]>
Commit | Line | Data |
---|---|---|
1 | /* memcontrol.c - Memory Controller | |
2 | * | |
3 | * Copyright IBM Corporation, 2007 | |
4 | * Author Balbir Singh <[email protected]> | |
5 | * | |
6 | * Copyright 2007 OpenVZ SWsoft Inc | |
7 | * Author: Pavel Emelianov <[email protected]> | |
8 | * | |
9 | * Memory thresholds | |
10 | * Copyright (C) 2009 Nokia Corporation | |
11 | * Author: Kirill A. Shutemov | |
12 | * | |
13 | * Kernel Memory Controller | |
14 | * Copyright (C) 2012 Parallels Inc. and Google Inc. | |
15 | * Authors: Glauber Costa and Suleiman Souhlal | |
16 | * | |
17 | * Native page reclaim | |
18 | * Charge lifetime sanitation | |
19 | * Lockless page tracking & accounting | |
20 | * Unified hierarchy configuration model | |
21 | * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner | |
22 | * | |
23 | * This program is free software; you can redistribute it and/or modify | |
24 | * it under the terms of the GNU General Public License as published by | |
25 | * the Free Software Foundation; either version 2 of the License, or | |
26 | * (at your option) any later version. | |
27 | * | |
28 | * This program is distributed in the hope that it will be useful, | |
29 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
30 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
31 | * GNU General Public License for more details. | |
32 | */ | |
33 | ||
34 | #include <linux/page_counter.h> | |
35 | #include <linux/memcontrol.h> | |
36 | #include <linux/cgroup.h> | |
37 | #include <linux/mm.h> | |
38 | #include <linux/hugetlb.h> | |
39 | #include <linux/pagemap.h> | |
40 | #include <linux/smp.h> | |
41 | #include <linux/page-flags.h> | |
42 | #include <linux/backing-dev.h> | |
43 | #include <linux/bit_spinlock.h> | |
44 | #include <linux/rcupdate.h> | |
45 | #include <linux/limits.h> | |
46 | #include <linux/export.h> | |
47 | #include <linux/mutex.h> | |
48 | #include <linux/rbtree.h> | |
49 | #include <linux/slab.h> | |
50 | #include <linux/swap.h> | |
51 | #include <linux/swapops.h> | |
52 | #include <linux/spinlock.h> | |
53 | #include <linux/eventfd.h> | |
54 | #include <linux/poll.h> | |
55 | #include <linux/sort.h> | |
56 | #include <linux/fs.h> | |
57 | #include <linux/seq_file.h> | |
58 | #include <linux/vmpressure.h> | |
59 | #include <linux/mm_inline.h> | |
60 | #include <linux/swap_cgroup.h> | |
61 | #include <linux/cpu.h> | |
62 | #include <linux/oom.h> | |
63 | #include <linux/lockdep.h> | |
64 | #include <linux/file.h> | |
65 | #include <linux/tracehook.h> | |
66 | #include "internal.h" | |
67 | #include <net/sock.h> | |
68 | #include <net/ip.h> | |
69 | #include "slab.h" | |
70 | ||
71 | #include <asm/uaccess.h> | |
72 | ||
73 | #include <trace/events/vmscan.h> | |
74 | ||
75 | struct cgroup_subsys memory_cgrp_subsys __read_mostly; | |
76 | EXPORT_SYMBOL(memory_cgrp_subsys); | |
77 | ||
78 | struct mem_cgroup *root_mem_cgroup __read_mostly; | |
79 | ||
80 | #define MEM_CGROUP_RECLAIM_RETRIES 5 | |
81 | ||
82 | /* Socket memory accounting disabled? */ | |
83 | static bool cgroup_memory_nosocket; | |
84 | ||
85 | /* Kernel memory accounting disabled? */ | |
86 | static bool cgroup_memory_nokmem; | |
87 | ||
88 | /* Whether the swap controller is active */ | |
89 | #ifdef CONFIG_MEMCG_SWAP | |
90 | int do_swap_account __read_mostly; | |
91 | #else | |
92 | #define do_swap_account 0 | |
93 | #endif | |
94 | ||
95 | /* Whether legacy memory+swap accounting is active */ | |
96 | static bool do_memsw_account(void) | |
97 | { | |
98 | return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; | |
99 | } | |
100 | ||
101 | static const char * const mem_cgroup_stat_names[] = { | |
102 | "cache", | |
103 | "rss", | |
104 | "rss_huge", | |
105 | "mapped_file", | |
106 | "dirty", | |
107 | "writeback", | |
108 | "swap", | |
109 | }; | |
110 | ||
111 | static const char * const mem_cgroup_events_names[] = { | |
112 | "pgpgin", | |
113 | "pgpgout", | |
114 | "pgfault", | |
115 | "pgmajfault", | |
116 | }; | |
117 | ||
118 | static const char * const mem_cgroup_lru_names[] = { | |
119 | "inactive_anon", | |
120 | "active_anon", | |
121 | "inactive_file", | |
122 | "active_file", | |
123 | "unevictable", | |
124 | }; | |
125 | ||
126 | #define THRESHOLDS_EVENTS_TARGET 128 | |
127 | #define SOFTLIMIT_EVENTS_TARGET 1024 | |
128 | #define NUMAINFO_EVENTS_TARGET 1024 | |
129 | ||
130 | /* | |
131 | * Cgroups above their limits are maintained in a RB-Tree, independent of | |
132 | * their hierarchy representation | |
133 | */ | |
134 | ||
135 | struct mem_cgroup_tree_per_zone { | |
136 | struct rb_root rb_root; | |
137 | spinlock_t lock; | |
138 | }; | |
139 | ||
140 | struct mem_cgroup_tree_per_node { | |
141 | struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; | |
142 | }; | |
143 | ||
144 | struct mem_cgroup_tree { | |
145 | struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; | |
146 | }; | |
147 | ||
148 | static struct mem_cgroup_tree soft_limit_tree __read_mostly; | |
149 | ||
150 | /* for OOM */ | |
151 | struct mem_cgroup_eventfd_list { | |
152 | struct list_head list; | |
153 | struct eventfd_ctx *eventfd; | |
154 | }; | |
155 | ||
156 | /* | |
157 | * cgroup_event represents events which userspace want to receive. | |
158 | */ | |
159 | struct mem_cgroup_event { | |
160 | /* | |
161 | * memcg which the event belongs to. | |
162 | */ | |
163 | struct mem_cgroup *memcg; | |
164 | /* | |
165 | * eventfd to signal userspace about the event. | |
166 | */ | |
167 | struct eventfd_ctx *eventfd; | |
168 | /* | |
169 | * Each of these stored in a list by the cgroup. | |
170 | */ | |
171 | struct list_head list; | |
172 | /* | |
173 | * register_event() callback will be used to add new userspace | |
174 | * waiter for changes related to this event. Use eventfd_signal() | |
175 | * on eventfd to send notification to userspace. | |
176 | */ | |
177 | int (*register_event)(struct mem_cgroup *memcg, | |
178 | struct eventfd_ctx *eventfd, const char *args); | |
179 | /* | |
180 | * unregister_event() callback will be called when userspace closes | |
181 | * the eventfd or on cgroup removing. This callback must be set, | |
182 | * if you want provide notification functionality. | |
183 | */ | |
184 | void (*unregister_event)(struct mem_cgroup *memcg, | |
185 | struct eventfd_ctx *eventfd); | |
186 | /* | |
187 | * All fields below needed to unregister event when | |
188 | * userspace closes eventfd. | |
189 | */ | |
190 | poll_table pt; | |
191 | wait_queue_head_t *wqh; | |
192 | wait_queue_t wait; | |
193 | struct work_struct remove; | |
194 | }; | |
195 | ||
196 | static void mem_cgroup_threshold(struct mem_cgroup *memcg); | |
197 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); | |
198 | ||
199 | /* Stuffs for move charges at task migration. */ | |
200 | /* | |
201 | * Types of charges to be moved. | |
202 | */ | |
203 | #define MOVE_ANON 0x1U | |
204 | #define MOVE_FILE 0x2U | |
205 | #define MOVE_MASK (MOVE_ANON | MOVE_FILE) | |
206 | ||
207 | /* "mc" and its members are protected by cgroup_mutex */ | |
208 | static struct move_charge_struct { | |
209 | spinlock_t lock; /* for from, to */ | |
210 | struct mm_struct *mm; | |
211 | struct mem_cgroup *from; | |
212 | struct mem_cgroup *to; | |
213 | unsigned long flags; | |
214 | unsigned long precharge; | |
215 | unsigned long moved_charge; | |
216 | unsigned long moved_swap; | |
217 | struct task_struct *moving_task; /* a task moving charges */ | |
218 | wait_queue_head_t waitq; /* a waitq for other context */ | |
219 | } mc = { | |
220 | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), | |
221 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), | |
222 | }; | |
223 | ||
224 | /* | |
225 | * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft | |
226 | * limit reclaim to prevent infinite loops, if they ever occur. | |
227 | */ | |
228 | #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 | |
229 | #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 | |
230 | ||
231 | enum charge_type { | |
232 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | |
233 | MEM_CGROUP_CHARGE_TYPE_ANON, | |
234 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ | |
235 | MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ | |
236 | NR_CHARGE_TYPE, | |
237 | }; | |
238 | ||
239 | /* for encoding cft->private value on file */ | |
240 | enum res_type { | |
241 | _MEM, | |
242 | _MEMSWAP, | |
243 | _OOM_TYPE, | |
244 | _KMEM, | |
245 | _TCP, | |
246 | }; | |
247 | ||
248 | #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) | |
249 | #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) | |
250 | #define MEMFILE_ATTR(val) ((val) & 0xffff) | |
251 | /* Used for OOM nofiier */ | |
252 | #define OOM_CONTROL (0) | |
253 | ||
254 | /* Some nice accessors for the vmpressure. */ | |
255 | struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) | |
256 | { | |
257 | if (!memcg) | |
258 | memcg = root_mem_cgroup; | |
259 | return &memcg->vmpressure; | |
260 | } | |
261 | ||
262 | struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) | |
263 | { | |
264 | return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; | |
265 | } | |
266 | ||
267 | static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) | |
268 | { | |
269 | return (memcg == root_mem_cgroup); | |
270 | } | |
271 | ||
272 | #ifndef CONFIG_SLOB | |
273 | /* | |
274 | * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. | |
275 | * The main reason for not using cgroup id for this: | |
276 | * this works better in sparse environments, where we have a lot of memcgs, | |
277 | * but only a few kmem-limited. Or also, if we have, for instance, 200 | |
278 | * memcgs, and none but the 200th is kmem-limited, we'd have to have a | |
279 | * 200 entry array for that. | |
280 | * | |
281 | * The current size of the caches array is stored in memcg_nr_cache_ids. It | |
282 | * will double each time we have to increase it. | |
283 | */ | |
284 | static DEFINE_IDA(memcg_cache_ida); | |
285 | int memcg_nr_cache_ids; | |
286 | ||
287 | /* Protects memcg_nr_cache_ids */ | |
288 | static DECLARE_RWSEM(memcg_cache_ids_sem); | |
289 | ||
290 | void memcg_get_cache_ids(void) | |
291 | { | |
292 | down_read(&memcg_cache_ids_sem); | |
293 | } | |
294 | ||
295 | void memcg_put_cache_ids(void) | |
296 | { | |
297 | up_read(&memcg_cache_ids_sem); | |
298 | } | |
299 | ||
300 | /* | |
301 | * MIN_SIZE is different than 1, because we would like to avoid going through | |
302 | * the alloc/free process all the time. In a small machine, 4 kmem-limited | |
303 | * cgroups is a reasonable guess. In the future, it could be a parameter or | |
304 | * tunable, but that is strictly not necessary. | |
305 | * | |
306 | * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get | |
307 | * this constant directly from cgroup, but it is understandable that this is | |
308 | * better kept as an internal representation in cgroup.c. In any case, the | |
309 | * cgrp_id space is not getting any smaller, and we don't have to necessarily | |
310 | * increase ours as well if it increases. | |
311 | */ | |
312 | #define MEMCG_CACHES_MIN_SIZE 4 | |
313 | #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX | |
314 | ||
315 | /* | |
316 | * A lot of the calls to the cache allocation functions are expected to be | |
317 | * inlined by the compiler. Since the calls to memcg_kmem_get_cache are | |
318 | * conditional to this static branch, we'll have to allow modules that does | |
319 | * kmem_cache_alloc and the such to see this symbol as well | |
320 | */ | |
321 | DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); | |
322 | EXPORT_SYMBOL(memcg_kmem_enabled_key); | |
323 | ||
324 | #endif /* !CONFIG_SLOB */ | |
325 | ||
326 | static struct mem_cgroup_per_zone * | |
327 | mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone) | |
328 | { | |
329 | int nid = zone_to_nid(zone); | |
330 | int zid = zone_idx(zone); | |
331 | ||
332 | return &memcg->nodeinfo[nid]->zoneinfo[zid]; | |
333 | } | |
334 | ||
335 | /** | |
336 | * mem_cgroup_css_from_page - css of the memcg associated with a page | |
337 | * @page: page of interest | |
338 | * | |
339 | * If memcg is bound to the default hierarchy, css of the memcg associated | |
340 | * with @page is returned. The returned css remains associated with @page | |
341 | * until it is released. | |
342 | * | |
343 | * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup | |
344 | * is returned. | |
345 | */ | |
346 | struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) | |
347 | { | |
348 | struct mem_cgroup *memcg; | |
349 | ||
350 | memcg = page->mem_cgroup; | |
351 | ||
352 | if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
353 | memcg = root_mem_cgroup; | |
354 | ||
355 | return &memcg->css; | |
356 | } | |
357 | ||
358 | /** | |
359 | * page_cgroup_ino - return inode number of the memcg a page is charged to | |
360 | * @page: the page | |
361 | * | |
362 | * Look up the closest online ancestor of the memory cgroup @page is charged to | |
363 | * and return its inode number or 0 if @page is not charged to any cgroup. It | |
364 | * is safe to call this function without holding a reference to @page. | |
365 | * | |
366 | * Note, this function is inherently racy, because there is nothing to prevent | |
367 | * the cgroup inode from getting torn down and potentially reallocated a moment | |
368 | * after page_cgroup_ino() returns, so it only should be used by callers that | |
369 | * do not care (such as procfs interfaces). | |
370 | */ | |
371 | ino_t page_cgroup_ino(struct page *page) | |
372 | { | |
373 | struct mem_cgroup *memcg; | |
374 | unsigned long ino = 0; | |
375 | ||
376 | rcu_read_lock(); | |
377 | memcg = READ_ONCE(page->mem_cgroup); | |
378 | while (memcg && !(memcg->css.flags & CSS_ONLINE)) | |
379 | memcg = parent_mem_cgroup(memcg); | |
380 | if (memcg) | |
381 | ino = cgroup_ino(memcg->css.cgroup); | |
382 | rcu_read_unlock(); | |
383 | return ino; | |
384 | } | |
385 | ||
386 | static struct mem_cgroup_per_zone * | |
387 | mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page) | |
388 | { | |
389 | int nid = page_to_nid(page); | |
390 | int zid = page_zonenum(page); | |
391 | ||
392 | return &memcg->nodeinfo[nid]->zoneinfo[zid]; | |
393 | } | |
394 | ||
395 | static struct mem_cgroup_tree_per_zone * | |
396 | soft_limit_tree_node_zone(int nid, int zid) | |
397 | { | |
398 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | |
399 | } | |
400 | ||
401 | static struct mem_cgroup_tree_per_zone * | |
402 | soft_limit_tree_from_page(struct page *page) | |
403 | { | |
404 | int nid = page_to_nid(page); | |
405 | int zid = page_zonenum(page); | |
406 | ||
407 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | |
408 | } | |
409 | ||
410 | static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz, | |
411 | struct mem_cgroup_tree_per_zone *mctz, | |
412 | unsigned long new_usage_in_excess) | |
413 | { | |
414 | struct rb_node **p = &mctz->rb_root.rb_node; | |
415 | struct rb_node *parent = NULL; | |
416 | struct mem_cgroup_per_zone *mz_node; | |
417 | ||
418 | if (mz->on_tree) | |
419 | return; | |
420 | ||
421 | mz->usage_in_excess = new_usage_in_excess; | |
422 | if (!mz->usage_in_excess) | |
423 | return; | |
424 | while (*p) { | |
425 | parent = *p; | |
426 | mz_node = rb_entry(parent, struct mem_cgroup_per_zone, | |
427 | tree_node); | |
428 | if (mz->usage_in_excess < mz_node->usage_in_excess) | |
429 | p = &(*p)->rb_left; | |
430 | /* | |
431 | * We can't avoid mem cgroups that are over their soft | |
432 | * limit by the same amount | |
433 | */ | |
434 | else if (mz->usage_in_excess >= mz_node->usage_in_excess) | |
435 | p = &(*p)->rb_right; | |
436 | } | |
437 | rb_link_node(&mz->tree_node, parent, p); | |
438 | rb_insert_color(&mz->tree_node, &mctz->rb_root); | |
439 | mz->on_tree = true; | |
440 | } | |
441 | ||
442 | static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, | |
443 | struct mem_cgroup_tree_per_zone *mctz) | |
444 | { | |
445 | if (!mz->on_tree) | |
446 | return; | |
447 | rb_erase(&mz->tree_node, &mctz->rb_root); | |
448 | mz->on_tree = false; | |
449 | } | |
450 | ||
451 | static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, | |
452 | struct mem_cgroup_tree_per_zone *mctz) | |
453 | { | |
454 | unsigned long flags; | |
455 | ||
456 | spin_lock_irqsave(&mctz->lock, flags); | |
457 | __mem_cgroup_remove_exceeded(mz, mctz); | |
458 | spin_unlock_irqrestore(&mctz->lock, flags); | |
459 | } | |
460 | ||
461 | static unsigned long soft_limit_excess(struct mem_cgroup *memcg) | |
462 | { | |
463 | unsigned long nr_pages = page_counter_read(&memcg->memory); | |
464 | unsigned long soft_limit = READ_ONCE(memcg->soft_limit); | |
465 | unsigned long excess = 0; | |
466 | ||
467 | if (nr_pages > soft_limit) | |
468 | excess = nr_pages - soft_limit; | |
469 | ||
470 | return excess; | |
471 | } | |
472 | ||
473 | static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) | |
474 | { | |
475 | unsigned long excess; | |
476 | struct mem_cgroup_per_zone *mz; | |
477 | struct mem_cgroup_tree_per_zone *mctz; | |
478 | ||
479 | mctz = soft_limit_tree_from_page(page); | |
480 | /* | |
481 | * Necessary to update all ancestors when hierarchy is used. | |
482 | * because their event counter is not touched. | |
483 | */ | |
484 | for (; memcg; memcg = parent_mem_cgroup(memcg)) { | |
485 | mz = mem_cgroup_page_zoneinfo(memcg, page); | |
486 | excess = soft_limit_excess(memcg); | |
487 | /* | |
488 | * We have to update the tree if mz is on RB-tree or | |
489 | * mem is over its softlimit. | |
490 | */ | |
491 | if (excess || mz->on_tree) { | |
492 | unsigned long flags; | |
493 | ||
494 | spin_lock_irqsave(&mctz->lock, flags); | |
495 | /* if on-tree, remove it */ | |
496 | if (mz->on_tree) | |
497 | __mem_cgroup_remove_exceeded(mz, mctz); | |
498 | /* | |
499 | * Insert again. mz->usage_in_excess will be updated. | |
500 | * If excess is 0, no tree ops. | |
501 | */ | |
502 | __mem_cgroup_insert_exceeded(mz, mctz, excess); | |
503 | spin_unlock_irqrestore(&mctz->lock, flags); | |
504 | } | |
505 | } | |
506 | } | |
507 | ||
508 | static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) | |
509 | { | |
510 | struct mem_cgroup_tree_per_zone *mctz; | |
511 | struct mem_cgroup_per_zone *mz; | |
512 | int nid, zid; | |
513 | ||
514 | for_each_node(nid) { | |
515 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
516 | mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; | |
517 | mctz = soft_limit_tree_node_zone(nid, zid); | |
518 | mem_cgroup_remove_exceeded(mz, mctz); | |
519 | } | |
520 | } | |
521 | } | |
522 | ||
523 | static struct mem_cgroup_per_zone * | |
524 | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | |
525 | { | |
526 | struct rb_node *rightmost = NULL; | |
527 | struct mem_cgroup_per_zone *mz; | |
528 | ||
529 | retry: | |
530 | mz = NULL; | |
531 | rightmost = rb_last(&mctz->rb_root); | |
532 | if (!rightmost) | |
533 | goto done; /* Nothing to reclaim from */ | |
534 | ||
535 | mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); | |
536 | /* | |
537 | * Remove the node now but someone else can add it back, | |
538 | * we will to add it back at the end of reclaim to its correct | |
539 | * position in the tree. | |
540 | */ | |
541 | __mem_cgroup_remove_exceeded(mz, mctz); | |
542 | if (!soft_limit_excess(mz->memcg) || | |
543 | !css_tryget_online(&mz->memcg->css)) | |
544 | goto retry; | |
545 | done: | |
546 | return mz; | |
547 | } | |
548 | ||
549 | static struct mem_cgroup_per_zone * | |
550 | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | |
551 | { | |
552 | struct mem_cgroup_per_zone *mz; | |
553 | ||
554 | spin_lock_irq(&mctz->lock); | |
555 | mz = __mem_cgroup_largest_soft_limit_node(mctz); | |
556 | spin_unlock_irq(&mctz->lock); | |
557 | return mz; | |
558 | } | |
559 | ||
560 | /* | |
561 | * Return page count for single (non recursive) @memcg. | |
562 | * | |
563 | * Implementation Note: reading percpu statistics for memcg. | |
564 | * | |
565 | * Both of vmstat[] and percpu_counter has threshold and do periodic | |
566 | * synchronization to implement "quick" read. There are trade-off between | |
567 | * reading cost and precision of value. Then, we may have a chance to implement | |
568 | * a periodic synchronization of counter in memcg's counter. | |
569 | * | |
570 | * But this _read() function is used for user interface now. The user accounts | |
571 | * memory usage by memory cgroup and he _always_ requires exact value because | |
572 | * he accounts memory. Even if we provide quick-and-fuzzy read, we always | |
573 | * have to visit all online cpus and make sum. So, for now, unnecessary | |
574 | * synchronization is not implemented. (just implemented for cpu hotplug) | |
575 | * | |
576 | * If there are kernel internal actions which can make use of some not-exact | |
577 | * value, and reading all cpu value can be performance bottleneck in some | |
578 | * common workload, threshold and synchronization as vmstat[] should be | |
579 | * implemented. | |
580 | */ | |
581 | static unsigned long | |
582 | mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx) | |
583 | { | |
584 | long val = 0; | |
585 | int cpu; | |
586 | ||
587 | /* Per-cpu values can be negative, use a signed accumulator */ | |
588 | for_each_possible_cpu(cpu) | |
589 | val += per_cpu(memcg->stat->count[idx], cpu); | |
590 | /* | |
591 | * Summing races with updates, so val may be negative. Avoid exposing | |
592 | * transient negative values. | |
593 | */ | |
594 | if (val < 0) | |
595 | val = 0; | |
596 | return val; | |
597 | } | |
598 | ||
599 | static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, | |
600 | enum mem_cgroup_events_index idx) | |
601 | { | |
602 | unsigned long val = 0; | |
603 | int cpu; | |
604 | ||
605 | for_each_possible_cpu(cpu) | |
606 | val += per_cpu(memcg->stat->events[idx], cpu); | |
607 | return val; | |
608 | } | |
609 | ||
610 | static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, | |
611 | struct page *page, | |
612 | bool compound, int nr_pages) | |
613 | { | |
614 | /* | |
615 | * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is | |
616 | * counted as CACHE even if it's on ANON LRU. | |
617 | */ | |
618 | if (PageAnon(page)) | |
619 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], | |
620 | nr_pages); | |
621 | else | |
622 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], | |
623 | nr_pages); | |
624 | ||
625 | if (compound) { | |
626 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
627 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], | |
628 | nr_pages); | |
629 | } | |
630 | ||
631 | /* pagein of a big page is an event. So, ignore page size */ | |
632 | if (nr_pages > 0) | |
633 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); | |
634 | else { | |
635 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); | |
636 | nr_pages = -nr_pages; /* for event */ | |
637 | } | |
638 | ||
639 | __this_cpu_add(memcg->stat->nr_page_events, nr_pages); | |
640 | } | |
641 | ||
642 | unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, | |
643 | int nid, unsigned int lru_mask) | |
644 | { | |
645 | unsigned long nr = 0; | |
646 | int zid; | |
647 | ||
648 | VM_BUG_ON((unsigned)nid >= nr_node_ids); | |
649 | ||
650 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
651 | struct mem_cgroup_per_zone *mz; | |
652 | enum lru_list lru; | |
653 | ||
654 | for_each_lru(lru) { | |
655 | if (!(BIT(lru) & lru_mask)) | |
656 | continue; | |
657 | mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; | |
658 | nr += mz->lru_size[lru]; | |
659 | } | |
660 | } | |
661 | return nr; | |
662 | } | |
663 | ||
664 | static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, | |
665 | unsigned int lru_mask) | |
666 | { | |
667 | unsigned long nr = 0; | |
668 | int nid; | |
669 | ||
670 | for_each_node_state(nid, N_MEMORY) | |
671 | nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); | |
672 | return nr; | |
673 | } | |
674 | ||
675 | static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, | |
676 | enum mem_cgroup_events_target target) | |
677 | { | |
678 | unsigned long val, next; | |
679 | ||
680 | val = __this_cpu_read(memcg->stat->nr_page_events); | |
681 | next = __this_cpu_read(memcg->stat->targets[target]); | |
682 | /* from time_after() in jiffies.h */ | |
683 | if ((long)next - (long)val < 0) { | |
684 | switch (target) { | |
685 | case MEM_CGROUP_TARGET_THRESH: | |
686 | next = val + THRESHOLDS_EVENTS_TARGET; | |
687 | break; | |
688 | case MEM_CGROUP_TARGET_SOFTLIMIT: | |
689 | next = val + SOFTLIMIT_EVENTS_TARGET; | |
690 | break; | |
691 | case MEM_CGROUP_TARGET_NUMAINFO: | |
692 | next = val + NUMAINFO_EVENTS_TARGET; | |
693 | break; | |
694 | default: | |
695 | break; | |
696 | } | |
697 | __this_cpu_write(memcg->stat->targets[target], next); | |
698 | return true; | |
699 | } | |
700 | return false; | |
701 | } | |
702 | ||
703 | /* | |
704 | * Check events in order. | |
705 | * | |
706 | */ | |
707 | static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) | |
708 | { | |
709 | /* threshold event is triggered in finer grain than soft limit */ | |
710 | if (unlikely(mem_cgroup_event_ratelimit(memcg, | |
711 | MEM_CGROUP_TARGET_THRESH))) { | |
712 | bool do_softlimit; | |
713 | bool do_numainfo __maybe_unused; | |
714 | ||
715 | do_softlimit = mem_cgroup_event_ratelimit(memcg, | |
716 | MEM_CGROUP_TARGET_SOFTLIMIT); | |
717 | #if MAX_NUMNODES > 1 | |
718 | do_numainfo = mem_cgroup_event_ratelimit(memcg, | |
719 | MEM_CGROUP_TARGET_NUMAINFO); | |
720 | #endif | |
721 | mem_cgroup_threshold(memcg); | |
722 | if (unlikely(do_softlimit)) | |
723 | mem_cgroup_update_tree(memcg, page); | |
724 | #if MAX_NUMNODES > 1 | |
725 | if (unlikely(do_numainfo)) | |
726 | atomic_inc(&memcg->numainfo_events); | |
727 | #endif | |
728 | } | |
729 | } | |
730 | ||
731 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) | |
732 | { | |
733 | /* | |
