]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | |
3 | * All Rights Reserved. | |
4 | * | |
5 | * This program is free software; you can redistribute it and/or | |
6 | * modify it under the terms of the GNU General Public License as | |
7 | * published by the Free Software Foundation. | |
8 | * | |
9 | * This program is distributed in the hope that it would be useful, | |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
12 | * GNU General Public License for more details. | |
13 | * | |
14 | * You should have received a copy of the GNU General Public License | |
15 | * along with this program; if not, write the Free Software Foundation, | |
16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
17 | */ | |
18 | #include "xfs.h" | |
19 | #include "xfs_fs.h" | |
20 | #include "xfs_types.h" | |
21 | #include "xfs_bit.h" | |
22 | #include "xfs_log.h" | |
23 | #include "xfs_inum.h" | |
24 | #include "xfs_trans.h" | |
25 | #include "xfs_sb.h" | |
26 | #include "xfs_ag.h" | |
27 | #include "xfs_dir2.h" | |
28 | #include "xfs_mount.h" | |
29 | #include "xfs_bmap_btree.h" | |
30 | #include "xfs_alloc_btree.h" | |
31 | #include "xfs_ialloc_btree.h" | |
32 | #include "xfs_dinode.h" | |
33 | #include "xfs_inode.h" | |
34 | #include "xfs_btree.h" | |
35 | #include "xfs_ialloc.h" | |
36 | #include "xfs_alloc.h" | |
37 | #include "xfs_rtalloc.h" | |
38 | #include "xfs_bmap.h" | |
39 | #include "xfs_error.h" | |
40 | #include "xfs_rw.h" | |
41 | #include "xfs_quota.h" | |
42 | #include "xfs_fsops.h" | |
43 | #include "xfs_utils.h" | |
44 | #include "xfs_trace.h" | |
45 | ||
46 | ||
47 | STATIC void xfs_unmountfs_wait(xfs_mount_t *); | |
48 | ||
49 | ||
50 | #ifdef HAVE_PERCPU_SB | |
51 | STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, | |
52 | int); | |
53 | STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, | |
54 | int); | |
55 | STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t, | |
56 | int64_t, int); | |
57 | STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); | |
58 | ||
59 | #else | |
60 | ||
61 | #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) | |
62 | #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) | |
63 | #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0) | |
64 | ||
65 | #endif | |
66 | ||
67 | static const struct { | |
68 | short offset; | |
69 | short type; /* 0 = integer | |
70 | * 1 = binary / string (no translation) | |
71 | */ | |
72 | } xfs_sb_info[] = { | |
73 | { offsetof(xfs_sb_t, sb_magicnum), 0 }, | |
74 | { offsetof(xfs_sb_t, sb_blocksize), 0 }, | |
75 | { offsetof(xfs_sb_t, sb_dblocks), 0 }, | |
76 | { offsetof(xfs_sb_t, sb_rblocks), 0 }, | |
77 | { offsetof(xfs_sb_t, sb_rextents), 0 }, | |
78 | { offsetof(xfs_sb_t, sb_uuid), 1 }, | |
79 | { offsetof(xfs_sb_t, sb_logstart), 0 }, | |
80 | { offsetof(xfs_sb_t, sb_rootino), 0 }, | |
81 | { offsetof(xfs_sb_t, sb_rbmino), 0 }, | |
82 | { offsetof(xfs_sb_t, sb_rsumino), 0 }, | |
83 | { offsetof(xfs_sb_t, sb_rextsize), 0 }, | |
84 | { offsetof(xfs_sb_t, sb_agblocks), 0 }, | |
85 | { offsetof(xfs_sb_t, sb_agcount), 0 }, | |
86 | { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, | |
87 | { offsetof(xfs_sb_t, sb_logblocks), 0 }, | |
88 | { offsetof(xfs_sb_t, sb_versionnum), 0 }, | |
89 | { offsetof(xfs_sb_t, sb_sectsize), 0 }, | |
90 | { offsetof(xfs_sb_t, sb_inodesize), 0 }, | |
91 | { offsetof(xfs_sb_t, sb_inopblock), 0 }, | |
92 | { offsetof(xfs_sb_t, sb_fname[0]), 1 }, | |
93 | { offsetof(xfs_sb_t, sb_blocklog), 0 }, | |
94 | { offsetof(xfs_sb_t, sb_sectlog), 0 }, | |
95 | { offsetof(xfs_sb_t, sb_inodelog), 0 }, | |
96 | { offsetof(xfs_sb_t, sb_inopblog), 0 }, | |
97 | { offsetof(xfs_sb_t, sb_agblklog), 0 }, | |
98 | { offsetof(xfs_sb_t, sb_rextslog), 0 }, | |
99 | { offsetof(xfs_sb_t, sb_inprogress), 0 }, | |
100 | { offsetof(xfs_sb_t, sb_imax_pct), 0 }, | |
101 | { offsetof(xfs_sb_t, sb_icount), 0 }, | |
102 | { offsetof(xfs_sb_t, sb_ifree), 0 }, | |
103 | { offsetof(xfs_sb_t, sb_fdblocks), 0 }, | |
104 | { offsetof(xfs_sb_t, sb_frextents), 0 }, | |
105 | { offsetof(xfs_sb_t, sb_uquotino), 0 }, | |
106 | { offsetof(xfs_sb_t, sb_gquotino), 0 }, | |
107 | { offsetof(xfs_sb_t, sb_qflags), 0 }, | |
108 | { offsetof(xfs_sb_t, sb_flags), 0 }, | |
109 | { offsetof(xfs_sb_t, sb_shared_vn), 0 }, | |
110 | { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, | |
111 | { offsetof(xfs_sb_t, sb_unit), 0 }, | |
112 | { offsetof(xfs_sb_t, sb_width), 0 }, | |
113 | { offsetof(xfs_sb_t, sb_dirblklog), 0 }, | |
114 | { offsetof(xfs_sb_t, sb_logsectlog), 0 }, | |
115 | { offsetof(xfs_sb_t, sb_logsectsize),0 }, | |
116 | { offsetof(xfs_sb_t, sb_logsunit), 0 }, | |
117 | { offsetof(xfs_sb_t, sb_features2), 0 }, | |
118 | { offsetof(xfs_sb_t, sb_bad_features2), 0 }, | |
119 | { sizeof(xfs_sb_t), 0 } | |
120 | }; | |
121 | ||
122 | static DEFINE_MUTEX(xfs_uuid_table_mutex); | |
123 | static int xfs_uuid_table_size; | |
124 | static uuid_t *xfs_uuid_table; | |
125 | ||
126 | /* | |
127 | * See if the UUID is unique among mounted XFS filesystems. | |
128 | * Mount fails if UUID is nil or a FS with the same UUID is already mounted. | |
129 | */ | |
130 | STATIC int | |
131 | xfs_uuid_mount( | |
132 | struct xfs_mount *mp) | |
133 | { | |
134 | uuid_t *uuid = &mp->m_sb.sb_uuid; | |
135 | int hole, i; | |
136 | ||
137 | if (mp->m_flags & XFS_MOUNT_NOUUID) | |
138 | return 0; | |
139 | ||
140 | if (uuid_is_nil(uuid)) { | |
141 | cmn_err(CE_WARN, | |
142 | "XFS: Filesystem %s has nil UUID - can't mount", | |
143 | mp->m_fsname); | |
144 | return XFS_ERROR(EINVAL); | |
145 | } | |
146 | ||
147 | mutex_lock(&xfs_uuid_table_mutex); | |
148 | for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { | |
149 | if (uuid_is_nil(&xfs_uuid_table[i])) { | |
150 | hole = i; | |
151 | continue; | |
152 | } | |
153 | if (uuid_equal(uuid, &xfs_uuid_table[i])) | |
154 | goto out_duplicate; | |
155 | } | |
156 | ||
157 | if (hole < 0) { | |
158 | xfs_uuid_table = kmem_realloc(xfs_uuid_table, | |
159 | (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), | |
160 | xfs_uuid_table_size * sizeof(*xfs_uuid_table), | |
161 | KM_SLEEP); | |
162 | hole = xfs_uuid_table_size++; | |
163 | } | |
164 | xfs_uuid_table[hole] = *uuid; | |
165 | mutex_unlock(&xfs_uuid_table_mutex); | |
166 | ||
167 | return 0; | |
168 | ||
169 | out_duplicate: | |
170 | mutex_unlock(&xfs_uuid_table_mutex); | |
171 | cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount", | |
172 | mp->m_fsname); | |
173 | return XFS_ERROR(EINVAL); | |
174 | } | |
175 | ||
176 | STATIC void | |
177 | xfs_uuid_unmount( | |
178 | struct xfs_mount *mp) | |
179 | { | |
180 | uuid_t *uuid = &mp->m_sb.sb_uuid; | |
181 | int i; | |
182 | ||
183 | if (mp->m_flags & XFS_MOUNT_NOUUID) | |
184 | return; | |
185 | ||
186 | mutex_lock(&xfs_uuid_table_mutex); | |
187 | for (i = 0; i < xfs_uuid_table_size; i++) { | |
188 | if (uuid_is_nil(&xfs_uuid_table[i])) | |
189 | continue; | |
190 | if (!uuid_equal(uuid, &xfs_uuid_table[i])) | |
191 | continue; | |
192 | memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); | |
193 | break; | |
194 | } | |
195 | ASSERT(i < xfs_uuid_table_size); | |
196 | mutex_unlock(&xfs_uuid_table_mutex); | |
197 | } | |
198 | ||
199 | ||
200 | /* | |
201 | * Reference counting access wrappers to the perag structures. | |
202 | */ | |
203 | struct xfs_perag * | |
204 | xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno) | |
205 | { | |
206 | struct xfs_perag *pag; | |
207 | int ref = 0; | |
208 | ||
209 | spin_lock(&mp->m_perag_lock); | |
210 | pag = radix_tree_lookup(&mp->m_perag_tree, agno); | |
211 | if (pag) { | |
212 | ASSERT(atomic_read(&pag->pag_ref) >= 0); | |
213 | /* catch leaks in the positive direction during testing */ | |
214 | ASSERT(atomic_read(&pag->pag_ref) < 1000); | |
215 | ref = atomic_inc_return(&pag->pag_ref); | |
216 | } | |
217 | spin_unlock(&mp->m_perag_lock); | |
218 | trace_xfs_perag_get(mp, agno, ref, _RET_IP_); | |
219 | return pag; | |
220 | } | |
221 | ||
222 | void | |
223 | xfs_perag_put(struct xfs_perag *pag) | |
224 | { | |
225 | int ref; | |
226 | ||
227 | ASSERT(atomic_read(&pag->pag_ref) > 0); | |
228 | ref = atomic_dec_return(&pag->pag_ref); | |
229 | trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); | |
230 | } | |
231 | ||
232 | /* | |
233 | * Free up the resources associated with a mount structure. Assume that | |
234 | * the structure was initially zeroed, so we can tell which fields got | |
235 | * initialized. | |
236 | */ | |
237 | STATIC void | |
238 | xfs_free_perag( | |
239 | xfs_mount_t *mp) | |
240 | { | |
241 | xfs_agnumber_t agno; | |
242 | struct xfs_perag *pag; | |
243 | ||
244 | for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { | |
245 | spin_lock(&mp->m_perag_lock); | |
246 | pag = radix_tree_delete(&mp->m_perag_tree, agno); | |
247 | ASSERT(pag); | |
248 | ASSERT(atomic_read(&pag->pag_ref) == 0); | |
249 | spin_unlock(&mp->m_perag_lock); | |
250 | kmem_free(pag); | |
251 | } | |
252 | } | |
253 | ||
254 | /* | |
255 | * Check size of device based on the (data/realtime) block count. | |
256 | * Note: this check is used by the growfs code as well as mount. | |
257 | */ | |
258 | int | |
259 | xfs_sb_validate_fsb_count( | |
260 | xfs_sb_t *sbp, | |
261 | __uint64_t nblocks) | |
262 | { | |
263 | ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); | |
264 | ASSERT(sbp->sb_blocklog >= BBSHIFT); | |
265 | ||
266 | #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ | |
267 | if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) | |
268 | return EFBIG; | |
269 | #else /* Limited by UINT_MAX of sectors */ | |
270 | if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) | |
271 | return EFBIG; | |
272 | #endif | |
273 | return 0; | |
274 | } | |
275 | ||
276 | /* | |
277 | * Check the validity of the SB found. | |
278 | */ | |
279 | STATIC int | |
280 | xfs_mount_validate_sb( | |
281 | xfs_mount_t *mp, | |
282 | xfs_sb_t *sbp, | |
283 | int flags) | |
284 | { | |
285 | /* | |
286 | * If the log device and data device have the | |
287 | * same device number, the log is internal. | |
288 | * Consequently, the sb_logstart should be non-zero. If | |
289 | * we have a zero sb_logstart in this case, we may be trying to mount | |
290 | * a volume filesystem in a non-volume manner. | |
291 | */ | |
292 | if (sbp->sb_magicnum != XFS_SB_MAGIC) { | |
293 | xfs_fs_mount_cmn_err(flags, "bad magic number"); | |
294 | return XFS_ERROR(EWRONGFS); | |
295 | } | |
296 | ||
297 | if (!xfs_sb_good_version(sbp)) { | |
298 | xfs_fs_mount_cmn_err(flags, "bad version"); | |
299 | return XFS_ERROR(EWRONGFS); | |
300 | } | |
301 | ||
302 | if (unlikely( | |
303 | sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { | |
304 | xfs_fs_mount_cmn_err(flags, | |
305 | "filesystem is marked as having an external log; " | |
306 | "specify logdev on the\nmount command line."); | |
307 | return XFS_ERROR(EINVAL); | |
308 | } | |
309 | ||
310 | if (unlikely( | |
311 | sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { | |
312 | xfs_fs_mount_cmn_err(flags, | |
313 | "filesystem is marked as having an internal log; " | |
314 | "do not specify logdev on\nthe mount command line."); | |
315 | return XFS_ERROR(EINVAL); | |
316 | } | |
317 | ||
318 | /* | |
319 | * More sanity checking. These were stolen directly from | |
320 | * xfs_repair. | |
321 | */ | |
322 | if (unlikely( | |
323 | sbp->sb_agcount <= 0 || | |
324 | sbp->sb_sectsize < XFS_MIN_SECTORSIZE || | |
325 | sbp->sb_sectsize > XFS_MAX_SECTORSIZE || | |
326 | sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || | |
327 | sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || | |
328 | sbp->sb_sectsize != (1 << sbp->sb_sectlog) || | |
