]>
Commit | Line | Data |
---|---|---|
1 | // SPDX-License-Identifier: GPL-2.0-only | |
2 | /* | |
3 | * mm/truncate.c - code for taking down pages from address_spaces | |
4 | * | |
5 | * Copyright (C) 2002, Linus Torvalds | |
6 | * | |
7 | * 10Sep2002 Andrew Morton | |
8 | * Initial version. | |
9 | */ | |
10 | ||
11 | #include <linux/kernel.h> | |
12 | #include <linux/backing-dev.h> | |
13 | #include <linux/dax.h> | |
14 | #include <linux/gfp.h> | |
15 | #include <linux/mm.h> | |
16 | #include <linux/swap.h> | |
17 | #include <linux/export.h> | |
18 | #include <linux/pagemap.h> | |
19 | #include <linux/highmem.h> | |
20 | #include <linux/pagevec.h> | |
21 | #include <linux/task_io_accounting_ops.h> | |
22 | #include <linux/buffer_head.h> /* grr. try_to_release_page, | |
23 | do_invalidatepage */ | |
24 | #include <linux/shmem_fs.h> | |
25 | #include <linux/rmap.h> | |
26 | #include "internal.h" | |
27 | ||
28 | /* | |
29 | * Regular page slots are stabilized by the page lock even without the tree | |
30 | * itself locked. These unlocked entries need verification under the tree | |
31 | * lock. | |
32 | */ | |
33 | static inline void __clear_shadow_entry(struct address_space *mapping, | |
34 | pgoff_t index, void *entry) | |
35 | { | |
36 | XA_STATE(xas, &mapping->i_pages, index); | |
37 | ||
38 | xas_set_update(&xas, workingset_update_node); | |
39 | if (xas_load(&xas) != entry) | |
40 | return; | |
41 | xas_store(&xas, NULL); | |
42 | } | |
43 | ||
44 | static void clear_shadow_entry(struct address_space *mapping, pgoff_t index, | |
45 | void *entry) | |
46 | { | |
47 | spin_lock(&mapping->host->i_lock); | |
48 | xa_lock_irq(&mapping->i_pages); | |
49 | __clear_shadow_entry(mapping, index, entry); | |
50 | xa_unlock_irq(&mapping->i_pages); | |
51 | if (mapping_shrinkable(mapping)) | |
52 | inode_add_lru(mapping->host); | |
53 | spin_unlock(&mapping->host->i_lock); | |
54 | } | |
55 | ||
56 | /* | |
57 | * Unconditionally remove exceptional entries. Usually called from truncate | |
58 | * path. Note that the folio_batch may be altered by this function by removing | |
59 | * exceptional entries similar to what folio_batch_remove_exceptionals() does. | |
60 | */ | |
61 | static void truncate_folio_batch_exceptionals(struct address_space *mapping, | |
62 | struct folio_batch *fbatch, pgoff_t *indices) | |
63 | { | |
64 | int i, j; | |
65 | bool dax; | |
66 | ||
67 | /* Handled by shmem itself */ | |
68 | if (shmem_mapping(mapping)) | |
69 | return; | |
70 | ||
71 | for (j = 0; j < folio_batch_count(fbatch); j++) | |
72 | if (xa_is_value(fbatch->folios[j])) | |
73 | break; | |
74 | ||
75 | if (j == folio_batch_count(fbatch)) | |
76 | return; | |
77 | ||
78 | dax = dax_mapping(mapping); | |
79 | if (!dax) { | |
80 | spin_lock(&mapping->host->i_lock); | |
81 | xa_lock_irq(&mapping->i_pages); | |
82 | } | |
83 | ||
84 | for (i = j; i < folio_batch_count(fbatch); i++) { | |
85 | struct folio *folio = fbatch->folios[i]; | |
86 | pgoff_t index = indices[i]; | |
87 | ||
88 | if (!xa_is_value(folio)) { | |
89 | fbatch->folios[j++] = folio; | |
90 | continue; | |
91 | } | |
92 | ||
93 | if (unlikely(dax)) { | |
94 | dax_delete_mapping_entry(mapping, index); | |
95 | continue; | |
96 | } | |
97 | ||
98 | __clear_shadow_entry(mapping, index, folio); | |
99 | } | |
100 | ||
101 | if (!dax) { | |
102 | xa_unlock_irq(&mapping->i_pages); | |
103 | if (mapping_shrinkable(mapping)) | |
104 | inode_add_lru(mapping->host); | |
105 | spin_unlock(&mapping->host->i_lock); | |
106 | } | |
107 | fbatch->nr = j; | |
108 | } | |
109 | ||
110 | /* | |
111 | * Invalidate exceptional entry if easily possible. This handles exceptional | |
112 | * entries for invalidate_inode_pages(). | |
113 | */ | |
114 | static int invalidate_exceptional_entry(struct address_space *mapping, | |
115 | pgoff_t index, void *entry) | |
116 | { | |
117 | /* Handled by shmem itself, or for DAX we do nothing. */ | |
118 | if (shmem_mapping(mapping) || dax_mapping(mapping)) | |
119 | return 1; | |
120 | clear_shadow_entry(mapping, index, entry); | |
121 | return 1; | |
122 | } | |
123 | ||
124 | /* | |
125 | * Invalidate exceptional entry if clean. This handles exceptional entries for | |
126 | * invalidate_inode_pages2() so for DAX it evicts only clean entries. | |
127 | */ | |
