]> Git Repo - linux.git/blame_incremental - mm/truncate.c
ubifs: Convert from invalidatepage to invalidate_folio
[linux.git] / mm / truncate.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/truncate.c - code for taking down pages from address_spaces
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
7 * 10Sep2002 Andrew Morton
8 * Initial version.
9 */
10
11#include <linux/kernel.h>
12#include <linux/backing-dev.h>
13#include <linux/dax.h>
14#include <linux/gfp.h>
15#include <linux/mm.h>
16#include <linux/swap.h>
17#include <linux/export.h>
18#include <linux/pagemap.h>
19#include <linux/highmem.h>
20#include <linux/pagevec.h>
21#include <linux/task_io_accounting_ops.h>
22#include <linux/buffer_head.h> /* grr. try_to_release_page,
23 do_invalidatepage */
24#include <linux/shmem_fs.h>
25#include <linux/rmap.h>
26#include "internal.h"
27
28/*
29 * Regular page slots are stabilized by the page lock even without the tree
30 * itself locked. These unlocked entries need verification under the tree
31 * lock.
32 */
33static inline void __clear_shadow_entry(struct address_space *mapping,
34 pgoff_t index, void *entry)
35{
36 XA_STATE(xas, &mapping->i_pages, index);
37
38 xas_set_update(&xas, workingset_update_node);
39 if (xas_load(&xas) != entry)
40 return;
41 xas_store(&xas, NULL);
42}
43
44static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
45 void *entry)
46{
47 spin_lock(&mapping->host->i_lock);
48 xa_lock_irq(&mapping->i_pages);
49 __clear_shadow_entry(mapping, index, entry);
50 xa_unlock_irq(&mapping->i_pages);
51 if (mapping_shrinkable(mapping))
52 inode_add_lru(mapping->host);
53 spin_unlock(&mapping->host->i_lock);
54}
55
56/*
57 * Unconditionally remove exceptional entries. Usually called from truncate
58 * path. Note that the folio_batch may be altered by this function by removing
59 * exceptional entries similar to what folio_batch_remove_exceptionals() does.
60 */
61static void truncate_folio_batch_exceptionals(struct address_space *mapping,
62 struct folio_batch *fbatch, pgoff_t *indices)
63{
64 int i, j;
65 bool dax;
66
67 /* Handled by shmem itself */
68 if (shmem_mapping(mapping))
69 return;
70
71 for (j = 0; j < folio_batch_count(fbatch); j++)
72 if (xa_is_value(fbatch->folios[j]))
73 break;
74
75 if (j == folio_batch_count(fbatch))
76 return;
77
78 dax = dax_mapping(mapping);
79 if (!dax) {
80 spin_lock(&mapping->host->i_lock);
81 xa_lock_irq(&mapping->i_pages);
82 }
83
84 for (i = j; i < folio_batch_count(fbatch); i++) {
85 struct folio *folio = fbatch->folios[i];
86 pgoff_t index = indices[i];
87
88 if (!xa_is_value(folio)) {
89 fbatch->folios[j++] = folio;
90 continue;
91 }
92
93 if (unlikely(dax)) {
94 dax_delete_mapping_entry(mapping, index);
95 continue;
96 }
97
98 __clear_shadow_entry(mapping, index, folio);
99 }
100
101 if (!dax) {
102 xa_unlock_irq(&mapping->i_pages);
103 if (mapping_shrinkable(mapping))
104 inode_add_lru(mapping->host);
105 spin_unlock(&mapping->host->i_lock);
106 }
107 fbatch->nr = j;
108}
109
110/*
111 * Invalidate exceptional entry if easily possible. This handles exceptional
112 * entries for invalidate_inode_pages().
113 */
114static int invalidate_exceptional_entry(struct address_space *mapping,
115 pgoff_t index, void *entry)
116{
117 /* Handled by shmem itself, or for DAX we do nothing. */
118 if (shmem_mapping(mapping) || dax_mapping(mapping))
119 return 1;
120 clear_shadow_entry(mapping, index, entry);
121 return 1;
122}
123
124/*
125 * Invalidate exceptional entry if clean. This handles exceptional entries for
126 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
127 */
128static int invalidate_exceptional_entry2(struct address_space *mapping,
129 pgoff_t index, void *entry)
130{
131 /* Handled by shmem itself */
132 if (shmem_mapping(mapping))
133 return 1;
134 if (dax_mapping(mapping))
135 return dax_invalidate_mapping_entry_sync(mapping, index);
136 clear_shadow_entry(mapping, index, entry);
137 return 1;
138}
139
140/**
141 * folio_invalidate - Invalidate part or all of a folio.
