]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
17 | * Contributions by Hugh Dickins <[email protected]> 2003, 2004 | |
18 | */ | |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
23 | * inode->i_mutex (while writing or truncating, not reading or faulting) | |
24 | * inode->i_alloc_sem (vmtruncate_range) | |
25 | * mm->mmap_sem | |
26 | * page->flags PG_locked (lock_page) | |
27 | * mapping->i_mmap_lock | |
28 | * anon_vma->lock | |
29 | * mm->page_table_lock or pte_lock | |
30 | * zone->lru_lock (in mark_page_accessed, isolate_lru_page) | |
31 | * swap_lock (in swap_duplicate, swap_info_get) | |
32 | * mmlist_lock (in mmput, drain_mmlist and others) | |
33 | * mapping->private_lock (in __set_page_dirty_buffers) | |
34 | * inode_lock (in set_page_dirty's __mark_inode_dirty) | |
35 | * sb_lock (within inode_lock in fs/fs-writeback.c) | |
36 | * mapping->tree_lock (widely used, in set_page_dirty, | |
37 | * in arch-dependent flush_dcache_mmap_lock, | |
38 | * within inode_lock in __sync_single_inode) | |
39 | */ | |
40 | ||
41 | #include <linux/mm.h> | |
42 | #include <linux/pagemap.h> | |
43 | #include <linux/swap.h> | |
44 | #include <linux/swapops.h> | |
45 | #include <linux/slab.h> | |
46 | #include <linux/init.h> | |
47 | #include <linux/rmap.h> | |
48 | #include <linux/rcupdate.h> | |
49 | #include <linux/module.h> | |
50 | #include <linux/kallsyms.h> | |
51 | ||
52 | #include <asm/tlbflush.h> | |
53 | ||
54 | struct kmem_cache *anon_vma_cachep; | |
55 | ||
56 | /* This must be called under the mmap_sem. */ | |
57 | int anon_vma_prepare(struct vm_area_struct *vma) | |
58 | { | |
59 | struct anon_vma *anon_vma = vma->anon_vma; | |
60 | ||
61 | might_sleep(); | |
62 | if (unlikely(!anon_vma)) { | |
63 | struct mm_struct *mm = vma->vm_mm; | |
64 | struct anon_vma *allocated, *locked; | |
65 | ||
66 | anon_vma = find_mergeable_anon_vma(vma); | |
67 | if (anon_vma) { | |
68 | allocated = NULL; | |
69 | locked = anon_vma; | |
70 | spin_lock(&locked->lock); | |
71 | } else { | |
72 | anon_vma = anon_vma_alloc(); | |
73 | if (unlikely(!anon_vma)) | |
74 | return -ENOMEM; | |
75 | allocated = anon_vma; | |
76 | locked = NULL; | |
77 | } | |
78 | ||
79 | /* page_table_lock to protect against threads */ | |
80 | spin_lock(&mm->page_table_lock); | |
81 | if (likely(!vma->anon_vma)) { | |
82 | vma->anon_vma = anon_vma; | |
83 | list_add_tail(&vma->anon_vma_node, &anon_vma->head); | |
84 | allocated = NULL; | |
85 | } | |
86 | spin_unlock(&mm->page_table_lock); | |
87 | ||
88 | if (locked) | |
89 | spin_unlock(&locked->lock); | |
90 | if (unlikely(allocated)) | |
91 | anon_vma_free(allocated); | |
92 | } | |
93 | return 0; | |
94 | } | |
95 | ||
96 | void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) | |
97 | { | |
98 | BUG_ON(vma->anon_vma != next->anon_vma); | |
99 | list_del(&next->anon_vma_node); | |
100 | } | |
101 | ||
102 | void __anon_vma_link(struct vm_area_struct *vma) | |
103 | { | |
104 | struct anon_vma *anon_vma = vma->anon_vma; | |
105 | ||
106 | if (anon_vma) | |
107 | list_add_tail(&vma->anon_vma_node, &anon_vma->head); | |
108 | } | |
109 | ||
110 | void anon_vma_link(struct vm_area_struct *vma) | |
111 | { | |
112 | struct anon_vma *anon_vma = vma->anon_vma; | |
113 | ||
114 | if (anon_vma) { | |
115 | spin_lock(&anon_vma->lock); | |
116 | list_add_tail(&vma->anon_vma_node, &anon_vma->head); | |
117 | spin_unlock(&anon_vma->lock); | |
118 | } | |
119 | } | |
120 | ||
121 | void anon_vma_unlink(struct vm_area_struct *vma) | |
122 | { | |
123 | struct anon_vma *anon_vma = vma->anon_vma; | |
124 | int empty; | |
125 | ||
126 | if (!anon_vma) | |
127 | return; | |
128 | ||
129 | spin_lock(&anon_vma->lock); | |
130 | list_del(&vma->anon_vma_node); | |
131 | ||
132 | /* We must garbage collect the anon_vma if it's empty */ | |
133 | empty = list_empty(&anon_vma->head); | |
134 | spin_unlock(&anon_vma->lock); | |
135 | ||
136 | if (empty) | |
137 | anon_vma_free(anon_vma); | |
138 | } | |
139 | ||
140 | static void anon_vma_ctor(void *data, struct kmem_cache *cachep, | |
141 | unsigned long flags) | |
142 | { | |
143 | struct anon_vma *anon_vma = data; | |
144 | ||
145 | spin_lock_init(&anon_vma->lock); | |
