]>
Commit | Line | Data |
---|---|---|
1 | /* audit.c -- Auditing support | |
2 | * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. | |
3 | * System-call specific features have moved to auditsc.c | |
4 | * | |
5 | * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. | |
6 | * All Rights Reserved. | |
7 | * | |
8 | * This program is free software; you can redistribute it and/or modify | |
9 | * it under the terms of the GNU General Public License as published by | |
10 | * the Free Software Foundation; either version 2 of the License, or | |
11 | * (at your option) any later version. | |
12 | * | |
13 | * This program is distributed in the hope that it will be useful, | |
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | * GNU General Public License for more details. | |
17 | * | |
18 | * You should have received a copy of the GNU General Public License | |
19 | * along with this program; if not, write to the Free Software | |
20 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
21 | * | |
22 | * Written by Rickard E. (Rik) Faith <[email protected]> | |
23 | * | |
24 | * Goals: 1) Integrate fully with SELinux. | |
25 | * 2) Minimal run-time overhead: | |
26 | * a) Minimal when syscall auditing is disabled (audit_enable=0). | |
27 | * b) Small when syscall auditing is enabled and no audit record | |
28 | * is generated (defer as much work as possible to record | |
29 | * generation time): | |
30 | * i) context is allocated, | |
31 | * ii) names from getname are stored without a copy, and | |
32 | * iii) inode information stored from path_lookup. | |
33 | * 3) Ability to disable syscall auditing at boot time (audit=0). | |
34 | * 4) Usable by other parts of the kernel (if audit_log* is called, | |
35 | * then a syscall record will be generated automatically for the | |
36 | * current syscall). | |
37 | * 5) Netlink interface to user-space. | |
38 | * 6) Support low-overhead kernel-based filtering to minimize the | |
39 | * information that must be passed to user-space. | |
40 | * | |
41 | * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ | |
42 | */ | |
43 | ||
44 | #include <linux/init.h> | |
45 | #include <asm/types.h> | |
46 | #include <asm/atomic.h> | |
47 | #include <linux/mm.h> | |
48 | #include <linux/module.h> | |
49 | #include <linux/err.h> | |
50 | #include <linux/kthread.h> | |
51 | ||
52 | #include <linux/audit.h> | |
53 | ||
54 | #include <net/sock.h> | |
55 | #include <net/netlink.h> | |
56 | #include <linux/skbuff.h> | |
57 | #include <linux/netlink.h> | |
58 | #include <linux/selinux.h> | |
59 | #include <linux/inotify.h> | |
60 | #include <linux/freezer.h> | |
61 | ||
62 | #include "audit.h" | |
63 | ||
64 | /* No auditing will take place until audit_initialized != 0. | |
65 | * (Initialization happens after skb_init is called.) */ | |
66 | static int audit_initialized; | |
67 | ||
68 | /* 0 - no auditing | |
69 | * 1 - auditing enabled | |
70 | * 2 - auditing enabled and configuration is locked/unchangeable. */ | |
71 | int audit_enabled; | |
72 | ||
73 | /* Default state when kernel boots without any parameters. */ | |
74 | static int audit_default; | |
75 | ||
76 | /* If auditing cannot proceed, audit_failure selects what happens. */ | |
77 | static int audit_failure = AUDIT_FAIL_PRINTK; | |
78 | ||
79 | /* If audit records are to be written to the netlink socket, audit_pid | |
80 | * contains the (non-zero) pid. */ | |
81 | int audit_pid; | |
82 | ||
83 | /* If audit_rate_limit is non-zero, limit the rate of sending audit records | |
84 | * to that number per second. This prevents DoS attacks, but results in | |
85 | * audit records being dropped. */ | |
86 | static int audit_rate_limit; | |
87 | ||
88 | /* Number of outstanding audit_buffers allowed. */ | |
89 | static int audit_backlog_limit = 64; | |
90 | static int audit_backlog_wait_time = 60 * HZ; | |
91 | static int audit_backlog_wait_overflow = 0; | |
92 | ||
93 | /* The identity of the user shutting down the audit system. */ | |
94 | uid_t audit_sig_uid = -1; | |
95 | pid_t audit_sig_pid = -1; | |
96 | u32 audit_sig_sid = 0; | |
97 | ||
98 | /* Records can be lost in several ways: | |
99 | 0) [suppressed in audit_alloc] | |
100 | 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] | |
101 | 2) out of memory in audit_log_move [alloc_skb] | |
102 | 3) suppressed due to audit_rate_limit | |
103 | 4) suppressed due to audit_backlog_limit | |
104 | */ | |
105 | static atomic_t audit_lost = ATOMIC_INIT(0); | |
106 | ||
107 | /* The netlink socket. */ | |
108 | static struct sock *audit_sock; | |
109 | ||
110 | /* Inotify handle. */ | |
111 | struct inotify_handle *audit_ih; | |
112 | ||
113 | /* Hash for inode-based rules */ | |
114 | struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; | |
115 | ||
116 | /* The audit_freelist is a list of pre-allocated audit buffers (if more | |
117 | * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of | |
118 | * being placed on the freelist). */ | |
119 | static DEFINE_SPINLOCK(audit_freelist_lock); | |
120 | static int audit_freelist_count; | |
121 | static LIST_HEAD(audit_freelist); | |
122 | ||
123 | static struct sk_buff_head audit_skb_queue; | |
124 | static struct task_struct *kauditd_task; | |
125 | static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); | |
126 | static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); | |
127 | ||
128 | /* Serialize requests from userspace. */ | |
129 | static DEFINE_MUTEX(audit_cmd_mutex); | |
130 | ||
131 | /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting | |
132 | * audit records. Since printk uses a 1024 byte buffer, this buffer | |
133 | * should be at least that large. */ | |
134 | #define AUDIT_BUFSIZ 1024 | |
135 | ||
