]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * linux/fs/exec.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * #!-checking implemented by tytso. | |
9 | */ | |
10 | /* | |
11 | * Demand-loading implemented 01.12.91 - no need to read anything but | |
12 | * the header into memory. The inode of the executable is put into | |
13 | * "current->executable", and page faults do the actual loading. Clean. | |
14 | * | |
15 | * Once more I can proudly say that linux stood up to being changed: it | |
16 | * was less than 2 hours work to get demand-loading completely implemented. | |
17 | * | |
18 | * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, | |
19 | * current->executable is only used by the procfs. This allows a dispatch | |
20 | * table to check for several different types of binary formats. We keep | |
21 | * trying until we recognize the file or we run out of supported binary | |
22 | * formats. | |
23 | */ | |
24 | ||
25 | #include <linux/slab.h> | |
26 | #include <linux/file.h> | |
27 | #include <linux/fdtable.h> | |
28 | #include <linux/mm.h> | |
29 | #include <linux/stat.h> | |
30 | #include <linux/fcntl.h> | |
31 | #include <linux/smp_lock.h> | |
32 | #include <linux/swap.h> | |
33 | #include <linux/string.h> | |
34 | #include <linux/init.h> | |
35 | #include <linux/pagemap.h> | |
36 | #include <linux/perf_event.h> | |
37 | #include <linux/highmem.h> | |
38 | #include <linux/spinlock.h> | |
39 | #include <linux/key.h> | |
40 | #include <linux/personality.h> | |
41 | #include <linux/binfmts.h> | |
42 | #include <linux/utsname.h> | |
43 | #include <linux/pid_namespace.h> | |
44 | #include <linux/module.h> | |
45 | #include <linux/namei.h> | |
46 | #include <linux/proc_fs.h> | |
47 | #include <linux/mount.h> | |
48 | #include <linux/security.h> | |
49 | #include <linux/syscalls.h> | |
50 | #include <linux/tsacct_kern.h> | |
51 | #include <linux/cn_proc.h> | |
52 | #include <linux/audit.h> | |
53 | #include <linux/tracehook.h> | |
54 | #include <linux/kmod.h> | |
55 | #include <linux/fsnotify.h> | |
56 | #include <linux/fs_struct.h> | |
57 | #include <linux/pipe_fs_i.h> | |
58 | ||
59 | #include <asm/uaccess.h> | |
60 | #include <asm/mmu_context.h> | |
61 | #include <asm/tlb.h> | |
62 | #include "internal.h" | |
63 | ||
64 | int core_uses_pid; | |
65 | char core_pattern[CORENAME_MAX_SIZE] = "core"; | |
66 | unsigned int core_pipe_limit; | |
67 | int suid_dumpable = 0; | |
68 | ||
69 | /* The maximal length of core_pattern is also specified in sysctl.c */ | |
70 | ||
71 | static LIST_HEAD(formats); | |
72 | static DEFINE_RWLOCK(binfmt_lock); | |
73 | ||
74 | int __register_binfmt(struct linux_binfmt * fmt, int insert) | |
75 | { | |
76 | if (!fmt) | |
77 | return -EINVAL; | |
78 | write_lock(&binfmt_lock); | |
79 | insert ? list_add(&fmt->lh, &formats) : | |
80 | list_add_tail(&fmt->lh, &formats); | |
81 | write_unlock(&binfmt_lock); | |
82 | return 0; | |
83 | } | |
84 | ||
85 | EXPORT_SYMBOL(__register_binfmt); | |
86 | ||
87 | void unregister_binfmt(struct linux_binfmt * fmt) | |
88 | { | |
89 | write_lock(&binfmt_lock); | |
90 | list_del(&fmt->lh); | |
91 | write_unlock(&binfmt_lock); | |
92 | } | |
93 | ||
94 | EXPORT_SYMBOL(unregister_binfmt); | |
95 | ||
96 | static inline void put_binfmt(struct linux_binfmt * fmt) | |
97 | { | |
98 | module_put(fmt->module); | |
99 | } | |
100 | ||
101 | /* | |
102 | * Note that a shared library must be both readable and executable due to | |
103 | * security reasons. | |
104 | * | |
105 | * Also note that we take the address to load from from the file itself. | |
106 | */ | |
107 | SYSCALL_DEFINE1(uselib, const char __user *, library) | |
108 | { | |
109 | struct file *file; | |
110 | char *tmp = getname(library); | |
111 | int error = PTR_ERR(tmp); | |
112 | ||
113 | if (IS_ERR(tmp)) | |
114 | goto out; | |
115 | ||
116 | file = do_filp_open(AT_FDCWD, tmp, | |
117 | O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0, | |
118 | MAY_READ | MAY_EXEC | MAY_OPEN); | |
119 | putname(tmp); | |
120 | error = PTR_ERR(file); | |
121 | if (IS_ERR(file)) | |
122 | goto out; | |
123 | ||
124 | error = -EINVAL; | |
125 | if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) | |
126 | goto exit; | |
127 | ||
128 | error = -EACCES; | |
129 | if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) | |
130 | goto exit; | |
131 | ||
132 | fsnotify_open(file->f_path.dentry); | |
133 | ||
134 | error = -ENOEXEC; | |
135 | if(file->f_op) { | |
136 | struct linux_binfmt * fmt; | |
137 | ||
138 | read_lock(&binfmt_lock); | |
139 | list_for_each_entry(fmt, &formats, lh) { | |
140 | if (!fmt->load_shlib) | |
141 | continue; | |
142 | if (!try_module_get(fmt->module)) | |
143 | continue; | |
144 | read_unlock(&binfmt_lock); | |
145 | error = fmt->load_shlib(file); | |
146 | read_lock(&binfmt_lock); | |
147 | put_binfmt(fmt); | |
148 | if (error != -ENOEXEC) | |
149 | break; | |
150 | } | |
151 | read_unlock(&binfmt_lock); | |
152 | } | |
153 | exit: | |
154 | fput(file); | |
155 | out: | |
156 | return error; | |
157 | } | |
158 | ||
159 | #ifdef CONFIG_MMU | |
160 | ||
161 | static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, | |
162 | int write) | |
163 | { | |
164 | struct page *page; | |
165 | int ret; | |
166 | ||
167 | #ifdef CONFIG_STACK_GROWSUP | |
168 | if (write) { | |
169 | ret = expand_stack_downwards(bprm->vma, pos); | |
170 | if (ret < 0) | |
171 | return NULL; | |
172 | } | |
173 | #endif | |
174 | ret = get_user_pages(current, bprm->mm, pos, | |
175 | 1, write, 1, &page, NULL); | |
176 | if (ret <= 0) | |
177 | return NULL; | |
178 | ||
179 | if (write) { | |
180 | unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; | |
181 | struct rlimit *rlim; | |
182 | ||
183 | /* | |
184 | * We've historically supported up to 32 pages (ARG_MAX) | |
185 | * of argument strings even with small stacks | |
186 | */ | |
187 | if (size <= ARG_MAX) | |
188 | return page; | |
189 | ||
190 | /* | |
191 | * Limit to 1/4-th the stack size for the argv+env strings. | |
192 | * This ensures that: | |
193 | * - the remaining binfmt code will not run out of stack space, | |
194 | * - the program will have a reasonable amount of stack left | |
195 | * to work from. | |
196 | */ | |
197 | rlim = current->signal->rlim; | |
198 | if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { | |
199 | put_page(page); | |
200 | return NULL; | |
201 | } | |
202 | } | |
203 | ||
204 | return page; | |
205 | } | |
206 | ||
207 | static void put_arg_page(struct page *page) | |
208 | { | |
209 | put_page(page); | |
210 | } | |
211 | ||
212 | static void free_arg_page(struct linux_binprm *bprm, int i) | |
213 | { | |
214 | } | |
215 | ||
216 | static void free_arg_pages(struct linux_binprm *bprm) | |
217 | { | |
218 | } | |
219 | ||
220 | static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, | |
221 | struct page *page) | |
222 | { | |
223 | flush_cache_page(bprm->vma, pos, page_to_pfn(page)); | |
224 | } | |
225 | ||
226 | static int __bprm_mm_init(struct linux_binprm *bprm) | |
227 | { | |
228 | int err; | |
229 | struct vm_area_struct *vma = NULL; | |
230 | struct mm_struct *mm = bprm->mm; | |
231 | ||
232 | bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); | |
233 | if (!vma) | |
234 | return -ENOMEM; | |
235 | ||
236 | down_write(&mm->mmap_sem); | |
237 | vma->vm_mm = mm; | |
238 | ||
239 | /* | |
240 | * Place the stack at the largest stack address the architecture | |
241 | * supports. Later, we'll move this to an appropriate place. We don't | |
242 | * use STACK_TOP because that can depend on attributes which aren't | |
243 | * configured yet. | |
244 | */ | |
245 | vma->vm_end = STACK_TOP_MAX; | |
246 | vma->vm_start = vma->vm_end - PAGE_SIZE; | |
247 | vma->vm_flags = VM_STACK_FLAGS; | |
248 | vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); | |
249 | INIT_LIST_HEAD(&vma->anon_vma_chain); | |
250 | err = insert_vm_struct(mm, vma); | |