146 | INIT_LIST_HEAD(&anon_vma->head); | |
147 | } | |
148 | ||
149 | void __init anon_vma_init(void) | |
150 | { | |
151 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
152 | 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); | |
153 | } | |
154 | ||
155 | /* | |
156 | * Getting a lock on a stable anon_vma from a page off the LRU is | |
157 | * tricky: page_lock_anon_vma rely on RCU to guard against the races. | |
158 | */ | |
159 | static struct anon_vma *page_lock_anon_vma(struct page *page) | |
160 | { | |
161 | struct anon_vma *anon_vma; | |
162 | unsigned long anon_mapping; | |
163 | ||
164 | rcu_read_lock(); | |
165 | anon_mapping = (unsigned long) page->mapping; | |
166 | if (!(anon_mapping & PAGE_MAPPING_ANON)) | |
167 | goto out; | |
168 | if (!page_mapped(page)) | |
169 | goto out; | |
170 | ||
171 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
172 | spin_lock(&anon_vma->lock); | |
173 | return anon_vma; | |
174 | out: | |
175 | rcu_read_unlock(); | |
176 | return NULL; | |
177 | } | |
178 | ||
179 | static void page_unlock_anon_vma(struct anon_vma *anon_vma) | |
180 | { | |
181 | spin_unlock(&anon_vma->lock); | |
182 | rcu_read_unlock(); | |
183 | } | |
184 | ||
185 | /* | |
186 | * At what user virtual address is page expected in vma? | |
187 | */ | |
188 | static inline unsigned long | |
189 | vma_address(struct page *page, struct vm_area_struct *vma) | |
190 | { | |
191 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
192 | unsigned long address; | |
193 | ||
194 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | |
195 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { | |
196 | /* page should be within any vma from prio_tree_next */ | |
197 | BUG_ON(!PageAnon(page)); | |
198 | return -EFAULT; | |
199 | } | |
200 | return address; | |
201 | } | |
202 | ||
203 | /* | |
204 | * At what user virtual address is page expected in vma? checking that the | |
205 | * page matches the vma: currently only used on anon pages, by unuse_vma; | |
206 | */ | |
207 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
208 | { | |
209 | if (PageAnon(page)) { | |
210 | if ((void *)vma->anon_vma != | |
211 | (void *)page->mapping - PAGE_MAPPING_ANON) | |
212 | return -EFAULT; | |
213 | } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { | |
214 | if (!vma->vm_file || | |
215 | vma->vm_file->f_mapping != page->mapping) | |
216 | return -EFAULT; | |
217 | } else | |
218 | return -EFAULT; | |
219 | return vma_address(page, vma); | |
220 | } | |
221 | ||
222 | /* | |
223 | * Check that @page is mapped at @address into @mm. | |
224 | * | |
225 | * On success returns with pte mapped and locked. | |
226 | */ | |
227 | pte_t *page_check_address(struct page *page, struct mm_struct *mm, | |
228 | unsigned long address, spinlock_t **ptlp) | |
229 | { | |
230 | pgd_t *pgd; | |
231 | pud_t *pud; | |
232 | pmd_t *pmd; | |
233 | pte_t *pte; | |
234 | spinlock_t *ptl; | |
235 | ||
236 | pgd = pgd_offset(mm, address); | |
237 | if (!pgd_present(*pgd)) | |
238 | return NULL; | |
239 | ||
240 | pud = pud_offset(pgd, address); | |
241 | if (!pud_present(*pud)) | |
242 | return NULL; | |
243 | ||
244 | pmd = pmd_offset(pud, address); | |
245 | if (!pmd_present(*pmd)) | |
246 | return NULL; | |
247 | ||
248 | pte = pte_offset_map(pmd, address); | |
249 | /* Make a quick check before getting the lock */ | |
250 | if (!pte_present(*pte)) { | |
251 | pte_unmap(pte); | |
252 | return NULL; | |
253 | } | |
254 | ||
255 | ptl = pte_lockptr(mm, pmd); | |
256 | spin_lock(ptl); | |
257 | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { | |
258 | *ptlp = ptl; | |
259 | return pte; | |
260 | } | |
261 | pte_unmap_unlock(pte, ptl); | |
262 | return NULL; | |
263 | } | |
264 | ||
265 | /* | |
266 | * Subfunctions of page_referenced: page_referenced_one called | |
267 | * repeatedly from either page_referenced_anon or page_referenced_file. | |
268 | */ | |
269 | static int page_referenced_one(struct page *page, | |
270 | struct vm_area_struct *vma, unsigned int *mapcount) | |
271 | { | |
272 | struct mm_struct *mm = vma->vm_mm; | |
273 | unsigned long address; | |
274 | pte_t *pte; | |
275 | spinlock_t *ptl; | |
276 | int referenced = 0; | |
277 | ||