128 | static int invalidate_exceptional_entry2(struct address_space *mapping, | |
129 | pgoff_t index, void *entry) | |
130 | { | |
131 | /* Handled by shmem itself */ | |
132 | if (shmem_mapping(mapping)) | |
133 | return 1; | |
134 | if (dax_mapping(mapping)) | |
135 | return dax_invalidate_mapping_entry_sync(mapping, index); | |
136 | clear_shadow_entry(mapping, index, entry); | |
137 | return 1; | |
138 | } | |
139 | ||
140 | /** | |
141 | * folio_invalidate - Invalidate part or all of a folio. | |
142 | * @folio: The folio which is affected. | |
143 | * @offset: start of the range to invalidate | |
144 | * @length: length of the range to invalidate | |
145 | * | |
146 | * folio_invalidate() is called when all or part of the folio has become | |
147 | * invalidated by a truncate operation. | |
148 | * | |
149 | * folio_invalidate() does not have to release all buffers, but it must | |
150 | * ensure that no dirty buffer is left outside @offset and that no I/O | |
151 | * is underway against any of the blocks which are outside the truncation | |
152 | * point. Because the caller is about to free (and possibly reuse) those | |
153 | * blocks on-disk. | |
154 | */ | |
155 | void folio_invalidate(struct folio *folio, size_t offset, size_t length) | |
156 | { | |
157 | const struct address_space_operations *aops = folio->mapping->a_ops; | |
158 | void (*invalidatepage)(struct page *, unsigned int, unsigned int); | |
159 | ||
160 | if (aops->invalidate_folio) { | |
161 | aops->invalidate_folio(folio, offset, length); | |
162 | return; | |
163 | } | |
164 | ||
165 | invalidatepage = aops->invalidatepage; | |
166 | if (invalidatepage) | |
167 | (*invalidatepage)(&folio->page, offset, length); | |
168 | } | |
169 | EXPORT_SYMBOL_GPL(folio_invalidate); | |
170 | ||
171 | /* | |
172 | * If truncate cannot remove the fs-private metadata from the page, the page | |
173 | * becomes orphaned. It will be left on the LRU and may even be mapped into | |
174 | * user pagetables if we're racing with filemap_fault(). | |
175 | * | |
176 | * We need to bail out if page->mapping is no longer equal to the original | |
177 | * mapping. This happens a) when the VM reclaimed the page while we waited on | |
178 | * its lock, b) when a concurrent invalidate_mapping_pages got there first and | |
179 | * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. | |
180 | */ | |
181 | static void truncate_cleanup_folio(struct folio *folio) | |
182 | { | |
183 | if (folio_mapped(folio)) | |
184 | unmap_mapping_folio(folio); | |
185 | ||
186 | if (folio_has_private(folio)) | |
187 | folio_invalidate(folio, 0, folio_size(folio)); | |
188 | ||
189 | /* | |
190 | * Some filesystems seem to re-dirty the page even after | |
191 | * the VM has canceled the dirty bit (eg ext3 journaling). | |
192 | * Hence dirty accounting check is placed after invalidation. | |
193 | */ | |
194 | folio_cancel_dirty(folio); | |
195 | folio_clear_mappedtodisk(folio); | |
196 | } | |
197 | ||
198 | /* | |
199 | * This is for invalidate_mapping_pages(). That function can be called at | |
200 | * any time, and is not supposed to throw away dirty pages. But pages can | |
201 | * be marked dirty at any time too, so use remove_mapping which safely | |
202 | * discards clean, unused pages. | |
203 | * | |
204 | * Returns non-zero if the page was successfully invalidated. | |
205 | */ | |
206 | static int | |
207 | invalidate_complete_page(struct address_space *mapping, struct page *page) | |
208 | { | |
209 | ||
210 | if (page->mapping != mapping) | |
211 | return 0; | |
212 | ||
213 | if (page_has_private(page) && !try_to_release_page(page, 0)) | |
214 | return 0; | |
215 | ||
216 | return remove_mapping(mapping, page); | |
217 | } | |
218 | ||
219 | int truncate_inode_folio(struct address_space *mapping, struct folio *folio) | |
220 | { | |
221 | if (folio->mapping != mapping) | |
222 | return -EIO; | |
223 | ||
224 | truncate_cleanup_folio(folio); | |
225 | filemap_remove_folio(folio); | |
226 | return 0; | |
227 | } | |
228 | ||
229 | /* | |
230 | * Handle partial folios. The folio may be entirely within the | |
231 | * range if a split has raced with us. If not, we zero the part of the | |
232 | * folio that's within the [start, end] range, and then split the folio if | |
