]>
Commit | Line | Data |
---|---|---|
1 | config DEFCONFIG_LIST | |
2 | string | |
3 | depends on !UML | |
4 | option defconfig_list | |
5 | default "/lib/modules/$(shell,uname -r)/.config" | |
6 | default "/etc/kernel-config" | |
7 | default "/boot/config-$(shell,uname -r)" | |
8 | default ARCH_DEFCONFIG | |
9 | default "arch/$(ARCH)/defconfig" | |
10 | ||
11 | config CC_IS_GCC | |
12 | def_bool $(success,$(CC) --version | head -n 1 | grep -q gcc) | |
13 | ||
14 | config GCC_VERSION | |
15 | int | |
16 | default $(shell,$(srctree)/scripts/gcc-version.sh -p $(CC) | sed 's/^0*//') if CC_IS_GCC | |
17 | default 0 | |
18 | ||
19 | config CC_IS_CLANG | |
20 | def_bool $(success,$(CC) --version | head -n 1 | grep -q clang) | |
21 | ||
22 | config CLANG_VERSION | |
23 | int | |
24 | default $(shell,$(srctree)/scripts/clang-version.sh $(CC)) | |
25 | ||
26 | config CONSTRUCTORS | |
27 | bool | |
28 | depends on !UML | |
29 | ||
30 | config IRQ_WORK | |
31 | bool | |
32 | ||
33 | config BUILDTIME_EXTABLE_SORT | |
34 | bool | |
35 | ||
36 | config THREAD_INFO_IN_TASK | |
37 | bool | |
38 | help | |
39 | Select this to move thread_info off the stack into task_struct. To | |
40 | make this work, an arch will need to remove all thread_info fields | |
41 | except flags and fix any runtime bugs. | |
42 | ||
43 | One subtle change that will be needed is to use try_get_task_stack() | |
44 | and put_task_stack() in save_thread_stack_tsk() and get_wchan(). | |
45 | ||
46 | menu "General setup" | |
47 | ||
48 | config BROKEN | |
49 | bool | |
50 | ||
51 | config BROKEN_ON_SMP | |
52 | bool | |
53 | depends on BROKEN || !SMP | |
54 | default y | |
55 | ||
56 | config INIT_ENV_ARG_LIMIT | |
57 | int | |
58 | default 32 if !UML | |
59 | default 128 if UML | |
60 | help | |
61 | Maximum of each of the number of arguments and environment | |
62 | variables passed to init from the kernel command line. | |
63 | ||
64 | config COMPILE_TEST | |
65 | bool "Compile also drivers which will not load" | |
66 | depends on !UML | |
67 | default n | |
68 | help | |
69 | Some drivers can be compiled on a different platform than they are | |
70 | intended to be run on. Despite they cannot be loaded there (or even | |
71 | when they load they cannot be used due to missing HW support), | |
72 | developers still, opposing to distributors, might want to build such | |
73 | drivers to compile-test them. | |
74 | ||
75 | If you are a developer and want to build everything available, say Y | |
76 | here. If you are a user/distributor, say N here to exclude useless | |
77 | drivers to be distributed. | |
78 | ||
79 | config LOCALVERSION | |
80 | string "Local version - append to kernel release" | |
81 | help | |
82 | Append an extra string to the end of your kernel version. | |
83 | This will show up when you type uname, for example. | |
84 | The string you set here will be appended after the contents of | |
85 | any files with a filename matching localversion* in your | |
86 | object and source tree, in that order. Your total string can | |
87 | be a maximum of 64 characters. | |
88 | ||
89 | config LOCALVERSION_AUTO | |
90 | bool "Automatically append version information to the version string" | |
91 | default y | |
92 | depends on !COMPILE_TEST | |
93 | help | |
94 | This will try to automatically determine if the current tree is a | |
95 | release tree by looking for git tags that belong to the current | |
96 | top of tree revision. | |
97 | ||
98 | A string of the format -gxxxxxxxx will be added to the localversion | |
99 | if a git-based tree is found. The string generated by this will be | |
100 | appended after any matching localversion* files, and after the value | |
101 | set in CONFIG_LOCALVERSION. | |
102 | ||
103 | (The actual string used here is the first eight characters produced | |
104 | by running the command: | |
105 | ||
106 | $ git rev-parse --verify HEAD | |
107 | ||
108 | which is done within the script "scripts/setlocalversion".) | |
109 | ||
110 | config BUILD_SALT | |
111 | string "Build ID Salt" | |
112 | default "" | |
113 | help | |
114 | The build ID is used to link binaries and their debug info. Setting | |
115 | this option will use the value in the calculation of the build id. | |
116 | This is mostly useful for distributions which want to ensure the | |
117 | build is unique between builds. It's safe to leave the default. | |
118 | ||
119 | config HAVE_KERNEL_GZIP | |
120 | bool | |
121 | ||
122 | config HAVE_KERNEL_BZIP2 | |
123 | bool | |
124 | ||
125 | config HAVE_KERNEL_LZMA | |
126 | bool | |
127 | ||
128 | config HAVE_KERNEL_XZ | |
129 | bool | |
130 | ||
131 | config HAVE_KERNEL_LZO | |
132 | bool | |
133 | ||
134 | config HAVE_KERNEL_LZ4 | |
135 | bool | |
136 | ||
137 | config HAVE_KERNEL_UNCOMPRESSED | |
138 | bool | |
139 | ||
140 | choice | |
141 | prompt "Kernel compression mode" | |
142 | default KERNEL_GZIP | |
143 | depends on HAVE_KERNEL_GZIP || HAVE_KERNEL_BZIP2 || HAVE_KERNEL_LZMA || HAVE_KERNEL_XZ || HAVE_KERNEL_LZO || HAVE_KERNEL_LZ4 || HAVE_KERNEL_UNCOMPRESSED | |
144 | help | |
145 | The linux kernel is a kind of self-extracting executable. | |
146 | Several compression algorithms are available, which differ | |
147 | in efficiency, compression and decompression speed. | |
148 | Compression speed is only relevant when building a kernel. | |
149 | Decompression speed is relevant at each boot. | |
150 | ||
151 | If you have any problems with bzip2 or lzma compressed | |
152 | kernels, mail me (Alain Knaff) <[email protected]>. (An older | |
153 | version of this functionality (bzip2 only), for 2.4, was | |
154 | supplied by Christian Ludwig) | |
155 | ||
156 | High compression options are mostly useful for users, who | |
157 | are low on disk space (embedded systems), but for whom ram | |
158 | size matters less. | |
159 | ||
160 | If in doubt, select 'gzip' | |
161 | ||
162 | config KERNEL_GZIP | |
163 | bool "Gzip" | |
164 | depends on HAVE_KERNEL_GZIP | |
165 | help | |
166 | The old and tried gzip compression. It provides a good balance | |
167 | between compression ratio and decompression speed. | |
168 | ||
169 | config KERNEL_BZIP2 | |
170 | bool "Bzip2" | |
171 | depends on HAVE_KERNEL_BZIP2 | |
172 | help | |
173 | Its compression ratio and speed is intermediate. | |
174 | Decompression speed is slowest among the choices. The kernel | |
175 | size is about 10% smaller with bzip2, in comparison to gzip. | |
176 | Bzip2 uses a large amount of memory. For modern kernels you | |
177 | will need at least 8MB RAM or more for booting. | |
178 | ||
179 | config KERNEL_LZMA | |
180 | bool "LZMA" | |
181 | depends on HAVE_KERNEL_LZMA | |
182 | help | |
183 | This compression algorithm's ratio is best. Decompression speed | |
184 | is between gzip and bzip2. Compression is slowest. | |
185 | The kernel size is about 33% smaller with LZMA in comparison to gzip. | |
186 | ||
187 | config KERNEL_XZ | |
188 | bool "XZ" | |
189 | depends on HAVE_KERNEL_XZ | |
190 | help | |
191 | XZ uses the LZMA2 algorithm and instruction set specific | |
192 | BCJ filters which can improve compression ratio of executable | |
193 | code. The size of the kernel is about 30% smaller with XZ in | |
194 | comparison to gzip. On architectures for which there is a BCJ | |
195 | filter (i386, x86_64, ARM, IA-64, PowerPC, and SPARC), XZ | |
196 | will create a few percent smaller kernel than plain LZMA. | |
197 | ||
198 | The speed is about the same as with LZMA: The decompression | |
199 | speed of XZ is better than that of bzip2 but worse than gzip | |
200 | and LZO. Compression is slow. | |
201 | ||
202 | config KERNEL_LZO | |
203 | bool "LZO" | |
204 | depends on HAVE_KERNEL_LZO | |
205 | help | |
206 | Its compression ratio is the poorest among the choices. The kernel | |
207 | size is about 10% bigger than gzip; however its speed | |
208 | (both compression and decompression) is the fastest. | |
209 | ||
210 | config KERNEL_LZ4 | |
211 | bool "LZ4" | |
212 | depends on HAVE_KERNEL_LZ4 | |
213 | help | |
214 | LZ4 is an LZ77-type compressor with a fixed, byte-oriented encoding. | |
215 | A preliminary version of LZ4 de/compression tool is available at | |
216 | <https://code.google.com/p/lz4/>. | |
217 | ||
218 | Its compression ratio is worse than LZO. The size of the kernel | |
219 | is about 8% bigger than LZO. But the decompression speed is | |
220 | faster than LZO. | |
221 | ||
222 | config KERNEL_UNCOMPRESSED | |
223 | bool "None" | |
224 | depends on HAVE_KERNEL_UNCOMPRESSED | |
225 | help | |
226 | Produce uncompressed kernel image. This option is usually not what | |
227 | you want. It is useful for debugging the kernel in slow simulation | |
228 | environments, where decompressing and moving the kernel is awfully | |
229 | slow. This option allows early boot code to skip the decompressor | |
230 | and jump right at uncompressed kernel image. | |
231 | ||
232 | endchoice | |
233 | ||
234 | config DEFAULT_HOSTNAME | |
235 | string "Default hostname" | |
236 | default "(none)" | |
237 | help | |
238 | This option determines the default system hostname before userspace | |
239 | calls sethostname(2). The kernel traditionally uses "(none)" here, | |
240 | but you may wish to use a different default here to make a minimal | |
241 | system more usable with less configuration. | |
242 | ||
243 | # | |
244 | # For some reason microblaze and nios2 hard code SWAP=n. Hopefully we can | |
245 | # add proper SWAP support to them, in which case this can be remove. | |
246 | # | |
247 | config ARCH_NO_SWAP | |
248 | bool | |
249 | ||
250 | config SWAP | |
251 | bool "Support for paging of anonymous memory (swap)" | |
252 | depends on MMU && BLOCK && !ARCH_NO_SWAP | |
253 | default y | |
254 | help | |
255 | This option allows you to choose whether you want to have support | |
256 | for so called swap devices or swap files in your kernel that are | |
257 | used to provide more virtual memory than the actual RAM present | |
258 | in your computer. If unsure say Y. | |
259 | ||
260 | config SYSVIPC | |
261 | bool "System V IPC" | |
262 | ---help--- | |
263 | Inter Process Communication is a suite of library functions and | |