278 | address = vma_address(page, vma); | |
279 | if (address == -EFAULT) | |
280 | goto out; | |
281 | ||
282 | pte = page_check_address(page, mm, address, &ptl); | |
283 | if (!pte) | |
284 | goto out; | |
285 | ||
286 | if (ptep_clear_flush_young(vma, address, pte)) | |
287 | referenced++; | |
288 | ||
289 | /* Pretend the page is referenced if the task has the | |
290 | swap token and is in the middle of a page fault. */ | |
291 | if (mm != current->mm && has_swap_token(mm) && | |
292 | rwsem_is_locked(&mm->mmap_sem)) | |
293 | referenced++; | |
294 | ||
295 | (*mapcount)--; | |
296 | pte_unmap_unlock(pte, ptl); | |
297 | out: | |
298 | return referenced; | |
299 | } | |
300 | ||
301 | static int page_referenced_anon(struct page *page) | |
302 | { | |
303 | unsigned int mapcount; | |
304 | struct anon_vma *anon_vma; | |
305 | struct vm_area_struct *vma; | |
306 | int referenced = 0; | |
307 | ||
308 | anon_vma = page_lock_anon_vma(page); | |
309 | if (!anon_vma) | |
310 | return referenced; | |
311 | ||
312 | mapcount = page_mapcount(page); | |
313 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | |
314 | referenced += page_referenced_one(page, vma, &mapcount); | |
315 | if (!mapcount) | |
316 | break; | |
317 | } | |
318 | ||
319 | page_unlock_anon_vma(anon_vma); | |
320 | return referenced; | |
321 | } | |
322 | ||
323 | /** | |
324 | * page_referenced_file - referenced check for object-based rmap | |
325 | * @page: the page we're checking references on. | |
326 | * | |
327 | * For an object-based mapped page, find all the places it is mapped and | |
328 | * check/clear the referenced flag. This is done by following the page->mapping | |
329 | * pointer, then walking the chain of vmas it holds. It returns the number | |
330 | * of references it found. | |
331 | * | |
332 | * This function is only called from page_referenced for object-based pages. | |
333 | */ | |
334 | static int page_referenced_file(struct page *page) | |
335 | { | |
336 | unsigned int mapcount; | |
337 | struct address_space *mapping = page->mapping; | |
338 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
339 | struct vm_area_struct *vma; | |
340 | struct prio_tree_iter iter; | |
341 | int referenced = 0; | |
342 | ||
343 | /* | |
344 | * The caller's checks on page->mapping and !PageAnon have made | |
345 | * sure that this is a file page: the check for page->mapping | |
346 | * excludes the case just before it gets set on an anon page. | |
347 | */ | |
348 | BUG_ON(PageAnon(page)); | |
349 | ||
350 | /* | |
351 | * The page lock not only makes sure that page->mapping cannot | |
352 | * suddenly be NULLified by truncation, it makes sure that the | |
353 | * structure at mapping cannot be freed and reused yet, | |
354 | * so we can safely take mapping->i_mmap_lock. | |
355 | */ | |
356 | BUG_ON(!PageLocked(page)); | |
357 | ||
358 | spin_lock(&mapping->i_mmap_lock); | |
359 | ||
360 | /* | |
361 | * i_mmap_lock does not stabilize mapcount at all, but mapcount | |
362 | * is more likely to be accurate if we note it after spinning. | |
363 | */ | |
364 | mapcount = page_mapcount(page); | |
365 | ||
366 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
367 | if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE)) | |
368 | == (VM_LOCKED|VM_MAYSHARE)) { | |
369 | referenced++; | |
370 | break; | |
371 | } | |
372 | referenced += page_referenced_one(page, vma, &mapcount); | |
373 | if (!mapcount) | |
374 | break; | |
375 | } | |
376 | ||
377 | spin_unlock(&mapping->i_mmap_lock); | |
378 | return referenced; | |
379 | } | |
380 | ||
381 | /** | |
382 | * page_referenced - test if the page was referenced | |
383 | * @page: the page to test | |
384 | * @is_locked: caller holds lock on the page | |
385 | * | |
386 | * Quick test_and_clear_referenced for all mappings to a page, | |
387 | * returns the number of ptes which referenced the page. | |
388 | */ | |
389 | int page_referenced(struct page *page, int is_locked) | |
390 | { | |
391 | int referenced = 0; | |
392 | ||
393 | if (page_test_and_clear_young(page)) | |
394 | referenced++; | |
395 | ||
396 | if (TestClearPageReferenced(page)) | |
397 | referenced++; | |
398 | ||