142 * @folio: The folio which is affected.
143 * @offset: start of the range to invalidate
144 * @length: length of the range to invalidate
145 *
146 * folio_invalidate() is called when all or part of the folio has become
147 * invalidated by a truncate operation.
148 *
149 * folio_invalidate() does not have to release all buffers, but it must
150 * ensure that no dirty buffer is left outside @offset and that no I/O
151 * is underway against any of the blocks which are outside the truncation
152 * point. Because the caller is about to free (and possibly reuse) those
153 * blocks on-disk.
154 */
155void folio_invalidate(struct folio *folio, size_t offset, size_t length)
156{
157 const struct address_space_operations *aops = folio->mapping->a_ops;
158 void (*invalidatepage)(struct page *, unsigned int, unsigned int);
159
160 if (aops->invalidate_folio) {
161 aops->invalidate_folio(folio, offset, length);
162 return;
163 }
164
165 invalidatepage = aops->invalidatepage;
166 if (invalidatepage)
167 (*invalidatepage)(&folio->page, offset, length);
168}
169EXPORT_SYMBOL_GPL(folio_invalidate);
170
171/*
172 * If truncate cannot remove the fs-private metadata from the page, the page
173 * becomes orphaned. It will be left on the LRU and may even be mapped into
174 * user pagetables if we're racing with filemap_fault().
175 *
176 * We need to bail out if page->mapping is no longer equal to the original
177 * mapping. This happens a) when the VM reclaimed the page while we waited on
178 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
179 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
180 */
181static void truncate_cleanup_folio(struct folio *folio)
182{
183 if (folio_mapped(folio))
184 unmap_mapping_folio(folio);
185
186 if (folio_has_private(folio))
187 folio_invalidate(folio, 0, folio_size(folio));
188
189 /*
190 * Some filesystems seem to re-dirty the page even after
191 * the VM has canceled the dirty bit (eg ext3 journaling).
192 * Hence dirty accounting check is placed after invalidation.
193 */
194 folio_cancel_dirty(folio);
195 folio_clear_mappedtodisk(folio);
196}
197
198/*
199 * This is for invalidate_mapping_pages(). That function can be called at
200 * any time, and is not supposed to throw away dirty pages. But pages can
201 * be marked dirty at any time too, so use remove_mapping which safely
202 * discards clean, unused pages.
203 *
204 * Returns non-zero if the page was successfully invalidated.
205 */
206static int
207invalidate_complete_page(struct address_space *mapping, struct page *page)
208{
209
210 if (page->mapping != mapping)
211 return 0;
212
213 if (page_has_private(page) && !try_to_release_page(page, 0))
214 return 0;
215
216 return remove_mapping(mapping, page);
217}
218
219int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
220{
221 if (folio->mapping != mapping)
222 return -EIO;
223
224 truncate_cleanup_folio(folio);
225 filemap_remove_folio(folio);
226 return 0;
227}
228
229/*
230 * Handle partial folios. The folio may be entirely within the
231 * range if a split has raced with us. If not, we zero the part of the
232 * folio that's within the [start, end] range, and then split the folio if
233 * it's large. split_page_range() will discard pages which now lie beyond
234 * i_size, and we rely on the caller to discard pages which lie within a
235 * newly created hole.
236 *
237 * Returns false if splitting failed so the caller can avoid
238 * discarding the entire folio which is stubbornly unsplit.
239 */
240bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
241{
242 loff_t pos = folio_pos(folio);
243 unsigned int offset, length;
244
245 if (pos < start)
246 offset = start - pos;
247 else
248 offset = 0;
249 length = folio_size(folio);
250 if (pos + length <= (u64)end)
251 length = length - offset;
252 else
253 length = end + 1 - pos - offset;
254
255 folio_wait_writeback(folio);
256 if (length == folio_size(folio)) {
257 truncate_inode_folio(folio->mapping, folio);
258 return true;
259 }
260
261 /*
262 * We may be zeroing pages we're about to discard, but it avoids
263 * doing a complex calculation here, and then doing the zeroing
264 * anyway if the page split fails.