734 | * mm_update_next_owner() may clear mm->owner to NULL | |
735 | * if it races with swapoff, page migration, etc. | |
736 | * So this can be called with p == NULL. | |
737 | */ | |
738 | if (unlikely(!p)) | |
739 | return NULL; | |
740 | ||
741 | return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); | |
742 | } | |
743 | EXPORT_SYMBOL(mem_cgroup_from_task); | |
744 | ||
745 | static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) | |
746 | { | |
747 | struct mem_cgroup *memcg = NULL; | |
748 | ||
749 | rcu_read_lock(); | |
750 | do { | |
751 | /* | |
752 | * Page cache insertions can happen withou an | |
753 | * actual mm context, e.g. during disk probing | |
754 | * on boot, loopback IO, acct() writes etc. | |
755 | */ | |
756 | if (unlikely(!mm)) | |
757 | memcg = root_mem_cgroup; | |
758 | else { | |
759 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); | |
760 | if (unlikely(!memcg)) | |
761 | memcg = root_mem_cgroup; | |
762 | } | |
763 | } while (!css_tryget_online(&memcg->css)); | |
764 | rcu_read_unlock(); | |
765 | return memcg; | |
766 | } | |
767 | ||
768 | /** | |
769 | * mem_cgroup_iter - iterate over memory cgroup hierarchy | |
770 | * @root: hierarchy root | |
771 | * @prev: previously returned memcg, NULL on first invocation | |
772 | * @reclaim: cookie for shared reclaim walks, NULL for full walks | |
773 | * | |
774 | * Returns references to children of the hierarchy below @root, or | |
775 | * @root itself, or %NULL after a full round-trip. | |
776 | * | |
777 | * Caller must pass the return value in @prev on subsequent | |
778 | * invocations for reference counting, or use mem_cgroup_iter_break() | |
779 | * to cancel a hierarchy walk before the round-trip is complete. | |
780 | * | |
781 | * Reclaimers can specify a zone and a priority level in @reclaim to | |
782 | * divide up the memcgs in the hierarchy among all concurrent | |
783 | * reclaimers operating on the same zone and priority. | |
784 | */ | |
785 | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, | |
786 | struct mem_cgroup *prev, | |
787 | struct mem_cgroup_reclaim_cookie *reclaim) | |
788 | { | |
789 | struct mem_cgroup_reclaim_iter *uninitialized_var(iter); | |
790 | struct cgroup_subsys_state *css = NULL; | |
791 | struct mem_cgroup *memcg = NULL; | |
792 | struct mem_cgroup *pos = NULL; | |
793 | ||
794 | if (mem_cgroup_disabled()) | |
795 | return NULL; | |
796 | ||
797 | if (!root) | |
798 | root = root_mem_cgroup; | |
799 | ||
800 | if (prev && !reclaim) | |
801 | pos = prev; | |
802 | ||
803 | if (!root->use_hierarchy && root != root_mem_cgroup) { | |
804 | if (prev) | |
805 | goto out; | |
806 | return root; | |
807 | } | |
808 | ||
809 | rcu_read_lock(); | |
810 | ||
811 | if (reclaim) { | |
812 | struct mem_cgroup_per_zone *mz; | |
813 | ||
814 | mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone); | |
815 | iter = &mz->iter[reclaim->priority]; | |
816 | ||
817 | if (prev && reclaim->generation != iter->generation) | |
818 | goto out_unlock; | |
819 | ||
820 | while (1) { | |
821 | pos = READ_ONCE(iter->position); | |
822 | if (!pos || css_tryget(&pos->css)) | |
823 | break; | |
824 | /* | |
825 | * css reference reached zero, so iter->position will | |
826 | * be cleared by ->css_released. However, we should not | |
827 | * rely on this happening soon, because ->css_released | |
828 | * is called from a work queue, and by busy-waiting we | |
829 | * might block it. So we clear iter->position right | |
830 | * away. | |
831 | */ | |
832 | (void)cmpxchg(&iter->position, pos, NULL); | |
833 | } | |
834 | } | |
835 | ||
836 | if (pos) | |
837 | css = &pos->css; | |
838 | ||
839 | for (;;) { | |
840 | css = css_next_descendant_pre(css, &root->css); | |
841 | if (!css) { | |
842 | /* | |
843 | * Reclaimers share the hierarchy walk, and a | |
844 | * new one might jump in right at the end of | |
845 | * the hierarchy - make sure they see at least | |
846 | * one group and restart from the beginning. | |
847 | */ | |
848 | if (!prev) | |
849 | continue; | |
850 | break; | |
851 | } | |
852 | ||
853 | /* | |
854 | * Verify the css and acquire a reference. The root | |
855 | * is provided by the caller, so we know it's alive | |
856 | * and kicking, and don't take an extra reference. | |
857 | */ | |
858 | memcg = mem_cgroup_from_css(css); | |
859 | ||
860 | if (css == &root->css) | |
861 | break; | |
862 | ||
863 | if (css_tryget(css)) | |
864 | break; | |
865 | ||
866 | memcg = NULL; | |
867 | } | |
868 | ||
869 | if (reclaim) { | |
870 | /* | |
871 | * The position could have already been updated by a competing | |
872 | * thread, so check that the value hasn't changed since we read | |
873 | * it to avoid reclaiming from the same cgroup twice. | |
874 | */ | |
875 | (void)cmpxchg(&iter->position, pos, memcg); | |
876 | ||
877 | if (pos) | |
878 | css_put(&pos->css); | |
879 | ||
880 | if (!memcg) | |
881 | iter->generation++; | |
882 | else if (!prev) | |
883 | reclaim->generation = iter->generation; | |
884 | } | |
885 | ||
886 | out_unlock: | |
887 | rcu_read_unlock(); | |
888 | out: | |
889 | if (prev && prev != root) | |
890 | css_put(&prev->css); | |
891 | ||
892 | return memcg; | |
893 | } | |
894 | ||
895 | /** | |
896 | * mem_cgroup_iter_break - abort a hierarchy walk prematurely | |
897 | * @root: hierarchy root | |
898 | * @prev: last visited hierarchy member as returned by mem_cgroup_iter() | |
899 | */ | |
900 | void mem_cgroup_iter_break(struct mem_cgroup *root, | |
901 | struct mem_cgroup *prev) | |
902 | { | |
903 | if (!root) | |
904 | root = root_mem_cgroup; | |
905 | if (prev && prev != root) | |
906 | css_put(&prev->css); | |
907 | } | |
908 | ||
909 | static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) | |
910 | { | |
911 | struct mem_cgroup *memcg = dead_memcg; | |
912 | struct mem_cgroup_reclaim_iter *iter; | |
913 | struct mem_cgroup_per_zone *mz; | |
914 | int nid, zid; | |
915 | int i; | |
916 | ||
917 | while ((memcg = parent_mem_cgroup(memcg))) { | |
918 | for_each_node(nid) { | |
919 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
920 | mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; | |
921 | for (i = 0; i <= DEF_PRIORITY; i++) { | |
922 | iter = &mz->iter[i]; | |
923 | cmpxchg(&iter->position, | |
924 | dead_memcg, NULL); | |
925 | } | |
926 | } | |
927 | } | |
928 | } | |
929 | } | |
930 | ||
931 | /* | |
932 | * Iteration constructs for visiting all cgroups (under a tree). If | |
933 | * loops are exited prematurely (break), mem_cgroup_iter_break() must | |
934 | * be used for reference counting. | |
935 | */ | |
936 | #define for_each_mem_cgroup_tree(iter, root) \ | |
937 | for (iter = mem_cgroup_iter(root, NULL, NULL); \ | |
938 | iter != NULL; \ | |
939 | iter = mem_cgroup_iter(root, iter, NULL)) | |
940 | ||
941 | #define for_each_mem_cgroup(iter) \ | |
942 | for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ | |
943 | iter != NULL; \ | |
944 | iter = mem_cgroup_iter(NULL, iter, NULL)) | |
945 | ||
946 | /** | |
947 | * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg | |
948 | * @zone: zone of the wanted lruvec | |
949 | * @memcg: memcg of the wanted lruvec | |
950 | * | |
951 | * Returns the lru list vector holding pages for the given @zone and | |
952 | * @mem. This can be the global zone lruvec, if the memory controller | |
953 | * is disabled. | |
954 | */ | |
955 | struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, | |
956 | struct mem_cgroup *memcg) | |
957 | { | |
958 | struct mem_cgroup_per_zone *mz; | |
959 | struct lruvec *lruvec; | |
960 | ||
961 | if (mem_cgroup_disabled()) { | |
962 | lruvec = &zone->lruvec; | |
963 | goto out; | |
964 | } | |
965 | ||
966 | mz = mem_cgroup_zone_zoneinfo(memcg, zone); | |
967 | lruvec = &mz->lruvec; | |
968 | out: | |
969 | /* | |
970 | * Since a node can be onlined after the mem_cgroup was created, | |
971 | * we have to be prepared to initialize lruvec->zone here; | |
972 | * and if offlined then reonlined, we need to reinitialize it. | |
973 | */ | |
974 | if (unlikely(lruvec->zone != zone)) | |
975 | lruvec->zone = zone; | |
976 | return lruvec; | |
977 | } | |
978 | ||
979 | /** | |
980 | * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page | |
981 | * @page: the page | |
982 | * @zone: zone of the page | |
983 | * | |
984 | * This function is only safe when following the LRU page isolation | |
985 | * and putback protocol: the LRU lock must be held, and the page must | |
986 | * either be PageLRU() or the caller must have isolated/allocated it. | |
987 | */ | |
988 | struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) | |
989 | { | |
990 | struct mem_cgroup_per_zone *mz; | |
991 | struct mem_cgroup *memcg; | |
992 | struct lruvec *lruvec; | |
993 | ||
994 | if (mem_cgroup_disabled()) { | |
995 | lruvec = &zone->lruvec; | |
996 | goto out; | |
997 | } | |
998 | ||
999 | memcg = page->mem_cgroup; | |
1000 | /* | |
1001 | * Swapcache readahead pages are added to the LRU - and | |
1002 | * possibly migrated - before they are charged. | |
1003 | */ | |
1004 | if (!memcg) | |
1005 | memcg = root_mem_cgroup; | |
1006 | ||
1007 | mz = mem_cgroup_page_zoneinfo(memcg, page); | |
1008 | lruvec = &mz->lruvec; | |
1009 | out: | |
1010 | /* | |
1011 | * Since a node can be onlined after the mem_cgroup was created, | |
1012 | * we have to be prepared to initialize lruvec->zone here; | |
1013 | * and if offlined then reonlined, we need to reinitialize it. | |
1014 | */ | |
1015 | if (unlikely(lruvec->zone != zone)) | |
1016 | lruvec->zone = zone; | |
1017 | return lruvec; | |
1018 | } | |
1019 | ||
1020 | /** | |
1021 | * mem_cgroup_update_lru_size - account for adding or removing an lru page | |
1022 | * @lruvec: mem_cgroup per zone lru vector | |
1023 | * @lru: index of lru list the page is sitting on | |
1024 | * @nr_pages: positive when adding or negative when removing | |
1025 | * | |
1026 | * This function must be called under lru_lock, just before a page is added | |
1027 | * to or just after a page is removed from an lru list (that ordering being | |
1028 | * so as to allow it to check that lru_size 0 is consistent with list_empty). | |
1029 | */ | |
1030 | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, | |
1031 | int nr_pages) | |
1032 | { | |
1033 | struct mem_cgroup_per_zone *mz; | |
1034 | unsigned long *lru_size; | |
1035 | long size; | |
1036 | bool empty; | |
1037 | ||
1038 | __update_lru_size(lruvec, lru, nr_pages); | |
1039 | ||
1040 | if (mem_cgroup_disabled()) | |
1041 | return; | |
1042 | ||
1043 | mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); | |
1044 | lru_size = mz->lru_size + lru; | |
1045 | empty = list_empty(lruvec->lists + lru); | |
1046 | ||
1047 | if (nr_pages < 0) | |
1048 | *lru_size += nr_pages; | |
1049 | ||
1050 | size = *lru_size; | |
1051 | if (WARN_ONCE(size < 0 || empty != !size, | |
1052 | "%s(%p, %d, %d): lru_size %ld but %sempty\n", | |
1053 | __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) { | |
1054 | VM_BUG_ON(1); | |
1055 | *lru_size = 0; | |
1056 | } | |
1057 | ||
1058 | if (nr_pages > 0) | |
1059 | *lru_size += nr_pages; | |
1060 | } | |
1061 | ||
1062 | bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) | |
1063 | { | |
1064 | struct mem_cgroup *task_memcg; | |
1065 | struct task_struct *p; | |
1066 | bool ret; | |
1067 | ||
1068 | p = find_lock_task_mm(task); | |
1069 | if (p) { | |
1070 | task_memcg = get_mem_cgroup_from_mm(p->mm); | |
1071 | task_unlock(p); | |
1072 | } else { | |
1073 | /* | |
1074 | * All threads may have already detached their mm's, but the oom | |
1075 | * killer still needs to detect if they have already been oom | |
1076 | * killed to prevent needlessly killing additional tasks. | |
1077 | */ | |
1078 | rcu_read_lock(); | |
1079 | task_memcg = mem_cgroup_from_task(task); | |
1080 | css_get(&task_memcg->css); | |
1081 | rcu_read_unlock(); | |
1082 | } | |
1083 | ret = mem_cgroup_is_descendant(task_memcg, memcg); | |
1084 | css_put(&task_memcg->css); | |
1085 | return ret; | |
1086 | } | |
1087 | ||
1088 | /** | |
1089 | * mem_cgroup_margin - calculate chargeable space of a memory cgroup | |
1090 | * @memcg: the memory cgroup | |
1091 | * | |
1092 | * Returns the maximum amount of memory @mem can be charged with, in | |
1093 | * pages. | |
1094 | */ | |
1095 | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) | |
1096 | { | |
1097 | unsigned long margin = 0; | |
1098 | unsigned long count; | |
1099 | unsigned long limit; | |
1100 | ||
1101 | count = page_counter_read(&memcg->memory); | |
1102 | limit = READ_ONCE(memcg->memory.limit); | |
1103 | if (count < limit) | |
1104 | margin = limit - count; | |
1105 | ||
1106 | if (do_memsw_account()) { | |
1107 | count = page_counter_read(&memcg->memsw); | |
1108 | limit = READ_ONCE(memcg->memsw.limit); | |
1109 | if (count <= limit) | |
1110 | margin = min(margin, limit - count); | |
1111 | else | |
1112 | margin = 0; | |
1113 | } | |
1114 | ||
1115 | return margin; | |
1116 | } | |
1117 | ||
1118 | /* | |
1119 | * A routine for checking "mem" is under move_account() or not. | |
1120 | * | |
1121 | * Checking a cgroup is mc.from or mc.to or under hierarchy of | |
1122 | * moving cgroups. This is for waiting at high-memory pressure | |
1123 | * caused by "move". | |
1124 | */ | |
1125 | static bool mem_cgroup_under_move(struct mem_cgroup *memcg) | |
1126 | { | |
1127 | struct mem_cgroup *from; | |
1128 | struct mem_cgroup *to; | |
1129 | bool ret = false; | |
1130 | /* | |
1131 | * Unlike task_move routines, we access mc.to, mc.from not under | |
1132 | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. | |
1133 | */ | |
1134 | spin_lock(&mc.lock); | |
1135 | from = mc.from; | |
1136 | to = mc.to; | |
1137 | if (!from) | |
1138 | goto unlock; | |
1139 | ||
1140 | ret = mem_cgroup_is_descendant(from, memcg) || | |
1141 | mem_cgroup_is_descendant(to, memcg); | |
1142 | unlock: | |
1143 | spin_unlock(&mc.lock); | |
1144 | return ret; | |
1145 | } | |
1146 | ||
1147 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) | |
1148 | { | |
1149 | if (mc.moving_task && current != mc.moving_task) { | |
1150 | if (mem_cgroup_under_move(memcg)) { | |
1151 | DEFINE_WAIT(wait); | |
1152 | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); | |
1153 | /* moving charge context might have finished. */ | |
1154 | if (mc.moving_task) | |
1155 | schedule(); | |
1156 | finish_wait(&mc.waitq, &wait); | |
1157 | return true; | |
1158 | } | |
1159 | } | |
1160 | return false; | |
1161 | } | |
1162 | ||
1163 | #define K(x) ((x) << (PAGE_SHIFT-10)) | |
1164 | /** | |
1165 | * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. | |
1166 | * @memcg: The memory cgroup that went over limit | |
1167 | * @p: Task that is going to be killed | |
1168 | * | |
1169 | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | |
1170 | * enabled | |
1171 | */ | |
1172 | void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) | |
1173 | { | |
1174 | struct mem_cgroup *iter; | |
1175 | unsigned int i; | |
1176 | ||
1177 | rcu_read_lock(); | |
1178 | ||
1179 | if (p) { | |
1180 | pr_info("Task in "); | |
1181 | pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); | |
1182 | pr_cont(" killed as a result of limit of "); | |
1183 | } else { | |
1184 | pr_info("Memory limit reached of cgroup "); | |
1185 | } | |
1186 | ||
1187 | pr_cont_cgroup_path(memcg->css.cgroup); | |
1188 | pr_cont("\n"); | |
1189 | ||
1190 | rcu_read_unlock(); | |
1191 | ||
1192 | pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", | |
1193 | K((u64)page_counter_read(&memcg->memory)), | |
1194 | K((u64)memcg->memory.limit), memcg->memory.failcnt); | |
1195 | pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", | |
1196 | K((u64)page_counter_read(&memcg->memsw)), | |
1197 | K((u64)memcg->memsw.limit), memcg->memsw.failcnt); | |
1198 | pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", | |
1199 | K((u64)page_counter_read(&memcg->kmem)), | |
1200 | K((u64)memcg->kmem.limit), memcg->kmem.failcnt); | |
1201 | ||
1202 | for_each_mem_cgroup_tree(iter, memcg) { | |
1203 | pr_info("Memory cgroup stats for "); | |
1204 | pr_cont_cgroup_path(iter->css.cgroup); | |
1205 | pr_cont(":"); | |
1206 | ||
1207 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | |
1208 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) | |
1209 | continue; | |
1210 | pr_cont(" %s:%luKB", mem_cgroup_stat_names[i], | |
1211 | K(mem_cgroup_read_stat(iter, i))); | |
1212 | } | |
1213 | ||
1214 | for (i = 0; i < NR_LRU_LISTS; i++) | |
1215 | pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], | |
1216 | K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); | |
1217 | ||
1218 | pr_cont("\n"); | |
1219 | } | |
1220 | } | |
1221 | ||
1222 | /* | |
1223 | * This function returns the number of memcg under hierarchy tree. Returns | |
1224 | * 1(self count) if no children. | |
1225 | */ | |
1226 | static int mem_cgroup_count_children(struct mem_cgroup *memcg) | |
1227 | { | |
1228 | int num = 0; | |
1229 | struct mem_cgroup *iter; | |
1230 | ||
1231 | for_each_mem_cgroup_tree(iter, memcg) | |
1232 | num++; | |
1233 | return num; | |
1234 | } | |
1235 | ||
1236 | /* | |
1237 | * Return the memory (and swap, if configured) limit for a memcg. | |
1238 | */ | |
1239 | static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) | |
1240 | { | |
1241 | unsigned long limit; | |
1242 | ||
1243 | limit = memcg->memory.limit; | |
1244 | if (mem_cgroup_swappiness(memcg)) { | |
1245 | unsigned long memsw_limit; | |
1246 | unsigned long swap_limit; | |
1247 | ||
1248 | memsw_limit = memcg->memsw.limit; | |
1249 | swap_limit = memcg->swap.limit; | |
1250 | swap_limit = min(swap_limit, (unsigned long)total_swap_pages); | |
1251 | limit = min(limit + swap_limit, memsw_limit); | |
1252 | } | |
1253 | return limit; | |
1254 | } | |
1255 | ||
1256 | static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, | |
1257 | int order) | |
1258 | { | |
1259 | struct oom_control oc = { | |
1260 | .zonelist = NULL, | |
1261 | .nodemask = NULL, | |
1262 | .gfp_mask = gfp_mask, | |
1263 | .order = order, | |
1264 | }; | |
1265 | struct mem_cgroup *iter; | |
1266 | unsigned long chosen_points = 0; | |
1267 | unsigned long totalpages; | |
1268 | unsigned int points = 0; | |
1269 | struct task_struct *chosen = NULL; | |
1270 | ||
1271 | mutex_lock(&oom_lock); | |
1272 | ||
1273 | /* | |
1274 | * If current has a pending SIGKILL or is exiting, then automatically | |
1275 | * select it. The goal is to allow it to allocate so that it may | |
1276 | * quickly exit and free its memory. | |
1277 | */ | |
1278 | if (fatal_signal_pending(current) || task_will_free_mem(current)) { | |
1279 | mark_oom_victim(current); | |
1280 | try_oom_reaper(current); | |
1281 | goto unlock; | |
1282 | } | |
1283 | ||
1284 | check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg); | |
1285 | totalpages = mem_cgroup_get_limit(memcg) ? : 1; | |
1286 | for_each_mem_cgroup_tree(iter, memcg) { | |
1287 | struct css_task_iter it; | |
1288 | struct task_struct *task; | |
1289 | ||
1290 | css_task_iter_start(&iter->css, &it); | |
1291 | while ((task = css_task_iter_next(&it))) { | |
1292 | switch (oom_scan_process_thread(&oc, task, totalpages)) { | |
1293 | case OOM_SCAN_SELECT: | |
1294 | if (chosen) | |
1295 | put_task_struct(chosen); | |
1296 | chosen = task; | |
1297 | chosen_points = ULONG_MAX; | |
1298 | get_task_struct(chosen); | |
1299 | /* fall through */ | |
1300 | case OOM_SCAN_CONTINUE: | |
1301 | continue; | |
1302 | case OOM_SCAN_ABORT: | |
1303 | css_task_iter_end(&it); | |
1304 | mem_cgroup_iter_break(memcg, iter); | |
1305 | if (chosen) | |
1306 | put_task_struct(chosen); | |
1307 | /* Set a dummy value to return "true". */ | |
1308 | chosen = (void *) 1; | |
1309 | goto unlock; | |
1310 | case OOM_SCAN_OK: | |
1311 | break; | |
1312 | }; | |
1313 | points = oom_badness(task, memcg, NULL, totalpages); | |
1314 | if (!points || points < chosen_points) | |
1315 | continue; | |
1316 | /* Prefer thread group leaders for display purposes */ | |
1317 | if (points == chosen_points && | |
1318 | thread_group_leader(chosen)) | |
1319 | continue; | |
1320 | ||
1321 | if (chosen) | |
1322 | put_task_struct(chosen); | |
1323 | chosen = task; | |
1324 | chosen_points = points; | |
1325 | get_task_struct(chosen); | |
1326 | } | |
1327 | css_task_iter_end(&it); | |
1328 | } | |
1329 | ||
1330 | if (chosen) { | |
1331 | points = chosen_points * 1000 / totalpages; | |
1332 | oom_kill_process(&oc, chosen, points, totalpages, memcg, | |
1333 | "Memory cgroup out of memory"); | |
1334 | } | |
1335 | unlock: | |
1336 | mutex_unlock(&oom_lock); | |
1337 | return chosen; | |
1338 | } | |
1339 | ||
1340 | #if MAX_NUMNODES > 1 | |
1341 | ||
1342 | /** | |
1343 | * test_mem_cgroup_node_reclaimable | |
1344 | * @memcg: the target memcg | |
1345 | * @nid: the node ID to be checked. | |
1346 | * @noswap : specify true here if the user wants flle only information. | |
1347 | * | |
1348 | * This function returns whether the specified memcg contains any | |
1349 | * reclaimable pages on a node. Returns true if there are any reclaimable | |
1350 | * pages in the node. | |
1351 | */ | |
1352 | static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, | |
1353 | int nid, bool noswap) | |
1354 | { | |
1355 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) | |
1356 | return true; | |
1357 | if (noswap || !total_swap_pages) | |
1358 | return false; | |
1359 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) | |
1360 | return true; | |
1361 | return false; | |
1362 | ||
1363 | } | |
1364 | ||
1365 | /* | |
1366 | * Always updating the nodemask is not very good - even if we have an empty | |
1367 | * list or the wrong list here, we can start from some node and traverse all | |
1368 | * nodes based on the zonelist. So update the list loosely once per 10 secs. | |
1369 | * | |
1370 | */ | |
1371 | static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) | |
1372 | { | |
1373 | int nid; | |
1374 | /* | |
1375 | * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET | |
1376 | * pagein/pageout changes since the last update. | |
1377 | */ | |
1378 | if (!atomic_read(&memcg->numainfo_events)) | |
1379 | return; | |
1380 | if (atomic_inc_return(&memcg->numainfo_updating) > 1) | |
1381 | return; | |
1382 | ||
1383 | /* make a nodemask where this memcg uses memory from */ | |
1384 | memcg->scan_nodes = node_states[N_MEMORY]; | |
1385 | ||
1386 | for_each_node_mask(nid, node_states[N_MEMORY]) { | |
1387 | ||
1388 | if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) | |
1389 | node_clear(nid, memcg->scan_nodes); | |
1390 | } | |
1391 | ||
1392 | atomic_set(&memcg->numainfo_events, 0); | |
1393 | atomic_set(&memcg->numainfo_updating, 0); | |
1394 | } | |
1395 | ||
1396 | /* | |
1397 | * Selecting a node where we start reclaim from. Because what we need is just | |
1398 | * reducing usage counter, start from anywhere is O,K. Considering | |
1399 | * memory reclaim from current node, there are pros. and cons. | |
1400 | * | |
1401 | * Freeing memory from current node means freeing memory from a node which | |
1402 | * we'll use or we've used. So, it may make LRU bad. And if several threads | |
1403 | * hit limits, it will see a contention on a node. But freeing from remote | |
1404 | * node means more costs for memory reclaim because of memory latency. | |
1405 | * | |
1406 | * Now, we use round-robin. Better algorithm is welcomed. | |
1407 | */ | |
1408 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) | |
1409 | { | |
1410 | int node; | |
1411 | ||
1412 | mem_cgroup_may_update_nodemask(memcg); | |
1413 | node = memcg->last_scanned_node; | |
1414 | ||
1415 | node = next_node_in(node, memcg->scan_nodes); | |
1416 | /* | |
1417 | * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages | |
1418 | * last time it really checked all the LRUs due to rate limiting. | |
1419 | * Fallback to the current node in that case for simplicity. | |
1420 | */ | |
1421 | if (unlikely(node == MAX_NUMNODES)) | |
1422 | node = numa_node_id(); | |
1423 | ||
1424 | memcg->last_scanned_node = node; | |
1425 | return node; | |
1426 | } | |
1427 | #else | |
1428 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) | |
1429 | { | |
1430 | return 0; | |
1431 | } | |
1432 | #endif | |
1433 | ||
1434 | static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, | |
1435 | struct zone *zone, | |
1436 | gfp_t gfp_mask, | |
1437 | unsigned long *total_scanned) | |
1438 | { | |
1439 | struct mem_cgroup *victim = NULL; | |
1440 | int total = 0; | |
1441 | int loop = 0; | |
1442 | unsigned long excess; | |
1443 | unsigned long nr_scanned; | |
1444 | struct mem_cgroup_reclaim_cookie reclaim = { | |
1445 | .zone = zone, | |
1446 | .priority = 0, | |
1447 | }; | |
1448 | ||
1449 | excess = soft_limit_excess(root_memcg); | |
1450 | ||
1451 | while (1) { | |
1452 | victim = mem_cgroup_iter(root_memcg, victim, &reclaim); | |
1453 | if (!victim) { | |
1454 | loop++; | |
1455 | if (loop >= 2) { | |
1456 | /* | |
1457 | * If we have not been able to reclaim | |
1458 | * anything, it might because there are | |
1459 | * no reclaimable pages under this hierarchy | |
1460 | */ | |
1461 | if (!total) | |
1462 | break; | |
1463 | /* | |
1464 | * We want to do more targeted reclaim. | |
1465 | * excess >> 2 is not to excessive so as to | |
1466 | * reclaim too much, nor too less that we keep | |
1467 | * coming back to reclaim from this cgroup | |
1468 | */ | |
1469 | if (total >= (excess >> 2) || | |
1470 | (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) | |
1471 | break; | |
1472 | } | |
1473 | continue; | |
1474 | } | |
1475 | total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, | |
1476 | zone, &nr_scanned); | |
1477 | *total_scanned += nr_scanned; | |
1478 | if (!soft_limit_excess(root_memcg)) | |
1479 | break; | |
1480 | } | |
1481 | mem_cgroup_iter_break(root_memcg, victim); | |
1482 | return total; | |
1483 | } | |
1484 | ||
1485 | #ifdef CONFIG_LOCKDEP | |