233 | * it's large. split_page_range() will discard pages which now lie beyond | |
234 | * i_size, and we rely on the caller to discard pages which lie within a | |
235 | * newly created hole. | |
236 | * | |
237 | * Returns false if splitting failed so the caller can avoid | |
238 | * discarding the entire folio which is stubbornly unsplit. | |
239 | */ | |
240 | bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end) | |
241 | { | |
242 | loff_t pos = folio_pos(folio); | |
243 | unsigned int offset, length; | |
244 | ||
245 | if (pos < start) | |
246 | offset = start - pos; | |
247 | else | |
248 | offset = 0; | |
249 | length = folio_size(folio); | |
250 | if (pos + length <= (u64)end) | |
251 | length = length - offset; | |
252 | else | |
253 | length = end + 1 - pos - offset; | |
254 | ||
255 | folio_wait_writeback(folio); | |
256 | if (length == folio_size(folio)) { | |
257 | truncate_inode_folio(folio->mapping, folio); | |
258 | return true; | |
259 | } | |
260 | ||
261 | /* | |
262 | * We may be zeroing pages we're about to discard, but it avoids | |
263 | * doing a complex calculation here, and then doing the zeroing | |
264 | * anyway if the page split fails. | |
265 | */ | |
266 | folio_zero_range(folio, offset, length); | |
267 | ||
268 | if (folio_has_private(folio)) | |
269 | folio_invalidate(folio, offset, length); | |
270 | if (!folio_test_large(folio)) | |
271 | return true; | |
272 | if (split_huge_page(&folio->page) == 0) | |
273 | return true; | |
274 | if (folio_test_dirty(folio)) | |
275 | return false; | |
276 | truncate_inode_folio(folio->mapping, folio); | |
277 | return true; | |
278 | } | |
279 | ||
280 | /* | |
281 | * Used to get rid of pages on hardware memory corruption. | |
282 | */ | |
283 | int generic_error_remove_page(struct address_space *mapping, struct page *page) | |
284 | { | |
285 | VM_BUG_ON_PAGE(PageTail(page), page); | |
286 | ||
287 | if (!mapping) | |
288 | return -EINVAL; | |
289 | /* | |
290 | * Only punch for normal data pages for now. | |
291 | * Handling other types like directories would need more auditing. | |
292 | */ | |
293 | if (!S_ISREG(mapping->host->i_mode)) | |
294 | return -EIO; | |
295 | return truncate_inode_folio(mapping, page_folio(page)); | |
296 | } | |
297 | EXPORT_SYMBOL(generic_error_remove_page); | |
298 | ||
299 | /* | |
300 | * Safely invalidate one page from its pagecache mapping. | |
301 | * It only drops clean, unused pages. The page must be locked. | |
302 | * | |
303 | * Returns 1 if the page is successfully invalidated, otherwise 0. | |
304 | */ | |
305 | int invalidate_inode_page(struct page *page) | |
306 | { | |
307 | struct address_space *mapping = page_mapping(page); | |
308 | if (!mapping) | |
309 | return 0; | |
310 | if (PageDirty(page) || PageWriteback(page)) | |
311 | return 0; | |
312 | if (page_mapped(page)) | |
313 | return 0; | |
314 | return invalidate_complete_page(mapping, page); | |
315 | } | |
316 | ||
317 | /** | |
318 | * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets | |
319 | * @mapping: mapping to truncate | |
320 | * @lstart: offset from which to truncate | |
321 | * @lend: offset to which to truncate (inclusive) | |
322 | * | |
323 | * Truncate the page cache, removing the pages that are between | |
324 | * specified offsets (and zeroing out partial pages | |
325 | * if lstart or lend + 1 is not page aligned). | |
326 | * | |
327 | * Truncate takes two passes - the first pass is nonblocking. It will not | |
328 | * block on page locks and it will not block on writeback. The second pass | |
329 | * will wait. This is to prevent as much IO as possible in the affected region. | |
330 | * The first pass will remove most pages, so the search cost of the second pass | |
331 | * is low. | |
332 | * | |
333 | * We pass down the cache-hot hint to the page freeing code. Even if the | |
334 | * mapping is large, it is probably the case that the final pages are the most | |
335 | * recently touched, and freeing happens in ascending file offset order. | |
336 | * | |
337 | * Note that since ->invalidatepage() accepts range to invalidate | |
338 | * truncate_inode_pages_range is able to handle cases where lend + 1 is not | |
339 | * page aligned properly. | |
340 | */ | |
341 | void truncate_inode_pages_range(struct address_space *mapping, | |
342 | loff_t lstart, loff_t lend) | |