399 | if (page_mapped(page) && page->mapping) { | |
400 | if (PageAnon(page)) | |
401 | referenced += page_referenced_anon(page); | |
402 | else if (is_locked) | |
403 | referenced += page_referenced_file(page); | |
404 | else if (TestSetPageLocked(page)) | |
405 | referenced++; | |
406 | else { | |
407 | if (page->mapping) | |
408 | referenced += page_referenced_file(page); | |
409 | unlock_page(page); | |
410 | } | |
411 | } | |
412 | return referenced; | |
413 | } | |
414 | ||
415 | static int page_mkclean_one(struct page *page, struct vm_area_struct *vma) | |
416 | { | |
417 | struct mm_struct *mm = vma->vm_mm; | |
418 | unsigned long address; | |
419 | pte_t *pte; | |
420 | spinlock_t *ptl; | |
421 | int ret = 0; | |
422 | ||
423 | address = vma_address(page, vma); | |
424 | if (address == -EFAULT) | |
425 | goto out; | |
426 | ||
427 | pte = page_check_address(page, mm, address, &ptl); | |
428 | if (!pte) | |
429 | goto out; | |
430 | ||
431 | if (pte_dirty(*pte) || pte_write(*pte)) { | |
432 | pte_t entry; | |
433 | ||
434 | flush_cache_page(vma, address, pte_pfn(*pte)); | |
435 | entry = ptep_clear_flush(vma, address, pte); | |
436 | entry = pte_wrprotect(entry); | |
437 | entry = pte_mkclean(entry); | |
438 | set_pte_at(mm, address, pte, entry); | |
439 | lazy_mmu_prot_update(entry); | |
440 | ret = 1; | |
441 | } | |
442 | ||
443 | pte_unmap_unlock(pte, ptl); | |
444 | out: | |
445 | return ret; | |
446 | } | |
447 | ||
448 | static int page_mkclean_file(struct address_space *mapping, struct page *page) | |
449 | { | |
450 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
451 | struct vm_area_struct *vma; | |
452 | struct prio_tree_iter iter; | |
453 | int ret = 0; | |
454 | ||
455 | BUG_ON(PageAnon(page)); | |
456 | ||
457 | spin_lock(&mapping->i_mmap_lock); | |
458 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
459 | if (vma->vm_flags & VM_SHARED) | |
460 | ret += page_mkclean_one(page, vma); | |
461 | } | |
462 | spin_unlock(&mapping->i_mmap_lock); | |
463 | return ret; | |
464 | } | |
465 | ||
466 | int page_mkclean(struct page *page) | |
467 | { | |
468 | int ret = 0; | |
469 | ||
470 | BUG_ON(!PageLocked(page)); | |
471 | ||
472 | if (page_mapped(page)) { | |
473 | struct address_space *mapping = page_mapping(page); | |
474 | if (mapping) | |
475 | ret = page_mkclean_file(mapping, page); | |
476 | if (page_test_dirty(page)) { | |
477 | page_clear_dirty(page); | |
478 | ret = 1; | |
479 | } | |
480 | } | |
481 | ||
482 | return ret; | |
483 | } | |
484 | EXPORT_SYMBOL_GPL(page_mkclean); | |
485 | ||
486 | /** | |
487 | * page_set_anon_rmap - setup new anonymous rmap | |
488 | * @page: the page to add the mapping to | |
489 | * @vma: the vm area in which the mapping is added | |
490 | * @address: the user virtual address mapped | |
491 | */ | |
492 | static void __page_set_anon_rmap(struct page *page, | |
493 | struct vm_area_struct *vma, unsigned long address) | |
494 | { | |
495 | struct anon_vma *anon_vma = vma->anon_vma; | |
496 | ||
497 | BUG_ON(!anon_vma); | |
498 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
499 | page->mapping = (struct address_space *) anon_vma; | |
500 | ||
501 | page->index = linear_page_index(vma, address); | |
502 | ||
503 | /* | |
504 | * nr_mapped state can be updated without turning off | |
505 | * interrupts because it is not modified via interrupt. | |
506 | */ | |
507 | __inc_zone_page_state(page, NR_ANON_PAGES); | |
508 | } | |
509 | ||
510 | /** | |
511 | * page_set_anon_rmap - sanity check anonymous rmap addition | |
512 | * @page: the page to add the mapping to | |
513 | * @vma: the vm area in which the mapping is added | |
514 | * @address: the user virtual address mapped | |
515 | */ | |
516 | static void __page_check_anon_rmap(struct page *page, | |
517 | struct vm_area_struct *vma, unsigned long address) | |
518 | { | |
519 | #ifdef CONFIG_DEBUG_VM | |
520 | /* | |
521 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
522 | * be set up correctly at this point. | |
523 | * | |
524 | * We have exclusion against page_add_anon_rmap because the caller | |
525 | * always holds the page locked, except if called from page_dup_rmap, | |
526 | * in which case the page is already known to be setup. | |