136 | /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the | |
137 | * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ | |
138 | #define AUDIT_MAXFREE (2*NR_CPUS) | |
139 | ||
140 | /* The audit_buffer is used when formatting an audit record. The caller | |
141 | * locks briefly to get the record off the freelist or to allocate the | |
142 | * buffer, and locks briefly to send the buffer to the netlink layer or | |
143 | * to place it on a transmit queue. Multiple audit_buffers can be in | |
144 | * use simultaneously. */ | |
145 | struct audit_buffer { | |
146 | struct list_head list; | |
147 | struct sk_buff *skb; /* formatted skb ready to send */ | |
148 | struct audit_context *ctx; /* NULL or associated context */ | |
149 | gfp_t gfp_mask; | |
150 | }; | |
151 | ||
152 | static void audit_set_pid(struct audit_buffer *ab, pid_t pid) | |
153 | { | |
154 | struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); | |
155 | nlh->nlmsg_pid = pid; | |
156 | } | |
157 | ||
158 | void audit_panic(const char *message) | |
159 | { | |
160 | switch (audit_failure) | |
161 | { | |
162 | case AUDIT_FAIL_SILENT: | |
163 | break; | |
164 | case AUDIT_FAIL_PRINTK: | |
165 | printk(KERN_ERR "audit: %s\n", message); | |
166 | break; | |
167 | case AUDIT_FAIL_PANIC: | |
168 | panic("audit: %s\n", message); | |
169 | break; | |
170 | } | |
171 | } | |
172 | ||
173 | static inline int audit_rate_check(void) | |
174 | { | |
175 | static unsigned long last_check = 0; | |
176 | static int messages = 0; | |
177 | static DEFINE_SPINLOCK(lock); | |
178 | unsigned long flags; | |
179 | unsigned long now; | |
180 | unsigned long elapsed; | |
181 | int retval = 0; | |
182 | ||
183 | if (!audit_rate_limit) return 1; | |
184 | ||
185 | spin_lock_irqsave(&lock, flags); | |
186 | if (++messages < audit_rate_limit) { | |
187 | retval = 1; | |
188 | } else { | |
189 | now = jiffies; | |
190 | elapsed = now - last_check; | |
191 | if (elapsed > HZ) { | |
192 | last_check = now; | |
193 | messages = 0; | |
194 | retval = 1; | |
195 | } | |
196 | } | |
197 | spin_unlock_irqrestore(&lock, flags); | |
198 | ||
199 | return retval; | |
200 | } | |
201 | ||
202 | /** | |
203 | * audit_log_lost - conditionally log lost audit message event | |
204 | * @message: the message stating reason for lost audit message | |
205 | * | |
206 | * Emit at least 1 message per second, even if audit_rate_check is | |
207 | * throttling. | |
208 | * Always increment the lost messages counter. | |
209 | */ | |
210 | void audit_log_lost(const char *message) | |
211 | { | |
212 | static unsigned long last_msg = 0; | |
213 | static DEFINE_SPINLOCK(lock); | |
214 | unsigned long flags; | |
215 | unsigned long now; | |
216 | int print; | |
217 | ||
218 | atomic_inc(&audit_lost); | |
219 | ||
220 | print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); | |
221 | ||
222 | if (!print) { | |
223 | spin_lock_irqsave(&lock, flags); | |
224 | now = jiffies; | |
225 | if (now - last_msg > HZ) { | |
226 | print = 1; | |
227 | last_msg = now; | |
228 | } | |
229 | spin_unlock_irqrestore(&lock, flags); | |
230 | } | |
231 | ||
232 | if (print) { | |
233 | printk(KERN_WARNING | |
234 | "audit: audit_lost=%d audit_rate_limit=%d audit_backlog_limit=%d\n", | |
235 | atomic_read(&audit_lost), | |
236 | audit_rate_limit, | |
237 | audit_backlog_limit); | |
238 | audit_panic(message); | |
239 | } | |
240 | } | |
241 | ||
242 | static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sid) | |
243 | { | |
244 | int res, rc = 0, old = audit_rate_limit; | |
245 | ||
246 | /* check if we are locked */ | |
247 | if (audit_enabled == 2) | |
248 | res = 0; | |
249 | else | |
250 | res = 1; | |
251 | ||
252 | if (sid) { | |
253 | char *ctx = NULL; | |
254 | u32 len; | |
255 | if ((rc = selinux_sid_to_string(sid, &ctx, &len)) == 0) { | |
256 | audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, | |
257 | "audit_rate_limit=%d old=%d by auid=%u" | |
258 | " subj=%s res=%d", | |
259 | limit, old, loginuid, ctx, res); | |
260 | kfree(ctx); | |
261 | } else | |
262 | res = 0; /* Something weird, deny request */ | |
263 | } | |
264 | audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, | |
265 | "audit_rate_limit=%d old=%d by auid=%u res=%d", | |
266 | limit, old, loginuid, res); | |
267 | ||
268 | /* If we are allowed, make the change */ | |
269 | if (res == 1) | |
270 | audit_rate_limit = limit; | |
271 | /* Not allowed, update reason */ | |
272 | else if (rc == 0) | |
273 | rc = -EPERM; | |
274 | return rc; | |
275 | } | |
276 | ||
277 | static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sid) | |
278 | { | |
279 | int res, rc = 0, old = audit_backlog_limit; | |
280 | ||
281 | /* check if we are locked */ | |
282 | if (audit_enabled == 2) | |
283 | res = 0; | |
284 | else | |
285 | res = 1; | |
286 | ||
287 | if (sid) { | |
288 | char *ctx = NULL; | |
289 | u32 len; | |
290 | if ((rc = selinux_sid_to_string(sid, &ctx, &len)) == 0) { | |
291 | audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, | |
292 | "audit_backlog_limit=%d old=%d by auid=%u" | |
293 | " subj=%s res=%d", | |
294 | limit, old, loginuid, ctx, res); | |
295 | kfree(ctx); | |
296 | } else | |
297 | res = 0; /* Something weird, deny request */ | |
298 | } | |
299 | audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, | |
300 | "audit_backlog_limit=%d old=%d by auid=%u res=%d", | |
301 | limit, old, loginuid, res); | |
302 | ||
303 | /* If we are allowed, make the change */ | |
304 | if (res == 1) | |
305 | audit_backlog_limit = limit; | |
306 | /* Not allowed, update reason */ | |
307 | else if (rc == 0) | |
308 | rc = -EPERM; | |
309 | return rc; | |
310 | } | |
311 | ||
312 | static int audit_set_enabled(int state, uid_t loginuid, u32 sid) | |
