]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | Red Black Trees | |
3 | (C) 1999 Andrea Arcangeli <[email protected]> | |
4 | (C) 2002 David Woodhouse <[email protected]> | |
5 | (C) 2012 Michel Lespinasse <[email protected]> | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
20 | ||
21 | linux/lib/rbtree.c | |
22 | */ | |
23 | ||
24 | #include <linux/rbtree_augmented.h> | |
25 | #include <linux/export.h> | |
26 | ||
27 | /* | |
28 | * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree | |
29 | * | |
30 | * 1) A node is either red or black | |
31 | * 2) The root is black | |
32 | * 3) All leaves (NULL) are black | |
33 | * 4) Both children of every red node are black | |
34 | * 5) Every simple path from root to leaves contains the same number | |
35 | * of black nodes. | |
36 | * | |
37 | * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two | |
38 | * consecutive red nodes in a path and every red node is therefore followed by | |
39 | * a black. So if B is the number of black nodes on every simple path (as per | |
40 | * 5), then the longest possible path due to 4 is 2B. | |
41 | * | |
42 | * We shall indicate color with case, where black nodes are uppercase and red | |
43 | * nodes will be lowercase. Unknown color nodes shall be drawn as red within | |
44 | * parentheses and have some accompanying text comment. | |
45 | */ | |
46 | ||
47 | static inline void rb_set_black(struct rb_node *rb) | |
48 | { | |
49 | rb->__rb_parent_color |= RB_BLACK; | |
50 | } | |
51 | ||
52 | static inline struct rb_node *rb_red_parent(struct rb_node *red) | |
53 | { | |
54 | return (struct rb_node *)red->__rb_parent_color; | |
55 | } | |
56 | ||
57 | /* | |
58 | * Helper function for rotations: | |
59 | * - old's parent and color get assigned to new | |
60 | * - old gets assigned new as a parent and 'color' as a color. | |
61 | */ | |
62 | static inline void | |
63 | __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new, | |
64 | struct rb_root *root, int color) | |
65 | { | |
66 | struct rb_node *parent = rb_parent(old); | |
67 | new->__rb_parent_color = old->__rb_parent_color; | |
68 | rb_set_parent_color(old, new, color); | |
69 | __rb_change_child(old, new, parent, root); | |
70 | } | |
71 | ||
72 | static __always_inline void | |
73 | __rb_insert(struct rb_node *node, struct rb_root *root, | |
74 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) | |
75 | { | |
76 | struct rb_node *parent = rb_red_parent(node), *gparent, *tmp; | |
77 | ||
78 | while (true) { | |
79 | /* | |
80 | * Loop invariant: node is red | |
81 | * | |
82 | * If there is a black parent, we are done. | |
83 | * Otherwise, take some corrective action as we don't | |
84 | * want a red root or two consecutive red nodes. | |
85 | */ | |
86 | if (!parent) { | |
87 | rb_set_parent_color(node, NULL, RB_BLACK); | |
88 | break; | |
89 | } else if (rb_is_black(parent)) | |
90 | break; | |
91 | ||
92 | gparent = rb_red_parent(parent); | |
93 | ||
94 | tmp = gparent->rb_right; | |
95 | if (parent != tmp) { /* parent == gparent->rb_left */ | |
96 | if (tmp && rb_is_red(tmp)) { | |
97 | /* | |
98 | * Case 1 - color flips | |
99 | * | |
100 | * G g | |
101 | * / \ / \ | |
102 | * p u --> P U | |
103 | * / / | |
104 | * n n | |
105 | * | |
106 | * However, since g's parent might be red, and | |
107 | * 4) does not allow this, we need to recurse | |
108 | * at g. | |
109 | */ | |
110 | rb_set_parent_color(tmp, gparent, RB_BLACK); | |
111 | rb_set_parent_color(parent, gparent, RB_BLACK); | |
112 | node = gparent; | |
113 | parent = rb_parent(node); | |