527 | * | |
528 | * We have exclusion against page_add_new_anon_rmap because those pages | |
529 | * are initially only visible via the pagetables, and the pte is locked | |
530 | * over the call to page_add_new_anon_rmap. | |
531 | */ | |
532 | struct anon_vma *anon_vma = vma->anon_vma; | |
533 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
534 | BUG_ON(page->mapping != (struct address_space *)anon_vma); | |
535 | BUG_ON(page->index != linear_page_index(vma, address)); | |
536 | #endif | |
537 | } | |
538 | ||
539 | /** | |
540 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
541 | * @page: the page to add the mapping to | |
542 | * @vma: the vm area in which the mapping is added | |
543 | * @address: the user virtual address mapped | |
544 | * | |
545 | * The caller needs to hold the pte lock and the page must be locked. | |
546 | */ | |
547 | void page_add_anon_rmap(struct page *page, | |
548 | struct vm_area_struct *vma, unsigned long address) | |
549 | { | |
550 | VM_BUG_ON(!PageLocked(page)); | |
551 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
552 | if (atomic_inc_and_test(&page->_mapcount)) | |
553 | __page_set_anon_rmap(page, vma, address); | |
554 | else | |
555 | __page_check_anon_rmap(page, vma, address); | |
556 | } | |
557 | ||
558 | /* | |
559 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page | |
560 | * @page: the page to add the mapping to | |
561 | * @vma: the vm area in which the mapping is added | |
562 | * @address: the user virtual address mapped | |
563 | * | |
564 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
565 | * This means the inc-and-test can be bypassed. | |
566 | * Page does not have to be locked. | |
567 | */ | |
568 | void page_add_new_anon_rmap(struct page *page, | |
569 | struct vm_area_struct *vma, unsigned long address) | |
570 | { | |
571 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
572 | atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */ | |
573 | __page_set_anon_rmap(page, vma, address); | |
574 | } | |
575 | ||
576 | /** | |
577 | * page_add_file_rmap - add pte mapping to a file page | |
578 | * @page: the page to add the mapping to | |
579 | * | |
580 | * The caller needs to hold the pte lock. | |
581 | */ | |
582 | void page_add_file_rmap(struct page *page) | |
583 | { | |
584 | if (atomic_inc_and_test(&page->_mapcount)) | |
585 | __inc_zone_page_state(page, NR_FILE_MAPPED); | |
586 | } | |
587 | ||
588 | #ifdef CONFIG_DEBUG_VM | |
589 | /** | |
590 | * page_dup_rmap - duplicate pte mapping to a page | |
591 | * @page: the page to add the mapping to | |
592 | * | |
593 | * For copy_page_range only: minimal extract from page_add_file_rmap / | |
594 | * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's | |
595 | * quicker. | |
596 | * | |
597 | * The caller needs to hold the pte lock. | |
598 | */ | |
599 | void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) | |
600 | { | |
601 | BUG_ON(page_mapcount(page) == 0); | |
602 | if (PageAnon(page)) | |
603 | __page_check_anon_rmap(page, vma, address); | |
604 | atomic_inc(&page->_mapcount); | |
605 | } | |
606 | #endif | |
607 | ||
608 | /** | |
609 | * page_remove_rmap - take down pte mapping from a page | |
610 | * @page: page to remove mapping from | |
611 | * | |
612 | * The caller needs to hold the pte lock. | |
613 | */ | |
614 | void page_remove_rmap(struct page *page, struct vm_area_struct *vma) | |
615 | { | |
616 | if (atomic_add_negative(-1, &page->_mapcount)) { | |
617 | if (unlikely(page_mapcount(page) < 0)) { | |
618 | printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page)); | |
619 | printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page)); | |
620 | printk (KERN_EMERG " page->flags = %lx\n", page->flags); | |
621 | printk (KERN_EMERG " page->count = %x\n", page_count(page)); | |
622 | printk (KERN_EMERG " page->mapping = %p\n", page->mapping); | |
623 | print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops); | |
624 | if (vma->vm_ops) { | |
625 | print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage); | |
626 | print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault); | |
627 | } | |
628 | if (vma->vm_file && vma->vm_file->f_op) | |