251 | if (err) | |
252 | goto err; | |
253 | ||
254 | mm->stack_vm = mm->total_vm = 1; | |
255 | up_write(&mm->mmap_sem); | |
256 | bprm->p = vma->vm_end - sizeof(void *); | |
257 | return 0; | |
258 | err: | |
259 | up_write(&mm->mmap_sem); | |
260 | bprm->vma = NULL; | |
261 | kmem_cache_free(vm_area_cachep, vma); | |
262 | return err; | |
263 | } | |
264 | ||
265 | static bool valid_arg_len(struct linux_binprm *bprm, long len) | |
266 | { | |
267 | return len <= MAX_ARG_STRLEN; | |
268 | } | |
269 | ||
270 | #else | |
271 | ||
272 | static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, | |
273 | int write) | |
274 | { | |
275 | struct page *page; | |
276 | ||
277 | page = bprm->page[pos / PAGE_SIZE]; | |
278 | if (!page && write) { | |
279 | page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); | |
280 | if (!page) | |
281 | return NULL; | |
282 | bprm->page[pos / PAGE_SIZE] = page; | |
283 | } | |
284 | ||
285 | return page; | |
286 | } | |
287 | ||
288 | static void put_arg_page(struct page *page) | |
289 | { | |
290 | } | |
291 | ||
292 | static void free_arg_page(struct linux_binprm *bprm, int i) | |
293 | { | |
294 | if (bprm->page[i]) { | |
295 | __free_page(bprm->page[i]); | |
296 | bprm->page[i] = NULL; | |
297 | } | |
298 | } | |
299 | ||
300 | static void free_arg_pages(struct linux_binprm *bprm) | |
301 | { | |
302 | int i; | |
303 | ||
304 | for (i = 0; i < MAX_ARG_PAGES; i++) | |
305 | free_arg_page(bprm, i); | |
306 | } | |
307 | ||
308 | static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, | |
309 | struct page *page) | |
310 | { | |
311 | } | |
312 | ||
313 | static int __bprm_mm_init(struct linux_binprm *bprm) | |
314 | { | |
315 | bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); | |
316 | return 0; | |
317 | } | |
318 | ||
319 | static bool valid_arg_len(struct linux_binprm *bprm, long len) | |
320 | { | |
321 | return len <= bprm->p; | |
322 | } | |
323 | ||
324 | #endif /* CONFIG_MMU */ | |
325 | ||
326 | /* | |
327 | * Create a new mm_struct and populate it with a temporary stack | |
328 | * vm_area_struct. We don't have enough context at this point to set the stack | |
329 | * flags, permissions, and offset, so we use temporary values. We'll update | |
330 | * them later in setup_arg_pages(). | |
331 | */ | |
332 | int bprm_mm_init(struct linux_binprm *bprm) | |
333 | { | |
334 | int err; | |
335 | struct mm_struct *mm = NULL; | |
336 | ||
337 | bprm->mm = mm = mm_alloc(); | |
338 | err = -ENOMEM; | |
339 | if (!mm) | |
340 | goto err; | |
341 | ||
342 | err = init_new_context(current, mm); | |
343 | if (err) | |
344 | goto err; | |
345 | ||
346 | err = __bprm_mm_init(bprm); | |
347 | if (err) | |
348 | goto err; | |
349 | ||
350 | return 0; | |
351 | ||
352 | err: | |
353 | if (mm) { | |
354 | bprm->mm = NULL; | |
355 | mmdrop(mm); | |
356 | } | |
357 | ||
358 | return err; | |
359 | } | |
360 | ||
361 | /* | |
362 | * count() counts the number of strings in array ARGV. | |
363 | */ | |
364 | static int count(char __user * __user * argv, int max) | |
365 | { | |
366 | int i = 0; | |
367 | ||
368 | if (argv != NULL) { | |
369 | for (;;) { | |
370 | char __user * p; | |
371 | ||
372 | if (get_user(p, argv)) | |
373 | return -EFAULT; | |
374 | if (!p) | |
375 | break; | |
376 | argv++; | |
377 | if (i++ >= max) | |
378 | return -E2BIG; | |
379 | cond_resched(); | |
380 | } | |
381 | } | |
382 | return i; | |
383 | } | |
384 | ||
385 | /* | |
386 | * 'copy_strings()' copies argument/environment strings from the old | |
387 | * processes's memory to the new process's stack. The call to get_user_pages() | |
388 | * ensures the destination page is created and not swapped out. | |
389 | */ | |
390 | static int copy_strings(int argc, char __user * __user * argv, | |
391 | struct linux_binprm *bprm) | |
392 | { | |
393 | struct page *kmapped_page = NULL; | |
394 | char *kaddr = NULL; | |
395 | unsigned long kpos = 0; | |
396 | int ret; | |
397 | ||
398 | while (argc-- > 0) { | |
399 | char __user *str; | |
400 | int len; | |
401 | unsigned long pos; | |
402 | ||
403 | if (get_user(str, argv+argc) || | |
404 | !(len = strnlen_user(str, MAX_ARG_STRLEN))) { | |
405 | ret = -EFAULT; | |
406 | goto out; | |
407 | } | |
408 | ||
409 | if (!valid_arg_len(bprm, len)) { | |
410 | ret = -E2BIG; | |
411 | goto out; | |
412 | } | |
413 | ||
414 | /* We're going to work our way backwords. */ | |
415 | pos = bprm->p; | |
416 | str += len; | |
417 | bprm->p -= len; | |
418 | ||
419 | while (len > 0) { | |
420 | int offset, bytes_to_copy; | |
421 | ||
422 | offset = pos % PAGE_SIZE; | |
423 | if (offset == 0) | |
424 | offset = PAGE_SIZE; | |
425 | ||
426 | bytes_to_copy = offset; | |
427 | if (bytes_to_copy > len) | |
428 | bytes_to_copy = len; | |
429 | ||
430 | offset -= bytes_to_copy; | |
431 | pos -= bytes_to_copy; | |
432 | str -= bytes_to_copy; | |
433 | len -= bytes_to_copy; | |
434 | ||
435 | if (!kmapped_page || kpos != (pos & PAGE_MASK)) { | |
436 | struct page *page; | |
437 | ||
438 | page = get_arg_page(bprm, pos, 1); | |
439 | if (!page) { | |
440 | ret = -E2BIG; | |
441 | goto out; | |
442 | } | |
443 | ||
444 | if (kmapped_page) { | |
445 | flush_kernel_dcache_page(kmapped_page); | |
446 | kunmap(kmapped_page); | |
447 | put_arg_page(kmapped_page); | |
448 | } | |
449 | kmapped_page = page; | |
450 | kaddr = kmap(kmapped_page); | |
451 | kpos = pos & PAGE_MASK; | |
452 | flush_arg_page(bprm, kpos, kmapped_page); | |
453 | } | |
454 | if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { | |
455 | ret = -EFAULT; | |
456 | goto out; | |
457 | } | |
458 | } | |
459 | } | |
460 | ret = 0; | |
461 | out: | |
462 | if (kmapped_page) { | |
463 | flush_kernel_dcache_page(kmapped_page); | |
464 | kunmap(kmapped_page); | |
465 | put_arg_page(kmapped_page); | |
466 | } | |
467 | return ret; | |
468 | } | |
469 | ||
470 | /* | |
471 | * Like copy_strings, but get argv and its values from kernel memory. | |
472 | */ | |
473 | int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) | |
474 | { | |
475 | int r; | |
476 | mm_segment_t oldfs = get_fs(); | |
477 | set_fs(KERNEL_DS); | |
478 | r = copy_strings(argc, (char __user * __user *)argv, bprm); | |
479 | set_fs(oldfs); | |
480 | return r; | |
481 | } | |
482 | EXPORT_SYMBOL(copy_strings_kernel); | |
483 | ||
484 | #ifdef CONFIG_MMU | |
485 | ||
486 | /* | |
487 | * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once | |
488 | * the binfmt code determines where the new stack should reside, we shift it to | |
489 | * its final location. The process proceeds as follows: | |
490 | * | |
491 | * 1) Use shift to calculate the new vma endpoints. | |
492 | * 2) Extend vma to cover both the old and new ranges. This ensures the | |
493 | * arguments passed to subsequent functions are consistent. | |
494 | * 3) Move vma's page tables to the new range. | |
495 | * 4) Free up any cleared pgd range. | |
496 | * 5) Shrink the vma to cover only the new range. | |
497 | */ | |
498 | static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) | |
499 | { | |
500 | struct mm_struct *mm = vma->vm_mm; | |
501 | unsigned long old_start = vma->vm_start; | |
502 | unsigned long old_end = vma->vm_end; | |
503 | unsigned long length = old_end - old_start; | |
504 | unsigned long new_start = old_start - shift; | |
505 | unsigned long new_end = old_end - shift; | |
506 | struct mmu_gather *tlb; | |
507 | ||
508 | BUG_ON(new_start > new_end); | |
509 | ||
510 | /* | |
511 | * ensure there are no vmas between where we want to go | |
512 | * and where we are | |
513 | */ | |
514 | if (vma != find_vma(mm, new_start)) | |
515 | return -EFAULT; | |
516 | ||
517 | /* | |
518 | * cover the whole range: [new_start, old_end) | |
519 | */ | |
520 | if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) | |
521 | return -ENOMEM; | |
522 | ||
523 | /* | |
524 | * move the page tables downwards, on failure we rely on | |
