]> Git Repo - linux.git/blame_incremental - fs/ext4/page-io.c
block: add a bi_error field to struct bio
[linux.git] / fs / ext4 / page-io.c
... / ...
CommitLineData
1/*
2 * linux/fs/ext4/page-io.c
3 *
4 * This contains the new page_io functions for ext4
5 *
6 * Written by Theodore Ts'o, 2010.
7 */
8
9#include <linux/fs.h>
10#include <linux/time.h>
11#include <linux/highuid.h>
12#include <linux/pagemap.h>
13#include <linux/quotaops.h>
14#include <linux/string.h>
15#include <linux/buffer_head.h>
16#include <linux/writeback.h>
17#include <linux/pagevec.h>
18#include <linux/mpage.h>
19#include <linux/namei.h>
20#include <linux/uio.h>
21#include <linux/bio.h>
22#include <linux/workqueue.h>
23#include <linux/kernel.h>
24#include <linux/slab.h>
25#include <linux/mm.h>
26
27#include "ext4_jbd2.h"
28#include "xattr.h"
29#include "acl.h"
30
31static struct kmem_cache *io_end_cachep;
32
33int __init ext4_init_pageio(void)
34{
35 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
36 if (io_end_cachep == NULL)
37 return -ENOMEM;
38 return 0;
39}
40
41void ext4_exit_pageio(void)
42{
43 kmem_cache_destroy(io_end_cachep);
44}
45
46/*
47 * Print an buffer I/O error compatible with the fs/buffer.c. This
48 * provides compatibility with dmesg scrapers that look for a specific
49 * buffer I/O error message. We really need a unified error reporting
50 * structure to userspace ala Digital Unix's uerf system, but it's
51 * probably not going to happen in my lifetime, due to LKML politics...
52 */
53static void buffer_io_error(struct buffer_head *bh)
54{
55 char b[BDEVNAME_SIZE];
56 printk_ratelimited(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
57 bdevname(bh->b_bdev, b),
58 (unsigned long long)bh->b_blocknr);
59}
60
61static void ext4_finish_bio(struct bio *bio)
62{
63 int i;
64 struct bio_vec *bvec;
65
66 bio_for_each_segment_all(bvec, bio, i) {
67 struct page *page = bvec->bv_page;
68#ifdef CONFIG_EXT4_FS_ENCRYPTION
69 struct page *data_page = NULL;
70 struct ext4_crypto_ctx *ctx = NULL;
71#endif
72 struct buffer_head *bh, *head;
73 unsigned bio_start = bvec->bv_offset;
74 unsigned bio_end = bio_start + bvec->bv_len;
75 unsigned under_io = 0;
76 unsigned long flags;
77
78 if (!page)
79 continue;
80
81#ifdef CONFIG_EXT4_FS_ENCRYPTION
82 if (!page->mapping) {
83 /* The bounce data pages are unmapped. */
84 data_page = page;
85 ctx = (struct ext4_crypto_ctx *)page_private(data_page);
86 page = ctx->w.control_page;
87 }
88#endif
89
90 if (bio->bi_error) {
91 SetPageError(page);
92 set_bit(AS_EIO, &page->mapping->flags);
93 }
94 bh = head = page_buffers(page);
95 /*
96 * We check all buffers in the page under BH_Uptodate_Lock
97 * to avoid races with other end io clearing async_write flags
98 */
99 local_irq_save(flags);
100 bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
101 do {
102 if (bh_offset(bh) < bio_start ||
103 bh_offset(bh) + bh->b_size > bio_end) {
104 if (buffer_async_write(bh))
105 under_io++;
106 continue;
107 }
108 clear_buffer_async_write(bh);
109 if (bio->bi_error)
110 buffer_io_error(bh);
111 } while ((bh = bh->b_this_page) != head);
112 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
113 local_irq_restore(flags);
114 if (!under_io) {
115#ifdef CONFIG_EXT4_FS_ENCRYPTION
116 if (ctx)
117 ext4_restore_control_page(data_page);
118#endif
119 end_page_writeback(page);
120 }
121 }
122}
123
124static void ext4_release_io_end(ext4_io_end_t *io_end)
125{
126 struct bio *bio, *next_bio;
127
128 BUG_ON(!list_empty(&io_end->list));
129 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
130 WARN_ON(io_end->handle);
131
132 if (atomic_dec_and_test(&EXT4_I(io_end->inode)->i_ioend_count))
133 wake_up_all(ext4_ioend_wq(io_end->inode));
134
135 for (bio = io_end->bio; bio; bio = next_bio) {