313 | { | |
314 | int res, rc = 0, old = audit_enabled; | |
315 | ||
316 | if (state < 0 || state > 2) | |
317 | return -EINVAL; | |
318 | ||
319 | /* check if we are locked */ | |
320 | if (audit_enabled == 2) | |
321 | res = 0; | |
322 | else | |
323 | res = 1; | |
324 | ||
325 | if (sid) { | |
326 | char *ctx = NULL; | |
327 | u32 len; | |
328 | if ((rc = selinux_sid_to_string(sid, &ctx, &len)) == 0) { | |
329 | audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, | |
330 | "audit_enabled=%d old=%d by auid=%u" | |
331 | " subj=%s res=%d", | |
332 | state, old, loginuid, ctx, res); | |
333 | kfree(ctx); | |
334 | } else | |
335 | res = 0; /* Something weird, deny request */ | |
336 | } | |
337 | audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, | |
338 | "audit_enabled=%d old=%d by auid=%u res=%d", | |
339 | state, old, loginuid, res); | |
340 | ||
341 | /* If we are allowed, make the change */ | |
342 | if (res == 1) | |
343 | audit_enabled = state; | |
344 | /* Not allowed, update reason */ | |
345 | else if (rc == 0) | |
346 | rc = -EPERM; | |
347 | return rc; | |
348 | } | |
349 | ||
350 | static int audit_set_failure(int state, uid_t loginuid, u32 sid) | |
351 | { | |
352 | int res, rc = 0, old = audit_failure; | |
353 | ||
354 | if (state != AUDIT_FAIL_SILENT | |
355 | && state != AUDIT_FAIL_PRINTK | |
356 | && state != AUDIT_FAIL_PANIC) | |
357 | return -EINVAL; | |
358 | ||
359 | /* check if we are locked */ | |
360 | if (audit_enabled == 2) | |
361 | res = 0; | |
362 | else | |
363 | res = 1; | |
364 | ||
365 | if (sid) { | |
366 | char *ctx = NULL; | |
367 | u32 len; | |
368 | if ((rc = selinux_sid_to_string(sid, &ctx, &len)) == 0) { | |
369 | audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, | |
370 | "audit_failure=%d old=%d by auid=%u" | |
371 | " subj=%s res=%d", | |
372 | state, old, loginuid, ctx, res); | |
373 | kfree(ctx); | |
374 | } else | |
375 | res = 0; /* Something weird, deny request */ | |
376 | } | |
377 | audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, | |
378 | "audit_failure=%d old=%d by auid=%u res=%d", | |
379 | state, old, loginuid, res); | |
380 | ||
381 | /* If we are allowed, make the change */ | |
382 | if (res == 1) | |
383 | audit_failure = state; | |
384 | /* Not allowed, update reason */ | |
385 | else if (rc == 0) | |
386 | rc = -EPERM; | |
387 | return rc; | |
388 | } | |
389 | ||
390 | static int kauditd_thread(void *dummy) | |
391 | { | |
392 | struct sk_buff *skb; | |
393 | ||
394 | while (!kthread_should_stop()) { | |
395 | skb = skb_dequeue(&audit_skb_queue); | |
396 | wake_up(&audit_backlog_wait); | |
397 | if (skb) { | |
398 | if (audit_pid) { | |
399 | int err = netlink_unicast(audit_sock, skb, audit_pid, 0); | |
400 | if (err < 0) { | |
401 | BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */ | |
402 | printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid); | |
403 | audit_pid = 0; | |
404 | } | |
405 | } else { | |
406 | printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0)); | |
407 | kfree_skb(skb); | |
408 | } | |
409 | } else { | |
410 | DECLARE_WAITQUEUE(wait, current); | |
411 | set_current_state(TASK_INTERRUPTIBLE); | |
412 | add_wait_queue(&kauditd_wait, &wait); | |
413 | ||
414 | if (!skb_queue_len(&audit_skb_queue)) { | |
415 | try_to_freeze(); | |
416 | schedule(); | |
417 | } | |
418 | ||
419 | __set_current_state(TASK_RUNNING); | |
420 | remove_wait_queue(&kauditd_wait, &wait); | |
421 | } | |
422 | } | |
423 | return 0; | |
424 | } | |
425 | ||
426 | int audit_send_list(void *_dest) | |
427 | { | |
428 | struct audit_netlink_list *dest = _dest; | |
429 | int pid = dest->pid; | |
430 | struct sk_buff *skb; | |
431 | ||
432 | /* wait for parent to finish and send an ACK */ | |
433 | mutex_lock(&audit_cmd_mutex); | |
434 | mutex_unlock(&audit_cmd_mutex); | |
435 | ||
436 | while ((skb = __skb_dequeue(&dest->q)) != NULL) | |
437 | netlink_unicast(audit_sock, skb, pid, 0); | |
438 | ||
439 | kfree(dest); | |
440 | ||
441 | return 0; | |
442 | } | |
443 | ||
444 | struct sk_buff *audit_make_reply(int pid, int seq, int type, int done, | |
445 | int multi, void *payload, int size) | |
446 | { | |
447 | struct sk_buff *skb; | |
448 | struct nlmsghdr *nlh; | |
449 | int len = NLMSG_SPACE(size); | |
450 | void *data; | |
451 | int flags = multi ? NLM_F_MULTI : 0; | |
452 | int t = done ? NLMSG_DONE : type; | |
453 | ||
454 | skb = alloc_skb(len, GFP_KERNEL); | |
455 | if (!skb) | |
456 | return NULL; | |
457 | ||
458 | nlh = NLMSG_PUT(skb, pid, seq, t, size); | |
459 | nlh->nlmsg_flags = flags; | |
460 | data = NLMSG_DATA(nlh); | |
461 | memcpy(data, payload, size); | |
462 | return skb; | |
463 | ||
464 | nlmsg_failure: /* Used by NLMSG_PUT */ | |
465 | if (skb) | |
466 | kfree_skb(skb); | |
467 | return NULL; | |
468 | } | |
469 | ||
470 | /** | |
471 | * audit_send_reply - send an audit reply message via netlink | |
472 | * @pid: process id to send reply to | |
473 | * @seq: sequence number | |
474 | * @type: audit message type | |
475 | * @done: done (last) flag | |
476 | * @multi: multi-part message flag | |
477 | * @payload: payload data | |
478 | * @size: payload size | |
479 | * | |
480 | * Allocates an skb, builds the netlink message, and sends it to the pid. | |
481 | * No failure notifications. | |
482 | */ | |
483 | void audit_send_reply(int pid, int seq, int type, int done, int multi, | |
484 | void *payload, int size) | |
485 | { | |
486 | struct sk_buff *skb; | |
487 | skb = audit_make_reply(pid, seq, type, done, multi, payload, size); | |
488 | if (!skb) | |
489 | return; | |
490 | /* Ignore failure. It'll only happen if the sender goes away, | |
491 | because our timeout is set to infinite. */ | |