329 | sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || | |
330 | sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || | |
331 | sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || | |
332 | sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || | |
333 | sbp->sb_blocksize != (1 << sbp->sb_blocklog) || | |
334 | sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || | |
335 | sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || | |
336 | sbp->sb_inodelog < XFS_DINODE_MIN_LOG || | |
337 | sbp->sb_inodelog > XFS_DINODE_MAX_LOG || | |
338 | sbp->sb_inodesize != (1 << sbp->sb_inodelog) || | |
339 | (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || | |
340 | (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || | |
341 | (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || | |
342 | (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) { | |
343 | xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed"); | |
344 | return XFS_ERROR(EFSCORRUPTED); | |
345 | } | |
346 | ||
347 | /* | |
348 | * Sanity check AG count, size fields against data size field | |
349 | */ | |
350 | if (unlikely( | |
351 | sbp->sb_dblocks == 0 || | |
352 | sbp->sb_dblocks > | |
353 | (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks || | |
354 | sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) * | |
355 | sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) { | |
356 | xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed"); | |
357 | return XFS_ERROR(EFSCORRUPTED); | |
358 | } | |
359 | ||
360 | /* | |
361 | * Until this is fixed only page-sized or smaller data blocks work. | |
362 | */ | |
363 | if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { | |
364 | xfs_fs_mount_cmn_err(flags, | |
365 | "file system with blocksize %d bytes", | |
366 | sbp->sb_blocksize); | |
367 | xfs_fs_mount_cmn_err(flags, | |
368 | "only pagesize (%ld) or less will currently work.", | |
369 | PAGE_SIZE); | |
370 | return XFS_ERROR(ENOSYS); | |
371 | } | |
372 | ||
373 | /* | |
374 | * Currently only very few inode sizes are supported. | |
375 | */ | |
376 | switch (sbp->sb_inodesize) { | |
377 | case 256: | |
378 | case 512: | |
379 | case 1024: | |
380 | case 2048: | |
381 | break; | |
382 | default: | |
383 | xfs_fs_mount_cmn_err(flags, | |
384 | "inode size of %d bytes not supported", | |
385 | sbp->sb_inodesize); | |
386 | return XFS_ERROR(ENOSYS); | |
387 | } | |
388 | ||
389 | if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || | |
390 | xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { | |
391 | xfs_fs_mount_cmn_err(flags, | |
392 | "file system too large to be mounted on this system."); | |
393 | return XFS_ERROR(EFBIG); | |
394 | } | |
395 | ||
396 | if (unlikely(sbp->sb_inprogress)) { | |
397 | xfs_fs_mount_cmn_err(flags, "file system busy"); | |
398 | return XFS_ERROR(EFSCORRUPTED); | |
399 | } | |
400 | ||
401 | /* | |
402 | * Version 1 directory format has never worked on Linux. | |
403 | */ | |
404 | if (unlikely(!xfs_sb_version_hasdirv2(sbp))) { | |
405 | xfs_fs_mount_cmn_err(flags, | |
406 | "file system using version 1 directory format"); | |
407 | return XFS_ERROR(ENOSYS); | |
408 | } | |
409 | ||
410 | return 0; | |
411 | } | |
412 | ||
413 | int | |
414 | xfs_initialize_perag( | |
415 | xfs_mount_t *mp, | |
416 | xfs_agnumber_t agcount, | |
417 | xfs_agnumber_t *maxagi) | |
418 | { | |
419 | xfs_agnumber_t index, max_metadata; | |
420 | xfs_agnumber_t first_initialised = 0; | |
421 | xfs_perag_t *pag; | |
422 | xfs_agino_t agino; | |
423 | xfs_ino_t ino; | |
424 | xfs_sb_t *sbp = &mp->m_sb; | |
425 | int error = -ENOMEM; | |
426 | ||
427 | /* | |
428 | * Walk the current per-ag tree so we don't try to initialise AGs | |
429 | * that already exist (growfs case). Allocate and insert all the | |
430 | * AGs we don't find ready for initialisation. | |
431 | */ | |
432 | for (index = 0; index < agcount; index++) { | |
433 | pag = xfs_perag_get(mp, index); | |
434 | if (pag) { | |
435 | xfs_perag_put(pag); | |
436 | continue; | |
437 | } | |
438 | if (!first_initialised) | |
439 | first_initialised = index; | |
440 | ||
441 | pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); | |
442 | if (!pag) | |
443 | goto out_unwind; | |
444 | pag->pag_agno = index; | |
445 | pag->pag_mount = mp; | |
446 | rwlock_init(&pag->pag_ici_lock); | |
447 | INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); | |
448 | ||
449 | if (radix_tree_preload(GFP_NOFS)) | |
450 | goto out_unwind; | |
451 | ||
452 | spin_lock(&mp->m_perag_lock); | |
453 | if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { | |
454 | BUG(); | |
455 | spin_unlock(&mp->m_perag_lock); | |
456 | radix_tree_preload_end(); | |
457 | error = -EEXIST; | |
458 | goto out_unwind; | |
459 | } | |
460 | spin_unlock(&mp->m_perag_lock); | |
461 | radix_tree_preload_end(); | |
462 | } | |
463 | ||
464 | /* | |
465 | * If we mount with the inode64 option, or no inode overflows | |
466 | * the legacy 32-bit address space clear the inode32 option. | |
467 | */ | |
468 | agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); | |
469 | ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); | |
470 | ||
471 | if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) | |
472 | mp->m_flags |= XFS_MOUNT_32BITINODES; | |
473 | else | |
474 | mp->m_flags &= ~XFS_MOUNT_32BITINODES; | |
475 | ||
476 | if (mp->m_flags & XFS_MOUNT_32BITINODES) { | |
477 | /* | |
478 | * Calculate how much should be reserved for inodes to meet | |
479 | * the max inode percentage. | |
480 | */ | |
481 | if (mp->m_maxicount) { | |
482 | __uint64_t icount; | |
483 | ||
484 | icount = sbp->sb_dblocks * sbp->sb_imax_pct; | |
485 | do_div(icount, 100); | |
486 | icount += sbp->sb_agblocks - 1; | |
487 | do_div(icount, sbp->sb_agblocks); | |
488 | max_metadata = icount; | |
489 | } else { | |
490 | max_metadata = agcount; | |
491 | } | |
492 | ||
493 | for (index = 0; index < agcount; index++) { | |
494 | ino = XFS_AGINO_TO_INO(mp, index, agino); | |
495 | if (ino > XFS_MAXINUMBER_32) { | |
496 | index++; | |
497 | break; | |
498 | } | |
499 | ||
500 | pag = xfs_perag_get(mp, index); | |
501 | pag->pagi_inodeok = 1; | |
502 | if (index < max_metadata) | |
503 | pag->pagf_metadata = 1; | |
504 | xfs_perag_put(pag); | |
505 | } | |
506 | } else { | |
507 | for (index = 0; index < agcount; index++) { | |
508 | pag = xfs_perag_get(mp, index); | |
509 | pag->pagi_inodeok = 1; | |
510 | xfs_perag_put(pag); | |
511 | } | |
512 | } | |
513 | ||
514 | if (maxagi) | |
515 | *maxagi = index; | |
516 | return 0; | |
517 | ||
518 | out_unwind: | |
519 | kmem_free(pag); | |
520 | for (; index > first_initialised; index--) { | |
521 | pag = radix_tree_delete(&mp->m_perag_tree, index); | |
522 | kmem_free(pag); | |
523 | } | |
524 | return error; | |
525 | } | |
526 | ||
527 | void | |
528 | xfs_sb_from_disk( | |
529 | xfs_sb_t *to, | |
530 | xfs_dsb_t *from) | |
531 | { | |
532 | to->sb_magicnum = be32_to_cpu(from->sb_magicnum); | |
533 | to->sb_blocksize = be32_to_cpu(from->sb_blocksize); | |
534 | to->sb_dblocks = be64_to_cpu(from->sb_dblocks); | |
535 | to->sb_rblocks = be64_to_cpu(from->sb_rblocks); | |
536 | to->sb_rextents = be64_to_cpu(from->sb_rextents); | |
537 | memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); | |
538 | to->sb_logstart = be64_to_cpu(from->sb_logstart); | |
539 | to->sb_rootino = be64_to_cpu(from->sb_rootino); | |
540 | to->sb_rbmino = be64_to_cpu(from->sb_rbmino); | |
541 | to->sb_rsumino = be64_to_cpu(from->sb_rsumino); | |
542 | to->sb_rextsize = be32_to_cpu(from->sb_rextsize); | |
543 | to->sb_agblocks = be32_to_cpu(from->sb_agblocks); | |
544 | to->sb_agcount = be32_to_cpu(from->sb_agcount); | |
545 | to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); | |
546 | to->sb_logblocks = be32_to_cpu(from->sb_logblocks); | |
547 | to->sb_versionnum = be16_to_cpu(from->sb_versionnum); | |
548 | to->sb_sectsize = be16_to_cpu(from->sb_sectsize); | |
549 | to->sb_inodesize = be16_to_cpu(from->sb_inodesize); | |
550 | to->sb_inopblock = be16_to_cpu(from->sb_inopblock); | |
551 | memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); | |
552 | to->sb_blocklog = from->sb_blocklog; | |
553 | to->sb_sectlog = from->sb_sectlog; | |
554 | to->sb_inodelog = from->sb_inodelog; | |
555 | to->sb_inopblog = from->sb_inopblog; | |
556 | to->sb_agblklog = from->sb_agblklog; | |
557 | to->sb_rextslog = from->sb_rextslog; | |
558 | to->sb_inprogress = from->sb_inprogress; | |
559 | to->sb_imax_pct = from->sb_imax_pct; | |
560 | to->sb_icount = be64_to_cpu(from->sb_icount); | |
561 | to->sb_ifree = be64_to_cpu(from->sb_ifree); | |
562 | to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); | |
563 | to->sb_frextents = be64_to_cpu(from->sb_frextents); | |
564 | to->sb_uquotino = be64_to_cpu(from->sb_uquotino); | |
565 | to->sb_gquotino = be64_to_cpu(from->sb_gquotino); | |
566 | to->sb_qflags = be16_to_cpu(from->sb_qflags); | |
567 | to->sb_flags = from->sb_flags; | |
568 | to->sb_shared_vn = from->sb_shared_vn; | |
569 | to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); | |
570 | to->sb_unit = be32_to_cpu(from->sb_unit); | |
571 | to->sb_width = be32_to_cpu(from->sb_width); | |
572 | to->sb_dirblklog = from->sb_dirblklog; | |
573 | to->sb_logsectlog = from->sb_logsectlog; | |
574 | to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); | |
575 | to->sb_logsunit = be32_to_cpu(from->sb_logsunit); | |
576 | to->sb_features2 = be32_to_cpu(from->sb_features2); | |
577 | to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); | |
578 | } | |
579 | ||
580 | /* | |
581 | * Copy in core superblock to ondisk one. | |
582 | * | |
583 | * The fields argument is mask of superblock fields to copy. | |
584 | */ | |
585 | void | |
586 | xfs_sb_to_disk( | |
587 | xfs_dsb_t *to, | |
588 | xfs_sb_t *from, | |
589 | __int64_t fields) | |
590 | { | |
591 | xfs_caddr_t to_ptr = (xfs_caddr_t)to; | |
592 | xfs_caddr_t from_ptr = (xfs_caddr_t)from; | |
593 | xfs_sb_field_t f; | |
594 | int first; | |
595 | int size; | |
596 | ||
597 | ASSERT(fields); | |
598 | if (!fields) | |
599 | return; | |
600 | ||
601 | while (fields) { | |
602 | f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); | |
603 | first = xfs_sb_info[f].offset; | |
604 | size = xfs_sb_info[f + 1].offset - first; | |
605 | ||
606 | ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); | |
607 | ||
608 | if (size == 1 || xfs_sb_info[f].type == 1) { | |
609 | memcpy(to_ptr + first, from_ptr + first, size); | |
610 | } else { | |
611 | switch (size) { | |
612 | case 2: | |
613 | *(__be16 *)(to_ptr + first) = | |
614 | cpu_to_be16(*(__u16 *)(from_ptr + first)); | |
615 | break; | |
616 | case 4: | |
617 | *(__be32 *)(to_ptr + first) = | |
618 | cpu_to_be32(*(__u32 *)(from_ptr + first)); | |
619 | break; | |
620 | case 8: | |
621 | *(__be64 *)(to_ptr + first) = | |
622 | cpu_to_be64(*(__u64 *)(from_ptr + first)); | |
623 | break; | |
624 | default: | |
625 | ASSERT(0); | |
626 | } | |
627 | } | |
628 | ||
629 | fields &= ~(1LL << f); | |
630 | } | |
631 | } | |
632 | ||
633 | /* | |
634 | * xfs_readsb | |
635 | * | |
636 | * Does the initial read of the superblock. | |
637 | */ | |
638 | int | |
639 | xfs_readsb(xfs_mount_t *mp, int flags) | |
640 | { | |
641 | unsigned int sector_size; | |
642 | unsigned int extra_flags; | |
643 | xfs_buf_t *bp; | |
644 | int error; | |
645 | ||
646 | ASSERT(mp->m_sb_bp == NULL); | |
647 | ASSERT(mp->m_ddev_targp != NULL); | |
648 | ||
649 | /* | |
650 | * Allocate a (locked) buffer to hold the superblock. | |
651 | * This will be kept around at all times to optimize | |
652 | * access to the superblock. | |