136 next_bio = bio->bi_private;
137 ext4_finish_bio(bio);
138 bio_put(bio);
139 }
140 kmem_cache_free(io_end_cachep, io_end);
141}
142
143static void ext4_clear_io_unwritten_flag(ext4_io_end_t *io_end)
144{
145 struct inode *inode = io_end->inode;
146
147 io_end->flag &= ~EXT4_IO_END_UNWRITTEN;
148 /* Wake up anyone waiting on unwritten extent conversion */
149 if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten))
150 wake_up_all(ext4_ioend_wq(inode));
151}
152
153/*
154 * Check a range of space and convert unwritten extents to written. Note that
155 * we are protected from truncate touching same part of extent tree by the
156 * fact that truncate code waits for all DIO to finish (thus exclusion from
157 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
158 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
159 * completed (happens from ext4_free_ioend()).
160 */
161static int ext4_end_io(ext4_io_end_t *io)
162{
163 struct inode *inode = io->inode;
164 loff_t offset = io->offset;
165 ssize_t size = io->size;
166 handle_t *handle = io->handle;
167 int ret = 0;
168
169 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
170 "list->prev 0x%p\n",
171 io, inode->i_ino, io->list.next, io->list.prev);
172
173 io->handle = NULL; /* Following call will use up the handle */
174 ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
175 if (ret < 0) {
176 ext4_msg(inode->i_sb, KERN_EMERG,
177 "failed to convert unwritten extents to written "
178 "extents -- potential data loss! "
179 "(inode %lu, offset %llu, size %zd, error %d)",
180 inode->i_ino, offset, size, ret);
181 }
182 ext4_clear_io_unwritten_flag(io);
183 ext4_release_io_end(io);
184 return ret;
185}
186
187static void dump_completed_IO(struct inode *inode, struct list_head *head)
188{
189#ifdef EXT4FS_DEBUG
190 struct list_head *cur, *before, *after;
191 ext4_io_end_t *io, *io0, *io1;
192
193 if (list_empty(head))
194 return;
195
196 ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
197 list_for_each_entry(io, head, list) {
198 cur = &io->list;
199 before = cur->prev;
200 io0 = container_of(before, ext4_io_end_t, list);
201 after = cur->next;
202 io1 = container_of(after, ext4_io_end_t, list);
203
204 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
205 io, inode->i_ino, io0, io1);
206 }
207#endif
208}
209
210/* Add the io_end to per-inode completed end_io list. */
211static void ext4_add_complete_io(ext4_io_end_t *io_end)
212{
213 struct ext4_inode_info *ei = EXT4_I(io_end->inode);
214 struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
215 struct workqueue_struct *wq;
216 unsigned long flags;
217
218 /* Only reserved conversions from writeback should enter here */
219 WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
220 WARN_ON(!io_end->handle && sbi->s_journal);
221 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
222 wq = sbi->rsv_conversion_wq;
223 if (list_empty(&ei->i_rsv_conversion_list))
224 queue_work(wq, &ei->i_rsv_conversion_work);
225 list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
226 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
227}
228
229static int ext4_do_flush_completed_IO(struct inode *inode,
230 struct list_head *head)
231{
232 ext4_io_end_t *io;
233 struct list_head unwritten;
234 unsigned long flags;
235 struct ext4_inode_info *ei = EXT4_I(inode);
236 int err, ret = 0;
237
238 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
239 dump_completed_IO(inode, head);
240 list_replace_init(head, &unwritten);
241 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
242
243 while (!list_empty(&unwritten)) {
244 io = list_entry(unwritten.next, ext4_io_end_t, list);
245 BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
246 list_del_init(&io->list);