629 | print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap); | |
630 | BUG(); | |
631 | } | |
632 | ||
633 | /* | |
634 | * It would be tidy to reset the PageAnon mapping here, | |
635 | * but that might overwrite a racing page_add_anon_rmap | |
636 | * which increments mapcount after us but sets mapping | |
637 | * before us: so leave the reset to free_hot_cold_page, | |
638 | * and remember that it's only reliable while mapped. | |
639 | * Leaving it set also helps swapoff to reinstate ptes | |
640 | * faster for those pages still in swapcache. | |
641 | */ | |
642 | if (page_test_dirty(page)) { | |
643 | page_clear_dirty(page); | |
644 | set_page_dirty(page); | |
645 | } | |
646 | __dec_zone_page_state(page, | |
647 | PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED); | |
648 | } | |
649 | } | |
650 | ||
651 | /* | |
652 | * Subfunctions of try_to_unmap: try_to_unmap_one called | |
653 | * repeatedly from either try_to_unmap_anon or try_to_unmap_file. | |
654 | */ | |
655 | static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, | |
656 | int migration) | |
657 | { | |
658 | struct mm_struct *mm = vma->vm_mm; | |
659 | unsigned long address; | |
660 | pte_t *pte; | |
661 | pte_t pteval; | |
662 | spinlock_t *ptl; | |
663 | int ret = SWAP_AGAIN; | |
664 | ||
665 | address = vma_address(page, vma); | |
666 | if (address == -EFAULT) | |
667 | goto out; | |
668 | ||
669 | pte = page_check_address(page, mm, address, &ptl); | |
670 | if (!pte) | |
671 | goto out; | |
672 | ||
673 | /* | |
674 | * If the page is mlock()d, we cannot swap it out. | |
675 | * If it's recently referenced (perhaps page_referenced | |
676 | * skipped over this mm) then we should reactivate it. | |
677 | */ | |
678 | if (!migration && ((vma->vm_flags & VM_LOCKED) || | |
679 | (ptep_clear_flush_young(vma, address, pte)))) { | |
680 | ret = SWAP_FAIL; | |
681 | goto out_unmap; | |
682 | } | |
683 | ||
684 | /* Nuke the page table entry. */ | |
685 | flush_cache_page(vma, address, page_to_pfn(page)); | |
686 | pteval = ptep_clear_flush(vma, address, pte); | |
687 | ||
688 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
689 | if (pte_dirty(pteval)) | |
690 | set_page_dirty(page); | |
691 | ||
692 | /* Update high watermark before we lower rss */ | |
693 | update_hiwater_rss(mm); | |
694 | ||
695 | if (PageAnon(page)) { | |
696 | swp_entry_t entry = { .val = page_private(page) }; | |
697 | ||
698 | if (PageSwapCache(page)) { | |
699 | /* | |
700 | * Store the swap location in the pte. | |
701 | * See handle_pte_fault() ... | |
702 | */ | |
703 | swap_duplicate(entry); | |
704 | if (list_empty(&mm->mmlist)) { | |
705 | spin_lock(&mmlist_lock); | |
706 | if (list_empty(&mm->mmlist)) | |
707 | list_add(&mm->mmlist, &init_mm.mmlist); | |
708 | spin_unlock(&mmlist_lock); | |
709 | } | |
710 | dec_mm_counter(mm, anon_rss); | |
711 | #ifdef CONFIG_MIGRATION | |
712 | } else { | |
713 | /* | |
714 | * Store the pfn of the page in a special migration | |
715 | * pte. do_swap_page() will wait until the migration | |
716 | * pte is removed and then restart fault handling. | |
717 | */ | |
718 | BUG_ON(!migration); | |
719 | entry = make_migration_entry(page, pte_write(pteval)); | |
720 | #endif | |
721 | } | |
722 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | |
723 | BUG_ON(pte_file(*pte)); | |
724 | } else | |
725 | #ifdef CONFIG_MIGRATION | |
726 | if (migration) { | |
727 | /* Establish migration entry for a file page */ | |
728 | swp_entry_t entry; | |
729 | entry = make_migration_entry(page, pte_write(pteval)); | |
730 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | |
731 | } else | |
732 | #endif | |
733 | dec_mm_counter(mm, file_rss); | |
734 | ||
735 | ||
736 | page_remove_rmap(page, vma); | |
737 | page_cache_release(page); | |
738 | ||
739 | out_unmap: | |
740 | pte_unmap_unlock(pte, ptl); | |
741 | out: | |
742 | return ret; | |
743 | } | |
744 | ||
745 | /* | |
746 | * objrmap doesn't work for nonlinear VMAs because the assumption that | |
747 | * offset-into-file correlates with offset-into-virtual-addresses does not hold. | |
748 | * Consequently, given a particular page and its ->index, we cannot locate the | |