653 | */ | |
654 | sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); | |
655 | extra_flags = XBF_LOCK | XBF_FS_MANAGED | XBF_MAPPED; | |
656 | ||
657 | bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR, BTOBB(sector_size), | |
658 | extra_flags); | |
659 | if (!bp || XFS_BUF_ISERROR(bp)) { | |
660 | xfs_fs_mount_cmn_err(flags, "SB read failed"); | |
661 | error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; | |
662 | goto fail; | |
663 | } | |
664 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
665 | ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); | |
666 | ||
667 | /* | |
668 | * Initialize the mount structure from the superblock. | |
669 | * But first do some basic consistency checking. | |
670 | */ | |
671 | xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); | |
672 | ||
673 | error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags); | |
674 | if (error) { | |
675 | xfs_fs_mount_cmn_err(flags, "SB validate failed"); | |
676 | goto fail; | |
677 | } | |
678 | ||
679 | /* | |
680 | * We must be able to do sector-sized and sector-aligned IO. | |
681 | */ | |
682 | if (sector_size > mp->m_sb.sb_sectsize) { | |
683 | xfs_fs_mount_cmn_err(flags, | |
684 | "device supports only %u byte sectors (not %u)", | |
685 | sector_size, mp->m_sb.sb_sectsize); | |
686 | error = ENOSYS; | |
687 | goto fail; | |
688 | } | |
689 | ||
690 | /* | |
691 | * If device sector size is smaller than the superblock size, | |
692 | * re-read the superblock so the buffer is correctly sized. | |
693 | */ | |
694 | if (sector_size < mp->m_sb.sb_sectsize) { | |
695 | XFS_BUF_UNMANAGE(bp); | |
696 | xfs_buf_relse(bp); | |
697 | sector_size = mp->m_sb.sb_sectsize; | |
698 | bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR, | |
699 | BTOBB(sector_size), extra_flags); | |
700 | if (!bp || XFS_BUF_ISERROR(bp)) { | |
701 | xfs_fs_mount_cmn_err(flags, "SB re-read failed"); | |
702 | error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; | |
703 | goto fail; | |
704 | } | |
705 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
706 | ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); | |
707 | } | |
708 | ||
709 | /* Initialize per-cpu counters */ | |
710 | xfs_icsb_reinit_counters(mp); | |
711 | ||
712 | mp->m_sb_bp = bp; | |
713 | xfs_buf_relse(bp); | |
714 | ASSERT(XFS_BUF_VALUSEMA(bp) > 0); | |
715 | return 0; | |
716 | ||
717 | fail: | |
718 | if (bp) { | |
719 | XFS_BUF_UNMANAGE(bp); | |
720 | xfs_buf_relse(bp); | |
721 | } | |
722 | return error; | |
723 | } | |
724 | ||
725 | ||
726 | /* | |
727 | * xfs_mount_common | |
728 | * | |
729 | * Mount initialization code establishing various mount | |
730 | * fields from the superblock associated with the given | |
731 | * mount structure | |
732 | */ | |
733 | STATIC void | |
734 | xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) | |
735 | { | |
736 | mp->m_agfrotor = mp->m_agirotor = 0; | |
737 | spin_lock_init(&mp->m_agirotor_lock); | |
738 | mp->m_maxagi = mp->m_sb.sb_agcount; | |
739 | mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; | |
740 | mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; | |
741 | mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; | |
742 | mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; | |
743 | mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; | |
744 | mp->m_blockmask = sbp->sb_blocksize - 1; | |
745 | mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; | |
746 | mp->m_blockwmask = mp->m_blockwsize - 1; | |
747 | ||
748 | mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); | |
749 | mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); | |
750 | mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; | |
751 | mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; | |
752 | ||
753 | mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); | |
754 | mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); | |
755 | mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2; | |
756 | mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2; | |
757 | ||
758 | mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); | |
759 | mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); | |
760 | mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; | |
761 | mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; | |
762 | ||
763 | mp->m_bsize = XFS_FSB_TO_BB(mp, 1); | |
764 | mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, | |
765 | sbp->sb_inopblock); | |
766 | mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; | |
767 | } | |
768 | ||
769 | /* | |
770 | * xfs_initialize_perag_data | |
771 | * | |
772 | * Read in each per-ag structure so we can count up the number of | |
773 | * allocated inodes, free inodes and used filesystem blocks as this | |
774 | * information is no longer persistent in the superblock. Once we have | |
775 | * this information, write it into the in-core superblock structure. | |
776 | */ | |
777 | STATIC int | |
778 | xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) | |
779 | { | |
780 | xfs_agnumber_t index; | |
781 | xfs_perag_t *pag; | |
782 | xfs_sb_t *sbp = &mp->m_sb; | |
783 | uint64_t ifree = 0; | |
784 | uint64_t ialloc = 0; | |
785 | uint64_t bfree = 0; | |
786 | uint64_t bfreelst = 0; | |
787 | uint64_t btree = 0; | |
788 | int error; | |
789 | ||
790 | for (index = 0; index < agcount; index++) { | |
791 | /* | |
792 | * read the agf, then the agi. This gets us | |
793 | * all the information we need and populates the | |
794 | * per-ag structures for us. | |
795 | */ | |
796 | error = xfs_alloc_pagf_init(mp, NULL, index, 0); | |
797 | if (error) | |
798 | return error; | |
799 | ||
800 | error = xfs_ialloc_pagi_init(mp, NULL, index); | |
801 | if (error) | |
802 | return error; | |
803 | pag = xfs_perag_get(mp, index); | |
804 | ifree += pag->pagi_freecount; | |
805 | ialloc += pag->pagi_count; | |
806 | bfree += pag->pagf_freeblks; | |
807 | bfreelst += pag->pagf_flcount; | |
808 | btree += pag->pagf_btreeblks; | |
809 | xfs_perag_put(pag); | |
810 | } | |
811 | /* | |
812 | * Overwrite incore superblock counters with just-read data | |
813 | */ | |
814 | spin_lock(&mp->m_sb_lock); | |
815 | sbp->sb_ifree = ifree; | |
816 | sbp->sb_icount = ialloc; | |
817 | sbp->sb_fdblocks = bfree + bfreelst + btree; | |
818 | spin_unlock(&mp->m_sb_lock); | |
819 | ||
820 | /* Fixup the per-cpu counters as well. */ | |
821 | xfs_icsb_reinit_counters(mp); | |
822 | ||
823 | return 0; | |
824 | } | |
825 | ||
826 | /* | |
827 | * Update alignment values based on mount options and sb values | |
828 | */ | |
829 | STATIC int | |
830 | xfs_update_alignment(xfs_mount_t *mp) | |
831 | { | |
832 | xfs_sb_t *sbp = &(mp->m_sb); | |
833 | ||
834 | if (mp->m_dalign) { | |
835 | /* | |
836 | * If stripe unit and stripe width are not multiples | |
837 | * of the fs blocksize turn off alignment. | |
838 | */ | |
839 | if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || | |
840 | (BBTOB(mp->m_swidth) & mp->m_blockmask)) { | |
841 | if (mp->m_flags & XFS_MOUNT_RETERR) { | |
842 | cmn_err(CE_WARN, | |
843 | "XFS: alignment check 1 failed"); | |
844 | return XFS_ERROR(EINVAL); | |
845 | } | |
846 | mp->m_dalign = mp->m_swidth = 0; | |
847 | } else { | |
848 | /* | |
849 | * Convert the stripe unit and width to FSBs. | |
850 | */ | |
851 | mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); | |
852 | if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { | |
853 | if (mp->m_flags & XFS_MOUNT_RETERR) { | |
854 | return XFS_ERROR(EINVAL); | |
855 | } | |
856 | xfs_fs_cmn_err(CE_WARN, mp, | |
857 | "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)", | |
858 | mp->m_dalign, mp->m_swidth, | |
859 | sbp->sb_agblocks); | |
860 | ||
861 | mp->m_dalign = 0; | |
862 | mp->m_swidth = 0; | |
863 | } else if (mp->m_dalign) { | |
864 | mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); | |
865 | } else { | |
866 | if (mp->m_flags & XFS_MOUNT_RETERR) { | |
867 | xfs_fs_cmn_err(CE_WARN, mp, | |
868 | "stripe alignment turned off: sunit(%d) less than bsize(%d)", | |
869 | mp->m_dalign, | |
870 | mp->m_blockmask +1); | |
871 | return XFS_ERROR(EINVAL); | |
872 | } | |
873 | mp->m_swidth = 0; | |
874 | } | |
875 | } | |
876 | ||
877 | /* | |
878 | * Update superblock with new values | |
879 | * and log changes | |
880 | */ | |
881 | if (xfs_sb_version_hasdalign(sbp)) { | |
882 | if (sbp->sb_unit != mp->m_dalign) { | |
883 | sbp->sb_unit = mp->m_dalign; | |
884 | mp->m_update_flags |= XFS_SB_UNIT; | |
885 | } | |
886 | if (sbp->sb_width != mp->m_swidth) { | |
887 | sbp->sb_width = mp->m_swidth; | |
888 | mp->m_update_flags |= XFS_SB_WIDTH; | |
889 | } | |
890 | } | |
891 | } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && | |
892 | xfs_sb_version_hasdalign(&mp->m_sb)) { | |
893 | mp->m_dalign = sbp->sb_unit; | |
894 | mp->m_swidth = sbp->sb_width; | |
895 | } | |
896 | ||
897 | return 0; | |
898 | } | |
899 | ||
900 | /* | |
901 | * Set the maximum inode count for this filesystem | |
902 | */ | |
903 | STATIC void | |
904 | xfs_set_maxicount(xfs_mount_t *mp) | |
905 | { | |
906 | xfs_sb_t *sbp = &(mp->m_sb); | |
907 | __uint64_t icount; | |
908 | ||
909 | if (sbp->sb_imax_pct) { | |
910 | /* | |
911 | * Make sure the maximum inode count is a multiple | |
912 | * of the units we allocate inodes in. | |
913 | */ | |
914 | icount = sbp->sb_dblocks * sbp->sb_imax_pct; | |
915 | do_div(icount, 100); | |
916 | do_div(icount, mp->m_ialloc_blks); | |
917 | mp->m_maxicount = (icount * mp->m_ialloc_blks) << | |
918 | sbp->sb_inopblog; | |
919 | } else { | |
920 | mp->m_maxicount = 0; | |
921 | } | |
922 | } | |
923 | ||
924 | /* | |
925 | * Set the default minimum read and write sizes unless | |
926 | * already specified in a mount option. | |
927 | * We use smaller I/O sizes when the file system | |
928 | * is being used for NFS service (wsync mount option). | |
929 | */ | |
930 | STATIC void | |
931 | xfs_set_rw_sizes(xfs_mount_t *mp) | |
932 | { | |
933 | xfs_sb_t *sbp = &(mp->m_sb); | |
934 | int readio_log, writeio_log; | |
935 | ||
936 | if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { | |
937 | if (mp->m_flags & XFS_MOUNT_WSYNC) { | |
938 | readio_log = XFS_WSYNC_READIO_LOG; | |
939 | writeio_log = XFS_WSYNC_WRITEIO_LOG; | |
940 | } else { | |
941 | readio_log = XFS_READIO_LOG_LARGE; | |
942 | writeio_log = XFS_WRITEIO_LOG_LARGE; | |
943 | } | |
944 | } else { | |
945 | readio_log = mp->m_readio_log; | |
946 | writeio_log = mp->m_writeio_log; | |
947 | } | |
948 | ||
949 | if (sbp->sb_blocklog > readio_log) { | |
950 | mp->m_readio_log = sbp->sb_blocklog; | |
951 | } else { | |
952 | mp->m_readio_log = readio_log; | |
953 | } | |
954 | mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); | |
955 | if (sbp->sb_blocklog > writeio_log) { | |
956 | mp->m_writeio_log = sbp->sb_blocklog; | |
957 | } else { | |
958 | mp->m_writeio_log = writeio_log; | |
959 | } | |
960 | mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); | |
961 | } | |
962 | ||
963 | /* | |
964 | * Set whether we're using inode alignment. | |
965 | */ | |
966 | STATIC void | |
967 | xfs_set_inoalignment(xfs_mount_t *mp) | |
968 | { | |
969 | if (xfs_sb_version_hasalign(&mp->m_sb) && | |
970 | mp->m_sb.sb_inoalignmt >= | |
971 | XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) | |
972 | mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; | |
973 | else | |
974 | mp->m_inoalign_mask = 0; | |
975 | /* | |
976 | * If we are using stripe alignment, check whether | |
977 | * the stripe unit is a multiple of the inode alignment | |
978 | */ | |
979 | if (mp->m_dalign && mp->m_inoalign_mask && | |
