tcp_sock *tp = tcp_sk(sk); | |
2376 | struct sk_buff *buff; | |
2377 | ||
2378 | tcp_connect_init(sk); | |
2379 | ||
2380 | buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); | |
2381 | if (unlikely(buff == NULL)) | |
2382 | return -ENOBUFS; | |
2383 | ||
2384 | /* Reserve space for headers. */ | |
2385 | skb_reserve(buff, MAX_TCP_HEADER); | |
2386 | ||
2387 | tp->snd_nxt = tp->write_seq; | |
2388 | tcp_init_nondata_skb(buff, tp->write_seq++, TCPCB_FLAG_SYN); | |
2389 | TCP_ECN_send_syn(sk, buff); | |
2390 | ||
2391 | /* Send it off. */ | |
2392 | TCP_SKB_CB(buff)->when = tcp_time_stamp; | |
2393 | tp->retrans_stamp = TCP_SKB_CB(buff)->when; | |
2394 | skb_header_release(buff); | |
2395 | __tcp_add_write_queue_tail(sk, buff); | |
2396 | sk->sk_wmem_queued += buff->truesize; | |
2397 | sk_mem_charge(sk, buff->truesize); | |
2398 | tp->packets_out += tcp_skb_pcount(buff); | |
2399 | tcp_transmit_skb(sk, buff, 1, GFP_KERNEL); | |
2400 | ||
2401 | /* We change tp->snd_nxt after the tcp_transmit_skb() call | |
2402 | * in order to make this packet get counted in tcpOutSegs. | |
2403 | */ | |
2404 | tp->snd_nxt = tp->write_seq; | |
2405 | tp->pushed_seq = tp->write_seq; | |
2406 | TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); | |
2407 | ||
2408 | /* Timer for repeating the SYN until an answer. */ | |
2409 | inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, | |
2410 | inet_csk(sk)->icsk_rto, TCP_RTO_MAX); | |
2411 | return 0; | |
2412 | } | |
2413 | ||
2414 | /* Send out a delayed ack, the caller does the policy checking | |
2415 | * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() | |
2416 | * for details. | |
2417 | */ | |
2418 | void tcp_send_delayed_ack(struct sock *sk) | |
2419 | { | |
2420 | struct inet_connection_sock *icsk = inet_csk(sk); | |
2421 | int ato = icsk->icsk_ack.ato; | |
2422 | unsigned long timeout; | |
2423 | ||
2424 | if (ato > TCP_DELACK_MIN) { | |
2425 | const struct tcp_sock *tp = tcp_sk(sk); | |
2426 | int max_ato = HZ / 2; | |
2427 | ||
2428 | if (icsk->icsk_ack.pingpong || | |
2429 | (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) | |
2430 | max_ato = TCP_DELACK_MAX; | |
2431 | ||
2432 | /* Slow path, intersegment interval is "high". */ | |
2433 | ||
2434 | /* If some rtt estimate is known, use it to bound delayed ack. | |
2435 | * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements | |
2436 | * directly. | |
2437 | */ | |
2438 | if (tp->srtt) { | |
2439 | int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN); | |
2440 | ||
2441 | if (rtt < max_ato) | |
2442 | max_ato = rtt; | |
2443 | } | |
2444 | ||
2445 | ato = min(ato, max_ato); | |
2446 | } | |
2447 | ||
2448 | /* Stay within the limit we were given */ | |
2449 | timeout = jiffies + ato; | |
2450 | ||
2451 | /* Use new timeout only if there wasn't a older one earlier. */ | |
2452 | if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { | |
2453 | /* If delack timer was blocked or is about to expire, | |
2454 | * send ACK now. | |
2455 | */ | |
2456 | if (icsk->icsk_ack.blocked || | |
2457 | time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { | |
2458 | tcp_send_ack(sk); | |
2459 | return; | |
2460 | } | |
2461 | ||
2462 | if (!time_before(timeout, icsk->icsk_ack.timeout)) | |
2463 | timeout = icsk->icsk_ack.timeout; | |
2464 | } | |
2465 | icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; | |
2466 | icsk->icsk_ack.timeout = timeout; | |
2467 | sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); | |
2468 | } | |
2469 | ||
2470 | /* This routine sends an ack and also updates the window. */ | |
2471 | void tcp_send_ack(struct sock *sk) | |
2472 | { | |
2473 | struct sk_buff *buff; | |
2474 | ||
2475 | /* If we have been reset, we may not send again. */ | |
2476 | if (sk->sk_state == TCP_CLOSE) | |
2477 | return; | |
2478 | ||
2479 | /* We are not putting this on the write queue, so | |
2480 | * tcp_transmit_skb() will set the ownership to this | |
2481 | * sock. | |
2482 | */ | |
2483 | buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); | |
2484 | if (buff == NULL) { | |
2485 | inet_csk_schedule_ack(sk); | |
2486 | inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; | |
2487 | inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, | |
2488 | TCP_DELACK_MAX, TCP_RTO_MAX); | |
2489 | return; | |
2490 | } | |
2491 | ||
2492 | /* Reserve space for headers and prepare control bits. */ | |
2493 | skb_reserve(buff, MAX_TCP_HEADER); | |
2494 | tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPCB_FLAG_ACK); | |
2495 | ||
2496 | /* Send it off, this clears delayed acks for us. */ | |
2497 | TCP_SKB_CB(buff)->when = tcp_time_stamp; | |
2498 | tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC); | |
2499 | } | |
2500 | ||
2501 | /* This routine sends a packet with an out of date sequence | |