114 | rb_set_parent_color(node, parent, RB_RED); | |
115 | continue; | |
116 | } | |
117 | ||
118 | tmp = parent->rb_right; | |
119 | if (node == tmp) { | |
120 | /* | |
121 | * Case 2 - left rotate at parent | |
122 | * | |
123 | * G G | |
124 | * / \ / \ | |
125 | * p U --> n U | |
126 | * \ / | |
127 | * n p | |
128 | * | |
129 | * This still leaves us in violation of 4), the | |
130 | * continuation into Case 3 will fix that. | |
131 | */ | |
132 | parent->rb_right = tmp = node->rb_left; | |
133 | node->rb_left = parent; | |
134 | if (tmp) | |
135 | rb_set_parent_color(tmp, parent, | |
136 | RB_BLACK); | |
137 | rb_set_parent_color(parent, node, RB_RED); | |
138 | augment_rotate(parent, node); | |
139 | parent = node; | |
140 | tmp = node->rb_right; | |
141 | } | |
142 | ||
143 | /* | |
144 | * Case 3 - right rotate at gparent | |
145 | * | |
146 | * G P | |
147 | * / \ / \ | |
148 | * p U --> n g | |
149 | * / \ | |
150 | * n U | |
151 | */ | |
152 | gparent->rb_left = tmp; /* == parent->rb_right */ | |
153 | parent->rb_right = gparent; | |
154 | if (tmp) | |
155 | rb_set_parent_color(tmp, gparent, RB_BLACK); | |
156 | __rb_rotate_set_parents(gparent, parent, root, RB_RED); | |
157 | augment_rotate(gparent, parent); | |
158 | break; | |
159 | } else { | |
160 | tmp = gparent->rb_left; | |
161 | if (tmp && rb_is_red(tmp)) { | |
162 | /* Case 1 - color flips */ | |
163 | rb_set_parent_color(tmp, gparent, RB_BLACK); | |
164 | rb_set_parent_color(parent, gparent, RB_BLACK); | |
165 | node = gparent; | |
166 | parent = rb_parent(node); | |
167 | rb_set_parent_color(node, parent, RB_RED); | |
168 | continue; | |
169 | } | |
170 | ||
171 | tmp = parent->rb_left; | |
172 | if (node == tmp) { | |
173 | /* Case 2 - right rotate at parent */ | |
174 | parent->rb_left = tmp = node->rb_right; | |
175 | node->rb_right = parent; | |
176 | if (tmp) | |
177 | rb_set_parent_color(tmp, parent, | |
178 | RB_BLACK); | |
179 | rb_set_parent_color(parent, node, RB_RED); | |
180 | augment_rotate(parent, node); | |
181 | parent = node; | |
182 | tmp = node->rb_left; | |
183 | } | |
184 | ||
185 | /* Case 3 - left rotate at gparent */ | |
186 | gparent->rb_right = tmp; /* == parent->rb_left */ | |
187 | parent->rb_left = gparent; | |
188 | if (tmp) | |
189 | rb_set_parent_color(tmp, gparent, RB_BLACK); | |
190 | __rb_rotate_set_parents(gparent, parent, root, RB_RED); | |
191 | augment_rotate(gparent, parent); | |
192 | break; | |
193 | } | |
194 | } | |
195 | } | |
196 | ||
197 | /* | |
198 | * Inline version for rb_erase() use - we want to be able to inline | |
199 | * and eliminate the dummy_rotate callback there | |
200 | */ | |
201 | static __always_inline void | |
202 | ____rb_erase_color(struct rb_node *parent, struct rb_root *root, | |
203 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) | |
204 | { | |
205 | struct rb_node *node = NULL, *sibling, *tmp1, *tmp2; | |
206 | ||
207 | while (true) { | |
208 | /* | |
209 | * Loop invariants: | |
210 | * - node is black (or NULL on first iteration) | |
211 | * - node is not the root (parent is not NULL) | |
212 | * - All leaf paths going through parent and node have a | |
213 | * black node count that is 1 lower than other leaf paths. | |
214 | */ | |
215 | sibling = parent->rb_right; | |
216 | if (node != sibling) { /* node == parent->rb_left */ | |
217 | if (rb_is_red(sibling)) { | |
218 | /* | |
219 | * Case 1 - left rotate at parent | |
220 | * | |
221 | * P S | |
222 | * / \ / \ | |
223 | * N s --> p Sr | |
224 | * / \ / \ | |
225 | * Sl Sr N Sl | |
226 | */ | |
227 | parent->rb_right = tmp1 = sibling->rb_left; | |