525 | * process cleanup to remove whatever mess we made. | |
526 | */ | |
527 | if (length != move_page_tables(vma, old_start, | |
528 | vma, new_start, length)) | |
529 | return -ENOMEM; | |
530 | ||
531 | lru_add_drain(); | |
532 | tlb = tlb_gather_mmu(mm, 0); | |
533 | if (new_end > old_start) { | |
534 | /* | |
535 | * when the old and new regions overlap clear from new_end. | |
536 | */ | |
537 | free_pgd_range(tlb, new_end, old_end, new_end, | |
538 | vma->vm_next ? vma->vm_next->vm_start : 0); | |
539 | } else { | |
540 | /* | |
541 | * otherwise, clean from old_start; this is done to not touch | |
542 | * the address space in [new_end, old_start) some architectures | |
543 | * have constraints on va-space that make this illegal (IA64) - | |
544 | * for the others its just a little faster. | |
545 | */ | |
546 | free_pgd_range(tlb, old_start, old_end, new_end, | |
547 | vma->vm_next ? vma->vm_next->vm_start : 0); | |
548 | } | |
549 | tlb_finish_mmu(tlb, new_end, old_end); | |
550 | ||
551 | /* | |
552 | * Shrink the vma to just the new range. Always succeeds. | |
553 | */ | |
554 | vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); | |
555 | ||
556 | return 0; | |
557 | } | |
558 | ||
559 | /* | |
560 | * Finalizes the stack vm_area_struct. The flags and permissions are updated, | |
561 | * the stack is optionally relocated, and some extra space is added. | |
562 | */ | |
563 | int setup_arg_pages(struct linux_binprm *bprm, | |
564 | unsigned long stack_top, | |
565 | int executable_stack) | |
566 | { | |
567 | unsigned long ret; | |
568 | unsigned long stack_shift; | |
569 | struct mm_struct *mm = current->mm; | |
570 | struct vm_area_struct *vma = bprm->vma; | |
571 | struct vm_area_struct *prev = NULL; | |
572 | unsigned long vm_flags; | |
573 | unsigned long stack_base; | |
574 | unsigned long stack_size; | |
575 | unsigned long stack_expand; | |
576 | unsigned long rlim_stack; | |
577 | ||
578 | #ifdef CONFIG_STACK_GROWSUP | |
579 | /* Limit stack size to 1GB */ | |
580 | stack_base = rlimit_max(RLIMIT_STACK); | |
581 | if (stack_base > (1 << 30)) | |
582 | stack_base = 1 << 30; | |
583 | ||
584 | /* Make sure we didn't let the argument array grow too large. */ | |
585 | if (vma->vm_end - vma->vm_start > stack_base) | |
586 | return -ENOMEM; | |
587 | ||
588 | stack_base = PAGE_ALIGN(stack_top - stack_base); | |
589 | ||
590 | stack_shift = vma->vm_start - stack_base; | |
591 | mm->arg_start = bprm->p - stack_shift; | |
592 | bprm->p = vma->vm_end - stack_shift; | |
593 | #else | |
594 | stack_top = arch_align_stack(stack_top); | |
595 | stack_top = PAGE_ALIGN(stack_top); | |
596 | stack_shift = vma->vm_end - stack_top; | |
597 | ||
598 | bprm->p -= stack_shift; | |
599 | mm->arg_start = bprm->p; | |
600 | #endif | |
601 | ||
602 | if (bprm->loader) | |
603 | bprm->loader -= stack_shift; | |
604 | bprm->exec -= stack_shift; | |
605 | ||
606 | down_write(&mm->mmap_sem); | |
607 | vm_flags = VM_STACK_FLAGS; | |
608 | ||
609 | /* | |
610 | * Adjust stack execute permissions; explicitly enable for | |
611 | * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone | |
612 | * (arch default) otherwise. | |
613 | */ | |
614 | if (unlikely(executable_stack == EXSTACK_ENABLE_X)) | |
615 | vm_flags |= VM_EXEC; | |
616 | else if (executable_stack == EXSTACK_DISABLE_X) | |
617 | vm_flags &= ~VM_EXEC; | |
618 | vm_flags |= mm->def_flags; | |
619 | ||
620 | ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, | |
621 | vm_flags); | |
622 | if (ret) | |
623 | goto out_unlock; | |
624 | BUG_ON(prev != vma); | |
625 | ||
626 | /* Move stack pages down in memory. */ | |
627 | if (stack_shift) { | |
628 | ret = shift_arg_pages(vma, stack_shift); | |
629 | if (ret) | |
630 | goto out_unlock; | |
631 | } | |
632 | ||
633 | stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ | |
634 | stack_size = vma->vm_end - vma->vm_start; | |
635 | /* | |
636 | * Align this down to a page boundary as expand_stack | |
637 | * will align it up. | |
638 | */ | |
639 | rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; | |
640 | #ifdef CONFIG_STACK_GROWSUP | |
641 | if (stack_size + stack_expand > rlim_stack) | |
642 | stack_base = vma->vm_start + rlim_stack; | |
643 | else | |
644 | stack_base = vma->vm_end + stack_expand; | |
645 | #else | |
646 | if (stack_size + stack_expand > rlim_stack) | |
647 | stack_base = vma->vm_end - rlim_stack; | |
648 | else | |
649 | stack_base = vma->vm_start - stack_expand; | |
650 | #endif | |
651 | ret = expand_stack(vma, stack_base); | |
652 | if (ret) | |
653 | ret = -EFAULT; | |
654 | ||
655 | out_unlock: | |
656 | up_write(&mm->mmap_sem); | |
657 | return ret; | |
658 | } | |
659 | EXPORT_SYMBOL(setup_arg_pages); | |
660 | ||
661 | #endif /* CONFIG_MMU */ | |
662 | ||
663 | struct file *open_exec(const char *name) | |
664 | { | |
665 | struct file *file; | |
666 | int err; | |
667 | ||
668 | file = do_filp_open(AT_FDCWD, name, | |
669 | O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0, | |
670 | MAY_EXEC | MAY_OPEN); | |
671 | if (IS_ERR(file)) | |
672 | goto out; | |
673 | ||
674 | err = -EACCES; | |
675 | if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) | |
676 | goto exit; | |
677 | ||
678 | if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) | |
679 | goto exit; | |
680 | ||
681 | fsnotify_open(file->f_path.dentry); | |
682 | ||
683 | err = deny_write_access(file); | |
684 | if (err) | |
685 | goto exit; | |
686 | ||
687 | out: | |
688 | return file; | |
689 | ||
690 | exit: | |
691 | fput(file); | |
692 | return ERR_PTR(err); | |
693 | } | |
694 | EXPORT_SYMBOL(open_exec); | |
695 | ||
696 | int kernel_read(struct file *file, loff_t offset, | |
697 | char *addr, unsigned long count) | |
698 | { | |
699 | mm_segment_t old_fs; | |
700 | loff_t pos = offset; | |
701 | int result; | |
702 | ||
703 | old_fs = get_fs(); | |
704 | set_fs(get_ds()); | |
705 | /* The cast to a user pointer is valid due to the set_fs() */ | |
706 | result = vfs_read(file, (void __user *)addr, count, &pos); | |
707 | set_fs(old_fs); | |
708 | return result; | |
709 | } | |
710 | ||
711 | EXPORT_SYMBOL(kernel_read); | |
712 | ||
713 | static int exec_mmap(struct mm_struct *mm) | |
714 | { | |
715 | struct task_struct *tsk; | |
716 | struct mm_struct * old_mm, *active_mm; | |
717 | ||
718 | /* Notify parent that we're no longer interested in the old VM */ | |
719 | tsk = current; | |
720 | old_mm = current->mm; | |
721 | sync_mm_rss(tsk, old_mm); | |
722 | mm_release(tsk, old_mm); | |
723 | ||
724 | if (old_mm) { | |
725 | /* | |
726 | * Make sure that if there is a core dump in progress | |
727 | * for the old mm, we get out and die instead of going | |
728 | * through with the exec. We must hold mmap_sem around | |
729 | * checking core_state and changing tsk->mm. | |
730 | */ | |
731 | down_read(&old_mm->mmap_sem); | |
732 | if (unlikely(old_mm->core_state)) { | |
733 | up_read(&old_mm->mmap_sem); | |
734 | return -EINTR; | |
735 | } | |
736 | } | |
737 | task_lock(tsk); | |
738 | active_mm = tsk->active_mm; | |
739 | tsk->mm = mm; | |
740 | tsk->active_mm = mm; | |
741 | activate_mm(active_mm, mm); | |
742 | task_unlock(tsk); | |
743 | arch_pick_mmap_layout(mm); | |
744 | if (old_mm) { | |
745 | up_read(&old_mm->mmap_sem); | |
746 | BUG_ON(active_mm != old_mm); | |
747 | mm_update_next_owner(old_mm); | |
748 | mmput(old_mm); | |
749 | return 0; | |
750 | } | |
751 | mmdrop(active_mm); | |
752 | return 0; | |
753 | } | |
754 | ||
755 | /* | |
756 | * This function makes sure the current process has its own signal table, | |
757 | * so that flush_signal_handlers can later reset the handlers without | |
758 | * disturbing other processes. (Other processes might share the signal | |
759 | * table via the CLONE_SIGHAND option to clone().) | |
760 | */ | |
761 | static int de_thread(struct task_struct *tsk) | |
762 | { | |
763 | struct signal_struct *sig = tsk->signal; | |