247
248 err = ext4_end_io(io);
249 if (unlikely(!ret && err))
250 ret = err;
251 }
252 return ret;
253}
254
255/*
256 * work on completed IO, to convert unwritten extents to extents
257 */
258void ext4_end_io_rsv_work(struct work_struct *work)
259{
260 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
261 i_rsv_conversion_work);
262 ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
263}
264
265ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
266{
267 ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
268 if (io) {
269 atomic_inc(&EXT4_I(inode)->i_ioend_count);
270 io->inode = inode;
271 INIT_LIST_HEAD(&io->list);
272 atomic_set(&io->count, 1);
273 }
274 return io;
275}
276
277void ext4_put_io_end_defer(ext4_io_end_t *io_end)
278{
279 if (atomic_dec_and_test(&io_end->count)) {
280 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
281 ext4_release_io_end(io_end);
282 return;
283 }
284 ext4_add_complete_io(io_end);
285 }
286}
287
288int ext4_put_io_end(ext4_io_end_t *io_end)
289{
290 int err = 0;
291
292 if (atomic_dec_and_test(&io_end->count)) {
293 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
294 err = ext4_convert_unwritten_extents(io_end->handle,
295 io_end->inode, io_end->offset,
296 io_end->size);
297 io_end->handle = NULL;
298 ext4_clear_io_unwritten_flag(io_end);
299 }
300 ext4_release_io_end(io_end);
301 }
302 return err;
303}
304
305ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
306{
307 atomic_inc(&io_end->count);
308 return io_end;
309}
310
311/* BIO completion function for page writeback */
312static void ext4_end_bio(struct bio *bio)
313{
314 ext4_io_end_t *io_end = bio->bi_private;
315 sector_t bi_sector = bio->bi_iter.bi_sector;
316
317 BUG_ON(!io_end);
318 bio->bi_end_io = NULL;
319
320 if (bio->bi_error) {
321 struct inode *inode = io_end->inode;
322
323 ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
324 "(offset %llu size %ld starting block %llu)",
325 bio->bi_error, inode->i_ino,
326 (unsigned long long) io_end->offset,
327 (long) io_end->size,
328 (unsigned long long)
329 bi_sector >> (inode->i_blkbits - 9));
330 mapping_set_error(inode->i_mapping, bio->bi_error);
331 }
332
333 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
334 /*
335 * Link bio into list hanging from io_end. We have to do it
336 * atomically as bio completions can be racing against each
337 * other.
338 */
339 bio->bi_private = xchg(&io_end->bio, bio);
340 ext4_put_io_end_defer(io_end);
341 } else {
342 /*
343 * Drop io_end reference early. Inode can get freed once
344 * we finish the bio.
345 */
346 ext4_put_io_end_defer(io_end);
347 ext4_finish_bio(bio);
348 bio_put(bio);
349 }
350}
351
352void ext4_io_submit(struct ext4_io_submit *io)
353{
354 struct bio *bio = io->io_bio;
355
356 if (bio) {
357 bio_get(io->io_bio);
358 submit_bio(io->io_op, io->io_bio);
359 bio_put(io->io_bio);
360 }
361 io->io_bio = NULL;
362}
363
364void ext4_io_submit_init(struct ext4_io_submit *io,
365 struct writeback_control *wbc)
366{
367 io->io_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
368 io->io_bio = NULL;
369 io->io_end = NULL;
370}
371
372static int io_submit_init_bio(struct ext4_io_submit *io,
373 struct buffer_head *bh)
374{
375 int nvecs = bio_get_nr_vecs(bh->b_bdev);
376 struct bio *bio;
377
378 bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES));
379 if (!bio)
380 return -ENOMEM;
381 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
382 bio->bi_bdev = bh->b_bdev;
383 bio->bi_end_io = ext4_end_bio;
384 bio->bi_private = ext4_get_io_end(io->io_end);
385 io->io_bio = bio;
386 io->io_next_block = bh->b_blocknr;
387 return 0;
388}
389
390static int io_submit_add_bh(struct ext4_io_submit *io,
391 struct inode *inode,
392 struct page *page,