228 | sibling->rb_left = parent; | |
229 | rb_set_parent_color(tmp1, parent, RB_BLACK); | |
230 | __rb_rotate_set_parents(parent, sibling, root, | |
231 | RB_RED); | |
232 | augment_rotate(parent, sibling); | |
233 | sibling = tmp1; | |
234 | } | |
235 | tmp1 = sibling->rb_right; | |
236 | if (!tmp1 || rb_is_black(tmp1)) { | |
237 | tmp2 = sibling->rb_left; | |
238 | if (!tmp2 || rb_is_black(tmp2)) { | |
239 | /* | |
240 | * Case 2 - sibling color flip | |
241 | * (p could be either color here) | |
242 | * | |
243 | * (p) (p) | |
244 | * / \ / \ | |
245 | * N S --> N s | |
246 | * / \ / \ | |
247 | * Sl Sr Sl Sr | |
248 | * | |
249 | * This leaves us violating 5) which | |
250 | * can be fixed by flipping p to black | |
251 | * if it was red, or by recursing at p. | |
252 | * p is red when coming from Case 1. | |
253 | */ | |
254 | rb_set_parent_color(sibling, parent, | |
255 | RB_RED); | |
256 | if (rb_is_red(parent)) | |
257 | rb_set_black(parent); | |
258 | else { | |
259 | node = parent; | |
260 | parent = rb_parent(node); | |
261 | if (parent) | |
262 | continue; | |
263 | } | |
264 | break; | |
265 | } | |
266 | /* | |
267 | * Case 3 - right rotate at sibling | |
268 | * (p could be either color here) | |
269 | * | |
270 | * (p) (p) | |
271 | * / \ / \ | |
272 | * N S --> N Sl | |
273 | * / \ \ | |
274 | * sl Sr s | |
275 | * \ | |
276 | * Sr | |
277 | */ | |
278 | sibling->rb_left = tmp1 = tmp2->rb_right; | |
279 | tmp2->rb_right = sibling; | |
280 | parent->rb_right = tmp2; | |
281 | if (tmp1) | |
282 | rb_set_parent_color(tmp1, sibling, | |
283 | RB_BLACK); | |
284 | augment_rotate(sibling, tmp2); | |
285 | tmp1 = sibling; | |
286 | sibling = tmp2; | |
287 | } | |
288 | /* | |
289 | * Case 4 - left rotate at parent + color flips | |
290 | * (p and sl could be either color here. | |
291 | * After rotation, p becomes black, s acquires | |
292 | * p's color, and sl keeps its color) | |
293 | * | |
294 | * (p) (s) | |
295 | * / \ / \ | |
296 | * N S --> P Sr | |
297 | * / \ / \ | |
298 | * (sl) sr N (sl) | |
299 | */ | |
300 | parent->rb_right = tmp2 = sibling->rb_left; | |
301 | sibling->rb_left = parent; | |
302 | rb_set_parent_color(tmp1, sibling, RB_BLACK); | |
303 | if (tmp2) | |
304 | rb_set_parent(tmp2, parent); | |
305 | __rb_rotate_set_parents(parent, sibling, root, | |
306 | RB_BLACK); | |
307 | augment_rotate(parent, sibling); | |
308 | break; | |
309 | } else { | |
310 | sibling = parent->rb_left; | |
311 | if (rb_is_red(sibling)) { | |
312 | /* Case 1 - right rotate at parent */ | |
313 | parent->rb_left = tmp1 = sibling->rb_right; | |
314 | sibling->rb_right = parent; | |
315 | rb_set_parent_color(tmp1, parent, RB_BLACK); | |
316 | __rb_rotate_set_parents(parent, sibling, root, | |
317 | RB_RED); | |
318 | augment_rotate(parent, sibling); | |
319 | sibling = tmp1; | |
320 | } | |
321 | tmp1 = sibling->rb_left; | |
322 | if (!tmp1 || rb_is_black(tmp1)) { | |
323 | tmp2 = sibling->rb_right; | |
324 | if (!tmp2 || rb_is_black(tmp2)) { | |
325 | /* Case 2 - sibling color flip */ | |
326 | rb_set_parent_color(sibling, parent, | |
327 | RB_RED); | |
328 | if (rb_is_red(parent)) | |
329 | rb_set_black(parent); | |
330 | else { | |
331 | node = parent; | |
332 | parent = rb_parent(node); | |
333 | if (parent) | |
334 | continue; | |
335 | } | |
336 | break; | |
337 | } | |
338 | /* Case 3 - right rotate at sibling */ | |
339 | sibling->rb_right = tmp1 = tmp2->rb_left; | |
340 | tmp2->rb_left = sibling; | |
341 | parent->rb_left = tmp2; | |
342 | if (tmp1) | |
343 | rb_set_parent_color(tmp1, sibling, | |
344 | RB_BLACK); | |