343 | { | |
344 | pgoff_t start; /* inclusive */ | |
345 | pgoff_t end; /* exclusive */ | |
346 | struct folio_batch fbatch; | |
347 | pgoff_t indices[PAGEVEC_SIZE]; | |
348 | pgoff_t index; | |
349 | int i; | |
350 | struct folio *folio; | |
351 | bool same_folio; | |
352 | ||
353 | if (mapping_empty(mapping)) | |
354 | return; | |
355 | ||
356 | /* | |
357 | * 'start' and 'end' always covers the range of pages to be fully | |
358 | * truncated. Partial pages are covered with 'partial_start' at the | |
359 | * start of the range and 'partial_end' at the end of the range. | |
360 | * Note that 'end' is exclusive while 'lend' is inclusive. | |
361 | */ | |
362 | start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
363 | if (lend == -1) | |
364 | /* | |
365 | * lend == -1 indicates end-of-file so we have to set 'end' | |
366 | * to the highest possible pgoff_t and since the type is | |
367 | * unsigned we're using -1. | |
368 | */ | |
369 | end = -1; | |
370 | else | |
371 | end = (lend + 1) >> PAGE_SHIFT; | |
372 | ||
373 | folio_batch_init(&fbatch); | |
374 | index = start; | |
375 | while (index < end && find_lock_entries(mapping, index, end - 1, | |
376 | &fbatch, indices)) { | |
377 | index = indices[folio_batch_count(&fbatch) - 1] + 1; | |
378 | truncate_folio_batch_exceptionals(mapping, &fbatch, indices); | |
379 | for (i = 0; i < folio_batch_count(&fbatch); i++) | |
380 | truncate_cleanup_folio(fbatch.folios[i]); | |
381 | delete_from_page_cache_batch(mapping, &fbatch); | |
382 | for (i = 0; i < folio_batch_count(&fbatch); i++) | |
383 | folio_unlock(fbatch.folios[i]); | |
384 | folio_batch_release(&fbatch); | |
385 | cond_resched(); | |
386 | } | |
387 | ||
388 | same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); | |
389 | folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0); | |
390 | if (folio) { | |
391 | same_folio = lend < folio_pos(folio) + folio_size(folio); | |
392 | if (!truncate_inode_partial_folio(folio, lstart, lend)) { | |
393 | start = folio->index + folio_nr_pages(folio); | |
394 | if (same_folio) | |
395 | end = folio->index; | |
396 | } | |
397 | folio_unlock(folio); | |
398 | folio_put(folio); | |
399 | folio = NULL; | |
400 | } | |
401 | ||
402 | if (!same_folio) | |
403 | folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT, | |
404 | FGP_LOCK, 0); | |
405 | if (folio) { | |
406 | if (!truncate_inode_partial_folio(folio, lstart, lend)) | |
407 | end = folio->index; | |
408 | folio_unlock(folio); | |
409 | folio_put(folio); | |
410 | } | |
411 | ||
412 | index = start; | |
413 | while (index < end) { | |
414 | cond_resched(); | |
415 | if (!find_get_entries(mapping, index, end - 1, &fbatch, | |
416 | indices)) { | |
417 | /* If all gone from start onwards, we're done */ | |
418 | if (index == start) | |
419 | break; | |
420 | /* Otherwise restart to make sure all gone */ | |
421 | index = start; | |
422 | continue; | |
423 | } | |
424 | ||
425 | for (i = 0; i < folio_batch_count(&fbatch); i++) { | |
426 | struct folio *folio = fbatch.folios[i]; | |
427 | ||
428 | /* We rely upon deletion not changing page->index */ | |
429 | index = indices[i]; | |
430 | ||
431 | if (xa_is_value(folio)) | |
432 | continue; | |
433 | ||
434 | folio_lock(folio); | |
435 | VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); | |
436 | folio_wait_writeback(folio); | |
437 | truncate_inode_folio(mapping, folio); | |
438 | folio_unlock(folio); | |
439 | index = folio_index(folio) + folio_nr_pages(folio) - 1; | |
440 | } | |
441 | truncate_folio_batch_exceptionals(mapping, &fbatch, indices); | |
442 | folio_batch_release(&fbatch); | |
443 | index++; | |
444 | } | |
445 | } | |
446 | EXPORT_SYMBOL(truncate_inode_pages_range); | |
447 | ||
448 | /** | |
449 | * truncate_inode_pages - truncate *all* the pages from an offset | |
450 | * @mapping: mapping to truncate | |
451 | * @lstart: offset from which to truncate | |
452 | * | |
453 | * Called under (and serialised by) inode->i_rwsem and | |
454 | * mapping->invalidate_lock. | |
455 | * | |
456 | * Note: When this function returns, there can be a page in the process of | |
457 | * deletion (inside __delete_from_page_cache()) in the specified range. Thus | |
458 | * mapping->nrpages can be non-zero when this function returns even after | |