492 | netlink_unicast(audit_sock, skb, pid, 0); | |
493 | return; | |
494 | } | |
495 | ||
496 | /* | |
497 | * Check for appropriate CAP_AUDIT_ capabilities on incoming audit | |
498 | * control messages. | |
499 | */ | |
500 | static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) | |
501 | { | |
502 | int err = 0; | |
503 | ||
504 | switch (msg_type) { | |
505 | case AUDIT_GET: | |
506 | case AUDIT_LIST: | |
507 | case AUDIT_LIST_RULES: | |
508 | case AUDIT_SET: | |
509 | case AUDIT_ADD: | |
510 | case AUDIT_ADD_RULE: | |
511 | case AUDIT_DEL: | |
512 | case AUDIT_DEL_RULE: | |
513 | case AUDIT_SIGNAL_INFO: | |
514 | if (security_netlink_recv(skb, CAP_AUDIT_CONTROL)) | |
515 | err = -EPERM; | |
516 | break; | |
517 | case AUDIT_USER: | |
518 | case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: | |
519 | case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: | |
520 | if (security_netlink_recv(skb, CAP_AUDIT_WRITE)) | |
521 | err = -EPERM; | |
522 | break; | |
523 | default: /* bad msg */ | |
524 | err = -EINVAL; | |
525 | } | |
526 | ||
527 | return err; | |
528 | } | |
529 | ||
530 | static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) | |
531 | { | |
532 | u32 uid, pid, seq, sid; | |
533 | void *data; | |
534 | struct audit_status *status_get, status_set; | |
535 | int err; | |
536 | struct audit_buffer *ab; | |
537 | u16 msg_type = nlh->nlmsg_type; | |
538 | uid_t loginuid; /* loginuid of sender */ | |
539 | struct audit_sig_info *sig_data; | |
540 | char *ctx; | |
541 | u32 len; | |
542 | ||
543 | err = audit_netlink_ok(skb, msg_type); | |
544 | if (err) | |
545 | return err; | |
546 | ||
547 | /* As soon as there's any sign of userspace auditd, | |
548 | * start kauditd to talk to it */ | |
549 | if (!kauditd_task) | |
550 | kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); | |
551 | if (IS_ERR(kauditd_task)) { | |
552 | err = PTR_ERR(kauditd_task); | |
553 | kauditd_task = NULL; | |
554 | return err; | |
555 | } | |
556 | ||
557 | pid = NETLINK_CREDS(skb)->pid; | |
558 | uid = NETLINK_CREDS(skb)->uid; | |
559 | loginuid = NETLINK_CB(skb).loginuid; | |
560 | sid = NETLINK_CB(skb).sid; | |
561 | seq = nlh->nlmsg_seq; | |
562 | data = NLMSG_DATA(nlh); | |
563 | ||
564 | switch (msg_type) { | |
565 | case AUDIT_GET: | |
566 | status_set.enabled = audit_enabled; | |
567 | status_set.failure = audit_failure; | |
568 | status_set.pid = audit_pid; | |
569 | status_set.rate_limit = audit_rate_limit; | |
570 | status_set.backlog_limit = audit_backlog_limit; | |
571 | status_set.lost = atomic_read(&audit_lost); | |
572 | status_set.backlog = skb_queue_len(&audit_skb_queue); | |
573 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0, | |
574 | &status_set, sizeof(status_set)); | |
575 | break; | |
576 | case AUDIT_SET: | |
577 | if (nlh->nlmsg_len < sizeof(struct audit_status)) | |
578 | return -EINVAL; | |
579 | status_get = (struct audit_status *)data; | |
580 | if (status_get->mask & AUDIT_STATUS_ENABLED) { | |
581 | err = audit_set_enabled(status_get->enabled, | |
582 | loginuid, sid); | |
583 | if (err < 0) return err; | |
584 | } | |
585 | if (status_get->mask & AUDIT_STATUS_FAILURE) { | |
586 | err = audit_set_failure(status_get->failure, | |
587 | loginuid, sid); | |
588 | if (err < 0) return err; | |
589 | } | |
590 | if (status_get->mask & AUDIT_STATUS_PID) { | |
591 | int old = audit_pid; | |
592 | if (sid) { | |
593 | if ((err = selinux_sid_to_string( | |
594 | sid, &ctx, &len))) | |
595 | return err; | |
596 | else | |
597 | audit_log(NULL, GFP_KERNEL, | |
598 | AUDIT_CONFIG_CHANGE, | |
599 | "audit_pid=%d old=%d by auid=%u subj=%s", | |
600 | status_get->pid, old, | |
601 | loginuid, ctx); | |
602 | kfree(ctx); | |
603 | } else | |
604 | audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, | |
605 | "audit_pid=%d old=%d by auid=%u", | |
606 | status_get->pid, old, loginuid); | |
607 | audit_pid = status_get->pid; | |
608 | } | |
609 | if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) | |
610 | err = audit_set_rate_limit(status_get->rate_limit, | |
611 | loginuid, sid); | |
612 | if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT) | |
613 | err = audit_set_backlog_limit(status_get->backlog_limit, | |
614 | loginuid, sid); | |
615 | break; | |
616 | case AUDIT_USER: | |
617 | case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: | |
618 | case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: | |
619 | if (!audit_enabled && msg_type != AUDIT_USER_AVC) | |
620 | return 0; | |
621 | ||
622 | err = audit_filter_user(&NETLINK_CB(skb), msg_type); | |
623 | if (err == 1) { | |
624 | err = 0; | |
625 | ab = audit_log_start(NULL, GFP_KERNEL, msg_type); | |
626 | if (ab) { | |
627 | audit_log_format(ab, | |
628 | "user pid=%d uid=%u auid=%u", | |
629 | pid, uid, loginuid); | |
630 | if (sid) { | |
631 | if (selinux_sid_to_string( | |
632 | sid, &ctx, &len)) { | |
633 | audit_log_format(ab, | |
634 | " ssid=%u", sid); | |
635 | /* Maybe call audit_panic? */ | |
636 | } else | |
637 | audit_log_format(ab, | |
638 | " subj=%s", ctx); | |
639 | kfree(ctx); | |
640 | } | |
641 | audit_log_format(ab, " msg='%.1024s'", | |
642 | (char *)data); | |
643 | audit_set_pid(ab, pid); | |
644 | audit_log_end(ab); | |
645 | } | |
646 | } | |
647 | break; | |
648 | case AUDIT_ADD: | |
649 | case AUDIT_DEL: | |
650 | if (nlmsg_len(nlh) < sizeof(struct audit_rule)) | |
651 | return -EINVAL; | |
652 | if (audit_enabled == 2) { | |
653 | ab = audit_log_start(NULL, GFP_KERNEL, | |
654 | AUDIT_CONFIG_CHANGE); | |
655 | if (ab) { | |
656 | audit_log_format(ab, | |
657 | "pid=%d uid=%u auid=%u", | |
658 | pid, uid, loginuid); | |
659 | if (sid) { | |
660 | if (selinux_sid_to_string( | |