1486 | static struct lockdep_map memcg_oom_lock_dep_map = { | |
1487 | .name = "memcg_oom_lock", | |
1488 | }; | |
1489 | #endif | |
1490 | ||
1491 | static DEFINE_SPINLOCK(memcg_oom_lock); | |
1492 | ||
1493 | /* | |
1494 | * Check OOM-Killer is already running under our hierarchy. | |
1495 | * If someone is running, return false. | |
1496 | */ | |
1497 | static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) | |
1498 | { | |
1499 | struct mem_cgroup *iter, *failed = NULL; | |
1500 | ||
1501 | spin_lock(&memcg_oom_lock); | |
1502 | ||
1503 | for_each_mem_cgroup_tree(iter, memcg) { | |
1504 | if (iter->oom_lock) { | |
1505 | /* | |
1506 | * this subtree of our hierarchy is already locked | |
1507 | * so we cannot give a lock. | |
1508 | */ | |
1509 | failed = iter; | |
1510 | mem_cgroup_iter_break(memcg, iter); | |
1511 | break; | |
1512 | } else | |
1513 | iter->oom_lock = true; | |
1514 | } | |
1515 | ||
1516 | if (failed) { | |
1517 | /* | |
1518 | * OK, we failed to lock the whole subtree so we have | |
1519 | * to clean up what we set up to the failing subtree | |
1520 | */ | |
1521 | for_each_mem_cgroup_tree(iter, memcg) { | |
1522 | if (iter == failed) { | |
1523 | mem_cgroup_iter_break(memcg, iter); | |
1524 | break; | |
1525 | } | |
1526 | iter->oom_lock = false; | |
1527 | } | |
1528 | } else | |
1529 | mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); | |
1530 | ||
1531 | spin_unlock(&memcg_oom_lock); | |
1532 | ||
1533 | return !failed; | |
1534 | } | |
1535 | ||
1536 | static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) | |
1537 | { | |
1538 | struct mem_cgroup *iter; | |
1539 | ||
1540 | spin_lock(&memcg_oom_lock); | |
1541 | mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); | |
1542 | for_each_mem_cgroup_tree(iter, memcg) | |
1543 | iter->oom_lock = false; | |
1544 | spin_unlock(&memcg_oom_lock); | |
1545 | } | |
1546 | ||
1547 | static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) | |
1548 | { | |
1549 | struct mem_cgroup *iter; | |
1550 | ||
1551 | spin_lock(&memcg_oom_lock); | |
1552 | for_each_mem_cgroup_tree(iter, memcg) | |
1553 | iter->under_oom++; | |
1554 | spin_unlock(&memcg_oom_lock); | |
1555 | } | |
1556 | ||
1557 | static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) | |
1558 | { | |
1559 | struct mem_cgroup *iter; | |
1560 | ||
1561 | /* | |
1562 | * When a new child is created while the hierarchy is under oom, | |
1563 | * mem_cgroup_oom_lock() may not be called. Watch for underflow. | |
1564 | */ | |
1565 | spin_lock(&memcg_oom_lock); | |
1566 | for_each_mem_cgroup_tree(iter, memcg) | |
1567 | if (iter->under_oom > 0) | |
1568 | iter->under_oom--; | |
1569 | spin_unlock(&memcg_oom_lock); | |
1570 | } | |
1571 | ||
1572 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); | |
1573 | ||
1574 | struct oom_wait_info { | |
1575 | struct mem_cgroup *memcg; | |
1576 | wait_queue_t wait; | |
1577 | }; | |
1578 | ||
1579 | static int memcg_oom_wake_function(wait_queue_t *wait, | |
1580 | unsigned mode, int sync, void *arg) | |
1581 | { | |
1582 | struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; | |
1583 | struct mem_cgroup *oom_wait_memcg; | |
1584 | struct oom_wait_info *oom_wait_info; | |
1585 | ||
1586 | oom_wait_info = container_of(wait, struct oom_wait_info, wait); | |
1587 | oom_wait_memcg = oom_wait_info->memcg; | |
1588 | ||
1589 | if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && | |
1590 | !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) | |
1591 | return 0; | |
1592 | return autoremove_wake_function(wait, mode, sync, arg); | |
1593 | } | |
1594 | ||
1595 | static void memcg_oom_recover(struct mem_cgroup *memcg) | |
1596 | { | |
1597 | /* | |
1598 | * For the following lockless ->under_oom test, the only required | |
1599 | * guarantee is that it must see the state asserted by an OOM when | |
1600 | * this function is called as a result of userland actions | |
1601 | * triggered by the notification of the OOM. This is trivially | |
1602 | * achieved by invoking mem_cgroup_mark_under_oom() before | |
1603 | * triggering notification. | |
1604 | */ | |
1605 | if (memcg && memcg->under_oom) | |
1606 | __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); | |
1607 | } | |
1608 | ||
1609 | static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) | |
1610 | { | |
1611 | if (!current->memcg_may_oom || current->memcg_in_oom) | |
1612 | return; | |
1613 | /* | |
1614 | * We are in the middle of the charge context here, so we | |
1615 | * don't want to block when potentially sitting on a callstack | |
1616 | * that holds all kinds of filesystem and mm locks. | |
1617 | * | |
1618 | * Also, the caller may handle a failed allocation gracefully | |
1619 | * (like optional page cache readahead) and so an OOM killer | |
1620 | * invocation might not even be necessary. | |
1621 | * | |
1622 | * That's why we don't do anything here except remember the | |
1623 | * OOM context and then deal with it at the end of the page | |
1624 | * fault when the stack is unwound, the locks are released, | |
1625 | * and when we know whether the fault was overall successful. | |
1626 | */ | |
1627 | css_get(&memcg->css); | |
1628 | current->memcg_in_oom = memcg; | |
1629 | current->memcg_oom_gfp_mask = mask; | |
1630 | current->memcg_oom_order = order; | |
1631 | } | |
1632 | ||
1633 | /** | |
1634 | * mem_cgroup_oom_synchronize - complete memcg OOM handling | |
1635 | * @handle: actually kill/wait or just clean up the OOM state | |
1636 | * | |
1637 | * This has to be called at the end of a page fault if the memcg OOM | |
1638 | * handler was enabled. | |
1639 | * | |
1640 | * Memcg supports userspace OOM handling where failed allocations must | |
1641 | * sleep on a waitqueue until the userspace task resolves the | |
1642 | * situation. Sleeping directly in the charge context with all kinds | |
1643 | * of locks held is not a good idea, instead we remember an OOM state | |
1644 | * in the task and mem_cgroup_oom_synchronize() has to be called at | |
1645 | * the end of the page fault to complete the OOM handling. | |
1646 | * | |
1647 | * Returns %true if an ongoing memcg OOM situation was detected and | |
1648 | * completed, %false otherwise. | |
1649 | */ | |
1650 | bool mem_cgroup_oom_synchronize(bool handle) | |
1651 | { | |
1652 | struct mem_cgroup *memcg = current->memcg_in_oom; | |
1653 | struct oom_wait_info owait; | |
1654 | bool locked; | |
1655 | ||
1656 | /* OOM is global, do not handle */ | |
1657 | if (!memcg) | |
1658 | return false; | |
1659 | ||
1660 | if (!handle || oom_killer_disabled) | |
1661 | goto cleanup; | |
1662 | ||
1663 | owait.memcg = memcg; | |
1664 | owait.wait.flags = 0; | |
1665 | owait.wait.func = memcg_oom_wake_function; | |
1666 | owait.wait.private = current; | |
1667 | INIT_LIST_HEAD(&owait.wait.task_list); | |
1668 | ||
1669 | prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); | |
1670 | mem_cgroup_mark_under_oom(memcg); | |
1671 | ||
1672 | locked = mem_cgroup_oom_trylock(memcg); | |
1673 | ||
1674 | if (locked) | |
1675 | mem_cgroup_oom_notify(memcg); | |
1676 | ||
1677 | if (locked && !memcg->oom_kill_disable) { | |
1678 | mem_cgroup_unmark_under_oom(memcg); | |
1679 | finish_wait(&memcg_oom_waitq, &owait.wait); | |
1680 | mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, | |
1681 | current->memcg_oom_order); | |
1682 | } else { | |
1683 | schedule(); | |
1684 | mem_cgroup_unmark_under_oom(memcg); | |
1685 | finish_wait(&memcg_oom_waitq, &owait.wait); | |
1686 | } | |
1687 | ||
1688 | if (locked) { | |
1689 | mem_cgroup_oom_unlock(memcg); | |
1690 | /* | |
1691 | * There is no guarantee that an OOM-lock contender | |
1692 | * sees the wakeups triggered by the OOM kill | |
1693 | * uncharges. Wake any sleepers explicitely. | |
1694 | */ | |
1695 | memcg_oom_recover(memcg); | |
1696 | } | |
1697 | cleanup: | |
1698 | current->memcg_in_oom = NULL; | |
1699 | css_put(&memcg->css); | |
1700 | return true; | |
1701 | } | |
1702 | ||
1703 | /** | |
1704 | * lock_page_memcg - lock a page->mem_cgroup binding | |
1705 | * @page: the page | |
1706 | * | |
1707 | * This function protects unlocked LRU pages from being moved to | |
1708 | * another cgroup and stabilizes their page->mem_cgroup binding. | |
1709 | */ | |
1710 | void lock_page_memcg(struct page *page) | |
1711 | { | |
1712 | struct mem_cgroup *memcg; | |
1713 | unsigned long flags; | |
1714 | ||
1715 | /* | |
1716 | * The RCU lock is held throughout the transaction. The fast | |
1717 | * path can get away without acquiring the memcg->move_lock | |
1718 | * because page moving starts with an RCU grace period. | |
1719 | */ | |
1720 | rcu_read_lock(); | |
1721 | ||
1722 | if (mem_cgroup_disabled()) | |
1723 | return; | |
1724 | again: | |
1725 | memcg = page->mem_cgroup; | |
1726 | if (unlikely(!memcg)) | |
1727 | return; | |
1728 | ||
1729 | if (atomic_read(&memcg->moving_account) <= 0) | |
1730 | return; | |
1731 | ||
1732 | spin_lock_irqsave(&memcg->move_lock, flags); | |
1733 | if (memcg != page->mem_cgroup) { | |
1734 | spin_unlock_irqrestore(&memcg->move_lock, flags); | |
1735 | goto again; | |
1736 | } | |
1737 | ||
1738 | /* | |
1739 | * When charge migration first begins, we can have locked and | |
1740 | * unlocked page stat updates happening concurrently. Track | |
1741 | * the task who has the lock for unlock_page_memcg(). | |
1742 | */ | |
1743 | memcg->move_lock_task = current; | |
1744 | memcg->move_lock_flags = flags; | |
1745 | ||
1746 | return; | |
1747 | } | |
1748 | EXPORT_SYMBOL(lock_page_memcg); | |
1749 | ||
1750 | /** | |
1751 | * unlock_page_memcg - unlock a page->mem_cgroup binding | |
1752 | * @page: the page | |
1753 | */ | |
1754 | void unlock_page_memcg(struct page *page) | |
1755 | { | |
1756 | struct mem_cgroup *memcg = page->mem_cgroup; | |
1757 | ||
1758 | if (memcg && memcg->move_lock_task == current) { | |
1759 | unsigned long flags = memcg->move_lock_flags; | |
1760 | ||
1761 | memcg->move_lock_task = NULL; | |
1762 | memcg->move_lock_flags = 0; | |
1763 | ||
1764 | spin_unlock_irqrestore(&memcg->move_lock, flags); | |
1765 | } | |
1766 | ||
1767 | rcu_read_unlock(); | |
1768 | } | |
1769 | EXPORT_SYMBOL(unlock_page_memcg); | |
1770 | ||
1771 | /* | |
1772 | * size of first charge trial. "32" comes from vmscan.c's magic value. | |
1773 | * TODO: maybe necessary to use big numbers in big irons. | |
1774 | */ | |
1775 | #define CHARGE_BATCH 32U | |
1776 | struct memcg_stock_pcp { | |
1777 | struct mem_cgroup *cached; /* this never be root cgroup */ | |
1778 | unsigned int nr_pages; | |
1779 | struct work_struct work; | |
1780 | unsigned long flags; | |
1781 | #define FLUSHING_CACHED_CHARGE 0 | |
1782 | }; | |
1783 | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); | |
1784 | static DEFINE_MUTEX(percpu_charge_mutex); | |
1785 | ||
1786 | /** | |
1787 | * consume_stock: Try to consume stocked charge on this cpu. | |
1788 | * @memcg: memcg to consume from. | |
1789 | * @nr_pages: how many pages to charge. | |
1790 | * | |
1791 | * The charges will only happen if @memcg matches the current cpu's memcg | |
1792 | * stock, and at least @nr_pages are available in that stock. Failure to | |
1793 | * service an allocation will refill the stock. | |
1794 | * | |
1795 | * returns true if successful, false otherwise. | |
1796 | */ | |
1797 | static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) | |
1798 | { | |
1799 | struct memcg_stock_pcp *stock; | |
1800 | bool ret = false; | |
1801 | ||
1802 | if (nr_pages > CHARGE_BATCH) | |
1803 | return ret; | |
1804 | ||
1805 | stock = &get_cpu_var(memcg_stock); | |
1806 | if (memcg == stock->cached && stock->nr_pages >= nr_pages) { | |
1807 | stock->nr_pages -= nr_pages; | |
1808 | ret = true; | |
1809 | } | |
1810 | put_cpu_var(memcg_stock); | |
1811 | return ret; | |
1812 | } | |
1813 | ||
1814 | /* | |
1815 | * Returns stocks cached in percpu and reset cached information. | |
1816 | */ | |
1817 | static void drain_stock(struct memcg_stock_pcp *stock) | |
1818 | { | |
1819 | struct mem_cgroup *old = stock->cached; | |
1820 | ||
1821 | if (stock->nr_pages) { | |
1822 | page_counter_uncharge(&old->memory, stock->nr_pages); | |
1823 | if (do_memsw_account()) | |
1824 | page_counter_uncharge(&old->memsw, stock->nr_pages); | |
1825 | css_put_many(&old->css, stock->nr_pages); | |
1826 | stock->nr_pages = 0; | |
1827 | } | |
1828 | stock->cached = NULL; | |
1829 | } | |
1830 | ||
1831 | /* | |
1832 | * This must be called under preempt disabled or must be called by | |
1833 | * a thread which is pinned to local cpu. | |
1834 | */ | |
1835 | static void drain_local_stock(struct work_struct *dummy) | |
1836 | { | |
1837 | struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock); | |
1838 | drain_stock(stock); | |
1839 | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); | |
1840 | } | |
1841 | ||
1842 | /* | |
1843 | * Cache charges(val) to local per_cpu area. | |
1844 | * This will be consumed by consume_stock() function, later. | |
1845 | */ | |
1846 | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) | |
1847 | { | |
1848 | struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); | |
1849 | ||
1850 | if (stock->cached != memcg) { /* reset if necessary */ | |
1851 | drain_stock(stock); | |
1852 | stock->cached = memcg; | |
1853 | } | |
1854 | stock->nr_pages += nr_pages; | |
1855 | put_cpu_var(memcg_stock); | |
1856 | } | |
1857 | ||
1858 | /* | |
1859 | * Drains all per-CPU charge caches for given root_memcg resp. subtree | |
1860 | * of the hierarchy under it. | |
1861 | */ | |
1862 | static void drain_all_stock(struct mem_cgroup *root_memcg) | |
1863 | { | |
1864 | int cpu, curcpu; | |
1865 | ||
1866 | /* If someone's already draining, avoid adding running more workers. */ | |
1867 | if (!mutex_trylock(&percpu_charge_mutex)) | |
1868 | return; | |
1869 | /* Notify other cpus that system-wide "drain" is running */ | |
1870 | get_online_cpus(); | |
1871 | curcpu = get_cpu(); | |
1872 | for_each_online_cpu(cpu) { | |
1873 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | |
1874 | struct mem_cgroup *memcg; | |
1875 | ||
1876 | memcg = stock->cached; | |
1877 | if (!memcg || !stock->nr_pages) | |
1878 | continue; | |
1879 | if (!mem_cgroup_is_descendant(memcg, root_memcg)) | |
1880 | continue; | |
1881 | if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { | |
1882 | if (cpu == curcpu) | |
1883 | drain_local_stock(&stock->work); | |
1884 | else | |
1885 | schedule_work_on(cpu, &stock->work); | |
1886 | } | |
1887 | } | |
1888 | put_cpu(); | |
1889 | put_online_cpus(); | |
1890 | mutex_unlock(&percpu_charge_mutex); | |
1891 | } | |
1892 | ||
1893 | static int memcg_cpu_hotplug_callback(struct notifier_block *nb, | |
1894 | unsigned long action, | |
1895 | void *hcpu) | |
1896 | { | |
1897 | int cpu = (unsigned long)hcpu; | |
1898 | struct memcg_stock_pcp *stock; | |
1899 | ||
1900 | if (action == CPU_ONLINE) | |
1901 | return NOTIFY_OK; | |
1902 | ||
1903 | if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) | |
1904 | return NOTIFY_OK; | |
1905 | ||
1906 | stock = &per_cpu(memcg_stock, cpu); | |
1907 | drain_stock(stock); | |
1908 | return NOTIFY_OK; | |
1909 | } | |
1910 | ||
1911 | static void reclaim_high(struct mem_cgroup *memcg, | |
1912 | unsigned int nr_pages, | |
1913 | gfp_t gfp_mask) | |
1914 | { | |
1915 | do { | |
1916 | if (page_counter_read(&memcg->memory) <= memcg->high) | |
1917 | continue; | |
1918 | mem_cgroup_events(memcg, MEMCG_HIGH, 1); | |
1919 | try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); | |
1920 | } while ((memcg = parent_mem_cgroup(memcg))); | |
1921 | } | |
1922 | ||
1923 | static void high_work_func(struct work_struct *work) | |
1924 | { | |
1925 | struct mem_cgroup *memcg; | |
1926 | ||
1927 | memcg = container_of(work, struct mem_cgroup, high_work); | |
1928 | reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL); | |
1929 | } | |
1930 | ||
1931 | /* | |
1932 | * Scheduled by try_charge() to be executed from the userland return path | |
1933 | * and reclaims memory over the high limit. | |
1934 | */ | |
1935 | void mem_cgroup_handle_over_high(void) | |
1936 | { | |
1937 | unsigned int nr_pages = current->memcg_nr_pages_over_high; | |
1938 | struct mem_cgroup *memcg; | |
1939 | ||
1940 | if (likely(!nr_pages)) | |
1941 | return; | |
1942 | ||
1943 | memcg = get_mem_cgroup_from_mm(current->mm); | |
1944 | reclaim_high(memcg, nr_pages, GFP_KERNEL); | |
1945 | css_put(&memcg->css); | |
1946 | current->memcg_nr_pages_over_high = 0; | |
1947 | } | |
1948 | ||
1949 | static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, | |
1950 | unsigned int nr_pages) | |
1951 | { | |
1952 | unsigned int batch = max(CHARGE_BATCH, nr_pages); | |
1953 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | |
1954 | struct mem_cgroup *mem_over_limit; | |
1955 | struct page_counter *counter; | |
1956 | unsigned long nr_reclaimed; | |
1957 | bool may_swap = true; | |
1958 | bool drained = false; | |
1959 | ||
1960 | if (mem_cgroup_is_root(memcg)) | |
1961 | return 0; | |
1962 | retry: | |
1963 | if (consume_stock(memcg, nr_pages)) | |
1964 | return 0; | |
1965 | ||
1966 | if (!do_memsw_account() || | |
1967 | page_counter_try_charge(&memcg->memsw, batch, &counter)) { | |
1968 | if (page_counter_try_charge(&memcg->memory, batch, &counter)) | |
1969 | goto done_restock; | |
1970 | if (do_memsw_account()) | |
1971 | page_counter_uncharge(&memcg->memsw, batch); | |
1972 | mem_over_limit = mem_cgroup_from_counter(counter, memory); | |
1973 | } else { | |
1974 | mem_over_limit = mem_cgroup_from_counter(counter, memsw); | |
1975 | may_swap = false; | |
1976 | } | |
1977 | ||
1978 | if (batch > nr_pages) { | |
1979 | batch = nr_pages; | |
1980 | goto retry; | |
1981 | } | |
1982 | ||
1983 | /* | |
1984 | * Unlike in global OOM situations, memcg is not in a physical | |
1985 | * memory shortage. Allow dying and OOM-killed tasks to | |
1986 | * bypass the last charges so that they can exit quickly and | |
1987 | * free their memory. | |
1988 | */ | |
1989 | if (unlikely(test_thread_flag(TIF_MEMDIE) || | |
1990 | fatal_signal_pending(current) || | |
1991 | current->flags & PF_EXITING)) | |
1992 | goto force; | |
1993 | ||
1994 | if (unlikely(task_in_memcg_oom(current))) | |
1995 | goto nomem; | |
1996 | ||
1997 | if (!gfpflags_allow_blocking(gfp_mask)) | |
1998 | goto nomem; | |
1999 | ||
2000 | mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1); | |
2001 | ||
2002 | nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, | |
2003 | gfp_mask, may_swap); | |
2004 | ||
2005 | if (mem_cgroup_margin(mem_over_limit) >= nr_pages) | |
2006 | goto retry; | |
2007 | ||
2008 | if (!drained) { | |
2009 | drain_all_stock(mem_over_limit); | |
2010 | drained = true; | |
2011 | goto retry; | |
2012 | } | |
2013 | ||
2014 | if (gfp_mask & __GFP_NORETRY) | |
2015 | goto nomem; | |
2016 | /* | |
2017 | * Even though the limit is exceeded at this point, reclaim | |
2018 | * may have been able to free some pages. Retry the charge | |
2019 | * before killing the task. | |
2020 | * | |
2021 | * Only for regular pages, though: huge pages are rather | |
2022 | * unlikely to succeed so close to the limit, and we fall back | |
2023 | * to regular pages anyway in case of failure. | |
2024 | */ | |
2025 | if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) | |
2026 | goto retry; | |
2027 | /* | |
2028 | * At task move, charge accounts can be doubly counted. So, it's | |
2029 | * better to wait until the end of task_move if something is going on. | |
2030 | */ | |
2031 | if (mem_cgroup_wait_acct_move(mem_over_limit)) | |
2032 | goto retry; | |
2033 | ||
2034 | if (nr_retries--) | |
2035 | goto retry; | |
2036 | ||
2037 | if (gfp_mask & __GFP_NOFAIL) | |
2038 | goto force; | |
2039 | ||
2040 | if (fatal_signal_pending(current)) | |
2041 | goto force; | |
2042 | ||
2043 | mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1); | |
2044 | ||
2045 | mem_cgroup_oom(mem_over_limit, gfp_mask, | |
2046 | get_order(nr_pages * PAGE_SIZE)); | |
2047 | nomem: | |
2048 | if (!(gfp_mask & __GFP_NOFAIL)) | |
2049 | return -ENOMEM; | |
2050 | force: | |
2051 | /* | |
2052 | * The allocation either can't fail or will lead to more memory | |
2053 | * being freed very soon. Allow memory usage go over the limit | |
2054 | * temporarily by force charging it. | |
2055 | */ | |
2056 | page_counter_charge(&memcg->memory, nr_pages); | |
2057 | if (do_memsw_account()) | |
2058 | page_counter_charge(&memcg->memsw, nr_pages); | |
2059 | css_get_many(&memcg->css, nr_pages); | |
2060 | ||
2061 | return 0; | |
2062 | ||
2063 | done_restock: | |
2064 | css_get_many(&memcg->css, batch); | |
2065 | if (batch > nr_pages) | |
2066 | refill_stock(memcg, batch - nr_pages); | |
2067 | ||
2068 | /* | |
2069 | * If the hierarchy is above the normal consumption range, schedule | |
2070 | * reclaim on returning to userland. We can perform reclaim here | |
2071 | * if __GFP_RECLAIM but let's always punt for simplicity and so that | |
2072 | * GFP_KERNEL can consistently be used during reclaim. @memcg is | |
2073 | * not recorded as it most likely matches current's and won't | |
2074 | * change in the meantime. As high limit is checked again before | |
2075 | * reclaim, the cost of mismatch is negligible. | |
2076 | */ | |
2077 | do { | |
2078 | if (page_counter_read(&memcg->memory) > memcg->high) { | |
2079 | /* Don't bother a random interrupted task */ | |
2080 | if (in_interrupt()) { | |
2081 | schedule_work(&memcg->high_work); | |
2082 | break; | |
2083 | } | |
2084 | current->memcg_nr_pages_over_high += batch; | |
2085 | set_notify_resume(current); | |
2086 | break; | |
2087 | } | |
2088 | } while ((memcg = parent_mem_cgroup(memcg))); | |
2089 | ||
2090 | return 0; | |
2091 | } | |
2092 | ||
2093 | static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) | |
2094 | { | |
2095 | if (mem_cgroup_is_root(memcg)) | |
2096 | return; | |
2097 | ||
2098 | page_counter_uncharge(&memcg->memory, nr_pages); | |
2099 | if (do_memsw_account()) | |
2100 | page_counter_uncharge(&memcg->memsw, nr_pages); | |
2101 | ||
2102 | css_put_many(&memcg->css, nr_pages); | |
2103 | } | |
2104 | ||
2105 | static void lock_page_lru(struct page *page, int *isolated) | |
2106 | { | |
2107 | struct zone *zone = page_zone(page); | |
2108 | ||
2109 | spin_lock_irq(&zone->lru_lock); | |
2110 | if (PageLRU(page)) { | |
2111 | struct lruvec *lruvec; | |
2112 | ||
2113 | lruvec = mem_cgroup_page_lruvec(page, zone); | |
2114 | ClearPageLRU(page); | |
2115 | del_page_from_lru_list(page, lruvec, page_lru(page)); | |
2116 | *isolated = 1; | |
2117 | } else | |
2118 | *isolated = 0; | |
2119 | } | |
2120 | ||
2121 | static void unlock_page_lru(struct page *page, int isolated) | |
2122 | { | |
2123 | struct zone *zone = page_zone(page); | |
2124 | ||
2125 | if (isolated) { | |
2126 | struct lruvec *lruvec; | |
2127 | ||
2128 | lruvec = mem_cgroup_page_lruvec(page, zone); | |
2129 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
2130 | SetPageLRU(page); | |
2131 | add_page_to_lru_list(page, lruvec, page_lru(page)); | |
2132 | } | |
2133 | spin_unlock_irq(&zone->lru_lock); | |
2134 | } | |
2135 | ||
2136 | static void commit_charge(struct page *page, struct mem_cgroup *memcg, | |
2137 | bool lrucare) | |
2138 | { | |
2139 | int isolated; | |
2140 | ||
2141 | VM_BUG_ON_PAGE(page->mem_cgroup, page); | |
2142 | ||
2143 | /* | |
2144 | * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page | |
2145 | * may already be on some other mem_cgroup's LRU. Take care of it. | |
2146 | */ | |
2147 | if (lrucare) | |
2148 | lock_page_lru(page, &isolated); | |
2149 | ||
2150 | /* | |
2151 | * Nobody should be changing or seriously looking at | |
2152 | * page->mem_cgroup at this point: | |
2153 | * | |
2154 | * - the page is uncharged | |
2155 | * | |
2156 | * - the page is off-LRU | |
2157 | * | |
2158 | * - an anonymous fault has exclusive page access, except for | |
2159 | * a locked page table | |
2160 | * | |
2161 | * - a page cache insertion, a swapin fault, or a migration | |
2162 | * have the page locked | |
2163 | */ | |
2164 | page->mem_cgroup = memcg; | |
2165 | ||
2166 | if (lrucare) | |
2167 | unlock_page_lru(page, isolated); | |
2168 | } | |
2169 | ||
2170 | #ifndef CONFIG_SLOB | |
2171 | static int memcg_alloc_cache_id(void) | |
2172 | { | |
2173 | int id, size; | |
2174 | int err; | |
2175 | ||
2176 | id = ida_simple_get(&memcg_cache_ida, | |
2177 | 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); | |
2178 | if (id < 0) | |
2179 | return id; | |
2180 | ||
2181 | if (id < memcg_nr_cache_ids) | |
2182 | return id; | |
2183 | ||
2184 | /* | |
2185 | * There's no space for the new id in memcg_caches arrays, | |
2186 | * so we have to grow them. | |
2187 | */ | |
2188 | down_write(&memcg_cache_ids_sem); | |
2189 | ||
2190 | size = 2 * (id + 1); | |
2191 | if (size < MEMCG_CACHES_MIN_SIZE) | |
2192 | size = MEMCG_CACHES_MIN_SIZE; | |
2193 | else if (size > MEMCG_CACHES_MAX_SIZE) | |
2194 | size = MEMCG_CACHES_MAX_SIZE; | |
2195 | ||
2196 | err = memcg_update_all_caches(size); | |
2197 | if (!err) | |
2198 | err = memcg_update_all_list_lrus(size); | |
2199 | if (!err) | |
2200 | memcg_nr_cache_ids = size; | |
2201 | ||
2202 | up_write(&memcg_cache_ids_sem); | |
2203 | ||
2204 | if (err) { | |
2205 | ida_simple_remove(&memcg_cache_ida, id); | |
2206 | return err; | |
2207 | } | |
2208 | return id; | |
2209 | } | |
2210 | ||
2211 | static void memcg_free_cache_id(int id) | |
2212 | { | |
2213 | ida_simple_remove(&memcg_cache_ida, id); | |
2214 | } | |
2215 | ||
2216 | struct memcg_kmem_cache_create_work { | |
2217 | struct mem_cgroup *memcg; | |
2218 | struct kmem_cache *cachep; | |
2219 | struct work_struct work; | |
2220 | }; | |
2221 | ||
2222 | static void memcg_kmem_cache_create_func(struct work_struct *w) | |
2223 | { | |
2224 | struct memcg_kmem_cache_create_work *cw = | |
2225 | container_of(w, struct memcg_kmem_cache_create_work, work); | |
2226 | struct mem_cgroup *memcg = cw->memcg; | |