264 | system calls which let processes (running programs) synchronize and | |
265 | exchange information. It is generally considered to be a good thing, | |
266 | and some programs won't run unless you say Y here. In particular, if | |
267 | you want to run the DOS emulator dosemu under Linux (read the | |
268 | DOSEMU-HOWTO, available from <http://www.tldp.org/docs.html#howto>), | |
269 | you'll need to say Y here. | |
270 | ||
271 | You can find documentation about IPC with "info ipc" and also in | |
272 | section 6.4 of the Linux Programmer's Guide, available from | |
273 | <http://www.tldp.org/guides.html>. | |
274 | ||
275 | config SYSVIPC_SYSCTL | |
276 | bool | |
277 | depends on SYSVIPC | |
278 | depends on SYSCTL | |
279 | default y | |
280 | ||
281 | config POSIX_MQUEUE | |
282 | bool "POSIX Message Queues" | |
283 | depends on NET | |
284 | ---help--- | |
285 | POSIX variant of message queues is a part of IPC. In POSIX message | |
286 | queues every message has a priority which decides about succession | |
287 | of receiving it by a process. If you want to compile and run | |
288 | programs written e.g. for Solaris with use of its POSIX message | |
289 | queues (functions mq_*) say Y here. | |
290 | ||
291 | POSIX message queues are visible as a filesystem called 'mqueue' | |
292 | and can be mounted somewhere if you want to do filesystem | |
293 | operations on message queues. | |
294 | ||
295 | If unsure, say Y. | |
296 | ||
297 | config POSIX_MQUEUE_SYSCTL | |
298 | bool | |
299 | depends on POSIX_MQUEUE | |
300 | depends on SYSCTL | |
301 | default y | |
302 | ||
303 | config CROSS_MEMORY_ATTACH | |
304 | bool "Enable process_vm_readv/writev syscalls" | |
305 | depends on MMU | |
306 | default y | |
307 | help | |
308 | Enabling this option adds the system calls process_vm_readv and | |
309 | process_vm_writev which allow a process with the correct privileges | |
310 | to directly read from or write to another process' address space. | |
311 | See the man page for more details. | |
312 | ||
313 | config USELIB | |
314 | bool "uselib syscall" | |
315 | def_bool ALPHA || M68K || SPARC || X86_32 || IA32_EMULATION | |
316 | help | |
317 | This option enables the uselib syscall, a system call used in the | |
318 | dynamic linker from libc5 and earlier. glibc does not use this | |
319 | system call. If you intend to run programs built on libc5 or | |
320 | earlier, you may need to enable this syscall. Current systems | |
321 | running glibc can safely disable this. | |
322 | ||
323 | config AUDIT | |
324 | bool "Auditing support" | |
325 | depends on NET | |
326 | help | |
327 | Enable auditing infrastructure that can be used with another | |
328 | kernel subsystem, such as SELinux (which requires this for | |
329 | logging of avc messages output). System call auditing is included | |
330 | on architectures which support it. | |
331 | ||
332 | config HAVE_ARCH_AUDITSYSCALL | |
333 | bool | |
334 | ||
335 | config AUDITSYSCALL | |
336 | def_bool y | |
337 | depends on AUDIT && HAVE_ARCH_AUDITSYSCALL | |
338 | ||
339 | config AUDIT_WATCH | |
340 | def_bool y | |
341 | depends on AUDITSYSCALL | |
342 | select FSNOTIFY | |
343 | ||
344 | config AUDIT_TREE | |
345 | def_bool y | |
346 | depends on AUDITSYSCALL | |
347 | select FSNOTIFY | |
348 | ||
349 | source "kernel/irq/Kconfig" | |
350 | source "kernel/time/Kconfig" | |
351 | source "kernel/Kconfig.preempt" | |
352 | ||
353 | menu "CPU/Task time and stats accounting" | |
354 | ||
355 | config VIRT_CPU_ACCOUNTING | |
356 | bool | |
357 | ||
358 | choice | |
359 | prompt "Cputime accounting" | |
360 | default TICK_CPU_ACCOUNTING if !PPC64 | |
361 | default VIRT_CPU_ACCOUNTING_NATIVE if PPC64 | |
362 | ||
363 | # Kind of a stub config for the pure tick based cputime accounting | |
364 | config TICK_CPU_ACCOUNTING | |
365 | bool "Simple tick based cputime accounting" | |
366 | depends on !S390 && !NO_HZ_FULL | |
367 | help | |
368 | This is the basic tick based cputime accounting that maintains | |
369 | statistics about user, system and idle time spent on per jiffies | |
370 | granularity. | |
371 | ||
372 | If unsure, say Y. | |
373 | ||
374 | config VIRT_CPU_ACCOUNTING_NATIVE | |
375 | bool "Deterministic task and CPU time accounting" | |
376 | depends on HAVE_VIRT_CPU_ACCOUNTING && !NO_HZ_FULL | |
377 | select VIRT_CPU_ACCOUNTING | |
378 | help | |
379 | Select this option to enable more accurate task and CPU time | |
380 | accounting. This is done by reading a CPU counter on each | |
381 | kernel entry and exit and on transitions within the kernel | |
382 | between system, softirq and hardirq state, so there is a | |
383 | small performance impact. In the case of s390 or IBM POWER > 5, | |
384 | this also enables accounting of stolen time on logically-partitioned | |
385 | systems. | |
386 | ||
387 | config VIRT_CPU_ACCOUNTING_GEN | |
388 | bool "Full dynticks CPU time accounting" | |
389 | depends on HAVE_CONTEXT_TRACKING | |
390 | depends on HAVE_VIRT_CPU_ACCOUNTING_GEN | |
391 | select VIRT_CPU_ACCOUNTING | |
392 | select CONTEXT_TRACKING | |
393 | help | |
394 | Select this option to enable task and CPU time accounting on full | |
395 | dynticks systems. This accounting is implemented by watching every | |
396 | kernel-user boundaries using the context tracking subsystem. | |
397 | The accounting is thus performed at the expense of some significant | |
398 | overhead. | |
399 | ||
400 | For now this is only useful if you are working on the full | |
401 | dynticks subsystem development. | |
402 | ||
403 | If unsure, say N. | |
404 | ||
405 | endchoice | |
406 | ||
407 | config IRQ_TIME_ACCOUNTING | |
408 | bool "Fine granularity task level IRQ time accounting" | |
409 | depends on HAVE_IRQ_TIME_ACCOUNTING && !VIRT_CPU_ACCOUNTING_NATIVE | |
410 | help | |
411 | Select this option to enable fine granularity task irq time | |
412 | accounting. This is done by reading a timestamp on each | |
413 | transitions between softirq and hardirq state, so there can be a | |
414 | small performance impact. | |
415 | ||
416 | If in doubt, say N here. | |
417 | ||
418 | config BSD_PROCESS_ACCT | |
419 | bool "BSD Process Accounting" | |
420 | depends on MULTIUSER | |
421 | help | |
422 | If you say Y here, a user level program will be able to instruct the | |
423 | kernel (via a special system call) to write process accounting | |
424 | information to a file: whenever a process exits, information about | |
425 | that process will be appended to the file by the kernel. The | |
426 | information includes things such as creation time, owning user, | |
427 | command name, memory usage, controlling terminal etc. (the complete | |
428 | list is in the struct acct in <file:include/linux/acct.h>). It is | |
429 | up to the user level program to do useful things with this | |
430 | information. This is generally a good idea, so say Y. | |
431 | ||
432 | config BSD_PROCESS_ACCT_V3 | |
433 | bool "BSD Process Accounting version 3 file format" | |
434 | depends on BSD_PROCESS_ACCT | |
435 | default n | |
436 | help | |
437 | If you say Y here, the process accounting information is written | |
438 | in a new file format that also logs the process IDs of each | |
439 | process and it's parent. Note that this file format is incompatible | |
440 | with previous v0/v1/v2 file formats, so you will need updated tools | |
441 | for processing it. A preliminary version of these tools is available | |
442 | at <http://www.gnu.org/software/acct/>. | |
443 | ||
444 | config TASKSTATS | |
445 | bool "Export task/process statistics through netlink" | |
446 | depends on NET | |
447 | depends on MULTIUSER | |
448 | default n | |
449 | help | |
450 | Export selected statistics for tasks/processes through the | |
451 | generic netlink interface. Unlike BSD process accounting, the | |
452 | statistics are available during the lifetime of tasks/processes as | |
453 | responses to commands. Like BSD accounting, they are sent to user | |
454 | space on task exit. | |
455 | ||
456 | Say N if unsure. | |
457 | ||
458 | config TASK_DELAY_ACCT | |
459 | bool "Enable per-task delay accounting" | |
460 | depends on TASKSTATS | |
461 | select SCHED_INFO | |
462 | help | |
463 | Collect information on time spent by a task waiting for system | |
464 | resources like cpu, synchronous block I/O completion and swapping | |
465 | in pages. Such statistics can help in setting a task's priorities | |
466 | relative to other tasks for cpu, io, rss limits etc. | |
467 | ||
468 | Say N if unsure. | |
469 | ||
470 | config TASK_XACCT | |
471 | bool "Enable extended accounting over taskstats" | |
472 | depends on TASKSTATS | |
473 | help | |
474 | Collect extended task accounting data and send the data | |
475 | to userland for processing over the taskstats interface. | |
476 | ||
477 | Say N if unsure. | |
478 | ||
479 | config TASK_IO_ACCOUNTING | |
480 | bool "Enable per-task storage I/O accounting" | |
481 | depends on TASK_XACCT | |
482 | help | |
483 | Collect information on the number of bytes of storage I/O which this | |
484 | task has caused. | |
485 | ||
486 | Say N if unsure. | |
487 | ||
488 | endmenu # "CPU/Task time and stats accounting" | |
489 | ||
490 | config CPU_ISOLATION | |
491 | bool "CPU isolation" | |
492 | depends on SMP || COMPILE_TEST | |
493 | default y | |
494 | help | |
495 | Make sure that CPUs running critical tasks are not disturbed by | |
496 | any source of "noise" such as unbound workqueues, timers, kthreads... | |
497 | Unbound jobs get offloaded to housekeeping CPUs. This is driven by | |
498 | the "isolcpus=" boot parameter. | |
499 | ||
500 | Say Y if unsure. | |
501 | ||
502 | source "kernel/rcu/Kconfig" | |
503 | ||
504 | config BUILD_BIN2C | |
505 | bool | |
506 | default n | |
507 | ||
508 | config IKCONFIG | |
509 | tristate "Kernel .config support" | |
510 | select BUILD_BIN2C | |
511 | ---help--- | |
512 | This option enables the complete Linux kernel ".config" file | |
513 | contents to be saved in the kernel. It provides documentation | |
514 | of which kernel options are used in a running kernel or in an | |