459 | * truncation of the whole mapping. | |
460 | */ | |
461 | void truncate_inode_pages(struct address_space *mapping, loff_t lstart) | |
462 | { | |
463 | truncate_inode_pages_range(mapping, lstart, (loff_t)-1); | |
464 | } | |
465 | EXPORT_SYMBOL(truncate_inode_pages); | |
466 | ||
467 | /** | |
468 | * truncate_inode_pages_final - truncate *all* pages before inode dies | |
469 | * @mapping: mapping to truncate | |
470 | * | |
471 | * Called under (and serialized by) inode->i_rwsem. | |
472 | * | |
473 | * Filesystems have to use this in the .evict_inode path to inform the | |
474 | * VM that this is the final truncate and the inode is going away. | |
475 | */ | |
476 | void truncate_inode_pages_final(struct address_space *mapping) | |
477 | { | |
478 | /* | |
479 | * Page reclaim can not participate in regular inode lifetime | |
480 | * management (can't call iput()) and thus can race with the | |
481 | * inode teardown. Tell it when the address space is exiting, | |
482 | * so that it does not install eviction information after the | |
483 | * final truncate has begun. | |
484 | */ | |
485 | mapping_set_exiting(mapping); | |
486 | ||
487 | if (!mapping_empty(mapping)) { | |
488 | /* | |
489 | * As truncation uses a lockless tree lookup, cycle | |
490 | * the tree lock to make sure any ongoing tree | |
491 | * modification that does not see AS_EXITING is | |
492 | * completed before starting the final truncate. | |
493 | */ | |
494 | xa_lock_irq(&mapping->i_pages); | |
495 | xa_unlock_irq(&mapping->i_pages); | |
496 | } | |
497 | ||
498 | truncate_inode_pages(mapping, 0); | |
499 | } | |
500 | EXPORT_SYMBOL(truncate_inode_pages_final); | |
501 | ||
502 | static unsigned long __invalidate_mapping_pages(struct address_space *mapping, | |
503 | pgoff_t start, pgoff_t end, unsigned long *nr_pagevec) | |
504 | { | |
505 | pgoff_t indices[PAGEVEC_SIZE]; | |
506 | struct folio_batch fbatch; | |
507 | pgoff_t index = start; | |
508 | unsigned long ret; | |
509 | unsigned long count = 0; | |
510 | int i; | |
511 | ||
512 | folio_batch_init(&fbatch); | |
513 | while (find_lock_entries(mapping, index, end, &fbatch, indices)) { | |
514 | for (i = 0; i < folio_batch_count(&fbatch); i++) { | |
515 | struct page *page = &fbatch.folios[i]->page; | |
516 | ||
517 | /* We rely upon deletion not changing page->index */ | |
518 | index = indices[i]; | |
519 | ||
520 | if (xa_is_value(page)) { | |
521 | count += invalidate_exceptional_entry(mapping, | |
522 | index, | |
523 | page); | |
524 | continue; | |
525 | } | |
526 | index += thp_nr_pages(page) - 1; | |
527 | ||
528 | ret = invalidate_inode_page(page); | |
529 | unlock_page(page); | |
530 | /* | |
531 | * Invalidation is a hint that the page is no longer | |
532 | * of interest and try to speed up its reclaim. | |
533 | */ | |
534 | if (!ret) { | |
535 | deactivate_file_page(page); | |
536 | /* It is likely on the pagevec of a remote CPU */ | |
537 | if (nr_pagevec) | |
538 | (*nr_pagevec)++; | |
539 | } | |
540 | count += ret; | |
541 | } | |
542 | folio_batch_remove_exceptionals(&fbatch); | |
543 | folio_batch_release(&fbatch); | |
544 | cond_resched(); | |
545 | index++; | |
546 | } | |
547 | return count; | |
548 | } | |
549 | ||
550 | /** | |
551 | * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode | |
552 | * @mapping: the address_space which holds the cache to invalidate | |
553 | * @start: the offset 'from' which to invalidate | |
554 | * @end: the offset 'to' which to invalidate (inclusive) | |
555 | * | |
556 | * This function removes pages that are clean, unmapped and unlocked, | |
557 | * as well as shadow entries. It will not block on IO activity. | |
558 | * | |
559 | * If you want to remove all the pages of one inode, regardless of | |
560 | * their use and writeback state, use truncate_inode_pages(). | |
561 | * | |
562 | * Return: the number of the cache entries that were invalidated | |
563 | */ | |
564 | unsigned long invalidate_mapping_pages(struct address_space *mapping, | |
565 | pgoff_t start, pgoff_t end) | |
566 | { | |
567 | return __invalidate_mapping_pages(mapping, start, end, NULL); | |
568 | } | |
569 | EXPORT_SYMBOL(invalidate_mapping_pages); | |
570 | ||
571 | /** | |
572 | * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode | |
573 | * @mapping: the address_space which holds the pages to invalidate | |
574 | * @start: the offset 'from' which to invalidate | |
575 | * @end: the offset 'to' which to invalidate (inclusive) | |
576 | * @nr_pagevec: invalidate failed page number for caller | |
577 | * | |
578 | * This helper is similar to invalidate_mapping_pages(), except that it accounts | |
579 | * for pages that are likely on a pagevec and counts them in @nr_pagevec, which | |
580 | * will be used by the caller. | |
581 | */ | |
582 | void invalidate_mapping_pagevec(struct address_space *mapping, | |
583 | pgoff_t start, pgoff_t end, unsigned long *nr_pagevec) | |
584 | { | |
585 | __invalidate_mapping_pages(mapping, start, end, nr_pagevec); | |
586 | } | |
587 | ||
588 | /* | |
589 | * This is like invalidate_complete_page(), except it ignores the page's | |
590 | * refcount. We do this because invalidate_inode_pages2() needs stronger | |
591 | * invalidation guarantees, and cannot afford to leave pages behind because | |
592 | * shrink_page_list() has a temp ref on them, or because they're transiently | |
593 | * sitting in the lru_cache_add() pagevecs. | |
594 | */ | |
595 | static int invalidate_complete_folio2(struct address_space *mapping, | |
596 | struct folio *folio) | |
597 | { | |
598 | if (folio->mapping != mapping) | |
599 | return 0; | |
600 | ||
601 | if (folio_has_private(folio) && | |
602 | !filemap_release_folio(folio, GFP_KERNEL)) | |
603 | return 0; | |
604 | ||
605 | spin_lock(&mapping->host->i_lock); | |
606 | xa_lock_irq(&mapping->i_pages); | |
607 | if (folio_test_dirty(folio)) | |
608 | goto failed; | |
609 | ||
610 | BUG_ON(folio_has_private(folio)); | |
611 | __filemap_remove_folio(folio, NULL); | |
612 | xa_unlock_irq(&mapping->i_pages); | |
613 | if (mapping_shrinkable(mapping)) | |
614 | inode_add_lru(mapping->host); | |
615 | spin_unlock(&mapping->host->i_lock); | |
616 | ||
617 | filemap_free_folio(mapping, folio); | |
618 | return 1; | |
619 | failed: | |
620 | xa_unlock_irq(&mapping->i_pages); | |
621 | spin_unlock(&mapping->host->i_lock); | |
622 | return 0; | |
623 | } | |
624 | ||
625 | static int do_launder_folio(struct address_space *mapping, struct folio *folio) | |
626 | { | |
627 | if (!folio_test_dirty(folio)) | |
628 | return 0; | |
629 | if (folio->mapping != mapping || mapping->a_ops->launder_page == NULL) | |
630 | return 0; | |
631 | return mapping->a_ops->launder_page(&folio->page); | |
632 | } | |
633 | ||
634 | /** | |
635 | * invalidate_inode_pages2_range - remove range of pages from an address_space | |
636 | * @mapping: the address_space | |
637 | * @start: the page offset 'from' which to invalidate | |
638 | * @end: the page offset 'to' which to invalidate (inclusive) | |
639 | * | |
640 | * Any pages which are found to be mapped into pagetables are unmapped prior to | |
641 | * invalidation. | |
642 | * | |
643 | * Return: -EBUSY if any pages could not be invalidated. | |
644 | */ | |
645 | int invalidate_inode_pages2_range(struct address_space *mapping, | |
646 | pgoff_t start, pgoff_t end) | |
647 | { | |
648 | pgoff_t indices[PAGEVEC_SIZE]; | |
649 | struct folio_batch fbatch; | |
650 | pgoff_t index; | |
651 | int i; | |
652 | int ret = 0; | |
653 | int ret2 = 0; | |
654 | int did_range_unmap = 0; | |
655 | ||
656 | if (mapping_empty(mapping)) | |
657 | return 0; | |
658 | ||
659 | folio_batch_init(&fbatch); | |
660 | index = start; | |
661 | while (find_get_entries(mapping, index, end, &fbatch, indices)) { | |
662 | for (i = 0; i < folio_batch_count(&fbatch); i++) { | |
663 | struct folio *folio = fbatch.folios[i]; | |
664 | ||
665 | /* We rely upon deletion not changing folio->index */ | |
666 | index = indices[i]; | |
667 | ||
668 | if (xa_is_value(folio)) { | |
669 | if (!invalidate_exceptional_entry2(mapping, | |
670 | index, folio)) | |
671 | ret = -EBUSY; | |
672 | continue; | |
673 | } | |
674 | ||
675 | if (!did_range_unmap && folio_mapped(folio)) { | |
676 | /* | |
677 | * If folio is mapped, before taking its lock, | |
678 | * zap the rest of the file in one hit. | |
679 | */ | |
680 | unmap_mapping_pages(mapping, index, | |
681 | (1 + end - index), false); | |
682 | did_range_unmap = 1; | |
683 | } | |
684 | ||
685 | folio_lock(folio); | |
686 | VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); | |