2227 | struct kmem_cache *cachep = cw->cachep; | |
2228 | ||
2229 | memcg_create_kmem_cache(memcg, cachep); | |
2230 | ||
2231 | css_put(&memcg->css); | |
2232 | kfree(cw); | |
2233 | } | |
2234 | ||
2235 | /* | |
2236 | * Enqueue the creation of a per-memcg kmem_cache. | |
2237 | */ | |
2238 | static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, | |
2239 | struct kmem_cache *cachep) | |
2240 | { | |
2241 | struct memcg_kmem_cache_create_work *cw; | |
2242 | ||
2243 | cw = kmalloc(sizeof(*cw), GFP_NOWAIT); | |
2244 | if (!cw) | |
2245 | return; | |
2246 | ||
2247 | css_get(&memcg->css); | |
2248 | ||
2249 | cw->memcg = memcg; | |
2250 | cw->cachep = cachep; | |
2251 | INIT_WORK(&cw->work, memcg_kmem_cache_create_func); | |
2252 | ||
2253 | schedule_work(&cw->work); | |
2254 | } | |
2255 | ||
2256 | static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, | |
2257 | struct kmem_cache *cachep) | |
2258 | { | |
2259 | /* | |
2260 | * We need to stop accounting when we kmalloc, because if the | |
2261 | * corresponding kmalloc cache is not yet created, the first allocation | |
2262 | * in __memcg_schedule_kmem_cache_create will recurse. | |
2263 | * | |
2264 | * However, it is better to enclose the whole function. Depending on | |
2265 | * the debugging options enabled, INIT_WORK(), for instance, can | |
2266 | * trigger an allocation. This too, will make us recurse. Because at | |
2267 | * this point we can't allow ourselves back into memcg_kmem_get_cache, | |
2268 | * the safest choice is to do it like this, wrapping the whole function. | |
2269 | */ | |
2270 | current->memcg_kmem_skip_account = 1; | |
2271 | __memcg_schedule_kmem_cache_create(memcg, cachep); | |
2272 | current->memcg_kmem_skip_account = 0; | |
2273 | } | |
2274 | ||
2275 | /* | |
2276 | * Return the kmem_cache we're supposed to use for a slab allocation. | |
2277 | * We try to use the current memcg's version of the cache. | |
2278 | * | |
2279 | * If the cache does not exist yet, if we are the first user of it, | |
2280 | * we either create it immediately, if possible, or create it asynchronously | |
2281 | * in a workqueue. | |
2282 | * In the latter case, we will let the current allocation go through with | |
2283 | * the original cache. | |
2284 | * | |
2285 | * Can't be called in interrupt context or from kernel threads. | |
2286 | * This function needs to be called with rcu_read_lock() held. | |
2287 | */ | |
2288 | struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) | |
2289 | { | |
2290 | struct mem_cgroup *memcg; | |
2291 | struct kmem_cache *memcg_cachep; | |
2292 | int kmemcg_id; | |
2293 | ||
2294 | VM_BUG_ON(!is_root_cache(cachep)); | |
2295 | ||
2296 | if (cachep->flags & SLAB_ACCOUNT) | |
2297 | gfp |= __GFP_ACCOUNT; | |
2298 | ||
2299 | if (!(gfp & __GFP_ACCOUNT)) | |
2300 | return cachep; | |
2301 | ||
2302 | if (current->memcg_kmem_skip_account) | |
2303 | return cachep; | |
2304 | ||
2305 | memcg = get_mem_cgroup_from_mm(current->mm); | |
2306 | kmemcg_id = READ_ONCE(memcg->kmemcg_id); | |
2307 | if (kmemcg_id < 0) | |
2308 | goto out; | |
2309 | ||
2310 | memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); | |
2311 | if (likely(memcg_cachep)) | |
2312 | return memcg_cachep; | |
2313 | ||
2314 | /* | |
2315 | * If we are in a safe context (can wait, and not in interrupt | |
2316 | * context), we could be be predictable and return right away. | |
2317 | * This would guarantee that the allocation being performed | |
2318 | * already belongs in the new cache. | |
2319 | * | |
2320 | * However, there are some clashes that can arrive from locking. | |
2321 | * For instance, because we acquire the slab_mutex while doing | |
2322 | * memcg_create_kmem_cache, this means no further allocation | |
2323 | * could happen with the slab_mutex held. So it's better to | |
2324 | * defer everything. | |
2325 | */ | |
2326 | memcg_schedule_kmem_cache_create(memcg, cachep); | |
2327 | out: | |
2328 | css_put(&memcg->css); | |
2329 | return cachep; | |
2330 | } | |
2331 | ||
2332 | void __memcg_kmem_put_cache(struct kmem_cache *cachep) | |
2333 | { | |
2334 | if (!is_root_cache(cachep)) | |
2335 | css_put(&cachep->memcg_params.memcg->css); | |
2336 | } | |
2337 | ||
2338 | int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, | |
2339 | struct mem_cgroup *memcg) | |
2340 | { | |
2341 | unsigned int nr_pages = 1 << order; | |
2342 | struct page_counter *counter; | |
2343 | int ret; | |
2344 | ||
2345 | ret = try_charge(memcg, gfp, nr_pages); | |
2346 | if (ret) | |
2347 | return ret; | |
2348 | ||
2349 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && | |
2350 | !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { | |
2351 | cancel_charge(memcg, nr_pages); | |
2352 | return -ENOMEM; | |
2353 | } | |
2354 | ||
2355 | page->mem_cgroup = memcg; | |
2356 | ||
2357 | return 0; | |
2358 | } | |
2359 | ||
2360 | int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) | |
2361 | { | |
2362 | struct mem_cgroup *memcg; | |
2363 | int ret = 0; | |
2364 | ||
2365 | memcg = get_mem_cgroup_from_mm(current->mm); | |
2366 | if (!mem_cgroup_is_root(memcg)) | |
2367 | ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); | |
2368 | css_put(&memcg->css); | |
2369 | return ret; | |
2370 | } | |
2371 | ||
2372 | void __memcg_kmem_uncharge(struct page *page, int order) | |
2373 | { | |
2374 | struct mem_cgroup *memcg = page->mem_cgroup; | |
2375 | unsigned int nr_pages = 1 << order; | |
2376 | ||
2377 | if (!memcg) | |
2378 | return; | |
2379 | ||
2380 | VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); | |
2381 | ||
2382 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
2383 | page_counter_uncharge(&memcg->kmem, nr_pages); | |
2384 | ||
2385 | page_counter_uncharge(&memcg->memory, nr_pages); | |
2386 | if (do_memsw_account()) | |
2387 | page_counter_uncharge(&memcg->memsw, nr_pages); | |
2388 | ||
2389 | page->mem_cgroup = NULL; | |
2390 | css_put_many(&memcg->css, nr_pages); | |
2391 | } | |
2392 | #endif /* !CONFIG_SLOB */ | |
2393 | ||
2394 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
2395 | ||
2396 | /* | |
2397 | * Because tail pages are not marked as "used", set it. We're under | |
2398 | * zone->lru_lock and migration entries setup in all page mappings. | |
2399 | */ | |
2400 | void mem_cgroup_split_huge_fixup(struct page *head) | |
2401 | { | |
2402 | int i; | |
2403 | ||
2404 | if (mem_cgroup_disabled()) | |
2405 | return; | |
2406 | ||
2407 | for (i = 1; i < HPAGE_PMD_NR; i++) | |
2408 | head[i].mem_cgroup = head->mem_cgroup; | |
2409 | ||
2410 | __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE], | |
2411 | HPAGE_PMD_NR); | |
2412 | } | |
2413 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | |
2414 | ||
2415 | #ifdef CONFIG_MEMCG_SWAP | |
2416 | static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, | |
2417 | bool charge) | |
2418 | { | |
2419 | int val = (charge) ? 1 : -1; | |
2420 | this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); | |
2421 | } | |
2422 | ||
2423 | /** | |
2424 | * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. | |
2425 | * @entry: swap entry to be moved | |
2426 | * @from: mem_cgroup which the entry is moved from | |
2427 | * @to: mem_cgroup which the entry is moved to | |
2428 | * | |
2429 | * It succeeds only when the swap_cgroup's record for this entry is the same | |
2430 | * as the mem_cgroup's id of @from. | |
2431 | * | |
2432 | * Returns 0 on success, -EINVAL on failure. | |
2433 | * | |
2434 | * The caller must have charged to @to, IOW, called page_counter_charge() about | |
2435 | * both res and memsw, and called css_get(). | |
2436 | */ | |
2437 | static int mem_cgroup_move_swap_account(swp_entry_t entry, | |
2438 | struct mem_cgroup *from, struct mem_cgroup *to) | |
2439 | { | |
2440 | unsigned short old_id, new_id; | |
2441 | ||
2442 | old_id = mem_cgroup_id(from); | |
2443 | new_id = mem_cgroup_id(to); | |
2444 | ||
2445 | if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { | |
2446 | mem_cgroup_swap_statistics(from, false); | |
2447 | mem_cgroup_swap_statistics(to, true); | |
2448 | return 0; | |
2449 | } | |
2450 | return -EINVAL; | |
2451 | } | |
2452 | #else | |
2453 | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, | |
2454 | struct mem_cgroup *from, struct mem_cgroup *to) | |
2455 | { | |
2456 | return -EINVAL; | |
2457 | } | |
2458 | #endif | |
2459 | ||
2460 | static DEFINE_MUTEX(memcg_limit_mutex); | |
2461 | ||
2462 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, | |
2463 | unsigned long limit) | |
2464 | { | |
2465 | unsigned long curusage; | |
2466 | unsigned long oldusage; | |
2467 | bool enlarge = false; | |
2468 | int retry_count; | |
2469 | int ret; | |
2470 | ||
2471 | /* | |
2472 | * For keeping hierarchical_reclaim simple, how long we should retry | |
2473 | * is depends on callers. We set our retry-count to be function | |
2474 | * of # of children which we should visit in this loop. | |
2475 | */ | |
2476 | retry_count = MEM_CGROUP_RECLAIM_RETRIES * | |
2477 | mem_cgroup_count_children(memcg); | |
2478 | ||
2479 | oldusage = page_counter_read(&memcg->memory); | |
2480 | ||
2481 | do { | |
2482 | if (signal_pending(current)) { | |
2483 | ret = -EINTR; | |
2484 | break; | |
2485 | } | |
2486 | ||
2487 | mutex_lock(&memcg_limit_mutex); | |
2488 | if (limit > memcg->memsw.limit) { | |
2489 | mutex_unlock(&memcg_limit_mutex); | |
2490 | ret = -EINVAL; | |
2491 | break; | |
2492 | } | |
2493 | if (limit > memcg->memory.limit) | |
2494 | enlarge = true; | |
2495 | ret = page_counter_limit(&memcg->memory, limit); | |
2496 | mutex_unlock(&memcg_limit_mutex); | |
2497 | ||
2498 | if (!ret) | |
2499 | break; | |
2500 | ||
2501 | try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); | |
2502 | ||
2503 | curusage = page_counter_read(&memcg->memory); | |
2504 | /* Usage is reduced ? */ | |
2505 | if (curusage >= oldusage) | |
2506 | retry_count--; | |
2507 | else | |
2508 | oldusage = curusage; | |
2509 | } while (retry_count); | |
2510 | ||
2511 | if (!ret && enlarge) | |
2512 | memcg_oom_recover(memcg); | |
2513 | ||
2514 | return ret; | |
2515 | } | |
2516 | ||
2517 | static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, | |
2518 | unsigned long limit) | |
2519 | { | |
2520 | unsigned long curusage; | |
2521 | unsigned long oldusage; | |
2522 | bool enlarge = false; | |
2523 | int retry_count; | |
2524 | int ret; | |
2525 | ||
2526 | /* see mem_cgroup_resize_res_limit */ | |
2527 | retry_count = MEM_CGROUP_RECLAIM_RETRIES * | |
2528 | mem_cgroup_count_children(memcg); | |
2529 | ||
2530 | oldusage = page_counter_read(&memcg->memsw); | |
2531 | ||
2532 | do { | |
2533 | if (signal_pending(current)) { | |
2534 | ret = -EINTR; | |
2535 | break; | |
2536 | } | |
2537 | ||
2538 | mutex_lock(&memcg_limit_mutex); | |
2539 | if (limit < memcg->memory.limit) { | |
2540 | mutex_unlock(&memcg_limit_mutex); | |
2541 | ret = -EINVAL; | |
2542 | break; | |
2543 | } | |
2544 | if (limit > memcg->memsw.limit) | |
2545 | enlarge = true; | |
2546 | ret = page_counter_limit(&memcg->memsw, limit); | |
2547 | mutex_unlock(&memcg_limit_mutex); | |
2548 | ||
2549 | if (!ret) | |
2550 | break; | |
2551 | ||
2552 | try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); | |
2553 | ||
2554 | curusage = page_counter_read(&memcg->memsw); | |
2555 | /* Usage is reduced ? */ | |
2556 | if (curusage >= oldusage) | |
2557 | retry_count--; | |
2558 | else | |
2559 | oldusage = curusage; | |
2560 | } while (retry_count); | |
2561 | ||
2562 | if (!ret && enlarge) | |
2563 | memcg_oom_recover(memcg); | |
2564 | ||
2565 | return ret; | |
2566 | } | |
2567 | ||
2568 | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, | |
2569 | gfp_t gfp_mask, | |
2570 | unsigned long *total_scanned) | |
2571 | { | |
2572 | unsigned long nr_reclaimed = 0; | |
2573 | struct mem_cgroup_per_zone *mz, *next_mz = NULL; | |
2574 | unsigned long reclaimed; | |
2575 | int loop = 0; | |
2576 | struct mem_cgroup_tree_per_zone *mctz; | |
2577 | unsigned long excess; | |
2578 | unsigned long nr_scanned; | |
2579 | ||
2580 | if (order > 0) | |
2581 | return 0; | |
2582 | ||
2583 | mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); | |
2584 | /* | |
2585 | * This loop can run a while, specially if mem_cgroup's continuously | |
2586 | * keep exceeding their soft limit and putting the system under | |
2587 | * pressure | |
2588 | */ | |
2589 | do { | |
2590 | if (next_mz) | |
2591 | mz = next_mz; | |
2592 | else | |
2593 | mz = mem_cgroup_largest_soft_limit_node(mctz); | |
2594 | if (!mz) | |
2595 | break; | |
2596 | ||
2597 | nr_scanned = 0; | |
2598 | reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, | |
2599 | gfp_mask, &nr_scanned); | |
2600 | nr_reclaimed += reclaimed; | |
2601 | *total_scanned += nr_scanned; | |
2602 | spin_lock_irq(&mctz->lock); | |
2603 | __mem_cgroup_remove_exceeded(mz, mctz); | |
2604 | ||
2605 | /* | |
2606 | * If we failed to reclaim anything from this memory cgroup | |
2607 | * it is time to move on to the next cgroup | |
2608 | */ | |
2609 | next_mz = NULL; | |
2610 | if (!reclaimed) | |
2611 | next_mz = __mem_cgroup_largest_soft_limit_node(mctz); | |
2612 | ||
2613 | excess = soft_limit_excess(mz->memcg); | |
2614 | /* | |
2615 | * One school of thought says that we should not add | |
2616 | * back the node to the tree if reclaim returns 0. | |
2617 | * But our reclaim could return 0, simply because due | |
2618 | * to priority we are exposing a smaller subset of | |
2619 | * memory to reclaim from. Consider this as a longer | |
2620 | * term TODO. | |
2621 | */ | |
2622 | /* If excess == 0, no tree ops */ | |
2623 | __mem_cgroup_insert_exceeded(mz, mctz, excess); | |
2624 | spin_unlock_irq(&mctz->lock); | |
2625 | css_put(&mz->memcg->css); | |
2626 | loop++; | |
2627 | /* | |
2628 | * Could not reclaim anything and there are no more | |
2629 | * mem cgroups to try or we seem to be looping without | |
2630 | * reclaiming anything. | |
2631 | */ | |
2632 | if (!nr_reclaimed && | |
2633 | (next_mz == NULL || | |
2634 | loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) | |
2635 | break; | |
2636 | } while (!nr_reclaimed); | |
2637 | if (next_mz) | |
2638 | css_put(&next_mz->memcg->css); | |
2639 | return nr_reclaimed; | |
2640 | } | |
2641 | ||
2642 | /* | |
2643 | * Test whether @memcg has children, dead or alive. Note that this | |
2644 | * function doesn't care whether @memcg has use_hierarchy enabled and | |
2645 | * returns %true if there are child csses according to the cgroup | |
2646 | * hierarchy. Testing use_hierarchy is the caller's responsiblity. | |
2647 | */ | |
2648 | static inline bool memcg_has_children(struct mem_cgroup *memcg) | |
2649 | { | |
2650 | bool ret; | |
2651 | ||
2652 | rcu_read_lock(); | |
2653 | ret = css_next_child(NULL, &memcg->css); | |
2654 | rcu_read_unlock(); | |
2655 | return ret; | |
2656 | } | |
2657 | ||
2658 | /* | |
2659 | * Reclaims as many pages from the given memcg as possible. | |
2660 | * | |
2661 | * Caller is responsible for holding css reference for memcg. | |
2662 | */ | |
2663 | static int mem_cgroup_force_empty(struct mem_cgroup *memcg) | |
2664 | { | |
2665 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | |
2666 | ||
2667 | /* we call try-to-free pages for make this cgroup empty */ | |
2668 | lru_add_drain_all(); | |
2669 | /* try to free all pages in this cgroup */ | |
2670 | while (nr_retries && page_counter_read(&memcg->memory)) { | |
2671 | int progress; | |
2672 | ||
2673 | if (signal_pending(current)) | |
2674 | return -EINTR; | |
2675 | ||
2676 | progress = try_to_free_mem_cgroup_pages(memcg, 1, | |
2677 | GFP_KERNEL, true); | |
2678 | if (!progress) { | |
2679 | nr_retries--; | |
2680 | /* maybe some writeback is necessary */ | |
2681 | congestion_wait(BLK_RW_ASYNC, HZ/10); | |
2682 | } | |
2683 | ||
2684 | } | |
2685 | ||
2686 | return 0; | |
2687 | } | |
2688 | ||
2689 | static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, | |
2690 | char *buf, size_t nbytes, | |
2691 | loff_t off) | |
2692 | { | |
2693 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
2694 | ||
2695 | if (mem_cgroup_is_root(memcg)) | |
2696 | return -EINVAL; | |
2697 | return mem_cgroup_force_empty(memcg) ?: nbytes; | |
2698 | } | |
2699 | ||
2700 | static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, | |
2701 | struct cftype *cft) | |
2702 | { | |
2703 | return mem_cgroup_from_css(css)->use_hierarchy; | |
2704 | } | |
2705 | ||
2706 | static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, | |
2707 | struct cftype *cft, u64 val) | |
2708 | { | |
2709 | int retval = 0; | |
2710 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
2711 | struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); | |
2712 | ||
2713 | if (memcg->use_hierarchy == val) | |
2714 | return 0; | |
2715 | ||
2716 | /* | |
2717 | * If parent's use_hierarchy is set, we can't make any modifications | |
2718 | * in the child subtrees. If it is unset, then the change can | |
2719 | * occur, provided the current cgroup has no children. | |
2720 | * | |
2721 | * For the root cgroup, parent_mem is NULL, we allow value to be | |
2722 | * set if there are no children. | |
2723 | */ | |
2724 | if ((!parent_memcg || !parent_memcg->use_hierarchy) && | |
2725 | (val == 1 || val == 0)) { | |
2726 | if (!memcg_has_children(memcg)) | |
2727 | memcg->use_hierarchy = val; | |
2728 | else | |
2729 | retval = -EBUSY; | |
2730 | } else | |
2731 | retval = -EINVAL; | |
2732 | ||
2733 | return retval; | |
2734 | } | |
2735 | ||
2736 | static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat) | |
2737 | { | |
2738 | struct mem_cgroup *iter; | |
2739 | int i; | |
2740 | ||
2741 | memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT); | |
2742 | ||
2743 | for_each_mem_cgroup_tree(iter, memcg) { | |
2744 | for (i = 0; i < MEMCG_NR_STAT; i++) | |
2745 | stat[i] += mem_cgroup_read_stat(iter, i); | |
2746 | } | |
2747 | } | |
2748 | ||
2749 | static void tree_events(struct mem_cgroup *memcg, unsigned long *events) | |
2750 | { | |
2751 | struct mem_cgroup *iter; | |
2752 | int i; | |
2753 | ||
2754 | memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS); | |
2755 | ||
2756 | for_each_mem_cgroup_tree(iter, memcg) { | |
2757 | for (i = 0; i < MEMCG_NR_EVENTS; i++) | |
2758 | events[i] += mem_cgroup_read_events(iter, i); | |
2759 | } | |
2760 | } | |
2761 | ||
2762 | static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) | |
2763 | { | |
2764 | unsigned long val = 0; | |
2765 | ||
2766 | if (mem_cgroup_is_root(memcg)) { | |
2767 | struct mem_cgroup *iter; | |
2768 | ||
2769 | for_each_mem_cgroup_tree(iter, memcg) { | |
2770 | val += mem_cgroup_read_stat(iter, | |
2771 | MEM_CGROUP_STAT_CACHE); | |
2772 | val += mem_cgroup_read_stat(iter, | |
2773 | MEM_CGROUP_STAT_RSS); | |
2774 | if (swap) | |
2775 | val += mem_cgroup_read_stat(iter, | |
2776 | MEM_CGROUP_STAT_SWAP); | |
2777 | } | |
2778 | } else { | |
2779 | if (!swap) | |
2780 | val = page_counter_read(&memcg->memory); | |
2781 | else | |
2782 | val = page_counter_read(&memcg->memsw); | |
2783 | } | |
2784 | return val; | |
2785 | } | |
2786 | ||
2787 | enum { | |
2788 | RES_USAGE, | |
2789 | RES_LIMIT, | |
2790 | RES_MAX_USAGE, | |
2791 | RES_FAILCNT, | |
2792 | RES_SOFT_LIMIT, | |
2793 | }; | |
2794 | ||
2795 | static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, | |
2796 | struct cftype *cft) | |
2797 | { | |
2798 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
2799 | struct page_counter *counter; | |
2800 | ||
2801 | switch (MEMFILE_TYPE(cft->private)) { | |
2802 | case _MEM: | |
2803 | counter = &memcg->memory; | |
2804 | break; | |
2805 | case _MEMSWAP: | |
2806 | counter = &memcg->memsw; | |
2807 | break; | |
2808 | case _KMEM: | |
2809 | counter = &memcg->kmem; | |
2810 | break; | |
2811 | case _TCP: | |
2812 | counter = &memcg->tcpmem; | |
2813 | break; | |
2814 | default: | |
2815 | BUG(); | |
2816 | } | |
2817 | ||
2818 | switch (MEMFILE_ATTR(cft->private)) { | |
2819 | case RES_USAGE: | |
2820 | if (counter == &memcg->memory) | |
2821 | return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; | |
2822 | if (counter == &memcg->memsw) | |
2823 | return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; | |
2824 | return (u64)page_counter_read(counter) * PAGE_SIZE; | |
2825 | case RES_LIMIT: | |
2826 | return (u64)counter->limit * PAGE_SIZE; | |
2827 | case RES_MAX_USAGE: | |
2828 | return (u64)counter->watermark * PAGE_SIZE; | |
2829 | case RES_FAILCNT: | |
2830 | return counter->failcnt; | |
2831 | case RES_SOFT_LIMIT: | |
2832 | return (u64)memcg->soft_limit * PAGE_SIZE; | |
2833 | default: | |
2834 | BUG(); | |
2835 | } | |
2836 | } | |
2837 | ||
2838 | #ifndef CONFIG_SLOB | |
2839 | static int memcg_online_kmem(struct mem_cgroup *memcg) | |
2840 | { | |
2841 | int memcg_id; | |
2842 | ||
2843 | if (cgroup_memory_nokmem) | |
2844 | return 0; | |
2845 | ||
2846 | BUG_ON(memcg->kmemcg_id >= 0); | |
2847 | BUG_ON(memcg->kmem_state); | |
2848 | ||
2849 | memcg_id = memcg_alloc_cache_id(); | |
2850 | if (memcg_id < 0) | |
2851 | return memcg_id; | |
2852 | ||
2853 | static_branch_inc(&memcg_kmem_enabled_key); | |
2854 | /* | |
2855 | * A memory cgroup is considered kmem-online as soon as it gets | |
2856 | * kmemcg_id. Setting the id after enabling static branching will | |
2857 | * guarantee no one starts accounting before all call sites are | |
2858 | * patched. | |
2859 | */ | |
2860 | memcg->kmemcg_id = memcg_id; | |
2861 | memcg->kmem_state = KMEM_ONLINE; | |
2862 | ||
2863 | return 0; | |
2864 | } | |
2865 | ||
2866 | static void memcg_offline_kmem(struct mem_cgroup *memcg) | |
2867 | { | |
2868 | struct cgroup_subsys_state *css; | |
2869 | struct mem_cgroup *parent, *child; | |
2870 | int kmemcg_id; | |
2871 | ||
2872 | if (memcg->kmem_state != KMEM_ONLINE) | |
2873 | return; | |
2874 | /* | |
2875 | * Clear the online state before clearing memcg_caches array | |
2876 | * entries. The slab_mutex in memcg_deactivate_kmem_caches() | |
2877 | * guarantees that no cache will be created for this cgroup | |
2878 | * after we are done (see memcg_create_kmem_cache()). | |
2879 | */ | |
2880 | memcg->kmem_state = KMEM_ALLOCATED; | |
2881 | ||
2882 | memcg_deactivate_kmem_caches(memcg); | |
2883 | ||
2884 | kmemcg_id = memcg->kmemcg_id; | |
2885 | BUG_ON(kmemcg_id < 0); | |
2886 | ||
2887 | parent = parent_mem_cgroup(memcg); | |
2888 | if (!parent) | |
2889 | parent = root_mem_cgroup; | |
2890 | ||
2891 | /* | |
2892 | * Change kmemcg_id of this cgroup and all its descendants to the | |
2893 | * parent's id, and then move all entries from this cgroup's list_lrus | |
2894 | * to ones of the parent. After we have finished, all list_lrus | |
2895 | * corresponding to this cgroup are guaranteed to remain empty. The | |
2896 | * ordering is imposed by list_lru_node->lock taken by | |
2897 | * memcg_drain_all_list_lrus(). | |
2898 | */ | |
2899 | css_for_each_descendant_pre(css, &memcg->css) { | |
2900 | child = mem_cgroup_from_css(css); | |
2901 | BUG_ON(child->kmemcg_id != kmemcg_id); | |
2902 | child->kmemcg_id = parent->kmemcg_id; | |
2903 | if (!memcg->use_hierarchy) | |
2904 | break; | |
2905 | } | |
2906 | memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); | |
2907 | ||
2908 | memcg_free_cache_id(kmemcg_id); | |
2909 | } | |
2910 | ||
2911 | static void memcg_free_kmem(struct mem_cgroup *memcg) | |
2912 | { | |
2913 | /* css_alloc() failed, offlining didn't happen */ | |
2914 | if (unlikely(memcg->kmem_state == KMEM_ONLINE)) | |
2915 | memcg_offline_kmem(memcg); | |
2916 | ||
2917 | if (memcg->kmem_state == KMEM_ALLOCATED) { | |
2918 | memcg_destroy_kmem_caches(memcg); | |
2919 | static_branch_dec(&memcg_kmem_enabled_key); | |
2920 | WARN_ON(page_counter_read(&memcg->kmem)); | |
2921 | } | |
2922 | } | |
2923 | #else | |
2924 | static int memcg_online_kmem(struct mem_cgroup *memcg) | |
2925 | { | |
2926 | return 0; | |
2927 | } | |
2928 | static void memcg_offline_kmem(struct mem_cgroup *memcg) | |
2929 | { | |
2930 | } | |
2931 | static void memcg_free_kmem(struct mem_cgroup *memcg) | |
2932 | { | |
2933 | } | |
2934 | #endif /* !CONFIG_SLOB */ | |
2935 | ||
2936 | static int memcg_update_kmem_limit(struct mem_cgroup *memcg, | |
2937 | unsigned long limit) | |
2938 | { | |
2939 | int ret; | |
2940 | ||
2941 | mutex_lock(&memcg_limit_mutex); | |
2942 | ret = page_counter_limit(&memcg->kmem, limit); | |
2943 | mutex_unlock(&memcg_limit_mutex); | |
2944 | return ret; | |
2945 | } | |
2946 | ||
2947 | static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit) | |
2948 | { | |
2949 | int ret; | |
2950 | ||
2951 | mutex_lock(&memcg_limit_mutex); | |
2952 | ||
2953 | ret = page_counter_limit(&memcg->tcpmem, limit); | |
2954 | if (ret) | |
2955 | goto out; | |
2956 | ||
2957 | if (!memcg->tcpmem_active) { | |
2958 | /* | |
2959 | * The active flag needs to be written after the static_key | |
2960 | * update. This is what guarantees that the socket activation | |
2961 | * function is the last one to run. See sock_update_memcg() for | |
2962 | * details, and note that we don't mark any socket as belonging | |
2963 | * to this memcg until that flag is up. | |
2964 | * | |
2965 | * We need to do this, because static_keys will span multiple | |
2966 | * sites, but we can't control their order. If we mark a socket | |
2967 | * as accounted, but the accounting functions are not patched in | |
2968 | * yet, we'll lose accounting. | |
2969 | * | |
2970 | * We never race with the readers in sock_update_memcg(), | |
2971 | * because when this value change, the code to process it is not | |
2972 | * patched in yet. | |
2973 | */ | |
2974 | static_branch_inc(&memcg_sockets_enabled_key); | |
2975 | memcg->tcpmem_active = true; | |
2976 | } | |
2977 | out: | |
2978 | mutex_unlock(&memcg_limit_mutex); | |
2979 | return ret; | |
2980 | } | |
2981 | ||
2982 | /* | |
2983 | * The user of this function is... | |
2984 | * RES_LIMIT. | |
2985 | */ | |