980 | !(mp->m_dalign & mp->m_inoalign_mask)) | |
981 | mp->m_sinoalign = mp->m_dalign; | |
982 | else | |
983 | mp->m_sinoalign = 0; | |
984 | } | |
985 | ||
986 | /* | |
987 | * Check that the data (and log if separate) are an ok size. | |
988 | */ | |
989 | STATIC int | |
990 | xfs_check_sizes(xfs_mount_t *mp) | |
991 | { | |
992 | xfs_buf_t *bp; | |
993 | xfs_daddr_t d; | |
994 | int error; | |
995 | ||
996 | d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); | |
997 | if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { | |
998 | cmn_err(CE_WARN, "XFS: size check 1 failed"); | |
999 | return XFS_ERROR(EFBIG); | |
1000 | } | |
1001 | error = xfs_read_buf(mp, mp->m_ddev_targp, | |
1002 | d - XFS_FSS_TO_BB(mp, 1), | |
1003 | XFS_FSS_TO_BB(mp, 1), 0, &bp); | |
1004 | if (!error) { | |
1005 | xfs_buf_relse(bp); | |
1006 | } else { | |
1007 | cmn_err(CE_WARN, "XFS: size check 2 failed"); | |
1008 | if (error == ENOSPC) | |
1009 | error = XFS_ERROR(EFBIG); | |
1010 | return error; | |
1011 | } | |
1012 | ||
1013 | if (mp->m_logdev_targp != mp->m_ddev_targp) { | |
1014 | d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); | |
1015 | if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { | |
1016 | cmn_err(CE_WARN, "XFS: size check 3 failed"); | |
1017 | return XFS_ERROR(EFBIG); | |
1018 | } | |
1019 | error = xfs_read_buf(mp, mp->m_logdev_targp, | |
1020 | d - XFS_FSB_TO_BB(mp, 1), | |
1021 | XFS_FSB_TO_BB(mp, 1), 0, &bp); | |
1022 | if (!error) { | |
1023 | xfs_buf_relse(bp); | |
1024 | } else { | |
1025 | cmn_err(CE_WARN, "XFS: size check 3 failed"); | |
1026 | if (error == ENOSPC) | |
1027 | error = XFS_ERROR(EFBIG); | |
1028 | return error; | |
1029 | } | |
1030 | } | |
1031 | return 0; | |
1032 | } | |
1033 | ||
1034 | /* | |
1035 | * Clear the quotaflags in memory and in the superblock. | |
1036 | */ | |
1037 | int | |
1038 | xfs_mount_reset_sbqflags( | |
1039 | struct xfs_mount *mp) | |
1040 | { | |
1041 | int error; | |
1042 | struct xfs_trans *tp; | |
1043 | ||
1044 | mp->m_qflags = 0; | |
1045 | ||
1046 | /* | |
1047 | * It is OK to look at sb_qflags here in mount path, | |
1048 | * without m_sb_lock. | |
1049 | */ | |
1050 | if (mp->m_sb.sb_qflags == 0) | |
1051 | return 0; | |
1052 | spin_lock(&mp->m_sb_lock); | |
1053 | mp->m_sb.sb_qflags = 0; | |
1054 | spin_unlock(&mp->m_sb_lock); | |
1055 | ||
1056 | /* | |
1057 | * If the fs is readonly, let the incore superblock run | |
1058 | * with quotas off but don't flush the update out to disk | |
1059 | */ | |
1060 | if (mp->m_flags & XFS_MOUNT_RDONLY) | |
1061 | return 0; | |
1062 | ||
1063 | #ifdef QUOTADEBUG | |
1064 | xfs_fs_cmn_err(CE_NOTE, mp, "Writing superblock quota changes"); | |
1065 | #endif | |
1066 | ||
1067 | tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); | |
1068 | error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, | |
1069 | XFS_DEFAULT_LOG_COUNT); | |
1070 | if (error) { | |
1071 | xfs_trans_cancel(tp, 0); | |
1072 | xfs_fs_cmn_err(CE_ALERT, mp, | |
1073 | "xfs_mount_reset_sbqflags: Superblock update failed!"); | |
1074 | return error; | |
1075 | } | |
1076 | ||
1077 | xfs_mod_sb(tp, XFS_SB_QFLAGS); | |
1078 | return xfs_trans_commit(tp, 0); | |
1079 | } | |
1080 | ||
1081 | __uint64_t | |
1082 | xfs_default_resblks(xfs_mount_t *mp) | |
1083 | { | |
1084 | __uint64_t resblks; | |
1085 | ||
1086 | /* | |
1087 | * We default to 5% or 8192 fsbs of space reserved, whichever is | |
1088 | * smaller. This is intended to cover concurrent allocation | |
1089 | * transactions when we initially hit enospc. These each require a 4 | |
1090 | * block reservation. Hence by default we cover roughly 2000 concurrent | |
1091 | * allocation reservations. | |
1092 | */ | |
1093 | resblks = mp->m_sb.sb_dblocks; | |
1094 | do_div(resblks, 20); | |
1095 | resblks = min_t(__uint64_t, resblks, 8192); | |
1096 | return resblks; | |
1097 | } | |
1098 | ||
1099 | /* | |
1100 | * This function does the following on an initial mount of a file system: | |
1101 | * - reads the superblock from disk and init the mount struct | |
1102 | * - if we're a 32-bit kernel, do a size check on the superblock | |
1103 | * so we don't mount terabyte filesystems | |
1104 | * - init mount struct realtime fields | |
1105 | * - allocate inode hash table for fs | |
1106 | * - init directory manager | |
1107 | * - perform recovery and init the log manager | |
1108 | */ | |
1109 | int | |
1110 | xfs_mountfs( | |
1111 | xfs_mount_t *mp) | |
1112 | { | |
1113 | xfs_sb_t *sbp = &(mp->m_sb); | |
1114 | xfs_inode_t *rip; | |
1115 | __uint64_t resblks; | |
1116 | uint quotamount = 0; | |
1117 | uint quotaflags = 0; | |
1118 | int error = 0; | |
1119 | ||
1120 | xfs_mount_common(mp, sbp); | |
1121 | ||
1122 | /* | |
1123 | * Check for a mismatched features2 values. Older kernels | |
1124 | * read & wrote into the wrong sb offset for sb_features2 | |
1125 | * on some platforms due to xfs_sb_t not being 64bit size aligned | |
1126 | * when sb_features2 was added, which made older superblock | |
1127 | * reading/writing routines swap it as a 64-bit value. | |
1128 | * | |
1129 | * For backwards compatibility, we make both slots equal. | |
1130 | * | |
1131 | * If we detect a mismatched field, we OR the set bits into the | |
1132 | * existing features2 field in case it has already been modified; we | |
1133 | * don't want to lose any features. We then update the bad location | |
1134 | * with the ORed value so that older kernels will see any features2 | |
1135 | * flags, and mark the two fields as needing updates once the | |
1136 | * transaction subsystem is online. | |
1137 | */ | |
1138 | if (xfs_sb_has_mismatched_features2(sbp)) { | |
1139 | cmn_err(CE_WARN, | |
1140 | "XFS: correcting sb_features alignment problem"); | |
1141 | sbp->sb_features2 |= sbp->sb_bad_features2; | |
1142 | sbp->sb_bad_features2 = sbp->sb_features2; | |
1143 | mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; | |
1144 | ||
1145 | /* | |
1146 | * Re-check for ATTR2 in case it was found in bad_features2 | |
1147 | * slot. | |
1148 | */ | |
1149 | if (xfs_sb_version_hasattr2(&mp->m_sb) && | |
1150 | !(mp->m_flags & XFS_MOUNT_NOATTR2)) | |
1151 | mp->m_flags |= XFS_MOUNT_ATTR2; | |
1152 | } | |
1153 | ||
1154 | if (xfs_sb_version_hasattr2(&mp->m_sb) && | |
1155 | (mp->m_flags & XFS_MOUNT_NOATTR2)) { | |
1156 | xfs_sb_version_removeattr2(&mp->m_sb); | |
1157 | mp->m_update_flags |= XFS_SB_FEATURES2; | |
1158 | ||
1159 | /* update sb_versionnum for the clearing of the morebits */ | |
1160 | if (!sbp->sb_features2) | |
1161 | mp->m_update_flags |= XFS_SB_VERSIONNUM; | |
1162 | } | |
1163 | ||
1164 | /* | |
1165 | * Check if sb_agblocks is aligned at stripe boundary | |
1166 | * If sb_agblocks is NOT aligned turn off m_dalign since | |
1167 | * allocator alignment is within an ag, therefore ag has | |
1168 | * to be aligned at stripe boundary. | |
1169 | */ | |
1170 | error = xfs_update_alignment(mp); | |
1171 | if (error) | |
1172 | goto out; | |
1173 | ||
1174 | xfs_alloc_compute_maxlevels(mp); | |
1175 | xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); | |
1176 | xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); | |
1177 | xfs_ialloc_compute_maxlevels(mp); | |
1178 | ||
1179 | xfs_set_maxicount(mp); | |
1180 | ||
1181 | mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog); | |
1182 | ||
1183 | error = xfs_uuid_mount(mp); | |
1184 | if (error) | |
1185 | goto out; | |
1186 | ||
1187 | /* | |
1188 | * Set the minimum read and write sizes | |
1189 | */ | |
1190 | xfs_set_rw_sizes(mp); | |
1191 | ||
1192 | /* | |
1193 | * Set the inode cluster size. | |
1194 | * This may still be overridden by the file system | |
1195 | * block size if it is larger than the chosen cluster size. | |
1196 | */ | |
1197 | mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; | |
1198 | ||
1199 | /* | |
1200 | * Set inode alignment fields | |
1201 | */ | |
1202 | xfs_set_inoalignment(mp); | |
1203 | ||
1204 | /* | |
1205 | * Check that the data (and log if separate) are an ok size. | |
1206 | */ | |
1207 | error = xfs_check_sizes(mp); | |
1208 | if (error) | |
1209 | goto out_remove_uuid; | |
1210 | ||
1211 | /* | |
1212 | * Initialize realtime fields in the mount structure | |
1213 | */ | |
1214 | error = xfs_rtmount_init(mp); | |
1215 | if (error) { | |
1216 | cmn_err(CE_WARN, "XFS: RT mount failed"); | |
1217 | goto out_remove_uuid; | |
1218 | } | |
1219 | ||
1220 | /* | |
1221 | * Copies the low order bits of the timestamp and the randomly | |
1222 | * set "sequence" number out of a UUID. | |
1223 | */ | |
1224 | uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); | |
1225 | ||
1226 | mp->m_dmevmask = 0; /* not persistent; set after each mount */ | |
1227 | ||
1228 | xfs_dir_mount(mp); | |
1229 | ||
1230 | /* | |
1231 | * Initialize the attribute manager's entries. | |
1232 | */ | |
1233 | mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; | |
1234 | ||
1235 | /* | |
1236 | * Initialize the precomputed transaction reservations values. | |
1237 | */ | |
1238 | xfs_trans_init(mp); | |
1239 | ||
1240 | /* | |
1241 | * Allocate and initialize the per-ag data. | |
1242 | */ | |
1243 | spin_lock_init(&mp->m_perag_lock); | |
1244 | INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); | |
1245 | error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); | |
1246 | if (error) { | |
1247 | cmn_err(CE_WARN, "XFS: Failed per-ag init: %d", error); | |
1248 | goto out_remove_uuid; | |
1249 | } | |
1250 | ||
1251 | if (!sbp->sb_logblocks) { | |
1252 | cmn_err(CE_WARN, "XFS: no log defined"); | |
1253 | XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); | |
1254 | error = XFS_ERROR(EFSCORRUPTED); | |
1255 | goto out_free_perag; | |
1256 | } | |
1257 | ||
1258 | /* | |
1259 | * log's mount-time initialization. Perform 1st part recovery if needed | |
1260 | */ | |
1261 | error = xfs_log_mount(mp, mp->m_logdev_targp, | |
1262 | XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), | |
1263 | XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); | |
1264 | if (error) { | |
1265 | cmn_err(CE_WARN, "XFS: log mount failed"); | |
1266 | goto out_free_perag; | |
1267 | } | |
1268 | ||
1269 | /* | |
1270 | * Now the log is mounted, we know if it was an unclean shutdown or | |
1271 | * not. If it was, with the first phase of recovery has completed, we | |
1272 | * have consistent AG blocks on disk. We have not recovered EFIs yet, | |
1273 | * but they are recovered transactionally in the second recovery phase | |
1274 | * later. | |
1275 | * | |
1276 | * Hence we can safely re-initialise incore superblock counters from | |
1277 | * the per-ag data. These may not be correct if the filesystem was not | |
1278 | * cleanly unmounted, so we need to wait for recovery to finish before | |
1279 | * doing this. | |
1280 | * | |
1281 | * If the filesystem was cleanly unmounted, then we can trust the | |
1282 | * values in the superblock to be correct and we don't need to do | |
1283 | * anything here. | |
1284 | * | |
1285 | * If we are currently making the filesystem, the initialisation will | |
1286 | * fail as the perag data is in an undefined state. | |
1287 | */ | |
1288 | if (xfs_sb_version_haslazysbcount(&mp->m_sb) && | |
1289 | !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && | |
1290 | !mp->m_sb.sb_inprogress) { | |
1291 | error = xfs_initialize_perag_data(mp, sbp->sb_agcount); | |
1292 | if (error) | |
1293 | goto out_free_perag; | |
1294 | } | |
1295 | ||
1296 | /* | |
1297 | * Get and sanity-check the root inode. | |
1298 | * Save the pointer to it in the mount structure. | |
1299 | */ | |
1300 | error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); | |