764 | struct sighand_struct *oldsighand = tsk->sighand; | |
765 | spinlock_t *lock = &oldsighand->siglock; | |
766 | int count; | |
767 | ||
768 | if (thread_group_empty(tsk)) | |
769 | goto no_thread_group; | |
770 | ||
771 | /* | |
772 | * Kill all other threads in the thread group. | |
773 | */ | |
774 | spin_lock_irq(lock); | |
775 | if (signal_group_exit(sig)) { | |
776 | /* | |
777 | * Another group action in progress, just | |
778 | * return so that the signal is processed. | |
779 | */ | |
780 | spin_unlock_irq(lock); | |
781 | return -EAGAIN; | |
782 | } | |
783 | sig->group_exit_task = tsk; | |
784 | zap_other_threads(tsk); | |
785 | ||
786 | /* Account for the thread group leader hanging around: */ | |
787 | count = thread_group_leader(tsk) ? 1 : 2; | |
788 | sig->notify_count = count; | |
789 | while (atomic_read(&sig->count) > count) { | |
790 | __set_current_state(TASK_UNINTERRUPTIBLE); | |
791 | spin_unlock_irq(lock); | |
792 | schedule(); | |
793 | spin_lock_irq(lock); | |
794 | } | |
795 | spin_unlock_irq(lock); | |
796 | ||
797 | /* | |
798 | * At this point all other threads have exited, all we have to | |
799 | * do is to wait for the thread group leader to become inactive, | |
800 | * and to assume its PID: | |
801 | */ | |
802 | if (!thread_group_leader(tsk)) { | |
803 | struct task_struct *leader = tsk->group_leader; | |
804 | ||
805 | sig->notify_count = -1; /* for exit_notify() */ | |
806 | for (;;) { | |
807 | write_lock_irq(&tasklist_lock); | |
808 | if (likely(leader->exit_state)) | |
809 | break; | |
810 | __set_current_state(TASK_UNINTERRUPTIBLE); | |
811 | write_unlock_irq(&tasklist_lock); | |
812 | schedule(); | |
813 | } | |
814 | ||
815 | /* | |
816 | * The only record we have of the real-time age of a | |
817 | * process, regardless of execs it's done, is start_time. | |
818 | * All the past CPU time is accumulated in signal_struct | |
819 | * from sister threads now dead. But in this non-leader | |
820 | * exec, nothing survives from the original leader thread, | |
821 | * whose birth marks the true age of this process now. | |
822 | * When we take on its identity by switching to its PID, we | |
823 | * also take its birthdate (always earlier than our own). | |
824 | */ | |
825 | tsk->start_time = leader->start_time; | |
826 | ||
827 | BUG_ON(!same_thread_group(leader, tsk)); | |
828 | BUG_ON(has_group_leader_pid(tsk)); | |
829 | /* | |
830 | * An exec() starts a new thread group with the | |
831 | * TGID of the previous thread group. Rehash the | |
832 | * two threads with a switched PID, and release | |
833 | * the former thread group leader: | |
834 | */ | |
835 | ||
836 | /* Become a process group leader with the old leader's pid. | |
837 | * The old leader becomes a thread of the this thread group. | |
838 | * Note: The old leader also uses this pid until release_task | |
839 | * is called. Odd but simple and correct. | |
840 | */ | |
841 | detach_pid(tsk, PIDTYPE_PID); | |
842 | tsk->pid = leader->pid; | |
843 | attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); | |
844 | transfer_pid(leader, tsk, PIDTYPE_PGID); | |
845 | transfer_pid(leader, tsk, PIDTYPE_SID); | |
846 | ||
847 | list_replace_rcu(&leader->tasks, &tsk->tasks); | |
848 | list_replace_init(&leader->sibling, &tsk->sibling); | |
849 | ||
850 | tsk->group_leader = tsk; | |
851 | leader->group_leader = tsk; | |
852 | ||
853 | tsk->exit_signal = SIGCHLD; | |
854 | ||
855 | BUG_ON(leader->exit_state != EXIT_ZOMBIE); | |
856 | leader->exit_state = EXIT_DEAD; | |
857 | write_unlock_irq(&tasklist_lock); | |
858 | ||
859 | release_task(leader); | |
860 | } | |
861 | ||
862 | sig->group_exit_task = NULL; | |
863 | sig->notify_count = 0; | |
864 | ||
865 | no_thread_group: | |
866 | if (current->mm) | |
867 | setmax_mm_hiwater_rss(&sig->maxrss, current->mm); | |
868 | ||
869 | exit_itimers(sig); | |
870 | flush_itimer_signals(); | |
871 | ||
872 | if (atomic_read(&oldsighand->count) != 1) { | |
873 | struct sighand_struct *newsighand; | |
874 | /* | |
875 | * This ->sighand is shared with the CLONE_SIGHAND | |
876 | * but not CLONE_THREAD task, switch to the new one. | |
877 | */ | |
878 | newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); | |
879 | if (!newsighand) | |
880 | return -ENOMEM; | |
881 | ||
882 | atomic_set(&newsighand->count, 1); | |
883 | memcpy(newsighand->action, oldsighand->action, | |
884 | sizeof(newsighand->action)); | |
885 | ||
886 | write_lock_irq(&tasklist_lock); | |
887 | spin_lock(&oldsighand->siglock); | |
888 | rcu_assign_pointer(tsk->sighand, newsighand); | |
889 | spin_unlock(&oldsighand->siglock); | |
890 | write_unlock_irq(&tasklist_lock); | |
891 | ||
892 | __cleanup_sighand(oldsighand); | |
893 | } | |
894 | ||
895 | BUG_ON(!thread_group_leader(tsk)); | |
896 | return 0; | |
897 | } | |
898 | ||
899 | /* | |
900 | * These functions flushes out all traces of the currently running executable | |
901 | * so that a new one can be started | |
902 | */ | |
903 | static void flush_old_files(struct files_struct * files) | |
904 | { | |
905 | long j = -1; | |
906 | struct fdtable *fdt; | |
907 | ||
908 | spin_lock(&files->file_lock); | |
909 | for (;;) { | |
910 | unsigned long set, i; | |
911 | ||
912 | j++; | |
913 | i = j * __NFDBITS; | |
914 | fdt = files_fdtable(files); | |
915 | if (i >= fdt->max_fds) | |
916 | break; | |
917 | set = fdt->close_on_exec->fds_bits[j]; | |
918 | if (!set) | |
919 | continue; | |
920 | fdt->close_on_exec->fds_bits[j] = 0; | |
921 | spin_unlock(&files->file_lock); | |
922 | for ( ; set ; i++,set >>= 1) { | |
923 | if (set & 1) { | |
924 | sys_close(i); | |
925 | } | |
926 | } | |
927 | spin_lock(&files->file_lock); | |
928 | ||
929 | } | |
930 | spin_unlock(&files->file_lock); | |
931 | } | |
932 | ||
933 | char *get_task_comm(char *buf, struct task_struct *tsk) | |
934 | { | |
935 | /* buf must be at least sizeof(tsk->comm) in size */ | |
936 | task_lock(tsk); | |
937 | strncpy(buf, tsk->comm, sizeof(tsk->comm)); | |
938 | task_unlock(tsk); | |
939 | return buf; | |
940 | } | |
941 | ||
942 | void set_task_comm(struct task_struct *tsk, char *buf) | |
943 | { | |
944 | task_lock(tsk); | |
945 | ||
946 | /* | |
947 | * Threads may access current->comm without holding | |
948 | * the task lock, so write the string carefully. | |
949 | * Readers without a lock may see incomplete new | |
950 | * names but are safe from non-terminating string reads. | |
951 | */ | |
952 | memset(tsk->comm, 0, TASK_COMM_LEN); | |
953 | wmb(); | |
954 | strlcpy(tsk->comm, buf, sizeof(tsk->comm)); | |
955 | task_unlock(tsk); | |
956 | perf_event_comm(tsk); | |
957 | } | |
958 | ||
959 | int flush_old_exec(struct linux_binprm * bprm) | |
960 | { | |
961 | int retval; | |
962 | ||
963 | /* | |
964 | * Make sure we have a private signal table and that | |
965 | * we are unassociated from the previous thread group. | |
966 | */ | |
967 | retval = de_thread(current); | |
968 | if (retval) | |
969 | goto out; | |
970 | ||
971 | set_mm_exe_file(bprm->mm, bprm->file); | |
972 | ||
973 | /* | |
974 | * Release all of the old mmap stuff | |
975 | */ | |
976 | retval = exec_mmap(bprm->mm); | |
977 | if (retval) | |
978 | goto out; | |
979 | ||
980 | bprm->mm = NULL; /* We're using it now */ | |
981 | ||
982 | current->flags &= ~PF_RANDOMIZE; | |
983 | flush_thread(); | |
984 | current->personality &= ~bprm->per_clear; | |
985 | ||
986 | return 0; | |
987 | ||
988 | out: | |
989 | return retval; | |
990 | } | |
991 | EXPORT_SYMBOL(flush_old_exec); | |
992 | ||
993 | void setup_new_exec(struct linux_binprm * bprm) | |
994 | { | |
995 | int i, ch; | |
996 | char * name; | |
997 | char tcomm[sizeof(current->comm)]; | |
998 | ||
999 | arch_pick_mmap_layout(current->mm); | |
1000 | ||
1001 | /* This is the point of no return */ | |
1002 | current->sas_ss_sp = current->sas_ss_size = 0; | |
1003 | ||
1004 | if (current_euid() == current_uid() && current_egid() == current_gid()) | |