2986 | static ssize_t mem_cgroup_write(struct kernfs_open_file *of, | |
2987 | char *buf, size_t nbytes, loff_t off) | |
2988 | { | |
2989 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
2990 | unsigned long nr_pages; | |
2991 | int ret; | |
2992 | ||
2993 | buf = strstrip(buf); | |
2994 | ret = page_counter_memparse(buf, "-1", &nr_pages); | |
2995 | if (ret) | |
2996 | return ret; | |
2997 | ||
2998 | switch (MEMFILE_ATTR(of_cft(of)->private)) { | |
2999 | case RES_LIMIT: | |
3000 | if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ | |
3001 | ret = -EINVAL; | |
3002 | break; | |
3003 | } | |
3004 | switch (MEMFILE_TYPE(of_cft(of)->private)) { | |
3005 | case _MEM: | |
3006 | ret = mem_cgroup_resize_limit(memcg, nr_pages); | |
3007 | break; | |
3008 | case _MEMSWAP: | |
3009 | ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); | |
3010 | break; | |
3011 | case _KMEM: | |
3012 | ret = memcg_update_kmem_limit(memcg, nr_pages); | |
3013 | break; | |
3014 | case _TCP: | |
3015 | ret = memcg_update_tcp_limit(memcg, nr_pages); | |
3016 | break; | |
3017 | } | |
3018 | break; | |
3019 | case RES_SOFT_LIMIT: | |
3020 | memcg->soft_limit = nr_pages; | |
3021 | ret = 0; | |
3022 | break; | |
3023 | } | |
3024 | return ret ?: nbytes; | |
3025 | } | |
3026 | ||
3027 | static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, | |
3028 | size_t nbytes, loff_t off) | |
3029 | { | |
3030 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
3031 | struct page_counter *counter; | |
3032 | ||
3033 | switch (MEMFILE_TYPE(of_cft(of)->private)) { | |
3034 | case _MEM: | |
3035 | counter = &memcg->memory; | |
3036 | break; | |
3037 | case _MEMSWAP: | |
3038 | counter = &memcg->memsw; | |
3039 | break; | |
3040 | case _KMEM: | |
3041 | counter = &memcg->kmem; | |
3042 | break; | |
3043 | case _TCP: | |
3044 | counter = &memcg->tcpmem; | |
3045 | break; | |
3046 | default: | |
3047 | BUG(); | |
3048 | } | |
3049 | ||
3050 | switch (MEMFILE_ATTR(of_cft(of)->private)) { | |
3051 | case RES_MAX_USAGE: | |
3052 | page_counter_reset_watermark(counter); | |
3053 | break; | |
3054 | case RES_FAILCNT: | |
3055 | counter->failcnt = 0; | |
3056 | break; | |
3057 | default: | |
3058 | BUG(); | |
3059 | } | |
3060 | ||
3061 | return nbytes; | |
3062 | } | |
3063 | ||
3064 | static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, | |
3065 | struct cftype *cft) | |
3066 | { | |
3067 | return mem_cgroup_from_css(css)->move_charge_at_immigrate; | |
3068 | } | |
3069 | ||
3070 | #ifdef CONFIG_MMU | |
3071 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, | |
3072 | struct cftype *cft, u64 val) | |
3073 | { | |
3074 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
3075 | ||
3076 | if (val & ~MOVE_MASK) | |
3077 | return -EINVAL; | |
3078 | ||
3079 | /* | |
3080 | * No kind of locking is needed in here, because ->can_attach() will | |
3081 | * check this value once in the beginning of the process, and then carry | |
3082 | * on with stale data. This means that changes to this value will only | |
3083 | * affect task migrations starting after the change. | |
3084 | */ | |
3085 | memcg->move_charge_at_immigrate = val; | |
3086 | return 0; | |
3087 | } | |
3088 | #else | |
3089 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, | |
3090 | struct cftype *cft, u64 val) | |
3091 | { | |
3092 | return -ENOSYS; | |
3093 | } | |
3094 | #endif | |
3095 | ||
3096 | #ifdef CONFIG_NUMA | |
3097 | static int memcg_numa_stat_show(struct seq_file *m, void *v) | |
3098 | { | |
3099 | struct numa_stat { | |
3100 | const char *name; | |
3101 | unsigned int lru_mask; | |
3102 | }; | |
3103 | ||
3104 | static const struct numa_stat stats[] = { | |
3105 | { "total", LRU_ALL }, | |
3106 | { "file", LRU_ALL_FILE }, | |
3107 | { "anon", LRU_ALL_ANON }, | |
3108 | { "unevictable", BIT(LRU_UNEVICTABLE) }, | |
3109 | }; | |
3110 | const struct numa_stat *stat; | |
3111 | int nid; | |
3112 | unsigned long nr; | |
3113 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
3114 | ||
3115 | for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { | |
3116 | nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); | |
3117 | seq_printf(m, "%s=%lu", stat->name, nr); | |
3118 | for_each_node_state(nid, N_MEMORY) { | |
3119 | nr = mem_cgroup_node_nr_lru_pages(memcg, nid, | |
3120 | stat->lru_mask); | |
3121 | seq_printf(m, " N%d=%lu", nid, nr); | |
3122 | } | |
3123 | seq_putc(m, '\n'); | |
3124 | } | |
3125 | ||
3126 | for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { | |
3127 | struct mem_cgroup *iter; | |
3128 | ||
3129 | nr = 0; | |
3130 | for_each_mem_cgroup_tree(iter, memcg) | |
3131 | nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); | |
3132 | seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); | |
3133 | for_each_node_state(nid, N_MEMORY) { | |
3134 | nr = 0; | |
3135 | for_each_mem_cgroup_tree(iter, memcg) | |
3136 | nr += mem_cgroup_node_nr_lru_pages( | |
3137 | iter, nid, stat->lru_mask); | |
3138 | seq_printf(m, " N%d=%lu", nid, nr); | |
3139 | } | |
3140 | seq_putc(m, '\n'); | |
3141 | } | |
3142 | ||
3143 | return 0; | |
3144 | } | |
3145 | #endif /* CONFIG_NUMA */ | |
3146 | ||
3147 | static int memcg_stat_show(struct seq_file *m, void *v) | |
3148 | { | |
3149 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
3150 | unsigned long memory, memsw; | |
3151 | struct mem_cgroup *mi; | |
3152 | unsigned int i; | |
3153 | ||
3154 | BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) != | |
3155 | MEM_CGROUP_STAT_NSTATS); | |
3156 | BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) != | |
3157 | MEM_CGROUP_EVENTS_NSTATS); | |
3158 | BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); | |
3159 | ||
3160 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | |
3161 | if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) | |
3162 | continue; | |
3163 | seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i], | |
3164 | mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); | |
3165 | } | |
3166 | ||
3167 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) | |
3168 | seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], | |
3169 | mem_cgroup_read_events(memcg, i)); | |
3170 | ||
3171 | for (i = 0; i < NR_LRU_LISTS; i++) | |
3172 | seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], | |
3173 | mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); | |
3174 | ||
3175 | /* Hierarchical information */ | |
3176 | memory = memsw = PAGE_COUNTER_MAX; | |
3177 | for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { | |
3178 | memory = min(memory, mi->memory.limit); | |
3179 | memsw = min(memsw, mi->memsw.limit); | |
3180 | } | |
3181 | seq_printf(m, "hierarchical_memory_limit %llu\n", | |
3182 | (u64)memory * PAGE_SIZE); | |
3183 | if (do_memsw_account()) | |
3184 | seq_printf(m, "hierarchical_memsw_limit %llu\n", | |
3185 | (u64)memsw * PAGE_SIZE); | |
3186 | ||
3187 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | |
3188 | unsigned long long val = 0; | |
3189 | ||
3190 | if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) | |
3191 | continue; | |
3192 | for_each_mem_cgroup_tree(mi, memcg) | |
3193 | val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; | |
3194 | seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val); | |
3195 | } | |
3196 | ||
3197 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { | |
3198 | unsigned long long val = 0; | |
3199 | ||
3200 | for_each_mem_cgroup_tree(mi, memcg) | |
3201 | val += mem_cgroup_read_events(mi, i); | |
3202 | seq_printf(m, "total_%s %llu\n", | |
3203 | mem_cgroup_events_names[i], val); | |
3204 | } | |
3205 | ||
3206 | for (i = 0; i < NR_LRU_LISTS; i++) { | |
3207 | unsigned long long val = 0; | |
3208 | ||
3209 | for_each_mem_cgroup_tree(mi, memcg) | |
3210 | val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; | |
3211 | seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); | |
3212 | } | |
3213 | ||
3214 | #ifdef CONFIG_DEBUG_VM | |
3215 | { | |
3216 | int nid, zid; | |
3217 | struct mem_cgroup_per_zone *mz; | |
3218 | struct zone_reclaim_stat *rstat; | |
3219 | unsigned long recent_rotated[2] = {0, 0}; | |
3220 | unsigned long recent_scanned[2] = {0, 0}; | |
3221 | ||
3222 | for_each_online_node(nid) | |
3223 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
3224 | mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; | |
3225 | rstat = &mz->lruvec.reclaim_stat; | |
3226 | ||
3227 | recent_rotated[0] += rstat->recent_rotated[0]; | |
3228 | recent_rotated[1] += rstat->recent_rotated[1]; | |
3229 | recent_scanned[0] += rstat->recent_scanned[0]; | |
3230 | recent_scanned[1] += rstat->recent_scanned[1]; | |
3231 | } | |
3232 | seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); | |
3233 | seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); | |
3234 | seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); | |
3235 | seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); | |
3236 | } | |
3237 | #endif | |
3238 | ||
3239 | return 0; | |
3240 | } | |
3241 | ||
3242 | static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, | |
3243 | struct cftype *cft) | |
3244 | { | |
3245 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
3246 | ||
3247 | return mem_cgroup_swappiness(memcg); | |
3248 | } | |
3249 | ||
3250 | static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, | |
3251 | struct cftype *cft, u64 val) | |
3252 | { | |
3253 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
3254 | ||
3255 | if (val > 100) | |
3256 | return -EINVAL; | |
3257 | ||
3258 | if (css->parent) | |
3259 | memcg->swappiness = val; | |
3260 | else | |
3261 | vm_swappiness = val; | |
3262 | ||
3263 | return 0; | |
3264 | } | |
3265 | ||
3266 | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) | |
3267 | { | |
3268 | struct mem_cgroup_threshold_ary *t; | |
3269 | unsigned long usage; | |
3270 | int i; | |
3271 | ||
3272 | rcu_read_lock(); | |
3273 | if (!swap) | |
3274 | t = rcu_dereference(memcg->thresholds.primary); | |
3275 | else | |
3276 | t = rcu_dereference(memcg->memsw_thresholds.primary); | |
3277 | ||
3278 | if (!t) | |
3279 | goto unlock; | |
3280 | ||
3281 | usage = mem_cgroup_usage(memcg, swap); | |
3282 | ||
3283 | /* | |
3284 | * current_threshold points to threshold just below or equal to usage. | |
3285 | * If it's not true, a threshold was crossed after last | |
3286 | * call of __mem_cgroup_threshold(). | |
3287 | */ | |
3288 | i = t->current_threshold; | |
3289 | ||
3290 | /* | |
3291 | * Iterate backward over array of thresholds starting from | |
3292 | * current_threshold and check if a threshold is crossed. | |
3293 | * If none of thresholds below usage is crossed, we read | |
3294 | * only one element of the array here. | |
3295 | */ | |
3296 | for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) | |
3297 | eventfd_signal(t->entries[i].eventfd, 1); | |
3298 | ||
3299 | /* i = current_threshold + 1 */ | |
3300 | i++; | |
3301 | ||
3302 | /* | |
3303 | * Iterate forward over array of thresholds starting from | |
3304 | * current_threshold+1 and check if a threshold is crossed. | |
3305 | * If none of thresholds above usage is crossed, we read | |
3306 | * only one element of the array here. | |
3307 | */ | |
3308 | for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) | |
3309 | eventfd_signal(t->entries[i].eventfd, 1); | |
3310 | ||
3311 | /* Update current_threshold */ | |
3312 | t->current_threshold = i - 1; | |
3313 | unlock: | |
3314 | rcu_read_unlock(); | |
3315 | } | |
3316 | ||
3317 | static void mem_cgroup_threshold(struct mem_cgroup *memcg) | |
3318 | { | |
3319 | while (memcg) { | |
3320 | __mem_cgroup_threshold(memcg, false); | |
3321 | if (do_memsw_account()) | |
3322 | __mem_cgroup_threshold(memcg, true); | |
3323 | ||
3324 | memcg = parent_mem_cgroup(memcg); | |
3325 | } | |
3326 | } | |
3327 | ||
3328 | static int compare_thresholds(const void *a, const void *b) | |
3329 | { | |
3330 | const struct mem_cgroup_threshold *_a = a; | |
3331 | const struct mem_cgroup_threshold *_b = b; | |
3332 | ||
3333 | if (_a->threshold > _b->threshold) | |
3334 | return 1; | |
3335 | ||
3336 | if (_a->threshold < _b->threshold) | |
3337 | return -1; | |
3338 | ||
3339 | return 0; | |
3340 | } | |
3341 | ||
3342 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) | |
3343 | { | |
3344 | struct mem_cgroup_eventfd_list *ev; | |
3345 | ||
3346 | spin_lock(&memcg_oom_lock); | |
3347 | ||
3348 | list_for_each_entry(ev, &memcg->oom_notify, list) | |
3349 | eventfd_signal(ev->eventfd, 1); | |
3350 | ||
3351 | spin_unlock(&memcg_oom_lock); | |
3352 | return 0; | |
3353 | } | |
3354 | ||
3355 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) | |
3356 | { | |
3357 | struct mem_cgroup *iter; | |
3358 | ||
3359 | for_each_mem_cgroup_tree(iter, memcg) | |
3360 | mem_cgroup_oom_notify_cb(iter); | |
3361 | } | |
3362 | ||
3363 | static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, | |
3364 | struct eventfd_ctx *eventfd, const char *args, enum res_type type) | |
3365 | { | |
3366 | struct mem_cgroup_thresholds *thresholds; | |
3367 | struct mem_cgroup_threshold_ary *new; | |
3368 | unsigned long threshold; | |
3369 | unsigned long usage; | |
3370 | int i, size, ret; | |
3371 | ||
3372 | ret = page_counter_memparse(args, "-1", &threshold); | |
3373 | if (ret) | |
3374 | return ret; | |
3375 | ||
3376 | mutex_lock(&memcg->thresholds_lock); | |
3377 | ||
3378 | if (type == _MEM) { | |
3379 | thresholds = &memcg->thresholds; | |
3380 | usage = mem_cgroup_usage(memcg, false); | |
3381 | } else if (type == _MEMSWAP) { | |
3382 | thresholds = &memcg->memsw_thresholds; | |
3383 | usage = mem_cgroup_usage(memcg, true); | |
3384 | } else | |
3385 | BUG(); | |
3386 | ||
3387 | /* Check if a threshold crossed before adding a new one */ | |
3388 | if (thresholds->primary) | |
3389 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | |
3390 | ||
3391 | size = thresholds->primary ? thresholds->primary->size + 1 : 1; | |
3392 | ||
3393 | /* Allocate memory for new array of thresholds */ | |
3394 | new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), | |
3395 | GFP_KERNEL); | |
3396 | if (!new) { | |
3397 | ret = -ENOMEM; | |
3398 | goto unlock; | |
3399 | } | |
3400 | new->size = size; | |
3401 | ||
3402 | /* Copy thresholds (if any) to new array */ | |
3403 | if (thresholds->primary) { | |
3404 | memcpy(new->entries, thresholds->primary->entries, (size - 1) * | |
3405 | sizeof(struct mem_cgroup_threshold)); | |
3406 | } | |
3407 | ||
3408 | /* Add new threshold */ | |
3409 | new->entries[size - 1].eventfd = eventfd; | |
3410 | new->entries[size - 1].threshold = threshold; | |
3411 | ||
3412 | /* Sort thresholds. Registering of new threshold isn't time-critical */ | |
3413 | sort(new->entries, size, sizeof(struct mem_cgroup_threshold), | |
3414 | compare_thresholds, NULL); | |
3415 | ||
3416 | /* Find current threshold */ | |
3417 | new->current_threshold = -1; | |
3418 | for (i = 0; i < size; i++) { | |
3419 | if (new->entries[i].threshold <= usage) { | |
3420 | /* | |
3421 | * new->current_threshold will not be used until | |
3422 | * rcu_assign_pointer(), so it's safe to increment | |
3423 | * it here. | |
3424 | */ | |
3425 | ++new->current_threshold; | |
3426 | } else | |
3427 | break; | |
3428 | } | |
3429 | ||
3430 | /* Free old spare buffer and save old primary buffer as spare */ | |
3431 | kfree(thresholds->spare); | |
3432 | thresholds->spare = thresholds->primary; | |
3433 | ||
3434 | rcu_assign_pointer(thresholds->primary, new); | |
3435 | ||
3436 | /* To be sure that nobody uses thresholds */ | |
3437 | synchronize_rcu(); | |
3438 | ||
3439 | unlock: | |
3440 | mutex_unlock(&memcg->thresholds_lock); | |
3441 | ||
3442 | return ret; | |
3443 | } | |
3444 | ||
3445 | static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, | |
3446 | struct eventfd_ctx *eventfd, const char *args) | |
3447 | { | |
3448 | return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); | |
3449 | } | |
3450 | ||
3451 | static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, | |
3452 | struct eventfd_ctx *eventfd, const char *args) | |
3453 | { | |
3454 | return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); | |
3455 | } | |
3456 | ||
3457 | static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | |
3458 | struct eventfd_ctx *eventfd, enum res_type type) | |
3459 | { | |
3460 | struct mem_cgroup_thresholds *thresholds; | |
3461 | struct mem_cgroup_threshold_ary *new; | |
3462 | unsigned long usage; | |
3463 | int i, j, size; | |
3464 | ||
3465 | mutex_lock(&memcg->thresholds_lock); | |
3466 | ||
3467 | if (type == _MEM) { | |
3468 | thresholds = &memcg->thresholds; | |
3469 | usage = mem_cgroup_usage(memcg, false); | |
3470 | } else if (type == _MEMSWAP) { | |
3471 | thresholds = &memcg->memsw_thresholds; | |
3472 | usage = mem_cgroup_usage(memcg, true); | |
3473 | } else | |
3474 | BUG(); | |
3475 | ||
3476 | if (!thresholds->primary) | |
3477 | goto unlock; | |
3478 | ||
3479 | /* Check if a threshold crossed before removing */ | |
3480 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | |
3481 | ||
3482 | /* Calculate new number of threshold */ | |
3483 | size = 0; | |
3484 | for (i = 0; i < thresholds->primary->size; i++) { | |
3485 | if (thresholds->primary->entries[i].eventfd != eventfd) | |
3486 | size++; | |
3487 | } | |
3488 | ||
3489 | new = thresholds->spare; | |
3490 | ||
3491 | /* Set thresholds array to NULL if we don't have thresholds */ | |
3492 | if (!size) { | |
3493 | kfree(new); | |
3494 | new = NULL; | |
3495 | goto swap_buffers; | |
3496 | } | |
3497 | ||
3498 | new->size = size; | |
3499 | ||
3500 | /* Copy thresholds and find current threshold */ | |
3501 | new->current_threshold = -1; | |
3502 | for (i = 0, j = 0; i < thresholds->primary->size; i++) { | |
3503 | if (thresholds->primary->entries[i].eventfd == eventfd) | |
3504 | continue; | |
3505 | ||
3506 | new->entries[j] = thresholds->primary->entries[i]; | |
3507 | if (new->entries[j].threshold <= usage) { | |
3508 | /* | |
3509 | * new->current_threshold will not be used | |
3510 | * until rcu_assign_pointer(), so it's safe to increment | |
3511 | * it here. | |
3512 | */ | |
3513 | ++new->current_threshold; | |
3514 | } | |
3515 | j++; | |
3516 | } | |
3517 | ||
3518 | swap_buffers: | |
3519 | /* Swap primary and spare array */ | |
3520 | thresholds->spare = thresholds->primary; | |
3521 | ||
3522 | rcu_assign_pointer(thresholds->primary, new); | |
3523 | ||
3524 | /* To be sure that nobody uses thresholds */ | |
3525 | synchronize_rcu(); | |
3526 | ||
3527 | /* If all events are unregistered, free the spare array */ | |
3528 | if (!new) { | |
3529 | kfree(thresholds->spare); | |
3530 | thresholds->spare = NULL; | |
3531 | } | |
3532 | unlock: | |
3533 | mutex_unlock(&memcg->thresholds_lock); | |
3534 | } | |
3535 | ||
3536 | static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | |
3537 | struct eventfd_ctx *eventfd) | |
3538 | { | |
3539 | return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); | |
3540 | } | |
3541 | ||
3542 | static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | |
3543 | struct eventfd_ctx *eventfd) | |
3544 | { | |
3545 | return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); | |
3546 | } | |
3547 | ||
3548 | static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, | |
3549 | struct eventfd_ctx *eventfd, const char *args) | |
3550 | { | |
3551 | struct mem_cgroup_eventfd_list *event; | |
3552 | ||
3553 | event = kmalloc(sizeof(*event), GFP_KERNEL); | |
3554 | if (!event) | |
3555 | return -ENOMEM; | |
3556 | ||
3557 | spin_lock(&memcg_oom_lock); | |
3558 | ||
3559 | event->eventfd = eventfd; | |
3560 | list_add(&event->list, &memcg->oom_notify); | |
3561 | ||
3562 | /* already in OOM ? */ | |
3563 | if (memcg->under_oom) | |
3564 | eventfd_signal(eventfd, 1); | |
3565 | spin_unlock(&memcg_oom_lock); | |
3566 | ||
3567 | return 0; | |
3568 | } | |
3569 | ||
3570 | static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, | |
3571 | struct eventfd_ctx *eventfd) | |
3572 | { | |
3573 | struct mem_cgroup_eventfd_list *ev, *tmp; | |
3574 | ||
3575 | spin_lock(&memcg_oom_lock); | |
3576 | ||
3577 | list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { | |
3578 | if (ev->eventfd == eventfd) { | |
3579 | list_del(&ev->list); | |
3580 | kfree(ev); | |
3581 | } | |
3582 | } | |
3583 | ||
3584 | spin_unlock(&memcg_oom_lock); | |
3585 | } | |
3586 | ||
3587 | static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) | |
3588 | { | |
3589 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); | |
3590 | ||
3591 | seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); | |
3592 | seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); | |
3593 | return 0; | |
3594 | } | |
3595 | ||
3596 | static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, | |
3597 | struct cftype *cft, u64 val) | |
3598 | { | |
3599 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
3600 | ||
3601 | /* cannot set to root cgroup and only 0 and 1 are allowed */ | |
3602 | if (!css->parent || !((val == 0) || (val == 1))) | |
3603 | return -EINVAL; | |
3604 | ||
3605 | memcg->oom_kill_disable = val; | |
3606 | if (!val) | |
3607 | memcg_oom_recover(memcg); | |
3608 | ||
3609 | return 0; | |
3610 | } | |
3611 | ||
3612 | #ifdef CONFIG_CGROUP_WRITEBACK | |
3613 | ||
3614 | struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg) | |
3615 | { | |
3616 | return &memcg->cgwb_list; | |
3617 | } | |
3618 | ||
3619 | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) | |
3620 | { | |
3621 | return wb_domain_init(&memcg->cgwb_domain, gfp); | |
3622 | } | |
3623 | ||
3624 | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) | |
3625 | { | |
3626 | wb_domain_exit(&memcg->cgwb_domain); | |
3627 | } | |
3628 | ||
3629 | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) | |
3630 | { | |
3631 | wb_domain_size_changed(&memcg->cgwb_domain); | |
3632 | } | |
3633 | ||
3634 | struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) | |
3635 | { | |
3636 | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | |
3637 | ||
3638 | if (!memcg->css.parent) | |
3639 | return NULL; | |
3640 | ||
3641 | return &memcg->cgwb_domain; | |
3642 | } | |
3643 | ||
3644 | /** | |
3645 | * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg | |
3646 | * @wb: bdi_writeback in question | |
3647 | * @pfilepages: out parameter for number of file pages | |
3648 | * @pheadroom: out parameter for number of allocatable pages according to memcg | |
3649 | * @pdirty: out parameter for number of dirty pages | |
3650 | * @pwriteback: out parameter for number of pages under writeback | |
3651 | * | |
3652 | * Determine the numbers of file, headroom, dirty, and writeback pages in | |
3653 | * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom | |
3654 | * is a bit more involved. | |
3655 | * | |
3656 | * A memcg's headroom is "min(max, high) - used". In the hierarchy, the | |
3657 | * headroom is calculated as the lowest headroom of itself and the | |
3658 | * ancestors. Note that this doesn't consider the actual amount of | |
3659 | * available memory in the system. The caller should further cap | |
3660 | * *@pheadroom accordingly. | |
3661 | */ | |
3662 | void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, | |
3663 | unsigned long *pheadroom, unsigned long *pdirty, | |
3664 | unsigned long *pwriteback) | |
3665 | { | |
3666 | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | |
3667 | struct mem_cgroup *parent; | |
3668 | ||
3669 | *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY); | |
3670 | ||
3671 | /* this should eventually include NR_UNSTABLE_NFS */ | |
3672 | *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); | |
3673 | *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | | |
3674 | (1 << LRU_ACTIVE_FILE)); | |
3675 | *pheadroom = PAGE_COUNTER_MAX; | |
3676 | ||
3677 | while ((parent = parent_mem_cgroup(memcg))) { | |
3678 | unsigned long ceiling = min(memcg->memory.limit, memcg->high); | |
3679 | unsigned long used = page_counter_read(&memcg->memory); | |
3680 | ||
3681 | *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); | |
3682 | memcg = parent; | |
3683 | } | |
3684 | } | |
3685 | ||
3686 | #else /* CONFIG_CGROUP_WRITEBACK */ | |
3687 | ||
3688 | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) | |
3689 | { | |
3690 | return 0; | |
3691 | } | |
3692 | ||
3693 | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) | |
3694 | { | |
3695 | } | |
3696 | ||
3697 | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) | |
3698 | { | |
3699 | } | |
3700 | ||
3701 | #endif /* CONFIG_CGROUP_WRITEBACK */ | |
3702 | ||
3703 | /* | |
3704 | * DO NOT USE IN NEW FILES. | |
3705 | * | |
3706 | * "cgroup.event_control" implementation. | |
3707 | * | |
3708 | * This is way over-engineered. It tries to support fully configurable | |
3709 | * events for each user. Such level of flexibility is completely | |
3710 | * unnecessary especially in the light of the planned unified hierarchy. | |
3711 | * | |
3712 | * Please deprecate this and replace with something simpler if at all | |
3713 | * possible. | |
3714 | */ | |
3715 | ||
3716 | /* | |
3717 | * Unregister event and free resources. | |
3718 | * | |
3719 | * Gets called from workqueue. | |
3720 | */ | |
3721 | static void memcg_event_remove(struct work_struct *work) | |
3722 | { | |
3723 | struct mem_cgroup_event *event = | |
3724 | container_of(work, struct mem_cgroup_event, remove); | |
3725 | struct mem_cgroup *memcg = event->memcg; | |
3726 | ||
3727 | remove_wait_queue(event->wqh, &event->wait); | |
3728 | ||
3729 | event->unregister_event(memcg, event->eventfd); | |
3730 | ||
3731 | /* Notify userspace the event is going away. */ | |
3732 | eventfd_signal(event->eventfd, 1); | |
3733 | ||
3734 | eventfd_ctx_put(event->eventfd); | |
3735 | kfree(event); | |
3736 | css_put(&memcg->css); | |
3737 | } | |
3738 | ||
3739 | /* | |
3740 | * Gets called on POLLHUP on eventfd when user closes it. | |