749 | * ptes which are mapping that page without an exhaustive linear search. | |
750 | * | |
751 | * So what this code does is a mini "virtual scan" of each nonlinear VMA which | |
752 | * maps the file to which the target page belongs. The ->vm_private_data field | |
753 | * holds the current cursor into that scan. Successive searches will circulate | |
754 | * around the vma's virtual address space. | |
755 | * | |
756 | * So as more replacement pressure is applied to the pages in a nonlinear VMA, | |
757 | * more scanning pressure is placed against them as well. Eventually pages | |
758 | * will become fully unmapped and are eligible for eviction. | |
759 | * | |
760 | * For very sparsely populated VMAs this is a little inefficient - chances are | |
761 | * there there won't be many ptes located within the scan cluster. In this case | |
762 | * maybe we could scan further - to the end of the pte page, perhaps. | |
763 | */ | |
764 | #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) | |
765 | #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) | |
766 | ||
767 | static void try_to_unmap_cluster(unsigned long cursor, | |
768 | unsigned int *mapcount, struct vm_area_struct *vma) | |
769 | { | |
770 | struct mm_struct *mm = vma->vm_mm; | |
771 | pgd_t *pgd; | |
772 | pud_t *pud; | |
773 | pmd_t *pmd; | |
774 | pte_t *pte; | |
775 | pte_t pteval; | |
776 | spinlock_t *ptl; | |
777 | struct page *page; | |
778 | unsigned long address; | |
779 | unsigned long end; | |
780 | ||
781 | address = (vma->vm_start + cursor) & CLUSTER_MASK; | |
782 | end = address + CLUSTER_SIZE; | |
783 | if (address < vma->vm_start) | |
784 | address = vma->vm_start; | |
785 | if (end > vma->vm_end) | |
786 | end = vma->vm_end; | |
787 | ||
788 | pgd = pgd_offset(mm, address); | |
789 | if (!pgd_present(*pgd)) | |
790 | return; | |
791 | ||
792 | pud = pud_offset(pgd, address); | |
793 | if (!pud_present(*pud)) | |
794 | return; | |
795 | ||
796 | pmd = pmd_offset(pud, address); | |
797 | if (!pmd_present(*pmd)) | |
798 | return; | |
799 | ||
800 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); | |
801 | ||
802 | /* Update high watermark before we lower rss */ | |
803 | update_hiwater_rss(mm); | |
804 | ||
805 | for (; address < end; pte++, address += PAGE_SIZE) { | |
806 | if (!pte_present(*pte)) | |
807 | continue; | |
808 | page = vm_normal_page(vma, address, *pte); | |
809 | BUG_ON(!page || PageAnon(page)); | |
810 | ||
811 | if (ptep_clear_flush_young(vma, address, pte)) | |
812 | continue; | |
813 | ||
814 | /* Nuke the page table entry. */ | |
815 | flush_cache_page(vma, address, pte_pfn(*pte)); | |
816 | pteval = ptep_clear_flush(vma, address, pte); | |
817 | ||
818 | /* If nonlinear, store the file page offset in the pte. */ | |
819 | if (page->index != linear_page_index(vma, address)) | |
820 | set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); | |
821 | ||
822 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
823 | if (pte_dirty(pteval)) | |
824 | set_page_dirty(page); | |
825 | ||
826 | page_remove_rmap(page, vma); | |
827 | page_cache_release(page); | |
828 | dec_mm_counter(mm, file_rss); | |
829 | (*mapcount)--; | |
830 | } | |
831 | pte_unmap_unlock(pte - 1, ptl); | |
832 | } | |
833 | ||
834 | static int try_to_unmap_anon(struct page *page, int migration) | |
835 | { | |
836 | struct anon_vma *anon_vma; | |
837 | struct vm_area_struct *vma; | |
838 | int ret = SWAP_AGAIN; | |
839 | ||
840 | anon_vma = page_lock_anon_vma(page); | |
841 | if (!anon_vma) | |
842 | return ret; | |
843 | ||
844 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | |
845 | ret = try_to_unmap_one(page, vma, migration); | |
846 | if (ret == SWAP_FAIL || !page_mapped(page)) | |
847 | break; | |
848 | } | |
849 | ||
850 | page_unlock_anon_vma(anon_vma); | |
851 | return ret; | |
852 | } | |
853 | ||
854 | /** | |
855 | * try_to_unmap_file - unmap file page using the object-based rmap method | |
856 | * @page: the page to unmap | |
857 | * | |
858 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
859 | * contained in the address_space struct it points to. | |
860 | * | |
861 | * This function is only called from try_to_unmap for object-based pages. | |