1301 | if (error) { | |
1302 | cmn_err(CE_WARN, "XFS: failed to read root inode"); | |
1303 | goto out_log_dealloc; | |
1304 | } | |
1305 | ||
1306 | ASSERT(rip != NULL); | |
1307 | ||
1308 | if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) { | |
1309 | cmn_err(CE_WARN, "XFS: corrupted root inode"); | |
1310 | cmn_err(CE_WARN, "Device %s - root %llu is not a directory", | |
1311 | XFS_BUFTARG_NAME(mp->m_ddev_targp), | |
1312 | (unsigned long long)rip->i_ino); | |
1313 | xfs_iunlock(rip, XFS_ILOCK_EXCL); | |
1314 | XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, | |
1315 | mp); | |
1316 | error = XFS_ERROR(EFSCORRUPTED); | |
1317 | goto out_rele_rip; | |
1318 | } | |
1319 | mp->m_rootip = rip; /* save it */ | |
1320 | ||
1321 | xfs_iunlock(rip, XFS_ILOCK_EXCL); | |
1322 | ||
1323 | /* | |
1324 | * Initialize realtime inode pointers in the mount structure | |
1325 | */ | |
1326 | error = xfs_rtmount_inodes(mp); | |
1327 | if (error) { | |
1328 | /* | |
1329 | * Free up the root inode. | |
1330 | */ | |
1331 | cmn_err(CE_WARN, "XFS: failed to read RT inodes"); | |
1332 | goto out_rele_rip; | |
1333 | } | |
1334 | ||
1335 | /* | |
1336 | * If this is a read-only mount defer the superblock updates until | |
1337 | * the next remount into writeable mode. Otherwise we would never | |
1338 | * perform the update e.g. for the root filesystem. | |
1339 | */ | |
1340 | if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { | |
1341 | error = xfs_mount_log_sb(mp, mp->m_update_flags); | |
1342 | if (error) { | |
1343 | cmn_err(CE_WARN, "XFS: failed to write sb changes"); | |
1344 | goto out_rtunmount; | |
1345 | } | |
1346 | } | |
1347 | ||
1348 | /* | |
1349 | * Initialise the XFS quota management subsystem for this mount | |
1350 | */ | |
1351 | if (XFS_IS_QUOTA_RUNNING(mp)) { | |
1352 | error = xfs_qm_newmount(mp, "amount, "aflags); | |
1353 | if (error) | |
1354 | goto out_rtunmount; | |
1355 | } else { | |
1356 | ASSERT(!XFS_IS_QUOTA_ON(mp)); | |
1357 | ||
1358 | /* | |
1359 | * If a file system had quotas running earlier, but decided to | |
1360 | * mount without -o uquota/pquota/gquota options, revoke the | |
1361 | * quotachecked license. | |
1362 | */ | |
1363 | if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { | |
1364 | cmn_err(CE_NOTE, | |
1365 | "XFS: resetting qflags for filesystem %s", | |
1366 | mp->m_fsname); | |
1367 | ||
1368 | error = xfs_mount_reset_sbqflags(mp); | |
1369 | if (error) | |
1370 | return error; | |
1371 | } | |
1372 | } | |
1373 | ||
1374 | /* | |
1375 | * Finish recovering the file system. This part needed to be | |
1376 | * delayed until after the root and real-time bitmap inodes | |
1377 | * were consistently read in. | |
1378 | */ | |
1379 | error = xfs_log_mount_finish(mp); | |
1380 | if (error) { | |
1381 | cmn_err(CE_WARN, "XFS: log mount finish failed"); | |
1382 | goto out_rtunmount; | |
1383 | } | |
1384 | ||
1385 | /* | |
1386 | * Complete the quota initialisation, post-log-replay component. | |
1387 | */ | |
1388 | if (quotamount) { | |
1389 | ASSERT(mp->m_qflags == 0); | |
1390 | mp->m_qflags = quotaflags; | |
1391 | ||
1392 | xfs_qm_mount_quotas(mp); | |
1393 | } | |
1394 | ||
1395 | /* | |
1396 | * Now we are mounted, reserve a small amount of unused space for | |
1397 | * privileged transactions. This is needed so that transaction | |
1398 | * space required for critical operations can dip into this pool | |
1399 | * when at ENOSPC. This is needed for operations like create with | |
1400 | * attr, unwritten extent conversion at ENOSPC, etc. Data allocations | |
1401 | * are not allowed to use this reserved space. | |
1402 | * | |
1403 | * This may drive us straight to ENOSPC on mount, but that implies | |
1404 | * we were already there on the last unmount. Warn if this occurs. | |
1405 | */ | |
1406 | if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { | |
1407 | resblks = xfs_default_resblks(mp); | |
1408 | error = xfs_reserve_blocks(mp, &resblks, NULL); | |
1409 | if (error) | |
1410 | cmn_err(CE_WARN, "XFS: Unable to allocate reserve " | |
1411 | "blocks. Continuing without a reserve pool."); | |
1412 | } | |
1413 | ||
1414 | return 0; | |
1415 | ||
1416 | out_rtunmount: | |
1417 | xfs_rtunmount_inodes(mp); | |
1418 | out_rele_rip: | |
1419 | IRELE(rip); | |
1420 | out_log_dealloc: | |
1421 | xfs_log_unmount(mp); | |
1422 | out_free_perag: | |
1423 | xfs_free_perag(mp); | |
1424 | out_remove_uuid: | |
1425 | xfs_uuid_unmount(mp); | |
1426 | out: | |
1427 | return error; | |
1428 | } | |
1429 | ||
1430 | /* | |
1431 | * This flushes out the inodes,dquots and the superblock, unmounts the | |
1432 | * log and makes sure that incore structures are freed. | |
1433 | */ | |
1434 | void | |
1435 | xfs_unmountfs( | |
1436 | struct xfs_mount *mp) | |
1437 | { | |
1438 | __uint64_t resblks; | |
1439 | int error; | |
1440 | ||
1441 | xfs_qm_unmount_quotas(mp); | |
1442 | xfs_rtunmount_inodes(mp); | |
1443 | IRELE(mp->m_rootip); | |
1444 | ||
1445 | /* | |
1446 | * We can potentially deadlock here if we have an inode cluster | |
1447 | * that has been freed has its buffer still pinned in memory because | |
1448 | * the transaction is still sitting in a iclog. The stale inodes | |
1449 | * on that buffer will have their flush locks held until the | |
1450 | * transaction hits the disk and the callbacks run. the inode | |
1451 | * flush takes the flush lock unconditionally and with nothing to | |
1452 | * push out the iclog we will never get that unlocked. hence we | |
1453 | * need to force the log first. | |
1454 | */ | |
1455 | xfs_log_force(mp, XFS_LOG_SYNC); | |
1456 | ||
1457 | /* | |
1458 | * Do a delwri reclaim pass first so that as many dirty inodes are | |
1459 | * queued up for IO as possible. Then flush the buffers before making | |
1460 | * a synchronous path to catch all the remaining inodes are reclaimed. | |
1461 | * This makes the reclaim process as quick as possible by avoiding | |
1462 | * synchronous writeout and blocking on inodes already in the delwri | |
1463 | * state as much as possible. | |
1464 | */ | |
1465 | xfs_reclaim_inodes(mp, 0); | |
1466 | XFS_bflush(mp->m_ddev_targp); | |
1467 | xfs_reclaim_inodes(mp, SYNC_WAIT); | |
1468 | ||
1469 | xfs_qm_unmount(mp); | |
1470 | ||
1471 | /* | |
1472 | * Flush out the log synchronously so that we know for sure | |
1473 | * that nothing is pinned. This is important because bflush() | |
1474 | * will skip pinned buffers. | |
1475 | */ | |
1476 | xfs_log_force(mp, XFS_LOG_SYNC); | |
1477 | ||
1478 | xfs_binval(mp->m_ddev_targp); | |
1479 | if (mp->m_rtdev_targp) { | |
1480 | xfs_binval(mp->m_rtdev_targp); | |
1481 | } | |
1482 | ||
1483 | /* | |
1484 | * Unreserve any blocks we have so that when we unmount we don't account | |
1485 | * the reserved free space as used. This is really only necessary for | |
1486 | * lazy superblock counting because it trusts the incore superblock | |
1487 | * counters to be absolutely correct on clean unmount. | |
1488 | * | |
1489 | * We don't bother correcting this elsewhere for lazy superblock | |
1490 | * counting because on mount of an unclean filesystem we reconstruct the | |
1491 | * correct counter value and this is irrelevant. | |
1492 | * | |
1493 | * For non-lazy counter filesystems, this doesn't matter at all because | |
1494 | * we only every apply deltas to the superblock and hence the incore | |
1495 | * value does not matter.... | |
1496 | */ | |
1497 | resblks = 0; | |
1498 | error = xfs_reserve_blocks(mp, &resblks, NULL); | |
1499 | if (error) | |
1500 | cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. " | |
1501 | "Freespace may not be correct on next mount."); | |
1502 | ||
1503 | error = xfs_log_sbcount(mp, 1); | |
1504 | if (error) | |
1505 | cmn_err(CE_WARN, "XFS: Unable to update superblock counters. " | |
1506 | "Freespace may not be correct on next mount."); | |
1507 | xfs_unmountfs_writesb(mp); | |
1508 | xfs_unmountfs_wait(mp); /* wait for async bufs */ | |
1509 | xfs_log_unmount_write(mp); | |
1510 | xfs_log_unmount(mp); | |
1511 | xfs_uuid_unmount(mp); | |
1512 | ||
1513 | #if defined(DEBUG) | |
1514 | xfs_errortag_clearall(mp, 0); | |
1515 | #endif | |
1516 | xfs_free_perag(mp); | |
1517 | } | |
1518 | ||
1519 | STATIC void | |
1520 | xfs_unmountfs_wait(xfs_mount_t *mp) | |
1521 | { | |
1522 | if (mp->m_logdev_targp != mp->m_ddev_targp) | |
1523 | xfs_wait_buftarg(mp->m_logdev_targp); | |
1524 | if (mp->m_rtdev_targp) | |
1525 | xfs_wait_buftarg(mp->m_rtdev_targp); | |
1526 | xfs_wait_buftarg(mp->m_ddev_targp); | |
1527 | } | |
1528 | ||
1529 | int | |
1530 | xfs_fs_writable(xfs_mount_t *mp) | |
1531 | { | |
1532 | return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) || | |
1533 | (mp->m_flags & XFS_MOUNT_RDONLY)); | |
1534 | } | |
1535 | ||
1536 | /* | |
1537 | * xfs_log_sbcount | |
1538 | * | |
1539 | * Called either periodically to keep the on disk superblock values | |
1540 | * roughly up to date or from unmount to make sure the values are | |
1541 | * correct on a clean unmount. | |
1542 | * | |
1543 | * Note this code can be called during the process of freezing, so | |
1544 | * we may need to use the transaction allocator which does not not | |
1545 | * block when the transaction subsystem is in its frozen state. | |
1546 | */ | |
1547 | int | |
1548 | xfs_log_sbcount( | |
1549 | xfs_mount_t *mp, | |
1550 | uint sync) | |
1551 | { | |
1552 | xfs_trans_t *tp; | |
1553 | int error; | |
1554 | ||
1555 | if (!xfs_fs_writable(mp)) | |
1556 | return 0; | |
1557 | ||
1558 | xfs_icsb_sync_counters(mp, 0); | |
1559 | ||
1560 | /* | |
1561 | * we don't need to do this if we are updating the superblock | |
1562 | * counters on every modification. | |
1563 | */ | |
1564 | if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) | |
1565 | return 0; | |
1566 | ||
1567 | tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP); | |
1568 | error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, | |
1569 | XFS_DEFAULT_LOG_COUNT); | |
1570 | if (error) { | |
1571 | xfs_trans_cancel(tp, 0); | |
1572 | return error; | |
1573 | } | |
1574 | ||
1575 | xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); | |
1576 | if (sync) | |
1577 | xfs_trans_set_sync(tp); | |
1578 | error = xfs_trans_commit(tp, 0); | |
1579 | return error; | |
1580 | } | |
1581 | ||
1582 | int | |
1583 | xfs_unmountfs_writesb(xfs_mount_t *mp) | |
1584 | { | |
1585 | xfs_buf_t *sbp; | |
1586 | int error = 0; | |
1587 | ||
1588 | /* | |
1589 | * skip superblock write if fs is read-only, or | |
1590 | * if we are doing a forced umount. | |
1591 | */ | |
1592 | if (!((mp->m_flags & XFS_MOUNT_RDONLY) || | |
1593 | XFS_FORCED_SHUTDOWN(mp))) { | |
1594 | ||
1595 | sbp = xfs_getsb(mp, 0); | |
1596 | ||
1597 | XFS_BUF_UNDONE(sbp); | |
1598 | XFS_BUF_UNREAD(sbp); | |
1599 | XFS_BUF_UNDELAYWRITE(sbp); | |
1600 | XFS_BUF_WRITE(sbp); | |
1601 | XFS_BUF_UNASYNC(sbp); | |
1602 | ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp); | |
1603 | xfsbdstrat(mp, sbp); | |
1604 | error = xfs_iowait(sbp); | |
1605 | if (error) | |
1606 | xfs_ioerror_alert("xfs_unmountfs_writesb", | |
1607 | mp, sbp, XFS_BUF_ADDR(sbp)); | |
1608 | xfs_buf_relse(sbp); | |
1609 | } | |
1610 | return error; | |
1611 | } | |
1612 | ||
1613 | /* | |
1614 | * xfs_mod_sb() can be used to copy arbitrary changes to the | |
1615 | * in-core superblock into the superblock buffer to be logged. | |
1616 | * It does not provide the higher level of locking that is | |
1617 | * needed to protect the in-core superblock from concurrent | |
1618 | * access. | |
1619 | */ | |
1620 | void | |
1621 | xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) | |
1622 | { | |