515 | on-disk kernel. This information can be extracted from the kernel | |
516 | image file with the script scripts/extract-ikconfig and used as | |
517 | input to rebuild the current kernel or to build another kernel. | |
518 | It can also be extracted from a running kernel by reading | |
519 | /proc/config.gz if enabled (below). | |
520 | ||
521 | config IKCONFIG_PROC | |
522 | bool "Enable access to .config through /proc/config.gz" | |
523 | depends on IKCONFIG && PROC_FS | |
524 | ---help--- | |
525 | This option enables access to the kernel configuration file | |
526 | through /proc/config.gz. | |
527 | ||
528 | config LOG_BUF_SHIFT | |
529 | int "Kernel log buffer size (16 => 64KB, 17 => 128KB)" | |
530 | range 12 25 | |
531 | default 17 | |
532 | depends on PRINTK | |
533 | help | |
534 | Select the minimal kernel log buffer size as a power of 2. | |
535 | The final size is affected by LOG_CPU_MAX_BUF_SHIFT config | |
536 | parameter, see below. Any higher size also might be forced | |
537 | by "log_buf_len" boot parameter. | |
538 | ||
539 | Examples: | |
540 | 17 => 128 KB | |
541 | 16 => 64 KB | |
542 | 15 => 32 KB | |
543 | 14 => 16 KB | |
544 | 13 => 8 KB | |
545 | 12 => 4 KB | |
546 | ||
547 | config LOG_CPU_MAX_BUF_SHIFT | |
548 | int "CPU kernel log buffer size contribution (13 => 8 KB, 17 => 128KB)" | |
549 | depends on SMP | |
550 | range 0 21 | |
551 | default 12 if !BASE_SMALL | |
552 | default 0 if BASE_SMALL | |
553 | depends on PRINTK | |
554 | help | |
555 | This option allows to increase the default ring buffer size | |
556 | according to the number of CPUs. The value defines the contribution | |
557 | of each CPU as a power of 2. The used space is typically only few | |
558 | lines however it might be much more when problems are reported, | |
559 | e.g. backtraces. | |
560 | ||
561 | The increased size means that a new buffer has to be allocated and | |
562 | the original static one is unused. It makes sense only on systems | |
563 | with more CPUs. Therefore this value is used only when the sum of | |
564 | contributions is greater than the half of the default kernel ring | |
565 | buffer as defined by LOG_BUF_SHIFT. The default values are set | |
566 | so that more than 64 CPUs are needed to trigger the allocation. | |
567 | ||
568 | Also this option is ignored when "log_buf_len" kernel parameter is | |
569 | used as it forces an exact (power of two) size of the ring buffer. | |
570 | ||
571 | The number of possible CPUs is used for this computation ignoring | |
572 | hotplugging making the computation optimal for the worst case | |
573 | scenario while allowing a simple algorithm to be used from bootup. | |
574 | ||
575 | Examples shift values and their meaning: | |
576 | 17 => 128 KB for each CPU | |
577 | 16 => 64 KB for each CPU | |
578 | 15 => 32 KB for each CPU | |
579 | 14 => 16 KB for each CPU | |
580 | 13 => 8 KB for each CPU | |
581 | 12 => 4 KB for each CPU | |
582 | ||
583 | config PRINTK_SAFE_LOG_BUF_SHIFT | |
584 | int "Temporary per-CPU printk log buffer size (12 => 4KB, 13 => 8KB)" | |
585 | range 10 21 | |
586 | default 13 | |
587 | depends on PRINTK | |
588 | help | |
589 | Select the size of an alternate printk per-CPU buffer where messages | |
590 | printed from usafe contexts are temporary stored. One example would | |
591 | be NMI messages, another one - printk recursion. The messages are | |
592 | copied to the main log buffer in a safe context to avoid a deadlock. | |
593 | The value defines the size as a power of 2. | |
594 | ||
595 | Those messages are rare and limited. The largest one is when | |
596 | a backtrace is printed. It usually fits into 4KB. Select | |
597 | 8KB if you want to be on the safe side. | |
598 | ||
599 | Examples: | |
600 | 17 => 128 KB for each CPU | |
601 | 16 => 64 KB for each CPU | |
602 | 15 => 32 KB for each CPU | |
603 | 14 => 16 KB for each CPU | |
604 | 13 => 8 KB for each CPU | |
605 | 12 => 4 KB for each CPU | |
606 | ||
607 | # | |
608 | # Architectures with an unreliable sched_clock() should select this: | |
609 | # | |
610 | config HAVE_UNSTABLE_SCHED_CLOCK | |
611 | bool | |
612 | ||
613 | config GENERIC_SCHED_CLOCK | |
614 | bool | |
615 | ||
616 | # | |
617 | # For architectures that want to enable the support for NUMA-affine scheduler | |
618 | # balancing logic: | |
619 | # | |
620 | config ARCH_SUPPORTS_NUMA_BALANCING | |
621 | bool | |
622 | ||
623 | # | |
624 | # For architectures that prefer to flush all TLBs after a number of pages | |
625 | # are unmapped instead of sending one IPI per page to flush. The architecture | |
626 | # must provide guarantees on what happens if a clean TLB cache entry is | |
627 | # written after the unmap. Details are in mm/rmap.c near the check for | |
628 | # should_defer_flush. The architecture should also consider if the full flush | |
629 | # and the refill costs are offset by the savings of sending fewer IPIs. | |
630 | config ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH | |
631 | bool | |
632 | ||
633 | # | |
634 | # For architectures that know their GCC __int128 support is sound | |
635 | # | |
636 | config ARCH_SUPPORTS_INT128 | |
637 | bool | |
638 | ||
639 | # For architectures that (ab)use NUMA to represent different memory regions | |
640 | # all cpu-local but of different latencies, such as SuperH. | |
641 | # | |
642 | config ARCH_WANT_NUMA_VARIABLE_LOCALITY | |
643 | bool | |
644 | ||
645 | config NUMA_BALANCING | |
646 | bool "Memory placement aware NUMA scheduler" | |
647 | depends on ARCH_SUPPORTS_NUMA_BALANCING | |
648 | depends on !ARCH_WANT_NUMA_VARIABLE_LOCALITY | |
649 | depends on SMP && NUMA && MIGRATION | |
650 | help | |
651 | This option adds support for automatic NUMA aware memory/task placement. | |
652 | The mechanism is quite primitive and is based on migrating memory when | |
653 | it has references to the node the task is running on. | |
654 | ||
655 | This system will be inactive on UMA systems. | |
656 | ||
657 | config NUMA_BALANCING_DEFAULT_ENABLED | |
658 | bool "Automatically enable NUMA aware memory/task placement" | |
659 | default y | |
660 | depends on NUMA_BALANCING | |
661 | help | |
662 | If set, automatic NUMA balancing will be enabled if running on a NUMA | |
663 | machine. | |
664 | ||
665 | menuconfig CGROUPS | |
666 | bool "Control Group support" | |
667 | select KERNFS | |
668 | help | |
669 | This option adds support for grouping sets of processes together, for | |
670 | use with process control subsystems such as Cpusets, CFS, memory | |
671 | controls or device isolation. | |
672 | See | |
673 | - Documentation/scheduler/sched-design-CFS.txt (CFS) | |
674 | - Documentation/cgroup-v1/ (features for grouping, isolation | |
675 | and resource control) | |
676 | ||
677 | Say N if unsure. | |
678 | ||
679 | if CGROUPS | |
680 | ||
681 | config PAGE_COUNTER | |
682 | bool | |
683 | ||
684 | config MEMCG | |
685 | bool "Memory controller" | |
686 | select PAGE_COUNTER | |
687 | select EVENTFD | |
688 | help | |
689 | Provides control over the memory footprint of tasks in a cgroup. | |
690 | ||
691 | config MEMCG_SWAP | |
692 | bool "Swap controller" | |
693 | depends on MEMCG && SWAP | |
694 | help | |
695 | Provides control over the swap space consumed by tasks in a cgroup. | |
696 | ||
697 | config MEMCG_SWAP_ENABLED | |
698 | bool "Swap controller enabled by default" | |
699 | depends on MEMCG_SWAP | |
700 | default y | |
701 | help | |
702 | Memory Resource Controller Swap Extension comes with its price in | |
703 | a bigger memory consumption. General purpose distribution kernels | |
704 | which want to enable the feature but keep it disabled by default | |
705 | and let the user enable it by swapaccount=1 boot command line | |
706 | parameter should have this option unselected. | |
707 | For those who want to have the feature enabled by default should | |
708 | select this option (if, for some reason, they need to disable it | |
709 | then swapaccount=0 does the trick). | |
710 | ||
711 | config MEMCG_KMEM | |
712 | bool | |
713 | depends on MEMCG && !SLOB | |
714 | default y | |
715 | ||
716 | config BLK_CGROUP | |
717 | bool "IO controller" | |
718 | depends on BLOCK | |
719 | default n | |
720 | ---help--- | |
721 | Generic block IO controller cgroup interface. This is the common | |
722 | cgroup interface which should be used by various IO controlling | |
723 | policies. | |
724 | ||
725 | Currently, CFQ IO scheduler uses it to recognize task groups and | |
726 | control disk bandwidth allocation (proportional time slice allocation) | |
727 | to such task groups. It is also used by bio throttling logic in | |
728 | block layer to implement upper limit in IO rates on a device. | |
729 | ||
730 | This option only enables generic Block IO controller infrastructure. | |
731 | One needs to also enable actual IO controlling logic/policy. For | |
732 | enabling proportional weight division of disk bandwidth in CFQ, set | |
733 | CONFIG_CFQ_GROUP_IOSCHED=y; for enabling throttling policy, set | |
734 | CONFIG_BLK_DEV_THROTTLING=y. | |
735 | ||
736 | See Documentation/cgroup-v1/blkio-controller.txt for more information. | |
737 | ||
738 | config DEBUG_BLK_CGROUP | |
739 | bool "IO controller debugging" | |
740 | depends on BLK_CGROUP | |
741 | default n | |
742 | ---help--- | |
743 | Enable some debugging help. Currently it exports additional stat | |
744 | files in a cgroup which can be useful for debugging. | |
745 | ||
746 | config CGROUP_WRITEBACK | |
747 | bool | |
748 | depends on MEMCG && BLK_CGROUP | |
749 | default y | |
750 | ||
751 | menuconfig CGROUP_SCHED | |
752 | bool "CPU controller" | |
753 | default n | |
754 | help | |
755 | This feature lets CPU scheduler recognize task groups and control CPU | |
756 | bandwidth allocation to such task groups. It uses cgroups to group | |
757 | tasks. | |
758 | ||
759 | if CGROUP_SCHED | |
760 | config FAIR_GROUP_SCHED | |
761 | bool "Group scheduling for SCHED_OTHER" | |
762 | depends on CGROUP_SCHED | |
763 | default CGROUP_SCHED | |
764 | ||
765 | config CFS_BANDWIDTH | |
766 | bool "CPU bandwidth provisioning for FAIR_GROUP_SCHED" | |