1005 | set_dumpable(current->mm, 1); | |
1006 | else | |
1007 | set_dumpable(current->mm, suid_dumpable); | |
1008 | ||
1009 | name = bprm->filename; | |
1010 | ||
1011 | /* Copies the binary name from after last slash */ | |
1012 | for (i=0; (ch = *(name++)) != '\0';) { | |
1013 | if (ch == '/') | |
1014 | i = 0; /* overwrite what we wrote */ | |
1015 | else | |
1016 | if (i < (sizeof(tcomm) - 1)) | |
1017 | tcomm[i++] = ch; | |
1018 | } | |
1019 | tcomm[i] = '\0'; | |
1020 | set_task_comm(current, tcomm); | |
1021 | ||
1022 | /* Set the new mm task size. We have to do that late because it may | |
1023 | * depend on TIF_32BIT which is only updated in flush_thread() on | |
1024 | * some architectures like powerpc | |
1025 | */ | |
1026 | current->mm->task_size = TASK_SIZE; | |
1027 | ||
1028 | /* install the new credentials */ | |
1029 | if (bprm->cred->uid != current_euid() || | |
1030 | bprm->cred->gid != current_egid()) { | |
1031 | current->pdeath_signal = 0; | |
1032 | } else if (file_permission(bprm->file, MAY_READ) || | |
1033 | bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) { | |
1034 | set_dumpable(current->mm, suid_dumpable); | |
1035 | } | |
1036 | ||
1037 | /* | |
1038 | * Flush performance counters when crossing a | |
1039 | * security domain: | |
1040 | */ | |
1041 | if (!get_dumpable(current->mm)) | |
1042 | perf_event_exit_task(current); | |
1043 | ||
1044 | /* An exec changes our domain. We are no longer part of the thread | |
1045 | group */ | |
1046 | ||
1047 | current->self_exec_id++; | |
1048 | ||
1049 | flush_signal_handlers(current, 0); | |
1050 | flush_old_files(current->files); | |
1051 | } | |
1052 | EXPORT_SYMBOL(setup_new_exec); | |
1053 | ||
1054 | /* | |
1055 | * Prepare credentials and lock ->cred_guard_mutex. | |
1056 | * install_exec_creds() commits the new creds and drops the lock. | |
1057 | * Or, if exec fails before, free_bprm() should release ->cred and | |
1058 | * and unlock. | |
1059 | */ | |
1060 | int prepare_bprm_creds(struct linux_binprm *bprm) | |
1061 | { | |
1062 | if (mutex_lock_interruptible(¤t->cred_guard_mutex)) | |
1063 | return -ERESTARTNOINTR; | |
1064 | ||
1065 | bprm->cred = prepare_exec_creds(); | |
1066 | if (likely(bprm->cred)) | |
1067 | return 0; | |
1068 | ||
1069 | mutex_unlock(¤t->cred_guard_mutex); | |
1070 | return -ENOMEM; | |
1071 | } | |
1072 | ||
1073 | void free_bprm(struct linux_binprm *bprm) | |
1074 | { | |
1075 | free_arg_pages(bprm); | |
1076 | if (bprm->cred) { | |
1077 | mutex_unlock(¤t->cred_guard_mutex); | |
1078 | abort_creds(bprm->cred); | |
1079 | } | |
1080 | kfree(bprm); | |
1081 | } | |
1082 | ||
1083 | /* | |
1084 | * install the new credentials for this executable | |
1085 | */ | |
1086 | void install_exec_creds(struct linux_binprm *bprm) | |
1087 | { | |
1088 | security_bprm_committing_creds(bprm); | |
1089 | ||
1090 | commit_creds(bprm->cred); | |
1091 | bprm->cred = NULL; | |
1092 | /* | |
1093 | * cred_guard_mutex must be held at least to this point to prevent | |
1094 | * ptrace_attach() from altering our determination of the task's | |
1095 | * credentials; any time after this it may be unlocked. | |
1096 | */ | |
1097 | security_bprm_committed_creds(bprm); | |
1098 | mutex_unlock(¤t->cred_guard_mutex); | |
1099 | } | |
1100 | EXPORT_SYMBOL(install_exec_creds); | |
1101 | ||
1102 | /* | |
1103 | * determine how safe it is to execute the proposed program | |
1104 | * - the caller must hold current->cred_guard_mutex to protect against | |
1105 | * PTRACE_ATTACH | |
1106 | */ | |
1107 | int check_unsafe_exec(struct linux_binprm *bprm) | |
1108 | { | |
1109 | struct task_struct *p = current, *t; | |
1110 | unsigned n_fs; | |
1111 | int res = 0; | |
1112 | ||
1113 | bprm->unsafe = tracehook_unsafe_exec(p); | |
1114 | ||
1115 | n_fs = 1; | |
1116 | write_lock(&p->fs->lock); | |
1117 | rcu_read_lock(); | |
1118 | for (t = next_thread(p); t != p; t = next_thread(t)) { | |
1119 | if (t->fs == p->fs) | |
1120 | n_fs++; | |
1121 | } | |
1122 | rcu_read_unlock(); | |
1123 | ||
1124 | if (p->fs->users > n_fs) { | |
1125 | bprm->unsafe |= LSM_UNSAFE_SHARE; | |
1126 | } else { | |
1127 | res = -EAGAIN; | |
1128 | if (!p->fs->in_exec) { | |
1129 | p->fs->in_exec = 1; | |
1130 | res = 1; | |
1131 | } | |
1132 | } | |
1133 | write_unlock(&p->fs->lock); | |
1134 | ||
1135 | return res; | |
1136 | } | |
1137 | ||
1138 | /* | |
1139 | * Fill the binprm structure from the inode. | |
1140 | * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes | |
1141 | * | |
1142 | * This may be called multiple times for binary chains (scripts for example). | |
1143 | */ | |
1144 | int prepare_binprm(struct linux_binprm *bprm) | |
1145 | { | |
1146 | umode_t mode; | |
1147 | struct inode * inode = bprm->file->f_path.dentry->d_inode; | |
1148 | int retval; | |
1149 | ||
1150 | mode = inode->i_mode; | |
1151 | if (bprm->file->f_op == NULL) | |
1152 | return -EACCES; | |
1153 | ||
1154 | /* clear any previous set[ug]id data from a previous binary */ | |
1155 | bprm->cred->euid = current_euid(); | |
1156 | bprm->cred->egid = current_egid(); | |
1157 | ||
1158 | if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { | |
1159 | /* Set-uid? */ | |
1160 | if (mode & S_ISUID) { | |
1161 | bprm->per_clear |= PER_CLEAR_ON_SETID; | |
1162 | bprm->cred->euid = inode->i_uid; | |
1163 | } | |
1164 | ||
1165 | /* Set-gid? */ | |
1166 | /* | |
1167 | * If setgid is set but no group execute bit then this | |
1168 | * is a candidate for mandatory locking, not a setgid | |
1169 | * executable. | |
1170 | */ | |
1171 | if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { | |
1172 | bprm->per_clear |= PER_CLEAR_ON_SETID; | |
1173 | bprm->cred->egid = inode->i_gid; | |
1174 | } | |
1175 | } | |
1176 | ||
1177 | /* fill in binprm security blob */ | |
1178 | retval = security_bprm_set_creds(bprm); | |
1179 | if (retval) | |
1180 | return retval; | |
1181 | bprm->cred_prepared = 1; | |
1182 | ||
1183 | memset(bprm->buf, 0, BINPRM_BUF_SIZE); | |
1184 | return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); | |
1185 | } | |
1186 | ||
1187 | EXPORT_SYMBOL(prepare_binprm); | |
1188 | ||
1189 | /* | |
1190 | * Arguments are '\0' separated strings found at the location bprm->p | |
1191 | * points to; chop off the first by relocating brpm->p to right after | |
1192 | * the first '\0' encountered. | |
1193 | */ | |
1194 | int remove_arg_zero(struct linux_binprm *bprm) | |
1195 | { | |
1196 | int ret = 0; | |
1197 | unsigned long offset; | |
1198 | char *kaddr; | |
1199 | struct page *page; | |
1200 | ||
1201 | if (!bprm->argc) | |
1202 | return 0; | |
1203 | ||
1204 | do { | |
1205 | offset = bprm->p & ~PAGE_MASK; | |
1206 | page = get_arg_page(bprm, bprm->p, 0); | |
1207 | if (!page) { | |
1208 | ret = -EFAULT; | |
1209 | goto out; | |
1210 | } | |
1211 | kaddr = kmap_atomic(page, KM_USER0); | |
1212 | ||
1213 | for (; offset < PAGE_SIZE && kaddr[offset]; | |
1214 | offset++, bprm->p++) | |
1215 | ; | |
1216 | ||
1217 | kunmap_atomic(kaddr, KM_USER0); | |
1218 | put_arg_page(page); | |
1219 | ||
1220 | if (offset == PAGE_SIZE) | |
1221 | free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); | |
1222 | } while (offset == PAGE_SIZE); | |
1223 | ||
1224 | bprm->p++; | |
1225 | bprm->argc--; | |
1226 | ret = 0; | |
1227 | ||
1228 | out: | |
1229 | return ret; | |
1230 | } | |
1231 | EXPORT_SYMBOL(remove_arg_zero); | |
1232 | ||
1233 | /* | |
1234 | * cycle the list of binary formats handler, until one recognizes the image | |
1235 | */ | |
1236 | int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) | |
1237 | { | |
1238 | unsigned int depth = bprm->recursion_depth; | |
1239 | int try,retval; | |
1240 | struct linux_binfmt *fmt; | |
1241 | ||
1242 | retval = security_bprm_check(bprm); | |
1243 | if (retval) | |
1244 | return retval; | |
1245 | ||
1246 | /* kernel module loader fixup */ | |