3741 | * | |
3742 | * Called with wqh->lock held and interrupts disabled. | |
3743 | */ | |
3744 | static int memcg_event_wake(wait_queue_t *wait, unsigned mode, | |
3745 | int sync, void *key) | |
3746 | { | |
3747 | struct mem_cgroup_event *event = | |
3748 | container_of(wait, struct mem_cgroup_event, wait); | |
3749 | struct mem_cgroup *memcg = event->memcg; | |
3750 | unsigned long flags = (unsigned long)key; | |
3751 | ||
3752 | if (flags & POLLHUP) { | |
3753 | /* | |
3754 | * If the event has been detached at cgroup removal, we | |
3755 | * can simply return knowing the other side will cleanup | |
3756 | * for us. | |
3757 | * | |
3758 | * We can't race against event freeing since the other | |
3759 | * side will require wqh->lock via remove_wait_queue(), | |
3760 | * which we hold. | |
3761 | */ | |
3762 | spin_lock(&memcg->event_list_lock); | |
3763 | if (!list_empty(&event->list)) { | |
3764 | list_del_init(&event->list); | |
3765 | /* | |
3766 | * We are in atomic context, but cgroup_event_remove() | |
3767 | * may sleep, so we have to call it in workqueue. | |
3768 | */ | |
3769 | schedule_work(&event->remove); | |
3770 | } | |
3771 | spin_unlock(&memcg->event_list_lock); | |
3772 | } | |
3773 | ||
3774 | return 0; | |
3775 | } | |
3776 | ||
3777 | static void memcg_event_ptable_queue_proc(struct file *file, | |
3778 | wait_queue_head_t *wqh, poll_table *pt) | |
3779 | { | |
3780 | struct mem_cgroup_event *event = | |
3781 | container_of(pt, struct mem_cgroup_event, pt); | |
3782 | ||
3783 | event->wqh = wqh; | |
3784 | add_wait_queue(wqh, &event->wait); | |
3785 | } | |
3786 | ||
3787 | /* | |
3788 | * DO NOT USE IN NEW FILES. | |
3789 | * | |
3790 | * Parse input and register new cgroup event handler. | |
3791 | * | |
3792 | * Input must be in format '<event_fd> <control_fd> <args>'. | |
3793 | * Interpretation of args is defined by control file implementation. | |
3794 | */ | |
3795 | static ssize_t memcg_write_event_control(struct kernfs_open_file *of, | |
3796 | char *buf, size_t nbytes, loff_t off) | |
3797 | { | |
3798 | struct cgroup_subsys_state *css = of_css(of); | |
3799 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
3800 | struct mem_cgroup_event *event; | |
3801 | struct cgroup_subsys_state *cfile_css; | |
3802 | unsigned int efd, cfd; | |
3803 | struct fd efile; | |
3804 | struct fd cfile; | |
3805 | const char *name; | |
3806 | char *endp; | |
3807 | int ret; | |
3808 | ||
3809 | buf = strstrip(buf); | |
3810 | ||
3811 | efd = simple_strtoul(buf, &endp, 10); | |
3812 | if (*endp != ' ') | |
3813 | return -EINVAL; | |
3814 | buf = endp + 1; | |
3815 | ||
3816 | cfd = simple_strtoul(buf, &endp, 10); | |
3817 | if ((*endp != ' ') && (*endp != '\0')) | |
3818 | return -EINVAL; | |
3819 | buf = endp + 1; | |
3820 | ||
3821 | event = kzalloc(sizeof(*event), GFP_KERNEL); | |
3822 | if (!event) | |
3823 | return -ENOMEM; | |
3824 | ||
3825 | event->memcg = memcg; | |
3826 | INIT_LIST_HEAD(&event->list); | |
3827 | init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); | |
3828 | init_waitqueue_func_entry(&event->wait, memcg_event_wake); | |
3829 | INIT_WORK(&event->remove, memcg_event_remove); | |
3830 | ||
3831 | efile = fdget(efd); | |
3832 | if (!efile.file) { | |
3833 | ret = -EBADF; | |
3834 | goto out_kfree; | |
3835 | } | |
3836 | ||
3837 | event->eventfd = eventfd_ctx_fileget(efile.file); | |
3838 | if (IS_ERR(event->eventfd)) { | |
3839 | ret = PTR_ERR(event->eventfd); | |
3840 | goto out_put_efile; | |
3841 | } | |
3842 | ||
3843 | cfile = fdget(cfd); | |
3844 | if (!cfile.file) { | |
3845 | ret = -EBADF; | |
3846 | goto out_put_eventfd; | |
3847 | } | |
3848 | ||
3849 | /* the process need read permission on control file */ | |
3850 | /* AV: shouldn't we check that it's been opened for read instead? */ | |
3851 | ret = inode_permission(file_inode(cfile.file), MAY_READ); | |
3852 | if (ret < 0) | |
3853 | goto out_put_cfile; | |
3854 | ||
3855 | /* | |
3856 | * Determine the event callbacks and set them in @event. This used | |
3857 | * to be done via struct cftype but cgroup core no longer knows | |
3858 | * about these events. The following is crude but the whole thing | |
3859 | * is for compatibility anyway. | |
3860 | * | |
3861 | * DO NOT ADD NEW FILES. | |
3862 | */ | |
3863 | name = cfile.file->f_path.dentry->d_name.name; | |
3864 | ||
3865 | if (!strcmp(name, "memory.usage_in_bytes")) { | |
3866 | event->register_event = mem_cgroup_usage_register_event; | |
3867 | event->unregister_event = mem_cgroup_usage_unregister_event; | |
3868 | } else if (!strcmp(name, "memory.oom_control")) { | |
3869 | event->register_event = mem_cgroup_oom_register_event; | |
3870 | event->unregister_event = mem_cgroup_oom_unregister_event; | |
3871 | } else if (!strcmp(name, "memory.pressure_level")) { | |
3872 | event->register_event = vmpressure_register_event; | |
3873 | event->unregister_event = vmpressure_unregister_event; | |
3874 | } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { | |
3875 | event->register_event = memsw_cgroup_usage_register_event; | |
3876 | event->unregister_event = memsw_cgroup_usage_unregister_event; | |
3877 | } else { | |
3878 | ret = -EINVAL; | |
3879 | goto out_put_cfile; | |
3880 | } | |
3881 | ||
3882 | /* | |
3883 | * Verify @cfile should belong to @css. Also, remaining events are | |
3884 | * automatically removed on cgroup destruction but the removal is | |
3885 | * asynchronous, so take an extra ref on @css. | |
3886 | */ | |
3887 | cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, | |
3888 | &memory_cgrp_subsys); | |
3889 | ret = -EINVAL; | |
3890 | if (IS_ERR(cfile_css)) | |
3891 | goto out_put_cfile; | |
3892 | if (cfile_css != css) { | |
3893 | css_put(cfile_css); | |
3894 | goto out_put_cfile; | |
3895 | } | |
3896 | ||
3897 | ret = event->register_event(memcg, event->eventfd, buf); | |
3898 | if (ret) | |
3899 | goto out_put_css; | |
3900 | ||
3901 | efile.file->f_op->poll(efile.file, &event->pt); | |
3902 | ||
3903 | spin_lock(&memcg->event_list_lock); | |
3904 | list_add(&event->list, &memcg->event_list); | |
3905 | spin_unlock(&memcg->event_list_lock); | |
3906 | ||
3907 | fdput(cfile); | |
3908 | fdput(efile); | |
3909 | ||
3910 | return nbytes; | |
3911 | ||
3912 | out_put_css: | |
3913 | css_put(css); | |
3914 | out_put_cfile: | |
3915 | fdput(cfile); | |
3916 | out_put_eventfd: | |
3917 | eventfd_ctx_put(event->eventfd); | |
3918 | out_put_efile: | |
3919 | fdput(efile); | |
3920 | out_kfree: | |
3921 | kfree(event); | |
3922 | ||
3923 | return ret; | |
3924 | } | |
3925 | ||
3926 | static struct cftype mem_cgroup_legacy_files[] = { | |
3927 | { | |
3928 | .name = "usage_in_bytes", | |
3929 | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), | |
3930 | .read_u64 = mem_cgroup_read_u64, | |
3931 | }, | |
3932 | { | |
3933 | .name = "max_usage_in_bytes", | |
3934 | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), | |
3935 | .write = mem_cgroup_reset, | |
3936 | .read_u64 = mem_cgroup_read_u64, | |
3937 | }, | |
3938 | { | |
3939 | .name = "limit_in_bytes", | |
3940 | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), | |
3941 | .write = mem_cgroup_write, | |
3942 | .read_u64 = mem_cgroup_read_u64, | |
3943 | }, | |
3944 | { | |
3945 | .name = "soft_limit_in_bytes", | |
3946 | .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), | |
3947 | .write = mem_cgroup_write, | |
3948 | .read_u64 = mem_cgroup_read_u64, | |
3949 | }, | |
3950 | { | |
3951 | .name = "failcnt", | |
3952 | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), | |
3953 | .write = mem_cgroup_reset, | |
3954 | .read_u64 = mem_cgroup_read_u64, | |
3955 | }, | |
3956 | { | |
3957 | .name = "stat", | |
3958 | .seq_show = memcg_stat_show, | |
3959 | }, | |
3960 | { | |
3961 | .name = "force_empty", | |
3962 | .write = mem_cgroup_force_empty_write, | |
3963 | }, | |
3964 | { | |
3965 | .name = "use_hierarchy", | |
3966 | .write_u64 = mem_cgroup_hierarchy_write, | |
3967 | .read_u64 = mem_cgroup_hierarchy_read, | |
3968 | }, | |
3969 | { | |
3970 | .name = "cgroup.event_control", /* XXX: for compat */ | |
3971 | .write = memcg_write_event_control, | |
3972 | .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, | |
3973 | }, | |
3974 | { | |
3975 | .name = "swappiness", | |
3976 | .read_u64 = mem_cgroup_swappiness_read, | |
3977 | .write_u64 = mem_cgroup_swappiness_write, | |
3978 | }, | |
3979 | { | |
3980 | .name = "move_charge_at_immigrate", | |
3981 | .read_u64 = mem_cgroup_move_charge_read, | |
3982 | .write_u64 = mem_cgroup_move_charge_write, | |
3983 | }, | |
3984 | { | |
3985 | .name = "oom_control", | |
3986 | .seq_show = mem_cgroup_oom_control_read, | |
3987 | .write_u64 = mem_cgroup_oom_control_write, | |
3988 | .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), | |
3989 | }, | |
3990 | { | |
3991 | .name = "pressure_level", | |
3992 | }, | |
3993 | #ifdef CONFIG_NUMA | |
3994 | { | |
3995 | .name = "numa_stat", | |
3996 | .seq_show = memcg_numa_stat_show, | |
3997 | }, | |
3998 | #endif | |
3999 | { | |
4000 | .name = "kmem.limit_in_bytes", | |
4001 | .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), | |
4002 | .write = mem_cgroup_write, | |
4003 | .read_u64 = mem_cgroup_read_u64, | |
4004 | }, | |
4005 | { | |
4006 | .name = "kmem.usage_in_bytes", | |
4007 | .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), | |
4008 | .read_u64 = mem_cgroup_read_u64, | |
4009 | }, | |
4010 | { | |
4011 | .name = "kmem.failcnt", | |
4012 | .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), | |
4013 | .write = mem_cgroup_reset, | |
4014 | .read_u64 = mem_cgroup_read_u64, | |
4015 | }, | |
4016 | { | |
4017 | .name = "kmem.max_usage_in_bytes", | |
4018 | .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), | |
4019 | .write = mem_cgroup_reset, | |
4020 | .read_u64 = mem_cgroup_read_u64, | |
4021 | }, | |
4022 | #ifdef CONFIG_SLABINFO | |
4023 | { | |
4024 | .name = "kmem.slabinfo", | |
4025 | .seq_start = slab_start, | |
4026 | .seq_next = slab_next, | |
4027 | .seq_stop = slab_stop, | |
4028 | .seq_show = memcg_slab_show, | |
4029 | }, | |
4030 | #endif | |
4031 | { | |
4032 | .name = "kmem.tcp.limit_in_bytes", | |
4033 | .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), | |
4034 | .write = mem_cgroup_write, | |
4035 | .read_u64 = mem_cgroup_read_u64, | |
4036 | }, | |
4037 | { | |
4038 | .name = "kmem.tcp.usage_in_bytes", | |
4039 | .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), | |
4040 | .read_u64 = mem_cgroup_read_u64, | |
4041 | }, | |
4042 | { | |
4043 | .name = "kmem.tcp.failcnt", | |
4044 | .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), | |
4045 | .write = mem_cgroup_reset, | |
4046 | .read_u64 = mem_cgroup_read_u64, | |
4047 | }, | |
4048 | { | |
4049 | .name = "kmem.tcp.max_usage_in_bytes", | |
4050 | .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), | |
4051 | .write = mem_cgroup_reset, | |
4052 | .read_u64 = mem_cgroup_read_u64, | |
4053 | }, | |
4054 | { }, /* terminate */ | |
4055 | }; | |
4056 | ||
4057 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) | |
4058 | { | |
4059 | struct mem_cgroup_per_node *pn; | |
4060 | struct mem_cgroup_per_zone *mz; | |
4061 | int zone, tmp = node; | |
4062 | /* | |
4063 | * This routine is called against possible nodes. | |
4064 | * But it's BUG to call kmalloc() against offline node. | |
4065 | * | |
4066 | * TODO: this routine can waste much memory for nodes which will | |
4067 | * never be onlined. It's better to use memory hotplug callback | |
4068 | * function. | |
4069 | */ | |
4070 | if (!node_state(node, N_NORMAL_MEMORY)) | |
4071 | tmp = -1; | |
4072 | pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); | |
4073 | if (!pn) | |
4074 | return 1; | |
4075 | ||
4076 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | |
4077 | mz = &pn->zoneinfo[zone]; | |
4078 | lruvec_init(&mz->lruvec); | |
4079 | mz->usage_in_excess = 0; | |
4080 | mz->on_tree = false; | |
4081 | mz->memcg = memcg; | |
4082 | } | |
4083 | memcg->nodeinfo[node] = pn; | |
4084 | return 0; | |
4085 | } | |
4086 | ||
4087 | static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) | |
4088 | { | |
4089 | kfree(memcg->nodeinfo[node]); | |
4090 | } | |
4091 | ||
4092 | static void mem_cgroup_free(struct mem_cgroup *memcg) | |
4093 | { | |
4094 | int node; | |
4095 | ||
4096 | memcg_wb_domain_exit(memcg); | |
4097 | for_each_node(node) | |
4098 | free_mem_cgroup_per_zone_info(memcg, node); | |
4099 | free_percpu(memcg->stat); | |
4100 | kfree(memcg); | |
4101 | } | |
4102 | ||
4103 | static struct mem_cgroup *mem_cgroup_alloc(void) | |
4104 | { | |
4105 | struct mem_cgroup *memcg; | |
4106 | size_t size; | |
4107 | int node; | |
4108 | ||
4109 | size = sizeof(struct mem_cgroup); | |
4110 | size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); | |
4111 | ||
4112 | memcg = kzalloc(size, GFP_KERNEL); | |
4113 | if (!memcg) | |
4114 | return NULL; | |
4115 | ||
4116 | memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); | |
4117 | if (!memcg->stat) | |
4118 | goto fail; | |
4119 | ||
4120 | for_each_node(node) | |
4121 | if (alloc_mem_cgroup_per_zone_info(memcg, node)) | |
4122 | goto fail; | |
4123 | ||
4124 | if (memcg_wb_domain_init(memcg, GFP_KERNEL)) | |
4125 | goto fail; | |
4126 | ||
4127 | INIT_WORK(&memcg->high_work, high_work_func); | |
4128 | memcg->last_scanned_node = MAX_NUMNODES; | |
4129 | INIT_LIST_HEAD(&memcg->oom_notify); | |
4130 | mutex_init(&memcg->thresholds_lock); | |
4131 | spin_lock_init(&memcg->move_lock); | |
4132 | vmpressure_init(&memcg->vmpressure); | |
4133 | INIT_LIST_HEAD(&memcg->event_list); | |
4134 | spin_lock_init(&memcg->event_list_lock); | |
4135 | memcg->socket_pressure = jiffies; | |
4136 | #ifndef CONFIG_SLOB | |
4137 | memcg->kmemcg_id = -1; | |
4138 | #endif | |
4139 | #ifdef CONFIG_CGROUP_WRITEBACK | |
4140 | INIT_LIST_HEAD(&memcg->cgwb_list); | |
4141 | #endif | |
4142 | return memcg; | |
4143 | fail: | |
4144 | mem_cgroup_free(memcg); | |
4145 | return NULL; | |
4146 | } | |
4147 | ||
4148 | static struct cgroup_subsys_state * __ref | |
4149 | mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) | |
4150 | { | |
4151 | struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); | |
4152 | struct mem_cgroup *memcg; | |
4153 | long error = -ENOMEM; | |
4154 | ||
4155 | memcg = mem_cgroup_alloc(); | |
4156 | if (!memcg) | |
4157 | return ERR_PTR(error); | |
4158 | ||
4159 | memcg->high = PAGE_COUNTER_MAX; | |
4160 | memcg->soft_limit = PAGE_COUNTER_MAX; | |
4161 | if (parent) { | |
4162 | memcg->swappiness = mem_cgroup_swappiness(parent); | |
4163 | memcg->oom_kill_disable = parent->oom_kill_disable; | |
4164 | } | |
4165 | if (parent && parent->use_hierarchy) { | |
4166 | memcg->use_hierarchy = true; | |
4167 | page_counter_init(&memcg->memory, &parent->memory); | |
4168 | page_counter_init(&memcg->swap, &parent->swap); | |
4169 | page_counter_init(&memcg->memsw, &parent->memsw); | |
4170 | page_counter_init(&memcg->kmem, &parent->kmem); | |
4171 | page_counter_init(&memcg->tcpmem, &parent->tcpmem); | |
4172 | } else { | |
4173 | page_counter_init(&memcg->memory, NULL); | |
4174 | page_counter_init(&memcg->swap, NULL); | |
4175 | page_counter_init(&memcg->memsw, NULL); | |
4176 | page_counter_init(&memcg->kmem, NULL); | |
4177 | page_counter_init(&memcg->tcpmem, NULL); | |
4178 | /* | |
4179 | * Deeper hierachy with use_hierarchy == false doesn't make | |
4180 | * much sense so let cgroup subsystem know about this | |
4181 | * unfortunate state in our controller. | |
4182 | */ | |
4183 | if (parent != root_mem_cgroup) | |
4184 | memory_cgrp_subsys.broken_hierarchy = true; | |
4185 | } | |
4186 | ||
4187 | /* The following stuff does not apply to the root */ | |
4188 | if (!parent) { | |
4189 | root_mem_cgroup = memcg; | |
4190 | return &memcg->css; | |
4191 | } | |
4192 | ||
4193 | error = memcg_online_kmem(memcg); | |
4194 | if (error) | |
4195 | goto fail; | |
4196 | ||
4197 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) | |
4198 | static_branch_inc(&memcg_sockets_enabled_key); | |
4199 | ||
4200 | return &memcg->css; | |
4201 | fail: | |
4202 | mem_cgroup_free(memcg); | |
4203 | return NULL; | |
4204 | } | |
4205 | ||
4206 | static int | |
4207 | mem_cgroup_css_online(struct cgroup_subsys_state *css) | |
4208 | { | |
4209 | if (css->id > MEM_CGROUP_ID_MAX) | |
4210 | return -ENOSPC; | |
4211 | ||
4212 | return 0; | |
4213 | } | |
4214 | ||
4215 | static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) | |
4216 | { | |
4217 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
4218 | struct mem_cgroup_event *event, *tmp; | |
4219 | ||
4220 | /* | |
4221 | * Unregister events and notify userspace. | |
4222 | * Notify userspace about cgroup removing only after rmdir of cgroup | |
4223 | * directory to avoid race between userspace and kernelspace. | |
4224 | */ | |
4225 | spin_lock(&memcg->event_list_lock); | |
4226 | list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { | |
4227 | list_del_init(&event->list); | |
4228 | schedule_work(&event->remove); | |
4229 | } | |
4230 | spin_unlock(&memcg->event_list_lock); | |
4231 | ||
4232 | memcg_offline_kmem(memcg); | |
4233 | wb_memcg_offline(memcg); | |
4234 | } | |
4235 | ||
4236 | static void mem_cgroup_css_released(struct cgroup_subsys_state *css) | |
4237 | { | |
4238 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
4239 | ||
4240 | invalidate_reclaim_iterators(memcg); | |
4241 | } | |
4242 | ||
4243 | static void mem_cgroup_css_free(struct cgroup_subsys_state *css) | |
4244 | { | |
4245 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
4246 | ||
4247 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) | |
4248 | static_branch_dec(&memcg_sockets_enabled_key); | |
4249 | ||
4250 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) | |
4251 | static_branch_dec(&memcg_sockets_enabled_key); | |
4252 | ||
4253 | vmpressure_cleanup(&memcg->vmpressure); | |
4254 | cancel_work_sync(&memcg->high_work); | |
4255 | mem_cgroup_remove_from_trees(memcg); | |
4256 | memcg_free_kmem(memcg); | |
4257 | mem_cgroup_free(memcg); | |
4258 | } | |
4259 | ||
4260 | /** | |
4261 | * mem_cgroup_css_reset - reset the states of a mem_cgroup | |
4262 | * @css: the target css | |
4263 | * | |
4264 | * Reset the states of the mem_cgroup associated with @css. This is | |
4265 | * invoked when the userland requests disabling on the default hierarchy | |
4266 | * but the memcg is pinned through dependency. The memcg should stop | |
4267 | * applying policies and should revert to the vanilla state as it may be | |
4268 | * made visible again. | |
4269 | * | |
4270 | * The current implementation only resets the essential configurations. | |
4271 | * This needs to be expanded to cover all the visible parts. | |
4272 | */ | |
4273 | static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) | |
4274 | { | |
4275 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
4276 | ||
4277 | page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX); | |
4278 | page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX); | |
4279 | page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX); | |
4280 | page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX); | |
4281 | page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX); | |
4282 | memcg->low = 0; | |
4283 | memcg->high = PAGE_COUNTER_MAX; | |
4284 | memcg->soft_limit = PAGE_COUNTER_MAX; | |
4285 | memcg_wb_domain_size_changed(memcg); | |
4286 | } | |
4287 | ||
4288 | #ifdef CONFIG_MMU | |
4289 | /* Handlers for move charge at task migration. */ | |
4290 | static int mem_cgroup_do_precharge(unsigned long count) | |
4291 | { | |
4292 | int ret; | |
4293 | ||
4294 | /* Try a single bulk charge without reclaim first, kswapd may wake */ | |
4295 | ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); | |
4296 | if (!ret) { | |
4297 | mc.precharge += count; | |
4298 | return ret; | |
4299 | } | |
4300 | ||
4301 | /* Try charges one by one with reclaim */ | |
4302 | while (count--) { | |
4303 | ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1); | |
4304 | if (ret) | |
4305 | return ret; | |
4306 | mc.precharge++; | |
4307 | cond_resched(); | |
4308 | } | |
4309 | return 0; | |
4310 | } | |
4311 | ||
4312 | union mc_target { | |
4313 | struct page *page; | |
4314 | swp_entry_t ent; | |
4315 | }; | |
4316 | ||
4317 | enum mc_target_type { | |
4318 | MC_TARGET_NONE = 0, | |
4319 | MC_TARGET_PAGE, | |
4320 | MC_TARGET_SWAP, | |
4321 | }; | |
4322 | ||
4323 | static struct page *mc_handle_present_pte(struct vm_area_struct *vma, | |
4324 | unsigned long addr, pte_t ptent) | |
4325 | { | |
4326 | struct page *page = vm_normal_page(vma, addr, ptent); | |
4327 | ||
4328 | if (!page || !page_mapped(page)) | |
4329 | return NULL; | |
4330 | if (PageAnon(page)) { | |
4331 | if (!(mc.flags & MOVE_ANON)) | |
4332 | return NULL; | |
4333 | } else { | |
4334 | if (!(mc.flags & MOVE_FILE)) | |
4335 | return NULL; | |
4336 | } | |
4337 | if (!get_page_unless_zero(page)) | |
4338 | return NULL; | |
4339 | ||
4340 | return page; | |
4341 | } | |
4342 | ||
4343 | #ifdef CONFIG_SWAP | |
4344 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | |
4345 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
4346 | { | |
4347 | struct page *page = NULL; | |
4348 | swp_entry_t ent = pte_to_swp_entry(ptent); | |
4349 | ||
4350 | if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) | |
4351 | return NULL; | |
4352 | /* | |
4353 | * Because lookup_swap_cache() updates some statistics counter, | |
4354 | * we call find_get_page() with swapper_space directly. | |
4355 | */ | |
4356 | page = find_get_page(swap_address_space(ent), ent.val); | |
4357 | if (do_memsw_account()) | |
4358 | entry->val = ent.val; | |
4359 | ||
4360 | return page; | |
4361 | } | |
4362 | #else | |
4363 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | |
4364 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
4365 | { | |
4366 | return NULL; | |
4367 | } | |
4368 | #endif | |
4369 | ||
4370 | static struct page *mc_handle_file_pte(struct vm_area_struct *vma, | |
4371 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
4372 | { | |
4373 | struct page *page = NULL; | |
4374 | struct address_space *mapping; | |
4375 | pgoff_t pgoff; | |
4376 | ||
4377 | if (!vma->vm_file) /* anonymous vma */ | |
4378 | return NULL; | |
4379 | if (!(mc.flags & MOVE_FILE)) | |
4380 | return NULL; | |
4381 | ||
4382 | mapping = vma->vm_file->f_mapping; | |
4383 | pgoff = linear_page_index(vma, addr); | |
4384 | ||
4385 | /* page is moved even if it's not RSS of this task(page-faulted). */ | |
4386 | #ifdef CONFIG_SWAP | |
4387 | /* shmem/tmpfs may report page out on swap: account for that too. */ | |
4388 | if (shmem_mapping(mapping)) { | |
4389 | page = find_get_entry(mapping, pgoff); | |
4390 | if (radix_tree_exceptional_entry(page)) { | |
4391 | swp_entry_t swp = radix_to_swp_entry(page); | |
4392 | if (do_memsw_account()) | |
4393 | *entry = swp; | |
4394 | page = find_get_page(swap_address_space(swp), swp.val); | |
4395 | } | |
4396 | } else | |
4397 | page = find_get_page(mapping, pgoff); | |
4398 | #else | |
4399 | page = find_get_page(mapping, pgoff); | |
4400 | #endif | |
4401 | return page; | |
4402 | } | |
4403 | ||
4404 | /** | |
4405 | * mem_cgroup_move_account - move account of the page | |
4406 | * @page: the page | |
4407 | * @nr_pages: number of regular pages (>1 for huge pages) | |
4408 | * @from: mem_cgroup which the page is moved from. | |
4409 | * @to: mem_cgroup which the page is moved to. @from != @to. | |
4410 | * | |
4411 | * The caller must make sure the page is not on LRU (isolate_page() is useful.) | |
4412 | * | |
4413 | * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" | |
4414 | * from old cgroup. | |
4415 | */ | |
4416 | static int mem_cgroup_move_account(struct page *page, | |
4417 | bool compound, | |
4418 | struct mem_cgroup *from, | |
4419 | struct mem_cgroup *to) | |
4420 | { | |
4421 | unsigned long flags; | |
4422 | unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; | |
4423 | int ret; | |
4424 | bool anon; | |
4425 | ||
4426 | VM_BUG_ON(from == to); | |
4427 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
4428 | VM_BUG_ON(compound && !PageTransHuge(page)); | |
4429 | ||
4430 | /* | |
4431 | * Prevent mem_cgroup_migrate() from looking at | |
4432 | * page->mem_cgroup of its source page while we change it. | |
4433 | */ | |
4434 | ret = -EBUSY; | |
4435 | if (!trylock_page(page)) | |
4436 | goto out; | |
4437 | ||
4438 | ret = -EINVAL; | |
4439 | if (page->mem_cgroup != from) | |
4440 | goto out_unlock; | |
4441 | ||
4442 | anon = PageAnon(page); | |
4443 | ||
4444 | spin_lock_irqsave(&from->move_lock, flags); | |
4445 | ||
4446 | if (!anon && page_mapped(page)) { | |
4447 | __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], | |
4448 | nr_pages); | |
4449 | __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], | |
4450 | nr_pages); | |
4451 | } | |
4452 | ||
4453 | /* | |
4454 | * move_lock grabbed above and caller set from->moving_account, so | |
4455 | * mem_cgroup_update_page_stat() will serialize updates to PageDirty. | |
4456 | * So mapping should be stable for dirty pages. | |
4457 | */ | |
4458 | if (!anon && PageDirty(page)) { | |
4459 | struct address_space *mapping = page_mapping(page); | |
4460 | ||
4461 | if (mapping_cap_account_dirty(mapping)) { | |
4462 | __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY], | |
4463 | nr_pages); | |
4464 | __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY], | |
4465 | nr_pages); | |
4466 | } | |
4467 | } | |
4468 | ||
4469 | if (PageWriteback(page)) { | |
4470 | __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], | |
4471 | nr_pages); | |
4472 | __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], | |
4473 | nr_pages); | |
4474 | } | |
4475 | ||
4476 | /* | |
4477 | * It is safe to change page->mem_cgroup here because the page | |
4478 | * is referenced, charged, and isolated - we can't race with | |