767 | depends on FAIR_GROUP_SCHED | |
768 | default n | |
769 | help | |
770 | This option allows users to define CPU bandwidth rates (limits) for | |
771 | tasks running within the fair group scheduler. Groups with no limit | |
772 | set are considered to be unconstrained and will run with no | |
773 | restriction. | |
774 | See Documentation/scheduler/sched-bwc.txt for more information. | |
775 | ||
776 | config RT_GROUP_SCHED | |
777 | bool "Group scheduling for SCHED_RR/FIFO" | |
778 | depends on CGROUP_SCHED | |
779 | default n | |
780 | help | |
781 | This feature lets you explicitly allocate real CPU bandwidth | |
782 | to task groups. If enabled, it will also make it impossible to | |
783 | schedule realtime tasks for non-root users until you allocate | |
784 | realtime bandwidth for them. | |
785 | See Documentation/scheduler/sched-rt-group.txt for more information. | |
786 | ||
787 | endif #CGROUP_SCHED | |
788 | ||
789 | config CGROUP_PIDS | |
790 | bool "PIDs controller" | |
791 | help | |
792 | Provides enforcement of process number limits in the scope of a | |
793 | cgroup. Any attempt to fork more processes than is allowed in the | |
794 | cgroup will fail. PIDs are fundamentally a global resource because it | |
795 | is fairly trivial to reach PID exhaustion before you reach even a | |
796 | conservative kmemcg limit. As a result, it is possible to grind a | |
797 | system to halt without being limited by other cgroup policies. The | |
798 | PIDs controller is designed to stop this from happening. | |
799 | ||
800 | It should be noted that organisational operations (such as attaching | |
801 | to a cgroup hierarchy will *not* be blocked by the PIDs controller), | |
802 | since the PIDs limit only affects a process's ability to fork, not to | |
803 | attach to a cgroup. | |
804 | ||
805 | config CGROUP_RDMA | |
806 | bool "RDMA controller" | |
807 | help | |
808 | Provides enforcement of RDMA resources defined by IB stack. | |
809 | It is fairly easy for consumers to exhaust RDMA resources, which | |
810 | can result into resource unavailability to other consumers. | |
811 | RDMA controller is designed to stop this from happening. | |
812 | Attaching processes with active RDMA resources to the cgroup | |
813 | hierarchy is allowed even if can cross the hierarchy's limit. | |
814 | ||
815 | config CGROUP_FREEZER | |
816 | bool "Freezer controller" | |
817 | help | |
818 | Provides a way to freeze and unfreeze all tasks in a | |
819 | cgroup. | |
820 | ||
821 | This option affects the ORIGINAL cgroup interface. The cgroup2 memory | |
822 | controller includes important in-kernel memory consumers per default. | |
823 | ||
824 | If you're using cgroup2, say N. | |
825 | ||
826 | config CGROUP_HUGETLB | |
827 | bool "HugeTLB controller" | |
828 | depends on HUGETLB_PAGE | |
829 | select PAGE_COUNTER | |
830 | default n | |
831 | help | |
832 | Provides a cgroup controller for HugeTLB pages. | |
833 | When you enable this, you can put a per cgroup limit on HugeTLB usage. | |
834 | The limit is enforced during page fault. Since HugeTLB doesn't | |
835 | support page reclaim, enforcing the limit at page fault time implies | |
836 | that, the application will get SIGBUS signal if it tries to access | |
837 | HugeTLB pages beyond its limit. This requires the application to know | |
838 | beforehand how much HugeTLB pages it would require for its use. The | |
839 | control group is tracked in the third page lru pointer. This means | |
840 | that we cannot use the controller with huge page less than 3 pages. | |
841 | ||
842 | config CPUSETS | |
843 | bool "Cpuset controller" | |
844 | depends on SMP | |
845 | help | |
846 | This option will let you create and manage CPUSETs which | |
847 | allow dynamically partitioning a system into sets of CPUs and | |
848 | Memory Nodes and assigning tasks to run only within those sets. | |
849 | This is primarily useful on large SMP or NUMA systems. | |
850 | ||
851 | Say N if unsure. | |
852 | ||
853 | config PROC_PID_CPUSET | |
854 | bool "Include legacy /proc/<pid>/cpuset file" | |
855 | depends on CPUSETS | |
856 | default y | |
857 | ||
858 | config CGROUP_DEVICE | |
859 | bool "Device controller" | |
860 | help | |
861 | Provides a cgroup controller implementing whitelists for | |
862 | devices which a process in the cgroup can mknod or open. | |
863 | ||
864 | config CGROUP_CPUACCT | |
865 | bool "Simple CPU accounting controller" | |
866 | help | |
867 | Provides a simple controller for monitoring the | |
868 | total CPU consumed by the tasks in a cgroup. | |
869 | ||
870 | config CGROUP_PERF | |
871 | bool "Perf controller" | |
872 | depends on PERF_EVENTS | |
873 | help | |
874 | This option extends the perf per-cpu mode to restrict monitoring | |
875 | to threads which belong to the cgroup specified and run on the | |
876 | designated cpu. | |
877 | ||
878 | Say N if unsure. | |
879 | ||
880 | config CGROUP_BPF | |
881 | bool "Support for eBPF programs attached to cgroups" | |
882 | depends on BPF_SYSCALL | |
883 | select SOCK_CGROUP_DATA | |
884 | help | |
885 | Allow attaching eBPF programs to a cgroup using the bpf(2) | |
886 | syscall command BPF_PROG_ATTACH. | |
887 | ||
888 | In which context these programs are accessed depends on the type | |
889 | of attachment. For instance, programs that are attached using | |
890 | BPF_CGROUP_INET_INGRESS will be executed on the ingress path of | |
891 | inet sockets. | |
892 | ||
893 | config CGROUP_DEBUG | |
894 | bool "Debug controller" | |
895 | default n | |
896 | depends on DEBUG_KERNEL | |
897 | help | |
898 | This option enables a simple controller that exports | |
899 | debugging information about the cgroups framework. This | |
900 | controller is for control cgroup debugging only. Its | |
901 | interfaces are not stable. | |
902 | ||
903 | Say N. | |
904 | ||
905 | config SOCK_CGROUP_DATA | |
906 | bool | |
907 | default n | |
908 | ||
909 | endif # CGROUPS | |
910 | ||
911 | menuconfig NAMESPACES | |
912 | bool "Namespaces support" if EXPERT | |
913 | depends on MULTIUSER | |
914 | default !EXPERT | |
915 | help | |
916 | Provides the way to make tasks work with different objects using | |
917 | the same id. For example same IPC id may refer to different objects | |
918 | or same user id or pid may refer to different tasks when used in | |
919 | different namespaces. | |
920 | ||
921 | if NAMESPACES | |
922 | ||
923 | config UTS_NS | |
924 | bool "UTS namespace" | |
925 | default y | |
926 | help | |
927 | In this namespace tasks see different info provided with the | |
928 | uname() system call | |
929 | ||
930 | config IPC_NS | |
931 | bool "IPC namespace" | |
932 | depends on (SYSVIPC || POSIX_MQUEUE) | |
933 | default y | |
934 | help | |
935 | In this namespace tasks work with IPC ids which correspond to | |
936 | different IPC objects in different namespaces. | |
937 | ||
938 | config USER_NS | |
939 | bool "User namespace" | |
940 | default n | |
941 | help | |
942 | This allows containers, i.e. vservers, to use user namespaces | |
943 | to provide different user info for different servers. | |
944 | ||
945 | When user namespaces are enabled in the kernel it is | |
946 | recommended that the MEMCG option also be enabled and that | |
947 | user-space use the memory control groups to limit the amount | |
948 | of memory a memory unprivileged users can use. | |
949 | ||
950 | If unsure, say N. | |
951 | ||
952 | config PID_NS | |
953 | bool "PID Namespaces" | |
954 | default y | |
955 | help | |
956 | Support process id namespaces. This allows having multiple | |
957 | processes with the same pid as long as they are in different | |
958 | pid namespaces. This is a building block of containers. | |
959 | ||
960 | config NET_NS | |
961 | bool "Network namespace" | |
962 | depends on NET | |
963 | default y | |
964 | help | |
965 | Allow user space to create what appear to be multiple instances | |
966 | of the network stack. | |
967 | ||
968 | endif # NAMESPACES | |
969 | ||
970 | config SCHED_AUTOGROUP | |
971 | bool "Automatic process group scheduling" | |
972 | select CGROUPS | |
973 | select CGROUP_SCHED | |
974 | select FAIR_GROUP_SCHED | |
975 | help | |
976 | This option optimizes the scheduler for common desktop workloads by | |
977 | automatically creating and populating task groups. This separation | |
978 | of workloads isolates aggressive CPU burners (like build jobs) from | |
979 | desktop applications. Task group autogeneration is currently based | |
980 | upon task session. | |
981 | ||
982 | config SYSFS_DEPRECATED | |
983 | bool "Enable deprecated sysfs features to support old userspace tools" | |
984 | depends on SYSFS | |
985 | default n | |
986 | help | |
987 | This option adds code that switches the layout of the "block" class | |
988 | devices, to not show up in /sys/class/block/, but only in | |
989 | /sys/block/. | |
990 | ||
991 | This switch is only active when the sysfs.deprecated=1 boot option is | |
992 | passed or the SYSFS_DEPRECATED_V2 option is set. | |
993 | ||
994 | This option allows new kernels to run on old distributions and tools, | |
995 | which might get confused by /sys/class/block/. Since 2007/2008 all | |
996 | major distributions and tools handle this just fine. | |
997 | ||
998 | Recent distributions and userspace tools after 2009/2010 depend on | |
999 | the existence of /sys/class/block/, and will not work with this | |
1000 | option enabled. | |
1001 | ||
1002 | Only if you are using a new kernel on an old distribution, you might | |
1003 | need to say Y here. | |
1004 | ||
1005 | config SYSFS_DEPRECATED_V2 | |
1006 | bool "Enable deprecated sysfs features by default" | |
1007 | default n | |
1008 | depends on SYSFS | |
1009 | depends on SYSFS_DEPRECATED | |
1010 | help | |
1011 | Enable deprecated sysfs by default. | |
1012 | ||
1013 | See the CONFIG_SYSFS_DEPRECATED option for more details about this | |
1014 | option. | |
1015 | ||
1016 | Only if you are using a new kernel on an old distribution, you might | |
1017 | need to say Y here. Even then, odds are you would not need it | |