661 | sid, &ctx, &len)) { | |
662 | audit_log_format(ab, | |
663 | " ssid=%u", sid); | |
664 | /* Maybe call audit_panic? */ | |
665 | } else | |
666 | audit_log_format(ab, | |
667 | " subj=%s", ctx); | |
668 | kfree(ctx); | |
669 | } | |
670 | audit_log_format(ab, " audit_enabled=%d res=0", | |
671 | audit_enabled); | |
672 | audit_log_end(ab); | |
673 | } | |
674 | return -EPERM; | |
675 | } | |
676 | /* fallthrough */ | |
677 | case AUDIT_LIST: | |
678 | err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, | |
679 | uid, seq, data, nlmsg_len(nlh), | |
680 | loginuid, sid); | |
681 | break; | |
682 | case AUDIT_ADD_RULE: | |
683 | case AUDIT_DEL_RULE: | |
684 | if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) | |
685 | return -EINVAL; | |
686 | if (audit_enabled == 2) { | |
687 | ab = audit_log_start(NULL, GFP_KERNEL, | |
688 | AUDIT_CONFIG_CHANGE); | |
689 | if (ab) { | |
690 | audit_log_format(ab, | |
691 | "pid=%d uid=%u auid=%u", | |
692 | pid, uid, loginuid); | |
693 | if (sid) { | |
694 | if (selinux_sid_to_string( | |
695 | sid, &ctx, &len)) { | |
696 | audit_log_format(ab, | |
697 | " ssid=%u", sid); | |
698 | /* Maybe call audit_panic? */ | |
699 | } else | |
700 | audit_log_format(ab, | |
701 | " subj=%s", ctx); | |
702 | kfree(ctx); | |
703 | } | |
704 | audit_log_format(ab, " audit_enabled=%d res=0", | |
705 | audit_enabled); | |
706 | audit_log_end(ab); | |
707 | } | |
708 | return -EPERM; | |
709 | } | |
710 | /* fallthrough */ | |
711 | case AUDIT_LIST_RULES: | |
712 | err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, | |
713 | uid, seq, data, nlmsg_len(nlh), | |
714 | loginuid, sid); | |
715 | break; | |
716 | case AUDIT_SIGNAL_INFO: | |
717 | err = selinux_sid_to_string(audit_sig_sid, &ctx, &len); | |
718 | if (err) | |
719 | return err; | |
720 | sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); | |
721 | if (!sig_data) { | |
722 | kfree(ctx); | |
723 | return -ENOMEM; | |
724 | } | |
725 | sig_data->uid = audit_sig_uid; | |
726 | sig_data->pid = audit_sig_pid; | |
727 | memcpy(sig_data->ctx, ctx, len); | |
728 | kfree(ctx); | |
729 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, | |
730 | 0, 0, sig_data, sizeof(*sig_data) + len); | |
731 | kfree(sig_data); | |
732 | break; | |
733 | default: | |
734 | err = -EINVAL; | |
735 | break; | |
736 | } | |
737 | ||
738 | return err < 0 ? err : 0; | |
739 | } | |
740 | ||
741 | /* | |
742 | * Get message from skb (based on rtnetlink_rcv_skb). Each message is | |
743 | * processed by audit_receive_msg. Malformed skbs with wrong length are | |
744 | * discarded silently. | |
745 | */ | |
746 | static void audit_receive_skb(struct sk_buff *skb) | |
747 | { | |
748 | int err; | |
749 | struct nlmsghdr *nlh; | |
750 | u32 rlen; | |
751 | ||
752 | while (skb->len >= NLMSG_SPACE(0)) { | |
753 | nlh = nlmsg_hdr(skb); | |
754 | if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len) | |
755 | return; | |
756 | rlen = NLMSG_ALIGN(nlh->nlmsg_len); | |
757 | if (rlen > skb->len) | |
758 | rlen = skb->len; | |
759 | if ((err = audit_receive_msg(skb, nlh))) { | |
760 | netlink_ack(skb, nlh, err); | |
761 | } else if (nlh->nlmsg_flags & NLM_F_ACK) | |
762 | netlink_ack(skb, nlh, 0); | |
763 | skb_pull(skb, rlen); | |
764 | } | |
765 | } | |
766 | ||
767 | /* Receive messages from netlink socket. */ | |
768 | static void audit_receive(struct sock *sk, int length) | |
769 | { | |
770 | struct sk_buff *skb; | |
771 | unsigned int qlen; | |
772 | ||
773 | mutex_lock(&audit_cmd_mutex); | |
774 | ||
775 | for (qlen = skb_queue_len(&sk->sk_receive_queue); qlen; qlen--) { | |
776 | skb = skb_dequeue(&sk->sk_receive_queue); | |
777 | audit_receive_skb(skb); | |
778 | kfree_skb(skb); | |
779 | } | |
780 | mutex_unlock(&audit_cmd_mutex); | |
781 | } | |
782 | ||
783 | #ifdef CONFIG_AUDITSYSCALL | |
784 | static const struct inotify_operations audit_inotify_ops = { | |
785 | .handle_event = audit_handle_ievent, | |
786 | .destroy_watch = audit_free_parent, | |
787 | }; | |
788 | #endif | |
789 | ||
790 | /* Initialize audit support at boot time. */ | |
791 | static int __init audit_init(void) | |
792 | { | |
793 | int i; | |
794 | ||
795 | printk(KERN_INFO "audit: initializing netlink socket (%s)\n", | |
796 | audit_default ? "enabled" : "disabled"); | |
797 | audit_sock = netlink_kernel_create(NETLINK_AUDIT, 0, audit_receive, | |
798 | NULL, THIS_MODULE); | |
799 | if (!audit_sock) | |
800 | audit_panic("cannot initialize netlink socket"); | |
801 | else | |
802 | audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; | |
803 | ||
804 | skb_queue_head_init(&audit_skb_queue); | |
805 | audit_initialized = 1; | |
806 | audit_enabled = audit_default; | |
807 | ||
808 | /* Register the callback with selinux. This callback will be invoked | |
809 | * when a new policy is loaded. */ | |
810 | selinux_audit_set_callback(&selinux_audit_rule_update); | |
811 | ||
812 | audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); | |
813 | ||
814 | #ifdef CONFIG_AUDITSYSCALL | |
815 | audit_ih = inotify_init(&audit_inotify_ops); | |
816 | if (IS_ERR(audit_ih)) | |
817 | audit_panic("cannot initialize inotify handle"); | |
818 | #endif | |
819 | ||
820 | for (i = 0; i < AUDIT_INODE_BUCKETS; i++) | |
821 | INIT_LIST_HEAD(&audit_inode_hash[i]); | |
822 | ||
823 | return 0; | |
824 | } | |
825 | __initcall(audit_init); | |
826 | ||
827 | /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ | |
828 | static int __init audit_enable(char *str) | |
829 | { | |
830 | audit_default = !!simple_strtol(str, NULL, 0); | |
831 | printk(KERN_INFO "audit: %s%s\n", | |
832 | audit_default ? "enabled" : "disabled", | |
833 | audit_initialized ? "" : " (after initialization)"); | |