1247 | /* so we don't try to load run modprobe in kernel space. */ | |
1248 | set_fs(USER_DS); | |
1249 | ||
1250 | retval = audit_bprm(bprm); | |
1251 | if (retval) | |
1252 | return retval; | |
1253 | ||
1254 | retval = -ENOENT; | |
1255 | for (try=0; try<2; try++) { | |
1256 | read_lock(&binfmt_lock); | |
1257 | list_for_each_entry(fmt, &formats, lh) { | |
1258 | int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; | |
1259 | if (!fn) | |
1260 | continue; | |
1261 | if (!try_module_get(fmt->module)) | |
1262 | continue; | |
1263 | read_unlock(&binfmt_lock); | |
1264 | retval = fn(bprm, regs); | |
1265 | /* | |
1266 | * Restore the depth counter to its starting value | |
1267 | * in this call, so we don't have to rely on every | |
1268 | * load_binary function to restore it on return. | |
1269 | */ | |
1270 | bprm->recursion_depth = depth; | |
1271 | if (retval >= 0) { | |
1272 | if (depth == 0) | |
1273 | tracehook_report_exec(fmt, bprm, regs); | |
1274 | put_binfmt(fmt); | |
1275 | allow_write_access(bprm->file); | |
1276 | if (bprm->file) | |
1277 | fput(bprm->file); | |
1278 | bprm->file = NULL; | |
1279 | current->did_exec = 1; | |
1280 | proc_exec_connector(current); | |
1281 | return retval; | |
1282 | } | |
1283 | read_lock(&binfmt_lock); | |
1284 | put_binfmt(fmt); | |
1285 | if (retval != -ENOEXEC || bprm->mm == NULL) | |
1286 | break; | |
1287 | if (!bprm->file) { | |
1288 | read_unlock(&binfmt_lock); | |
1289 | return retval; | |
1290 | } | |
1291 | } | |
1292 | read_unlock(&binfmt_lock); | |
1293 | if (retval != -ENOEXEC || bprm->mm == NULL) { | |
1294 | break; | |
1295 | #ifdef CONFIG_MODULES | |
1296 | } else { | |
1297 | #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) | |
1298 | if (printable(bprm->buf[0]) && | |
1299 | printable(bprm->buf[1]) && | |
1300 | printable(bprm->buf[2]) && | |
1301 | printable(bprm->buf[3])) | |
1302 | break; /* -ENOEXEC */ | |
1303 | request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); | |
1304 | #endif | |
1305 | } | |
1306 | } | |
1307 | return retval; | |
1308 | } | |
1309 | ||
1310 | EXPORT_SYMBOL(search_binary_handler); | |
1311 | ||
1312 | /* | |
1313 | * sys_execve() executes a new program. | |
1314 | */ | |
1315 | int do_execve(char * filename, | |
1316 | char __user *__user *argv, | |
1317 | char __user *__user *envp, | |
1318 | struct pt_regs * regs) | |
1319 | { | |
1320 | struct linux_binprm *bprm; | |
1321 | struct file *file; | |
1322 | struct files_struct *displaced; | |
1323 | bool clear_in_exec; | |
1324 | int retval; | |
1325 | ||
1326 | retval = unshare_files(&displaced); | |
1327 | if (retval) | |
1328 | goto out_ret; | |
1329 | ||
1330 | retval = -ENOMEM; | |
1331 | bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); | |
1332 | if (!bprm) | |
1333 | goto out_files; | |
1334 | ||
1335 | retval = prepare_bprm_creds(bprm); | |
1336 | if (retval) | |
1337 | goto out_free; | |
1338 | ||
1339 | retval = check_unsafe_exec(bprm); | |
1340 | if (retval < 0) | |
1341 | goto out_free; | |
1342 | clear_in_exec = retval; | |
1343 | current->in_execve = 1; | |
1344 | ||
1345 | file = open_exec(filename); | |
1346 | retval = PTR_ERR(file); | |
1347 | if (IS_ERR(file)) | |
1348 | goto out_unmark; | |
1349 | ||
1350 | sched_exec(); | |
1351 | ||
1352 | bprm->file = file; | |
1353 | bprm->filename = filename; | |
1354 | bprm->interp = filename; | |
1355 | ||
1356 | retval = bprm_mm_init(bprm); | |
1357 | if (retval) | |
1358 | goto out_file; | |
1359 | ||
1360 | bprm->argc = count(argv, MAX_ARG_STRINGS); | |
1361 | if ((retval = bprm->argc) < 0) | |
1362 | goto out; | |
1363 | ||
1364 | bprm->envc = count(envp, MAX_ARG_STRINGS); | |
1365 | if ((retval = bprm->envc) < 0) | |
1366 | goto out; | |
1367 | ||
1368 | retval = prepare_binprm(bprm); | |
1369 | if (retval < 0) | |
1370 | goto out; | |
1371 | ||
1372 | retval = copy_strings_kernel(1, &bprm->filename, bprm); | |
1373 | if (retval < 0) | |
1374 | goto out; | |
1375 | ||
1376 | bprm->exec = bprm->p; | |
1377 | retval = copy_strings(bprm->envc, envp, bprm); | |
1378 | if (retval < 0) | |
1379 | goto out; | |
1380 | ||
1381 | retval = copy_strings(bprm->argc, argv, bprm); | |
1382 | if (retval < 0) | |
1383 | goto out; | |
1384 | ||
1385 | current->flags &= ~PF_KTHREAD; | |
1386 | retval = search_binary_handler(bprm,regs); | |
1387 | if (retval < 0) | |
1388 | goto out; | |
1389 | ||
1390 | current->stack_start = current->mm->start_stack; | |
1391 | ||
1392 | /* execve succeeded */ | |
1393 | current->fs->in_exec = 0; | |
1394 | current->in_execve = 0; | |
1395 | acct_update_integrals(current); | |
1396 | free_bprm(bprm); | |
1397 | if (displaced) | |
1398 | put_files_struct(displaced); | |
1399 | return retval; | |
1400 | ||
1401 | out: | |
1402 | if (bprm->mm) | |
1403 | mmput (bprm->mm); | |
1404 | ||
1405 | out_file: | |
1406 | if (bprm->file) { | |
1407 | allow_write_access(bprm->file); | |
1408 | fput(bprm->file); | |
1409 | } | |
1410 | ||
1411 | out_unmark: | |
1412 | if (clear_in_exec) | |
1413 | current->fs->in_exec = 0; | |
1414 | current->in_execve = 0; | |
1415 | ||
1416 | out_free: | |
1417 | free_bprm(bprm); | |
1418 | ||
1419 | out_files: | |
1420 | if (displaced) | |
1421 | reset_files_struct(displaced); | |
1422 | out_ret: | |
1423 | return retval; | |
1424 | } | |
1425 | ||
1426 | void set_binfmt(struct linux_binfmt *new) | |
1427 | { | |
1428 | struct mm_struct *mm = current->mm; | |
1429 | ||
1430 | if (mm->binfmt) | |
1431 | module_put(mm->binfmt->module); | |
1432 | ||
1433 | mm->binfmt = new; | |
1434 | if (new) | |
1435 | __module_get(new->module); | |
1436 | } | |
1437 | ||
1438 | EXPORT_SYMBOL(set_binfmt); | |
1439 | ||
1440 | /* format_corename will inspect the pattern parameter, and output a | |
1441 | * name into corename, which must have space for at least | |
1442 | * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. | |
1443 | */ | |
1444 | static int format_corename(char *corename, long signr) | |
1445 | { | |
1446 | const struct cred *cred = current_cred(); | |
1447 | const char *pat_ptr = core_pattern; | |
1448 | int ispipe = (*pat_ptr == '|'); | |
1449 | char *out_ptr = corename; | |
1450 | char *const out_end = corename + CORENAME_MAX_SIZE; | |
1451 | int rc; | |
1452 | int pid_in_pattern = 0; | |
1453 | ||
1454 | /* Repeat as long as we have more pattern to process and more output | |
1455 | space */ | |
1456 | while (*pat_ptr) { | |
1457 | if (*pat_ptr != '%') { | |
1458 | if (out_ptr == out_end) | |
1459 | goto out; | |
1460 | *out_ptr++ = *pat_ptr++; | |
1461 | } else { | |
1462 | switch (*++pat_ptr) { | |
1463 | case 0: | |
1464 | goto out; | |
1465 | /* Double percent, output one percent */ | |
1466 | case '%': | |
1467 | if (out_ptr == out_end) | |
1468 | goto out; | |
1469 | *out_ptr++ = '%'; | |
1470 | break; | |
1471 | /* pid */ | |
1472 | case 'p': | |
1473 | pid_in_pattern = 1; | |
1474 | rc = snprintf(out_ptr, out_end - out_ptr, | |
1475 | "%d", task_tgid_vnr(current)); | |
1476 | if (rc > out_end - out_ptr) | |
1477 | goto out; | |
1478 | out_ptr += rc; | |
1479 | break; | |
1480 | /* uid */ | |
1481 | case 'u': | |
1482 | rc = snprintf(out_ptr, out_end - out_ptr, | |
1483 | "%d", cred->uid); | |
1484 | if (rc > out_end - out_ptr) | |
1485 | goto out; | |
1486 | out_ptr += rc; | |
1487 | break; | |
1488 | /* gid */ | |
1489 | case 'g': | |
1490 | rc = snprintf(out_ptr, out_end - out_ptr, | |
1491 | "%d", cred->gid); | |
1492 | if (rc > out_end - out_ptr) | |
1493 | goto out; | |
1494 | out_ptr += rc; | |
1495 | break; | |
1496 | /* signal that caused the coredump */ | |
1497 | case 's': | |
1498 | rc = snprintf(out_ptr, out_end - out_ptr, | |
1499 | "%ld", signr); | |
1500 | if (rc > out_end - out_ptr) | |
1501 | goto out; | |
1502 | out_ptr += rc; | |
1503 | break; | |
1504 | /* UNIX time of coredump */ | |
1505 | case 't': { | |
1506 | struct timeval tv; | |
1507 | do_gettimeofday(&tv); | |