265 */
266 folio_zero_range(folio, offset, length);
267
268 if (folio_has_private(folio))
269 folio_invalidate(folio, offset, length);
270 if (!folio_test_large(folio))
271 return true;
272 if (split_huge_page(&folio->page) == 0)
273 return true;
274 if (folio_test_dirty(folio))
275 return false;
276 truncate_inode_folio(folio->mapping, folio);
277 return true;
278}
279
280/*
281 * Used to get rid of pages on hardware memory corruption.
282 */
283int generic_error_remove_page(struct address_space *mapping, struct page *page)
284{
285 VM_BUG_ON_PAGE(PageTail(page), page);
286
287 if (!mapping)
288 return -EINVAL;
289 /*
290 * Only punch for normal data pages for now.
291 * Handling other types like directories would need more auditing.
292 */
293 if (!S_ISREG(mapping->host->i_mode))
294 return -EIO;
295 return truncate_inode_folio(mapping, page_folio(page));
296}
297EXPORT_SYMBOL(generic_error_remove_page);
298
299/*
300 * Safely invalidate one page from its pagecache mapping.
301 * It only drops clean, unused pages. The page must be locked.
302 *
303 * Returns 1 if the page is successfully invalidated, otherwise 0.
304 */
305int invalidate_inode_page(struct page *page)
306{
307 struct address_space *mapping = page_mapping(page);
308 if (!mapping)
309 return 0;
310 if (PageDirty(page) || PageWriteback(page))
311 return 0;
312 if (page_mapped(page))
313 return 0;
314 return invalidate_complete_page(mapping, page);
315}
316
317/**
318 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
319 * @mapping: mapping to truncate
320 * @lstart: offset from which to truncate
321 * @lend: offset to which to truncate (inclusive)
322 *
323 * Truncate the page cache, removing the pages that are between
324 * specified offsets (and zeroing out partial pages
325 * if lstart or lend + 1 is not page aligned).
326 *
327 * Truncate takes two passes - the first pass is nonblocking. It will not
328 * block on page locks and it will not block on writeback. The second pass
329 * will wait. This is to prevent as much IO as possible in the affected region.
330 * The first pass will remove most pages, so the search cost of the second pass
331 * is low.
332 *
333 * We pass down the cache-hot hint to the page freeing code. Even if the
334 * mapping is large, it is probably the case that the final pages are the most
335 * recently touched, and freeing happens in ascending file offset order.
336 *
337 * Note that since ->invalidatepage() accepts range to invalidate
338 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
339 * page aligned properly.
340 */
341void truncate_inode_pages_range(struct address_space *mapping,
342 loff_t lstart, loff_t lend)
343{
344 pgoff_t start; /* inclusive */
345 pgoff_t end; /* exclusive */
346 struct folio_batch fbatch;
347 pgoff_t indices[PAGEVEC_SIZE];
348 pgoff_t index;
349 int i;
350 struct folio *folio;
351 bool same_folio;
352
353 if (mapping_empty(mapping))
354 return;
355
356 /*
357 * 'start' and 'end' always covers the range of pages to be fully
358 * truncated. Partial pages are covered with 'partial_start' at the
359 * start of the range and 'partial_end' at the end of the range.
360 * Note that 'end' is exclusive while 'lend' is inclusive.
361 */
362 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
363 if (lend == -1)
364 /*
365 * lend == -1 indicates end-of-file so we have to set 'end'
366 * to the highest possible pgoff_t and since the type is
367 * unsigned we're using -1.