834 | if (audit_initialized) | |
835 | audit_enabled = audit_default; | |
836 | return 1; | |
837 | } | |
838 | ||
839 | __setup("audit=", audit_enable); | |
840 | ||
841 | static void audit_buffer_free(struct audit_buffer *ab) | |
842 | { | |
843 | unsigned long flags; | |
844 | ||
845 | if (!ab) | |
846 | return; | |
847 | ||
848 | if (ab->skb) | |
849 | kfree_skb(ab->skb); | |
850 | ||
851 | spin_lock_irqsave(&audit_freelist_lock, flags); | |
852 | if (audit_freelist_count > AUDIT_MAXFREE) | |
853 | kfree(ab); | |
854 | else { | |
855 | audit_freelist_count++; | |
856 | list_add(&ab->list, &audit_freelist); | |
857 | } | |
858 | spin_unlock_irqrestore(&audit_freelist_lock, flags); | |
859 | } | |
860 | ||
861 | static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, | |
862 | gfp_t gfp_mask, int type) | |
863 | { | |
864 | unsigned long flags; | |
865 | struct audit_buffer *ab = NULL; | |
866 | struct nlmsghdr *nlh; | |
867 | ||
868 | spin_lock_irqsave(&audit_freelist_lock, flags); | |
869 | if (!list_empty(&audit_freelist)) { | |
870 | ab = list_entry(audit_freelist.next, | |
871 | struct audit_buffer, list); | |
872 | list_del(&ab->list); | |
873 | --audit_freelist_count; | |
874 | } | |
875 | spin_unlock_irqrestore(&audit_freelist_lock, flags); | |
876 | ||
877 | if (!ab) { | |
878 | ab = kmalloc(sizeof(*ab), gfp_mask); | |
879 | if (!ab) | |
880 | goto err; | |
881 | } | |
882 | ||
883 | ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask); | |
884 | if (!ab->skb) | |
885 | goto err; | |
886 | ||
887 | ab->ctx = ctx; | |
888 | ab->gfp_mask = gfp_mask; | |
889 | nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0)); | |
890 | nlh->nlmsg_type = type; | |
891 | nlh->nlmsg_flags = 0; | |
892 | nlh->nlmsg_pid = 0; | |
893 | nlh->nlmsg_seq = 0; | |
894 | return ab; | |
895 | err: | |
896 | audit_buffer_free(ab); | |
897 | return NULL; | |
898 | } | |
899 | ||
900 | /** | |
901 | * audit_serial - compute a serial number for the audit record | |
902 | * | |
903 | * Compute a serial number for the audit record. Audit records are | |
904 | * written to user-space as soon as they are generated, so a complete | |
905 | * audit record may be written in several pieces. The timestamp of the | |
906 | * record and this serial number are used by the user-space tools to | |
907 | * determine which pieces belong to the same audit record. The | |
908 | * (timestamp,serial) tuple is unique for each syscall and is live from | |
909 | * syscall entry to syscall exit. | |
910 | * | |
911 | * NOTE: Another possibility is to store the formatted records off the | |
912 | * audit context (for those records that have a context), and emit them | |
913 | * all at syscall exit. However, this could delay the reporting of | |
914 | * significant errors until syscall exit (or never, if the system | |
915 | * halts). | |
916 | */ | |
917 | unsigned int audit_serial(void) | |
918 | { | |
919 | static DEFINE_SPINLOCK(serial_lock); | |
920 | static unsigned int serial = 0; | |
921 | ||
922 | unsigned long flags; | |
923 | unsigned int ret; | |
924 | ||
925 | spin_lock_irqsave(&serial_lock, flags); | |
926 | do { | |
927 | ret = ++serial; | |
928 | } while (unlikely(!ret)); | |
929 | spin_unlock_irqrestore(&serial_lock, flags); | |
930 | ||
931 | return ret; | |
932 | } | |
933 | ||
934 | static inline void audit_get_stamp(struct audit_context *ctx, | |
935 | struct timespec *t, unsigned int *serial) | |
936 | { | |
937 | if (ctx) | |
938 | auditsc_get_stamp(ctx, t, serial); | |
939 | else { | |
940 | *t = CURRENT_TIME; | |
941 | *serial = audit_serial(); | |
942 | } | |
943 | } | |
944 | ||
945 | /* Obtain an audit buffer. This routine does locking to obtain the | |
946 | * audit buffer, but then no locking is required for calls to | |
947 | * audit_log_*format. If the tsk is a task that is currently in a | |
948 | * syscall, then the syscall is marked as auditable and an audit record | |
949 | * will be written at syscall exit. If there is no associated task, tsk | |
950 | * should be NULL. */ | |
951 | ||
952 | /** | |
953 | * audit_log_start - obtain an audit buffer | |
954 | * @ctx: audit_context (may be NULL) | |
955 | * @gfp_mask: type of allocation | |
956 | * @type: audit message type | |
957 | * | |
958 | * Returns audit_buffer pointer on success or NULL on error. | |
959 | * | |
960 | * Obtain an audit buffer. This routine does locking to obtain the | |
961 | * audit buffer, but then no locking is required for calls to | |
962 | * audit_log_*format. If the task (ctx) is a task that is currently in a | |
963 | * syscall, then the syscall is marked as auditable and an audit record | |
964 | * will be written at syscall exit. If there is no associated task, then | |
965 | * task context (ctx) should be NULL. | |
966 | */ | |
967 | struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, | |
968 | int type) | |
969 | { | |
970 | struct audit_buffer *ab = NULL; | |
971 | struct timespec t; | |
972 | unsigned int serial; | |
973 | int reserve; | |
974 | unsigned long timeout_start = jiffies; | |
975 | ||
976 | if (!audit_initialized) | |
977 | return NULL; | |
978 | ||
979 | if (unlikely(audit_filter_type(type))) | |
980 | return NULL; | |
981 | ||
982 | if (gfp_mask & __GFP_WAIT) | |
983 | reserve = 0; | |
984 | else | |
985 | reserve = 5; /* Allow atomic callers to go up to five | |
986 | entries over the normal backlog limit */ | |
987 | ||
988 | while (audit_backlog_limit | |
989 | && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { | |
990 | if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time | |
991 | && time_before(jiffies, timeout_start + audit_backlog_wait_time)) { | |
992 | ||
993 | /* Wait for auditd to drain the queue a little */ | |