2502 | * number. It assumes the other end will try to ack it. | |
2503 | * | |
2504 | * Question: what should we make while urgent mode? | |
2505 | * 4.4BSD forces sending single byte of data. We cannot send | |
2506 | * out of window data, because we have SND.NXT==SND.MAX... | |
2507 | * | |
2508 | * Current solution: to send TWO zero-length segments in urgent mode: | |
2509 | * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is | |
2510 | * out-of-date with SND.UNA-1 to probe window. | |
2511 | */ | |
2512 | static int tcp_xmit_probe_skb(struct sock *sk, int urgent) | |
2513 | { | |
2514 | struct tcp_sock *tp = tcp_sk(sk); | |
2515 | struct sk_buff *skb; | |
2516 | ||
2517 | /* We don't queue it, tcp_transmit_skb() sets ownership. */ | |
2518 | skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); | |
2519 | if (skb == NULL) | |
2520 | return -1; | |
2521 | ||
2522 | /* Reserve space for headers and set control bits. */ | |
2523 | skb_reserve(skb, MAX_TCP_HEADER); | |
2524 | /* Use a previous sequence. This should cause the other | |
2525 | * end to send an ack. Don't queue or clone SKB, just | |
2526 | * send it. | |
2527 | */ | |
2528 | tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPCB_FLAG_ACK); | |
2529 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | |
2530 | return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); | |
2531 | } | |
2532 | ||
2533 | int tcp_write_wakeup(struct sock *sk) | |
2534 | { | |
2535 | struct tcp_sock *tp = tcp_sk(sk); | |
2536 | struct sk_buff *skb; | |
2537 | ||
2538 | if (sk->sk_state == TCP_CLOSE) | |
2539 | return -1; | |
2540 | ||
2541 | if ((skb = tcp_send_head(sk)) != NULL && | |
2542 | before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { | |
2543 | int err; | |
2544 | unsigned int mss = tcp_current_mss(sk, 0); | |
2545 | unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; | |
2546 | ||
2547 | if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) | |
2548 | tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; | |
2549 | ||
2550 | /* We are probing the opening of a window | |
2551 | * but the window size is != 0 | |
2552 | * must have been a result SWS avoidance ( sender ) | |
2553 | */ | |
2554 | if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || | |
2555 | skb->len > mss) { | |
2556 | seg_size = min(seg_size, mss); | |
2557 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; | |
2558 | if (tcp_fragment(sk, skb, seg_size, mss)) | |
2559 | return -1; | |
2560 | } else if (!tcp_skb_pcount(skb)) | |
2561 | tcp_set_skb_tso_segs(sk, skb, mss); | |
2562 | ||
2563 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; | |
2564 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | |
2565 | err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); | |
2566 | if (!err) | |
2567 | tcp_event_new_data_sent(sk, skb); | |
2568 | return err; | |
2569 | } else { | |
2570 | if (tp->urg_mode && | |
2571 | between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) | |
2572 | tcp_xmit_probe_skb(sk, 1); | |
2573 | return tcp_xmit_probe_skb(sk, 0); | |
2574 | } | |
2575 | } | |
2576 | ||
2577 | /* A window probe timeout has occurred. If window is not closed send | |
2578 | * a partial packet else a zero probe. | |
2579 | */ | |
2580 | void tcp_send_probe0(struct sock *sk) | |
2581 | { | |
2582 | struct inet_connection_sock *icsk = inet_csk(sk); | |
2583 | struct tcp_sock *tp = tcp_sk(sk); | |
2584 | int err; | |
2585 | ||
2586 | err = tcp_write_wakeup(sk); | |
2587 | ||
2588 | if (tp->packets_out || !tcp_send_head(sk)) { | |
2589 | /* Cancel probe timer, if it is not required. */ | |
2590 | icsk->icsk_probes_out = 0; | |
2591 | icsk->icsk_backoff = 0; | |
2592 | return; | |
2593 | } | |
2594 | ||
2595 | if (err <= 0) { | |
2596 | if (icsk->icsk_backoff < sysctl_tcp_retries2) | |
2597 | icsk->icsk_backoff++; | |
2598 | icsk->icsk_probes_out++; | |
2599 | inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, | |
2600 | min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), | |
2601 | TCP_RTO_MAX); | |
2602 | } else { | |
2603 | /* If packet was not sent due to local congestion, | |
2604 | * do not backoff and do not remember icsk_probes_out. | |
2605 | * Let local senders to fight for local resources. | |
2606 | * | |
2607 | * Use accumulated backoff yet. | |
2608 | */ | |
2609 | if (!icsk->icsk_probes_out) | |
2610 | icsk->icsk_probes_out = 1; | |
2611 | inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, | |
2612 | min(icsk->icsk_rto << icsk->icsk_backoff, | |
2613 | TCP_RESOURCE_PROBE_INTERVAL), | |
2614 | TCP_RTO_MAX); | |
2615 | } | |
2616 | } | |
2617 | ||
2618 | EXPORT_SYMBOL(tcp_select_initial_window); | |
2619 | EXPORT_SYMBOL(tcp_connect); | |
2620 | EXPORT_SYMBOL(tcp_make_synack); | |
2621 | EXPORT_SYMBOL(tcp_simple_retransmit); | |
2622 | EXPORT_SYMBOL(tcp_sync_mss); | |
2623 | EXPORT_SYMBOL(tcp_mtup_init); |