368 */
369 end = -1;
370 else
371 end = (lend + 1) >> PAGE_SHIFT;
372
373 folio_batch_init(&fbatch);
374 index = start;
375 while (index < end && find_lock_entries(mapping, index, end - 1,
376 &fbatch, indices)) {
377 index = indices[folio_batch_count(&fbatch) - 1] + 1;
378 truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
379 for (i = 0; i < folio_batch_count(&fbatch); i++)
380 truncate_cleanup_folio(fbatch.folios[i]);
381 delete_from_page_cache_batch(mapping, &fbatch);
382 for (i = 0; i < folio_batch_count(&fbatch); i++)
383 folio_unlock(fbatch.folios[i]);
384 folio_batch_release(&fbatch);
385 cond_resched();
386 }
387
388 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
389 folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
390 if (folio) {
391 same_folio = lend < folio_pos(folio) + folio_size(folio);
392 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
393 start = folio->index + folio_nr_pages(folio);
394 if (same_folio)
395 end = folio->index;
396 }
397 folio_unlock(folio);
398 folio_put(folio);
399 folio = NULL;
400 }
401
402 if (!same_folio)
403 folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
404 FGP_LOCK, 0);
405 if (folio) {
406 if (!truncate_inode_partial_folio(folio, lstart, lend))
407 end = folio->index;
408 folio_unlock(folio);
409 folio_put(folio);
410 }
411
412 index = start;
413 while (index < end) {
414 cond_resched();
415 if (!find_get_entries(mapping, index, end - 1, &fbatch,
416 indices)) {
417 /* If all gone from start onwards, we're done */
418 if (index == start)
419 break;
420 /* Otherwise restart to make sure all gone */
421 index = start;
422 continue;
423 }
424
425 for (i = 0; i < folio_batch_count(&fbatch); i++) {
426 struct folio *folio = fbatch.folios[i];
427
428 /* We rely upon deletion not changing page->index */
429 index = indices[i];
430
431 if (xa_is_value(folio))
432 continue;
433
434 folio_lock(folio);
435 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
436 folio_wait_writeback(folio);
437 truncate_inode_folio(mapping, folio);
438 folio_unlock(folio);
439 index = folio_index(folio) + folio_nr_pages(folio) - 1;
440 }
441 truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
442 folio_batch_release(&fbatch);
443 index++;
444 }
445}
446EXPORT_SYMBOL(truncate_inode_pages_range);
447
448/**
449 * truncate_inode_pages - truncate *all* the pages from an offset
450 * @mapping: mapping to truncate
451 * @lstart: offset from which to truncate
452 *
453 * Called under (and serialised by) inode->i_rwsem and
454 * mapping->invalidate_lock.
455 *
456 * Note: When this function returns, there can be a page in the process of
457 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
458 * mapping->nrpages can be non-zero when this function returns even after
459 * truncation of the whole mapping.
460 */
461void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
462{
463 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
464}
465EXPORT_SYMBOL(truncate_inode_pages);
466
467/**
468 * truncate_inode_pages_final - truncate *all* pages before inode dies
469 * @mapping: mapping to truncate
470 *
471 * Called under (and serialized by) inode->i_rwsem.
472 *
473 * Filesystems have to use this in the .evict_inode path to inform the
474 * VM that this is the final truncate and the inode is going away.
475 */
476void truncate_inode_pages_final(struct address_space *mapping)
477{
478 /*
479 * Page reclaim can not participate in regular inode lifetime
480 * management (can't call iput()) and thus can race with the
481 * inode teardown. Tell it when the address space is exiting,
482 * so that it does not install eviction information after the
483 * final truncate has begun.
484 */
485 mapping_set_exiting(mapping);
486
487 if (!mapping_empty(mapping)) {
488 /*
489 * As truncation uses a lockless tree lookup, cycle
490 * the tree lock to make sure any ongoing tree
491 * modification that does not see AS_EXITING is
492 * completed before starting the final truncate.
493 */
494 xa_lock_irq(&mapping->i_pages);
495 xa_unlock_irq(&mapping->i_pages);
496 }
497
498 truncate_inode_pages(mapping, 0);
499}
500EXPORT_SYMBOL(truncate_inode_pages_final);
501
502static unsigned long __invalidate_mapping_pages(struct address_space *mapping,
503 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
504{
505 pgoff_t indices[PAGEVEC_SIZE];
506 struct folio_batch fbatch;
507 pgoff_t index = start;
508 unsigned long ret;
509 unsigned long count = 0;
510 int i;
511
512 folio_batch_init(&fbatch);
513 while (find_lock_entries(mapping, index, end, &fbatch, indices)) {
514 for (i = 0; i < folio_batch_count(&fbatch); i++) {
515 struct page *page = &fbatch.folios[i]->page;
516
517 /* We rely upon deletion not changing page->index */
518 index = indices[i];
519
520 if (xa_is_value(page)) {
521 count += invalidate_exceptional_entry(mapping,
522 index,
523 page);
524 continue;
525 }
526 index += thp_nr_pages(page) - 1;
527
528 ret = invalidate_inode_page(page);
529 unlock_page(page);
530 /*
531 * Invalidation is a hint that the page is no longer
532 * of interest and try to speed up its reclaim.