1623 | xfs_buf_t *bp; | |
1624 | int first; | |
1625 | int last; | |
1626 | xfs_mount_t *mp; | |
1627 | xfs_sb_field_t f; | |
1628 | ||
1629 | ASSERT(fields); | |
1630 | if (!fields) | |
1631 | return; | |
1632 | mp = tp->t_mountp; | |
1633 | bp = xfs_trans_getsb(tp, mp, 0); | |
1634 | first = sizeof(xfs_sb_t); | |
1635 | last = 0; | |
1636 | ||
1637 | /* translate/copy */ | |
1638 | ||
1639 | xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields); | |
1640 | ||
1641 | /* find modified range */ | |
1642 | f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); | |
1643 | ASSERT((1LL << f) & XFS_SB_MOD_BITS); | |
1644 | last = xfs_sb_info[f + 1].offset - 1; | |
1645 | ||
1646 | f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); | |
1647 | ASSERT((1LL << f) & XFS_SB_MOD_BITS); | |
1648 | first = xfs_sb_info[f].offset; | |
1649 | ||
1650 | xfs_trans_log_buf(tp, bp, first, last); | |
1651 | } | |
1652 | ||
1653 | ||
1654 | /* | |
1655 | * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply | |
1656 | * a delta to a specified field in the in-core superblock. Simply | |
1657 | * switch on the field indicated and apply the delta to that field. | |
1658 | * Fields are not allowed to dip below zero, so if the delta would | |
1659 | * do this do not apply it and return EINVAL. | |
1660 | * | |
1661 | * The m_sb_lock must be held when this routine is called. | |
1662 | */ | |
1663 | STATIC int | |
1664 | xfs_mod_incore_sb_unlocked( | |
1665 | xfs_mount_t *mp, | |
1666 | xfs_sb_field_t field, | |
1667 | int64_t delta, | |
1668 | int rsvd) | |
1669 | { | |
1670 | int scounter; /* short counter for 32 bit fields */ | |
1671 | long long lcounter; /* long counter for 64 bit fields */ | |
1672 | long long res_used, rem; | |
1673 | ||
1674 | /* | |
1675 | * With the in-core superblock spin lock held, switch | |
1676 | * on the indicated field. Apply the delta to the | |
1677 | * proper field. If the fields value would dip below | |
1678 | * 0, then do not apply the delta and return EINVAL. | |
1679 | */ | |
1680 | switch (field) { | |
1681 | case XFS_SBS_ICOUNT: | |
1682 | lcounter = (long long)mp->m_sb.sb_icount; | |
1683 | lcounter += delta; | |
1684 | if (lcounter < 0) { | |
1685 | ASSERT(0); | |
1686 | return XFS_ERROR(EINVAL); | |
1687 | } | |
1688 | mp->m_sb.sb_icount = lcounter; | |
1689 | return 0; | |
1690 | case XFS_SBS_IFREE: | |
1691 | lcounter = (long long)mp->m_sb.sb_ifree; | |
1692 | lcounter += delta; | |
1693 | if (lcounter < 0) { | |
1694 | ASSERT(0); | |
1695 | return XFS_ERROR(EINVAL); | |
1696 | } | |
1697 | mp->m_sb.sb_ifree = lcounter; | |
1698 | return 0; | |
1699 | case XFS_SBS_FDBLOCKS: | |
1700 | lcounter = (long long) | |
1701 | mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); | |
1702 | res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); | |
1703 | ||
1704 | if (delta > 0) { /* Putting blocks back */ | |
1705 | if (res_used > delta) { | |
1706 | mp->m_resblks_avail += delta; | |
1707 | } else { | |
1708 | rem = delta - res_used; | |
1709 | mp->m_resblks_avail = mp->m_resblks; | |
1710 | lcounter += rem; | |
1711 | } | |
1712 | } else { /* Taking blocks away */ | |
1713 | lcounter += delta; | |
1714 | if (lcounter >= 0) { | |
1715 | mp->m_sb.sb_fdblocks = lcounter + | |
1716 | XFS_ALLOC_SET_ASIDE(mp); | |
1717 | return 0; | |
1718 | } | |
1719 | ||
1720 | /* | |
1721 | * We are out of blocks, use any available reserved | |
1722 | * blocks if were allowed to. | |
1723 | */ | |
1724 | if (!rsvd) | |
1725 | return XFS_ERROR(ENOSPC); | |
1726 | ||
1727 | lcounter = (long long)mp->m_resblks_avail + delta; | |
1728 | if (lcounter >= 0) { | |
1729 | mp->m_resblks_avail = lcounter; | |
1730 | return 0; | |
1731 | } | |
1732 | printk_once(KERN_WARNING | |
1733 | "Filesystem \"%s\": reserve blocks depleted! " | |
1734 | "Consider increasing reserve pool size.", | |
1735 | mp->m_fsname); | |
1736 | return XFS_ERROR(ENOSPC); | |
1737 | } | |
1738 | ||
1739 | mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); | |
1740 | return 0; | |
1741 | case XFS_SBS_FREXTENTS: | |
1742 | lcounter = (long long)mp->m_sb.sb_frextents; | |
1743 | lcounter += delta; | |
1744 | if (lcounter < 0) { | |
1745 | return XFS_ERROR(ENOSPC); | |
1746 | } | |
1747 | mp->m_sb.sb_frextents = lcounter; | |
1748 | return 0; | |
1749 | case XFS_SBS_DBLOCKS: | |
1750 | lcounter = (long long)mp->m_sb.sb_dblocks; | |
1751 | lcounter += delta; | |
1752 | if (lcounter < 0) { | |
1753 | ASSERT(0); | |
1754 | return XFS_ERROR(EINVAL); | |
1755 | } | |
1756 | mp->m_sb.sb_dblocks = lcounter; | |
1757 | return 0; | |
1758 | case XFS_SBS_AGCOUNT: | |
1759 | scounter = mp->m_sb.sb_agcount; | |
1760 | scounter += delta; | |
1761 | if (scounter < 0) { | |
1762 | ASSERT(0); | |
1763 | return XFS_ERROR(EINVAL); | |
1764 | } | |
1765 | mp->m_sb.sb_agcount = scounter; | |
1766 | return 0; | |
1767 | case XFS_SBS_IMAX_PCT: | |
1768 | scounter = mp->m_sb.sb_imax_pct; | |
1769 | scounter += delta; | |
1770 | if (scounter < 0) { | |
1771 | ASSERT(0); | |
1772 | return XFS_ERROR(EINVAL); | |
1773 | } | |
1774 | mp->m_sb.sb_imax_pct = scounter; | |
1775 | return 0; | |
1776 | case XFS_SBS_REXTSIZE: | |
1777 | scounter = mp->m_sb.sb_rextsize; | |
1778 | scounter += delta; | |
1779 | if (scounter < 0) { | |
1780 | ASSERT(0); | |
1781 | return XFS_ERROR(EINVAL); | |
1782 | } | |
1783 | mp->m_sb.sb_rextsize = scounter; | |
1784 | return 0; | |
1785 | case XFS_SBS_RBMBLOCKS: | |
1786 | scounter = mp->m_sb.sb_rbmblocks; | |
1787 | scounter += delta; | |
1788 | if (scounter < 0) { | |
1789 | ASSERT(0); | |
1790 | return XFS_ERROR(EINVAL); | |
1791 | } | |
1792 | mp->m_sb.sb_rbmblocks = scounter; | |
1793 | return 0; | |
1794 | case XFS_SBS_RBLOCKS: | |
1795 | lcounter = (long long)mp->m_sb.sb_rblocks; | |
1796 | lcounter += delta; | |
1797 | if (lcounter < 0) { | |
1798 | ASSERT(0); | |
1799 | return XFS_ERROR(EINVAL); | |
1800 | } | |
1801 | mp->m_sb.sb_rblocks = lcounter; | |
1802 | return 0; | |
1803 | case XFS_SBS_REXTENTS: | |
1804 | lcounter = (long long)mp->m_sb.sb_rextents; | |
1805 | lcounter += delta; | |
1806 | if (lcounter < 0) { | |
1807 | ASSERT(0); | |
1808 | return XFS_ERROR(EINVAL); | |
1809 | } | |
1810 | mp->m_sb.sb_rextents = lcounter; | |
1811 | return 0; | |
1812 | case XFS_SBS_REXTSLOG: | |
1813 | scounter = mp->m_sb.sb_rextslog; | |
1814 | scounter += delta; | |
1815 | if (scounter < 0) { | |
1816 | ASSERT(0); | |
1817 | return XFS_ERROR(EINVAL); | |
1818 | } | |
1819 | mp->m_sb.sb_rextslog = scounter; | |
1820 | return 0; | |
1821 | default: | |
1822 | ASSERT(0); | |
1823 | return XFS_ERROR(EINVAL); | |
1824 | } | |
1825 | } | |
1826 | ||
1827 | /* | |
1828 | * xfs_mod_incore_sb() is used to change a field in the in-core | |
1829 | * superblock structure by the specified delta. This modification | |
1830 | * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() | |
1831 | * routine to do the work. | |
1832 | */ | |
1833 | int | |
1834 | xfs_mod_incore_sb( | |
1835 | xfs_mount_t *mp, | |
1836 | xfs_sb_field_t field, | |
1837 | int64_t delta, | |
1838 | int rsvd) | |
1839 | { | |
1840 | int status; | |
1841 | ||
1842 | /* check for per-cpu counters */ | |
1843 | switch (field) { | |
1844 | #ifdef HAVE_PERCPU_SB | |
1845 | case XFS_SBS_ICOUNT: | |
1846 | case XFS_SBS_IFREE: | |
1847 | case XFS_SBS_FDBLOCKS: | |
1848 | if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { | |
1849 | status = xfs_icsb_modify_counters(mp, field, | |
1850 | delta, rsvd); | |
1851 | break; | |
1852 | } | |
1853 | /* FALLTHROUGH */ | |
1854 | #endif | |
1855 | default: | |
1856 | spin_lock(&mp->m_sb_lock); | |
1857 | status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); | |
1858 | spin_unlock(&mp->m_sb_lock); | |
1859 | break; | |
1860 | } | |
1861 | ||
1862 | return status; | |
1863 | } | |
1864 | ||
1865 | /* | |
1866 | * xfs_mod_incore_sb_batch() is used to change more than one field | |
1867 | * in the in-core superblock structure at a time. This modification | |
1868 | * is protected by a lock internal to this module. The fields and | |
1869 | * changes to those fields are specified in the array of xfs_mod_sb | |
1870 | * structures passed in. | |
1871 | * | |
1872 | * Either all of the specified deltas will be applied or none of | |
1873 | * them will. If any modified field dips below 0, then all modifications | |
1874 | * will be backed out and EINVAL will be returned. | |
1875 | */ | |
1876 | int | |
1877 | xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd) | |
1878 | { | |
1879 | int status=0; | |
1880 | xfs_mod_sb_t *msbp; | |
1881 | ||
1882 | /* | |
1883 | * Loop through the array of mod structures and apply each | |
1884 | * individually. If any fail, then back out all those | |
1885 | * which have already been applied. Do all of this within | |
1886 | * the scope of the m_sb_lock so that all of the changes will | |
1887 | * be atomic. | |
1888 | */ | |
1889 | spin_lock(&mp->m_sb_lock); | |
1890 | msbp = &msb[0]; | |
1891 | for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) { | |
1892 | /* | |
1893 | * Apply the delta at index n. If it fails, break | |
1894 | * from the loop so we'll fall into the undo loop | |
1895 | * below. | |
1896 | */ | |
1897 | switch (msbp->msb_field) { | |
1898 | #ifdef HAVE_PERCPU_SB | |
1899 | case XFS_SBS_ICOUNT: | |
1900 | case XFS_SBS_IFREE: | |
1901 | case XFS_SBS_FDBLOCKS: | |
1902 | if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { | |
1903 | spin_unlock(&mp->m_sb_lock); | |
1904 | status = xfs_icsb_modify_counters(mp, | |
1905 | msbp->msb_field, | |
1906 | msbp->msb_delta, rsvd); | |
1907 | spin_lock(&mp->m_sb_lock); | |
1908 | break; | |
1909 | } | |
1910 | /* FALLTHROUGH */ | |
1911 | #endif | |
1912 | default: | |
1913 | status = xfs_mod_incore_sb_unlocked(mp, | |
1914 | msbp->msb_field, | |
1915 | msbp->msb_delta, rsvd); | |
1916 | break; | |
1917 | } | |
1918 | ||
1919 | if (status != 0) { | |
1920 | break; | |
1921 | } | |
1922 | } | |
1923 | ||
1924 | /* | |
1925 | * If we didn't complete the loop above, then back out | |
1926 | * any changes made to the superblock. If you add code | |
1927 | * between the loop above and here, make sure that you | |
1928 | * preserve the value of status. Loop back until | |
1929 | * we step below the beginning of the array. Make sure | |
1930 | * we don't touch anything back there. | |
1931 | */ | |
1932 | if (status != 0) { | |
1933 | msbp--; | |
1934 | while (msbp >= msb) { | |
1935 | switch (msbp->msb_field) { | |
1936 | #ifdef HAVE_PERCPU_SB | |
1937 | case XFS_SBS_ICOUNT: | |
1938 | case XFS_SBS_IFREE: | |
1939 | case XFS_SBS_FDBLOCKS: | |
1940 | if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { | |
1941 | spin_unlock(&mp->m_sb_lock); | |
1942 | status = xfs_icsb_modify_counters(mp, | |
1943 | msbp->msb_field, | |
1944 | -(msbp->msb_delta), | |
1945 | rsvd); | |
1946 | spin_lock(&mp->m_sb_lock); | |
1947 | break; | |
1948 | } | |
1949 | /* FALLTHROUGH */ | |
1950 | #endif | |
1951 | default: | |
1952 | status = xfs_mod_incore_sb_unlocked(mp, | |
1953 | msbp->msb_field, | |
1954 | -(msbp->msb_delta), | |
1955 | rsvd); | |
1956 | break; | |
1957 | } | |
1958 | ASSERT(status == 0); | |
1959 | msbp--; | |
1960 | } | |
1961 | } | |
1962 | spin_unlock(&mp->m_sb_lock); | |
1963 | return status; | |
1964 | } | |
1965 | ||
1966 | /* | |
1967 | * xfs_getsb() is called to obtain the buffer for the superblock. | |
1968 | * The buffer is returned locked and read in from disk. | |
1969 | * The buffer should be released with a call to xfs_brelse(). | |
1970 | * | |
1971 | * If the flags parameter is BUF_TRYLOCK, then we'll only return | |
1972 | * the superblock buffer if it can be locked without sleeping. | |