393 struct buffer_head *bh)
394{
395 int ret;
396
397 if (io->io_bio && bh->b_blocknr != io->io_next_block) {
398submit_and_retry:
399 ext4_io_submit(io);
400 }
401 if (io->io_bio == NULL) {
402 ret = io_submit_init_bio(io, bh);
403 if (ret)
404 return ret;
405 }
406 ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
407 if (ret != bh->b_size)
408 goto submit_and_retry;
409 io->io_next_block++;
410 return 0;
411}
412
413int ext4_bio_write_page(struct ext4_io_submit *io,
414 struct page *page,
415 int len,
416 struct writeback_control *wbc,
417 bool keep_towrite)
418{
419 struct page *data_page = NULL;
420 struct inode *inode = page->mapping->host;
421 unsigned block_start, blocksize;
422 struct buffer_head *bh, *head;
423 int ret = 0;
424 int nr_submitted = 0;
425
426 blocksize = 1 << inode->i_blkbits;
427
428 BUG_ON(!PageLocked(page));
429 BUG_ON(PageWriteback(page));
430
431 if (keep_towrite)
432 set_page_writeback_keepwrite(page);
433 else
434 set_page_writeback(page);
435 ClearPageError(page);
436
437 /*
438 * Comments copied from block_write_full_page:
439 *
440 * The page straddles i_size. It must be zeroed out on each and every
441 * writepage invocation because it may be mmapped. "A file is mapped
442 * in multiples of the page size. For a file that is not a multiple of
443 * the page size, the remaining memory is zeroed when mapped, and
444 * writes to that region are not written out to the file."
445 */
446 if (len < PAGE_CACHE_SIZE)
447 zero_user_segment(page, len, PAGE_CACHE_SIZE);
448 /*
449 * In the first loop we prepare and mark buffers to submit. We have to
450 * mark all buffers in the page before submitting so that
451 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
452 * on the first buffer finishes and we are still working on submitting
453 * the second buffer.
454 */
455 bh = head = page_buffers(page);
456 do {
457 block_start = bh_offset(bh);
458 if (block_start >= len) {
459 clear_buffer_dirty(bh);
460 set_buffer_uptodate(bh);
461 continue;
462 }
463 if (!buffer_dirty(bh) || buffer_delay(bh) ||
464 !buffer_mapped(bh) || buffer_unwritten(bh)) {
465 /* A hole? We can safely clear the dirty bit */
466 if (!buffer_mapped(bh))
467 clear_buffer_dirty(bh);
468 if (io->io_bio)
469 ext4_io_submit(io);
470 continue;
471 }
472 if (buffer_new(bh)) {
473 clear_buffer_new(bh);
474 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
475 }
476 set_buffer_async_write(bh);
477 } while ((bh = bh->b_this_page) != head);
478
479 bh = head = page_buffers(page);
480
481 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
482 data_page = ext4_encrypt(inode, page);
483 if (IS_ERR(data_page)) {
484 ret = PTR_ERR(data_page);
485 data_page = NULL;
486 goto out;
487 }
488 }
489
490 /* Now submit buffers to write */
491 do {
492 if (!buffer_async_write(bh))
493 continue;
494 ret = io_submit_add_bh(io, inode,
495 data_page ? data_page : page, bh);
496 if (ret) {
497 /*
498 * We only get here on ENOMEM. Not much else
499 * we can do but mark the page as dirty, and
500 * better luck next time.
501 */
502 break;
503 }
504 nr_submitted++;
505 clear_buffer_dirty(bh);
506 } while ((bh = bh->b_this_page) != head);
507
508 /* Error stopped previous loop? Clean up buffers... */
509 if (ret) {
510 out:
511 if (data_page)
512 ext4_restore_control_page(data_page);
513 printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
514 redirty_page_for_writepage(wbc, page);
515 do {
516 clear_buffer_async_write(bh);
517 bh = bh->b_this_page;
518 } while (bh != head);
519 }
520 unlock_page(page);
521 /* Nothing submitted - we have to end page writeback */
522 if (!nr_submitted)
523 end_page_writeback(page);
524 return ret;
525}
This page took 0.037577 seconds and 4 git commands to generate.