533 */
534 if (!ret) {
535 deactivate_file_page(page);
536 /* It is likely on the pagevec of a remote CPU */
537 if (nr_pagevec)
538 (*nr_pagevec)++;
539 }
540 count += ret;
541 }
542 folio_batch_remove_exceptionals(&fbatch);
543 folio_batch_release(&fbatch);
544 cond_resched();
545 index++;
546 }
547 return count;
548}
549
550/**
551 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
552 * @mapping: the address_space which holds the cache to invalidate
553 * @start: the offset 'from' which to invalidate
554 * @end: the offset 'to' which to invalidate (inclusive)
555 *
556 * This function removes pages that are clean, unmapped and unlocked,
557 * as well as shadow entries. It will not block on IO activity.
558 *
559 * If you want to remove all the pages of one inode, regardless of
560 * their use and writeback state, use truncate_inode_pages().
561 *
562 * Return: the number of the cache entries that were invalidated
563 */
564unsigned long invalidate_mapping_pages(struct address_space *mapping,
565 pgoff_t start, pgoff_t end)
566{
567 return __invalidate_mapping_pages(mapping, start, end, NULL);
568}
569EXPORT_SYMBOL(invalidate_mapping_pages);
570
571/**
572 * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode
573 * @mapping: the address_space which holds the pages to invalidate
574 * @start: the offset 'from' which to invalidate
575 * @end: the offset 'to' which to invalidate (inclusive)
576 * @nr_pagevec: invalidate failed page number for caller
577 *
578 * This helper is similar to invalidate_mapping_pages(), except that it accounts
579 * for pages that are likely on a pagevec and counts them in @nr_pagevec, which
580 * will be used by the caller.
581 */
582void invalidate_mapping_pagevec(struct address_space *mapping,
583 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
584{
585 __invalidate_mapping_pages(mapping, start, end, nr_pagevec);
586}
587
588/*
589 * This is like invalidate_complete_page(), except it ignores the page's
590 * refcount. We do this because invalidate_inode_pages2() needs stronger
591 * invalidation guarantees, and cannot afford to leave pages behind because
592 * shrink_page_list() has a temp ref on them, or because they're transiently
593 * sitting in the lru_cache_add() pagevecs.
594 */
595static int invalidate_complete_folio2(struct address_space *mapping,
596 struct folio *folio)
597{
598 if (folio->mapping != mapping)
599 return 0;
600
601 if (folio_has_private(folio) &&
602 !filemap_release_folio(folio, GFP_KERNEL))
603 return 0;
604
605 spin_lock(&mapping->host->i_lock);
606 xa_lock_irq(&mapping->i_pages);
607 if (folio_test_dirty(folio))
608 goto failed;
609
610 BUG_ON(folio_has_private(folio));
611 __filemap_remove_folio(folio, NULL);
612 xa_unlock_irq(&mapping->i_pages);
613 if (mapping_shrinkable(mapping))
614 inode_add_lru(mapping->host);
615 spin_unlock(&mapping->host->i_lock);
616
617 filemap_free_folio(mapping, folio);
618 return 1;
619failed:
620 xa_unlock_irq(&mapping->i_pages);
621 spin_unlock(&mapping->host->i_lock);
622 return 0;
623}
624
625static int do_launder_folio(struct address_space *mapping, struct folio *folio)
626{
627 if (!folio_test_dirty(folio))
628 return 0;
629 if (folio->mapping != mapping || mapping->a_ops->launder_page == NULL)
630 return 0;
631 return mapping->a_ops->launder_page(&folio->page);
632}
633
634/**
635 * invalidate_inode_pages2_range - remove range of pages from an address_space
636 * @mapping: the address_space
637 * @start: the page offset 'from' which to invalidate
638 * @end: the page offset 'to' which to invalidate (inclusive)
639 *
640 * Any pages which are found to be mapped into pagetables are unmapped prior to
641 * invalidation.
642 *
643 * Return: -EBUSY if any pages could not be invalidated.