1973 | * If it can't then we'll return NULL. | |
1974 | */ | |
1975 | xfs_buf_t * | |
1976 | xfs_getsb( | |
1977 | xfs_mount_t *mp, | |
1978 | int flags) | |
1979 | { | |
1980 | xfs_buf_t *bp; | |
1981 | ||
1982 | ASSERT(mp->m_sb_bp != NULL); | |
1983 | bp = mp->m_sb_bp; | |
1984 | if (flags & XBF_TRYLOCK) { | |
1985 | if (!XFS_BUF_CPSEMA(bp)) { | |
1986 | return NULL; | |
1987 | } | |
1988 | } else { | |
1989 | XFS_BUF_PSEMA(bp, PRIBIO); | |
1990 | } | |
1991 | XFS_BUF_HOLD(bp); | |
1992 | ASSERT(XFS_BUF_ISDONE(bp)); | |
1993 | return bp; | |
1994 | } | |
1995 | ||
1996 | /* | |
1997 | * Used to free the superblock along various error paths. | |
1998 | */ | |
1999 | void | |
2000 | xfs_freesb( | |
2001 | xfs_mount_t *mp) | |
2002 | { | |
2003 | xfs_buf_t *bp; | |
2004 | ||
2005 | /* | |
2006 | * Use xfs_getsb() so that the buffer will be locked | |
2007 | * when we call xfs_buf_relse(). | |
2008 | */ | |
2009 | bp = xfs_getsb(mp, 0); | |
2010 | XFS_BUF_UNMANAGE(bp); | |
2011 | xfs_buf_relse(bp); | |
2012 | mp->m_sb_bp = NULL; | |
2013 | } | |
2014 | ||
2015 | /* | |
2016 | * Used to log changes to the superblock unit and width fields which could | |
2017 | * be altered by the mount options, as well as any potential sb_features2 | |
2018 | * fixup. Only the first superblock is updated. | |
2019 | */ | |
2020 | int | |
2021 | xfs_mount_log_sb( | |
2022 | xfs_mount_t *mp, | |
2023 | __int64_t fields) | |
2024 | { | |
2025 | xfs_trans_t *tp; | |
2026 | int error; | |
2027 | ||
2028 | ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | | |
2029 | XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | | |
2030 | XFS_SB_VERSIONNUM)); | |
2031 | ||
2032 | tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); | |
2033 | error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, | |
2034 | XFS_DEFAULT_LOG_COUNT); | |
2035 | if (error) { | |
2036 | xfs_trans_cancel(tp, 0); | |
2037 | return error; | |
2038 | } | |
2039 | xfs_mod_sb(tp, fields); | |
2040 | error = xfs_trans_commit(tp, 0); | |
2041 | return error; | |
2042 | } | |
2043 | ||
2044 | /* | |
2045 | * If the underlying (data/log/rt) device is readonly, there are some | |
2046 | * operations that cannot proceed. | |
2047 | */ | |
2048 | int | |
2049 | xfs_dev_is_read_only( | |
2050 | struct xfs_mount *mp, | |
2051 | char *message) | |
2052 | { | |
2053 | if (xfs_readonly_buftarg(mp->m_ddev_targp) || | |
2054 | xfs_readonly_buftarg(mp->m_logdev_targp) || | |
2055 | (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { | |
2056 | cmn_err(CE_NOTE, | |
2057 | "XFS: %s required on read-only device.", message); | |
2058 | cmn_err(CE_NOTE, | |
2059 | "XFS: write access unavailable, cannot proceed."); | |
2060 | return EROFS; | |
2061 | } | |
2062 | return 0; | |
2063 | } | |
2064 | ||
2065 | #ifdef HAVE_PERCPU_SB | |
2066 | /* | |
2067 | * Per-cpu incore superblock counters | |
2068 | * | |
2069 | * Simple concept, difficult implementation | |
2070 | * | |
2071 | * Basically, replace the incore superblock counters with a distributed per cpu | |
2072 | * counter for contended fields (e.g. free block count). | |
2073 | * | |
2074 | * Difficulties arise in that the incore sb is used for ENOSPC checking, and | |
2075 | * hence needs to be accurately read when we are running low on space. Hence | |
2076 | * there is a method to enable and disable the per-cpu counters based on how | |
2077 | * much "stuff" is available in them. | |
2078 | * | |
2079 | * Basically, a counter is enabled if there is enough free resource to justify | |
2080 | * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local | |
2081 | * ENOSPC), then we disable the counters to synchronise all callers and | |
2082 | * re-distribute the available resources. | |
2083 | * | |
2084 | * If, once we redistributed the available resources, we still get a failure, | |
2085 | * we disable the per-cpu counter and go through the slow path. | |
2086 | * | |
2087 | * The slow path is the current xfs_mod_incore_sb() function. This means that | |
2088 | * when we disable a per-cpu counter, we need to drain its resources back to | |
2089 | * the global superblock. We do this after disabling the counter to prevent | |
2090 | * more threads from queueing up on the counter. | |
2091 | * | |
2092 | * Essentially, this means that we still need a lock in the fast path to enable | |
2093 | * synchronisation between the global counters and the per-cpu counters. This | |
2094 | * is not a problem because the lock will be local to a CPU almost all the time | |
2095 | * and have little contention except when we get to ENOSPC conditions. | |
2096 | * | |
2097 | * Basically, this lock becomes a barrier that enables us to lock out the fast | |
2098 | * path while we do things like enabling and disabling counters and | |
2099 | * synchronising the counters. | |
2100 | * | |
2101 | * Locking rules: | |
2102 | * | |
2103 | * 1. m_sb_lock before picking up per-cpu locks | |
2104 | * 2. per-cpu locks always picked up via for_each_online_cpu() order | |
2105 | * 3. accurate counter sync requires m_sb_lock + per cpu locks | |
2106 | * 4. modifying per-cpu counters requires holding per-cpu lock | |
2107 | * 5. modifying global counters requires holding m_sb_lock | |
2108 | * 6. enabling or disabling a counter requires holding the m_sb_lock | |
2109 | * and _none_ of the per-cpu locks. | |
2110 | * | |
2111 | * Disabled counters are only ever re-enabled by a balance operation | |
2112 | * that results in more free resources per CPU than a given threshold. | |
2113 | * To ensure counters don't remain disabled, they are rebalanced when | |
2114 | * the global resource goes above a higher threshold (i.e. some hysteresis | |
2115 | * is present to prevent thrashing). | |
2116 | */ | |
2117 | ||
2118 | #ifdef CONFIG_HOTPLUG_CPU | |
2119 | /* | |
2120 | * hot-plug CPU notifier support. | |
2121 | * | |
2122 | * We need a notifier per filesystem as we need to be able to identify | |
2123 | * the filesystem to balance the counters out. This is achieved by | |
2124 | * having a notifier block embedded in the xfs_mount_t and doing pointer | |
2125 | * magic to get the mount pointer from the notifier block address. | |
2126 | */ | |
2127 | STATIC int | |
2128 | xfs_icsb_cpu_notify( | |
2129 | struct notifier_block *nfb, | |
2130 | unsigned long action, | |
2131 | void *hcpu) | |
2132 | { | |
2133 | xfs_icsb_cnts_t *cntp; | |
2134 | xfs_mount_t *mp; | |
2135 | ||
2136 | mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); | |
2137 | cntp = (xfs_icsb_cnts_t *) | |
2138 | per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); | |
2139 | switch (action) { | |
2140 | case CPU_UP_PREPARE: | |
2141 | case CPU_UP_PREPARE_FROZEN: | |
2142 | /* Easy Case - initialize the area and locks, and | |
2143 | * then rebalance when online does everything else for us. */ | |
2144 | memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); | |
2145 | break; | |
2146 | case CPU_ONLINE: | |
2147 | case CPU_ONLINE_FROZEN: | |
2148 | xfs_icsb_lock(mp); | |
2149 | xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); | |
2150 | xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); | |
2151 | xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); | |
2152 | xfs_icsb_unlock(mp); | |
2153 | break; | |
2154 | case CPU_DEAD: | |
2155 | case CPU_DEAD_FROZEN: | |
2156 | /* Disable all the counters, then fold the dead cpu's | |
2157 | * count into the total on the global superblock and | |
2158 | * re-enable the counters. */ | |
2159 | xfs_icsb_lock(mp); | |
2160 | spin_lock(&mp->m_sb_lock); | |
2161 | xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); | |
2162 | xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); | |
2163 | xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); | |
2164 | ||
2165 | mp->m_sb.sb_icount += cntp->icsb_icount; | |
2166 | mp->m_sb.sb_ifree += cntp->icsb_ifree; | |
2167 | mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; | |
2168 | ||
2169 | memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); | |
2170 | ||
2171 | xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); | |
2172 | xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); | |
2173 | xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); | |
2174 | spin_unlock(&mp->m_sb_lock); | |
2175 | xfs_icsb_unlock(mp); | |
2176 | break; | |
2177 | } | |
2178 | ||
2179 | return NOTIFY_OK; | |
2180 | } | |
2181 | #endif /* CONFIG_HOTPLUG_CPU */ | |
2182 | ||
2183 | int | |
2184 | xfs_icsb_init_counters( | |
2185 | xfs_mount_t *mp) | |
2186 | { | |
2187 | xfs_icsb_cnts_t *cntp; | |
2188 | int i; | |
2189 | ||
2190 | mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); | |
2191 | if (mp->m_sb_cnts == NULL) | |
2192 | return -ENOMEM; | |
2193 | ||
2194 | #ifdef CONFIG_HOTPLUG_CPU | |
2195 | mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; | |
2196 | mp->m_icsb_notifier.priority = 0; | |
2197 | register_hotcpu_notifier(&mp->m_icsb_notifier); | |
2198 | #endif /* CONFIG_HOTPLUG_CPU */ | |
2199 | ||
2200 | for_each_online_cpu(i) { | |
2201 | cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); | |
2202 | memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); | |
2203 | } | |
2204 | ||
2205 | mutex_init(&mp->m_icsb_mutex); | |
2206 | ||
2207 | /* | |
2208 | * start with all counters disabled so that the | |
2209 | * initial balance kicks us off correctly | |
2210 | */ | |
2211 | mp->m_icsb_counters = -1; | |
2212 | return 0; | |
2213 | } | |
2214 | ||
2215 | void | |
2216 | xfs_icsb_reinit_counters( | |
2217 | xfs_mount_t *mp) | |
2218 | { | |
2219 | xfs_icsb_lock(mp); | |
2220 | /* | |
2221 | * start with all counters disabled so that the | |
2222 | * initial balance kicks us off correctly | |
2223 | */ | |
2224 | mp->m_icsb_counters = -1; | |
2225 | xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); | |
2226 | xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); | |
2227 | xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); | |
2228 | xfs_icsb_unlock(mp); | |
2229 | } | |
2230 | ||
2231 | void | |
2232 | xfs_icsb_destroy_counters( | |
2233 | xfs_mount_t *mp) | |
2234 | { | |
2235 | if (mp->m_sb_cnts) { | |
2236 | unregister_hotcpu_notifier(&mp->m_icsb_notifier); | |
2237 | free_percpu(mp->m_sb_cnts); | |
2238 | } | |
2239 | mutex_destroy(&mp->m_icsb_mutex); | |
2240 | } | |
2241 | ||
2242 | STATIC void | |
2243 | xfs_icsb_lock_cntr( | |
2244 | xfs_icsb_cnts_t *icsbp) | |
2245 | { | |
2246 | while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { | |
2247 | ndelay(1000); | |
2248 | } | |
2249 | } | |
2250 | ||
2251 | STATIC void | |
2252 | xfs_icsb_unlock_cntr( | |
2253 | xfs_icsb_cnts_t *icsbp) | |
2254 | { | |
2255 | clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); | |
2256 | } | |
2257 | ||
2258 | ||
2259 | STATIC void | |
2260 | xfs_icsb_lock_all_counters( | |
2261 | xfs_mount_t *mp) | |
2262 | { | |
2263 | xfs_icsb_cnts_t *cntp; | |
2264 | int i; | |
2265 | ||
2266 | for_each_online_cpu(i) { | |
2267 | cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); | |
2268 | xfs_icsb_lock_cntr(cntp); | |
2269 | } | |
2270 | } | |
2271 | ||
2272 | STATIC void | |
2273 | xfs_icsb_unlock_all_counters( | |
2274 | xfs_mount_t *mp) | |
2275 | { | |
2276 | xfs_icsb_cnts_t *cntp; | |
2277 | int i; | |
2278 | ||
2279 | for_each_online_cpu(i) { | |
2280 | cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); | |
2281 | xfs_icsb_unlock_cntr(cntp); | |
2282 | } | |
2283 | } | |
2284 | ||
2285 | STATIC void | |
2286 | xfs_icsb_count( | |
2287 | xfs_mount_t *mp, | |
2288 | xfs_icsb_cnts_t *cnt, | |
2289 | int flags) | |
2290 | { | |
2291 | xfs_icsb_cnts_t *cntp; | |
2292 | int i; | |
2293 | ||