1018 | enabled, you can always pass the boot option if absolutely necessary. | |
1019 | ||
1020 | config RELAY | |
1021 | bool "Kernel->user space relay support (formerly relayfs)" | |
1022 | select IRQ_WORK | |
1023 | help | |
1024 | This option enables support for relay interface support in | |
1025 | certain file systems (such as debugfs). | |
1026 | It is designed to provide an efficient mechanism for tools and | |
1027 | facilities to relay large amounts of data from kernel space to | |
1028 | user space. | |
1029 | ||
1030 | If unsure, say N. | |
1031 | ||
1032 | config BLK_DEV_INITRD | |
1033 | bool "Initial RAM filesystem and RAM disk (initramfs/initrd) support" | |
1034 | help | |
1035 | The initial RAM filesystem is a ramfs which is loaded by the | |
1036 | boot loader (loadlin or lilo) and that is mounted as root | |
1037 | before the normal boot procedure. It is typically used to | |
1038 | load modules needed to mount the "real" root file system, | |
1039 | etc. See <file:Documentation/admin-guide/initrd.rst> for details. | |
1040 | ||
1041 | If RAM disk support (BLK_DEV_RAM) is also included, this | |
1042 | also enables initial RAM disk (initrd) support and adds | |
1043 | 15 Kbytes (more on some other architectures) to the kernel size. | |
1044 | ||
1045 | If unsure say Y. | |
1046 | ||
1047 | if BLK_DEV_INITRD | |
1048 | ||
1049 | source "usr/Kconfig" | |
1050 | ||
1051 | endif | |
1052 | ||
1053 | choice | |
1054 | prompt "Compiler optimization level" | |
1055 | default CC_OPTIMIZE_FOR_PERFORMANCE | |
1056 | ||
1057 | config CC_OPTIMIZE_FOR_PERFORMANCE | |
1058 | bool "Optimize for performance" | |
1059 | help | |
1060 | This is the default optimization level for the kernel, building | |
1061 | with the "-O2" compiler flag for best performance and most | |
1062 | helpful compile-time warnings. | |
1063 | ||
1064 | config CC_OPTIMIZE_FOR_SIZE | |
1065 | bool "Optimize for size" | |
1066 | help | |
1067 | Enabling this option will pass "-Os" instead of "-O2" to | |
1068 | your compiler resulting in a smaller kernel. | |
1069 | ||
1070 | If unsure, say N. | |
1071 | ||
1072 | endchoice | |
1073 | ||
1074 | config HAVE_LD_DEAD_CODE_DATA_ELIMINATION | |
1075 | bool | |
1076 | help | |
1077 | This requires that the arch annotates or otherwise protects | |
1078 | its external entry points from being discarded. Linker scripts | |
1079 | must also merge .text.*, .data.*, and .bss.* correctly into | |
1080 | output sections. Care must be taken not to pull in unrelated | |
1081 | sections (e.g., '.text.init'). Typically '.' in section names | |
1082 | is used to distinguish them from label names / C identifiers. | |
1083 | ||
1084 | config LD_DEAD_CODE_DATA_ELIMINATION | |
1085 | bool "Dead code and data elimination (EXPERIMENTAL)" | |
1086 | depends on HAVE_LD_DEAD_CODE_DATA_ELIMINATION | |
1087 | depends on EXPERT | |
1088 | help | |
1089 | Enable this if you want to do dead code and data elimination with | |
1090 | the linker by compiling with -ffunction-sections -fdata-sections, | |
1091 | and linking with --gc-sections. | |
1092 | ||
1093 | This can reduce on disk and in-memory size of the kernel | |
1094 | code and static data, particularly for small configs and | |
1095 | on small systems. This has the possibility of introducing | |
1096 | silently broken kernel if the required annotations are not | |
1097 | present. This option is not well tested yet, so use at your | |
1098 | own risk. | |
1099 | ||
1100 | config SYSCTL | |
1101 | bool | |
1102 | ||
1103 | config ANON_INODES | |
1104 | bool | |
1105 | ||
1106 | config HAVE_UID16 | |
1107 | bool | |
1108 | ||
1109 | config SYSCTL_EXCEPTION_TRACE | |
1110 | bool | |
1111 | help | |
1112 | Enable support for /proc/sys/debug/exception-trace. | |
1113 | ||
1114 | config SYSCTL_ARCH_UNALIGN_NO_WARN | |
1115 | bool | |
1116 | help | |
1117 | Enable support for /proc/sys/kernel/ignore-unaligned-usertrap | |
1118 | Allows arch to define/use @no_unaligned_warning to possibly warn | |
1119 | about unaligned access emulation going on under the hood. | |
1120 | ||
1121 | config SYSCTL_ARCH_UNALIGN_ALLOW | |
1122 | bool | |
1123 | help | |
1124 | Enable support for /proc/sys/kernel/unaligned-trap | |
1125 | Allows arches to define/use @unaligned_enabled to runtime toggle | |
1126 | the unaligned access emulation. | |
1127 | see arch/parisc/kernel/unaligned.c for reference | |
1128 | ||
1129 | config HAVE_PCSPKR_PLATFORM | |
1130 | bool | |
1131 | ||
1132 | # interpreter that classic socket filters depend on | |
1133 | config BPF | |
1134 | bool | |
1135 | ||
1136 | menuconfig EXPERT | |
1137 | bool "Configure standard kernel features (expert users)" | |
1138 | # Unhide debug options, to make the on-by-default options visible | |
1139 | select DEBUG_KERNEL | |
1140 | help | |
1141 | This option allows certain base kernel options and settings | |
1142 | to be disabled or tweaked. This is for specialized | |
1143 | environments which can tolerate a "non-standard" kernel. | |
1144 | Only use this if you really know what you are doing. | |
1145 | ||
1146 | config UID16 | |
1147 | bool "Enable 16-bit UID system calls" if EXPERT | |
1148 | depends on HAVE_UID16 && MULTIUSER | |
1149 | default y | |
1150 | help | |
1151 | This enables the legacy 16-bit UID syscall wrappers. | |
1152 | ||
1153 | config MULTIUSER | |
1154 | bool "Multiple users, groups and capabilities support" if EXPERT | |
1155 | default y | |
1156 | help | |
1157 | This option enables support for non-root users, groups and | |
1158 | capabilities. | |
1159 | ||
1160 | If you say N here, all processes will run with UID 0, GID 0, and all | |
1161 | possible capabilities. Saying N here also compiles out support for | |
1162 | system calls related to UIDs, GIDs, and capabilities, such as setuid, | |
1163 | setgid, and capset. | |
1164 | ||
1165 | If unsure, say Y here. | |
1166 | ||
1167 | config SGETMASK_SYSCALL | |
1168 | bool "sgetmask/ssetmask syscalls support" if EXPERT | |
1169 | def_bool PARISC || M68K || PPC || MIPS || X86 || SPARC || MICROBLAZE || SUPERH | |
1170 | ---help--- | |
1171 | sys_sgetmask and sys_ssetmask are obsolete system calls | |
1172 | no longer supported in libc but still enabled by default in some | |
1173 | architectures. | |
1174 | ||
1175 | If unsure, leave the default option here. | |
1176 | ||
1177 | config SYSFS_SYSCALL | |
1178 | bool "Sysfs syscall support" if EXPERT | |
1179 | default y | |
1180 | ---help--- | |
1181 | sys_sysfs is an obsolete system call no longer supported in libc. | |
1182 | Note that disabling this option is more secure but might break | |
1183 | compatibility with some systems. | |
1184 | ||
1185 | If unsure say Y here. | |
1186 | ||
1187 | config SYSCTL_SYSCALL | |
1188 | bool "Sysctl syscall support" if EXPERT | |
1189 | depends on PROC_SYSCTL | |
1190 | default n | |
1191 | select SYSCTL | |
1192 | ---help--- | |
1193 | sys_sysctl uses binary paths that have been found challenging | |
1194 | to properly maintain and use. The interface in /proc/sys | |
1195 | using paths with ascii names is now the primary path to this | |
1196 | information. | |
1197 | ||
1198 | Almost nothing using the binary sysctl interface so if you are | |
1199 | trying to save some space it is probably safe to disable this, | |
1200 | making your kernel marginally smaller. | |
1201 | ||
1202 | If unsure say N here. | |
1203 | ||
1204 | config FHANDLE | |
1205 | bool "open by fhandle syscalls" if EXPERT | |
1206 | select EXPORTFS | |
1207 | default y | |
1208 | help | |
1209 | If you say Y here, a user level program will be able to map | |
1210 | file names to handle and then later use the handle for | |
1211 | different file system operations. This is useful in implementing | |
1212 | userspace file servers, which now track files using handles instead | |
1213 | of names. The handle would remain the same even if file names | |
1214 | get renamed. Enables open_by_handle_at(2) and name_to_handle_at(2) | |
1215 | syscalls. | |
1216 | ||
1217 | config POSIX_TIMERS | |
1218 | bool "Posix Clocks & timers" if EXPERT | |
1219 | default y | |
1220 | help | |
1221 | This includes native support for POSIX timers to the kernel. | |
1222 | Some embedded systems have no use for them and therefore they | |
1223 | can be configured out to reduce the size of the kernel image. | |
1224 | ||
1225 | When this option is disabled, the following syscalls won't be | |
1226 | available: timer_create, timer_gettime: timer_getoverrun, | |
1227 | timer_settime, timer_delete, clock_adjtime, getitimer, | |
1228 | setitimer, alarm. Furthermore, the clock_settime, clock_gettime, | |
1229 | clock_getres and clock_nanosleep syscalls will be limited to | |
1230 | CLOCK_REALTIME, CLOCK_MONOTONIC and CLOCK_BOOTTIME only. | |
1231 | ||
1232 | If unsure say y. | |
1233 | ||
1234 | config PRINTK | |
1235 | default y | |
1236 | bool "Enable support for printk" if EXPERT | |
1237 | select IRQ_WORK | |
1238 | help | |
1239 | This option enables normal printk support. Removing it | |
1240 | eliminates most of the message strings from the kernel image | |
1241 | and makes the kernel more or less silent. As this makes it | |
1242 | very difficult to diagnose system problems, saying N here is | |
1243 | strongly discouraged. | |
1244 | ||
1245 | config PRINTK_NMI | |
1246 | def_bool y | |
1247 | depends on PRINTK | |
1248 | depends on HAVE_NMI | |
1249 | ||
1250 | config BUG | |
1251 | bool "BUG() support" if EXPERT | |
1252 | default y | |
1253 | help | |
1254 | Disabling this option eliminates support for BUG and WARN, reducing | |
1255 | the size of your kernel image and potentially quietly ignoring | |
1256 | numerous fatal conditions. You should only consider disabling this | |
1257 | option for embedded systems with no facilities for reporting errors. | |
1258 | Just say Y. | |
1259 | ||
1260 | config ELF_CORE | |
1261 | depends on COREDUMP | |
1262 | default y | |
1263 | bool "Enable ELF core dumps" if EXPERT | |
1264 | help | |
1265 | Enable support for generating core dumps. Disabling saves about 4k. | |
1266 | ||
1267 | ||
1268 | config PCSPKR_PLATFORM | |