345 | augment_rotate(sibling, tmp2); | |
346 | tmp1 = sibling; | |
347 | sibling = tmp2; | |
348 | } | |
349 | /* Case 4 - left rotate at parent + color flips */ | |
350 | parent->rb_left = tmp2 = sibling->rb_right; | |
351 | sibling->rb_right = parent; | |
352 | rb_set_parent_color(tmp1, sibling, RB_BLACK); | |
353 | if (tmp2) | |
354 | rb_set_parent(tmp2, parent); | |
355 | __rb_rotate_set_parents(parent, sibling, root, | |
356 | RB_BLACK); | |
357 | augment_rotate(parent, sibling); | |
358 | break; | |
359 | } | |
360 | } | |
361 | } | |
362 | ||
363 | /* Non-inline version for rb_erase_augmented() use */ | |
364 | void __rb_erase_color(struct rb_node *parent, struct rb_root *root, | |
365 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) | |
366 | { | |
367 | ____rb_erase_color(parent, root, augment_rotate); | |
368 | } | |
369 | EXPORT_SYMBOL(__rb_erase_color); | |
370 | ||
371 | /* | |
372 | * Non-augmented rbtree manipulation functions. | |
373 | * | |
374 | * We use dummy augmented callbacks here, and have the compiler optimize them | |
375 | * out of the rb_insert_color() and rb_erase() function definitions. | |
376 | */ | |
377 | ||
378 | static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {} | |
379 | static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {} | |
380 | static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {} | |
381 | ||
382 | static const struct rb_augment_callbacks dummy_callbacks = { | |
383 | dummy_propagate, dummy_copy, dummy_rotate | |
384 | }; | |
385 | ||
386 | void rb_insert_color(struct rb_node *node, struct rb_root *root) | |
387 | { | |
388 | __rb_insert(node, root, dummy_rotate); | |
389 | } | |
390 | EXPORT_SYMBOL(rb_insert_color); | |
391 | ||
392 | void rb_erase(struct rb_node *node, struct rb_root *root) | |
393 | { | |
394 | struct rb_node *rebalance; | |
395 | rebalance = __rb_erase_augmented(node, root, &dummy_callbacks); | |
396 | if (rebalance) | |
397 | ____rb_erase_color(rebalance, root, dummy_rotate); | |
398 | } | |
399 | EXPORT_SYMBOL(rb_erase); | |
400 | ||
401 | /* | |
402 | * Augmented rbtree manipulation functions. | |
403 | * | |
404 | * This instantiates the same __always_inline functions as in the non-augmented | |
405 | * case, but this time with user-defined callbacks. | |
406 | */ | |
407 | ||
408 | void __rb_insert_augmented(struct rb_node *node, struct rb_root *root, | |
409 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) | |
410 | { | |
411 | __rb_insert(node, root, augment_rotate); | |
412 | } | |
413 | EXPORT_SYMBOL(__rb_insert_augmented); | |
414 | ||
415 | /* | |
416 | * This function returns the first node (in sort order) of the tree. | |
417 | */ | |
418 | struct rb_node *rb_first(const struct rb_root *root) | |
419 | { | |
420 | struct rb_node *n; | |
421 | ||
422 | n = root->rb_node; | |
423 | if (!n) | |
424 | return NULL; | |
425 | while (n->rb_left) | |
426 | n = n->rb_left; | |
427 | return n; | |
428 | } | |
429 | EXPORT_SYMBOL(rb_first); | |
430 | ||
431 | struct rb_node *rb_last(const struct rb_root *root) | |
432 | { | |
433 | struct rb_node *n; | |
434 | ||
435 | n = root->rb_node; | |
436 | if (!n) | |
437 | return NULL; | |
438 | while (n->rb_right) | |
439 | n = n->rb_right; | |
440 | return n; | |
441 | } | |
442 | EXPORT_SYMBOL(rb_last); | |
443 | ||
444 | struct rb_node *rb_next(const struct rb_node *node) | |
445 | { | |
446 | struct rb_node *parent; | |
447 | ||
448 | if (RB_EMPTY_NODE(node)) | |
449 | return NULL; | |
450 | ||
451 | /* | |
452 | * If we have a right-hand child, go down and then left as far | |
453 | * as we can. | |