4479 | * uncharging, charging, migration, or LRU putback. | |
4480 | */ | |
4481 | ||
4482 | /* caller should have done css_get */ | |
4483 | page->mem_cgroup = to; | |
4484 | spin_unlock_irqrestore(&from->move_lock, flags); | |
4485 | ||
4486 | ret = 0; | |
4487 | ||
4488 | local_irq_disable(); | |
4489 | mem_cgroup_charge_statistics(to, page, compound, nr_pages); | |
4490 | memcg_check_events(to, page); | |
4491 | mem_cgroup_charge_statistics(from, page, compound, -nr_pages); | |
4492 | memcg_check_events(from, page); | |
4493 | local_irq_enable(); | |
4494 | out_unlock: | |
4495 | unlock_page(page); | |
4496 | out: | |
4497 | return ret; | |
4498 | } | |
4499 | ||
4500 | /** | |
4501 | * get_mctgt_type - get target type of moving charge | |
4502 | * @vma: the vma the pte to be checked belongs | |
4503 | * @addr: the address corresponding to the pte to be checked | |
4504 | * @ptent: the pte to be checked | |
4505 | * @target: the pointer the target page or swap ent will be stored(can be NULL) | |
4506 | * | |
4507 | * Returns | |
4508 | * 0(MC_TARGET_NONE): if the pte is not a target for move charge. | |
4509 | * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for | |
4510 | * move charge. if @target is not NULL, the page is stored in target->page | |
4511 | * with extra refcnt got(Callers should handle it). | |
4512 | * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a | |
4513 | * target for charge migration. if @target is not NULL, the entry is stored | |
4514 | * in target->ent. | |
4515 | * | |
4516 | * Called with pte lock held. | |
4517 | */ | |
4518 | ||
4519 | static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, | |
4520 | unsigned long addr, pte_t ptent, union mc_target *target) | |
4521 | { | |
4522 | struct page *page = NULL; | |
4523 | enum mc_target_type ret = MC_TARGET_NONE; | |
4524 | swp_entry_t ent = { .val = 0 }; | |
4525 | ||
4526 | if (pte_present(ptent)) | |
4527 | page = mc_handle_present_pte(vma, addr, ptent); | |
4528 | else if (is_swap_pte(ptent)) | |
4529 | page = mc_handle_swap_pte(vma, addr, ptent, &ent); | |
4530 | else if (pte_none(ptent)) | |
4531 | page = mc_handle_file_pte(vma, addr, ptent, &ent); | |
4532 | ||
4533 | if (!page && !ent.val) | |
4534 | return ret; | |
4535 | if (page) { | |
4536 | /* | |
4537 | * Do only loose check w/o serialization. | |
4538 | * mem_cgroup_move_account() checks the page is valid or | |
4539 | * not under LRU exclusion. | |
4540 | */ | |
4541 | if (page->mem_cgroup == mc.from) { | |
4542 | ret = MC_TARGET_PAGE; | |
4543 | if (target) | |
4544 | target->page = page; | |
4545 | } | |
4546 | if (!ret || !target) | |
4547 | put_page(page); | |
4548 | } | |
4549 | /* There is a swap entry and a page doesn't exist or isn't charged */ | |
4550 | if (ent.val && !ret && | |
4551 | mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { | |
4552 | ret = MC_TARGET_SWAP; | |
4553 | if (target) | |
4554 | target->ent = ent; | |
4555 | } | |
4556 | return ret; | |
4557 | } | |
4558 | ||
4559 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
4560 | /* | |
4561 | * We don't consider swapping or file mapped pages because THP does not | |
4562 | * support them for now. | |
4563 | * Caller should make sure that pmd_trans_huge(pmd) is true. | |
4564 | */ | |
4565 | static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | |
4566 | unsigned long addr, pmd_t pmd, union mc_target *target) | |
4567 | { | |
4568 | struct page *page = NULL; | |
4569 | enum mc_target_type ret = MC_TARGET_NONE; | |
4570 | ||
4571 | page = pmd_page(pmd); | |
4572 | VM_BUG_ON_PAGE(!page || !PageHead(page), page); | |
4573 | if (!(mc.flags & MOVE_ANON)) | |
4574 | return ret; | |
4575 | if (page->mem_cgroup == mc.from) { | |
4576 | ret = MC_TARGET_PAGE; | |
4577 | if (target) { | |
4578 | get_page(page); | |
4579 | target->page = page; | |
4580 | } | |
4581 | } | |
4582 | return ret; | |
4583 | } | |
4584 | #else | |
4585 | static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | |
4586 | unsigned long addr, pmd_t pmd, union mc_target *target) | |
4587 | { | |
4588 | return MC_TARGET_NONE; | |
4589 | } | |
4590 | #endif | |
4591 | ||
4592 | static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, | |
4593 | unsigned long addr, unsigned long end, | |
4594 | struct mm_walk *walk) | |
4595 | { | |
4596 | struct vm_area_struct *vma = walk->vma; | |
4597 | pte_t *pte; | |
4598 | spinlock_t *ptl; | |
4599 | ||
4600 | ptl = pmd_trans_huge_lock(pmd, vma); | |
4601 | if (ptl) { | |
4602 | if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) | |
4603 | mc.precharge += HPAGE_PMD_NR; | |
4604 | spin_unlock(ptl); | |
4605 | return 0; | |
4606 | } | |
4607 | ||
4608 | if (pmd_trans_unstable(pmd)) | |
4609 | return 0; | |
4610 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | |
4611 | for (; addr != end; pte++, addr += PAGE_SIZE) | |
4612 | if (get_mctgt_type(vma, addr, *pte, NULL)) | |
4613 | mc.precharge++; /* increment precharge temporarily */ | |
4614 | pte_unmap_unlock(pte - 1, ptl); | |
4615 | cond_resched(); | |
4616 | ||
4617 | return 0; | |
4618 | } | |
4619 | ||
4620 | static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) | |
4621 | { | |
4622 | unsigned long precharge; | |
4623 | ||
4624 | struct mm_walk mem_cgroup_count_precharge_walk = { | |
4625 | .pmd_entry = mem_cgroup_count_precharge_pte_range, | |
4626 | .mm = mm, | |
4627 | }; | |
4628 | down_read(&mm->mmap_sem); | |
4629 | walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk); | |
4630 | up_read(&mm->mmap_sem); | |
4631 | ||
4632 | precharge = mc.precharge; | |
4633 | mc.precharge = 0; | |
4634 | ||
4635 | return precharge; | |
4636 | } | |
4637 | ||
4638 | static int mem_cgroup_precharge_mc(struct mm_struct *mm) | |
4639 | { | |
4640 | unsigned long precharge = mem_cgroup_count_precharge(mm); | |
4641 | ||
4642 | VM_BUG_ON(mc.moving_task); | |
4643 | mc.moving_task = current; | |
4644 | return mem_cgroup_do_precharge(precharge); | |
4645 | } | |
4646 | ||
4647 | /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ | |
4648 | static void __mem_cgroup_clear_mc(void) | |
4649 | { | |
4650 | struct mem_cgroup *from = mc.from; | |
4651 | struct mem_cgroup *to = mc.to; | |
4652 | ||
4653 | /* we must uncharge all the leftover precharges from mc.to */ | |
4654 | if (mc.precharge) { | |
4655 | cancel_charge(mc.to, mc.precharge); | |
4656 | mc.precharge = 0; | |
4657 | } | |
4658 | /* | |
4659 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so | |
4660 | * we must uncharge here. | |
4661 | */ | |
4662 | if (mc.moved_charge) { | |
4663 | cancel_charge(mc.from, mc.moved_charge); | |
4664 | mc.moved_charge = 0; | |
4665 | } | |
4666 | /* we must fixup refcnts and charges */ | |
4667 | if (mc.moved_swap) { | |
4668 | /* uncharge swap account from the old cgroup */ | |
4669 | if (!mem_cgroup_is_root(mc.from)) | |
4670 | page_counter_uncharge(&mc.from->memsw, mc.moved_swap); | |
4671 | ||
4672 | /* | |
4673 | * we charged both to->memory and to->memsw, so we | |
4674 | * should uncharge to->memory. | |
4675 | */ | |
4676 | if (!mem_cgroup_is_root(mc.to)) | |
4677 | page_counter_uncharge(&mc.to->memory, mc.moved_swap); | |
4678 | ||
4679 | css_put_many(&mc.from->css, mc.moved_swap); | |
4680 | ||
4681 | /* we've already done css_get(mc.to) */ | |
4682 | mc.moved_swap = 0; | |
4683 | } | |
4684 | memcg_oom_recover(from); | |
4685 | memcg_oom_recover(to); | |
4686 | wake_up_all(&mc.waitq); | |
4687 | } | |
4688 | ||
4689 | static void mem_cgroup_clear_mc(void) | |
4690 | { | |
4691 | struct mm_struct *mm = mc.mm; | |
4692 | ||
4693 | /* | |
4694 | * we must clear moving_task before waking up waiters at the end of | |
4695 | * task migration. | |
4696 | */ | |
4697 | mc.moving_task = NULL; | |
4698 | __mem_cgroup_clear_mc(); | |
4699 | spin_lock(&mc.lock); | |
4700 | mc.from = NULL; | |
4701 | mc.to = NULL; | |
4702 | mc.mm = NULL; | |
4703 | spin_unlock(&mc.lock); | |
4704 | ||
4705 | mmput(mm); | |
4706 | } | |
4707 | ||
4708 | static int mem_cgroup_can_attach(struct cgroup_taskset *tset) | |
4709 | { | |
4710 | struct cgroup_subsys_state *css; | |
4711 | struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ | |
4712 | struct mem_cgroup *from; | |
4713 | struct task_struct *leader, *p; | |
4714 | struct mm_struct *mm; | |
4715 | unsigned long move_flags; | |
4716 | int ret = 0; | |
4717 | ||
4718 | /* charge immigration isn't supported on the default hierarchy */ | |
4719 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
4720 | return 0; | |
4721 | ||
4722 | /* | |
4723 | * Multi-process migrations only happen on the default hierarchy | |
4724 | * where charge immigration is not used. Perform charge | |
4725 | * immigration if @tset contains a leader and whine if there are | |
4726 | * multiple. | |
4727 | */ | |
4728 | p = NULL; | |
4729 | cgroup_taskset_for_each_leader(leader, css, tset) { | |
4730 | WARN_ON_ONCE(p); | |
4731 | p = leader; | |
4732 | memcg = mem_cgroup_from_css(css); | |
4733 | } | |
4734 | if (!p) | |
4735 | return 0; | |
4736 | ||
4737 | /* | |
4738 | * We are now commited to this value whatever it is. Changes in this | |
4739 | * tunable will only affect upcoming migrations, not the current one. | |
4740 | * So we need to save it, and keep it going. | |
4741 | */ | |
4742 | move_flags = READ_ONCE(memcg->move_charge_at_immigrate); | |
4743 | if (!move_flags) | |
4744 | return 0; | |
4745 | ||
4746 | from = mem_cgroup_from_task(p); | |
4747 | ||
4748 | VM_BUG_ON(from == memcg); | |
4749 | ||
4750 | mm = get_task_mm(p); | |
4751 | if (!mm) | |
4752 | return 0; | |
4753 | /* We move charges only when we move a owner of the mm */ | |
4754 | if (mm->owner == p) { | |
4755 | VM_BUG_ON(mc.from); | |
4756 | VM_BUG_ON(mc.to); | |
4757 | VM_BUG_ON(mc.precharge); | |
4758 | VM_BUG_ON(mc.moved_charge); | |
4759 | VM_BUG_ON(mc.moved_swap); | |
4760 | ||
4761 | spin_lock(&mc.lock); | |
4762 | mc.mm = mm; | |
4763 | mc.from = from; | |
4764 | mc.to = memcg; | |
4765 | mc.flags = move_flags; | |
4766 | spin_unlock(&mc.lock); | |
4767 | /* We set mc.moving_task later */ | |
4768 | ||
4769 | ret = mem_cgroup_precharge_mc(mm); | |
4770 | if (ret) | |
4771 | mem_cgroup_clear_mc(); | |
4772 | } else { | |
4773 | mmput(mm); | |
4774 | } | |
4775 | return ret; | |
4776 | } | |
4777 | ||
4778 | static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) | |
4779 | { | |
4780 | if (mc.to) | |
4781 | mem_cgroup_clear_mc(); | |
4782 | } | |
4783 | ||
4784 | static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, | |
4785 | unsigned long addr, unsigned long end, | |
4786 | struct mm_walk *walk) | |
4787 | { | |
4788 | int ret = 0; | |
4789 | struct vm_area_struct *vma = walk->vma; | |
4790 | pte_t *pte; | |
4791 | spinlock_t *ptl; | |
4792 | enum mc_target_type target_type; | |
4793 | union mc_target target; | |
4794 | struct page *page; | |
4795 | ||
4796 | ptl = pmd_trans_huge_lock(pmd, vma); | |
4797 | if (ptl) { | |
4798 | if (mc.precharge < HPAGE_PMD_NR) { | |
4799 | spin_unlock(ptl); | |
4800 | return 0; | |
4801 | } | |
4802 | target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); | |
4803 | if (target_type == MC_TARGET_PAGE) { | |
4804 | page = target.page; | |
4805 | if (!isolate_lru_page(page)) { | |
4806 | if (!mem_cgroup_move_account(page, true, | |
4807 | mc.from, mc.to)) { | |
4808 | mc.precharge -= HPAGE_PMD_NR; | |
4809 | mc.moved_charge += HPAGE_PMD_NR; | |
4810 | } | |
4811 | putback_lru_page(page); | |
4812 | } | |
4813 | put_page(page); | |
4814 | } | |
4815 | spin_unlock(ptl); | |
4816 | return 0; | |
4817 | } | |
4818 | ||
4819 | if (pmd_trans_unstable(pmd)) | |
4820 | return 0; | |
4821 | retry: | |
4822 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | |
4823 | for (; addr != end; addr += PAGE_SIZE) { | |
4824 | pte_t ptent = *(pte++); | |
4825 | swp_entry_t ent; | |
4826 | ||
4827 | if (!mc.precharge) | |
4828 | break; | |
4829 | ||
4830 | switch (get_mctgt_type(vma, addr, ptent, &target)) { | |
4831 | case MC_TARGET_PAGE: | |
4832 | page = target.page; | |
4833 | /* | |
4834 | * We can have a part of the split pmd here. Moving it | |
4835 | * can be done but it would be too convoluted so simply | |
4836 | * ignore such a partial THP and keep it in original | |
4837 | * memcg. There should be somebody mapping the head. | |
4838 | */ | |
4839 | if (PageTransCompound(page)) | |
4840 | goto put; | |
4841 | if (isolate_lru_page(page)) | |
4842 | goto put; | |
4843 | if (!mem_cgroup_move_account(page, false, | |
4844 | mc.from, mc.to)) { | |
4845 | mc.precharge--; | |
4846 | /* we uncharge from mc.from later. */ | |
4847 | mc.moved_charge++; | |
4848 | } | |
4849 | putback_lru_page(page); | |
4850 | put: /* get_mctgt_type() gets the page */ | |
4851 | put_page(page); | |
4852 | break; | |
4853 | case MC_TARGET_SWAP: | |
4854 | ent = target.ent; | |
4855 | if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { | |
4856 | mc.precharge--; | |
4857 | /* we fixup refcnts and charges later. */ | |
4858 | mc.moved_swap++; | |
4859 | } | |
4860 | break; | |
4861 | default: | |
4862 | break; | |
4863 | } | |
4864 | } | |
4865 | pte_unmap_unlock(pte - 1, ptl); | |
4866 | cond_resched(); | |
4867 | ||
4868 | if (addr != end) { | |
4869 | /* | |
4870 | * We have consumed all precharges we got in can_attach(). | |
4871 | * We try charge one by one, but don't do any additional | |
4872 | * charges to mc.to if we have failed in charge once in attach() | |
4873 | * phase. | |
4874 | */ | |
4875 | ret = mem_cgroup_do_precharge(1); | |
4876 | if (!ret) | |
4877 | goto retry; | |
4878 | } | |
4879 | ||
4880 | return ret; | |
4881 | } | |
4882 | ||
4883 | static void mem_cgroup_move_charge(void) | |
4884 | { | |
4885 | struct mm_walk mem_cgroup_move_charge_walk = { | |
4886 | .pmd_entry = mem_cgroup_move_charge_pte_range, | |
4887 | .mm = mc.mm, | |
4888 | }; | |
4889 | ||
4890 | lru_add_drain_all(); | |
4891 | /* | |
4892 | * Signal lock_page_memcg() to take the memcg's move_lock | |
4893 | * while we're moving its pages to another memcg. Then wait | |
4894 | * for already started RCU-only updates to finish. | |
4895 | */ | |
4896 | atomic_inc(&mc.from->moving_account); | |
4897 | synchronize_rcu(); | |
4898 | retry: | |
4899 | if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { | |
4900 | /* | |
4901 | * Someone who are holding the mmap_sem might be waiting in | |
4902 | * waitq. So we cancel all extra charges, wake up all waiters, | |
4903 | * and retry. Because we cancel precharges, we might not be able | |
4904 | * to move enough charges, but moving charge is a best-effort | |
4905 | * feature anyway, so it wouldn't be a big problem. | |
4906 | */ | |
4907 | __mem_cgroup_clear_mc(); | |
4908 | cond_resched(); | |
4909 | goto retry; | |
4910 | } | |
4911 | /* | |
4912 | * When we have consumed all precharges and failed in doing | |
4913 | * additional charge, the page walk just aborts. | |
4914 | */ | |
4915 | walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk); | |
4916 | up_read(&mc.mm->mmap_sem); | |
4917 | atomic_dec(&mc.from->moving_account); | |
4918 | } | |
4919 | ||
4920 | static void mem_cgroup_move_task(void) | |
4921 | { | |
4922 | if (mc.to) { | |
4923 | mem_cgroup_move_charge(); | |
4924 | mem_cgroup_clear_mc(); | |
4925 | } | |
4926 | } | |
4927 | #else /* !CONFIG_MMU */ | |
4928 | static int mem_cgroup_can_attach(struct cgroup_taskset *tset) | |
4929 | { | |
4930 | return 0; | |
4931 | } | |
4932 | static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) | |
4933 | { | |
4934 | } | |
4935 | static void mem_cgroup_move_task(void) | |
4936 | { | |
4937 | } | |
4938 | #endif | |
4939 | ||
4940 | /* | |
4941 | * Cgroup retains root cgroups across [un]mount cycles making it necessary | |
4942 | * to verify whether we're attached to the default hierarchy on each mount | |
4943 | * attempt. | |
4944 | */ | |
4945 | static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) | |
4946 | { | |
4947 | /* | |
4948 | * use_hierarchy is forced on the default hierarchy. cgroup core | |
4949 | * guarantees that @root doesn't have any children, so turning it | |
4950 | * on for the root memcg is enough. | |
4951 | */ | |
4952 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
4953 | root_mem_cgroup->use_hierarchy = true; | |
4954 | else | |
4955 | root_mem_cgroup->use_hierarchy = false; | |
4956 | } | |
4957 | ||
4958 | static u64 memory_current_read(struct cgroup_subsys_state *css, | |
4959 | struct cftype *cft) | |
4960 | { | |
4961 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
4962 | ||
4963 | return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; | |
4964 | } | |
4965 | ||
4966 | static int memory_low_show(struct seq_file *m, void *v) | |
4967 | { | |
4968 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
4969 | unsigned long low = READ_ONCE(memcg->low); | |
4970 | ||
4971 | if (low == PAGE_COUNTER_MAX) | |
4972 | seq_puts(m, "max\n"); | |
4973 | else | |
4974 | seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); | |
4975 | ||
4976 | return 0; | |
4977 | } | |
4978 | ||
4979 | static ssize_t memory_low_write(struct kernfs_open_file *of, | |
4980 | char *buf, size_t nbytes, loff_t off) | |
4981 | { | |
4982 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
4983 | unsigned long low; | |
4984 | int err; | |
4985 | ||
4986 | buf = strstrip(buf); | |
4987 | err = page_counter_memparse(buf, "max", &low); | |
4988 | if (err) | |
4989 | return err; | |
4990 | ||
4991 | memcg->low = low; | |
4992 | ||
4993 | return nbytes; | |
4994 | } | |
4995 | ||
4996 | static int memory_high_show(struct seq_file *m, void *v) | |
4997 | { | |
4998 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
4999 | unsigned long high = READ_ONCE(memcg->high); | |
5000 | ||
5001 | if (high == PAGE_COUNTER_MAX) | |
5002 | seq_puts(m, "max\n"); | |
5003 | else | |
5004 | seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); | |
5005 | ||
5006 | return 0; | |
5007 | } | |
5008 | ||
5009 | static ssize_t memory_high_write(struct kernfs_open_file *of, | |
5010 | char *buf, size_t nbytes, loff_t off) | |
5011 | { | |
5012 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
5013 | unsigned long nr_pages; | |
5014 | unsigned long high; | |
5015 | int err; | |
5016 | ||
5017 | buf = strstrip(buf); | |
5018 | err = page_counter_memparse(buf, "max", &high); | |
5019 | if (err) | |
5020 | return err; | |
5021 | ||
5022 | memcg->high = high; | |
5023 | ||
5024 | nr_pages = page_counter_read(&memcg->memory); | |
5025 | if (nr_pages > high) | |
5026 | try_to_free_mem_cgroup_pages(memcg, nr_pages - high, | |
5027 | GFP_KERNEL, true); | |
5028 | ||
5029 | memcg_wb_domain_size_changed(memcg); | |
5030 | return nbytes; | |
5031 | } | |
5032 | ||
5033 | static int memory_max_show(struct seq_file *m, void *v) | |
5034 | { | |
5035 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
5036 | unsigned long max = READ_ONCE(memcg->memory.limit); | |
5037 | ||
5038 | if (max == PAGE_COUNTER_MAX) | |
5039 | seq_puts(m, "max\n"); | |
5040 | else | |
5041 | seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); | |
5042 | ||
5043 | return 0; | |
5044 | } | |
5045 | ||
5046 | static ssize_t memory_max_write(struct kernfs_open_file *of, | |
5047 | char *buf, size_t nbytes, loff_t off) | |
5048 | { | |
5049 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
5050 | unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; | |
5051 | bool drained = false; | |
5052 | unsigned long max; | |
5053 | int err; | |
5054 | ||
5055 | buf = strstrip(buf); | |
5056 | err = page_counter_memparse(buf, "max", &max); | |
5057 | if (err) | |
5058 | return err; | |
5059 | ||
5060 | xchg(&memcg->memory.limit, max); | |
5061 | ||
5062 | for (;;) { | |
5063 | unsigned long nr_pages = page_counter_read(&memcg->memory); | |
5064 | ||
5065 | if (nr_pages <= max) | |
5066 | break; | |
5067 | ||
5068 | if (signal_pending(current)) { | |
5069 | err = -EINTR; | |
5070 | break; | |
5071 | } | |
5072 | ||
5073 | if (!drained) { | |
5074 | drain_all_stock(memcg); | |
5075 | drained = true; | |
5076 | continue; | |
5077 | } | |
5078 | ||
5079 | if (nr_reclaims) { | |
5080 | if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, | |
5081 | GFP_KERNEL, true)) | |
5082 | nr_reclaims--; | |
5083 | continue; | |
5084 | } | |
5085 | ||
5086 | mem_cgroup_events(memcg, MEMCG_OOM, 1); | |
5087 | if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) | |
5088 | break; | |
5089 | } | |
5090 | ||
5091 | memcg_wb_domain_size_changed(memcg); | |
5092 | return nbytes; | |
5093 | } | |
5094 | ||
5095 | static int memory_events_show(struct seq_file *m, void *v) | |
5096 | { | |
5097 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
5098 | ||
5099 | seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW)); | |
5100 | seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH)); | |
5101 | seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX)); | |
5102 | seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM)); | |
5103 | ||
5104 | return 0; | |
5105 | } | |
5106 | ||
5107 | static int memory_stat_show(struct seq_file *m, void *v) | |
5108 | { | |
5109 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
5110 | unsigned long stat[MEMCG_NR_STAT]; | |
5111 | unsigned long events[MEMCG_NR_EVENTS]; | |
5112 | int i; | |
5113 | ||
5114 | /* | |
5115 | * Provide statistics on the state of the memory subsystem as | |
5116 | * well as cumulative event counters that show past behavior. | |
5117 | * | |
5118 | * This list is ordered following a combination of these gradients: | |
5119 | * 1) generic big picture -> specifics and details | |
5120 | * 2) reflecting userspace activity -> reflecting kernel heuristics | |
5121 | * | |
5122 | * Current memory state: | |
5123 | */ | |
5124 | ||
5125 | tree_stat(memcg, stat); | |
5126 | tree_events(memcg, events); | |
5127 | ||
5128 | seq_printf(m, "anon %llu\n", | |
5129 | (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE); | |
5130 | seq_printf(m, "file %llu\n", | |
5131 | (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE); | |
5132 | seq_printf(m, "kernel_stack %llu\n", | |
5133 | (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE); | |
5134 | seq_printf(m, "slab %llu\n", | |
5135 | (u64)(stat[MEMCG_SLAB_RECLAIMABLE] + | |
5136 | stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); | |
5137 | seq_printf(m, "sock %llu\n", | |
5138 | (u64)stat[MEMCG_SOCK] * PAGE_SIZE); | |
5139 | ||
5140 | seq_printf(m, "file_mapped %llu\n", | |
5141 | (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE); | |
5142 | seq_printf(m, "file_dirty %llu\n", | |
5143 | (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE); | |
5144 | seq_printf(m, "file_writeback %llu\n", | |
5145 | (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE); | |
5146 | ||
5147 | for (i = 0; i < NR_LRU_LISTS; i++) { | |
5148 | struct mem_cgroup *mi; | |
5149 | unsigned long val = 0; | |
5150 | ||
5151 | for_each_mem_cgroup_tree(mi, memcg) | |
5152 | val += mem_cgroup_nr_lru_pages(mi, BIT(i)); | |
5153 | seq_printf(m, "%s %llu\n", | |
5154 | mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE); | |
5155 | } | |
5156 | ||
5157 | seq_printf(m, "slab_reclaimable %llu\n", | |
5158 | (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE); | |
5159 | seq_printf(m, "slab_unreclaimable %llu\n", | |
5160 | (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE); | |
5161 | ||
5162 | /* Accumulated memory events */ | |
5163 | ||
5164 | seq_printf(m, "pgfault %lu\n", | |
5165 | events[MEM_CGROUP_EVENTS_PGFAULT]); | |
5166 | seq_printf(m, "pgmajfault %lu\n", | |
5167 | events[MEM_CGROUP_EVENTS_PGMAJFAULT]); | |
5168 | ||
5169 | return 0; | |
5170 | } | |
5171 | ||
5172 | static struct cftype memory_files[] = { | |
5173 | { | |
5174 | .name = "current", | |
5175 | .flags = CFTYPE_NOT_ON_ROOT, | |
5176 | .read_u64 = memory_current_read, | |
5177 | }, | |
5178 | { | |
5179 | .name = "low", | |
5180 | .flags = CFTYPE_NOT_ON_ROOT, | |
5181 | .seq_show = memory_low_show, | |
5182 | .write = memory_low_write, | |
5183 | }, | |
5184 | { | |
5185 | .name = "high", | |
5186 | .flags = CFTYPE_NOT_ON_ROOT, | |
5187 | .seq_show = memory_high_show, | |
5188 | .write = memory_high_write, | |
5189 | }, | |
5190 | { | |
5191 | .name = "max", | |
5192 | .flags = CFTYPE_NOT_ON_ROOT, | |
5193 | .seq_show = memory_max_show, | |
5194 | .write = memory_max_write, | |
5195 | }, | |
5196 | { | |
5197 | .name = "events", | |
5198 | .flags = CFTYPE_NOT_ON_ROOT, | |
5199 | .file_offset = offsetof(struct mem_cgroup, events_file), | |
5200 | .seq_show = memory_events_show, | |
5201 | }, | |
5202 | { | |
5203 | .name = "stat", | |
5204 | .flags = CFTYPE_NOT_ON_ROOT, | |
5205 | .seq_show = memory_stat_show, | |
5206 | }, | |
5207 | { } /* terminate */ | |
5208 | }; | |
5209 | ||
5210 | struct cgroup_subsys memory_cgrp_subsys = { | |
5211 | .css_alloc = mem_cgroup_css_alloc, | |
5212 | .css_online = mem_cgroup_css_online, | |
5213 | .css_offline = mem_cgroup_css_offline, | |
5214 | .css_released = mem_cgroup_css_released, | |
5215 | .css_free = mem_cgroup_css_free, | |
5216 | .css_reset = mem_cgroup_css_reset, | |
5217 | .can_attach = mem_cgroup_can_attach, | |
5218 | .cancel_attach = mem_cgroup_cancel_attach, | |
5219 | .post_attach = mem_cgroup_move_task, | |
5220 | .bind = mem_cgroup_bind, | |
5221 | .dfl_cftypes = memory_files, | |
5222 | .legacy_cftypes = mem_cgroup_legacy_files, | |
5223 | .early_init = 0, | |
5224 | }; | |
5225 | ||
5226 | /** | |
5227 | * mem_cgroup_low - check if memory consumption is below the normal range | |
5228 | * @root: the highest ancestor to consider | |
5229 | * @memcg: the memory cgroup to check | |
5230 | * | |
5231 | * Returns %true if memory consumption of @memcg, and that of all | |
5232 | * configurable ancestors up to @root, is below the normal range. | |
5233 | */ | |
5234 | bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg) | |
5235 | { | |
5236 | if (mem_cgroup_disabled()) | |
5237 | return false; | |
5238 | ||
5239 | /* | |