1269 | bool "Enable PC-Speaker support" if EXPERT | |
1270 | depends on HAVE_PCSPKR_PLATFORM | |
1271 | select I8253_LOCK | |
1272 | default y | |
1273 | help | |
1274 | This option allows to disable the internal PC-Speaker | |
1275 | support, saving some memory. | |
1276 | ||
1277 | config BASE_FULL | |
1278 | default y | |
1279 | bool "Enable full-sized data structures for core" if EXPERT | |
1280 | help | |
1281 | Disabling this option reduces the size of miscellaneous core | |
1282 | kernel data structures. This saves memory on small machines, | |
1283 | but may reduce performance. | |
1284 | ||
1285 | config FUTEX | |
1286 | bool "Enable futex support" if EXPERT | |
1287 | default y | |
1288 | imply RT_MUTEXES | |
1289 | help | |
1290 | Disabling this option will cause the kernel to be built without | |
1291 | support for "fast userspace mutexes". The resulting kernel may not | |
1292 | run glibc-based applications correctly. | |
1293 | ||
1294 | config FUTEX_PI | |
1295 | bool | |
1296 | depends on FUTEX && RT_MUTEXES | |
1297 | default y | |
1298 | ||
1299 | config HAVE_FUTEX_CMPXCHG | |
1300 | bool | |
1301 | depends on FUTEX | |
1302 | help | |
1303 | Architectures should select this if futex_atomic_cmpxchg_inatomic() | |
1304 | is implemented and always working. This removes a couple of runtime | |
1305 | checks. | |
1306 | ||
1307 | config EPOLL | |
1308 | bool "Enable eventpoll support" if EXPERT | |
1309 | default y | |
1310 | select ANON_INODES | |
1311 | help | |
1312 | Disabling this option will cause the kernel to be built without | |
1313 | support for epoll family of system calls. | |
1314 | ||
1315 | config SIGNALFD | |
1316 | bool "Enable signalfd() system call" if EXPERT | |
1317 | select ANON_INODES | |
1318 | default y | |
1319 | help | |
1320 | Enable the signalfd() system call that allows to receive signals | |
1321 | on a file descriptor. | |
1322 | ||
1323 | If unsure, say Y. | |
1324 | ||
1325 | config TIMERFD | |
1326 | bool "Enable timerfd() system call" if EXPERT | |
1327 | select ANON_INODES | |
1328 | default y | |
1329 | help | |
1330 | Enable the timerfd() system call that allows to receive timer | |
1331 | events on a file descriptor. | |
1332 | ||
1333 | If unsure, say Y. | |
1334 | ||
1335 | config EVENTFD | |
1336 | bool "Enable eventfd() system call" if EXPERT | |
1337 | select ANON_INODES | |
1338 | default y | |
1339 | help | |
1340 | Enable the eventfd() system call that allows to receive both | |
1341 | kernel notification (ie. KAIO) or userspace notifications. | |
1342 | ||
1343 | If unsure, say Y. | |
1344 | ||
1345 | config SHMEM | |
1346 | bool "Use full shmem filesystem" if EXPERT | |
1347 | default y | |
1348 | depends on MMU | |
1349 | help | |
1350 | The shmem is an internal filesystem used to manage shared memory. | |
1351 | It is backed by swap and manages resource limits. It is also exported | |
1352 | to userspace as tmpfs if TMPFS is enabled. Disabling this | |
1353 | option replaces shmem and tmpfs with the much simpler ramfs code, | |
1354 | which may be appropriate on small systems without swap. | |
1355 | ||
1356 | config AIO | |
1357 | bool "Enable AIO support" if EXPERT | |
1358 | default y | |
1359 | help | |
1360 | This option enables POSIX asynchronous I/O which may by used | |
1361 | by some high performance threaded applications. Disabling | |
1362 | this option saves about 7k. | |
1363 | ||
1364 | config ADVISE_SYSCALLS | |
1365 | bool "Enable madvise/fadvise syscalls" if EXPERT | |
1366 | default y | |
1367 | help | |
1368 | This option enables the madvise and fadvise syscalls, used by | |
1369 | applications to advise the kernel about their future memory or file | |
1370 | usage, improving performance. If building an embedded system where no | |
1371 | applications use these syscalls, you can disable this option to save | |
1372 | space. | |
1373 | ||
1374 | config MEMBARRIER | |
1375 | bool "Enable membarrier() system call" if EXPERT | |
1376 | default y | |
1377 | help | |
1378 | Enable the membarrier() system call that allows issuing memory | |
1379 | barriers across all running threads, which can be used to distribute | |
1380 | the cost of user-space memory barriers asymmetrically by transforming | |
1381 | pairs of memory barriers into pairs consisting of membarrier() and a | |
1382 | compiler barrier. | |
1383 | ||
1384 | If unsure, say Y. | |
1385 | ||
1386 | config CHECKPOINT_RESTORE | |
1387 | bool "Checkpoint/restore support" if EXPERT | |
1388 | select PROC_CHILDREN | |
1389 | default n | |
1390 | help | |
1391 | Enables additional kernel features in a sake of checkpoint/restore. | |
1392 | In particular it adds auxiliary prctl codes to setup process text, | |
1393 | data and heap segment sizes, and a few additional /proc filesystem | |
1394 | entries. | |
1395 | ||
1396 | If unsure, say N here. | |
1397 | ||
1398 | config KALLSYMS | |
1399 | bool "Load all symbols for debugging/ksymoops" if EXPERT | |
1400 | default y | |
1401 | help | |
1402 | Say Y here to let the kernel print out symbolic crash information and | |
1403 | symbolic stack backtraces. This increases the size of the kernel | |
1404 | somewhat, as all symbols have to be loaded into the kernel image. | |
1405 | ||
1406 | config KALLSYMS_ALL | |
1407 | bool "Include all symbols in kallsyms" | |
1408 | depends on DEBUG_KERNEL && KALLSYMS | |
1409 | help | |
1410 | Normally kallsyms only contains the symbols of functions for nicer | |
1411 | OOPS messages and backtraces (i.e., symbols from the text and inittext | |
1412 | sections). This is sufficient for most cases. And only in very rare | |
1413 | cases (e.g., when a debugger is used) all symbols are required (e.g., | |
1414 | names of variables from the data sections, etc). | |
1415 | ||
1416 | This option makes sure that all symbols are loaded into the kernel | |
1417 | image (i.e., symbols from all sections) in cost of increased kernel | |
1418 | size (depending on the kernel configuration, it may be 300KiB or | |
1419 | something like this). | |
1420 | ||
1421 | Say N unless you really need all symbols. | |
1422 | ||
1423 | config KALLSYMS_ABSOLUTE_PERCPU | |
1424 | bool | |
1425 | depends on KALLSYMS | |
1426 | default X86_64 && SMP | |
1427 | ||
1428 | config KALLSYMS_BASE_RELATIVE | |
1429 | bool | |
1430 | depends on KALLSYMS | |
1431 | default !IA64 | |
1432 | help | |
1433 | Instead of emitting them as absolute values in the native word size, | |
1434 | emit the symbol references in the kallsyms table as 32-bit entries, | |
1435 | each containing a relative value in the range [base, base + U32_MAX] | |
1436 | or, when KALLSYMS_ABSOLUTE_PERCPU is in effect, each containing either | |
1437 | an absolute value in the range [0, S32_MAX] or a relative value in the | |
1438 | range [base, base + S32_MAX], where base is the lowest relative symbol | |
1439 | address encountered in the image. | |
1440 | ||
1441 | On 64-bit builds, this reduces the size of the address table by 50%, | |
1442 | but more importantly, it results in entries whose values are build | |
1443 | time constants, and no relocation pass is required at runtime to fix | |
1444 | up the entries based on the runtime load address of the kernel. | |
1445 | ||
1446 | # end of the "standard kernel features (expert users)" menu | |
1447 | ||
1448 | # syscall, maps, verifier | |
1449 | config BPF_SYSCALL | |
1450 | bool "Enable bpf() system call" | |
1451 | select ANON_INODES | |
1452 | select BPF | |
1453 | select IRQ_WORK | |
1454 | default n | |
1455 | help | |
1456 | Enable the bpf() system call that allows to manipulate eBPF | |
1457 | programs and maps via file descriptors. | |
1458 | ||
1459 | config BPF_JIT_ALWAYS_ON | |
1460 | bool "Permanently enable BPF JIT and remove BPF interpreter" | |
1461 | depends on BPF_SYSCALL && HAVE_EBPF_JIT && BPF_JIT | |
1462 | help | |
1463 | Enables BPF JIT and removes BPF interpreter to avoid | |
1464 | speculative execution of BPF instructions by the interpreter | |
1465 | ||
1466 | config USERFAULTFD | |
1467 | bool "Enable userfaultfd() system call" | |
1468 | select ANON_INODES | |
1469 | depends on MMU | |
1470 | help | |
1471 | Enable the userfaultfd() system call that allows to intercept and | |
1472 | handle page faults in userland. | |
1473 | ||
1474 | config ARCH_HAS_MEMBARRIER_CALLBACKS | |
1475 | bool | |
1476 | ||
1477 | config ARCH_HAS_MEMBARRIER_SYNC_CORE | |
1478 | bool | |
1479 | ||
1480 | config RSEQ | |
1481 | bool "Enable rseq() system call" if EXPERT | |
1482 | default y | |
1483 | depends on HAVE_RSEQ | |
1484 | select MEMBARRIER | |
1485 | help | |
1486 | Enable the restartable sequences system call. It provides a | |
1487 | user-space cache for the current CPU number value, which | |
1488 | speeds up getting the current CPU number from user-space, | |
1489 | as well as an ABI to speed up user-space operations on | |
1490 | per-CPU data. | |
1491 | ||
1492 | If unsure, say Y. | |
1493 | ||
1494 | config DEBUG_RSEQ | |
1495 | default n | |
1496 | bool "Enabled debugging of rseq() system call" if EXPERT | |
1497 | depends on RSEQ && DEBUG_KERNEL | |
1498 | help | |
1499 | Enable extra debugging checks for the rseq system call. | |
1500 | ||
1501 | If unsure, say N. | |
1502 | ||
1503 | config EMBEDDED | |
1504 | bool "Embedded system" | |
1505 | option allnoconfig_y | |
1506 | select EXPERT | |
1507 | help | |
1508 | This option should be enabled if compiling the kernel for | |
1509 | an embedded system so certain expert options are available | |
1510 | for configuration. | |
1511 | ||
1512 | config HAVE_PERF_EVENTS | |
1513 | bool | |
1514 | help | |
1515 | See tools/perf/design.txt for details. | |
1516 | ||
1517 | config PERF_USE_VMALLOC | |
1518 | bool | |
1519 | help | |
1520 | See tools/perf/design.txt for details | |
1521 | ||
1522 | config PC104 | |
1523 | bool "PC/104 support" if EXPERT | |
1524 | help | |
1525 | Expose PC/104 form factor device drivers and options available for | |
1526 | selection and configuration. Enable this option if your target | |
1527 | machine has a PC/104 bus. | |
1528 | ||
1529 | menu "Kernel Performance Events And Counters" | |
1530 | ||