994 | DECLARE_WAITQUEUE(wait, current); | |
995 | set_current_state(TASK_INTERRUPTIBLE); | |
996 | add_wait_queue(&audit_backlog_wait, &wait); | |
997 | ||
998 | if (audit_backlog_limit && | |
999 | skb_queue_len(&audit_skb_queue) > audit_backlog_limit) | |
1000 | schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies); | |
1001 | ||
1002 | __set_current_state(TASK_RUNNING); | |
1003 | remove_wait_queue(&audit_backlog_wait, &wait); | |
1004 | continue; | |
1005 | } | |
1006 | if (audit_rate_check()) | |
1007 | printk(KERN_WARNING | |
1008 | "audit: audit_backlog=%d > " | |
1009 | "audit_backlog_limit=%d\n", | |
1010 | skb_queue_len(&audit_skb_queue), | |
1011 | audit_backlog_limit); | |
1012 | audit_log_lost("backlog limit exceeded"); | |
1013 | audit_backlog_wait_time = audit_backlog_wait_overflow; | |
1014 | wake_up(&audit_backlog_wait); | |
1015 | return NULL; | |
1016 | } | |
1017 | ||
1018 | ab = audit_buffer_alloc(ctx, gfp_mask, type); | |
1019 | if (!ab) { | |
1020 | audit_log_lost("out of memory in audit_log_start"); | |
1021 | return NULL; | |
1022 | } | |
1023 | ||
1024 | audit_get_stamp(ab->ctx, &t, &serial); | |
1025 | ||
1026 | audit_log_format(ab, "audit(%lu.%03lu:%u): ", | |
1027 | t.tv_sec, t.tv_nsec/1000000, serial); | |
1028 | return ab; | |
1029 | } | |
1030 | ||
1031 | /** | |
1032 | * audit_expand - expand skb in the audit buffer | |
1033 | * @ab: audit_buffer | |
1034 | * @extra: space to add at tail of the skb | |
1035 | * | |
1036 | * Returns 0 (no space) on failed expansion, or available space if | |
1037 | * successful. | |
1038 | */ | |
1039 | static inline int audit_expand(struct audit_buffer *ab, int extra) | |
1040 | { | |
1041 | struct sk_buff *skb = ab->skb; | |
1042 | int ret = pskb_expand_head(skb, skb_headroom(skb), extra, | |
1043 | ab->gfp_mask); | |
1044 | if (ret < 0) { | |
1045 | audit_log_lost("out of memory in audit_expand"); | |
1046 | return 0; | |
1047 | } | |
1048 | return skb_tailroom(skb); | |
1049 | } | |
1050 | ||
1051 | /* | |
1052 | * Format an audit message into the audit buffer. If there isn't enough | |
1053 | * room in the audit buffer, more room will be allocated and vsnprint | |
1054 | * will be called a second time. Currently, we assume that a printk | |
1055 | * can't format message larger than 1024 bytes, so we don't either. | |
1056 | */ | |
1057 | static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, | |
1058 | va_list args) | |
1059 | { | |
1060 | int len, avail; | |
1061 | struct sk_buff *skb; | |
1062 | va_list args2; | |
1063 | ||
1064 | if (!ab) | |
1065 | return; | |
1066 | ||
1067 | BUG_ON(!ab->skb); | |
1068 | skb = ab->skb; | |
1069 | avail = skb_tailroom(skb); | |
1070 | if (avail == 0) { | |
1071 | avail = audit_expand(ab, AUDIT_BUFSIZ); | |
1072 | if (!avail) | |
1073 | goto out; | |
1074 | } | |
1075 | va_copy(args2, args); | |
1076 | len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); | |
1077 | if (len >= avail) { | |
1078 | /* The printk buffer is 1024 bytes long, so if we get | |
1079 | * here and AUDIT_BUFSIZ is at least 1024, then we can | |
1080 | * log everything that printk could have logged. */ | |
1081 | avail = audit_expand(ab, | |
1082 | max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); | |
1083 | if (!avail) | |
1084 | goto out; | |
1085 | len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); | |
1086 | } | |
1087 | if (len > 0) | |
1088 | skb_put(skb, len); | |
1089 | out: | |
1090 | return; | |
1091 | } | |
1092 | ||
1093 | /** | |
1094 | * audit_log_format - format a message into the audit buffer. | |
1095 | * @ab: audit_buffer | |
1096 | * @fmt: format string | |
1097 | * @...: optional parameters matching @fmt string | |
1098 | * | |
1099 | * All the work is done in audit_log_vformat. | |
1100 | */ | |
1101 | void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) | |
1102 | { | |
1103 | va_list args; | |
1104 | ||
1105 | if (!ab) | |
1106 | return; | |
1107 | va_start(args, fmt); | |
1108 | audit_log_vformat(ab, fmt, args); | |
1109 | va_end(args); | |
1110 | } | |
1111 | ||
1112 | /** | |
1113 | * audit_log_hex - convert a buffer to hex and append it to the audit skb | |
1114 | * @ab: the audit_buffer | |
1115 | * @buf: buffer to convert to hex | |
1116 | * @len: length of @buf to be converted | |
1117 | * | |
1118 | * No return value; failure to expand is silently ignored. | |
1119 | * | |
1120 | * This function will take the passed buf and convert it into a string of | |
1121 | * ascii hex digits. The new string is placed onto the skb. | |
1122 | */ | |
1123 | void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf, | |
1124 | size_t len) | |
1125 | { | |
1126 | int i, avail, new_len; | |
1127 | unsigned char *ptr; | |
1128 | struct sk_buff *skb; | |
1129 | static const unsigned char *hex = "0123456789ABCDEF"; | |
1130 | ||
1131 | if (!ab) | |
1132 | return; | |
1133 | ||
1134 | BUG_ON(!ab->skb); | |
1135 | skb = ab->skb; | |
1136 | avail = skb_tailroom(skb); | |
1137 | new_len = len<<1; | |
1138 | if (new_len >= avail) { | |
1139 | /* Round the buffer request up to the next multiple */ | |
1140 | new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); | |
1141 | avail = audit_expand(ab, new_len); | |
1142 | if (!avail) | |
1143 | return; | |
1144 | } | |
1145 | ||
1146 | ptr = skb_tail_pointer(skb); | |
1147 | for (i=0; i<len; i++) { | |
1148 | *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */ | |
1149 | *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */ | |
1150 | } | |
1151 | *ptr = 0; | |
1152 | skb_put(skb, len << 1); /* new string is twice the old string */ | |
1153 | } | |
1154 | ||
1155 | /* | |
1156 | * Format a string of no more than slen characters into the audit buffer, | |