2294 | memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); | |
2295 | ||
2296 | if (!(flags & XFS_ICSB_LAZY_COUNT)) | |
2297 | xfs_icsb_lock_all_counters(mp); | |
2298 | ||
2299 | for_each_online_cpu(i) { | |
2300 | cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); | |
2301 | cnt->icsb_icount += cntp->icsb_icount; | |
2302 | cnt->icsb_ifree += cntp->icsb_ifree; | |
2303 | cnt->icsb_fdblocks += cntp->icsb_fdblocks; | |
2304 | } | |
2305 | ||
2306 | if (!(flags & XFS_ICSB_LAZY_COUNT)) | |
2307 | xfs_icsb_unlock_all_counters(mp); | |
2308 | } | |
2309 | ||
2310 | STATIC int | |
2311 | xfs_icsb_counter_disabled( | |
2312 | xfs_mount_t *mp, | |
2313 | xfs_sb_field_t field) | |
2314 | { | |
2315 | ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); | |
2316 | return test_bit(field, &mp->m_icsb_counters); | |
2317 | } | |
2318 | ||
2319 | STATIC void | |
2320 | xfs_icsb_disable_counter( | |
2321 | xfs_mount_t *mp, | |
2322 | xfs_sb_field_t field) | |
2323 | { | |
2324 | xfs_icsb_cnts_t cnt; | |
2325 | ||
2326 | ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); | |
2327 | ||
2328 | /* | |
2329 | * If we are already disabled, then there is nothing to do | |
2330 | * here. We check before locking all the counters to avoid | |
2331 | * the expensive lock operation when being called in the | |
2332 | * slow path and the counter is already disabled. This is | |
2333 | * safe because the only time we set or clear this state is under | |
2334 | * the m_icsb_mutex. | |
2335 | */ | |
2336 | if (xfs_icsb_counter_disabled(mp, field)) | |
2337 | return; | |
2338 | ||
2339 | xfs_icsb_lock_all_counters(mp); | |
2340 | if (!test_and_set_bit(field, &mp->m_icsb_counters)) { | |
2341 | /* drain back to superblock */ | |
2342 | ||
2343 | xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); | |
2344 | switch(field) { | |
2345 | case XFS_SBS_ICOUNT: | |
2346 | mp->m_sb.sb_icount = cnt.icsb_icount; | |
2347 | break; | |
2348 | case XFS_SBS_IFREE: | |
2349 | mp->m_sb.sb_ifree = cnt.icsb_ifree; | |
2350 | break; | |
2351 | case XFS_SBS_FDBLOCKS: | |
2352 | mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; | |
2353 | break; | |
2354 | default: | |
2355 | BUG(); | |
2356 | } | |
2357 | } | |
2358 | ||
2359 | xfs_icsb_unlock_all_counters(mp); | |
2360 | } | |
2361 | ||
2362 | STATIC void | |
2363 | xfs_icsb_enable_counter( | |
2364 | xfs_mount_t *mp, | |
2365 | xfs_sb_field_t field, | |
2366 | uint64_t count, | |
2367 | uint64_t resid) | |
2368 | { | |
2369 | xfs_icsb_cnts_t *cntp; | |
2370 | int i; | |
2371 | ||
2372 | ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); | |
2373 | ||
2374 | xfs_icsb_lock_all_counters(mp); | |
2375 | for_each_online_cpu(i) { | |
2376 | cntp = per_cpu_ptr(mp->m_sb_cnts, i); | |
2377 | switch (field) { | |
2378 | case XFS_SBS_ICOUNT: | |
2379 | cntp->icsb_icount = count + resid; | |
2380 | break; | |
2381 | case XFS_SBS_IFREE: | |
2382 | cntp->icsb_ifree = count + resid; | |
2383 | break; | |
2384 | case XFS_SBS_FDBLOCKS: | |
2385 | cntp->icsb_fdblocks = count + resid; | |
2386 | break; | |
2387 | default: | |
2388 | BUG(); | |
2389 | break; | |
2390 | } | |
2391 | resid = 0; | |
2392 | } | |
2393 | clear_bit(field, &mp->m_icsb_counters); | |
2394 | xfs_icsb_unlock_all_counters(mp); | |
2395 | } | |
2396 | ||
2397 | void | |
2398 | xfs_icsb_sync_counters_locked( | |
2399 | xfs_mount_t *mp, | |
2400 | int flags) | |
2401 | { | |
2402 | xfs_icsb_cnts_t cnt; | |
2403 | ||
2404 | xfs_icsb_count(mp, &cnt, flags); | |
2405 | ||
2406 | if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) | |
2407 | mp->m_sb.sb_icount = cnt.icsb_icount; | |
2408 | if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) | |
2409 | mp->m_sb.sb_ifree = cnt.icsb_ifree; | |
2410 | if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) | |
2411 | mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; | |
2412 | } | |
2413 | ||
2414 | /* | |
2415 | * Accurate update of per-cpu counters to incore superblock | |
2416 | */ | |
2417 | void | |
2418 | xfs_icsb_sync_counters( | |
2419 | xfs_mount_t *mp, | |
2420 | int flags) | |
2421 | { | |
2422 | spin_lock(&mp->m_sb_lock); | |
2423 | xfs_icsb_sync_counters_locked(mp, flags); | |
2424 | spin_unlock(&mp->m_sb_lock); | |
2425 | } | |
2426 | ||
2427 | /* | |
2428 | * Balance and enable/disable counters as necessary. | |
2429 | * | |
2430 | * Thresholds for re-enabling counters are somewhat magic. inode counts are | |
2431 | * chosen to be the same number as single on disk allocation chunk per CPU, and | |
2432 | * free blocks is something far enough zero that we aren't going thrash when we | |
2433 | * get near ENOSPC. We also need to supply a minimum we require per cpu to | |
2434 | * prevent looping endlessly when xfs_alloc_space asks for more than will | |
2435 | * be distributed to a single CPU but each CPU has enough blocks to be | |
2436 | * reenabled. | |
2437 | * | |
2438 | * Note that we can be called when counters are already disabled. | |
2439 | * xfs_icsb_disable_counter() optimises the counter locking in this case to | |
2440 | * prevent locking every per-cpu counter needlessly. | |
2441 | */ | |
2442 | ||
2443 | #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 | |
2444 | #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ | |
2445 | (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) | |
2446 | STATIC void | |
2447 | xfs_icsb_balance_counter_locked( | |
2448 | xfs_mount_t *mp, | |
2449 | xfs_sb_field_t field, | |
2450 | int min_per_cpu) | |
2451 | { | |
2452 | uint64_t count, resid; | |
2453 | int weight = num_online_cpus(); | |
2454 | uint64_t min = (uint64_t)min_per_cpu; | |
2455 | ||
2456 | /* disable counter and sync counter */ | |
2457 | xfs_icsb_disable_counter(mp, field); | |
2458 | ||
2459 | /* update counters - first CPU gets residual*/ | |
2460 | switch (field) { | |
2461 | case XFS_SBS_ICOUNT: | |
2462 | count = mp->m_sb.sb_icount; | |
2463 | resid = do_div(count, weight); | |
2464 | if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) | |
2465 | return; | |
2466 | break; | |
2467 | case XFS_SBS_IFREE: | |
2468 | count = mp->m_sb.sb_ifree; | |
2469 | resid = do_div(count, weight); | |
2470 | if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) | |
2471 | return; | |
2472 | break; | |
2473 | case XFS_SBS_FDBLOCKS: | |
2474 | count = mp->m_sb.sb_fdblocks; | |
2475 | resid = do_div(count, weight); | |
2476 | if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) | |
2477 | return; | |
2478 | break; | |
2479 | default: | |
2480 | BUG(); | |
2481 | count = resid = 0; /* quiet, gcc */ | |
2482 | break; | |
2483 | } | |
2484 | ||
2485 | xfs_icsb_enable_counter(mp, field, count, resid); | |
2486 | } | |
2487 | ||
2488 | STATIC void | |
2489 | xfs_icsb_balance_counter( | |
2490 | xfs_mount_t *mp, | |
2491 | xfs_sb_field_t fields, | |
2492 | int min_per_cpu) | |
2493 | { | |
2494 | spin_lock(&mp->m_sb_lock); | |
2495 | xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); | |
2496 | spin_unlock(&mp->m_sb_lock); | |
2497 | } | |
2498 | ||
2499 | STATIC int | |
2500 | xfs_icsb_modify_counters( | |
2501 | xfs_mount_t *mp, | |
2502 | xfs_sb_field_t field, | |
2503 | int64_t delta, | |
2504 | int rsvd) | |
2505 | { | |
2506 | xfs_icsb_cnts_t *icsbp; | |
2507 | long long lcounter; /* long counter for 64 bit fields */ | |
2508 | int ret = 0; | |
2509 | ||
2510 | might_sleep(); | |
2511 | again: | |
2512 | preempt_disable(); | |
2513 | icsbp = this_cpu_ptr(mp->m_sb_cnts); | |
2514 | ||
2515 | /* | |
2516 | * if the counter is disabled, go to slow path | |
2517 | */ | |
2518 | if (unlikely(xfs_icsb_counter_disabled(mp, field))) | |
2519 | goto slow_path; | |
2520 | xfs_icsb_lock_cntr(icsbp); | |
2521 | if (unlikely(xfs_icsb_counter_disabled(mp, field))) { | |
2522 | xfs_icsb_unlock_cntr(icsbp); | |
2523 | goto slow_path; | |
2524 | } | |
2525 | ||
2526 | switch (field) { | |
2527 | case XFS_SBS_ICOUNT: | |
2528 | lcounter = icsbp->icsb_icount; | |
2529 | lcounter += delta; | |
2530 | if (unlikely(lcounter < 0)) | |
2531 | goto balance_counter; | |
2532 | icsbp->icsb_icount = lcounter; | |
2533 | break; | |
2534 | ||
2535 | case XFS_SBS_IFREE: | |
2536 | lcounter = icsbp->icsb_ifree; | |
2537 | lcounter += delta; | |
2538 | if (unlikely(lcounter < 0)) | |
2539 | goto balance_counter; | |
2540 | icsbp->icsb_ifree = lcounter; | |
2541 | break; | |
2542 | ||
2543 | case XFS_SBS_FDBLOCKS: | |
2544 | BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); | |
2545 | ||
2546 | lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); | |
2547 | lcounter += delta; | |
2548 | if (unlikely(lcounter < 0)) | |
2549 | goto balance_counter; | |
2550 | icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); | |
2551 | break; | |
2552 | default: | |
2553 | BUG(); | |
2554 | break; | |
2555 | } | |
2556 | xfs_icsb_unlock_cntr(icsbp); | |
2557 | preempt_enable(); | |
2558 | return 0; | |
2559 | ||
2560 | slow_path: | |
2561 | preempt_enable(); | |
2562 | ||
2563 | /* | |
2564 | * serialise with a mutex so we don't burn lots of cpu on | |
2565 | * the superblock lock. We still need to hold the superblock | |
2566 | * lock, however, when we modify the global structures. | |
2567 | */ | |
2568 | xfs_icsb_lock(mp); | |
2569 | ||
2570 | /* | |
2571 | * Now running atomically. | |
2572 | * | |
2573 | * If the counter is enabled, someone has beaten us to rebalancing. | |
2574 | * Drop the lock and try again in the fast path.... | |
2575 | */ | |
2576 | if (!(xfs_icsb_counter_disabled(mp, field))) { | |
2577 | xfs_icsb_unlock(mp); | |
2578 | goto again; | |
2579 | } | |
2580 | ||
2581 | /* | |
2582 | * The counter is currently disabled. Because we are | |
2583 | * running atomically here, we know a rebalance cannot | |
2584 | * be in progress. Hence we can go straight to operating | |
2585 | * on the global superblock. We do not call xfs_mod_incore_sb() | |
2586 | * here even though we need to get the m_sb_lock. Doing so | |
2587 | * will cause us to re-enter this function and deadlock. | |
2588 | * Hence we get the m_sb_lock ourselves and then call | |
2589 | * xfs_mod_incore_sb_unlocked() as the unlocked path operates | |
2590 | * directly on the global counters. | |
2591 | */ | |
2592 | spin_lock(&mp->m_sb_lock); | |
2593 | ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); | |
2594 | spin_unlock(&mp->m_sb_lock); | |
2595 | ||
2596 | /* | |
2597 | * Now that we've modified the global superblock, we | |
2598 | * may be able to re-enable the distributed counters | |
2599 | * (e.g. lots of space just got freed). After that | |
2600 | * we are done. | |
2601 | */ | |
2602 | if (ret != ENOSPC) | |
2603 | xfs_icsb_balance_counter(mp, field, 0); | |
2604 | xfs_icsb_unlock(mp); | |
2605 | return ret; | |
2606 | ||
2607 | balance_counter: | |
2608 | xfs_icsb_unlock_cntr(icsbp); | |
2609 | preempt_enable(); | |
2610 | ||
2611 | /* | |
2612 | * We may have multiple threads here if multiple per-cpu | |
2613 | * counters run dry at the same time. This will mean we can | |
2614 | * do more balances than strictly necessary but it is not | |
2615 | * the common slowpath case. | |
2616 | */ | |
2617 | xfs_icsb_lock(mp); | |
2618 | ||
2619 | /* | |
2620 | * running atomically. | |
2621 | * | |
2622 | * This will leave the counter in the correct state for future | |
2623 | * accesses. After the rebalance, we simply try again and our retry | |
2624 | * will either succeed through the fast path or slow path without | |
2625 | * another balance operation being required. | |
2626 | */ | |
2627 | xfs_icsb_balance_counter(mp, field, delta); | |
2628 | xfs_icsb_unlock(mp); | |
2629 | goto again; | |
2630 | } | |
2631 | ||
2632 | #endif |