5240 | * The toplevel group doesn't have a configurable range, so | |
5241 | * it's never low when looked at directly, and it is not | |
5242 | * considered an ancestor when assessing the hierarchy. | |
5243 | */ | |
5244 | ||
5245 | if (memcg == root_mem_cgroup) | |
5246 | return false; | |
5247 | ||
5248 | if (page_counter_read(&memcg->memory) >= memcg->low) | |
5249 | return false; | |
5250 | ||
5251 | while (memcg != root) { | |
5252 | memcg = parent_mem_cgroup(memcg); | |
5253 | ||
5254 | if (memcg == root_mem_cgroup) | |
5255 | break; | |
5256 | ||
5257 | if (page_counter_read(&memcg->memory) >= memcg->low) | |
5258 | return false; | |
5259 | } | |
5260 | return true; | |
5261 | } | |
5262 | ||
5263 | /** | |
5264 | * mem_cgroup_try_charge - try charging a page | |
5265 | * @page: page to charge | |
5266 | * @mm: mm context of the victim | |
5267 | * @gfp_mask: reclaim mode | |
5268 | * @memcgp: charged memcg return | |
5269 | * | |
5270 | * Try to charge @page to the memcg that @mm belongs to, reclaiming | |
5271 | * pages according to @gfp_mask if necessary. | |
5272 | * | |
5273 | * Returns 0 on success, with *@memcgp pointing to the charged memcg. | |
5274 | * Otherwise, an error code is returned. | |
5275 | * | |
5276 | * After page->mapping has been set up, the caller must finalize the | |
5277 | * charge with mem_cgroup_commit_charge(). Or abort the transaction | |
5278 | * with mem_cgroup_cancel_charge() in case page instantiation fails. | |
5279 | */ | |
5280 | int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, | |
5281 | gfp_t gfp_mask, struct mem_cgroup **memcgp, | |
5282 | bool compound) | |
5283 | { | |
5284 | struct mem_cgroup *memcg = NULL; | |
5285 | unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; | |
5286 | int ret = 0; | |
5287 | ||
5288 | if (mem_cgroup_disabled()) | |
5289 | goto out; | |
5290 | ||
5291 | if (PageSwapCache(page)) { | |
5292 | /* | |
5293 | * Every swap fault against a single page tries to charge the | |
5294 | * page, bail as early as possible. shmem_unuse() encounters | |
5295 | * already charged pages, too. The USED bit is protected by | |
5296 | * the page lock, which serializes swap cache removal, which | |
5297 | * in turn serializes uncharging. | |
5298 | */ | |
5299 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
5300 | if (page->mem_cgroup) | |
5301 | goto out; | |
5302 | ||
5303 | if (do_swap_account) { | |
5304 | swp_entry_t ent = { .val = page_private(page), }; | |
5305 | unsigned short id = lookup_swap_cgroup_id(ent); | |
5306 | ||
5307 | rcu_read_lock(); | |
5308 | memcg = mem_cgroup_from_id(id); | |
5309 | if (memcg && !css_tryget_online(&memcg->css)) | |
5310 | memcg = NULL; | |
5311 | rcu_read_unlock(); | |
5312 | } | |
5313 | } | |
5314 | ||
5315 | if (!memcg) | |
5316 | memcg = get_mem_cgroup_from_mm(mm); | |
5317 | ||
5318 | ret = try_charge(memcg, gfp_mask, nr_pages); | |
5319 | ||
5320 | css_put(&memcg->css); | |
5321 | out: | |
5322 | *memcgp = memcg; | |
5323 | return ret; | |
5324 | } | |
5325 | ||
5326 | /** | |
5327 | * mem_cgroup_commit_charge - commit a page charge | |
5328 | * @page: page to charge | |
5329 | * @memcg: memcg to charge the page to | |
5330 | * @lrucare: page might be on LRU already | |
5331 | * | |
5332 | * Finalize a charge transaction started by mem_cgroup_try_charge(), | |
5333 | * after page->mapping has been set up. This must happen atomically | |
5334 | * as part of the page instantiation, i.e. under the page table lock | |
5335 | * for anonymous pages, under the page lock for page and swap cache. | |
5336 | * | |
5337 | * In addition, the page must not be on the LRU during the commit, to | |
5338 | * prevent racing with task migration. If it might be, use @lrucare. | |
5339 | * | |
5340 | * Use mem_cgroup_cancel_charge() to cancel the transaction instead. | |
5341 | */ | |
5342 | void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, | |
5343 | bool lrucare, bool compound) | |
5344 | { | |
5345 | unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; | |
5346 | ||
5347 | VM_BUG_ON_PAGE(!page->mapping, page); | |
5348 | VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); | |
5349 | ||
5350 | if (mem_cgroup_disabled()) | |
5351 | return; | |
5352 | /* | |
5353 | * Swap faults will attempt to charge the same page multiple | |
5354 | * times. But reuse_swap_page() might have removed the page | |
5355 | * from swapcache already, so we can't check PageSwapCache(). | |
5356 | */ | |
5357 | if (!memcg) | |
5358 | return; | |
5359 | ||
5360 | commit_charge(page, memcg, lrucare); | |
5361 | ||
5362 | local_irq_disable(); | |
5363 | mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); | |
5364 | memcg_check_events(memcg, page); | |
5365 | local_irq_enable(); | |
5366 | ||
5367 | if (do_memsw_account() && PageSwapCache(page)) { | |
5368 | swp_entry_t entry = { .val = page_private(page) }; | |
5369 | /* | |
5370 | * The swap entry might not get freed for a long time, | |
5371 | * let's not wait for it. The page already received a | |
5372 | * memory+swap charge, drop the swap entry duplicate. | |
5373 | */ | |
5374 | mem_cgroup_uncharge_swap(entry); | |
5375 | } | |
5376 | } | |
5377 | ||
5378 | /** | |
5379 | * mem_cgroup_cancel_charge - cancel a page charge | |
5380 | * @page: page to charge | |
5381 | * @memcg: memcg to charge the page to | |
5382 | * | |
5383 | * Cancel a charge transaction started by mem_cgroup_try_charge(). | |
5384 | */ | |
5385 | void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, | |
5386 | bool compound) | |
5387 | { | |
5388 | unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; | |
5389 | ||
5390 | if (mem_cgroup_disabled()) | |
5391 | return; | |
5392 | /* | |
5393 | * Swap faults will attempt to charge the same page multiple | |
5394 | * times. But reuse_swap_page() might have removed the page | |
5395 | * from swapcache already, so we can't check PageSwapCache(). | |
5396 | */ | |
5397 | if (!memcg) | |
5398 | return; | |
5399 | ||
5400 | cancel_charge(memcg, nr_pages); | |
5401 | } | |
5402 | ||
5403 | static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, | |
5404 | unsigned long nr_anon, unsigned long nr_file, | |
5405 | unsigned long nr_huge, struct page *dummy_page) | |
5406 | { | |
5407 | unsigned long nr_pages = nr_anon + nr_file; | |
5408 | unsigned long flags; | |
5409 | ||
5410 | if (!mem_cgroup_is_root(memcg)) { | |
5411 | page_counter_uncharge(&memcg->memory, nr_pages); | |
5412 | if (do_memsw_account()) | |
5413 | page_counter_uncharge(&memcg->memsw, nr_pages); | |
5414 | memcg_oom_recover(memcg); | |
5415 | } | |
5416 | ||
5417 | local_irq_save(flags); | |
5418 | __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); | |
5419 | __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); | |
5420 | __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); | |
5421 | __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); | |
5422 | __this_cpu_add(memcg->stat->nr_page_events, nr_pages); | |
5423 | memcg_check_events(memcg, dummy_page); | |
5424 | local_irq_restore(flags); | |
5425 | ||
5426 | if (!mem_cgroup_is_root(memcg)) | |
5427 | css_put_many(&memcg->css, nr_pages); | |
5428 | } | |
5429 | ||
5430 | static void uncharge_list(struct list_head *page_list) | |
5431 | { | |
5432 | struct mem_cgroup *memcg = NULL; | |
5433 | unsigned long nr_anon = 0; | |
5434 | unsigned long nr_file = 0; | |
5435 | unsigned long nr_huge = 0; | |
5436 | unsigned long pgpgout = 0; | |
5437 | struct list_head *next; | |
5438 | struct page *page; | |
5439 | ||
5440 | /* | |
5441 | * Note that the list can be a single page->lru; hence the | |
5442 | * do-while loop instead of a simple list_for_each_entry(). | |
5443 | */ | |
5444 | next = page_list->next; | |
5445 | do { | |
5446 | unsigned int nr_pages = 1; | |
5447 | ||
5448 | page = list_entry(next, struct page, lru); | |
5449 | next = page->lru.next; | |
5450 | ||
5451 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
5452 | VM_BUG_ON_PAGE(page_count(page), page); | |
5453 | ||
5454 | if (!page->mem_cgroup) | |
5455 | continue; | |
5456 | ||
5457 | /* | |
5458 | * Nobody should be changing or seriously looking at | |
5459 | * page->mem_cgroup at this point, we have fully | |
5460 | * exclusive access to the page. | |
5461 | */ | |
5462 | ||
5463 | if (memcg != page->mem_cgroup) { | |
5464 | if (memcg) { | |
5465 | uncharge_batch(memcg, pgpgout, nr_anon, nr_file, | |
5466 | nr_huge, page); | |
5467 | pgpgout = nr_anon = nr_file = nr_huge = 0; | |
5468 | } | |
5469 | memcg = page->mem_cgroup; | |
5470 | } | |
5471 | ||
5472 | if (PageTransHuge(page)) { | |
5473 | nr_pages <<= compound_order(page); | |
5474 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
5475 | nr_huge += nr_pages; | |
5476 | } | |
5477 | ||
5478 | if (PageAnon(page)) | |
5479 | nr_anon += nr_pages; | |
5480 | else | |
5481 | nr_file += nr_pages; | |
5482 | ||
5483 | page->mem_cgroup = NULL; | |
5484 | ||
5485 | pgpgout++; | |
5486 | } while (next != page_list); | |
5487 | ||
5488 | if (memcg) | |
5489 | uncharge_batch(memcg, pgpgout, nr_anon, nr_file, | |
5490 | nr_huge, page); | |
5491 | } | |
5492 | ||
5493 | /** | |
5494 | * mem_cgroup_uncharge - uncharge a page | |
5495 | * @page: page to uncharge | |
5496 | * | |
5497 | * Uncharge a page previously charged with mem_cgroup_try_charge() and | |
5498 | * mem_cgroup_commit_charge(). | |
5499 | */ | |
5500 | void mem_cgroup_uncharge(struct page *page) | |
5501 | { | |
5502 | if (mem_cgroup_disabled()) | |
5503 | return; | |
5504 | ||
5505 | /* Don't touch page->lru of any random page, pre-check: */ | |
5506 | if (!page->mem_cgroup) | |
5507 | return; | |
5508 | ||
5509 | INIT_LIST_HEAD(&page->lru); | |
5510 | uncharge_list(&page->lru); | |
5511 | } | |
5512 | ||
5513 | /** | |
5514 | * mem_cgroup_uncharge_list - uncharge a list of page | |
5515 | * @page_list: list of pages to uncharge | |
5516 | * | |
5517 | * Uncharge a list of pages previously charged with | |
5518 | * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). | |
5519 | */ | |
5520 | void mem_cgroup_uncharge_list(struct list_head *page_list) | |
5521 | { | |
5522 | if (mem_cgroup_disabled()) | |
5523 | return; | |
5524 | ||
5525 | if (!list_empty(page_list)) | |
5526 | uncharge_list(page_list); | |
5527 | } | |
5528 | ||
5529 | /** | |
5530 | * mem_cgroup_migrate - charge a page's replacement | |
5531 | * @oldpage: currently circulating page | |
5532 | * @newpage: replacement page | |
5533 | * | |
5534 | * Charge @newpage as a replacement page for @oldpage. @oldpage will | |
5535 | * be uncharged upon free. | |
5536 | * | |
5537 | * Both pages must be locked, @newpage->mapping must be set up. | |
5538 | */ | |
5539 | void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) | |
5540 | { | |
5541 | struct mem_cgroup *memcg; | |
5542 | unsigned int nr_pages; | |
5543 | bool compound; | |
5544 | ||
5545 | VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); | |
5546 | VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); | |
5547 | VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); | |
5548 | VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), | |
5549 | newpage); | |
5550 | ||
5551 | if (mem_cgroup_disabled()) | |
5552 | return; | |
5553 | ||
5554 | /* Page cache replacement: new page already charged? */ | |
5555 | if (newpage->mem_cgroup) | |
5556 | return; | |
5557 | ||
5558 | /* Swapcache readahead pages can get replaced before being charged */ | |
5559 | memcg = oldpage->mem_cgroup; | |
5560 | if (!memcg) | |
5561 | return; | |
5562 | ||
5563 | /* Force-charge the new page. The old one will be freed soon */ | |
5564 | compound = PageTransHuge(newpage); | |
5565 | nr_pages = compound ? hpage_nr_pages(newpage) : 1; | |
5566 | ||
5567 | page_counter_charge(&memcg->memory, nr_pages); | |
5568 | if (do_memsw_account()) | |
5569 | page_counter_charge(&memcg->memsw, nr_pages); | |
5570 | css_get_many(&memcg->css, nr_pages); | |
5571 | ||
5572 | commit_charge(newpage, memcg, false); | |
5573 | ||
5574 | local_irq_disable(); | |
5575 | mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); | |
5576 | memcg_check_events(memcg, newpage); | |
5577 | local_irq_enable(); | |
5578 | } | |
5579 | ||
5580 | DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); | |
5581 | EXPORT_SYMBOL(memcg_sockets_enabled_key); | |
5582 | ||
5583 | void sock_update_memcg(struct sock *sk) | |
5584 | { | |
5585 | struct mem_cgroup *memcg; | |
5586 | ||
5587 | /* Socket cloning can throw us here with sk_cgrp already | |
5588 | * filled. It won't however, necessarily happen from | |
5589 | * process context. So the test for root memcg given | |
5590 | * the current task's memcg won't help us in this case. | |
5591 | * | |
5592 | * Respecting the original socket's memcg is a better | |
5593 | * decision in this case. | |
5594 | */ | |
5595 | if (sk->sk_memcg) { | |
5596 | BUG_ON(mem_cgroup_is_root(sk->sk_memcg)); | |
5597 | css_get(&sk->sk_memcg->css); | |
5598 | return; | |
5599 | } | |
5600 | ||
5601 | rcu_read_lock(); | |
5602 | memcg = mem_cgroup_from_task(current); | |
5603 | if (memcg == root_mem_cgroup) | |
5604 | goto out; | |
5605 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) | |
5606 | goto out; | |
5607 | if (css_tryget_online(&memcg->css)) | |
5608 | sk->sk_memcg = memcg; | |
5609 | out: | |
5610 | rcu_read_unlock(); | |
5611 | } | |
5612 | EXPORT_SYMBOL(sock_update_memcg); | |
5613 | ||
5614 | void sock_release_memcg(struct sock *sk) | |
5615 | { | |
5616 | WARN_ON(!sk->sk_memcg); | |
5617 | css_put(&sk->sk_memcg->css); | |
5618 | } | |
5619 | ||
5620 | /** | |
5621 | * mem_cgroup_charge_skmem - charge socket memory | |
5622 | * @memcg: memcg to charge | |
5623 | * @nr_pages: number of pages to charge | |
5624 | * | |
5625 | * Charges @nr_pages to @memcg. Returns %true if the charge fit within | |
5626 | * @memcg's configured limit, %false if the charge had to be forced. | |
5627 | */ | |
5628 | bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) | |
5629 | { | |
5630 | gfp_t gfp_mask = GFP_KERNEL; | |
5631 | ||
5632 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { | |
5633 | struct page_counter *fail; | |
5634 | ||
5635 | if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { | |
5636 | memcg->tcpmem_pressure = 0; | |
5637 | return true; | |
5638 | } | |
5639 | page_counter_charge(&memcg->tcpmem, nr_pages); | |
5640 | memcg->tcpmem_pressure = 1; | |
5641 | return false; | |
5642 | } | |
5643 | ||
5644 | /* Don't block in the packet receive path */ | |
5645 | if (in_softirq()) | |
5646 | gfp_mask = GFP_NOWAIT; | |
5647 | ||
5648 | this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages); | |
5649 | ||
5650 | if (try_charge(memcg, gfp_mask, nr_pages) == 0) | |
5651 | return true; | |
5652 | ||
5653 | try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); | |
5654 | return false; | |
5655 | } | |
5656 | ||
5657 | /** | |
5658 | * mem_cgroup_uncharge_skmem - uncharge socket memory | |
5659 | * @memcg - memcg to uncharge | |
5660 | * @nr_pages - number of pages to uncharge | |
5661 | */ | |
5662 | void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) | |
5663 | { | |
5664 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { | |
5665 | page_counter_uncharge(&memcg->tcpmem, nr_pages); | |
5666 | return; | |
5667 | } | |
5668 | ||
5669 | this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages); | |
5670 | ||
5671 | page_counter_uncharge(&memcg->memory, nr_pages); | |
5672 | css_put_many(&memcg->css, nr_pages); | |
5673 | } | |
5674 | ||
5675 | static int __init cgroup_memory(char *s) | |
5676 | { | |
5677 | char *token; | |
5678 | ||
5679 | while ((token = strsep(&s, ",")) != NULL) { | |
5680 | if (!*token) | |
5681 | continue; | |
5682 | if (!strcmp(token, "nosocket")) | |
5683 | cgroup_memory_nosocket = true; | |
5684 | if (!strcmp(token, "nokmem")) | |
5685 | cgroup_memory_nokmem = true; | |
5686 | } | |
5687 | return 0; | |
5688 | } | |
5689 | __setup("cgroup.memory=", cgroup_memory); | |
5690 | ||
5691 | /* | |
5692 | * subsys_initcall() for memory controller. | |
5693 | * | |
5694 | * Some parts like hotcpu_notifier() have to be initialized from this context | |
5695 | * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically | |
5696 | * everything that doesn't depend on a specific mem_cgroup structure should | |
5697 | * be initialized from here. | |
5698 | */ | |
5699 | static int __init mem_cgroup_init(void) | |
5700 | { | |
5701 | int cpu, node; | |
5702 | ||
5703 | hotcpu_notifier(memcg_cpu_hotplug_callback, 0); | |
5704 | ||
5705 | for_each_possible_cpu(cpu) | |
5706 | INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, | |
5707 | drain_local_stock); | |
5708 | ||
5709 | for_each_node(node) { | |
5710 | struct mem_cgroup_tree_per_node *rtpn; | |
5711 | int zone; | |
5712 | ||
5713 | rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, | |
5714 | node_online(node) ? node : NUMA_NO_NODE); | |
5715 | ||
5716 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | |
5717 | struct mem_cgroup_tree_per_zone *rtpz; | |
5718 | ||
5719 | rtpz = &rtpn->rb_tree_per_zone[zone]; | |
5720 | rtpz->rb_root = RB_ROOT; | |
5721 | spin_lock_init(&rtpz->lock); | |
5722 | } | |
5723 | soft_limit_tree.rb_tree_per_node[node] = rtpn; | |
5724 | } | |
5725 | ||
5726 | return 0; | |
5727 | } | |
5728 | subsys_initcall(mem_cgroup_init); | |
5729 | ||
5730 | #ifdef CONFIG_MEMCG_SWAP | |
5731 | /** | |
5732 | * mem_cgroup_swapout - transfer a memsw charge to swap | |
5733 | * @page: page whose memsw charge to transfer | |
5734 | * @entry: swap entry to move the charge to | |
5735 | * | |
5736 | * Transfer the memsw charge of @page to @entry. | |
5737 | */ | |
5738 | void mem_cgroup_swapout(struct page *page, swp_entry_t entry) | |
5739 | { | |
5740 | struct mem_cgroup *memcg; | |
5741 | unsigned short oldid; | |
5742 | ||
5743 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
5744 | VM_BUG_ON_PAGE(page_count(page), page); | |
5745 | ||
5746 | if (!do_memsw_account()) | |
5747 | return; | |
5748 | ||
5749 | memcg = page->mem_cgroup; | |
5750 | ||
5751 | /* Readahead page, never charged */ | |
5752 | if (!memcg) | |
5753 | return; | |
5754 | ||
5755 | oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); | |
5756 | VM_BUG_ON_PAGE(oldid, page); | |
5757 | mem_cgroup_swap_statistics(memcg, true); | |
5758 | ||
5759 | page->mem_cgroup = NULL; | |
5760 | ||
5761 | if (!mem_cgroup_is_root(memcg)) | |
5762 | page_counter_uncharge(&memcg->memory, 1); | |
5763 | ||
5764 | /* | |
5765 | * Interrupts should be disabled here because the caller holds the | |
5766 | * mapping->tree_lock lock which is taken with interrupts-off. It is | |
5767 | * important here to have the interrupts disabled because it is the | |
5768 | * only synchronisation we have for udpating the per-CPU variables. | |
5769 | */ | |
5770 | VM_BUG_ON(!irqs_disabled()); | |
5771 | mem_cgroup_charge_statistics(memcg, page, false, -1); | |
5772 | memcg_check_events(memcg, page); | |
5773 | } | |
5774 | ||
5775 | /* | |
5776 | * mem_cgroup_try_charge_swap - try charging a swap entry | |
5777 | * @page: page being added to swap | |
5778 | * @entry: swap entry to charge | |
5779 | * | |
5780 | * Try to charge @entry to the memcg that @page belongs to. | |
5781 | * | |
5782 | * Returns 0 on success, -ENOMEM on failure. | |
5783 | */ | |
5784 | int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) | |
5785 | { | |
5786 | struct mem_cgroup *memcg; | |
5787 | struct page_counter *counter; | |
5788 | unsigned short oldid; | |
5789 | ||
5790 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) | |
5791 | return 0; | |
5792 | ||
5793 | memcg = page->mem_cgroup; | |
5794 | ||
5795 | /* Readahead page, never charged */ | |
5796 | if (!memcg) | |
5797 | return 0; | |
5798 | ||
5799 | if (!mem_cgroup_is_root(memcg) && | |
5800 | !page_counter_try_charge(&memcg->swap, 1, &counter)) | |
5801 | return -ENOMEM; | |
5802 | ||
5803 | oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); | |
5804 | VM_BUG_ON_PAGE(oldid, page); | |
5805 | mem_cgroup_swap_statistics(memcg, true); | |
5806 | ||
5807 | css_get(&memcg->css); | |
5808 | return 0; | |
5809 | } | |
5810 | ||
5811 | /** | |
5812 | * mem_cgroup_uncharge_swap - uncharge a swap entry | |
5813 | * @entry: swap entry to uncharge | |
5814 | * | |
5815 | * Drop the swap charge associated with @entry. | |
5816 | */ | |
5817 | void mem_cgroup_uncharge_swap(swp_entry_t entry) | |
5818 | { | |
5819 | struct mem_cgroup *memcg; | |
5820 | unsigned short id; | |
5821 | ||
5822 | if (!do_swap_account) | |
5823 | return; | |
5824 | ||
5825 | id = swap_cgroup_record(entry, 0); | |
5826 | rcu_read_lock(); | |
5827 | memcg = mem_cgroup_from_id(id); | |
5828 | if (memcg) { | |
5829 | if (!mem_cgroup_is_root(memcg)) { | |
5830 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
5831 | page_counter_uncharge(&memcg->swap, 1); | |
5832 | else | |
5833 | page_counter_uncharge(&memcg->memsw, 1); | |
5834 | } | |
5835 | mem_cgroup_swap_statistics(memcg, false); | |
5836 | css_put(&memcg->css); | |
5837 | } | |
5838 | rcu_read_unlock(); | |
5839 | } | |
5840 | ||
5841 | long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) | |
5842 | { | |
5843 | long nr_swap_pages = get_nr_swap_pages(); | |
5844 | ||
5845 | if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
5846 | return nr_swap_pages; | |
5847 | for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) | |
5848 | nr_swap_pages = min_t(long, nr_swap_pages, | |
5849 | READ_ONCE(memcg->swap.limit) - | |
5850 | page_counter_read(&memcg->swap)); | |
5851 | return nr_swap_pages; | |
5852 | } | |
5853 | ||
5854 | bool mem_cgroup_swap_full(struct page *page) | |
5855 | { | |
5856 | struct mem_cgroup *memcg; | |
5857 | ||
5858 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
5859 | ||
5860 | if (vm_swap_full()) | |
5861 | return true; | |
5862 | if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
5863 | return false; | |
5864 | ||
5865 | memcg = page->mem_cgroup; | |
5866 | if (!memcg) | |
5867 | return false; | |
5868 | ||
5869 | for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) | |
5870 | if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit) | |
5871 | return true; | |
5872 | ||
5873 | return false; | |
5874 | } | |
5875 | ||
5876 | /* for remember boot option*/ | |
5877 | #ifdef CONFIG_MEMCG_SWAP_ENABLED | |
5878 | static int really_do_swap_account __initdata = 1; | |
5879 | #else | |
5880 | static int really_do_swap_account __initdata; | |
5881 | #endif | |
5882 | ||
5883 | static int __init enable_swap_account(char *s) | |
5884 | { | |
5885 | if (!strcmp(s, "1")) | |
5886 | really_do_swap_account = 1; | |
5887 | else if (!strcmp(s, "0")) | |
5888 | really_do_swap_account = 0; | |
5889 | return 1; | |
5890 | } | |
5891 | __setup("swapaccount=", enable_swap_account); | |
5892 | ||
5893 | static u64 swap_current_read(struct cgroup_subsys_state *css, | |
5894 | struct cftype *cft) | |
5895 | { | |
5896 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
5897 | ||
5898 | return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; | |
5899 | } | |
5900 | ||
5901 | static int swap_max_show(struct seq_file *m, void *v) | |
5902 | { | |
5903 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
5904 | unsigned long max = READ_ONCE(memcg->swap.limit); | |
5905 | ||
5906 | if (max == PAGE_COUNTER_MAX) | |
5907 | seq_puts(m, "max\n"); | |
5908 | else | |
5909 | seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); | |
5910 | ||
5911 | return 0; | |
5912 | } | |
5913 | ||
5914 | static ssize_t swap_max_write(struct kernfs_open_file *of, | |
5915 | char *buf, size_t nbytes, loff_t off) | |
5916 | { | |
5917 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
5918 | unsigned long max; | |
5919 | int err; | |
5920 | ||
5921 | buf = strstrip(buf); | |
5922 | err = page_counter_memparse(buf, "max", &max); | |
5923 | if (err) | |
5924 | return err; | |
5925 | ||
5926 | mutex_lock(&memcg_limit_mutex); | |
5927 | err = page_counter_limit(&memcg->swap, max); | |
5928 | mutex_unlock(&memcg_limit_mutex); | |
5929 | if (err) | |
5930 | return err; | |
5931 | ||
5932 | return nbytes; | |
5933 | } | |
5934 | ||
5935 | static struct cftype swap_files[] = { | |
5936 | { | |
5937 | .name = "swap.current", | |
5938 | .flags = CFTYPE_NOT_ON_ROOT, | |
5939 | .read_u64 = swap_current_read, | |
5940 | }, | |
5941 | { | |
5942 | .name = "swap.max", | |
5943 | .flags = CFTYPE_NOT_ON_ROOT, | |
5944 | .seq_show = swap_max_show, | |
5945 | .write = swap_max_write, | |
5946 | }, | |
5947 | { } /* terminate */ | |
5948 | }; | |
5949 | ||
5950 | static struct cftype memsw_cgroup_files[] = { | |
5951 | { | |
5952 | .name = "memsw.usage_in_bytes", | |
5953 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | |
5954 | .read_u64 = mem_cgroup_read_u64, | |
5955 | }, | |
5956 | { | |
5957 | .name = "memsw.max_usage_in_bytes", | |
5958 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | |
5959 | .write = mem_cgroup_reset, | |
5960 | .read_u64 = mem_cgroup_read_u64, | |
5961 | }, | |
5962 | { | |
5963 | .name = "memsw.limit_in_bytes", | |
5964 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | |
5965 | .write = mem_cgroup_write, | |
5966 | .read_u64 = mem_cgroup_read_u64, | |
5967 | }, | |
5968 | { | |
5969 | .name = "memsw.failcnt", | |
5970 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | |
5971 | .write = mem_cgroup_reset, | |
5972 | .read_u64 = mem_cgroup_read_u64, | |
5973 | }, | |
5974 | { }, /* terminate */ | |
5975 | }; | |
5976 | ||
5977 | static int __init mem_cgroup_swap_init(void) | |
5978 | { | |
5979 | if (!mem_cgroup_disabled() && really_do_swap_account) { | |
5980 | do_swap_account = 1; | |
5981 | WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, | |
5982 | swap_files)); | |
5983 | WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, | |
5984 | memsw_cgroup_files)); | |
5985 | } | |
5986 | return 0; | |
5987 | } | |
5988 | subsys_initcall(mem_cgroup_swap_init); | |
5989 | ||
5990 | #endif /* CONFIG_MEMCG_SWAP */ |