1531 | config PERF_EVENTS | |
1532 | bool "Kernel performance events and counters" | |
1533 | default y if PROFILING | |
1534 | depends on HAVE_PERF_EVENTS | |
1535 | select ANON_INODES | |
1536 | select IRQ_WORK | |
1537 | select SRCU | |
1538 | help | |
1539 | Enable kernel support for various performance events provided | |
1540 | by software and hardware. | |
1541 | ||
1542 | Software events are supported either built-in or via the | |
1543 | use of generic tracepoints. | |
1544 | ||
1545 | Most modern CPUs support performance events via performance | |
1546 | counter registers. These registers count the number of certain | |
1547 | types of hw events: such as instructions executed, cachemisses | |
1548 | suffered, or branches mis-predicted - without slowing down the | |
1549 | kernel or applications. These registers can also trigger interrupts | |
1550 | when a threshold number of events have passed - and can thus be | |
1551 | used to profile the code that runs on that CPU. | |
1552 | ||
1553 | The Linux Performance Event subsystem provides an abstraction of | |
1554 | these software and hardware event capabilities, available via a | |
1555 | system call and used by the "perf" utility in tools/perf/. It | |
1556 | provides per task and per CPU counters, and it provides event | |
1557 | capabilities on top of those. | |
1558 | ||
1559 | Say Y if unsure. | |
1560 | ||
1561 | config DEBUG_PERF_USE_VMALLOC | |
1562 | default n | |
1563 | bool "Debug: use vmalloc to back perf mmap() buffers" | |
1564 | depends on PERF_EVENTS && DEBUG_KERNEL && !PPC | |
1565 | select PERF_USE_VMALLOC | |
1566 | help | |
1567 | Use vmalloc memory to back perf mmap() buffers. | |
1568 | ||
1569 | Mostly useful for debugging the vmalloc code on platforms | |
1570 | that don't require it. | |
1571 | ||
1572 | Say N if unsure. | |
1573 | ||
1574 | endmenu | |
1575 | ||
1576 | config VM_EVENT_COUNTERS | |
1577 | default y | |
1578 | bool "Enable VM event counters for /proc/vmstat" if EXPERT | |
1579 | help | |
1580 | VM event counters are needed for event counts to be shown. | |
1581 | This option allows the disabling of the VM event counters | |
1582 | on EXPERT systems. /proc/vmstat will only show page counts | |
1583 | if VM event counters are disabled. | |
1584 | ||
1585 | config SLUB_DEBUG | |
1586 | default y | |
1587 | bool "Enable SLUB debugging support" if EXPERT | |
1588 | depends on SLUB && SYSFS | |
1589 | help | |
1590 | SLUB has extensive debug support features. Disabling these can | |
1591 | result in significant savings in code size. This also disables | |
1592 | SLUB sysfs support. /sys/slab will not exist and there will be | |
1593 | no support for cache validation etc. | |
1594 | ||
1595 | config SLUB_MEMCG_SYSFS_ON | |
1596 | default n | |
1597 | bool "Enable memcg SLUB sysfs support by default" if EXPERT | |
1598 | depends on SLUB && SYSFS && MEMCG | |
1599 | help | |
1600 | SLUB creates a directory under /sys/kernel/slab for each | |
1601 | allocation cache to host info and debug files. If memory | |
1602 | cgroup is enabled, each cache can have per memory cgroup | |
1603 | caches. SLUB can create the same sysfs directories for these | |
1604 | caches under /sys/kernel/slab/CACHE/cgroup but it can lead | |
1605 | to a very high number of debug files being created. This is | |
1606 | controlled by slub_memcg_sysfs boot parameter and this | |
1607 | config option determines the parameter's default value. | |
1608 | ||
1609 | config COMPAT_BRK | |
1610 | bool "Disable heap randomization" | |
1611 | default y | |
1612 | help | |
1613 | Randomizing heap placement makes heap exploits harder, but it | |
1614 | also breaks ancient binaries (including anything libc5 based). | |
1615 | This option changes the bootup default to heap randomization | |
1616 | disabled, and can be overridden at runtime by setting | |
1617 | /proc/sys/kernel/randomize_va_space to 2. | |
1618 | ||
1619 | On non-ancient distros (post-2000 ones) N is usually a safe choice. | |
1620 | ||
1621 | choice | |
1622 | prompt "Choose SLAB allocator" | |
1623 | default SLUB | |
1624 | help | |
1625 | This option allows to select a slab allocator. | |
1626 | ||
1627 | config SLAB | |
1628 | bool "SLAB" | |
1629 | select HAVE_HARDENED_USERCOPY_ALLOCATOR | |
1630 | help | |
1631 | The regular slab allocator that is established and known to work | |
1632 | well in all environments. It organizes cache hot objects in | |
1633 | per cpu and per node queues. | |
1634 | ||
1635 | config SLUB | |
1636 | bool "SLUB (Unqueued Allocator)" | |
1637 | select HAVE_HARDENED_USERCOPY_ALLOCATOR | |
1638 | help | |
1639 | SLUB is a slab allocator that minimizes cache line usage | |
1640 | instead of managing queues of cached objects (SLAB approach). | |
1641 | Per cpu caching is realized using slabs of objects instead | |
1642 | of queues of objects. SLUB can use memory efficiently | |
1643 | and has enhanced diagnostics. SLUB is the default choice for | |
1644 | a slab allocator. | |
1645 | ||
1646 | config SLOB | |
1647 | depends on EXPERT | |
1648 | bool "SLOB (Simple Allocator)" | |
1649 | help | |
1650 | SLOB replaces the stock allocator with a drastically simpler | |
1651 | allocator. SLOB is generally more space efficient but | |
1652 | does not perform as well on large systems. | |
1653 | ||
1654 | endchoice | |
1655 | ||
1656 | config SLAB_MERGE_DEFAULT | |
1657 | bool "Allow slab caches to be merged" | |
1658 | default y | |
1659 | help | |
1660 | For reduced kernel memory fragmentation, slab caches can be | |
1661 | merged when they share the same size and other characteristics. | |
1662 | This carries a risk of kernel heap overflows being able to | |
1663 | overwrite objects from merged caches (and more easily control | |
1664 | cache layout), which makes such heap attacks easier to exploit | |
1665 | by attackers. By keeping caches unmerged, these kinds of exploits | |
1666 | can usually only damage objects in the same cache. To disable | |
1667 | merging at runtime, "slab_nomerge" can be passed on the kernel | |
1668 | command line. | |
1669 | ||
1670 | config SLAB_FREELIST_RANDOM | |
1671 | default n | |
1672 | depends on SLAB || SLUB | |
1673 | bool "SLAB freelist randomization" | |
1674 | help | |
1675 | Randomizes the freelist order used on creating new pages. This | |
1676 | security feature reduces the predictability of the kernel slab | |
1677 | allocator against heap overflows. | |
1678 | ||
1679 | config SLAB_FREELIST_HARDENED | |
1680 | bool "Harden slab freelist metadata" | |
1681 | depends on SLUB | |
1682 | help | |
1683 | Many kernel heap attacks try to target slab cache metadata and | |
1684 | other infrastructure. This options makes minor performance | |
1685 | sacrifies to harden the kernel slab allocator against common | |
1686 | freelist exploit methods. | |
1687 | ||
1688 | config SLUB_CPU_PARTIAL | |
1689 | default y | |
1690 | depends on SLUB && SMP | |
1691 | bool "SLUB per cpu partial cache" | |
1692 | help | |
1693 | Per cpu partial caches accellerate objects allocation and freeing | |
1694 | that is local to a processor at the price of more indeterminism | |
1695 | in the latency of the free. On overflow these caches will be cleared | |
1696 | which requires the taking of locks that may cause latency spikes. | |
1697 | Typically one would choose no for a realtime system. | |
1698 | ||
1699 | config MMAP_ALLOW_UNINITIALIZED | |
1700 | bool "Allow mmapped anonymous memory to be uninitialized" | |
1701 | depends on EXPERT && !MMU | |
1702 | default n | |
1703 | help | |
1704 | Normally, and according to the Linux spec, anonymous memory obtained | |
1705 | from mmap() has it's contents cleared before it is passed to | |
1706 | userspace. Enabling this config option allows you to request that | |
1707 | mmap() skip that if it is given an MAP_UNINITIALIZED flag, thus | |
1708 | providing a huge performance boost. If this option is not enabled, | |
1709 | then the flag will be ignored. | |
1710 | ||
1711 | This is taken advantage of by uClibc's malloc(), and also by | |
1712 | ELF-FDPIC binfmt's brk and stack allocator. | |
1713 | ||
1714 | Because of the obvious security issues, this option should only be | |
1715 | enabled on embedded devices where you control what is run in | |
1716 | userspace. Since that isn't generally a problem on no-MMU systems, | |
1717 | it is normally safe to say Y here. | |
1718 | ||
1719 | See Documentation/nommu-mmap.txt for more information. | |
1720 | ||
1721 | config SYSTEM_DATA_VERIFICATION | |
1722 | def_bool n | |
1723 | select SYSTEM_TRUSTED_KEYRING | |
1724 | select KEYS | |
1725 | select CRYPTO | |
1726 | select CRYPTO_RSA | |
1727 | select ASYMMETRIC_KEY_TYPE | |
1728 | select ASYMMETRIC_PUBLIC_KEY_SUBTYPE | |
1729 | select ASN1 | |
1730 | select OID_REGISTRY | |
1731 | select X509_CERTIFICATE_PARSER | |
1732 | select PKCS7_MESSAGE_PARSER | |
1733 | help | |
1734 | Provide PKCS#7 message verification using the contents of the system | |
1735 | trusted keyring to provide public keys. This then can be used for | |
1736 | module verification, kexec image verification and firmware blob | |
1737 | verification. | |
1738 | ||
1739 | config PROFILING | |
1740 | bool "Profiling support" | |
1741 | help | |
1742 | Say Y here to enable the extended profiling support mechanisms used | |
1743 | by profilers such as OProfile. | |
1744 | ||
1745 | # | |
1746 | # Place an empty function call at each tracepoint site. Can be | |
1747 | # dynamically changed for a probe function. | |
1748 | # | |
1749 | config TRACEPOINTS | |
1750 | bool | |
1751 | ||
1752 | endmenu # General setup | |
1753 | ||
1754 | source "arch/Kconfig" | |
1755 | ||
1756 | config RT_MUTEXES | |
1757 | bool | |
1758 | ||
1759 | config BASE_SMALL | |
1760 | int | |
1761 | default 0 if BASE_FULL | |
1762 | default 1 if !BASE_FULL | |
1763 | ||
1764 | menuconfig MODULES | |
1765 | bool "Enable loadable module support" | |
1766 | option modules | |
1767 | help | |
1768 | Kernel modules are small pieces of compiled code which can | |
1769 | be inserted in the running kernel, rather than being | |