862 | */ | |
863 | static int try_to_unmap_file(struct page *page, int migration) | |
864 | { | |
865 | struct address_space *mapping = page->mapping; | |
866 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
867 | struct vm_area_struct *vma; | |
868 | struct prio_tree_iter iter; | |
869 | int ret = SWAP_AGAIN; | |
870 | unsigned long cursor; | |
871 | unsigned long max_nl_cursor = 0; | |
872 | unsigned long max_nl_size = 0; | |
873 | unsigned int mapcount; | |
874 | ||
875 | spin_lock(&mapping->i_mmap_lock); | |
876 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
877 | ret = try_to_unmap_one(page, vma, migration); | |
878 | if (ret == SWAP_FAIL || !page_mapped(page)) | |
879 | goto out; | |
880 | } | |
881 | ||
882 | if (list_empty(&mapping->i_mmap_nonlinear)) | |
883 | goto out; | |
884 | ||
885 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | |
886 | shared.vm_set.list) { | |
887 | if ((vma->vm_flags & VM_LOCKED) && !migration) | |
888 | continue; | |
889 | cursor = (unsigned long) vma->vm_private_data; | |
890 | if (cursor > max_nl_cursor) | |
891 | max_nl_cursor = cursor; | |
892 | cursor = vma->vm_end - vma->vm_start; | |
893 | if (cursor > max_nl_size) | |
894 | max_nl_size = cursor; | |
895 | } | |
896 | ||
897 | if (max_nl_size == 0) { /* any nonlinears locked or reserved */ | |
898 | ret = SWAP_FAIL; | |
899 | goto out; | |
900 | } | |
901 | ||
902 | /* | |
903 | * We don't try to search for this page in the nonlinear vmas, | |
904 | * and page_referenced wouldn't have found it anyway. Instead | |
905 | * just walk the nonlinear vmas trying to age and unmap some. | |
906 | * The mapcount of the page we came in with is irrelevant, | |
907 | * but even so use it as a guide to how hard we should try? | |
908 | */ | |
909 | mapcount = page_mapcount(page); | |
910 | if (!mapcount) | |
911 | goto out; | |
912 | cond_resched_lock(&mapping->i_mmap_lock); | |
913 | ||
914 | max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; | |
915 | if (max_nl_cursor == 0) | |
916 | max_nl_cursor = CLUSTER_SIZE; | |
917 | ||
918 | do { | |
919 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | |
920 | shared.vm_set.list) { | |
921 | if ((vma->vm_flags & VM_LOCKED) && !migration) | |
922 | continue; | |
923 | cursor = (unsigned long) vma->vm_private_data; | |
924 | while ( cursor < max_nl_cursor && | |
925 | cursor < vma->vm_end - vma->vm_start) { | |
926 | try_to_unmap_cluster(cursor, &mapcount, vma); | |
927 | cursor += CLUSTER_SIZE; | |
928 | vma->vm_private_data = (void *) cursor; | |
929 | if ((int)mapcount <= 0) | |
930 | goto out; | |
931 | } | |
932 | vma->vm_private_data = (void *) max_nl_cursor; | |
933 | } | |
934 | cond_resched_lock(&mapping->i_mmap_lock); | |
935 | max_nl_cursor += CLUSTER_SIZE; | |
936 | } while (max_nl_cursor <= max_nl_size); | |
937 | ||
938 | /* | |
939 | * Don't loop forever (perhaps all the remaining pages are | |
940 | * in locked vmas). Reset cursor on all unreserved nonlinear | |
941 | * vmas, now forgetting on which ones it had fallen behind. | |
942 | */ | |
943 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) | |
944 | vma->vm_private_data = NULL; | |
945 | out: | |
946 | spin_unlock(&mapping->i_mmap_lock); | |
947 | return ret; | |
948 | } | |
949 | ||
950 | /** | |
951 | * try_to_unmap - try to remove all page table mappings to a page | |
952 | * @page: the page to get unmapped | |
953 | * | |
954 | * Tries to remove all the page table entries which are mapping this | |
955 | * page, used in the pageout path. Caller must hold the page lock. | |
956 | * Return values are: | |
957 | * | |
958 | * SWAP_SUCCESS - we succeeded in removing all mappings | |
959 | * SWAP_AGAIN - we missed a mapping, try again later | |
960 | * SWAP_FAIL - the page is unswappable | |
961 | */ | |
962 | int try_to_unmap(struct page *page, int migration) | |
963 | { | |
964 | int ret; | |
965 | ||
966 | BUG_ON(!PageLocked(page)); | |
967 | ||
968 | if (PageAnon(page)) | |
969 | ret = try_to_unmap_anon(page, migration); | |
970 | else | |
971 | ret = try_to_unmap_file(page, migration); | |
972 | ||
973 | if (!page_mapped(page)) | |
974 | ret = SWAP_SUCCESS; | |
975 | return ret; | |
976 | } | |
977 |