644 */
645int invalidate_inode_pages2_range(struct address_space *mapping,
646 pgoff_t start, pgoff_t end)
647{
648 pgoff_t indices[PAGEVEC_SIZE];
649 struct folio_batch fbatch;
650 pgoff_t index;
651 int i;
652 int ret = 0;
653 int ret2 = 0;
654 int did_range_unmap = 0;
655
656 if (mapping_empty(mapping))
657 return 0;
658
659 folio_batch_init(&fbatch);
660 index = start;
661 while (find_get_entries(mapping, index, end, &fbatch, indices)) {
662 for (i = 0; i < folio_batch_count(&fbatch); i++) {
663 struct folio *folio = fbatch.folios[i];
664
665 /* We rely upon deletion not changing folio->index */
666 index = indices[i];
667
668 if (xa_is_value(folio)) {
669 if (!invalidate_exceptional_entry2(mapping,
670 index, folio))
671 ret = -EBUSY;
672 continue;
673 }
674
675 if (!did_range_unmap && folio_mapped(folio)) {
676 /*
677 * If folio is mapped, before taking its lock,
678 * zap the rest of the file in one hit.
679 */
680 unmap_mapping_pages(mapping, index,
681 (1 + end - index), false);
682 did_range_unmap = 1;
683 }
684
685 folio_lock(folio);
686 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
687 if (folio->mapping != mapping) {
688 folio_unlock(folio);
689 continue;
690 }
691 folio_wait_writeback(folio);
692
693 if (folio_mapped(folio))
694 unmap_mapping_folio(folio);
695 BUG_ON(folio_mapped(folio));
696
697 ret2 = do_launder_folio(mapping, folio);
698 if (ret2 == 0) {
699 if (!invalidate_complete_folio2(mapping, folio))
700 ret2 = -EBUSY;
701 }
702 if (ret2 < 0)
703 ret = ret2;
704 folio_unlock(folio);
705 }
706 folio_batch_remove_exceptionals(&fbatch);
707 folio_batch_release(&fbatch);
708 cond_resched();
709 index++;
710 }
711 /*
712 * For DAX we invalidate page tables after invalidating page cache. We
713 * could invalidate page tables while invalidating each entry however
714 * that would be expensive. And doing range unmapping before doesn't
715 * work as we have no cheap way to find whether page cache entry didn't
716 * get remapped later.
717 */
718 if (dax_mapping(mapping)) {
719 unmap_mapping_pages(mapping, start, end - start + 1, false);
720 }
721 return ret;
722}
723EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
724
725/**
726 * invalidate_inode_pages2 - remove all pages from an address_space
727 * @mapping: the address_space
728 *
729 * Any pages which are found to be mapped into pagetables are unmapped prior to
730 * invalidation.
731 *
732 * Return: -EBUSY if any pages could not be invalidated.
733 */
734int invalidate_inode_pages2(struct address_space *mapping)
735{
736 return invalidate_inode_pages2_range(mapping, 0, -1);
737}
738EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
739
740/**
741 * truncate_pagecache - unmap and remove pagecache that has been truncated
742 * @inode: inode
743 * @newsize: new file size
744 *
745 * inode's new i_size must already be written before truncate_pagecache
746 * is called.
747 *
748 * This function should typically be called before the filesystem
749 * releases resources associated with the freed range (eg. deallocates
750 * blocks). This way, pagecache will always stay logically coherent
751 * with on-disk format, and the filesystem would not have to deal with
752 * situations such as writepage being called for a page that has already
753 * had its underlying blocks deallocated.
754 */
755void truncate_pagecache(struct inode *inode, loff_t newsize)
756{
757 struct address_space *mapping = inode->i_mapping;
758 loff_t holebegin = round_up(newsize, PAGE_SIZE);
759
760 /*
761 * unmap_mapping_range is called twice, first simply for
762 * efficiency so that truncate_inode_pages does fewer
763 * single-page unmaps. However after this first call, and
764 * before truncate_inode_pages finishes, it is possible for
765 * private pages to be COWed, which remain after
766 * truncate_inode_pages finishes, hence the second
767 * unmap_mapping_range call must be made for correctness.