1770 | permanently built into the kernel. You use the "modprobe" | |
1771 | tool to add (and sometimes remove) them. If you say Y here, | |
1772 | many parts of the kernel can be built as modules (by | |
1773 | answering M instead of Y where indicated): this is most | |
1774 | useful for infrequently used options which are not required | |
1775 | for booting. For more information, see the man pages for | |
1776 | modprobe, lsmod, modinfo, insmod and rmmod. | |
1777 | ||
1778 | If you say Y here, you will need to run "make | |
1779 | modules_install" to put the modules under /lib/modules/ | |
1780 | where modprobe can find them (you may need to be root to do | |
1781 | this). | |
1782 | ||
1783 | If unsure, say Y. | |
1784 | ||
1785 | if MODULES | |
1786 | ||
1787 | config MODULE_FORCE_LOAD | |
1788 | bool "Forced module loading" | |
1789 | default n | |
1790 | help | |
1791 | Allow loading of modules without version information (ie. modprobe | |
1792 | --force). Forced module loading sets the 'F' (forced) taint flag and | |
1793 | is usually a really bad idea. | |
1794 | ||
1795 | config MODULE_UNLOAD | |
1796 | bool "Module unloading" | |
1797 | help | |
1798 | Without this option you will not be able to unload any | |
1799 | modules (note that some modules may not be unloadable | |
1800 | anyway), which makes your kernel smaller, faster | |
1801 | and simpler. If unsure, say Y. | |
1802 | ||
1803 | config MODULE_FORCE_UNLOAD | |
1804 | bool "Forced module unloading" | |
1805 | depends on MODULE_UNLOAD | |
1806 | help | |
1807 | This option allows you to force a module to unload, even if the | |
1808 | kernel believes it is unsafe: the kernel will remove the module | |
1809 | without waiting for anyone to stop using it (using the -f option to | |
1810 | rmmod). This is mainly for kernel developers and desperate users. | |
1811 | If unsure, say N. | |
1812 | ||
1813 | config MODVERSIONS | |
1814 | bool "Module versioning support" | |
1815 | help | |
1816 | Usually, you have to use modules compiled with your kernel. | |
1817 | Saying Y here makes it sometimes possible to use modules | |
1818 | compiled for different kernels, by adding enough information | |
1819 | to the modules to (hopefully) spot any changes which would | |
1820 | make them incompatible with the kernel you are running. If | |
1821 | unsure, say N. | |
1822 | ||
1823 | config MODULE_REL_CRCS | |
1824 | bool | |
1825 | depends on MODVERSIONS | |
1826 | ||
1827 | config MODULE_SRCVERSION_ALL | |
1828 | bool "Source checksum for all modules" | |
1829 | help | |
1830 | Modules which contain a MODULE_VERSION get an extra "srcversion" | |
1831 | field inserted into their modinfo section, which contains a | |
1832 | sum of the source files which made it. This helps maintainers | |
1833 | see exactly which source was used to build a module (since | |
1834 | others sometimes change the module source without updating | |
1835 | the version). With this option, such a "srcversion" field | |
1836 | will be created for all modules. If unsure, say N. | |
1837 | ||
1838 | config MODULE_SIG | |
1839 | bool "Module signature verification" | |
1840 | depends on MODULES | |
1841 | select SYSTEM_DATA_VERIFICATION | |
1842 | help | |
1843 | Check modules for valid signatures upon load: the signature | |
1844 | is simply appended to the module. For more information see | |
1845 | <file:Documentation/admin-guide/module-signing.rst>. | |
1846 | ||
1847 | Note that this option adds the OpenSSL development packages as a | |
1848 | kernel build dependency so that the signing tool can use its crypto | |
1849 | library. | |
1850 | ||
1851 | !!!WARNING!!! If you enable this option, you MUST make sure that the | |
1852 | module DOES NOT get stripped after being signed. This includes the | |
1853 | debuginfo strip done by some packagers (such as rpmbuild) and | |
1854 | inclusion into an initramfs that wants the module size reduced. | |
1855 | ||
1856 | config MODULE_SIG_FORCE | |
1857 | bool "Require modules to be validly signed" | |
1858 | depends on MODULE_SIG | |
1859 | help | |
1860 | Reject unsigned modules or signed modules for which we don't have a | |
1861 | key. Without this, such modules will simply taint the kernel. | |
1862 | ||
1863 | config MODULE_SIG_ALL | |
1864 | bool "Automatically sign all modules" | |
1865 | default y | |
1866 | depends on MODULE_SIG | |
1867 | help | |
1868 | Sign all modules during make modules_install. Without this option, | |
1869 | modules must be signed manually, using the scripts/sign-file tool. | |
1870 | ||
1871 | comment "Do not forget to sign required modules with scripts/sign-file" | |
1872 | depends on MODULE_SIG_FORCE && !MODULE_SIG_ALL | |
1873 | ||
1874 | choice | |
1875 | prompt "Which hash algorithm should modules be signed with?" | |
1876 | depends on MODULE_SIG | |
1877 | help | |
1878 | This determines which sort of hashing algorithm will be used during | |
1879 | signature generation. This algorithm _must_ be built into the kernel | |
1880 | directly so that signature verification can take place. It is not | |
1881 | possible to load a signed module containing the algorithm to check | |
1882 | the signature on that module. | |
1883 | ||
1884 | config MODULE_SIG_SHA1 | |
1885 | bool "Sign modules with SHA-1" | |
1886 | select CRYPTO_SHA1 | |
1887 | ||
1888 | config MODULE_SIG_SHA224 | |
1889 | bool "Sign modules with SHA-224" | |
1890 | select CRYPTO_SHA256 | |
1891 | ||
1892 | config MODULE_SIG_SHA256 | |
1893 | bool "Sign modules with SHA-256" | |
1894 | select CRYPTO_SHA256 | |
1895 | ||
1896 | config MODULE_SIG_SHA384 | |
1897 | bool "Sign modules with SHA-384" | |
1898 | select CRYPTO_SHA512 | |
1899 | ||
1900 | config MODULE_SIG_SHA512 | |
1901 | bool "Sign modules with SHA-512" | |
1902 | select CRYPTO_SHA512 | |
1903 | ||
1904 | endchoice | |
1905 | ||
1906 | config MODULE_SIG_HASH | |
1907 | string | |
1908 | depends on MODULE_SIG | |
1909 | default "sha1" if MODULE_SIG_SHA1 | |
1910 | default "sha224" if MODULE_SIG_SHA224 | |
1911 | default "sha256" if MODULE_SIG_SHA256 | |
1912 | default "sha384" if MODULE_SIG_SHA384 | |
1913 | default "sha512" if MODULE_SIG_SHA512 | |
1914 | ||
1915 | config MODULE_COMPRESS | |
1916 | bool "Compress modules on installation" | |
1917 | depends on MODULES | |
1918 | help | |
1919 | ||
1920 | Compresses kernel modules when 'make modules_install' is run; gzip or | |
1921 | xz depending on "Compression algorithm" below. | |
1922 | ||
1923 | module-init-tools MAY support gzip, and kmod MAY support gzip and xz. | |
1924 | ||
1925 | Out-of-tree kernel modules installed using Kbuild will also be | |
1926 | compressed upon installation. | |
1927 | ||
1928 | Note: for modules inside an initrd or initramfs, it's more efficient | |
1929 | to compress the whole initrd or initramfs instead. | |
1930 | ||
1931 | Note: This is fully compatible with signed modules. | |
1932 | ||
1933 | If in doubt, say N. | |
1934 | ||
1935 | choice | |
1936 | prompt "Compression algorithm" | |
1937 | depends on MODULE_COMPRESS | |
1938 | default MODULE_COMPRESS_GZIP | |
1939 | help | |
1940 | This determines which sort of compression will be used during | |
1941 | 'make modules_install'. | |
1942 | ||
1943 | GZIP (default) and XZ are supported. | |
1944 | ||
1945 | config MODULE_COMPRESS_GZIP | |
1946 | bool "GZIP" | |
1947 | ||
1948 | config MODULE_COMPRESS_XZ | |
1949 | bool "XZ" | |
1950 | ||
1951 | endchoice | |
1952 | ||
1953 | config TRIM_UNUSED_KSYMS | |
1954 | bool "Trim unused exported kernel symbols" | |
1955 | depends on MODULES && !UNUSED_SYMBOLS | |
1956 | help | |
1957 | The kernel and some modules make many symbols available for | |
1958 | other modules to use via EXPORT_SYMBOL() and variants. Depending | |
1959 | on the set of modules being selected in your kernel configuration, | |
1960 | many of those exported symbols might never be used. | |
1961 | ||
1962 | This option allows for unused exported symbols to be dropped from | |
1963 | the build. In turn, this provides the compiler more opportunities | |
1964 | (especially when using LTO) for optimizing the code and reducing | |
1965 | binary size. This might have some security advantages as well. | |
1966 | ||
1967 | If unsure, or if you need to build out-of-tree modules, say N. | |
1968 | ||
1969 | endif # MODULES | |
1970 | ||
1971 | config MODULES_TREE_LOOKUP | |
1972 | def_bool y | |
1973 | depends on PERF_EVENTS || TRACING | |
1974 | ||
1975 | config INIT_ALL_POSSIBLE | |
1976 | bool | |
1977 | help | |
1978 | Back when each arch used to define their own cpu_online_mask and | |
1979 | cpu_possible_mask, some of them chose to initialize cpu_possible_mask | |
1980 | with all 1s, and others with all 0s. When they were centralised, | |
1981 | it was better to provide this option than to break all the archs | |
1982 | and have several arch maintainers pursuing me down dark alleys. | |
1983 | ||
1984 | source "block/Kconfig" | |
1985 | ||
1986 | config PREEMPT_NOTIFIERS | |
1987 | bool | |
1988 | ||
1989 | config PADATA | |
1990 | depends on SMP | |
1991 | bool | |
1992 | ||
1993 | config ASN1 | |
1994 | tristate | |
1995 | help | |
1996 | Build a simple ASN.1 grammar compiler that produces a bytecode output | |
1997 | that can be interpreted by the ASN.1 stream decoder and used to | |
1998 | inform it as to what tags are to be expected in a stream and what | |
1999 | functions to call on what tags. | |
2000 | ||
2001 | source "kernel/Kconfig.locks" | |
2002 | ||
2003 | config ARCH_HAS_SYNC_CORE_BEFORE_USERMODE | |
2004 | bool | |
2005 | ||
2006 | # It may be useful for an architecture to override the definitions of the | |
2007 | # SYSCALL_DEFINE() and __SYSCALL_DEFINEx() macros in <linux/syscalls.h> | |
2008 | # and the COMPAT_ variants in <linux/compat.h>, in particular to use a | |
2009 | # different calling convention for syscalls. They can also override the | |
2010 | # macros for not-implemented syscalls in kernel/sys_ni.c and | |
2011 | # kernel/time/posix-stubs.c. All these overrides need to be available in | |
2012 | # <asm/syscall_wrapper.h>. | |
2013 | config ARCH_HAS_SYSCALL_WRAPPER | |
2014 | def_bool n |