687 | if (folio->mapping != mapping) { | |
688 | folio_unlock(folio); | |
689 | continue; | |
690 | } | |
691 | folio_wait_writeback(folio); | |
692 | ||
693 | if (folio_mapped(folio)) | |
694 | unmap_mapping_folio(folio); | |
695 | BUG_ON(folio_mapped(folio)); | |
696 | ||
697 | ret2 = do_launder_folio(mapping, folio); | |
698 | if (ret2 == 0) { | |
699 | if (!invalidate_complete_folio2(mapping, folio)) | |
700 | ret2 = -EBUSY; | |
701 | } | |
702 | if (ret2 < 0) | |
703 | ret = ret2; | |
704 | folio_unlock(folio); | |
705 | } | |
706 | folio_batch_remove_exceptionals(&fbatch); | |
707 | folio_batch_release(&fbatch); | |
708 | cond_resched(); | |
709 | index++; | |
710 | } | |
711 | /* | |
712 | * For DAX we invalidate page tables after invalidating page cache. We | |
713 | * could invalidate page tables while invalidating each entry however | |
714 | * that would be expensive. And doing range unmapping before doesn't | |
715 | * work as we have no cheap way to find whether page cache entry didn't | |
716 | * get remapped later. | |
717 | */ | |
718 | if (dax_mapping(mapping)) { | |
719 | unmap_mapping_pages(mapping, start, end - start + 1, false); | |
720 | } | |
721 | return ret; | |
722 | } | |
723 | EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); | |
724 | ||
725 | /** | |
726 | * invalidate_inode_pages2 - remove all pages from an address_space | |
727 | * @mapping: the address_space | |
728 | * | |
729 | * Any pages which are found to be mapped into pagetables are unmapped prior to | |
730 | * invalidation. | |
731 | * | |
732 | * Return: -EBUSY if any pages could not be invalidated. | |
733 | */ | |
734 | int invalidate_inode_pages2(struct address_space *mapping) | |
735 | { | |
736 | return invalidate_inode_pages2_range(mapping, 0, -1); | |
737 | } | |
738 | EXPORT_SYMBOL_GPL(invalidate_inode_pages2); | |
739 | ||
740 | /** | |
741 | * truncate_pagecache - unmap and remove pagecache that has been truncated | |
742 | * @inode: inode | |
743 | * @newsize: new file size | |
744 | * | |
745 | * inode's new i_size must already be written before truncate_pagecache | |
746 | * is called. | |
747 | * | |
748 | * This function should typically be called before the filesystem | |
749 | * releases resources associated with the freed range (eg. deallocates | |
750 | * blocks). This way, pagecache will always stay logically coherent | |
751 | * with on-disk format, and the filesystem would not have to deal with | |
752 | * situations such as writepage being called for a page that has already | |
753 | * had its underlying blocks deallocated. | |
754 | */ | |
755 | void truncate_pagecache(struct inode *inode, loff_t newsize) | |
756 | { | |
757 | struct address_space *mapping = inode->i_mapping; | |
758 | loff_t holebegin = round_up(newsize, PAGE_SIZE); | |
759 | ||
760 | /* | |
761 | * unmap_mapping_range is called twice, first simply for | |
762 | * efficiency so that truncate_inode_pages does fewer | |
763 | * single-page unmaps. However after this first call, and | |
764 | * before truncate_inode_pages finishes, it is possible for | |
765 | * private pages to be COWed, which remain after | |
766 | * truncate_inode_pages finishes, hence the second | |
767 | * unmap_mapping_range call must be made for correctness. | |
768 | */ | |
769 | unmap_mapping_range(mapping, holebegin, 0, 1); | |
770 | truncate_inode_pages(mapping, newsize); | |
771 | unmap_mapping_range(mapping, holebegin, 0, 1); | |
772 | } | |
773 | EXPORT_SYMBOL(truncate_pagecache); | |
774 | ||
775 | /** | |
776 | * truncate_setsize - update inode and pagecache for a new file size | |
777 | * @inode: inode | |
778 | * @newsize: new file size | |
779 | * | |
780 | * truncate_setsize updates i_size and performs pagecache truncation (if | |
781 | * necessary) to @newsize. It will be typically be called from the filesystem's | |
782 | * setattr function when ATTR_SIZE is passed in. | |
783 | * | |
784 | * Must be called with a lock serializing truncates and writes (generally | |
785 | * i_rwsem but e.g. xfs uses a different lock) and before all filesystem | |
786 | * specific block truncation has been performed. | |
787 | */ | |
788 | void truncate_setsize(struct inode *inode, loff_t newsize) | |
789 | { | |
790 | loff_t oldsize = inode->i_size; | |
791 | ||