768 */
769 unmap_mapping_range(mapping, holebegin, 0, 1);
770 truncate_inode_pages(mapping, newsize);
771 unmap_mapping_range(mapping, holebegin, 0, 1);
772}
773EXPORT_SYMBOL(truncate_pagecache);
774
775/**
776 * truncate_setsize - update inode and pagecache for a new file size
777 * @inode: inode
778 * @newsize: new file size
779 *
780 * truncate_setsize updates i_size and performs pagecache truncation (if
781 * necessary) to @newsize. It will be typically be called from the filesystem's
782 * setattr function when ATTR_SIZE is passed in.
783 *
784 * Must be called with a lock serializing truncates and writes (generally
785 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
786 * specific block truncation has been performed.
787 */
788void truncate_setsize(struct inode *inode, loff_t newsize)
789{
790 loff_t oldsize = inode->i_size;
791
792 i_size_write(inode, newsize);
793 if (newsize > oldsize)
794 pagecache_isize_extended(inode, oldsize, newsize);
795 truncate_pagecache(inode, newsize);
796}
797EXPORT_SYMBOL(truncate_setsize);
798
799/**
800 * pagecache_isize_extended - update pagecache after extension of i_size
801 * @inode: inode for which i_size was extended
802 * @from: original inode size
803 * @to: new inode size
804 *
805 * Handle extension of inode size either caused by extending truncate or by
806 * write starting after current i_size. We mark the page straddling current
807 * i_size RO so that page_mkwrite() is called on the nearest write access to
808 * the page. This way filesystem can be sure that page_mkwrite() is called on
809 * the page before user writes to the page via mmap after the i_size has been
810 * changed.
811 *
812 * The function must be called after i_size is updated so that page fault
813 * coming after we unlock the page will already see the new i_size.
814 * The function must be called while we still hold i_rwsem - this not only
815 * makes sure i_size is stable but also that userspace cannot observe new
816 * i_size value before we are prepared to store mmap writes at new inode size.
817 */
818void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
819{
820 int bsize = i_blocksize(inode);
821 loff_t rounded_from;
822 struct page *page;
823 pgoff_t index;
824
825 WARN_ON(to > inode->i_size);
826
827 if (from >= to || bsize == PAGE_SIZE)
828 return;
829 /* Page straddling @from will not have any hole block created? */
830 rounded_from = round_up(from, bsize);
831 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
832 return;
833
834 index = from >> PAGE_SHIFT;
835 page = find_lock_page(inode->i_mapping, index);
836 /* Page not cached? Nothing to do */
837 if (!page)
838 return;
839 /*
840 * See clear_page_dirty_for_io() for details why set_page_dirty()
841 * is needed.
842 */
843 if (page_mkclean(page))
844 set_page_dirty(page);
845 unlock_page(page);
846 put_page(page);
847}
848EXPORT_SYMBOL(pagecache_isize_extended);
849
850/**
851 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
852 * @inode: inode
853 * @lstart: offset of beginning of hole
854 * @lend: offset of last byte of hole
855 *
856 * This function should typically be called before the filesystem
857 * releases resources associated with the freed range (eg. deallocates
858 * blocks). This way, pagecache will always stay logically coherent
859 * with on-disk format, and the filesystem would not have to deal with
860 * situations such as writepage being called for a page that has already
861 * had its underlying blocks deallocated.
862 */
863void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
864{
865 struct address_space *mapping = inode->i_mapping;
866 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
867 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
868 /*
869 * This rounding is currently just for example: unmap_mapping_range
870 * expands its hole outwards, whereas we want it to contract the hole
871 * inwards. However, existing callers of truncate_pagecache_range are
872 * doing their own page rounding first. Note that unmap_mapping_range
873 * allows holelen 0 for all, and we allow lend -1 for end of file.
874 */
875
876 /*
877 * Unlike in truncate_pagecache, unmap_mapping_range is called only
878 * once (before truncating pagecache), and without "even_cows" flag:
879 * hole-punching should not remove private COWed pages from the hole.
880 */
881 if ((u64)unmap_end > (u64)unmap_start)
882 unmap_mapping_range(mapping, unmap_start,
883 1 + unmap_end - unmap_start, 0);
884 truncate_inode_pages_range(mapping, lstart, lend);
885}
886EXPORT_SYMBOL(truncate_pagecache_range);
This page took 0.042474 seconds and 4 git commands to generate.