1157 | * enclosed in quote marks. | |
1158 | */ | |
1159 | static void audit_log_n_string(struct audit_buffer *ab, size_t slen, | |
1160 | const char *string) | |
1161 | { | |
1162 | int avail, new_len; | |
1163 | unsigned char *ptr; | |
1164 | struct sk_buff *skb; | |
1165 | ||
1166 | if (!ab) | |
1167 | return; | |
1168 | ||
1169 | BUG_ON(!ab->skb); | |
1170 | skb = ab->skb; | |
1171 | avail = skb_tailroom(skb); | |
1172 | new_len = slen + 3; /* enclosing quotes + null terminator */ | |
1173 | if (new_len > avail) { | |
1174 | avail = audit_expand(ab, new_len); | |
1175 | if (!avail) | |
1176 | return; | |
1177 | } | |
1178 | ptr = skb_tail_pointer(skb); | |
1179 | *ptr++ = '"'; | |
1180 | memcpy(ptr, string, slen); | |
1181 | ptr += slen; | |
1182 | *ptr++ = '"'; | |
1183 | *ptr = 0; | |
1184 | skb_put(skb, slen + 2); /* don't include null terminator */ | |
1185 | } | |
1186 | ||
1187 | /** | |
1188 | * audit_log_n_unstrustedstring - log a string that may contain random characters | |
1189 | * @ab: audit_buffer | |
1190 | * @len: lenth of string (not including trailing null) | |
1191 | * @string: string to be logged | |
1192 | * | |
1193 | * This code will escape a string that is passed to it if the string | |
1194 | * contains a control character, unprintable character, double quote mark, | |
1195 | * or a space. Unescaped strings will start and end with a double quote mark. | |
1196 | * Strings that are escaped are printed in hex (2 digits per char). | |
1197 | * | |
1198 | * The caller specifies the number of characters in the string to log, which may | |
1199 | * or may not be the entire string. | |
1200 | */ | |
1201 | const char *audit_log_n_untrustedstring(struct audit_buffer *ab, size_t len, | |
1202 | const char *string) | |
1203 | { | |
1204 | const unsigned char *p = string; | |
1205 | ||
1206 | while (*p) { | |
1207 | if (*p == '"' || *p < 0x21 || *p > 0x7f) { | |
1208 | audit_log_hex(ab, string, len); | |
1209 | return string + len + 1; | |
1210 | } | |
1211 | p++; | |
1212 | } | |
1213 | audit_log_n_string(ab, len, string); | |
1214 | return p + 1; | |
1215 | } | |
1216 | ||
1217 | /** | |
1218 | * audit_log_unstrustedstring - log a string that may contain random characters | |
1219 | * @ab: audit_buffer | |
1220 | * @string: string to be logged | |
1221 | * | |
1222 | * Same as audit_log_n_unstrustedstring(), except that strlen is used to | |
1223 | * determine string length. | |
1224 | */ | |
1225 | const char *audit_log_untrustedstring(struct audit_buffer *ab, const char *string) | |
1226 | { | |
1227 | return audit_log_n_untrustedstring(ab, strlen(string), string); | |
1228 | } | |
1229 | ||
1230 | /* This is a helper-function to print the escaped d_path */ | |
1231 | void audit_log_d_path(struct audit_buffer *ab, const char *prefix, | |
1232 | struct dentry *dentry, struct vfsmount *vfsmnt) | |
1233 | { | |
1234 | char *p, *path; | |
1235 | ||
1236 | if (prefix) | |
1237 | audit_log_format(ab, " %s", prefix); | |
1238 | ||
1239 | /* We will allow 11 spaces for ' (deleted)' to be appended */ | |
1240 | path = kmalloc(PATH_MAX+11, ab->gfp_mask); | |
1241 | if (!path) { | |
1242 | audit_log_format(ab, "<no memory>"); | |
1243 | return; | |
1244 | } | |
1245 | p = d_path(dentry, vfsmnt, path, PATH_MAX+11); | |
1246 | if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ | |
1247 | /* FIXME: can we save some information here? */ | |
1248 | audit_log_format(ab, "<too long>"); | |
1249 | } else | |
1250 | audit_log_untrustedstring(ab, p); | |
1251 | kfree(path); | |
1252 | } | |
1253 | ||
1254 | /** | |
1255 | * audit_log_end - end one audit record | |
1256 | * @ab: the audit_buffer | |
1257 | * | |
1258 | * The netlink_* functions cannot be called inside an irq context, so | |
1259 | * the audit buffer is placed on a queue and a tasklet is scheduled to | |
1260 | * remove them from the queue outside the irq context. May be called in | |
1261 | * any context. | |
1262 | */ | |
1263 | void audit_log_end(struct audit_buffer *ab) | |
1264 | { | |
1265 | if (!ab) | |
1266 | return; | |
1267 | if (!audit_rate_check()) { | |
1268 | audit_log_lost("rate limit exceeded"); | |
1269 | } else { | |
1270 | if (audit_pid) { | |
1271 | struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); | |
1272 | nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0); | |
1273 | skb_queue_tail(&audit_skb_queue, ab->skb); | |
1274 | ab->skb = NULL; | |
1275 | wake_up_interruptible(&kauditd_wait); | |
1276 | } else { | |
1277 | printk(KERN_NOTICE "%s\n", ab->skb->data + NLMSG_SPACE(0)); | |
1278 | } | |
1279 | } | |
1280 | audit_buffer_free(ab); | |
1281 | } | |
1282 | ||
1283 | /** | |
1284 | * audit_log - Log an audit record | |
1285 | * @ctx: audit context | |
1286 | * @gfp_mask: type of allocation | |
1287 | * @type: audit message type | |
1288 | * @fmt: format string to use | |
1289 | * @...: variable parameters matching the format string | |
1290 | * | |
1291 | * This is a convenience function that calls audit_log_start, | |
1292 | * audit_log_vformat, and audit_log_end. It may be called | |
1293 | * in any context. | |
1294 | */ | |
1295 | void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, | |
1296 | const char *fmt, ...) | |
1297 | { | |
1298 | struct audit_buffer *ab; | |
1299 | va_list args; | |
1300 | ||
1301 | ab = audit_log_start(ctx, gfp_mask, type); | |
1302 | if (ab) { | |
1303 | va_start(args, fmt); | |
1304 | audit_log_vformat(ab, fmt, args); | |
1305 | va_end(args); | |
1306 | audit_log_end(ab); | |
1307 | } | |
1308 | } | |
1309 | ||
1310 | EXPORT_SYMBOL(audit_log_start); | |
1311 | EXPORT_SYMBOL(audit_log_end); | |
1312 | EXPORT_SYMBOL(audit_log_format); | |
1313 | EXPORT_SYMBOL(audit_log); |