454 | */ | |
455 | if (node->rb_right) { | |
456 | node = node->rb_right; | |
457 | while (node->rb_left) | |
458 | node=node->rb_left; | |
459 | return (struct rb_node *)node; | |
460 | } | |
461 | ||
462 | /* | |
463 | * No right-hand children. Everything down and left is smaller than us, | |
464 | * so any 'next' node must be in the general direction of our parent. | |
465 | * Go up the tree; any time the ancestor is a right-hand child of its | |
466 | * parent, keep going up. First time it's a left-hand child of its | |
467 | * parent, said parent is our 'next' node. | |
468 | */ | |
469 | while ((parent = rb_parent(node)) && node == parent->rb_right) | |
470 | node = parent; | |
471 | ||
472 | return parent; | |
473 | } | |
474 | EXPORT_SYMBOL(rb_next); | |
475 | ||
476 | struct rb_node *rb_prev(const struct rb_node *node) | |
477 | { | |
478 | struct rb_node *parent; | |
479 | ||
480 | if (RB_EMPTY_NODE(node)) | |
481 | return NULL; | |
482 | ||
483 | /* | |
484 | * If we have a left-hand child, go down and then right as far | |
485 | * as we can. | |
486 | */ | |
487 | if (node->rb_left) { | |
488 | node = node->rb_left; | |
489 | while (node->rb_right) | |
490 | node=node->rb_right; | |
491 | return (struct rb_node *)node; | |
492 | } | |
493 | ||
494 | /* | |
495 | * No left-hand children. Go up till we find an ancestor which | |
496 | * is a right-hand child of its parent. | |
497 | */ | |
498 | while ((parent = rb_parent(node)) && node == parent->rb_left) | |
499 | node = parent; | |
500 | ||
501 | return parent; | |
502 | } | |
503 | EXPORT_SYMBOL(rb_prev); | |
504 | ||
505 | void rb_replace_node(struct rb_node *victim, struct rb_node *new, | |
506 | struct rb_root *root) | |
507 | { | |
508 | struct rb_node *parent = rb_parent(victim); | |
509 | ||
510 | /* Set the surrounding nodes to point to the replacement */ | |
511 | __rb_change_child(victim, new, parent, root); | |
512 | if (victim->rb_left) | |
513 | rb_set_parent(victim->rb_left, new); | |
514 | if (victim->rb_right) | |
515 | rb_set_parent(victim->rb_right, new); | |
516 | ||
517 | /* Copy the pointers/colour from the victim to the replacement */ | |
518 | *new = *victim; | |
519 | } | |
520 | EXPORT_SYMBOL(rb_replace_node); | |
521 | ||
522 | static struct rb_node *rb_left_deepest_node(const struct rb_node *node) | |
523 | { | |
524 | for (;;) { | |
525 | if (node->rb_left) | |
526 | node = node->rb_left; | |
527 | else if (node->rb_right) | |
528 | node = node->rb_right; | |
529 | else | |
530 | return (struct rb_node *)node; | |
531 | } | |
532 | } | |
533 | ||
534 | struct rb_node *rb_next_postorder(const struct rb_node *node) | |
535 | { | |
536 | const struct rb_node *parent; | |
537 | if (!node) | |
538 | return NULL; | |
539 | parent = rb_parent(node); | |
540 | ||
541 | /* If we're sitting on node, we've already seen our children */ | |
542 | if (parent && node == parent->rb_left && parent->rb_right) { | |
543 | /* If we are the parent's left node, go to the parent's right | |
544 | * node then all the way down to the left */ | |
545 | return rb_left_deepest_node(parent->rb_right); | |
546 | } else | |
547 | /* Otherwise we are the parent's right node, and the parent | |
548 | * should be next */ | |
549 | return (struct rb_node *)parent; | |
550 | } | |
551 | EXPORT_SYMBOL(rb_next_postorder); | |
552 | ||
553 | struct rb_node *rb_first_postorder(const struct rb_root *root) | |
554 | { | |
555 | if (!root->rb_node) | |
556 | return NULL; | |
557 | ||
558 | return rb_left_deepest_node(root->rb_node); | |
559 | } | |
560 | EXPORT_SYMBOL(rb_first_postorder); |