792 | i_size_write(inode, newsize); | |
793 | if (newsize > oldsize) | |
794 | pagecache_isize_extended(inode, oldsize, newsize); | |
795 | truncate_pagecache(inode, newsize); | |
796 | } | |
797 | EXPORT_SYMBOL(truncate_setsize); | |
798 | ||
799 | /** | |
800 | * pagecache_isize_extended - update pagecache after extension of i_size | |
801 | * @inode: inode for which i_size was extended | |
802 | * @from: original inode size | |
803 | * @to: new inode size | |
804 | * | |
805 | * Handle extension of inode size either caused by extending truncate or by | |
806 | * write starting after current i_size. We mark the page straddling current | |
807 | * i_size RO so that page_mkwrite() is called on the nearest write access to | |
808 | * the page. This way filesystem can be sure that page_mkwrite() is called on | |
809 | * the page before user writes to the page via mmap after the i_size has been | |
810 | * changed. | |
811 | * | |
812 | * The function must be called after i_size is updated so that page fault | |
813 | * coming after we unlock the page will already see the new i_size. | |
814 | * The function must be called while we still hold i_rwsem - this not only | |
815 | * makes sure i_size is stable but also that userspace cannot observe new | |
816 | * i_size value before we are prepared to store mmap writes at new inode size. | |
817 | */ | |
818 | void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) | |
819 | { | |
820 | int bsize = i_blocksize(inode); | |
821 | loff_t rounded_from; | |
822 | struct page *page; | |
823 | pgoff_t index; | |
824 | ||
825 | WARN_ON(to > inode->i_size); | |
826 | ||
827 | if (from >= to || bsize == PAGE_SIZE) | |
828 | return; | |
829 | /* Page straddling @from will not have any hole block created? */ | |
830 | rounded_from = round_up(from, bsize); | |
831 | if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) | |
832 | return; | |
833 | ||
834 | index = from >> PAGE_SHIFT; | |
835 | page = find_lock_page(inode->i_mapping, index); | |
836 | /* Page not cached? Nothing to do */ | |
837 | if (!page) | |
838 | return; | |
839 | /* | |
840 | * See clear_page_dirty_for_io() for details why set_page_dirty() | |
841 | * is needed. | |
842 | */ | |
843 | if (page_mkclean(page)) | |
844 | set_page_dirty(page); | |
845 | unlock_page(page); | |
846 | put_page(page); | |
847 | } | |
848 | EXPORT_SYMBOL(pagecache_isize_extended); | |
849 | ||
850 | /** | |
851 | * truncate_pagecache_range - unmap and remove pagecache that is hole-punched | |
852 | * @inode: inode | |
853 | * @lstart: offset of beginning of hole | |
854 | * @lend: offset of last byte of hole | |
855 | * | |
856 | * This function should typically be called before the filesystem | |
857 | * releases resources associated with the freed range (eg. deallocates | |
858 | * blocks). This way, pagecache will always stay logically coherent | |
859 | * with on-disk format, and the filesystem would not have to deal with | |
860 | * situations such as writepage being called for a page that has already | |
861 | * had its underlying blocks deallocated. | |
862 | */ | |
863 | void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) | |
864 | { | |
865 | struct address_space *mapping = inode->i_mapping; | |
866 | loff_t unmap_start = round_up(lstart, PAGE_SIZE); | |
867 | loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; | |
868 | /* | |
869 | * This rounding is currently just for example: unmap_mapping_range | |
870 | * expands its hole outwards, whereas we want it to contract the hole | |
871 | * inwards. However, existing callers of truncate_pagecache_range are | |
872 | * doing their own page rounding first. Note that unmap_mapping_range | |
873 | * allows holelen 0 for all, and we allow lend -1 for end of file. | |
874 | */ | |
875 | ||
876 | /* | |
877 | * Unlike in truncate_pagecache, unmap_mapping_range is called only | |
878 | * once (before truncating pagecache), and without "even_cows" flag: | |
879 | * hole-punching should not remove private COWed pages from the hole. | |
880 | */ | |
881 | if ((u64)unmap_end > (u64)unmap_start) | |
882 | unmap_mapping_range(mapping, unmap_start, | |
883 | 1 + unmap_end - unmap_start, 0); | |
884 | truncate_inode_pages_range(mapping, lstart, lend); | |
885 | } | |
886 | EXPORT_SYMBOL(truncate_pagecache_range); |