1508 | rc = snprintf(out_ptr, out_end - out_ptr, | |
1509 | "%lu", tv.tv_sec); | |
1510 | if (rc > out_end - out_ptr) | |
1511 | goto out; | |
1512 | out_ptr += rc; | |
1513 | break; | |
1514 | } | |
1515 | /* hostname */ | |
1516 | case 'h': | |
1517 | down_read(&uts_sem); | |
1518 | rc = snprintf(out_ptr, out_end - out_ptr, | |
1519 | "%s", utsname()->nodename); | |
1520 | up_read(&uts_sem); | |
1521 | if (rc > out_end - out_ptr) | |
1522 | goto out; | |
1523 | out_ptr += rc; | |
1524 | break; | |
1525 | /* executable */ | |
1526 | case 'e': | |
1527 | rc = snprintf(out_ptr, out_end - out_ptr, | |
1528 | "%s", current->comm); | |
1529 | if (rc > out_end - out_ptr) | |
1530 | goto out; | |
1531 | out_ptr += rc; | |
1532 | break; | |
1533 | /* core limit size */ | |
1534 | case 'c': | |
1535 | rc = snprintf(out_ptr, out_end - out_ptr, | |
1536 | "%lu", rlimit(RLIMIT_CORE)); | |
1537 | if (rc > out_end - out_ptr) | |
1538 | goto out; | |
1539 | out_ptr += rc; | |
1540 | break; | |
1541 | default: | |
1542 | break; | |
1543 | } | |
1544 | ++pat_ptr; | |
1545 | } | |
1546 | } | |
1547 | /* Backward compatibility with core_uses_pid: | |
1548 | * | |
1549 | * If core_pattern does not include a %p (as is the default) | |
1550 | * and core_uses_pid is set, then .%pid will be appended to | |
1551 | * the filename. Do not do this for piped commands. */ | |
1552 | if (!ispipe && !pid_in_pattern && core_uses_pid) { | |
1553 | rc = snprintf(out_ptr, out_end - out_ptr, | |
1554 | ".%d", task_tgid_vnr(current)); | |
1555 | if (rc > out_end - out_ptr) | |
1556 | goto out; | |
1557 | out_ptr += rc; | |
1558 | } | |
1559 | out: | |
1560 | *out_ptr = 0; | |
1561 | return ispipe; | |
1562 | } | |
1563 | ||
1564 | static int zap_process(struct task_struct *start) | |
1565 | { | |
1566 | struct task_struct *t; | |
1567 | int nr = 0; | |
1568 | ||
1569 | start->signal->flags = SIGNAL_GROUP_EXIT; | |
1570 | start->signal->group_stop_count = 0; | |
1571 | ||
1572 | t = start; | |
1573 | do { | |
1574 | if (t != current && t->mm) { | |
1575 | sigaddset(&t->pending.signal, SIGKILL); | |
1576 | signal_wake_up(t, 1); | |
1577 | nr++; | |
1578 | } | |
1579 | } while_each_thread(start, t); | |
1580 | ||
1581 | return nr; | |
1582 | } | |
1583 | ||
1584 | static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, | |
1585 | struct core_state *core_state, int exit_code) | |
1586 | { | |
1587 | struct task_struct *g, *p; | |
1588 | unsigned long flags; | |
1589 | int nr = -EAGAIN; | |
1590 | ||
1591 | spin_lock_irq(&tsk->sighand->siglock); | |
1592 | if (!signal_group_exit(tsk->signal)) { | |
1593 | mm->core_state = core_state; | |
1594 | tsk->signal->group_exit_code = exit_code; | |
1595 | nr = zap_process(tsk); | |
1596 | } | |
1597 | spin_unlock_irq(&tsk->sighand->siglock); | |
1598 | if (unlikely(nr < 0)) | |
1599 | return nr; | |
1600 | ||
1601 | if (atomic_read(&mm->mm_users) == nr + 1) | |
1602 | goto done; | |
1603 | /* | |
1604 | * We should find and kill all tasks which use this mm, and we should | |
1605 | * count them correctly into ->nr_threads. We don't take tasklist | |
1606 | * lock, but this is safe wrt: | |
1607 | * | |
1608 | * fork: | |
1609 | * None of sub-threads can fork after zap_process(leader). All | |
1610 | * processes which were created before this point should be | |
1611 | * visible to zap_threads() because copy_process() adds the new | |
1612 | * process to the tail of init_task.tasks list, and lock/unlock | |
1613 | * of ->siglock provides a memory barrier. | |
1614 | * | |
1615 | * do_exit: | |
1616 | * The caller holds mm->mmap_sem. This means that the task which | |
1617 | * uses this mm can't pass exit_mm(), so it can't exit or clear | |
1618 | * its ->mm. | |
1619 | * | |
1620 | * de_thread: | |
1621 | * It does list_replace_rcu(&leader->tasks, ¤t->tasks), | |
1622 | * we must see either old or new leader, this does not matter. | |
1623 | * However, it can change p->sighand, so lock_task_sighand(p) | |
1624 | * must be used. Since p->mm != NULL and we hold ->mmap_sem | |
1625 | * it can't fail. | |
1626 | * | |
1627 | * Note also that "g" can be the old leader with ->mm == NULL | |
1628 | * and already unhashed and thus removed from ->thread_group. | |
1629 | * This is OK, __unhash_process()->list_del_rcu() does not | |
1630 | * clear the ->next pointer, we will find the new leader via | |
1631 | * next_thread(). | |
1632 | */ | |
1633 | rcu_read_lock(); | |
1634 | for_each_process(g) { | |
1635 | if (g == tsk->group_leader) | |
1636 | continue; | |
1637 | if (g->flags & PF_KTHREAD) | |
1638 | continue; | |
1639 | p = g; | |
1640 | do { | |
1641 | if (p->mm) { | |
1642 | if (unlikely(p->mm == mm)) { | |
1643 | lock_task_sighand(p, &flags); | |
1644 | nr += zap_process(p); | |
1645 | unlock_task_sighand(p, &flags); | |
1646 | } | |
1647 | break; | |
1648 | } | |
1649 | } while_each_thread(g, p); | |
1650 | } | |
1651 | rcu_read_unlock(); | |
1652 | done: | |
1653 | atomic_set(&core_state->nr_threads, nr); | |
1654 | return nr; | |
1655 | } | |
1656 | ||
1657 | static int coredump_wait(int exit_code, struct core_state *core_state) | |
1658 | { | |
1659 | struct task_struct *tsk = current; | |
1660 | struct mm_struct *mm = tsk->mm; | |
1661 | struct completion *vfork_done; | |
1662 | int core_waiters; | |
1663 | ||
1664 | init_completion(&core_state->startup); | |
1665 | core_state->dumper.task = tsk; | |
1666 | core_state->dumper.next = NULL; | |
1667 | core_waiters = zap_threads(tsk, mm, core_state, exit_code); | |
1668 | up_write(&mm->mmap_sem); | |
1669 | ||
1670 | if (unlikely(core_waiters < 0)) | |
1671 | goto fail; | |
1672 | ||
1673 | /* | |
1674 | * Make sure nobody is waiting for us to release the VM, | |
1675 | * otherwise we can deadlock when we wait on each other | |
1676 | */ | |
1677 | vfork_done = tsk->vfork_done; | |
1678 | if (vfork_done) { | |
1679 | tsk->vfork_done = NULL; | |
1680 | complete(vfork_done); | |
1681 | } | |
1682 | ||
1683 | if (core_waiters) | |
1684 | wait_for_completion(&core_state->startup); | |
1685 | fail: | |
1686 | return core_waiters; | |
1687 | } | |
1688 | ||
1689 | static void coredump_finish(struct mm_struct *mm) | |
1690 | { | |
1691 | struct core_thread *curr, *next; | |
1692 | struct task_struct *task; | |
1693 | ||
1694 | next = mm->core_state->dumper.next; | |
1695 | while ((curr = next) != NULL) { | |
1696 | next = curr->next; | |
1697 | task = curr->task; | |
1698 | /* | |
1699 | * see exit_mm(), curr->task must not see | |
1700 | * ->task == NULL before we read ->next. | |
1701 | */ | |
1702 | smp_mb(); | |
1703 | curr->task = NULL; | |
1704 | wake_up_process(task); | |
1705 | } | |
1706 | ||
1707 | mm->core_state = NULL; | |
1708 | } | |
1709 | ||
1710 | /* | |
1711 | * set_dumpable converts traditional three-value dumpable to two flags and | |
1712 | * stores them into mm->flags. It modifies lower two bits of mm->flags, but | |
1713 | * these bits are not changed atomically. So get_dumpable can observe the | |
1714 | * intermediate state. To avoid doing unexpected behavior, get get_dumpable | |
1715 | * return either old dumpable or new one by paying attention to the order of | |
1716 | * modifying the bits. | |
1717 | * | |
1718 | * dumpable | mm->flags (binary) | |
1719 | * old new | initial interim final | |
1720 | * ---------+----------------------- | |
1721 | * 0 1 | 00 01 01 | |
1722 | * 0 2 | 00 10(*) 11 | |
1723 | * 1 0 | 01 00 00 | |
1724 | * 1 2 | 01 11 11 | |
1725 | * 2 0 | 11 10(*) 00 | |
1726 | * 2 1 | 11 11 01 | |
1727 | * | |
1728 | * (*) get_dumpable regards interim value of 10 as 11. | |
1729 | */ | |
1730 | void set_dumpable(struct mm_struct *mm, int value) | |
1731 | { | |
1732 | switch (value) { | |
1733 | case 0: | |
1734 | clear_bit(MMF_DUMPABLE, &mm->flags); | |
1735 | smp_wmb(); | |
1736 | clear_bit(MMF_DUMP_SECURELY, &mm->flags); | |
1737 | break; | |
1738 | case 1: | |
1739 | set_bit(MMF_DUMPABLE, &mm->flags); | |
1740 | smp_wmb(); | |
1741 | clear_bit(MMF_DUMP_SECURELY, &mm->flags); | |
1742 | break; | |
1743 | case 2: | |
1744 | set_bit(MMF_DUMP_SECURELY, &mm->flags); | |
1745 | smp_wmb(); | |
1746 | set_bit(MMF_DUMPABLE, &mm->flags); | |
1747 | break; | |
1748 | } | |
1749 | } | |
1750 | ||
1751 | static int __get_dumpable(unsigned long mm_flags) | |
1752 | { | |
1753 | int ret; | |
1754 | ||
1755 | ret = mm_flags & MMF_DUMPABLE_MASK; | |
1756 | return (ret >= 2) ? 2 : ret; | |
1757 | } | |
1758 | ||
1759 | int get_dumpable(struct mm_struct *mm) | |
1760 | { | |
1761 | return __get_dumpable(mm->flags); | |
1762 | } | |
1763 | ||
1764 | static void wait_for_dump_helpers(struct file *file) | |
1765 | { | |
1766 | struct pipe_inode_info *pipe; | |
1767 | ||
1768 | pipe = file->f_path.dentry->d_inode->i_pipe; | |
1769 | ||
1770 | pipe_lock(pipe); | |
1771 | pipe->readers++; | |
1772 | pipe->writers--; | |
1773 | ||
1774 | while ((pipe->readers > 1) && (!signal_pending(current))) { | |
1775 | wake_up_interruptible_sync(&pipe->wait); | |
1776 | kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); | |
1777 | pipe_wait(pipe); | |
1778 | } | |
1779 | ||
1780 | pipe->readers--; | |
1781 | pipe->writers++; | |
1782 | pipe_unlock(pipe); | |
1783 | ||
1784 | } | |
1785 | ||
1786 | ||
1787 | void do_coredump(long signr, int exit_code, struct pt_regs *regs) | |
1788 | { | |
1789 | struct core_state core_state; | |
1790 | char corename[CORENAME_MAX_SIZE + 1]; | |
1791 | struct mm_struct *mm = current->mm; | |
1792 | struct linux_binfmt * binfmt; | |
1793 | struct inode * inode; | |
1794 | const struct cred *old_cred; | |
1795 | struct cred *cred; | |
1796 | int retval = 0; | |
1797 | int flag = 0; | |
1798 | int ispipe = 0; | |
1799 | char **helper_argv = NULL; | |
1800 | int helper_argc = 0; | |
1801 | int dump_count = 0; | |
1802 | static atomic_t core_dump_count = ATOMIC_INIT(0); | |
1803 | struct coredump_params cprm = { | |
1804 | .signr = signr, | |
1805 | .regs = regs, | |
1806 | .limit = rlimit(RLIMIT_CORE), | |
1807 | /* | |
1808 | * We must use the same mm->flags while dumping core to avoid | |
1809 | * inconsistency of bit flags, since this flag is not protected | |
1810 | * by any locks. | |
1811 | */ | |
1812 | .mm_flags = mm->flags, | |
1813 | }; | |
1814 | ||
1815 | audit_core_dumps(signr); | |
1816 | ||
1817 | binfmt = mm->binfmt; | |
1818 | if (!binfmt || !binfmt->core_dump) | |
1819 | goto fail; | |
1820 | ||
1821 | cred = prepare_creds(); | |
1822 | if (!cred) { | |
1823 | retval = -ENOMEM; | |
1824 | goto fail; | |
1825 | } | |
1826 | ||
1827 | down_write(&mm->mmap_sem); | |
1828 | /* | |
1829 | * If another thread got here first, or we are not dumpable, bail out. | |
1830 | */ | |
1831 | if (mm->core_state || !__get_dumpable(cprm.mm_flags)) { | |
1832 | up_write(&mm->mmap_sem); | |
1833 | put_cred(cred); | |
1834 | goto fail; | |
1835 | } | |
1836 | ||
1837 | /* | |
1838 | * We cannot trust fsuid as being the "true" uid of the | |
1839 | * process nor do we know its entire history. We only know it | |
1840 | * was tainted so we dump it as root in mode 2. | |
1841 | */ | |
1842 | if (__get_dumpable(cprm.mm_flags) == 2) { | |
1843 | /* Setuid core dump mode */ | |
1844 | flag = O_EXCL; /* Stop rewrite attacks */ | |
1845 | cred->fsuid = 0; /* Dump root private */ | |
1846 | } | |
1847 | ||
1848 | retval = coredump_wait(exit_code, &core_state); | |
1849 | if (retval < 0) { | |
1850 | put_cred(cred); | |
1851 | goto fail; | |
1852 | } | |
1853 | ||
1854 | old_cred = override_creds(cred); | |
1855 | ||
1856 | /* | |
1857 | * Clear any false indication of pending signals that might | |
1858 | * be seen by the filesystem code called to write the core file. | |
1859 | */ | |
1860 | clear_thread_flag(TIF_SIGPENDING); | |
1861 | ||
1862 | /* | |
1863 | * lock_kernel() because format_corename() is controlled by sysctl, which | |
1864 | * uses lock_kernel() | |
1865 | */ | |
1866 | lock_kernel(); | |
1867 | ispipe = format_corename(corename, signr); | |
1868 | unlock_kernel(); | |
1869 | ||
1870 | if ((!ispipe) && (cprm.limit < binfmt->min_coredump)) | |
1871 | goto fail_unlock; | |
1872 | ||
1873 | if (ispipe) { | |
1874 | if (cprm.limit == 0) { | |
1875 | /* | |
1876 | * Normally core limits are irrelevant to pipes, since | |
1877 | * we're not writing to the file system, but we use | |
1878 | * cprm.limit of 0 here as a speacial value. Any | |
1879 | * non-zero limit gets set to RLIM_INFINITY below, but | |
1880 | * a limit of 0 skips the dump. This is a consistent | |
1881 | * way to catch recursive crashes. We can still crash | |
1882 | * if the core_pattern binary sets RLIM_CORE = !0 | |
1883 | * but it runs as root, and can do lots of stupid things | |
1884 | * Note that we use task_tgid_vnr here to grab the pid | |
1885 | * of the process group leader. That way we get the | |
1886 | * right pid if a thread in a multi-threaded | |
1887 | * core_pattern process dies. | |
1888 | */ | |
1889 | printk(KERN_WARNING | |
1890 | "Process %d(%s) has RLIMIT_CORE set to 0\n", | |
1891 | task_tgid_vnr(current), current->comm); | |
1892 | printk(KERN_WARNING "Aborting core\n"); | |
1893 | goto fail_unlock; | |
1894 | } | |
1895 | ||
1896 | dump_count = atomic_inc_return(&core_dump_count); | |
1897 | if (core_pipe_limit && (core_pipe_limit < dump_count)) { | |
1898 | printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", | |
1899 | task_tgid_vnr(current), current->comm); | |
1900 | printk(KERN_WARNING "Skipping core dump\n"); | |
1901 | goto fail_dropcount; | |
1902 | } | |
1903 | ||
1904 | helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc); | |
1905 | if (!helper_argv) { | |
1906 | printk(KERN_WARNING "%s failed to allocate memory\n", | |
1907 | __func__); | |
1908 | goto fail_dropcount; | |
1909 | } | |
1910 | ||
1911 | cprm.limit = RLIM_INFINITY; | |
1912 | ||
1913 | /* SIGPIPE can happen, but it's just never processed */ | |
1914 | if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL, | |
1915 | &cprm.file)) { | |
1916 | printk(KERN_INFO "Core dump to %s pipe failed\n", | |
1917 | corename); | |
1918 | goto fail_dropcount; | |
1919 | } | |
1920 | } else | |
1921 | cprm.file = filp_open(corename, | |
1922 | O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, | |
1923 | 0600); | |
1924 | if (IS_ERR(cprm.file)) | |
1925 | goto fail_dropcount; | |
1926 | inode = cprm.file->f_path.dentry->d_inode; | |
1927 | if (inode->i_nlink > 1) | |
1928 | goto close_fail; /* multiple links - don't dump */ | |
1929 | if (!ispipe && d_unhashed(cprm.file->f_path.dentry)) | |
1930 | goto close_fail; | |
1931 | ||
1932 | /* AK: actually i see no reason to not allow this for named pipes etc., | |
1933 | but keep the previous behaviour for now. */ | |
1934 | if (!ispipe && !S_ISREG(inode->i_mode)) | |
1935 | goto close_fail; | |
1936 | /* | |
1937 | * Dont allow local users get cute and trick others to coredump | |
1938 | * into their pre-created files: | |
1939 | */ | |
1940 | if (inode->i_uid != current_fsuid()) | |
1941 | goto close_fail; | |
1942 | if (!cprm.file->f_op) | |
1943 | goto close_fail; | |
1944 | if (!cprm.file->f_op->write) | |
1945 | goto close_fail; | |
1946 | if (!ispipe && | |
1947 | do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file) != 0) | |
1948 | goto close_fail; | |
1949 | ||
1950 | retval = binfmt->core_dump(&cprm); | |
1951 | ||
1952 | if (retval) | |
1953 | current->signal->group_exit_code |= 0x80; | |
1954 | close_fail: | |
1955 | if (ispipe && core_pipe_limit) | |
1956 | wait_for_dump_helpers(cprm.file); | |
1957 | filp_close(cprm.file, NULL); | |
1958 | fail_dropcount: | |
1959 | if (dump_count) | |
1960 | atomic_dec(&core_dump_count); | |
1961 | fail_unlock: | |
1962 | if (helper_argv) | |
1963 | argv_free(helper_argv); | |
1964 | ||
1965 | revert_creds(old_cred); | |
1966 | put_cred(cred); | |
1967 | coredump_finish(mm); | |
1968 | fail: | |
1969 | return; | |
1970 | } |